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On complete constant scalar curvature

Kähler metrics with Poincaré-Mok-Yau

asymptotic property

Jixiang Fu, Shing-Tung Yau, and Wubin Zhou

Let X be a compact Kähler manifold and S a subvariety of X
with higher co-dimension. The aim is to study complete constant
scalar curvature Kähler metrics on non-compact Kähler manifold
X − S with Poincaré–Mok–Yau asymptotic property (see Defini-
tion 1.1). In this paper, the methods of Calabi ansatz and the
moment construction are used to provide some special examples of
such metrics.

1. Introduction

In Kähler geometry, a basic question is to find on a Kähler manifold a canon-
ical metric in each Kähler class, such as a Kähler–Einstein (K–E) metric, a
constant scalar curvature Kähler (cscK) metric, or even an extremal metric.
If X is a compact Kähler manifold with the definite first Chern class, the
question has been solved thoroughly and there are lots of references on this
topic. Among these, the fundamental one [18] is on the Calabi conjecture
solved by Yau.

In the non–compact case, Tian and Yau proved in [16, 17] that there
exists a complete Ricci–flat metric on X∗ = X −D, where X is a compact
Kähler manifold and D is a neat and almost ample smooth divisor on X; or
X is a compact Kähler orbifold andD is a neat, almost ample and admissible
divisor on X.

Several years ago, the second named author presented the following ques-
tion:

Problem 1. Assume that X is a compact Kähler manifold and S is its
higher co-dimensional subvariety. Let X∗ = X − S. How to find a complete
canonical metric on such a non-compact Kähler manifold X∗?

Certainly, this problem is equivalent to finding a canonical metric on
X̄ −D, where X̄ is a compact Kähler manifold and D is a divisor on X̄.
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More precisely, blowing up of X along S, one obtains a new compact Kähler
manifold X̄ = BlS(X). Then X∗ is bi-holomorphic to X̄ −D where D is
the exceptional divisor of this blow-up. Hence our problem is transferred to
finding a complete canonical metric on X̄ −D. However, this blowing up
process can not make Problem 1 easier since it does not alter the geomet-
ric properties of X∗. For example, although CP 2 − p is bi–holomorphic to
Blp(CP

2)−D, we can not use Tian–Yau’s results mentioned above to get
a complete K–E metrics on CP 2 − p since the exceptional divisor D is not
ample.

The basic strategy to solve Problem 1 is to perturb one family of ap-
proximate metrics on X∗. This method has been carried out successfully in
[2–4, 14, 15] to construct cscK or extremal metrics on blow-up of a Kähler
manifold at some points. The key point is that the csck metric of Burns-
Simanca [13] on Bl0(C

n) is “Asymptotically Locally Euclidean” (ALE) at
infinity.

Motivated by this, if one want to solve Problem 1 on M − {p1, . . . , pl},
one should first construct a canonical metric on Cn − 0 ( n ≥ 2) which is
asymptotically Euclidean (AE) at infinity. Fortunately, the metrics in the
following theorem admit this asymptotic property. Let r2 be the Euclidean
norm squared function on Cn with the dimension n ≥ 2.

Theorem 1.1. There exist on Cn − 0 a family of complete zero scalar cur-
vature Kähler metrics ηa =

√−1∂∂̄ua(r2) (a > 0) with the following asymp-
totic properties: As r2 → 0,

ua(r
2) = a log r2 − 2a

n(n− 1)
log(− log r2) +O((log r2)−1);

And as r2 →∞,

ua(r
2) =

{
r2 + 2a log r2 + a2

2r2 +O( 1
r4 ), for n = 2,

r2 − nan−1

(n−1)(n−2)(r
2)2−n + an

n (r2)1−n +O((r2)−n) for n ≥ 3.

Here O(h(r2)) is a smooth function whose k−th partial derivatives for all
k ≥ 0 are bounded by a constant times |∂kh(r2)|.

For the cases of constant scalar curvature c �= 0, we have the following
theorem. Denote Dn as the unit disc of Cn.

Theorem 1.2. 1. For any c < 0, there exist on Dn − 0 a family of complete
Kähler metrics

√−1∂∂̄ua(r2) (a > 0) with constant scalar curvature c. As
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r2 → 1, these metrics are asymptotic to the Poincaré metric

√−1n(n+ 1)

−c ∂∂̄ log(1− r2).

2. For c > 0 and a > 0 with ac < n(n− 1), there exists on Cn − 0 a
Kähler metric

√−1∂∂̄ua(r2) with constant scalar curvature c which are not
complete at infinity and asymptotic to

√−1∂∂̄(b log r2 + κr−
2

κ )

for two constants b(> a) and κ(> 1).
In both cases, the metrics have the following asymptotic property: As

r2 → 0,

ua(r
2) = a log r2 − 2a

n(n− 1)− ac
log(− log r2) +O((log r2)−1).

Naturally one would ask whether there are any complete K–E metrics on
Cn − 0 or on Dn − 0. Using the method in [11], we can prove the following
theorem which turns out that in some sense the choice of cscK metrics is
optimal.

Theorem 1.3 ([11]). There do not exist any complete Kähler-Einstein
metrics on Cn − 0 or on Dn − 0.

In fact, we can prove X∗ can not admit any complete Kähler-Einstein
metrics in our further paper [8]. Theorems 1.1 and 1.2 remind us to recall
the Mok–Yau metric in [11]. In 1980s, Mok and Yau introduced on Dn − 0
the metric with bounded Ricci curvature

√−1∂∂̄(log r2 − log(− log r2)).

They used this metric to characterize domains of holomorphy by holomor-
phic sectional conditions. Comparing the Mok–Yau metric with the metrics
in Theorems 1.1 and 1.2 leads to the following definition.

Definition 1.1 (see also [7]). Let X be a compact Kähler manifold with
a Kähler metric ωX and let S be a higher co–dimensional subvariety. A
Kähler metric ω on X − S has the Poincaré–Mok–Yau (PMY) asymptotic
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property if near the subvariety S

ω = ωX +
√−1∂∂̄(a log r2 − b log(− log r2) +O((log r2)−1)),

where r is some distance function to S, and a and b are two positive con-
stants.

It can be directly checked that the sectional curvatures of the metric
with PMY asymptotic property are bounded, and volume is finite near the
subvariety N .

In the second part of this paper, we generalize Theorems 1.1 and 1.2 to
the cases of holomorphic vector bundles. We will use the moment construc-
tion to find complete cscK metrics on the complement of the zero section in
(the total space of) a holomorphic vector bundle or a projective bundle (i.e.
a ruled manifold). There are many references such as [1, 9, 10, 12] which use
the method of moment construction to look for canonical metrics on Kähler
manifolds. One can consult [9] for construction of cscK metrics on vector
bundles and [1] for extremal metrics on ruled manifolds.

Let M be a compact m–dimensional Kähler manifold with a cscK metric
ωM . Let (L, h) be a holomorphic line bundle over M with a hermitian metric
h, which is given by local positive functions h(z) defined on the open sets
which locally trivialize L. For the technical reason, assume that there exists
a constant λ such that

(1)
√−1∂∂̄ log h(z) = λωM .

Let (E, π) be the direct sum of n (≥ 2) copies of L with associate hermitian
metric h. Let ν be the logarithm of the fibre norm squared function defined
by h and consider Calabi ansate

ω = π∗ωM +
√−1∂∂̄f(ν).

Denote the zero section of E simply by M . Also denote U as the set of points
p in E such that ν(p) < 0. We first concern about csck metrics with PMY
asymptotic property on E −M or on U−M .

Theorem 1.4. Let M be a compact Kähler manifold and ωM a Kähler
metric with constant scalar curvature cM . Let L be a holomorphic line bundle
over M with a hermitian h. Assume that h and ωM satisfy (1). Let E be the
direct sum of n (≥ 2) copies of L.

