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Holomorphic triples and the prescribed

curvature problem on S2

Alexandre C. Gonçalves

We prove new results on existence of solutions for the prescribed
gaussian curvature problem on the euclidean sphere S2. Those re-
sults are achieved by relating this problem with the holomorphic
triples theory on Riemann surfaces. We think this approach might
be applied to study some other semi-linear elliptic equations of 2nd

order on the sphere.

1. Introduction

LetM be a closed Riemann surface with metric g0. By a pointwise conformal
metric we mean another metric g given by dilation of g0 by a positive smooth
function. Therefore, we can write g = e2ug0 for a a function u ∈ C∞(M). If
K0 and K denote the gaussian curvatures of g0 and g, respectively, it can
be shown [15]

(1) Δu+Ke2u −K0 = 0,

where Δ denotes the Laplace-Beltrame operator on the metric g0. Thus,
finding a metric pointwise conformal to g0 with curvature K is equivalent
to finding classical solutions to the elliptic equation (1).

This problem has been treated by several authors since the late 1960s [1,
2, 15, 16]. In [15] Kazdan and Warner obtained some general necessary and
suficient conditions on the functions K,K0 to assure existence of solutions
to (1). They also found some non-existence conditions mainly in the case of
the euclidean sphere.

On the other hand, it has long been known that equations like (1) are a
particular case of the theory of holomorphic triples over Kähler manifolds [5,
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11]. This theory grew out of the seminal work of Donaldson and Uhlenbeck-
Yau about special metrics on stable vector bundles, which developed into an
active area of work since the 1980s [3, 4, 6, 7, 11, 21, 22]. The Vortex equation
was introduced in [3] and evolved into the holomorphic triples theory [5, 11],
where not only holomorphic vector bundles, but also prescribed cohomology
classes on the bundles are considered.

In [12] the study of equation (1) is presented in connection with the
vortex and holomorphic triples theory, by means of two distinct though
related problems:

Δu+ |[φ]|2u − λ = 0,(2)

Δu+ |[η]|2u − λ = 0.(3)

Equations (2) and (3) are defined on a closed Riemann surface M for a
real parameter λ > 0 and for cohomology classes [φ] and [η] living, respec-
tively, in the cohomology complex of holomorphic line bundles L and L∗

over M . The terms |[φ]|2u and |[η]|2u refer to the pointwise squared norm of
representatives of these classes, in a hermitian metric given by dilation of
the original metric by a factor e2u. The function u is a real smooth function
on M and is meant to be the unknown in the equations.

In the prescribed curvature problem presented by equation (1) one is
often interested in the case K0 ≡constant. Since the work of Kazdan and
Warner this is already well known for all surfaces with non-positive Eu-
ler characteristic, as well as for the projective plane PR

2. Despite some
non-trivial non-existence conditions have been found, the case of M = S2

is where most open questions remain. It amounts to say that up to our
knowledge, all results on existence for (1) after [16] play on several suficient
conditions for the function K, one of them being K > 0 [8, 23]. Existence
for (1) is also known when K is symmetric about the origing (considering
the cannonical inclusion S2 ↪→ R3), after the work [20].

Our results apply for functions K which are the squared modulus of
holomorphic sections, typically having some zeros, and not necessarily sym-
metric about the origin. Most importantly, those results can only be estab-
lished after we explicitly connect equations (2) and (3), and strongly rely
on algebraic-geometric elements of the involved bundles, like their Chern
classes. We conjecture that this algebraic fact we use for studying equa-
tion (1) might be applied even for more general functions K, and has not
been pursued by other authors so far.

A brief description of this work: in section 2 we collect some well-known
facts on the theory of line bundles over riemann surfaces, as well as results



Holomorphic triples and the prescribed curvature problem 561

on metric equations like the vortex equation; in section 3 we prove the main
results necessary to understand the cohomology classes of the dual bundle
L∗ from the analytical viewpoint, contained in Lemmas 3.1, 3.2 and 3.3;
and in section 4 we apply those results to show existence or non-existence of
solutions for (1), for some conformal curvatures K, which are summarized
by Lemma 4.6 and Theorems 4.7 through 4.10.

I would like to acknowledge the encouragement of my department col-
leagues while this manuscript was written, and also the comments of the
referees that improved the presentation of this work.

2. Basics on the geometry of holomorphic bundles

This section is only meant to set up notation. For a deep study throughout
these matters we recommend [14, 18].

2.1. Hermitian bundles and cohomology

Let E be a smooth complex vector bundle over a complex manifold X. Asso-
ciated to E we have the dual bundle E∗, conjugate bundle E and endomor-
phism bundle End(E). A (hermitian) metric is then a smooth isomorphism
H : E → E

∗
which is positive definite in each fiber. The bundle E together

with the structure given by H is a hermitian bundle.
Denote by (T ∗X)C the complexified cotangent bundle of X, which splits

as (T ∗X)C = T 1,0X ⊕ T 0,1X. The bundle T 1,0X is the holomorphic cotan-
gent bundle of X (home of the famous “holomorphic differentials”). Let
Λp,qT ∗X = ΛpT 1,0X ⊗ ΛqT 0,1X for non-negative integers p, q, and let Γ(·)
be the functor that takes a bundle to its space of smooth sections. We set
Ωp,q(E) = Γ(Λp,qT ∗X ⊗ E). Any φ ∈ Ωp,q(E) is a smooth section of holo-
morphic type (p, q) and values in E.

A holomorphic structure on E is an operatorD′′ : Ωp,q(E) −→ Ωp,q+1(E)
that satisfies (D′′)2 = 0 and enjoys some typical properties of a covari-
ant derivative (see [14, 18]). Indeed, a connection is a covariant derivative
D : Ωm(E) −→ Ωm+1(E), where Ωm(E) = ⊕p+q=mΩp,q(E). Any connection
decomposes after the splitting of the cotangent bundle D = D1,0 +D0,1. It
is well known that for a given hermitian metricH and holomorphic structure
D′′ there is only one connection D = DH,D′′ compatible with both, which
means, D0,1 = D′′ and D(H) = 0. This connection is called the Chern con-
nection.

The curvature of a connection D is the compound FD = D2 : Ωm(E)→
Ωm+2(E), which is a 2-form section of the bundle End(E). An important
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topological invariant associated to the bundle E is its first Chern class
i
2π [tr(FD)] which is a cohomology class on the base manifold (here tr(·) is the
trace of the endomorphism coefficient of FD and i =

√−1). The curvature
FD ∈ Ω2(End(E)) of any Chern connection has only the (1, 1) component,
so that FD = D′′ ◦D′ +D′ ◦D′′ (we denote D′ = D1,0 from now on).

Since (D′′)2 = 0 we get a cochain complex (Ωp,q(E), D′′) whose coho-
mology we denote

Hp,q(E) =
kerD′′ : Ωp,q(E)→ Ωp,q+1(E)

imD′′ : Ωp,q−1(E)→ Ωp,q(E)
.

A holomorphic section is any φ ∈ Ωp,q(E) such that D′′φ = 0. Similarly,
an anti-holomorphic section is any section η solving D′η = 0, for a given D′

operator.
Let φ ∈ Ωp,q(E), we set the H-dual of φ as φ∗H = H(φ) ∈ Ωq,p(E∗). The

H-dual of a section valued form is obtained by conjugating the form part
and dualizing, in the usual way, the bundle coefficient. If the connection
D is hermitian then a section φ is holomorphic if and only if φ∗H is anti-
holomorphic.

2.2. Line bundles, degrees and divisors over surfaces

We now turn our attention to the case of a closed oriented Riemann surface
X = M .

Recall that a meromorphic section on the holomorphic bundle E over
M is a holomorphic section φ on M − {x1, . . . , xt} and such that in a neigh-
borhood of each xj , φ = z

mj

j ζj , where zj is a holomorphic local coordinate
on M with zj(xj) = 0 and ζj is a regular holomorphic local section. The
divisor of φ is the formal linear combination Div(φ) =

∑t
j=1mj .xj , and the

degree of φ is deg(φ) =
∑t

j=1mj . The integer mj is the order of φ at xj ,
mj = ordxj

(φ).
A line bundle is a holomorphic bundle L of rank 1 over M . It can be

shown that any line bundle has a non-vanishing meromorphic section φ ([9]),
and we set deg(L) = deg(φ). Since the endomorphism bundle of L is just the
trivial bundle M × C, and the curvature reduces to a closed 2-form on M ,
we get an analitycal way of computing its degree,

(4) deg(L) =

∫
M

i

2π
FD.
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Observe that H1,0(L) is the space of holomorphic sections of the bundle
T 1,0(M)⊗ L, hence to avoid it to be trivial we always assume

(5) deg(L) ≥ −deg(T 1,0(M)).

