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Rank three geometry and positive

curvature

Fuquan Fang, Karsten Grove, and Gudlaugur Thorbergsson

An axiomatic characterization of buildings of type C3 due to Tits is
used to prove that any cohomogeneity two polar action of type C3

on a positively curved simply connected manifold is equivariantly
diffeomorphic to a polar action on a rank one symmetric space.
This includes two actions on the Cayley plane whose associated C3

type geometry is not covered by a building.

The rank (or size) of a Coxeter matrix M coincides with the number of
generators of its associated Coxeter system. The basic objects in Tits’ local
approach to buildings [Ti2] are the so-called chamber systems C of type
M (see also [Ro]). Indeed, if any so-called (spherical) residue (subchamber
system) of C of rank 3 is covered by a building, so is C .

Recall that a polar G action on a Riemannian manifold M is an isometric
action with a so-called section Σ, i.e., an immersed submanifold of M that
meets all G orbits orthogonally. Since the action by the identity component
of G is polar as well, we assume throughout without stating it that G is
connected.

It is a key observation of [FGT] that the study of polar G actions on 1-
connected positively curved manifolds M in essence is the study of a certain
class of (connected) chamber systems C (M ;G). Moreover, when the univer-
sal (Tits) cover of C (M ;G) is a building it has the structure of a compact
spherical building in the sense of Burns and Spatzier [BSp]. This was utilized
in [FGT] to show:
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Theorem A. Any polar G action of cohomogeneity at least two on a simply
connected closed positively curved manifold M is equivariantly diffeomorphic
to a polar G action on a rank one symmetric space if the associated chamber
system C (M ;G) is not of type C3.

We note here, that when the action has no fixed points, the rank of
C (M ;G) is dim(M/G) + 1, i.e., one more than the cohomogeneity of the
action. In the above theorem the Cayley plane emerges only in cohomogene-
ity two and when G has fixed points. Moreover, there are indeed chamber
systems with type M = C3 whose universal cover is NOT a building (see,
e.g., [Ne], [FGT], [Ly], [KL] and below). In our case, a polar G action on M
is of type C3 if and only if its orbit space M/G is a geodesic 2-simplex with
angles π/2, π/3 and π/4.

Our aim here is to take care of this exceptional case and prove

Theorem B. Any polar G action on a simply connected positively curved
manifold M of type C3 is equivariantly diffeomorphic to a polar action on
a rank one symmetric space. This includes two actions on the Cayley plane
where the universal covers of the associated chamber systems are not build-
ings.

Combining these results of course establishes, the

Corollary. Any polar G action of cohomogeneity at least two on a simply
connected closed positively curved manifold M is equivariantly diffeomorphic
to a polar G action on a rank one symmetric space.

This is in stark contrast to the case of cohomogeneity one, where in
dimensions seven and thirteen there are infinitely many non-homogeneous
manifolds (even up to homotopy). The classification work in [GWZ] also lead
to the discovery and construction of a new example of a positively curved
manifold (see [De] and [GVZ]).

By necessity, as indicated above, the proof of Theorem B is entirely
different from the proof of Theorem A. In general, the geometric realization
of our chamber systems C (M ;G) utilized in the proof of Theorem A are not
simplicial. However, in [FGT] it was proved that in fact

Theorem C. The geometric realization |C (M,G)| of a chamber system
C (M,G) of type A3 or C3 associated with a simply connected polar G-manifold
M is simplicial.
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When the geometric realization of a chamber system of type M is simpli-
cial it is called a Tits geometry of type M. This allows us to use an axiomatic
characterization of C3 geometries that are buildings (see [Ti2], Proposition
9). So rather than considering the universal cover C̃ (M ;G) directly, we con-
struct in all but two cases a suitable cover of C (M ;G) (possibly C (M ;G)
itself), and prove that it satisfies the C3 building axiom of Tits. The two
cases where this methods fails, are then recognized as being equivalent to
two C3 type polar actions on the Cayley plane OP

2 (cf. [PTh, GK]).
We note, that since all our chamber systems C (M,G) are homogeneous

and those of type C3 (and A3) are Tits geometries an independent alternate
proof of Theorem B follows from [KL].