1. If λ ≥ 0, there exists a constant c0 such that for any c ≤ c0, there
exists on U−M or on E −M a complete Kähler metric with constant scalar
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curvature c. Such metrics admit the Poincaré–Mok–Yau asymptotic property
except the case that the metrics are defined on U−M with c = c0(< 0) and
λ > 0.

2. If λ < 0 and cM > 0, there exists on E −M a complete positive con-
stant scalar curvature Kähler metric with Poincaré–Mok–Yau asymptotic
property.

If λ = 0, this theorem generalizes Theorem 1.1 and the case c < 0 of
Theorem 1.2.

We then consider Problem 1 on a projective bundle. Denote O as the
structure sheaf of M . The projective bundle P(E ⊕O) over M has a globally
defined section s: for q ∈M , s(q) is a point corresponding to the line Oq.
The following theorem gives some special solutions to Problem 1.

Theorem 1.5. Under the assumptions of Theorem 1.4, if λ < 0 and cM ∈
R or if λ > 0 and cM ∈ (m(m+ 2n− 1)λ,+∞), there exists on P(E ⊕O)−
M a complete constant scalar curvature Kähler metric with Poincaré–Mok–
Yau asymptotic property.

Acknowledgements. Fu is supported in part by NSFC grant 11421061.
Yau is supported in part by NSF grant DMS-0804454. Zhou is supported by
China Postdoctoral Science Foundation grant No.2015M571479 .

2. Complete cscK metrics on C
n − 0 and Dn − 0.

In this section, we construct complete cscK metrics on Cn∗ or Dn∗ with the
dimension n ≥ 2. Here denote Cn∗ = Cn − 0 and Dn∗ = Dn − 0. We first
follow Calabi’s method [6] to get an ODE on the Kähler potential. Then we
determine the constants of integration appeared in the ODE by discussing
completeness of the metric near the punctured point. Afterwards we ana-
lyze the asymptotic properties of the Kähler potential. Thus, Theorems 1.1
and 1.2 are proven. In the last subsection, we give some remarks and a simple
proof of Theorem 1.3.

2.1. Calabi ansatz.

Let w = (w1, w2, . . . , wn) be the coordinates of Cn. Assume that the Kähler
metric we are seeking for is rotationally symmetric. That is, if we let

r2 =

n∑
α=1

|wα|2 and t = log r2,
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then the Kähler potential is a function u(t). By a direct calculation,

gαβ̄ :=
∂2u(t)

∂wα∂w̄β
= e−tu′(t)δαβ + e−2tw̄αwβ(u

′′(t)− u′(t)).

Hence,

det(gαβ̄) = e−ntu′(t)n−1u′′(t),

and ω =
√−1∂∂̄u(t) is a Kähler metric if and only if

u′(t) > 0 and u′′(t) > 0.

For simplicity, let

(2) v(t) = − log det(gαβ̄) = nt− (n− 1) log u′(t)− log u′′(t).

The components of the Ricci tensor of ω are

Rαβ̄ =
∂2v(t)

∂wα∂w̄β
= e−tv′(t)δαβ + e−2tw̄αwβ(v

′′(t)− v′(t))

and then the scalar curvature is

(3) c(t) = gαβ̄Rαβ̄ = (n− 1)
v′(t)
u′(t)

+
v′′(t)
u′′(t)

.

Here (gαβ̄) denotes the inverse matrix of (gαβ̄). Explicitly,

gαβ̄ =
et

u′(t)
δαβ + wαw̄β

(
1

u′′(t)
− 1

u′(t)

)
.

Assume that the scalar curvature of ω is a constant c. Integrating (3)
with the integrating factor u′(t)n−1v′(t), we obtain the first order differential
relation between u(t) and v(t)

v′(t)u′(t)n−1 =
1

n
c(u′(t))n + c1

with an arbitrary constant c1. Substituting (2) to the above equation and
multiplying both sides with u′′(t), we get the equation

nu′(t)n−1u′′(t)− (n− 1)u′(t)n−2u′′(t)2 − u′(t)n−1u′′′(t)

=
1

n
cu′(t)nu′′(t) + c1u

′′(t).
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Integrating the above equation, we obtain

u′(t)n − u′(t)n−1u′′(t) =
c

n(n+ 1)
u′(t)n+1 + c1u

′(t) + c2

with another arbitrary constant c2. If we denote φ(t) = u′(t), then the above
equation can be written as the first order differential equation

(4)
dφ

dt
=

F (φ)

φn−1

with

F (φ) = − c

n(n+ 1)
φn+1 + φn − c1φ− c2

or rewritten as

(5) dt =
φn−1dφ

F (φ)
.

It follows that u(t) is a Kähler potential if and only if

φ(t) > 0 and F (φ) > 0.

2.2. Completeness.

Assume that φ = φ(t) is a solution to ODE (4) or (5) in an interval (−∞, t0),
where t0 can be equal to +∞, and assume that it determines a Kähler
potential u = u(t) in the punctured disc Dn∗(r0) with radius r0 = exp( t02 ).
In this subsection, for the sake of the completeness of ω = i∂∂̄u(t) near the
punctured point, the constants c1 and c2 in ODE (4) can be determined.
The key point is the following observation.

Lemma 2.1. Under the above assumption, the metric ω determined by the
Kähler potential u(t) is complete near the punctured point if and only if F (φ)
has a factor (φ− a)2 with a > 0 and limt→−∞ φ = a. Hence

(6) c1 = nan−1 − c

n
an and c2 = (1− n)an +

c

n+ 1
an+1.

Proof. Since the metric ω =
√−1∂∂̄u(t) is rotationally symmetric, for any

point p ∈ Dn∗(r0), the ray γ(s) = sp, s ∈ (0, 1], is a geodesic. The tangent
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vector of this curve at the point sp is p and its square norm under the metric
ω is, if we assume that r2(p) = 1,

|p|2sp =
∑

wα(p)w̄β(p)gαβ̄(sp) = u′′(t)r−2.

Then the length of γ(s) is

l =

∫ 1

0
|γ′(s)|spds =

∫ 1

0

√
u′′(t)

dr

r
=

1

2

∫ 0

−∞

√
u′′(t)dt =

1

2

∫ 0

−∞

√
dφ

dt
dt.

Under the assumption that dφ/dt > 0 and φ(t) > 0, there is a nonnegative
constant a such that

lim
t→−∞φ = a.

By Equation (5), we have

l =
1

2

∫ φ(0)

a

√
φn−1

F (φ)
dφ.

The completeness requires l = +∞, which is equivalent to the fact that F (φ)
has a factor (φ− a)2. Hence, we can determine c1 and c2 as in (6).

We claim a > 0. If a = 0, F (φ) = φn(− cφ
n(n+1) + 1). Hence, l < +∞,

which leads to a contradiction. �

2.3. Discussions of the solutions and proofs of
Theorems 1.1 and 1.2.

Because of completeness, in this subsection assume that the constants c1
and c2 have been chosen as in (6). Hence, F (a) = F ′(a) = 0. Since

F ′′(φ) = (n(n− 1)− cφ)φn−2,

in case c ≤ 0, F ′′(φ) > 0 and so F (φ) > 0 on domain (a,+∞). In case c > 0,
if assume that the constants a and c satisfy

ac < n(n− 1),

then on domain (a, n(n−1)
c ), F ′′(φ) > 0 and so F (φ) > 0. Hence, F (φ) > 0 on

domain (a, b) for some constant b or b = +∞. Thus, we obtain the solution
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of Equation (5), up to a constant:

(7) t = t(φ) =

∫ φ

φ0

xn−1

F (x)
dx, φ ∈ (a, b),

for a given φ0 ∈ (a, b). Since F (φ) has the factor (φ− a)2, limφ→a+ t(φ) =
−∞. In the following we will discuss more details of the solutions (7) for
different signs of c and finish the proofs of Theorems 1.1 and 1.2.

1. Case c = 0. In this case,

F (φ) = φn − nan−1φ+ (n− 1)an.