Of great interest to us are the cohomologies H1,0(L) and H0,1(L∗).
Clearly H1,0(L) is identified with the set of holomorphic sections. On the
other hand any section on L∗ of holomorphic type (0, 1) is D′′-closed, and so
represents a cohomology class in H0,1(L∗). By standard Hodge Theory [14]
any class on H0,1(L∗) has exactly one harmonic representative, which must
be H-antiholomorphic, hence the map

(6) ∗H : H1,0(L) −→ H0,1(L∗)

is an anti-isomorphism between these two vector spaces.
By wedging the 1-forms we define a bilinear operator Ω1,0(L)× Ω0,1(L∗)

→ Ω2(C) taking sections φ and η to (φ ∧ η), and a coupling

(7) ((φ, η)) =

∫
M

i(φ ∧ η).

Because of Stokes’ Theorem and integration by parts this coupling descends
to cohomology classes, so that (([φ], [η])) = ((φ, η)), as long as φ and η rep-
resent classes [φ] ∈ H1,0(L) and [η] ∈ H0,1(L∗), respectively. Similarly, we
have a coupling given by the metric H by setting 〈〈φ, ψ〉〉H = ((φ, ψ∗H)), for
any φ, ψ ∈ Ω1,0(L).

Two metrics H and H0 on L are related by a positive dilation in each
fiber, so that H = Hu = H0e

2u for a smooth function u on M . For a section
φ on L we have |φ(x)|2Hu

= |φ(x)|2u = |φ(x)|20e2u(x) for any x ∈M , and for a

section η on L∗ it holds |η(x)|2u = |η(x)|20e−2u(x), for the metric on L∗ is set by
duality. The curvatures FHu

and FH0
associated to the correspondent Chern

connections are related by iΛFHu
= iΛFH0

−Δu, where Λ is the contraction
with the volumn element ν on M and Δ is the Laplace-Beltrame operator
on functions. Assuming that |M | = 1 and H0 is a metric yielding constant
curvature iΛFH0

= 2π deg(L) we obtain

(8) iΛFHu
= 2πdeg(L)−Δu.

We restrict to the case of the euclidean sphere M = S2, but we dilate
the standard metric by a constant factor so that its gaussian curvature is
4π and |S2| = 1. If x ∈ S2 is any point we set z = zx : S2 − {x} → C as a
stereographic projection with north pole at x.
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Two important facts about bundles over the sphere are stated below. The
first one comes from a simple computation using a stereographic coordinate,
while the proof for the second can be found in [13].

Lemma 2.1. Let M = S2 be the base manifold. Then
(a) Line bundles are classified by their degrees.
(b) Any rank 2 holomorphic bundle E splits holomorphically as the sum of
line bundles, E = L1 ⊕ L2.

Let N = (0, 0, 1) and z = zN . Any line bundle L has a trivialization over
S2 − {N} given by a “cannonical” meromorphic section ζL whose singular
set is {N}. By using the coordinate w = 1/z we get a section ζL,S holomor-
phic and regular over S2 − {S}, where S = −N . The gauge transformation
between them is

(9) ζL(x) = w(x)deg(L) ζL,S(x) for all x ∈ S2 − {S,N}.

If deg(L) ≥ 0 an arbitrary holomorphic section of L is given by hζL for
some polynomial h = h(z) of degree bounded by deg(L). The bundle T 1,0S2

is spanned by the holomorphic differential ζT 1,0S2 = dz, hence the setH1,0(L)
of holomorphic sections of Ω1,0(L) = Γ(L⊗ T 1,0S2) consists of sections φ of
the form φ = g ζL dz, where g(z) is a polynomial with degree less than or
equal to deg(L)− 2.

In coordinates, the H-dual of φ is the anti-holomophic section η =
g ζ∗HL dz, and the section ζ∗HL can be written

(10) ζ∗HL =
ζL∗

|ζL∗ |2H
= |ζL|2H ζL∗ .

For later use we express the H-norm of η in the z and w coordinates:

(11) |η|2H = |g|2|ζL|2H |dz|2 = |g|2|w|2(deg(L)−2)|ζL,S |2H |dw|2.

The next Lemma helps us to find an explicit expression for |ζL|2H0
.

Lemma 2.2. Let ζ be a meromorphic section on L and H be a metric.
Then in any open region where ζ is regular the H-curvature of L is given by
iΛFH = −Δ ln |ζ|H .

Taking the cannonical section ζL we get Δ ln |ζL|H0
(x) = −2πdeg(L) for

all x ∈ S2 − {N}. An inspection shows that Δ[deg(L)2 ln(1+|z|2)] = 2πdeg(L),
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thus if we set

(12) |ζL|2H0
(x) = (1 + |z(x)|2)−deg(L) for x �= N

we get a prospective function describing the metric H0. To make sure it
works fine we notice that in the other trivialization
(13)

|ζL,S |2H0
(x) = |w(x)−deg(L)ζL(x)|2H0

=
1

(|w(x)|2 + 1)deg(L)
for x �= S,

so H0 is smooth at each fiber of L. If any other metric Hu yields constant
curvature to L then by equation (8) it holds Δu = 0, so u is a constant and
Hu is just a uniform dilation of the given H0. We set equation (12) (or (13))
as the definition for H0.

2.3. Holomorphic extensions and stability

Recall that a holomorphic extension of E2 by E1 is a short exact sequence
of holomorphic bundles and morphisms e : 0→ E1 → E → E2 → 0 over the
same base manifold. There is a natural concept of isomorphism of extensions,
and we define Ext(E2, E1) as the set of classes of isomorphic extensions. Also
let Hom(E2, E1) = E1 ⊗ E∗

2 be the bundle of homomorphisms E2 → E1.
The proof of the next Lemma can be found in [14, 19].

Lemma 2.3. There is a natural one-to-one correspondence between
Ext(E2, E1) and H0,1(Hom(E2, E1)).

For a holomorphic bundle E we define

(14) div(E) = sup {deg(J) | J ⊂ E is a holomorphic line subbundle}.

It is well known that div(E) is finite on Riemann Surfaces [13]. Taking [η] ∈
H0,1(Hom(E2, E1)) we can define div[η] = div(E) where E is the middle
term of the extension associated to [η].

Now fix L1, L2 line bundles over S
2 and consider holomorphic extensions

0→ L1 → E → L2 → 0. Therefore E is a rank 2 vector bundle which is
topologically, but not holomorphically in general, the direct sum of L1 and
L2. We set from now on the bundle L = L2 ⊗ L∗

1. Hence the set of extensions
of L2 by L1 is just H0,1(L∗).

Lemma 2.4. Let [η] ∈ H0,1(L∗). Then div[η] ≤ max {deg(L1), deg(L2)}. In
case deg(L2) > deg(L1) equality holds if and only if [η] = 0.
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Proof. Let

(15) 0→ L1 → E
π→ L2 → 0

be the extension associated to [η]. Let J ⊂ E be a holomorphic line subbun-
dle and φ be a (non-trivial) meromorphic section of J . Consider first that
π(φ) ≡ 0. Then the range of φ lies within L1, hence J = L1 and deg(J) =
deg(L1).

Now suppose π(φ) �≡ 0. Then π(φ) is a meromorphic section on L2. If
x ∈M let z be a holomorphic coordinate with z(x) = 0. Let ζ be a regular
holomorphic section on J in a neighborhood of x. Then φ(z) = h(z)ζ(z) for z
close to 0, where h(z) is some local meromorphic function. Clearly ordx(φ) =
ordx(h) ≤ ordx(h) + ordx(π(ζ)) = ordx(π(φ)), since ordx(π(ζ)) ≥ 0. We con-
clude that

(16) deg(π(φ)) =
∑
x∈M

ordx(π(φ)) ≥
∑
x∈M

ordx(φ) = deg(φ).

Therefore deg(L2) ≥ deg(J). Considering both cases we arrive at deg(J) ≤
max {deg(L1), deg(L2)}. From this and the arbitrarity of J the first assertion
of the Lemma follows.

Now if [η] = 0 the extension (15) is trivial, hence L2 ↪→ E holomorphi-
cally. Thus div(E) ≥ max{deg(L1), deg(L2)}. The first part of the proof al-
ready gave us the reversal inequality, and we obtain div[η] = max{deg(L1),
deg(L2)}.