1. Preliminaries

The purpose of this section is threefold. While explaining the overall ap-
proaches to the strategies needed in the proof of Theorem B, we recall the
basic concepts and establish notation.

Throughout G denotes a compact connected Lie group acting on a closed
1- connected positively curved manifold M in a polar fashion and of type
C3.

Fix a chamber C in a section Σ for the action. Then C is isometric to
the orbit spaces M/G and Σ/W, where W is the reflection group of Σ and
W acts simply transitively on the chambers of Σ. Since the action is of type
C3, C is a convex positively curved 2-simplex with geodesic sides = faces,
�r, �t and �q opposite its vertices r, t and q with angles π/2, π/3 and π/4
respectively.

By the Reconstruction Theorem of [GZ] recall that any polar G manifold
M is completely determined by its so-called polar data. In our case, this
data consist of G and all its isotropy groups, together with their inclusions
along a chamber C (cf. also Lemma 1.5 in [Go]). We denote the principal
isotropy group by H, and the isotropy groups at vertices and opposite faces
by Gr,Gt,Gq and G�r ,G�t ,G�q respectively. What remains after removing G
from this data will be referred to as the local data for the action.

With two exceptions, it turns out that only partial data are needed
to show that the action indeed is equivalent to a polar action on a rank
one symmetric space. Since the data in the two exceptional cases coincide
with those of the exceptional C3 actions on the Cayley plane, this will then
complete the proof of Theorem A. In addition, it is worth noting, that since
the groups G derived from those data (in 7.2 and 8.1) are maximal connected
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subgroups of F4, the identity component of the isometry group of the Cayley
plane OP

2, their actions are uniquely determined and turn out to be polar.

The proof of Theorem A in all but the two exceptional cases is based
on showing that the universal cover, C̃ of the chamber system C = C (M,G)
associated to the polar action is a spherical Tits building [FGT]. Here, the
homogeneous chamber system C (M,G) is the union ∪g∈G gC of all chambers
with three adjacency relations one for each face: Specifically g1C and g2C
are i adjacent if their respective i faces are the same in M . This chamber
system with the thin topology, i.e., induced from the its path metric is
a simplicial complex by Theorem C, and hence C (M,G) is a so-called C3

geometry.
As indicated, the Fundamental Theorem of Tits used in [FGT] to show

that C̃ is a building yields nothing for rank three chamber systems as well as
rank three geometries. Instead we will show that C , or a cover we construct
of C is a C3 building (and hence simply connected) by verifying an axiomatic
incidence characterization (see Section 3) of such buildings due also to Tits.

The construction of chamber system covers we utilize is equivalent in
our context to the principal bundle construction of [GZ] (Theorem 4.5) for
Coxeter polar actions and manifolds. Specifically for our case:

• Given the data, H,G�i ,Gj , i, j ∈ {t, r, q} and G for (M,G), the data for

(P, L× G) consists of graphs Ĥ, Ĝ�i , Ĝj in Ĝ := L× G of compatible ho-
momorphisms from H,G�i ,Gj , i, j ∈ t, r, q to L. In particular, the local
data for (P, L× G) are isomorphic to the local data for (M,G).

• Clearly L acts freely as a group of automorphisms, and C (P, L×
G)/L = C (M,G), i.e., ̂C (M ;G) := C (P, L× G) is a chamber system
covering of C (M ;G).

In our case L will be S1 (or in one case S3).

2. Basic tools and obstructions

The aim of this section is to establish a number of properties and restrictions
of the data to be used throughout. Unless otherwise stated G will be a
compact connected Lie group and M a closed simply connected positively
curved manifold.

Without any curvature assumptions we have the possibly well known
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Lemma 2.1 (Orbit equivalence). Let M be a simply connected polar
G manifold. Then the slice representation of any isotropy group is orbit
equivalent to that of its identity component.

Proof. Recall that the slice representation of an isotropy group K = Gp ⊂ G
restricted to the orthogonal complement T⊥

p of the fixed point set of K
inside the normal space to the orbit G p is a polar representation. Clearly
the finite group K/K0 acts isometrically on the orbit space S(T⊥

p )/K0, which

is isometric to a chamber C of the polar K0 action on the sphere S(T⊥
p ).