Since the only root of F ′(φ) = 0 is a, F (φ) obtains its minimum at the point

a and F (φ) > 0 for all φ > a. As φ→∞, φn−1

F (φ) → 1
φ and solution (7) has the

property that t 
 log φ. Hence φ = φ(t) is defined on the entire punctured
space Cn∗. Therefore there exist a family (depending on a > 0) of zero cscK
metrics with Kähler potential u(t) such that u′(t) = φ(t).

Since φ→ a as t→ −∞,

dt =
φn−1dφ

F (φ)
∼ 2a

n(n− 1)

1

(φ− a)2
dφ.

It turns out that from φ(t) = u′(t) = r2u′(r2),

u(r2) ∼ a log r2 − 2a

n(n− 1)
log(− log r2).

Moreover, by L’Hôpital’s rule we get the more accurate expression of u(r2):

u(r2) = a log r2 − 2a

n(n− 1)
log(− log r2) +O((log r2)−1).

On the other hand, we divide the case into n = 2 and n ≥ 3 to discuss
the approximation of the solution as r2 →∞. For n = 2,

dt =
φdφ

(φ− a)2
=

(
1

φ− a
+

a

(φ− a)2

)
dφ

and it follows that

(8) t = log(φ− a)− a

φ− a
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and u(r2) 
 a log r2 + r2. Obviously, the derived metric is complete at entire
Cn∗. Moreover, L’Hôpital’s rule can be used to get more accurate estimate

u(r2) = r2 + 2a log r2 +
a2

2r2
+O

(
1

r4

)
.

For n ≥ 3, as r2 →∞

dt =
1

φ

(
1 + nan−1φ1−n − (n− 1)anφ−n +O(φ−n−1)

)
and then

t = log φ+
n

1− n
an−1φ1−n +

n− 1

n
anφ−n +O(φ−n−1)

which implies

φ− et = φ

(
1− exp

(
n

1− n
an−1φ1−n +

n− 1

n
anφ−n +O(φ−n−1)

))

=
n

n− 1
an−1φ2−n − n− 1

n
anφ1−n

− n2

(1− n)2
a2n−2φ2−2n +O(φ−n−1

)
.

Replacing φ by et in the right hand side of the above equality, we have

φ = et +
n

n− 1
an−1(et)2−n − n− 1

n
an(et)1−n +O((et)−n−1)

or

u(r2) = r2 − nan−1

(n− 1)(n− 2)
(r2)1−2n +

an

n
(r2)1−n +O((r2)−n).

Thus we have finished the proof of theorem 1.1.
We give the picture of φ = φ(t) with n = 2 and a = 1 as Figure 1. Recall

that in this situation the function φ = φ(t) is defined in Equation (8). Note
that we also have

det(g) = e−2tφ(t)φ′(t) = exp

(
− 2

φ− 1

)
.

We give a rotational picture of the function exp(− 2
φ−1) as Figure 2 which

shows the AE and PMY properties of the metric.
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Figure 1: The graph of φ(t) with c = 0 and a = 1.

Figure 2: PMY and AE.

2. Case c < 0. In this case, we have seen that F (φ) > 0 when φ ∈
(a,+∞). From (7), we also see that when φ→ +∞, the upper bound of
t = t(φ) exists since the degree of F is n+ 1. For simplicity, we take this
upper bound to be zero since the solution (7) is unique up to be a constant.
Then u(r2) is defined on the punctured unit disc Dn∗.

The analysis of the boundary behavior is as follows. As φ→∞,

t =
n(n+ 1)

−c
1

φ
+O

(
1

φ2

)

which implies

u(r2) =
n(n+ 1)

−c log(− log r2) +O(log r2)
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or

u(r2) =
n(n+ 1)

−c log(1− r2) +O(log r2),

where the right hand side is the Kähler potential of the standard Poincaré
metric on Dn. Hence, the metric we constructed is also complete near the
boundary of Dn.

For the asymptotic behavior of φ = φ(t) at the origin, it is the same as
for the case c = 0: As r2 → 0,

u(r2) = a log r2 − 2a

n(n− 1)− ac
log(− log r2) +O((log r2)−1).

Then we have finished the proof of Theorem 1.2 for the case c < 0.
We give the picture of φ = φ(t) as n = 2, a = 1 and c = −6 as Figure 3.

Note in this situation,

dφ

dt
=

φ

(φ− 1)2(φ+ 3)
.

-0.12 -0.10 -0.08 -0.06 -0.04 -0.02 t

20

40

60

80

100

Figure 3: The graph of φ(t) with c = −6.

3. Case c > 0. We have seen that if the constants c and a satisfy the
relation ac < n(n− 1), then on domain (a, n(n−1)

c ), F (φ) > 0. Obviously,
when φ is big enough, F (φ) < 0. Hence we can let b be the first number in
(a,+∞) such that F (b) = 0. It follows that there is a polynomial G(φ) such
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that we can write

F (φ) =
c

n(n+ 1)
(φ− a)2(b− φ)G(φ).

We first claim G(b) > 0. If G(b) = 0, then F (b) = F ′(b) = 0. Together with
F (a) = F ′(a) = 0, there are at least two different positive roots for the equa-
tion F ′′(φ) = 0. However, equation

F ′′(φ) = −cφn−1 + n(n− 1)φn−2 = 0

has only one positive root φ = n(n−1)
c , which leads to a contradiction. Hence,

as φ→ b,

(9) t ∼ −κ log(b− φ),

where

κ = − bn−1

F ′(b)
> 0.

This implies that when φ ∈ (a, b), t ∈ (−∞,+∞) and then the Kähler po-
tential u(r2) is defined on entire Cn∗.

The approximation of u(r2) near the zero is the same as for the case
c = 0:

u(r2) = a log r2 − 2a

n(n− 1)− ac
log(− log r2) +O((log r2)−1).

Whereas when t→∞, from (9) we can derive

u(r2) = b log r2 + κr−
2

κ +O(r−2).

The metric is not complete as r2 →∞. In fact as in the proof of Lemma
2.1, the length of the geodesic ray γ(s) = sp on domain (1,+∞) is

l =

∫ b

φ(log(r2(p)))

√
φn−1

F (φ)
dφ 


∫ b

φ(log(r2(p)))

1

κ
√
φ− b

dφ <∞.

Thus we have finished the proof of Theorem 1.2 for the case c > 0.
We give the picture of function φ = φ(t) in case n = 2, a = 1 and c = 1

as Figure 4. In this situation,

dφ

dt
=

6φ

(φ− 1)2(4− φ)
.
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2.4. Further remarks

1. For n = 1, ∂∂̄ log r2 = 0 and

√−1∂∂̄(− log(− log r2))

is the standard Poincaré metric on D∗ with Gauss curvature −1. One can
also construct on C∗ a complete metric with zero Gauss curvature

√−1∂∂̄(log r2)2 = √−1dz ∧ dz̄

r2
.

2. It is mentioned in Introduction that the Mok–Yau metric defined on
D2∗ has good properties. One can see that

√−1∂∂̄(− log(− log r2)) is also a
Kähler metric on D2∗. However, its scalar curvature is infinity as r2 → 0. In
fact, the term log r2 in the Mok–Yau metric results in the boundedness of the
scalar curvature near the punctured point. Hence, the asymptotic property
appeared in Definition 1.1 is named as the PMY asymptotic property.

3. Write CPn = Cn ∪ CPn−1 and viewed zero as a point p in Pn. One
will ask whether the metric on Cn∗ constructed above with c > 0 can be
extended across CPn−1. This is impossible. In fact, it can be seen form
Lemma 4.1 in Section 4 below that the metric

√−1∂∂̄u(t) can be extended
across CPn−1 if and only if

(10) κ = − bn−1

F ′(b)
= 1.

-20 -10 10 20 t

1

2

3

4

Figure 4: The graph of φ(t) with c = 1.
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Replacing φ by aφ and c by a−1c, we can assume that a = 1 in F (φ). From
κ = − bn−1

F ′(b) and F (b) = 0, we get the relation

b =
n2 − 1− c+ (1− 1

κ)b
n

n2 − c
.