Finally assume deg(L2)>deg(L1) and div[η]=max{deg(L1), deg(L2)}=
deg(L2). Let J ⊂ E be a holomorphic line subbundle such that deg(J) =
deg(L2). Since J �= L1 the restriction map π|J : J → L2 is a non-trivial holo-
morphic morphism. Further π|J is a section of L2 ⊗ J∗, and deg(L2 ⊗ J∗) =
deg(L2)− deg(J) = 0, hence π|J has no zeros. This is equivalent to say-
ing that E = L1 ⊕ J holomorphically. It is straightforward to check that
the trivial extension 0→ L1 → E → J → 0 is isomorphic to extension (15).
The consclusion is that [η] = 0, and the second assertion of the Lemma is
proven. �

2.4. The metric equations

Let 0→ E1 → E → E2 → 0 be an extension, thus E1 ⊂ E is subholomorphic
and E2 = E/E1. A metric H = HE induces metrics Hj on Ej and an identi-
fication E2 ∼ E⊥H

1 . Respect to the orthogonal decomposition E = E1 ⊕ E2
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we can write the equation

(17) iΛFH =

(
τ1 0
0 τ2

)
,

where the right-hand-side is a section of End(E), assembled as a weighted
combination of the orthogonal projections E → Ej , j = 1, 2, for some real
constants τ1, τ2, and Λ is the contraction with the Kähler form on the surface.

The problem stated by equation (17) is a particular case of the holomor-
phic and cohomology triples problems, which have been introduced in [11]
and [5]. These problems constitute a generalization of the Hermite-Einstein
equation over Kähler manifolds [22]. The typical theorem in those theories,
known as the Hitchin-Kobayashi correspondence, states that a solution ex-
ists for the metric equations as long as an algebraic condition called stability
(or polystability in a more general case) is satisfied for the involved bundles
and perhaps some other structures, like prescribed sections or cohomology
classes.

To properly express this theory, whose details can be found in [5, 11], we
would need to elaborate on definitions and notation that go far beyond the
line of our article. Instead, we’d rather state in a summary what concern
to us. Since we have line bundles L1, L2 over the riemann surface M an
extension of L2 by L1 is some [η] ∈ H0,1(L∗). If α ∈ R we define the α-slope
of [η],

(18) μα([η]) =
deg(L1) + deg(L2) + α

2
.

Then we say that [η] is α-stable if

(19) max{deg(L1), div[η] + α} < μα([η]).

From inequality (19) and the definition of μα we conclude that [η] is α-
stable if and only if deg(L1)− deg(L2) < α < deg(L1) + deg(L2)− 2div[η].
A necessary condition for α-stability is then that a strict inequality happen
between the first and the third members of the latter. The next theorem
replicates the results from Proposition 3.8 and Theorem 3.9 of [5].

Theorem 2.5. Let τ1 and τ2 be real numbers such that τ1 + τ2 =
2π(deg(L1) + deg(L2)). Let α = 1

2π (τ1 − τ2) < 0 and assume [η] �= 0. Then
there is a metric HE satisfying (17) if and only if [η] is α-stable.

Remark 2.6. Proposition 3.8 of [5] skips the condition α < 0. That is
actually necessary to derive the α-stability in case the metric solution HE
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exists. By the way, there is a straightforward example of a solution HE

for (17) in an extension over S2, where any α ≥ 0 is allowed, hence outside
the admissible range of α-stability as defined by (19).

Let H = HE be a metric satisfying (17) for an extension [η] of line bun-
dles. The metric connection on E is then

(20) DE =

(
D1 A
−A∗H D2

)
,

forDj being the Chern connections on Lj and A being the second fundamen-
tal form of the inclusion L⊥H

1 ↪→ E. Computing FH = D2
E and substituting

into equation (17) we find the system

(21)

⎧⎪⎨
⎪⎩

iΛF1 − iΛA ∧A∗H = τ1

iΛF2 − iΛA∗H ∧A = τ2

D(A) = 0 .

The form A has holomorphic type (0, 1) since L⊥H
1 ↪→ E is antiholomor-

phic. Indeed, A is D′′-closed, and its cohomology class is the one given in
the beginning, [A] = [η]. The third equation in (21) implies that A is an-
tiholomorphic, and we can assume from now on that A = η +D′′ξ is the
H-antiholomorphic representative of the class [η].

Making λ = 2πdeg(L) + τ1 − τ2 and following a computation similar to
[12] (equations (3.8)-(3.10)) we obtain from (21)

(22)

{
Δu+ 2|η +D′′ξ|20e−2u − λ = 0

D′
u(η +D′′ξ) = 0 ,

where u is the function associated to the pointwise metric change in L,L∗.
Therefore, a solution HE for (17) gives us a smooth function u on S2 and

a section ξ of L∗ that solve (22). Reciprocally, given a pair (u, ξ) ∈ C∞(S2)×
Ω0(L∗) that solves (22) it is straightforward to obtain the correspondent
solution HE for (17) (see [12]).

The dual problem of (22) is stated as follows: using the H-identification
given by (6) we set φ = (η+D′′ξ)∗Hu ∈ H1,0(L). Clearly |φ|2Hu

= |η+D′′ξ|2Hu
,

hence (22) becomes equivalent - for the particular solution u - to system

(23)

{
Δu+ 2|φ|20e2u − λ = 0

D′′(φ) = 0.
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Remark 2.7. The first of equations (22) and (23) carry a factor 2 which
had been absorbed in equations (2) and (3) (see also equations 3.6 and 3.8
in [12]).

We take a minute to compare problems (22) and (23). They are not
quite the same because varying the real parameter λ and keeping [η] fixed
will vary the metric, and so will change the correspondent [φ] = [η]∗Hu . It
might sound that (23) is more likely to the taste of the analyst, because a
fixed [φ] has only one representative regardless of the metric and one has a
shape for the term |φ|20. On the other hand the same class [η] has different
representatives for different metrics, making the sight of the term |η +D′′ξ|20
a bit obscure.

Nevertheless, equations (23) lose an important characteristic that is en-
joyed by (22): its linearization is not sign definite. This is roughly accounted
for the difference in sign of the exponents in e2u and e−2u of either one.
Further, system (22) has the results on extensions holding in the range
0 < λ < 2πdeg(L). The translation of results from (22) to (23) for some
cases of [φ] is one of the main targets of this work.

Observe that we can refer to a solution (u, ξ) for (22) simply by u, since
there is only one section ξ = ξ(u) satisfying the second of equations (22).

Lemma 2.8. ([12] Theorem 4.7 and Corollary 4.9) Let 0 < λ0 < 2π deg(L).
Assume there is a solution u = u0 for (22) in the parameters [η] = [η0]
and λ = λ0. Then this solution is unique. There is a neighborhood U ×
(λ0 − ε, λ0 + ε) ⊂ H0,1(L∗)× R of ([η0], λ0) and a smooth map u : U × (λ0 −
ε, λ0 + ε)→ C∞(S2) taking parameters to solutions of (22).

Lemma 2.9. Let [η] ∈ H0,1(L∗)− {0}. Then 0 < 4π(deg(L2)− div[η]) ≤
2π deg(L). System (22) has a solution for any λ ∈ (0, 4π(deg(L2)− div[η]))
and no solution for λ ∈ [4π (deg(L2)− div[η]), 2π deg(L)).

Proof. Inequality 0 < 4π(deg(L2)− div[η]) holds because of [η] �= 0 and
Lemma 2.4. For the other inequality we pick an extension 0→ L1 → E →
L2 → 0 representing [η]. From lemma 2.1 part (b) we have E = L̃1 ⊕ L̃2 holo-
morphically, for some line bundles L̃1, L̃2 with deg(L̃2) ≥ deg(L̃1). The gen-
eral theory of Chern classes gives us deg(E) = deg(L1) + deg(L2) =
deg(L̃1) + deg(L̃2). Clearly div[η] = deg(L̃2) ≥ 1/2(deg(L1) + deg(L2)),
hence 4π(deg(L2)− div[η]) ≤ 2πdeg(L).

The second assertion of the Lemma comes from the α-stability condition
restated for the parameter λ combined with Theorem 2.5 and the subsequent
discussion. �
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3. The space of extensions over S2.

After the results in the previous section it becomes relevant to understand
the space H0,1(L∗), which is non-trivial because of (5).

Let [η] ∈ H0,1(L∗) and H be a metric. Let η be the H-antiholomorphic
representative for [η]. We aim to compute div[η]. For that sake consider
an extension 0→ L1 → E → L2 → 0 for [η]. After Lemma 2.3 we can take
E = L1 ⊕top L2 with holomorphic operator D′′

η , where

(24) D′′
η =

(
D′′

1 η
0 D′′

2

)
.

We denote the cannonical meromorphic section of Lj by ζj , j = 1, 2. The
investigation of the meromorphic sections of E starts with the

Lemma 3.1. There is a smooth f : S2 → C such that ψ = (fζ1, ζ2) is a
meromorphic section of E. If J ⊂ E is any line bundle not equal to L1 then
there is a meromorphic function h on S2 such that ψ̃ = ((f + h)ζ1, ζ2) is
meromorphic and spans J .

In the sequel we will write k = deg(L). The proof of Lemma 3.1 will
come straight after the next result.