Since C is convex with non-empty boundary its soul point (the unique point
at maximal distance to the boundary) is fixed by K/K0. This soul point,
however, corresponds to a principal K0 orbit, and hence to an exceptional
K orbit unless K/K0 acts trivially on C. However, by Theorem 1.5 [AT]
there are no exceptional orbits of a polar action on a simply connected
manifold. �

Because of this, when subsequently talking casually about a slice repre-
sentation we refer to the slice representation of its identity component unless
otherwise stated.

Using positive curvature the following basic fact was derived in [FGT],
Theorem 3.2:

Lemma 2.2 (Primitivity). The group G is generated by the (identity
components) of the face isotropy groups of any fixed chamber.

Naturally, the slice representations of Gt, Gq and Gr play a fundamental
role. We denote the respective kernels of these representations by Kt,Kq

and Kr and their quotients by Ḡt, Ḡq and Ḡr. Since in particular the slice
representation of Gt is of type A2 it follows that the multiplicity triple of the
polar G manifold M , i.e, the dimensions of the unit spheres in the normal
slices along the edges �q, �r, �t is (d, d, k) ∈ Z3

+, where d = 1, 2, 4 or 8.
For the kernels Kt and Kq, which are usually large groups, we have:

Lemma 2.3 (Slice Kernel). Let M be a simply connected polar G-manifold
of type C3. If G acts effectively, then the kernel Kt, respectively Kq acts ef-
fectively on the slices T⊥

q and T⊥
r , respectively T⊥

t and T⊥
r .

Proof. Note that Kt fixes all sections through t since Kt acts trivially on the
slice T⊥

t . We must prove that Kt ∩ Kq = {1}, Kt ∩ Kr = {1} and Kq ∩ Kr =
{1}. We consider only Kt ∩ Kq, since the arguments for the remaining cases
are similar.
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Note that since G is assumed to act effectively on M , and Kt ∩ Kq is
contained in the principal isotropy group, it suffices to prove that Kt ∩ Kq is
normal in G. By the primitivity (see 2.2), G = 〈p−1

q (Ḡq,0), p
−1
t (Ḡt,0)〉, where

pq : Gq → Ḡq is the quotient homomorphism and Ḡq,0 is the identity com-
ponent of Ḡq and similarly for pt. Thus, it suffices to show that Kt ∩ Kq

is normal in each of p−1
t (Ḡt,0) and p−1

q (Ḡq,0). In each case, assuming the
effective vertex isotropy group is connected does not alter the proof only
simplifies notation. Accordingly, we proceed to assume that Ḡt is connected,
i.e., Ḡt = Ḡt,0 and will show that Kt ∩ Kq is a normal subgroup of Gt.

Note that Kt ∩ Kq is a normal subgroup of Kt acting trivially on both
the slices T⊥

t and T⊥
q .

By assumption the quotient map Gt,0 ⊂ Gt → Ḡt is surjective when re-
stricted to the identity component Gt,0 of Gt. A finite central cover G̃t,0 of

Gt,0 is isomorphic to the product K̃t,0 × ˜̄Gt where K̃t,0 is locally isomorphic

to the identity component Kt,0 of Kt and ˜̄Gt is locally isomorphic to Ḡt.

In particular, Gt contains a connected and closed subgroup π( ˜̄Gt) covering
Ḡt, where π : G̃t,0 → Gt,0 is the cover map. Moreover, every element of the

subgroup π( ˜̄Gt) commutes with the elements in Kt,0. On the other hand, for

every h ∈ π( ˜̄Gt), the conjugation by h gives rise to an element in the auto-
morphism group Aut(Kt) since Kt is normal, hence defines a homomorphism

φ : π( ˜̄Gt) → Aut(Kt). Since φ(π( ˜̄Gt)) has a trivial image in Aut(Kt,0) under

the forgetful homomorphism Aut(Kt) → Aut(Kt,0), the group φ(π( ˜̄Gt)) is fi-

nite, and hence trivial because φ(π( ˜̄Gt)) is connected. This implies that the

elements of π( ˜̄Gt) commute with the elements of Kt. Since Gt = 〈Kt, π(
˜̄Gt)〉

and Kt ∩ Kq is normal in Kt, it then follows that Kt ∩ Kq is a normal subgroup
of Gt.