Then b > a = 1 implies κ �= 1, which is a contradiction to (10). So in this
way we can not get a complete cscK metric on CPn − p. In fact, regarding
CPn−1 as the divisor at infinity one can show the metrics are of conical type
on CPn − 0 along the divisor CPn−1.

In our another paper [8], it has been proved that there also do not exist
any complete cscK metrics on CPn − p with PMY asymptotic property.
Nevertheless, a family of complete extremal metrics on CPn − p have been
constructed in [8].

4. At last, we give a simple proof of Theorem 1.3 which states that there
are not any complete K–E metrics on Cn∗ or on Dn∗.

Proof of Theorem 1.3. Since Cn∗ and Dn∗ are not compact, by Myers’ theo-
rem, we only need to consider the cases c ≤ 0. In [11], Mok and Yau proved
that if a bounded domain Ω admits a complete hermitian metric such that
−C ≤ Ricci curvature ≤ 0, then Ω is a domain of holomorphy. Since Dn∗ is
not a holomorphic domain, it does not admit a complete E–K metric with
c ≤ 0.

For the nonexistence of negative K–E metrics on Cn∗, we use generalized
Yau’s Schwarz Lemma.

Lemma 2.2. [11, 19] Let (M,ωg) be a complete Kähler manifold with scalar
curvature bounded below by −K1 and let (N,ωh) be a hermitian manifold of
the same dimension with Hermitian Ricci curvature Ric ≤ −K2ωh for some
K2 > 0. If f : M → N is a holomorphic map and the Jacobian is nonvan-
ishing at one point, then K1 > 0 and

f∗ωn
h ≤

(
K1

nK2

)n

ωn
g .

Now takeM = N = Cn∗ and take the metric ωg onM as in Theorem 1.1.
Then the above lemma leads to the nonexistence of negative K–E metric on
N = Cn∗.

As for the Ricci–flat case, if we let ω =
√−1gij̄dzi ∧ dz̄j be a complete

Ricci–flat metric on Cn∗, then the function log det(gij̄) is pluriharmonic on
it. Since the de Rham cohomology group H1

dR(C
n∗,R) vanishes, log det(gij̄)
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is the real part of a holomorphic function. By Hartogs’ extension theorem for
holomorphic functions, log det(gij̄) is pluriharmonic on the entire space Cn.
Hence, (gij̄) > C(δij̄) for some positive constant C1 near the origin. Choose
z2 = · · · = zn = 0. It follows that g11̄(z1, 0, . . . , 0) is bounded near the origin.
Let z1 = x1 +

√−1y1 and l be a ray from (x1, 0, . . . , 0) to origin. The length
of l is ∫ x1

0

√
g11̄dx <∞

which contradicts the completeness of the metric near the origin of Cn. Then
we finish the proof. �

3. A momentum construction of complete cscK metrics

This section is devoted to prove Theorem 1.4. The first subsection almost
follows the paper [9]. That is we first use the Calabi ansatz to derive an ODE
and then use the moment profile to simplify it. In the second subsection
completeness of metrics near zero section and at infinity are used to get
constraint conditions. In the third subsection, we then consider the existence
of metrics and their asymptotic property.

3.1. The momentum construction

Let M be a compact Kähler manifold with a Kähler metric ωM . Let π : L→
M be a holomorphic line bundle with a hermitian metric h. For any point q ∈
M , there is a holomorphic coordinate system (U, z = (z1, . . . , zm)) of q with
z(q) = 0 such that L|U is holomorphically trivial. Under this trivialization,
the hermitian metric h can be given by a positive function h(z). Assume
that ωM and h satisfy the condition

(11)
√−1∂∂̄ log h = λωM , for some constant λ.

Let E be the direct sum of n (≥ 2) copies of L, i.e. E = L⊕n, with an
associated hermitian metric still denoted by h. We also denote π : E →M .
We have a local trivialization of E induced from one of L and denote the
fiber coordinates by w = (w1, . . . , wn). In the following, we denote α and β
as the lower index of the components of w and i and j as the lower index of
the components of z. There is a fibrewise norm squared function r2 on the
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total space of E defined by h

r2 = h(z)

n∑
α=1

|wα|2.

If M is viewed as the zero section of E, i.e. the set defined by r2 = 0, we
want to construct complete cscK metrics on E −M under condition (11).
In this section denote E −M simply by E∗.

Let

(12) ν = log r2 = log h(z) + t, with t = log
( n∑
α=1

|wα|2
)
.

Consider Calabi ansatz

ω = π∗ωM +
√−1∂∂̄f(ν).

Using condition (11), we have

ω =(1 + λf ′(v))π∗ωM + f ′′(ν)
√−1∂ log h ∧ ∂̄ log h

+ f ′(v) · √−1(∂ log h(z) ∧ ∂̄t+ ∂t ∧ ∂̄ log h(z))

+ f ′(v) · √−1∂∂̄t+ f ′′(v) · √−1∂t ∧ ∂̄t

and

ωm+n = (1 + λf ′(v))mπ∗ωm
M ∧ (f ′(v) · √−1∂∂̄t(13)

+ f ′′(v) · √−1∂t ∧ ∂̄t)n.

The reason one can derived the above equality is det( ∂2t
∂wα∂w̄β

) = 0. In prac-

tise, when computing at any point p ∈ π−1(q), one can let wα(p) = 0 for
2 ≤ α ≤ β. Then ω is (strictly) positive if and only if

(14) f ′(ν) > 0, f ′′(ν) > 0, and 1 + λf ′(ν) > 0.

Definition 3.1. The above constructed metric ω is call a bundle adapted
metric.
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Next we compute the Ricci curvature and the scalar curvature of the
bundle adapted metric ω. From (13), we have

(15) det(ω) = det(ωM ) · (1 + λf ′(ν))me−ntf ′(ν)n−1f ′′(ν).

Let

Ψ(ν) = log
(
(1 + λf ′(ν))mf ′(ν)n−1f ′′(ν)

)
.

For any q ∈M , we can assume that the local coordinates z = (z1, . . . , zn)
around q also satisfy ∂h|q = ∂̄h|q = 0. Then under assumption (11), the Ricci
form of ω at a point p ∈ π−1(q) is

Ric(ω)|p = −
√−1∂∂̄(log det(gM ) + Ψ(ν)− nt)|p

= Ric(ωM )|q − λΨ′(ν)ωM |q
− (Ψ′(ν)− n)

√−1∂∂̄t|p −Ψ′′(ν)
√−1∂t ∧ ∂̄t|p,

where Ric(ωM ) is the Ricci form of ωM on M . The matrix composed by
components of metric ω at p is

(
(1 + λf ′(ν))(gij̄)m×m 0

0
(
f ′(ν)δαβ + f ′′(ν)w̄αwβ

)
n×n

)
,

where (gij̄)m×m is the coefficients matrix of metric ωM . Its inverse matrix is

(
1

1+λf ′(ν)(g
ij̄)n×n 0

0 ( et

f ′(ν)δαβ + wαw̄β(
1

f ′′(ν) − 1
f ′(ν)))n×n

)
.

If cM denotes the scalar curvature of ωM , the scalar curvature of ω at the
point p is

(16) c =
cM

1 + λf ′(ν)
− λmΨ′(ν)

1 + λf ′(ν)
− (n− 1)

Ψ′(ν)− n

f ′(ν)
− Ψ′′(ν)

f ′′(ν)
.

The above formula of scalar curvature is obviously globally defined.
Usually it is more suitable to use the Legendre transform to solve scalar

curvature Equation (16). From the positivity (14) of ω, f(ν) must be strictly
convex. Then one can take the Legendre transform F(τ) of f(ν). The Leg-
endre transform F(τ) is defined in term of the variable τ = f ′(ν) by the
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formula

f(ν) + F(τ) = ντ.