Lemma 3.2. Write η = g ζ∗HL dz. Then there is a single f ∈ C∞(S2) with
values in C, and such that

(25) ∂zf = −g |ζL|2H
and f(N) = 0, N the north pole. This function can be written as f = O − pf
in a neighborhood of N , with pf a polynomial in w = 1

z of degree smaller
than k and O is a local smooth function such that |O(w)| ≤ C|w|k, for some
constant C > 0. Still, pf (w) =

∑k−1
j=1 bjw

j and

(26) bj =

∫
S2

|η|2H
g

w−j+1 ν(w), 1 ≤ j ≤ k − 1.

Proof. Let h ∈ C∞(S2). Define a function f : S2 − {N} → C by

(27) f(z) =

∫
S2

h(z′)
z − z′

ν(z′).

We claim that f is actually defined in the whole of S2, is C∞ and it holds
∂zf(z) = h(z)/(1 + |z|2)2 away from the north pole. Indeed, we can rewrite
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the integral in (27) as an integral in the plane

(28) f(z) =
1

2πi

∫
R2

h(z′)
(1 + |z′|2)2(z′ − z)

dz′ ∧ dz′.

Recall that by the ∂-Poincaré Lemma [14] the integral on the right-hand side
of (28) is a function in the parameter z whose ∂z-derivative equals h(z)/(1 +
|z|2)2. In spite of the integral in [14] be performed in a bounded region of the
plane the argument for the derivative requires a local computation and still
holds in our case. Finally, changing in (27) the coordinate z′ by w′ = 1/z′

we get

(29) f(w) =

∫
S2

h(w′)
w′ − w

ww′ ν(w′),

from what we can see f is well defined and smooth in N (w = 0), as well as
f(N) = 0. If f̃ is any function smooth on S2 and such that ∂z f̃ = ∂zf we
have f̃ − f holomorphic in S2 − {N}, and hence constant because f̃ − f is
bounded. We conclude there is exactly one f satisfying ∂zf(z) = h(z)/(1 +
|z|2)2.

Clearly the first part of the Lemma follows if we take h(z) = −g |ζL|2H(1 +
|z|2)2, observing that this choice makes h smooth: h(z) = −g(z)−1|η(z)|2H =
−g(z)|ζL⊗T 1,0S2(z)|2H . The function f given by (27) becomes

(30) f(w) =

∫
S2

|η|2H
g

ww′

w − w′ ν(w
′).

Using identity (11) we see that the integrands on (26) can be written,
in each trivialization ζL or ζL,S , as

|η|2H
g

w−j+1 = g|ζL|2H |dz|2w−j+1 = (g wk−2)wk−1−j |ζL,S |2H |dw|2.

The second term of the above equation is bounded for |w| ≥ 1 while the
third one is bounded for |w| ≤ 1. From this we check that the coefficients
given by (26) are well-defined.

The last part of the Lemma will be proved using the usual trick on
managing expansions for the function 1/(w′ − w). Fix w �=∞ and compute
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from equation (30)

f(w) =

∫
S2

|η|2H
g

ww′

w − w′ ν(w
′)(31)

=

∫
|w′|<2|w|

|η|2H
g

ww′

w − w′ ν(w
′) +

∫
|w′|≥2|w|

|η|2H
g

ww′

w − w′ ν(w
′)

=

∫
|w′|<2|w|

|η|2H
g

ww′

w − w′ ν(w
′)−

∫
|w′|≥2|w|

|η|2H
g

( ∞∑
m=0

wm+1

(w′)m

)
ν(w′).

The power series appearing in the above equation converges absolutely, and
the respective integral can be written

∫
|w′|≥2|w|

|η|2H
g

( ∞∑
m=0

wm+1

(w′)m

)
ν(w′)(32)

=

k−2∑
m=0

wm+1

∫
|w′|≥2|w|

|η|2H
g

(w′)−m ν(w′)

+

∞∑
m=k−1

wm+1

∫
|w′|≥2|w|

|η|2H
g

(w′)−m ν(w′)

=

k−1∑
j=1

wj

∫
S2

|η|2H
g

(w′)−j+1 ν(w′)

−
k−2∑
m=0

wm+1

∫
|w′|<2|w|

|η|2H
g

(w′)−m ν(w′)

+

∞∑
m=k−1

wm+1

∫
|w′|≥2|w|

|η|2H
g

(w′)−m ν(w′).

Let pf (w) be the polynomial given by the Lemma, and O = f + pf .
Combining (31) and (32) we obtain
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O(w) = f(w) + pf (w)(33)

=

∫
|w′|<2|w|

|η|2H
g

ww′

w − w′ ν(w
′)−−

k−1∑
j=1

wj

∫
S2

|η|2H
g

(w′)−j+1 ν(w′)

+

k−2∑
m=0

wm+1

∫
|w′|<2|w|

|η|2H
g

(w′)−m ν(w′)

−
∞∑

m=k−1

wm+1

∫
|w′|≥2|w|

|η|2H
g

(w′)−m ν(w′) + pf (w).

The second and fifth terms of the last member of (33) cancell out. We
end up with

O(w) =

∫
|w′|<2|w|

|η|2H
g

ww′

w − w′ ν(w
′)(34)

+

k−2∑
m=0

wm+1

∫
|w′|<2|w|

|η|2H
g

(w′)−m ν(w′)

−
∞∑

m=k−1

wm+1

∫
|w′|≥2|w|

|η|2H
g

(w′)−m ν(w′)

= T1 + T2 − T3.

To finish the proof we will show that an estimate of the form |Tm| ≤
C|w|k holds, for m = 1, 2, 3. We can assume |w| ≤ 1 in the computations.
As usual in this kind of argument we denote by C(·) a positive parameter
that depends only on the terms inside parenthesis. Different occurrences of
C may mean different “constants”.

Replacing w by w′ in equation (11) we get

(35)
|η|2H
g

= (w′)k−2(g (w′)k−2)|ζL,S |2H |dw′|2 = (w′)k−2MH(w′),
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where MH(w′) remains bounded if |w′| ≤ 2. Thus

|T1| ≤
∫

|w′|<2|w|

|η|2H
|g|

∣∣∣∣ ww′

w − w′

∣∣∣∣ ν(w′)(36)

≤
∫

|w′|<2|w|
|w′|k−2 |MH(w′)| |ww

′|
|w − w′| ν(w

′)

< |w|k2k−1‖MH‖L∞(|w′|<2)

∫
|w′|<2|w|

ν(w′)
|w − w′| .

An easy estimate shows that

(37)

∫
|w′|<2|w|

ν(w′)
|w − w′| < C if |w| ≤ 1.

Hence from (36) and (37) we obtain

(38) |T1| ≤ C(H) |w|k if |w| ≤ 1.

The estimate for T2 follows a similar line to T1:

|T2| =

∣∣∣∣∣∣∣
k−2∑
m=0

wm+1

∫
|w′|<2|w|

|η|2H
g

(w′)−m ν(w′)

∣∣∣∣∣∣∣(39)

≤
k−2∑
m=0

|w|m+1

∫
|w′|<2|w|

|MH(w′)| |w′|k−2|w′|−m ν(w′)

≤
k−2∑
m=0

|w|m+1|2w|k−2−m‖MH‖L∞(|w′|<2)

∫
|w′|<2|w|

ν(w′)

≤ C(H)|w|k−1

∫
|w′|<2|w|

ν(w′).

The integral in the last member of (39) is the area of a geodesic disc of
radius R. This disk has area smaller than its image under the conformal
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mapping w′ : S2 − {S} → R2, so
∫

|w′|<2|w|
ν(w′) < C |w|2. We get

(40) |T2| ≤ C(H)|w|k+1.

Finally we estimate T3.

T3 =

∞∑
m=k−1

wm+1

∫
|w′|≥2|w|

|η|2H
g

(w′)−m ν(w′)(41)

= w

∫
|w′|≥2|w|

|η|2H
g

∞∑
m=k−1

( w

w′
)m

ν(w′)

= w

∫
|w′|≥2|w|

|η|2H
g(w′)k−1

wk−1
∞∑

m=0

( w

w′
)m

ν(w′).

Therefore,

(42) |T3| ≤ 2|w|k
∫

|w′|≥2|w|

|η|2H
|g||w′|k−1

ν(w′) < C |w|k
∫
S2

|η|2H
|g||w′|k−1

ν(w′).

The integral in S2 can be split into integrals in the north and south hemi-
spheres. The first of them satisfies

(43)

∫
|w′|≤1

|η|2H
|g||w′|k−1

ν(w′) <

∫
|w′|≤1

|MH(w′)|
|w′| ν(w′) ≤ C ‖MH‖L∞(|w′|≤1).

The south hemisphere integral is estimated as∫
|w′|>1

|η|2H
|g||w′|k−1

ν(w′)(44)

<

∫
|w′|>1

|η|2H
|g| ν(w′) =

∫
|w′|>1

|g||ζL|2H |dz|2 ν(w′)

≤ C ‖g‖L∞(|w′|>1)‖ζL‖2L∞
H (|w′|>1)‖dz‖2L∞(|w′|>1).