As mentioned above, the same arguments show that Kt ∩ Kq is normal
in p−1

t (Ḡt,0) in case Ḡt is not connected. The same arguments also show that
Kt ∩ Kq is normal in p−1

q (Ḡq,0). �

Remark 2.4. It turns out that in all cases Ḡt is connected. In fact, this is
automatic whenever d 	= 2, since Ḡt acts transitively on a projective plane.
Up to local isomorphism its identity component is one of the groups SO(3),
SU(3), Sp(3), or F4 corresponding to d = 1, 2, 4 and 8 respectively, and the
slice representation is its standard polar representation of type A2 (see also
Table 4.3). In view of the Transversality Lemma 2.5 below, Gt is connected
whenever k ≥ 2. In the (2, 2, 1) case, the connectedness of Gr (again by
Lemma 2.5) implies that also in this case Ḡt is connected (see Proposi-
tion 5.5).
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The following simple topological consequence of transversality combined
with the fact that the canonical deformation retraction of the orbit space
triangle minus any side to its opposite vertex lifts to M (or alternatively of
the work [Wie]) will also be used frequently:

Lemma 2.5 (Transversality). Given a multiplicity triple (d, d,m). Then
the inclusion maps G /Gr ⊂ M,G /Gq ⊂ M and G /G�t ⊂ M are d-connected,
G /G�r ⊂ M , and G /G�r ⊂ M are min{d,m} connected, and G /Gt ⊂ M is
m-connected.

Recall here that a continuous map is said to be k-connected if the induced
map between the ith homotopy groups is an isomorphism for i < k and a
surjection for i = k.

Another Connectivity Theorem [Wi3] (Theorem 2.1) using positive cur-
vature á la Synge is very powerful:

Lemma 2.6 (Wilking). Let M be a positively curved n-manifold and N a
totally geodesic closed codimension k submanifold. Then the inclusion map
N → M is n− 2k + 1 connected.

If in addition N is fixed by an isometric action of a compact Lie group K
with principal orbit of dimension m(K), then the inclusion map is n− 2k +
1 +m(K) connected.

We conclude this section with two severe restrictions on G stemming
from positive curvature.

The first follow from the well known Synge type fact, that an isometric Tk

action has orbits with dim ≤ 1 in odd dimensions and 0 in even dimensions,
whenM has positive curvature (cf. [Su]). In particular, since Gq has maximal
rank among the isotropy groups, and the Euler characteristic χ(G /Gq) > 0
if and only if rk(G) = rk(Gq) ([HS] page 248) we conclude

Lemma 2.7 (Rank Lemma). The dimension of M is even if and only if
rk(G) = rk(Gq), and otherwise rank rk(G) = rk(Gq) + 1.

When adaptingWilking’s Isotropy Representation Lemma 3.1 from [Wi2]
for positively curved G manifolds to polar manifolds of type C3 we obtain:

Lemma 2.8 (Sphere Transitive Subrepresentations). Let Li � G�i,
i ∈ {q, r, t} be a simple normal subgroup and U an irreducible isotropy sub-
representation of G /Li. Then (U, Li) is isomorphic to a standard defining
representation. In particular, Li acts transitively on the sphere S(U).
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Proof. Let U be an irreducible isotropy subrepresentation of G /Li not iso-
morphic to a summand of the slice representation of Li on T⊥

i . By [Wi2], U is
isomorphic to a summand of the isotropy representation of L∗i /Li, where L∗i
is a vertex isotropy group. On the other hand, the almost effective factor of
L∗i is well understood (cf. the Tables 4.3 and 4.4), which are all the standard
defining representation. The desired result follows. �

3. The C3 building axiom

Recall that Tits has provided an axiomatic characterization of buildings of
irreducible typeM when the geometric realization |C | (C with the thin topol-
ogy) of the associated chamber system C , is a simplicial complex. This char-
acterization is given in terms of the incidence geometry associated with C .

The purpose of this section is to describe this characterization when
M = C3 and translate it to our context.