Let I ⊂ R+ be the image of f ′(ν). The momentum profile ϕ(τ) of the metric
is defined to be ϕ : I → R,

ϕ =
1

F ′′(τ)
.

Then the following relations can be verified:

ϕ(τ) = f ′′(ν) and
dτ

dν
= ϕ.

Also, ν can be viewed as a function of τ , up to a constant,

(17) ν(τ) =

∫
1

ϕ(τ)
dτ.

The advantage of the Legendre transform is that the scalar curvature of
ω can be described in terms of ϕ(τ) and the domain I of τ . Especially,
the boundary completeness (see the next subsection) and the extendability
properties (see the next section) can also be read off from the behaviour of
φ(τ) near the end points of I.

Using these transformations, we have

Ψ(τ) = log((1 + λτ)mτn−1ϕ(τ)).

Let

Q(τ) = (1 + λτ)mτn−1.

Then Ψ = log(Qϕ). By direct computation,

Ψ′(ν) =
1

Q

∂(Qφ)

∂τ

Ψ′′(ν) = −(mλτn−1 + (n− 1)(1 + λτ))
ϕ

Q2

∂(Qϕ)

∂τ
+

ϕ

Q

∂2(Qϕ)

∂τ2
.

Inserting the above equalities into (16), and replacing f ′(ν) by τ , then sim-
plifying it, at last we obtain

(18) c =
cM

1 + λτ
+

n(n− 1)

τ
− 1

Q

∂2(Qϕ)

∂2τ
.
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Now we assume that cM is a constant. We want to look for ϕ such that
c is a constant. By integrations, we solve Equation (18) as

(19)

(ϕQ)(τ) = (ϕQ)(a) + (ϕQ)′(a)(τ − a) + P (τ), with

P (τ) =

∫ τ

a
(τ − x)

(
cM

1 + λx
+

n(n− 1)

x
− c

)
Q(x)dx,

where a is the left endpoint of I. Here (ϕQ)(a) and (ϕQ)′(a) are constants.
P (τ) is a polynomial and hence ϕ(τ) is a real rational function.

3.2. Completeness

Assume that I = (a, b) ⊂ R+, b may be infinity, is the maximum interval
where ϕ(τ) determined by (19) is defined and positive. Further assume that

lim
τ→a+

ν(τ) = −∞

and

1 + λτ > 0, when τ ∈ (a, b).

Then from the above subsection, the bundle adapt metric ω is well-defined on
U∗(ν(b)) = {p ∈ E | −∞ < ν(p) < ν(b)} ⊂ E∗. Here ν(b) = limτ→b− ν(τ).
If ν(b) is infinity, then U∗(ν(b)) = E∗, and if ν(b) is a constant, we can
take an integration constant in (17) such that ν(b) = 0 and hence U∗(ν(b))
is U∗ = U−M as defined in Introduction. We first establish the following
lemma.

Lemma 3.1. Under the above assumptions, the bundle adapt metric ω is
complete near the zero (punctured) section if and only if a > 0 and ϕ(a) =

ϕ′(a) = 0. Thus, ϕ(τ) = P (τ)
Q(τ) .

Moreover, if b is finite, then ω is defined on E∗ and ω is complete if and
only if ϕ also satisfies ϕ(b) = ϕ′(b) = 0; Whereas if b is infinity, then ω is
defined on E∗ or on U∗ and is automatically complete.

Proof. For any point q ∈M , p ∈ π−1(q) ∩ U∗(ν(b)), we consider the ray
starting from q on the fiber π−1(q):

(20) γ(s) = s · p, s ∈ (0, 1] or s ∈ [1, s0)
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for s20 = exp(ν(b)− ν(p)). Such an s0 can be derived from the following
calculation by (12):

ν(b) = ν(s0 · p) = log h(z(q)) + t(s0 · p) = log s20 + ν(p).

Since π−1(q) ∩ U∗(ν(b)) is a totally geodesic submanifold of (U∗(ν(b)), ω)
and the induced metric on π−1(q) ∩ U∗(ν(b)) is U(n)-invariant, γ(s) is a
geodesic on π−1(q) ∩ U∗(ν(b)), and hence is also a geodesic on U∗(ν(b)).
Also since M is compact, the metric ω is complete if and only of the lengths
of the rays γ(s) defined in (20) are infinity.

As done in Lemma 2.1, the length of γ(s) on domain (0, 1] is

l1 =

∫ 1

0
|γ′(s)|ds = 1

2

∫ ν(p)

−∞

√
f ′′(ν)dν =

1

2

∫ τ(ν(p))

a

1√
ϕ(τ)

dτ.

The completeness near the zero section requires l1 = +∞, which is equivalent
to that ϕ(τ) has a factor (τ − a)2, i.e. ϕ(a) = ϕ′(a) = 0. We claim a > 0. If
a = 0, the lowest degree term of polynomial P (τ) defined in (19) would be
determined as ∫ τ

0
(τ − x)n(n− 1)xn−2dx = τn.

Hence we can write P (τ) as P (τ) = τn(1 +A(τ)) for some polynomial A(τ)
and thus get

ϕ(τ) =
P (τ)

Q(τ)
= τ

1 +A(τ)

(1 + λτ)m
.

In this way we find l1 < +∞, which is a contradiction.
Next, we should consider the endpoint b. The length l2 of γ(s) for s ∈

[1, s0) is

l2 =

∫ s0

1
|γ′(s)|ds = 1

2

∫ ν(s0·p)=ν(b)

ν(p)

√
f ′′(ν)dν =

1

2

∫ τ(ν((b)))=b

τ(ν(p))

1√
ϕ
dτ

If b is finite, then P (τ) has a factor (τ − b). By (17), limτ→b− ν(τ) = +∞.
Hence, ω is well-defined on E∗. If ω is complete, the above l2 is also infinity,
which is equivalent to say that ϕ(b) = ϕ′(b) = 0. If b is infinity, then ϕ(τ)
is defined on (a,+∞). Since ℘ � degP (τ)− degQ(τ) = 2 or 1, from (17) if
℘ = 2, ω is defined on U∗ and if ℘ = 1, ω is defined on E∗. Also since ℘ = 2
or 1, there exists a constant C big enough such that ϕ(τ) < Cτ as τ →∞.
Hence, in this situation, l2 is infinity and ω is automatically complete. �
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3.3. Existence of complete cscK metrics

We discuss the solutions in this subsection divided into three cases: λ > 0,
λ = 0 and λ < 0.

1. Case λ > 0. Given constants cM , λ > 0, and a > 0, define the set C
to be of “allowable scalar curvatures” as

C = { c ∈ R | ϕ(τ) > 0 for τ ∈ (a,+∞) }.

C is not empty since ϕ(τ) is positive if c << 0. C has a supermum. In fact,
if c > 0, P (τ) and hence ϕ(τ) will be negative when τ is big enough. Hence,
the supermum c0 of C is nonpositive. We can easily get the conclusions: If
cM ≥ 0, c0 = 0 ∈ C; If cM < 0, two possibilities occur: one is c0 ∈ C, and the
other is c0 /∈ C, which means that there exists a constant b such that ϕ(b) = 0
and ϕ(τ) is positive on (a, b). Hence we should consider the existence of
Kähler metrics with constant scalar curvature c as the following four cases:

(i) c < c0; (ii) c = c0 = 0 ∈ C; (iii) 0 > c = c0 ∈ C; or (iv) c = c0 �∈ C.

Proposition 3.1. Given constants cM , λ > 0 and a > 0, there exists a
constant c0 ≤ 0 such that:

1. For any c ≤ c0 in cases (i) and (iii), there exists a complete cscK
metric ω on U∗ with constant scalar curvature c; and

2. For c = c0 in cases (ii) and (iv), there exists a complete cscK metric
ω on E∗ with constant scalar curvature c.

Proof. For cases (i) and (iii), since the degrees of polynomials P (τ) and Q(τ)
are m+ n+ 1 and m+ n− 1 respectively, the limit of ν(τ) defined by (17) is
finite as τ → +∞. Set this constant to be zero. Then the metric ω is defined
on U∗. According to Lemma 3.1, ω is complete.