From (42), (43) and (44) we obtain

(45) |T3| ≤ C(H)|w|k.
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Altogether inequalities (38), (40) and (45) imply |O(w)| ≤ C|w|k. This
completes with the Lemma’s proof. �

Proof of Lemma 3.1. Let’s first assume there is some meromorphic section
ψ on E, not contained in L1. Then ψ = (ψ1, ψ2) and up to its set of poles it
must satisfy

(46)

{
D′′

1(ψ1) + η(ψ2) = 0

D′′
2(ψ2) = 0.

Therefore ψ2 is meromorphic on L2. Multiplying ψ by a suitable meromor-
phic function we can assume that ψ2 = ζ2. Similarly, we can write ψ1 = f.ζ1
for some function f smooth outside of the singular set of ψ. Recalling that
in coordinates we have

η = g · ζ1
|ζ1|2H

· ζ∗H2 · dz,

the first of equations (46) holds (using ψ2 = ζ2) if and only if

∂f + g
|ζ2|2H
|ζ1|2H

dz = 0,

or equivalently,

∂zf = −g |ζL|2H .

Clearly the above steps can be reversed, and if we start off at the solution
f for (25), given by Lemma 3.2, we construct a meromorphic section ψ
satisfying the conditions of Lemma 3.1.

Now assume J ⊂ E is a line subbundle different from L1. We pick a
meromorphic section ψ̃ spanning J , and because of the above argument,
can assume ψ̃ = (f̃ ζ1, ζ2). Further f̃ satisfies equation (25) in all but finite
many points. We conclude that f̃ − f = h is meromorphic and ψ̃ has the
form ψ̃ = ((f + h)ζ1, ζ2). �

Now let J ⊂ E be a holomorphic line subbundle, and ψ̃ be a meromor-
phic section spanning J , in the form given by Lemma 3.1, with function f
vanishing at N , as given by Lemma 3.2. At any x ∈ S2 − {N} ζ2 is regular,
thus x cannot be a zero of ψ̃. And x is a pole of ψ̃ if and only if x is a pole
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of h of the same order. Hence

(47) ordx(ψ̃) = min{0, ordx(h)} for x �= N.

On a vicinity of the north pole we write

ψ̃(w) = ((f(w) + h(w))ζ1(w), ζ2(w))(48)

= ((O(w)− pf (w) + h(w))wdeg(L1)ζL1,S , w
deg(L2)ζL2,S)

= wdeg(L1) ((O(w)− pf (w) + h(w))ζL1,S , w
kζL2,S).

Observe that ordN (ψ̃) = m if and only if m is the only integer such that

w−mψ̃ is a regular holomorphic section around w = 0. Because O(w)
wk (for w �=

0) is bounded, a quick study of the cases ordN (h− pf ) < k and ordN (h−
pf ) ≥ k (take this order to be infinite if h− pf is null) leads to

(49) ordN (ψ̃) = deg(L1) + min{ordN (h− pf ), k}.

Let s− denote the number of poles (accounting for multiplicity) of h in
S2 − {N}. From (47) and (49) we get

(50) deg(ψ̃) =
∑
x∈S2

ordx(ψ̃) = deg(L1) + min{ordN (h− pf ), k} − s−.

Our aim is to compute divE, which is the maximum among the degrees of ψ̃
for all such meromorphic sections. Thus we need to find an appropriate mero-
morphic h that maximizes the right-hand-side of (50). Since pf (N) = 0 we
should choose h so that h(N) = 0, otherwise we would have ordN (h) ≤ 0, so
ordN (h− pf ) = ordN (h) and deg(ψ̃) = deg(L1) + ordN (h)− s− ≤ deg(L1).
In particular we can write, without loss of generality,

(51) h(w) =
y(w)

1− v(w)
,

where y(w) and v(w) are polynomials, y(0) = 0 = v(0) and y and 1− v have
no common zeros. The number of poles s− of h equals the maximum degree
among the polynomials y(w) and 1− v(w), hence to allow deg(ψ̃) > deg(L1)
we can assume both degrees to be less than k.

Lemma 3.3. Follow the above notation and conditions for y(w), v(w) and
s−, and for any polynomial in w denote by a subindex j the coefficient of
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wj in it. Let {bj} be the coefficients given by (26). Consider the system of
equations

(52)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b1 = y1

b2 = y2 + (yv)2

b3 = y3 + (yv)3 + (yv2)3
...

bk−1 = yk−1 + (yv)k−1 + (yv2)k−1 + · · ·+ (yvk−2)k−1

Let j∗ ≤ k be the maximum integer such that all equations in system (52)
with index j < j∗ are satisfied. Then

(53) deg(ψ̃) = deg(L1) + j∗ − s−.

Proof. We only need to show that j∗ = min{ordN (h− pf ), k} and use equa-
tion (50). Because h is holomorphic at w = 0 we can write h(w) = ph(w) +
Oh(w) where ph(w) is a polynomial of degree lower than k and Oh = h−
ph has order greater than k − 1 in w = 0. Then min{ordN (h− pf ), k} =
min{ordN (ph − pf ), k}. Expanding h in the polynomials y and v close to
w = 0 we get

(54) h(w) =
y(w)

1− v(w)
=

∞∑
m=0

y(w)v(w)m = ph(w) +Oh(w).

For any order 1 ≤ j ≤ k − 1 the only summands in the third member of (54)
that add up to the j-th coefficient of ph are those y vm with m < j. Hence,

(55) phj = yj + (yv)j + (yv2)j + · · ·+ (yvj−1)j .

Therefore the j-th equation of system (52) is nothing but a statement of
equality between the j-th coefficients of pf and ph. If j

∗ < k then all such
equations for j < j∗ are satisfied but the equation for j = j∗ is not, thus
the first non-vanishing coefficient of ph − pf is (ph − pf )j∗ . If j

∗ = k then
ph − pf ≡ 0. In both cases one has min{ordN (ph − pf ), k} = j∗. �

The practical application of Lemma 3.3 will be shown on Section 4. For
now it is interesting to notice that div[η] will appear as the maximum right-
hand-side value of equation (53). This value depends on the parameters
j∗, s− and ultimately, on the coefficients bj for 1 ≤ j ≤ k − 1. However, the
latter seem to depend upon the metric H, besides the very cohomology class
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[η], after equation (26). Amazingly, it turns out that {bj} do not depend upon
the metric, as the next result states.

Lemma 3.4. Let β = {zj−1ζLdz}1≤j<k be a basis of H1,0(L), and let β∗

be the dual cannonical basis of H0,1(L∗). Then for a given [η] ∈ H0,1(L∗)
the coefficients {bj} obtained from formula (26) using any metric are the
coordinates of [η] in β∗.

Proof. Fix a metric H and let η be the H-antiholomorphic representative
for [η]. Set φ = η∗H , thus φ = g ζLdz for some polynomial g. Then at each
x ∈ S2,

(56) |η|2H = iΛ(η∗H ∧ η) = iΛ(φ ∧ η).

Equations (26) turn into

(57) bj =

∫
S2

i

g
(φ ∧ η) zj−1 =

∫
S2

i(zj−1ζLdz ∧ η) = (([zj−1ζLdz], [η])),

hence bj is the coupling of [η] with the j-th vector of the basis β. �

4. Some conformal curvatures on S2

In this section we use the previous theory to show existence of metrics point-
wise conformal to the standard metric on S2 for some non-negative curva-
tures with zeros.

4.1. Projectivized cohomology as a parameter space

We set one more equivalence to simplify our analysis. Let α be a non-zero
complex constant. If [η] ∈ H0,1(L∗) is non-zero, η represents [η], then (u, ξ)
solves (22) if and only if (u+ ln |α|, αξ) solves (22) after replacing η by αη.
Solutions for classes that are multiple of each other differ by a constant. The
case [η] = 0 is of no interest for equation Δu− λ = 0 has no solution at all
if λ �= 0. This motivates us to work on the projectivization

(58) P
0,1 =

H0,1(L∗)− {0}
[η] ∼ α[η]

� CP
k−2.

We similarly define P1,0 as the projectivization of H1,0(L) and the natu-
ral home for function parameters for equation (23). For a metric H the
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function given by (6) is homogeneous and passes to a diffeomorphism ∗H :
P1,0 → P0,1. To avoid cumbersome notation we will denote the projective
class of some [η] ∈ H0,1(L∗) ([φ] ∈ H1,0(L)) by the same symbol [η] ∈ P0,1

([φ] ∈ P1,0). Though we must take care of the scaling when consider equa-
tions (22) and (23). Hence we denote by u = u([η], λ) the zero mean value
component of a solution for (22). For the given projective [η] we choose
any smooth section representative η ∈ [η]: the solution of (22) is given by
u+ C for a uniquely defined real constant C (as long as λ is in the existence
range). This approach seems good to us because allows the definition of the
function u given by Lemma 2.8 directly in P0,1 and avoids the necessity of
a normalization condition on η.