Here, by definition

• Vertices x, y ∈ |C | are incident, denoted x ∗ y, if and only if x and y
are contained in a closed chamber of |C |.

Clearly, the incidence relation (not an equivalence relation) is preserved
by the action of G in our case.

To describe the needed characterization we will use the following stan-
dard terminology:

• The shadow of a vertex x on the set of vertices of type i ∈ I, denoted
Shi(x), is the union of all vertices of type i incident to x.

Following Tits [Ti2], when M = C3, we call the vertices of type q, r and
t, points, lines, and planes respectively. We denote by Q,R and T the set
of points, lines, and planes in C (M ;G). Notice that G acts transitively on
Q, R and T . With this terminology the axiomatic characterization [Ti2] (cf.
Proposition 9 and the proof of the C3 case on p. 544) alluded to above states:

Theorem 3.1 (C3 Axiom). A connected Tits geometry of type C3 is a
building if and only if the following axiom holds:

• (LL) If two lines are both incident to two different points, they co-
incide.
Equivalently:

• If ShQ(r) ∩ ShQ(r
′) has cardinality at least two, then r = r′.

or:
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• For any q, q′ ∈ Q, with q 	= q′, ShR(q) ∩ ShR(q
′) has cardinality at

most one.

In our case, if r ∈ R and q ∈ Q are incident, (LL) is clearly equivalent
to

• For any r′ ∈ Gq(r), r
′ 	= r, we have Gr(q) ∩ Gr′(q) = q

or,
• For any q′ ∈ Gr(q), q

′ 	= q, we have Gq(r) ∩ Gq′(r) = r

We proceed to interpret (LL) in terms of the isotropy groups data. This
will be used either directly for C (M ;G) or for a suitably constructed cover
C̃ (M ;G) as described at the end of Section 1. For notational simplicity we
will describe it here only for C (M ;G) (for the general case see Remark 3.5
below).

Proposition 3.2. If C (M ;G) is a building of type C3, then the following
holds:

� for any pair of different points q, q′ ∈ Q both incident to an r ∈ R, we
have

Gq ∩Gq′ ⊂ Grq ∩Grq′

where Grq denotes the isotropy group of the unique edge between r and q (cf.
Theorem C).

Proof. Note that every line in the orbit Gq ∩Gq′(r) is incident to both q
and q′. Axiom (LL) implies that the orbit contains only one line, r and
hence Gq ∩Gq′ ⊂ Gr. Since C (M ;G) is a building, we have Gr ∩Gq = Grq

and Gr ∩Gq′ = Grq′ . The desired result follows. �

We will see that the condition � together with an assumption on a suit-
able reduction of the G action implies that C (M ;G) is a building of type C3.

To describe the reduction, let r ∈ R be a line, and let S⊥r,Q be the normal

sphere in the summand in the slice T⊥
r . Then the shadow of r in Q is

exp(π4S
⊥
r,Q). Moreover, the isotropy group Gr acts transitively on S⊥r,Q.

Let Kr,Q denote the identity component of the kernel of the transitive
Gr action on S⊥r,Q.

It is clear that the fixed point connected component MKr,Q (containing
r) is a cohomogeneity one N0(Kr,Q) submanifold of M , where N0(Kr,Q) is
the identity component of the normalizer N(Kr,Q) of Kr,Q in G. The corre-
sponding chamber system denoted C (MKr,Q) is a subcomplex of C (M) :=
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C (M ;G) that inherits an incidence structure, which gives rise to a Tits
geometry of rank 2.

Lemma 3.3 (Reduction). The connected chamber system C (M,G) of
type C3 is a building if for any r ∈ R, the reduction C (MKr,Q) is a C2-
building and � holds.