For case (ii), degP (τ)− degQ(τ) = 1. The limit of ν(τ) is infinity as
τ → +∞. Hence the metric is defined on E∗ and is complete by Lemma 3.1.

For case (iv), ϕ(τ) ≥ 0 for τ ∈ (a,+∞). In this case there exists a con-
stant b such that ϕ(τ) > 0 in τ ∈ (a, b) and ϕ(b) = 0. Hence ϕ′(b) = 0. Ac-
cording to Lemma 3.1, ω is defined on E∗ and is complete. �

We give two examples.
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Example 3.1. Consider the case c0 ∈ C and c0 < 0. Take

c =
cM

1 + λa
+

n(n− 1)

a
.

We have

cM
1 + λx

+
n(n− 1)

x
− c

=
a− x

a(1 + λa)x(1 + λx)
(λ(cMa+ n(n− 1)(1 + λa))x+ n(n− 1)(1 + λa)) .

If cM < 0, λ > 0 and a > 0 satisfy

cM = −n(n− 1)(1 + λa)2

λa2
,

we find that P (τ) > 0 when τ ∈ (a,+∞). It is easy to check that

c0 = c = −n(n− 1)

λa2
.

Example 3.2. Then consider the case c0 /∈ C. Let m = 1, n = 2, λ = 1,
cM = −4 and a = 1. It follows that

ϕ(τ) =

∫ τ

1
(τ − x)

(− cx2 − (c+ 2)x+ 2
)
dx.

We can solve the inequality ϕ(τ) ≥ 0 to get c ≤ ψ(τ). Here

ψ(τ) =
1
3 − τ + τ2 − τ3

3
7
12 − 5

6τ + 1
6τ

3 + 1
12τ

4
.

Hence ϕ(b) = ϕ′(b) = 0 if and only if c0 = minτ∈(a,+∞) ψ(τ) = ψ(b).
The pictures of ψ(τ) and ϕ(τ) are given as Figure 5. We find that ψ(τ)

achieves its maximum at τ = 4.4641 with the maximum −0.3094. So c0 =
−0.3094 and b = 4.4641. Thus, ϕ(τ) gives a complete cscK metric on E∗

with scalar curvature c0.

We consider the asymptotic property. Let

κ(τ) =
cM

1 + λτ
+

n(n− 1)

τ
− c.

Since ϕ(a) = ϕ′(a) = 0, κ(a) = ϕ′′(a).
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(a) the graph of ψ(τ)
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(b) the graph of ϕ(τ)

Figure 5: The case of c0 /∈ C.

Proposition 3.2. For cases (i), (ii) and (iv) the cscK metrics in Proposi-
tion 3.1 have the PMY asymptotic property, and for case (iii), the metrics
have the asymptotic property: As r2 → 0,

f(r2) = a log r2 − 2

(
3

κ′(a)

) 1

2

(− log r2)
1

2 +O(log(− log r2)),

or

f(r2) = a log r2 − 3

2

(
8

κ′′(a)

) 1

3

(− log r2)
2

3 +O((− log r2)
1

2 ).

Proof. For cases (i), (ii) and (iv), we claim that κ(a) > 0. If the claim holds,
then as r2 → 0,

dτ

dν
= ϕ(τ) =

κ(a)

2
(τ − a)2 +O

(
1

τ − a

)
,
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from which we can get

f(r2) = a log r2 − 2

κ(a)
log(− log r2) +O((log r2)−1),

which means that the metric is with PMY asymptotic property.
We prove the claim. For case (i), since cM

1+λa + n(n−1)
a − c0 ≥ 0, κ(a) =

(κ(a) + c− c0) + (c0 − c) > 0. For case (ii), if κ(a) = 0, then ϕ(3)(a) = κ′(a)
and ϕ(τ) has the Taylor expansion at τ = a:

ϕ(τ) =
κ′(a)
3!

(τ − a)3 + o((τ − a)3).

The positivity of ϕ(τ) when τ > 0 implies κ′(a) ≥ 0. On the other hand, if

κ(a) = 0, i.e., cM
1+λa + n(n−1)

a = 0 as c = 0, then

κ′(a) =
−cM

(1 + λa)2
− n(n− 1)

a2
= − n(n− 1)

(1 + λa)a2
< 0,

which is a contradiction to κ′(a) ≥ 0. Hence κ(a) �= 0 and κ(a) > 0 is de-
duced from the positivity of ϕ(τ). We then consider case (iv). In this case,
I = (a, b) and

ϕ(a) = ϕ′(a) = ϕ(b) = ϕ′(b) = 0.

These equalities guarantee that there are already two roots in (a,b) for
ϕ′′(τ) = κ(τ)Q(τ) = 0. Hence κ(a) = ϕ′′(a) �= 0. The positivity of ϕ then
implies κ(a) > 0.

For case (iii), we first prove that κ(a) = 0 which means that the metrics
for this case is not PMY. Since c = c0 < 0, there exist constants a0 ∈ (a,∞)
and C > 0 such that κ(τ) ≥ C in [a0,∞). If κ(a) > 0, there would exist
constants a1 > a and C1 > 0 such that κ(τ) > C1 in (a, a1) and ϕ(τ) > C1

in (a1, a0]. Then we could choose a positive constant ε such that ϕ(τ) is
still positive by replacing c = c0 with c = c0 + ε. Hence c = c0 + ε ∈ C which
contradicts to that c0 is the supermum of C.

In this case, there are two subcases which should be considered: κ′(a) > 0
and κ′(a) = 0: If κ′(a) > 0,

f ′′(ν) =
dτ

dν
= ϕ(τ) =

κ′(a)
3!

(τ − a)3 +O((τ − a)4);

If κ′(a) = 0, κ′′(a) �= 0 and

f ′′(ν) =
dτ

dν
= ϕ(τ) =

κ′′(a)
4!

(τ − a)4 +O((τ − a)5).

The conclusion then follows. �
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Proposition 3.3. The metrics in Proposition 3.1 with constant scalar cur-
vature c have the asymptotic property:

1. For cases (i) and (iii) (hence defined on U∗), as r2 → 1,

f(r2) = −(m+ n)(m+ n+ 1)

c
log(− log r2) +O(log r2);

2. For case (ii) (hence defined on E∗), as r2 →∞,

f(r2) =
1

θ1
(r2)θ1 + θ2 log r

2 +O(r−2)

with θ1 =
cM+n(n−1)λ

λ(m+n)(m+n+1) and θ2 =
(m+n)(cM (m−1)+n(n−1)mλ)
m(m+n−2)(cM+n(n−1)λ) ;

3. For case (iv) (hence defined on E∗), as r2 →∞,

f(r2) = b log r2 − 2

κ(b)
log(log r2) +O((log r2)−1) with κ(b) > 0.

Proof. We omit the proof here. It is a calculus exercise. �

2. Case λ = 0. In this case, κ(τ) = cM + n(n−1)
τ − c. Hence c0 = cM .

Proposition 3.4. Given constants cM , λ = 0, and a > 0, there exists a
complete cscK metrics on U∗ with c < cM and on E∗ with c = cM . All these
metrics admit PMY asymptotic property.

Proof. The proof is the same as Propositions 3.1 and 3.2. �

3. Case λ < 0. The method of this case is quite different from the cases
λ ≥ 0.

Proposition 3.5. For any λ < 0 and cM > 0, there exists on E∗ a complete
positive cscK metric with PMY asymptotic property.

Proof. We need to prove that there exist two constants a and b with 0 <
a < b < − 1

λ such that the function ϕ(τ) is positive on domain (a, b) and
ϕ(b) = ϕ′(b) = 0.