Let m ≥ 1. Define

(59) P
0,1
m = {[η] ∈ P

0,1 | div[η] ≥ deg(L2)−m}.

The interest on the sets P0,1
m stands for a neat paraphrase of Lemma 2.9:

Corollary 4.1. If m > q then P
0,1
m ⊃ P

0,1
q . For [η] ∈ P0,1 and m ≤ deg(L),

m ∈ Z, it holds [η] ∈ P
0,1
m − P

0,1
m−1 if and only if the range of values of λ ∈

(0, 4π deg(L)) for which there are solutions of (22) is (0, 4πm).

From Lemma 2.4 and the argument in the proof of Lemma 2.9 we get,
for any [η], deg(L2)− 1 ≥ div[η] ≥ deg(L2)− �k2�, and thus the decreasing
sequence

(60) P
0,1 = P

0,1


 k

2
� ⊃ P

0,1


 k

2
�−1

⊃ P
0,1


 k

2
�−2

⊃ · · · ⊃ P
0,1
2 ⊃ P

0,1
1 .

The notation is suggestive in the sense that we conjecture all P0,1
m are copies

of CPr, for different dimensions r, inside P0,1 � CP
k−2. We have not been

able to prove it so far, but only for the ending terms of the sequence.

Lemma 4.2. There is a complex embedding CP
1 → P0,1 which is a dif-

feomorphism onto P
0,1
1 . For any [η] ∈ P

0,1
1 the divisor of the class [η]∗H0 is

(k − 2)x for some x ∈ S2.

Proof. Let [η] ∈ P
0,1
1 , thus div[η] = deg(L2)− 1 = deg(L1) + k − 1. Follow-

ing Lemma 3.3 and equation (53) for a section ψ̃ with maximal degree we
find that j∗ − s− = k − 1. Because of the bounds 1 ≤ j∗ ≤ k and s− ≥ 0
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we get s− ≤ 1. The polynomials y(w) and v(w) are linear or null, and sys-
tem (52) turns into

(61)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b1 = y1

b2 = y1v1

b3 = y1v
2
1

...

bk−1 = y1v
k−2
1

In case s− = 0 and j∗ = k − 1 the meromorphic function h of the Lemma
is identically zero, so y1 = 0. We get bj = 0 for 1 ≤ j ≤ k − 2 and bk−1 �= 0.
Otherwise, s− = 1 and j∗ = k. Thus y1 �= 0 and all equations in (61) are
satisfied. With this characterization it is easy to see that the function

(62) Ψ[b1 : b2] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1 :

b2
b1

:
b22
b21

: · · · : b
k−2
2

bk−2
1

]
if b1 �= 0

[
bk−2
1

bk−2
2

:
bk−3
1

bk−3
2

: · · · : b1
b2

: 1

]
if b2 �= 0

is a diffeomorphism from CP
1 onto the homogeneous coordinates of the

classes [η] with div[η] = deg(L2)− 1.
Now we look for possibilities for the divisor of [φ] = [η]∗H0 . First consider

the case φ = ζLdz (hence g is a constant). In the computation of bj in for-
mula (26) we can replace |η|2H0

by |φ|2H0
. Due to the rotational symmetry for

the metric H0 in (12) and of the holomorphic coordinate, the integrals (26)
vanish for j > 1 and is non-zero in j = 1, therefore the coefficients associ-
ated to [ζLdz]

∗H0 are b1 �= 0 and bj = 0, 2 ≤ j ≤ k − 1. We conclude that
[ζLdz]

∗H0 = Ψ[1 : 0] ∈ P
0,1
1 .

In general, let φ = (z − a)k−2ζLdz, where a = z(x0) for some x0 ∈ S2. A
not so short analytic argument to show that [φ]∗H0 is in P

0,1
1 is simply to com-

pute bj with formula (26) and showing those are in geometric progression.
A more direct geometric approach, though, is noticing that the coefficients
given by (26) depend on the basis {zjζLdz}0≤j≤k−2 of H1,0(L). Change this
basis to {z̃jφ}0≤j≤k−2 where z̃ = zx0

is a stereographic coordinate satisfying
z̃(−x0) = 0, and use w̃ = 1/z̃ to replace w in the integrals (26). Clearly the
whole construction of Lemmas 3.1 and 3.2 does not depend on the fact that
N = (0, 0, 1), or rather, on the coordinate chart used. In the new charts given
by z̃ (or w̃) and φ, the argument follows like in the previous paragraph, so
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[φ]∗H0 ∈ P
0,1
1 in this case also. This shows that all classes [φ] ∈ P1,0 with a

zero of order k − 2 are the images of classes in P
0,1
1 under ∗H0. The conclu-

sion then follows since both of the set of those classes, as well as P
0,1
1 , are

diffeomorphic to CP
1, and ∗H0 is a diffeomorphism between them. �

4.2. The isometry group of S2

Let ϕ : S2 → S2 be an isometry. Take points x, y ∈ S2 with ϕ(x) = y. Choose
stereographic coordinates z, v around x and y, respectively, such that z(x) =
v(y) = 0. Since ϕ is conformal and is an isometry it is not hard to see that
v = ϕ(z) = bz for a unitary complex b, if ϕ preserves orientation, and v = bz,
if ϕ reverses orientation. Then, for h a complex-valued function on S2 we
set for any x ∈ S2

(63) ϕ∗h(x) =

{
h(ϕ(x)) if ϕ is orientation preserving

h(ϕ(x)) if ϕ is orientation reversing

The conjugation in the second case above aims to preserve holomorphicity:
h is holomorphic in some open set U ⊂ S2 if and only if ϕ∗h is holomorphic
in ϕ−1(U). This definition is naturally extended to a complex-valued differ-
ential form ω: writing locally ω = hμ for h a function and μ a real-valued
form we set ϕ∗ω = ϕ∗hϕ∗μ, where ϕ∗μ is the usual pull-back of forms.

We must define a similar notion for classes in P1,0 and P0,1. This is not
that simple because there is no cannonical identification between the fibers
Lx and Lϕ(x), for x in S2. We do that by first defining the pull-back of
divisors. If D =

∑
j ajxj we set ϕ∗D =

∑
j ajϕ

−1(xj).
Now fix some holomorphic ζ in L whose divisor is D and set ϕ∗ζ as

some non-trivial holomorphic section with divisor ϕ∗D. If ψ is an arbitrary
smooth section in Ωp,q(L) then ψ = ω ⊗ ζ = ωζ for some form ω smooth
away of the singular set of ζ. Define

(64) ϕ∗ψ = ϕ∗ωϕ∗ζ.

Lemma 4.3. Let H = Hu be a metric. Then:
(i) The operator D′′ commutes with ϕ∗. In particular, ψ ∈ Ωp,q(L) is mero-
morphic with divisor D if and only if ϕ∗ψ is meromorphic with divisor ϕ∗D.
(ii) There is a constant c > 0 such that for any ψ, χ ∈ Ωp,q(L) it holds

(65) ϕ∗〈ψ ∧ χ〉Hu
= c〈ϕ∗ψ ∧ ϕ∗χ〉Hϕ∗u

.
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(iii) For any section-valued form ψ one has ϕ∗(D′
uψ) = D′

ϕ∗u(ϕ
∗ψ). In par-

ticular, ϕ∗ commutes with D′
H0

.

Proof. (i) Let ψ be a smooth (p, q)-section, then ψ = ωζ. Thus

D′′(ϕ∗ψ) = D′′(ϕ∗ωϕ∗ζ) = ∂(ϕ∗ω)ϕ∗ζ = ϕ∗∂ωϕ∗ζ(66)

= ϕ∗(∂ωζ) = ϕ∗D′′ψ,

since both of ζ and ϕ∗ζ are holomorphic and ∂ commutes with ϕ∗ by a prop-
erty of the pull-back on forms. Therefore ϕ∗ takes meromorphic sections to
meromorphic sections. Let ψ = ωζ be meromorphic. Then ω is meromorphic.
Tensoring meromorphic sections adds up their divisors, hence

D(ϕ∗ψ) = D(ϕ∗ω) +D(ϕ∗ζ) = ϕ∗D(ω) + ϕ∗D(ζ)(67)

= ϕ∗D(ωζ) = ϕ∗D(ψ).