Proof. If not, by Axiom (LL) there are two points q 	= q′ ∈ Q which are
both incident to two different lines r, r′ ∈ R. By � we know that Gq ∩Gq′ ⊂
Grq ∩Grq′ and Gq ∩Gq′ ⊂ Gr′q ∩Gr′q′ . Therefore, the configuration {rq, rq′,
r′q, r′q′} is contained in the fixed point set MGq ∩Gq′ . Since by definition
clearly Kr,Q is a subgroup of Gq ∩Gq′ , we have that M

Gq ∩Gq′ ⊂ MKr,Q . This
implies that there is a length 4 circuit in the C2 building C (MKr,Q). A
contradiction. �

The following technical criterion will be more useful to us:

Lemma 3.4 (C3 Building Criterion). The connected chamber system
C (M,G) is a building if for any r ∈ R, the reduction C (MKr,Q) is a C2-
building and the following Property (P) holds:

(P) For any q ∈ ShQ(r), and any Lie group L with Kr,Q ⊂ L ⊂ Gq but
L 	⊂ Grq, the normalizer N(Kr,Q) ∩ L is not contained in Grq either.

Proof. By the previous lemma it suffices to verify �. Suppose � is not true.
Then there is an r ∈ R and a pair of points q 	= q′ both incident to r such
that Gq ∩Gq′ is not a subgroup of Grq. Let L = Gq ∩Gq′ . By Assumption (P),
there is an α ∈ N(Kr,Q) ∩ L so that α /∈ Grq. However, Gr ∩Gq ∩N(Kr,Q) =
Grq ∩N(Kr,Q) since MKr,Q is an C2 building. In particular, α /∈ Gr, and so
there is a length 4 circuit {rq, qα(r), α(r)q′, q′r} in the C2 building C (MKr,Q).
A contradiction. �

Remark 3.5. For an S1 cover C̃ := C (P, S1×G) of C (M,G) constructed as
above note that the property � is inherited from (M,G). Likewise, the group
K̂ being the graph of the homomorphism G�t ⊂ Gr to S1 restricted to K :=
Kr,Q satisfies Property (P) when K does. For this note that by construction

the local data for the reduction P K̂ are isomorphic to the local data for
MK. It then follows as in the proofs above, that if a component of the

reduction C (P K̂) ⊂ C (P, S1×G) is a C2-building, then the corresponding
component of C̃ will be a C3 building covering C (M,G), and our main
result, Theorem 4.10, from the [FGT] applies.
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Remark 3.6. If K′ = K′
r,Q ⊂ Kr,Q = K is a subgroup, then the assumption

of C (MK) being a C2 building in the above criterion may be replaced by, the
fixed point component C (MK′

) ⊃ C (MK) being a C2 building, or a rank 3
building. For the latter, we notice that, by Charney-Lytchak [CL] Theorem 2,
a rank 3 spherical building is a CAT(1) space, hence any two points of
distance less than π are joined by a unique geodesic. This clearly excludes
a length 4 circuit in the above proof, since its perimeter is π.

Remark 3.7. Note that clearly Kt ⊂ K�q ∩ K�r and similarly for the other
kernels of vertex and edge isotropy groups. In particular, for the identity
component K′ of Kt we have K′ ⊂ K, where K (= Kr,Q) is the identity com-
ponent of the kernel of Gr acting on Sd. Consequently, the reduction MK′

is a cohomogeneity two manifold of type either A3, or C3 containing the
cohomogeneity one manifold MK (cf. 3.6 above).

4. Classification outline and organization

The subsequent sections are devoted to a proof of the following main result
of the paper:

Theorem 4.1. Let M be a compact, simply connected positively curved
polar G-manifold with associated chamber system C (M ;G) of type C3. Then
the universal cover C̃ of C (M ;G) is a building if and only if (M,G) is not
equivariantly diffeomorphic to one of the exceptional polar actions on OP2

by G = SU(3) · SU(3) or G = SO(3) · G2.

This combined with the main result of [FGT] proves Theorem B in the
introduction.

The purpose of this section is to describe how the proof is organized
according to four types of scenarios driven by the possible compatible types
of slice representations for Gt and Gq at the vertices t and q of a chamber C.

The common feature in each scenario and all cases is the determination
of all local data. The basic input for this is indeed knowledge of the slice
representations at the vertices t and q of a chamber C, and Lemma 2.3. The
local data identifies the desired K ⊂ Gr reductionMK with its cohomogeneity
one action by N(K) referred to in the Building Criteria Lemma 3.4, with
Property (P) being essentially automatic. The main difficulty is to establish
that C (MK) ⊂ C (M ;G) or the corresponding reduction in a cover (which
by construction has the same local data) is a C2 building. The first step for
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this frequently uses the following consequence of the classification work on
positively curved cohomogeneity one manifolds in [GWZ] and [Ve].