On interval (0,− 1
λ), the polynomial Q(τ) is positive. Hence there is a

number b ∈ (a,− 1
λ) such that ϕ(b) = ϕ′(b) = 0 if and only if P (b) = P ′(b) =

0, and when τ ∈ (a, b), ϕ(τ) is positive if and only if P (τ) is positive.
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From P (b) = P ′(b) = 0, we can solve cM and c as

(21) cM = n(n− 1)
H1(a, b)

H2(a, b)
and c = n(n− 1)

H3(a, b)

H2(a, b)
,

where we have defined

(22)

H1(a, b) =

∫ b

a

Q(x)

x
dx

∫ b

a
xQ(x)dx−

(∫ b

a
Q(x)dx

)2

,

H2(a, b) = − 1

λ

∫ b

a

Q(x)

1 + λx
dx

∫ b

a
(1 + λx)Q(x)dx+

1

λ

(∫ b

a
Q(x)dx

)2

,

H3(a, b) =

∫ b

a

xQ(x)

1 + λx
dx

∫ b

a

Q(x)

x
dx−

∫ b

a
Q(x)dx

∫ b

a

Q(x)

1 + λx
dx.

We first note that when λ < 0 and 0 < a < b < − 1
λ , the functionsHi(a, b) for

i = 1, 2, 3 are always positive. The proofs for the first and second functions
are direct by the Hölder inequality. The proof for the third one is also direct
by using the common techniques in calculus. Thus the constant cM and c
defined in (21) are indeed positive.

We need the following.

Claim: For any given positive cM , there exist two constants a and b with
0 < a < b < − 1

λ such that the first equality in (21) holds.

Proof. Define a function

H(ζ, τ) =
H1(ζ, τ)

H2(ζ, τ)
, ζ, τ ∈

(
0,− 1

λ

)
, ζ < τ.

By continuity, if we can prove that as ζ → 0, H(ζ, 2ζ)→∞, and as ε→ 0,
H(1−2ε

−λ , 1−ε
−λ )→ 0, then the claim holds. But as ζ → 0 and (hence) (1 +

λζ)→ 1, one can easily estimate to get H1(ζ, 2ζ) = O(ζ2n) and H2(ζ, 2ζ) =
O(ζ(2n+1)), and hence H(ζ, 2ζ) = O(ζ−1). On the other hand, as ε→ 0,
H1(

1−2ε
−λ , 1−ε

−λ ) = O(ε2m+1), and H2(
1−2ε
−λ , 1−ε

−λ ) = O(ε2m) and hence H(1−2ε
−λ ,

1−ε
−λ ) = O(ε). �

According to the claim, we have P (b) = P ′(b) = 0. The condition P (τ) >
0 for τ ∈ (a, b) is automatically satisfied. For if there exists a point ξ ∈ (a, b)
such that P (ξ) = 0, equation P ′′′(τ) = κ(τ)Q(τ) = 0 has three roots in (a, b).
This is impossible.

From the proof of Proposition 3.2, we see that if κ(a) > 0, then the
metric has the PMY asymptotic property. Since P (a) = P ′(a) = 0, κ(a) = 0
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is equivalent to P ′′(a) = 0, and hence P ′′′(τ) = 0 has three roots in (a, b). It
is impossible. �

Proof of Theorem 1.4. It follows from Propositions 3.1, 3.2, 3.3, 3.4 and 3.5.
�

4. CscK PMY metrics on P(E ⊕O)−M

Recall that P(E ⊕O) can be viewed as a compactification of E: E can
be imbedded into P(E ⊕O). In fact, let (U, z = (z1, . . . , zm)) be a local
holomorphic chart of M such that E|U is (holomorphically) isomorphic to
U × Cn. If we denote the coordinates of Cn as w = (w1, . . . , wn), the imbed-
ding map can be defined as follows: for any p ∈ E|q, q ∈ U ,

p �→ (q, w1(p), . . . , wn(q)) �→ (q, [1, w1(p), . . . , wn(p)]).

This map is clearly well-defined on E. It defines a section s of P(E ⊕O):

q �→ (q, (0, . . . , 0)) �→ (q, [1, 0, . . . , 0])

which is just the zero section of E. Hence we still denote s(M) simply by
M . Set D∞ = P(E ⊕O)− E. D∞ is a divisor on P(E ⊕O) and is called
the infinity divisor. By these notations, E −M is bi-holomorphic to P(E ⊕
O)− s(M)−D∞. Now the question is when the metric ω defined on E −M
as the above section can be extended across D∞.

First note that if ω can be extended across D∞, ω must be defined
on E −M and is not complete at infinity. Hence according to the proof of
Lemma 3.1, the endpoint b of I = (a, b) is finite.

Lemma 4.1. Let ω be the bundle adapted metric with momentum profile
ϕ(t) in (19). Assuming that there is a constant b such that ϕ(τ) is positive
on (a, b) and ϕ(b) = 0. Then ω defined on E −M can be extended across
D∞ if and only if ϕ′(b) = −1.

Proof. The proof of this lemma is well-known. One can consult references
[1, 6, 9]. Here we write out details.

Since the metric ω on E −M is bundle adapt, we only need to prove
that the metric ω0 = i∂∂̄f(τ) defined on fiber E|q − π(q) = Cn − 0 can be
extended to CPn−1.

First recall that CPn \ [1, 0, . . . , 0] is bi-holomorphic to the line bundle
O(1) over CPn−1. Let [v0, . . . , vn] be the homogeneous coordinates of CPn.
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Here the open set Cn is v0 = 1 and the hyperplane CPn−1 is v0 = 0. Hence
wα = vα

v0
is the α−th coordinate of Cn and [v1, . . . , vn] is the homogeneous

coordinates of CPn−1. Let Uα = {[v1, . . . , vn] | vα �= 0} and define wα
β = vβ

vα

with β �= α. Let vα be the coordinate of the trivialization of O(1)|Uα
. Then

its transition function defined on Uα ∩ Uβ is

vα =
1

wα
β

vβ = wβ
αv

β .

The bi-holomorphic map ψ : CPn − [1, 0, . . . , 0]→ O(1) is

[v0, . . . , vn] �→ [wα
1 , . . . , w

α
β−1, w

α
β+1, . . . , w

α
n ,

v0
vα

], for vα �= 0.

Define on O(1) the function

r̃2 =
|vα|2

1 +
∑

β �=α |wα
β |2

.

We have r̃2 = 1
r2 on Cn − 0.

By Direct computation, we have

ω0 = −
√−1f ′(t)∂∂̄ log r̃2 +

√−1f ′′(t)∂ log r̃2 ∧ ∂̄ log r̃2

= (f ′(t) + f ′′(t))ωFS +
f ′′(t2)
r̃2

(
√−1∂∂̄r̃2)

= (τ + ϕ(τ))ωFS +
ϕ(τ)

r̃2
(
√−1∂∂̄r̃2)

Define the functions

f1(r̃
2) =

{
τ + ϕ(τ), r̃2 > 0
b r̃2 = 0

,

and

f2(r̃
2) =

{
ϕ(τ)
r̃2 r̃2 > 0

1 r̃2 = 0.

Since as r̃2 → 0, τ → b and limτ→b ϕ(τ) = 0, the function f1(r̃
2) is contin-

uous at r̃2 = 0. As to f2, we shall prove that if we take a suitable constant
in (17), then it is also continues at r̃2 = 0.
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In fact f2(r̃
2) is smooth. Since ϕ(b) = 0, ϕ′(b) = −1, and ϕ is rational,

we can write

ϕ(τ) = (b− τ)(1 + (b− τ)ϕ1(τ))

for some smooth function ϕ1(τ). Then

t =

∫
1

ϕ(τ)
dτ = − log(b− τ)− ϕ2(τ).