(ii) Consider first that ψ = χ = ζ and u = 0, so H = H0. Equality (65) turns
into ϕ∗|ζ|2H0

= c|ϕ∗ζ|2H0
. Notice that both members of this equation are func-

tions with singularities in the same points, namely the divisor set of ϕ∗ζ.
We claim that the function f = ln

(
ϕ∗|ζ|2H0

|ϕ∗ζ|2H0

)
is actually smooth in S2. For

any x in this singular set, let y = ϕ(x), and take z, v coordinates centered
at x, y, and such that v(z) = ϕ(z) = z (assume without loss of generality ϕ
is orientation preserving). Then

(68) ζ(v) = vmζ̃y(v), ϕ∗ζ(z) = zmζ̃x(z)

where ζ̃y, ζ̃x are regular around v = 0 and z = 0, respectively, and

(69) f(z) = ln

(
|ζ(v(z))|2H0

|ϕ∗ζ(z)|2H0

)
= ln

(
|ζ̃y(v(z))|2H0

|ζ̃x(z)|2H0

)

is clearly smooth at x. Thus f ∈ C∞(S2).
Now recall Lemma 2.2 and compute

Δf = Δ
(
ln(ϕ∗|ζ|2H0

)− ln |ϕ∗ζ|2H0

)
(70)

= ϕ∗(Δ ln |ζ|2H0
)−Δ ln |ϕ∗ζ|2H0

= ϕ∗(−4πdeg(L)) + 4πdeg(L) = 0.

In the above we used that ζ, ϕ∗ζ are holomorphic and that ϕ∗ commutes
with Δ. In particular we obtain that f is harmonic in the whole sphere, so
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f is constant, and equation (65) follows immediately in this particular case
for an appropriate c > 0. Now for an arbitrary u,

(71) ϕ∗|ζ|2Hu
= ϕ∗(|ζ|2H0

e2u) = c|ϕ∗ζ|2H0
e2ϕ

∗u = c|ϕ∗ζ|2Hϕ∗u
.

The general case is a consequence of this one once we write the section-valued
forms ψ, χ in components with ζ.
(iii) Again, the general case will follow as routine if we prove it for the very
case ψ = ζ. The section D′

uζ can be managed implicitly in the equation
∂|ζ|2Hu

= 〈D′
uζ, ζ〉Hu

. Applying ϕ∗ to it and using part (ii) we derive

(72) ϕ∗∂|ζ|2Hu
= c〈ϕ∗D′

uζ, ϕ
∗ζ〉Hϕ∗u

.

Interchanging ϕ∗ and ∂ in the above equation yields

(73) ∂ϕ∗|ζ|2Hu
= ∂

(
c|ϕ∗ζ|2Hϕ∗u

)
= c〈D′

ϕ∗uϕ
∗ζ, ϕ∗ζ〉Hϕ∗u

,

and since ∂ and ϕ∗ commute, the last members of equations (72) and (73) are
equal. It follows ϕ∗D′

uζ = D′
ϕ∗uϕ

∗ζ. This finishes with the Lemma’s proof.
�

It becomes suitable to define the pull-back of a metric: for H = H0e
2u we

set ϕ∗Hu = Hϕ∗u. The definition of ϕ∗ on sections of the bundle L∗ is now
very natural. For a section ξ on L∗ we define ϕ∗ξ = (ϕ∗(ξ∗H))∗ϕ∗H . Clearly
one has to show invariance from the metric’s choice.

ϕ∗ξ = (ϕ∗(ξ∗Hu))∗ϕ
∗Hu = (ϕ∗(ξ∗H0)(ϕ∗e−2u))∗Hϕ∗u(74)

= (ϕ∗(ξ∗H0))∗H0(e−2ϕ∗u)(e2ϕ
∗u) = (ϕ∗(ξ∗H0))∗H0 .

The proof of the next Lemma will be skipped.

Lemma 4.4. (i) For any ξ ∈ Ωp,q(L∗) it holds D′′ϕ∗ξ = ϕ∗(D′′ξ). In par-
ticular, ϕ∗ descends to the cohomology H0,1(L∗).
(ii) If φ, η are sections in Ω1,0(L), Ω0,1(L∗), respectively, then ϕ∗(φ ∧ η) =
c(ϕ∗φ ∧ ϕ∗η), where c is the same constant as in Lemma 4.3 part (ii). In
particular ((φ, η)) = c((ϕ∗φ, ϕ∗η)).
(iii) For a section η ∈ Ω0,1(L∗) it holds ϕ∗(D′

uη) = D′
ϕ∗u(ϕ

∗η).

The whole construction of the ϕ∗ pull-back started with a particular
holomorphic section of L. Since it is C-linear and up to a constant factor,
holomorphic sections are defined by their divisors, we conclude ϕ∗ induces
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pull-back in a unique way on P1,0 and P0,1. Equivalently, there is a right
action of the isometry group Iso(S2) on the manifolds P1,0 and P0,1.

The operation of the H-dual given by (6) is defined in the projective
cohomology. In view of Corollary 4.1 and the definition of u([η], λ) we can
set the smooth map

(75)

F :
⋃


 k

2
�≥m≥1

(P0,1
m − P

0,1
m−1)× (0, 4πm)→ P

1,0,

F([η], λ) = Fλ[η] = [η]∗Hu([η],λ) .

The function F behaves well respect to the isometries of S2.

Lemma 4.5. Let ϕ be an isometry. Fix ([η], λ) in the domain of F . Then
ϕ∗Fλ[η] = Fλ(ϕ

∗[η]).

Proof. Recall that u([η], λ) designates the zero mean-value component of the
actual solution of the first of equations (22). Hence, writing for simplicity
u = u([η], λ) and assuming η is an arbitrary representative of [η] ∈ P0,1, we
have

Δu+ 2|η +D′′ξ|20e−2(u+r) − λ = 0

for some r ∈ R. On the other hand, applying ϕ∗ to this equation yields

0 = ϕ∗(Δu+ 2|η +D′′ξ|20e−2(u+r) − λ)(76)

= Δϕ∗u+ 2ce−2r|ϕ∗(η +D′′ξ)|20e−2ϕ∗u − λ.

The second term of the third member above is justified by Lemma 4.3 part
(ii) together with the observation that ϕ∗ and the contraction operator iΛ
commute:

ϕ∗|η +D′′ξ|2Hu
= ϕ∗|φ|2Hu

= c iΛ〈ϕ∗φ ∧ ϕ∗φ〉Hϕ∗u
(77)

= c|ϕ∗φ|2Hϕ∗u
= c|ϕ∗(η +D′′ξ)|2Hϕ∗u

,

where we write φ = (η +D′′ξ)∗Hu .
Applying ϕ∗ to the second equation in (22) clearly (re)states that ϕ∗(η +

D′′ξ) is ϕ∗Hu-antiholomorphic, thanks to Lemma (4.4) part (iii). This shows
us that ϕ∗u+ r − 1

2 ln(c) is a solution to (22) with ϕ∗(η +D′′ξ) in the place
of η +D′′ξ. Since the zero mean value component of this solution is unique
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we get ϕ∗u([η], λ) = u(ϕ∗[η], λ). Thus

(78) ϕ∗Fλ[η] = ϕ∗([η]∗Hu) = [ϕ∗η]∗Hϕ∗u = [ϕ∗η]∗Hu(ϕ∗[η],λ) = Fλ(ϕ
∗[η]),

and we are done. �

4.3. Applications

For the curvature equation (1), the normalization we adopted in the metric
implies K0 ≡ 4π. The class of curvatures K is restricted to |φ|2H0

for any
[φ] ∈ P1,0. Thus we are interested in studying problem

(79) Δu+ |φ|20e2u − 4π = 0.

We start with a non-existence lemma which recovers the result in [17].

Lemma 4.6. Let [φ] be a class whose divisor set is (k − 2)x0, k > 2, for
some x0 ∈ S2. Then there is no radially symmetric solution u for equa-
tion (79), respect to the axis of S2 passing through x0. In particular, |φ|20 is
not the curvature of a rotationally symmetric metric on S2 pointwise con-
formal to the standard metric.

Proof. If a radially symmetric solution u for (79) existed we could set η =
φ∗Hu and have a solution for system (22) with λ = 4π. On the other hand,
computing the coefficients {bj} from (26) in the stereographic coordinate
chart w with south pole at x0 would provide us with b1 �= 0 and bj = 0, for
2 ≤ j ≤ k − 1, thanks to the symmetry of both u and |φ|20. Following the
same argument as in the proof of Lemma 4.2 we conclude that [η] ∈ P

0,1
1 .

This is an absurd due to Corollary 4.1, and the assumed solution u does not
exist. �

Before we go to the existence results on curvatures we first state a nice
consequence of a standard differential topology fact. The first part of this
result was already known for more general functions [15, 20]. The second
part, though, seems to be new before [12].