Lemma 4.2. Any simply connected positively curved cohomogeneity one
manifold with multiplicity pair different from (1, 1), (1, 3) and (1, 7) is equiv-
ariantly diffeomorphic to a rank one symmetric space.

As already pointed out and used, there are only four possible (effective)
slice representations at t, in particular forcing the codimensions of the or-
bit strata corresponding to �q, �r, and �t to be d+ 1, d+ 1 and k + 1, where
d = 1, 2, 4 or 8. In Table 4.3, L±, respectively H are the singular, respectively
principal isotropy groups for the effective slice representation, χ by Ḡt re-
stricted to the unit sphere, and l± + 1 are the codimensions of the singular
orbits.

n Ḡt χ L− L+ H (l−, l+) W

4 SO(3) S(O(2)O(1)) S(O(1)O(2)) Z2 ⊕ Z2 (1, 1) A2

7 PSU(3) Ad S(U(2)U(1))/Δ(Z3) S(U(1)U(2))/Δ(Z3) T2 /Z3 (2, 2) A2

13 Sp(3)/Δ(Z2) ψ14 Sp(2) Sp(1)/Δ(Z2) Sp(1) Sp(2)/Δ(Z2) Sp(1)3/Δ(Z2) (4, 4) A2

25 F4 ψ26 Spin(9) Spin(9) Spin(8) (8, 8) A2

Table 4.3: Effective t-slice representations on S⊥t = Sn.

Similarly (see Table 4.4), the identity component (Ḡq)0 of possible ef-
fective C2 type slice representations at q which are compatible with the
multiplicity restrictions in Table 4.3 are known as well (see e.g. Table E of
[GWZ] in which we have corrected an error for the exceptional SO(2) Spin(7)
representation (see also [GKK] (Main Theorem)).

Aside from a few exceptional representations, they are the isotropy rep-
resentations of the Grassmannians G2,m+2(k) of 2-planes in km+2, where k =
R, C, or H. The pairs of multiplicities that occur for the exceptional repre-
sentations are (1, 6), (1, 5), (4, 5), (2, 2), corresponding to Ḡq = SO(2) Spin(7),
SO(2)G2, SU(5), U(5), or SO(5).

Note that effectively, there are only four exceptional Gq slice represen-
tations, corresponding to the last four rows of Table 4.4. However, special
situations occur also when the slice representation of Ḡq is the isotropy
representation of the real Grassmann manifold, when its multiplicity (1, k)
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n (Ḡq)0 χ L− L+ H (l−, l+) W

8k + 15, k ≥ 0 Sp(2)Sp(k+2)
Δ(Z2)

ν2⊗̂νk+2
Sp(2) Sp(k)

Δ(Z2)
Sp(1)2 Sp(k+1)

Δ(Z2)
Sp(1)2 Sp(k)

Δ(Z2)
(4, 4k + 3) C2

4k + 7 , k ≥ 1 even SU(2)SU(k+2)
Δ(Z2)

μ2⊗̂μk+2
� SU(2) SU(k)

Δ(Z2)
S1 · SU(k + 1) S1 · SU(k)

Δ(Z2)
(2, 2k + 1) C2

4k + 7 , k ≥ 1 odd SU(2) SU(k + 2) μ2⊗̂μk+2 � SU(2) SU(k) S1 · SU(k + 1) S1 · SU(k) (2, 2k + 1) C2

4k + 7, k ≥ 1 U(2)SU(k+2)
Δ(Zk)

μ2⊗̂μk+2
�U(2) SU(k)

Δ(Zk)
T2 · SU(k+1)

Δ(Zk)
T2 · SU(k)
Δ(Zk)

(2, 2k + 1) C2

7 U(2) SU(2)
Δ(Z2)

μ2⊗̂μ2 � SO(3) T2 S1 (2, 1) C2

2k + 3, k ≥ 1 even SO(2)SO(k+2)
Δ(Z2)