Here ϕ2(τ) is a smooth function with ϕ2(b) = 0. Hence

(23) r̃2 =
1

r2
= e−t = eϕ2(τ)(b− τ)

and

f2(r̃
2) = (1 + (b− τ)ϕ1(τ))e

−ϕ2(τ)

is a smooth function of τ . Moreover, by the implicit function theorem, we
can solve (23) to get a smooth function τ = τ(r̃2). Hence f2(r̃

2) is a smooth
function of r̃2. Now we can also see that f1(r̃

2) is smooth at r̃2 = 0 since

f1(r̃
2) = τ + f2(τ)r̃

2.

The metric ω0 can be extended across CPn−1 by defining

ω̃0 = f1(r̃
2)ωFS + f2(r̃

2)(
√−1∂∂̄r̃2)

Since d(ω0) = 0 and f1(r̃
2) and f2(r̃

2) is smooth at r̃2 = 0, ω̃0 is also Kähler.
�

According to Lemma 4.1, the momentum profile ϕ in (19) gives a com-
plete cscK metric on P(E ⊕O)−M if and only if

(i) ϕ(b) = 0 and ϕ′(b) = −1 with b > a,

(ii) ϕ(τ) is positive on domain (a, b).

However, condition (ii) is satisfied automatically if condition (i) holds.
For one can show that under condition (i) a is the unique solution of P (x) =
0 for x ∈ (0, b). In fact, we have the following result.

Lemma 4.2. If ϕ(b) = 0 and ϕ′(b) = −1, then ϕ(τ) > 0 on domains (0, a)
and (a, b).
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Proof. Since P ′′(τ) = κ(τ) = 0 has at most two roots and we have already
P (a) = P (b) = P ′(a) = 0, P (τ) = 0 has at most one root ξ in (0, a) or in
(a, b). Also since ϕ′(b) = −1 and ϕ(b) = 0, P (τ) is positive as τ → b. Hence
if ξ ∈ (a, b), there are two cases should be considered. One is ϕ(τ) > 0 on
(a, ξ) ∪ (ξ, b), the other is ϕ(τ) < 0 on (a, ξ). The former is impossible as
ϕ′(ξ) = 0 which would lead to κ(τ) = 0 has at least three roots. The latter
is also impossible as from this one can derive ϕ′′(a) = 0 which would also
lead the contradiction. Thus, ξ /∈ (a, b).

Since ϕ(τ) > 0 when τ is near zero, as the same reason, ξ /∈ (0, a). �
Hence, in the following we only need to find a constant b such that

condition (i) is satisfied. We can solve constants cM and c from ϕ(b) = 0
and ϕ′(b) = −1 as:

(24) cM =
n(n− 1)H1 + L1

H2

and

c =
n(n− 1)H3 + L2

H2

with the definitions (22) and of

L1 = Q(b)

∫ b

a
xQ(x)dx− bQ(b)

∫ b

a
Q(x)dx,

L2 = bQ(b)

∫ b

a
Q(x)dx−Q(b)

∫ b

a

xQ(x)

1 + λx
dx.

So we should determine the range of cM such that ϕ(τ) satisfies (i).

Proposition 4.1. If λ < 0, the range of cM is R.

Proof. Let H̃ = n(n−1)H1+L1

H2
. First, we take b = 2a and estimate H̃(a, 2a) as

a→ 0+. We get

(n(n− 1)H1 + L1)(a, 2a) = α1a
2n +O(a2n+1)

with

α1 =
−2n−1(n+ 1)2 + n

n(n+ 1)
< 0,

and H2(a, 2a) = O(a2n+1). Since when λ < 0, H2(a, 2a) > 0, we have

lim
a→0+

H(a, 2a) = −∞.
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On the other hand, we take b =
√
a and do estimates. As a→ 0+, we

also have

(n(n− 1)H1 + L1)(a,
√
a) = α2a

n+ 1

2 +O(an+1)

with α2 =
−2λm

n(n+ 1)(n+ 2)
> 0,

and H2(a,
√
a) = O(an+1). Hence we have lima→0+ H̃(a,

√
a) = +∞.

Now the result follows from the continuity of H̃. �

Proposition 4.2. If λ > 0, the range of cM is (m(m+ 2n− 1)λ,∞).

Proof. First we note that when λ > 0, H2(a, 2a) < 0. Thus by the estimates
in the proof of the above lemma, we get lima→0+ H̃2(a, 2a)→ +∞.

Next we do estimates: as b→ +∞

(n(n− 1)H1 + L1)(a, b) ∼ −m(m+ 2n− 1)

(m+ n)4 − (m+ n)2
b2(m+n)

H2 ∼ −λ2m−1b2m+2n

(m+ n)2(m+ n− 1)(m+ n+ 1)

Hence

lim
b→∞

cM = m(m+ 2n− 1)λ

At last, we need to prove

cM > m(m+ n− 1)λ

i.e., to prove when b ≥ a,

K(b) = n(n− 1)H1(b) + L1(b)−m(m+ 2n− 1)λH2(b) < 0.

This is a calculus exercise and we leave to readers.
In summary, the range of cM is (m(m+ 2n− 1)λ,∞). �

Proposition 4.3. The metrics in Propositions 4.1 and 4.2 admit the PMY
asymptotic property.

Proof. We need to prove κ(a) > 0. By Lemma 4.2, a is a minimum of ϕ(x).
From the Taylor expansion of ϕ(x) at x = a, if κ(a) = 0, κ′(a) = − λcM

(1+λa)2 −
n(n−1)

a2 = 0. So if λcM ≥ 0, it is impossible. Thus for λ > 0 (hence cM > 0),
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or λ < 0 and cM ≤ 0, the metrics are PMY. For the case λ < 0 and cM > 0,
if k′(a) = 0, then

κ′′(x) =
2λ2cM

(1 + λx)3
+

2n(n− 1)

x3

would have one root in (0, b) when ϕ(a) = ϕ′(a) = ϕ′′(a)(= κ(a)) = ϕ(b) =
0. But it is impossible when cM > 0. Hence κ′(a) �= 0 and then κ(a) > 0.
The metrics are also PMY. �

The proof of Theorem 1.5. It follows from Propositions 4.1, 4.2, and 4.3. �

We give an example of cscK metric with λ > 0.

Example 4.1. Let m = 1, n = 2, λ = 1 and a = 1. Then

ϕ(τ) =
1

τ(τ + 1)

∫ τ

1
(τ − x)(cMx+ 2(1 + x)− cx(1 + x))dx

= − 1

12τ(τ + 1)
(−1 + τ)2

(
cτ2 + (4c− 2cM − 4)τ + 7c− 4cM − 20

)

We can solve ϕ(b) = ϕ′(b) = 0 to get

cM =
2(−13 + 37b+ 39b2 + 7b3 + 2b4)

(−1 + b)2(1 + 4b+ b2)
.

For example, let b = 2. Then

cM =
610

13
and c =

276

13

which implies

ϕ(x) =
−23x4 + 60x3 + 13x2 − 114x+ 64

13x(1 + x)
.

We give a picture of ϕ(τ) as Figure 6.
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0.6

0.8

Figure 6: the graph of ϕ(τ) on [1, 2] with λ = 1, cM = 610
13 and c = 276

13 .

We also give two examples of csck metrics with λ < 0.

Example 4.2. Let m = 1, n = 2, λ = −1 and cM = 2. We choose a =
0.001, then the graph as Figure 7 shows b 
 0.0893745 and c 
 68.7366,
or b 
 0.998 and c 
 11.9761. We give a picture of ϕ(τ) with b = 0.0894 as
Figure 8.

0.1 0.2 0.8 0.6 4.0

-40

40

10

cM

Figure 7: the graph of cM with a = 0.001.

Example 4.3. Let m = 1, n = 2, λ = −1 and cM = −2. If a = 0.1, then
b 
 0.61146 and c 
 5.02242. We give a picture of ϕ(τ) as Figure 9.
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-0.006
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0.080
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0.050

Figure 8: the graph of ϕ(τ) with a = 0.001, λ = −1 and cM = 2.

Figure 9: the graph of ϕ(τ) with a = 0.1, λ = −1 and cM = −2.
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