Theorem 4.7. Let [φ] ∈ P1,0 and 0 < λ < 4π. Then there exists at least
one solution u for (23). The cardinality of the set os solutions for [φ] equals
the cardinality of the preimage F−1

λ ([φ]).
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Proof. Notice that in this range for λ the map Fλ is defined for all [η] ∈ P0,1.
Because of Theorem 4.3 part (3) of [12] we have that

(80) lim
λ→0+

Fλ = ∗H0.

Set F0 = ∗H0. Since the family λ→ Fλ is continuous and F0 : P
0,1 → P1,0

is a diffeomorphism, the maps Fλ all have topological degree 1. In particular
they are surjective. Hence, any [φ] ∈ P1,0 is of the form [η]∗Hu([η],λ) , and so
has a solution. Because uniqueness of solutions holds for [η] each solution
for [φ] corresponds to exactly one element of F−1

λ ([φ]). �
Let S ⊂ Iso(S2) be a subgroup of the group of isometries of the euclidean

sphere. Because of Lemma 4.5 any S-orbit of P0,1 is taken by Fλ onto some
S-orbit of P1,0.

We first look at orbits which are unitary and isolated. If {[η]} is such
an orbit, meaning that for any [η̃] sufficiently close to [η], {[η̃]} is not an
S-orbit, then making [φ] = F0[η] we get that {[φ]} is also a unitary and
isolated S-orbit. The continuity of the family Fλ forces that Fλ[η] = [φ] for
all λ in the range of solutions for [η]. If [η] is not in P

0,1
1 we get that |φ|20 is the

curvature of a conformal metric. The next three theorems explore this idea
for some symmetric classes [φ]. In the following we fix some arbitrary point
x0 ∈ S2 as reference, and denote by l the axis passing through {x0,−x0}.

Theorem 4.8. For positive integers a, b with a+ b = k − 2 let D = a x0 +
b (−x0). Then the class [φ] ∈ P1,0 with divisor D admits solution for λ = 4π.
|φ|20 is the curvature of a metric conformal to g0.

Proof. Let S be the group of rotations about l. The classes in P1,0 with
divisors given by a x0 + b (−x0) for a, b ≥ 0 are the only classes fixed by the
S-action. There are finite many of those, hence each one of them is isolated.
Finally, in case a and b are strictly positive the corresponding [η] = [φ]∗H0

is not in P
0,1
1 , hence [φ] admits solution in (23) for λ = 4π. �

Theorem 4.9. Let D = a x0 + a (−x0) + E, a > 0, where E is a divisor
constructed as follows: choose an integer n > 2a and let E =

∑n
j=1 xj. The

points {xj}1≤j≤n lie in the equator respect to l and are evenly separated. The
class [φ] with divisor D admits solution at λ = 4π, and its H0-norm squared
is the curvature of a conformal metric.

Proof. Let ϕ1 be a rotation of 2π/n about l. Clearly [φ] is fixed by the ϕ∗
1

action, but is not isolated. To accomplish that feature we consider ϕ2 the
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reflection respect to a plane β containing l and x1, and ϕ3 the reflection
respect to the equatorial plane. Let S be the isometry subgroup generated
by {ϕ1, ϕ2, ϕ3}. If [φ̃] is a class fixed by S then any zero of [φ̃] that is not x0 or
−x0 repeats itself n times along a parallel, hence the number os those zeros
is a multiple of n. Since there are k − 2 = n+ 2a < 2n zeros we conclude
that either all zeros are in {x0,−x0} or else there are n zeros in a parallel
and 2a zeros in {x0,−x0}. In the second case the ϕ3 invariance forces exactly
a zeros in each of x0,−x0 and the parallel to be the equator. Still, there are
two ways to inscribe the regular n-edge polygon inside the equatorial circle
symmetrically respect to ϕ2. In either case we conclude that the set of fixed
points of S is discrete and its F−1

0 image is disjoint of P0,1
1 . From this the

assertion of the lemma follows. �
We now show a less trivial example of existence where the fixed points of

the symmetry may not be fixed in the dynamics λ �→ Fλ. Let S ⊂ Iso(S2)
be a subgroup. Let Y 1,0 ⊂ P1,0 be a closed (compact, without boundary)
differentiable submanifold invariant for the S-action. Set Y 0,1 = (Y 1,0)∗H0

its dual. If Fλ(Y
0,1) ⊂ Y 1,0 for all λ that makes sense and Y 0,1 ∩ P

0,1
1 = ∅

then the same argument of Theorem 4.7 applies since Fλ : Y 0,1 → Y 1,0 has
degree 1, and for all [φ] ∈ Y 1,0 there is a solution when λ = 4π.

Theorem 4.10. Let D = a x0 + b (−x0) + E be a divisor with: n > a > 0,
n > b > 0 and E is a divisor composed by mn zeros (counting multiplicity)
evenly distributed in m parallels (the parallels may not be pairwise distinct).
Multiple zeros are allowed and the points x0 and −x0 might contain degener-
ated parallels. Then the class [φ] with this divisor has a solution in λ = 4π.

Proof. Let Y 1,0 ⊂ P1,0 be the set of all classes whose divisors are described
by the lemma. We first show it is a differentiable submanifold of P1,0, by
exhibiting an embedding i : CPm → P1,0 with image Y 1,0. Let ζ be the can-
nonical section of L with k zeros in −x0, and let z be a stereographic co-
ordinate chart with z(x0) = 0. A representative of [φ] ∈ Y 1,0 is of the form
φ = zag(z)ζdz for some polynomial g(z) of degree smaller than or equal to
k − 2− a− b = mn. Since the divisor of g(z)ζ dz is E + (a+ b)(−x0) a closer
look at this structure reveals that g(z) = h(zn) where h(v) is a polynomial in
v of degree no greater than m. The vector space of such polynomials is iden-
tified with Cm+1, and there is an injective homomorphism h �→ zah(zn)ζ dz,
which passes to the projectivizations CPm → P1,0, giving us the above men-
tioned embedding, and Y 1,0 � CP

m.
Let Y 0,1 = (Y 1,0)∗H0 . Clearly Y 0,1 ∩ P

0,1
1 = ∅ because a, b �= 0. We claim

that Fλ(Y
0,1) ⊂ Y 1,0 for all λ in an open range containing (0, 4π]. To see that



Holomorphic triples and the prescribed curvature problem 589

we’d rather index the space Y 1,0 ≡ Y 1,0
a,b and consider all such submanifolds

Y 1,0
a′,b′ for a′ an integer, 0 ≤ a′ < n and b′ = (k − 2− a′)modn. Notice that

in the space Y 1,0
a′,b′ the number m′ of “parallels” may differ from m, and the

cases a′ = 0 or b′ = 0 occur, but that does not matter for our argument.
Setting S as the subgroup generated by the rotation of 2π/n about l it

becomes clear that [φ] ∈ P1,0 is S-invariant if and only if [φ] ∈ ∪0≤a′<nY
1,0
a′,b′ .

Hence the image Fλ(Y
0,1) is contained in the union of the components Y 1,0

a′,b′ ,
each of them being a copy of some complex projective space and pairwise
disjoint. The continuity of λ �→ Fλ then precludes the image Fλ(Y

0,1) from
leaving the original copy Y 1,0

a,b . This concludes the lemma. �

Remark 4.11. It is interesting to look at the actual functions K = 2|φ|20
in the previous lemmas. Let z = z−x0

a stereographic coordinate that van-
ishes at x0, and ζ a holomorphic section with divisor k(−x0). A general
holomorphic φ = g ζLdz has norm

(81) |φ|2H0
= 2π

|a0 + a1z + · · ·+ ak−2z
k−2|2

(1 + |z|2)k−2

for complex constants aj , 0 ≤ j ≤ k − 2 (the factor 2π is due to the normal-
ization |S2| = 1 on the tangent bundle). Hence, the following functions are
curvatures in the conformal structure of g0:

1) K(z) = |z|2a(1 + |z|2)2−k if 0 < a < k − 2 (Theorem 4.8);

2) K(z) = |z|2a|zn − 1|2(1 + |z|2)2−k if n > 2a > 0 and 2a+ n = k − 2
(Theorem 4.9);

3) K(z) = |z|2a|zn − q1|2|zn − q2|2 · · · |zn − qm|2(1 + |z|2)2−k for arbitrary
complex numbers q1, . . . , qm, if n > a > 0, a+mn < k − 2 and (k −
2− a)modn > 0 (Theorem 4.10);

Notice in the above that, except in very few cases, the functions K are not
symmetric about the origin, and the existence results of [20] do not apply
directly. Since all such functions have zeros one cannot use the results on [8].

Remark 4.12. At this point of the research it seems to us that the holo-
morphicity of φ is not the key to obtaining the existence results on (1), but
only the behaviour of |φ|20 around its zeros. In a future work we intend to
show existence results for (1) for a larger class of smooth functions K ≥ 0
with finite many zeros with even degrees, and spread over S2 in a suitable
way.
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