ρ2⊗̂ρk+2
� SO(2) SO(k)

Δ(Z2)
SO(k + 1) SO(k) (1, k) C2

2k + 3, k ≥ 1 odd SO(2) SO(k + 2) ρ2⊗̂ρk+2 � SO(2) SO(k) Z2 · SO(k + 1) Z2 · SO(k) (1, k) C2

13 SO(2)G2 ρ2⊗̂φ7 � SO(2) SU(2) Z2 · SU(3) Z2 · SU(2) (1, 5) C2

15 SO(2)Spin(7)
Δ(Z2)

ρ2⊗̂Δ7 � SO(2) SU(3) G2 SU(3) (1, 6) C2

9 SO(5) ad U(2) SO(3) SO(2) T2 (2, 2) C2

19 SU(5) Λ2μ5 Sp(2) SU(2) SU(3) SU(2)2 (4, 5) C2

U(5) Λ2μ5 S1 · Sp(2) S1 · SU(2) SU(3) S1 · SU(2)2

Table 4.4: Effective q-slice representation on S⊥q = Sn.

happen to have k = d = 1, 2, 4 or 8. We will refer to these as flips. As may
be expected, the low multiplicity cases (1, 1, 1), (1, 1, 5) and (2, 2, 3) play
important special roles. The latter two are where the exceptional Cayley
plane emerges, the only cases where complete information about the polar
data are required.

Accordingly we have organized the proof of 4.1 into four sections depend-
ing on the type of slice representations we have along Q: Three Grassmann
flips, three Grassmann series (two non minimal), two minimal Grassmann
representations, and four exceptional representations.

5. Grassmann Flip Gq slice representation

This section will deal with the multiplicity cases (d, d, 1) with d = 2, 4 and
8, leaving d = 1 (minimal and odd) for Section 7. We have the following
common features:

Lemma 5.1. The isotropy groups Gq and Gr are connected, and the re-
ducible Ḡr slice representation on S1 ∗ Sd = Sd+2 is the standard action by
SO(2) SO(d+ 1). For the kernels of the slice representations we have that
Kt = {1}, Kq = K�r and Kr = K�q .
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Proof. The Transversality Lemma 2.5 implies that the orbits Q = G q and
R = G r are simply connected since M is. In particular, Gq and Gr are con-
nected since G is. The second claim follows since d is even (cf. Appendix in
[FGT] for a description of reducible polar representations).

Since (Ḡq)�r (cf. Table 4.4) as well as (Ḡr)�q act effectively on the re-
spective normal spheres Sd, we see that Kq = K�r and Kr = K�q . Also since
Kt ⊂ K�r we have Kt ∩ Kq = Kt but Kt ∩ Kq = {1} by the Kernel Lemma 2.3
and hence Kt = {1}. �

Recall that K is the identity component of the kernel of the Gr action
restricted to Sd.

Lemma 5.2. Clearly K� Gr, and K ⊂ G�t acts transitively on the corre-
sponding normal sphere S1 with kernel identity component of Kr. Moreover,
K ∩ Kq = {1} and hence K ⊂ Gq → Ḡq is injective.

The reduction MK is a positively curved irreducible cohomogeneity one
N0(K) manifolds with multiplicity pair (d, 1).

Proof. Note that K ∩ Kq acts trivially on S1 ∗ Sd, so K ∩ Kq ⊂ Kr. The second
claim follows since Kr ∩ Kq = {1}.

Since K� G�t → Ḡq is injective, we see from Table 4.4 that N(K) ∩
Gq /G�t = N(K) ∩ Ḡq/Ḡ�t = S1, and hence MK is cohomogeneity one with
multiplicity pair (d, 1).

To complete the proof assume by contradiction that the action is re-
ducible, i.e., that the action by N0(K)/K on MK is equivalent to the sum ac-
tion of SO(2) SO(d+ 1) on S1 ∗ Sd, where the isotropy (N0(K)/K)q is
SO(2) SO(d). In all cases, it is easy to see that, the center of Gq intersects the
center of N0(K) in a nontrivial subgroup S1. This, together with primitivity
implies that, S1 is in the center of G. Notice that, as a subgroup of Gq, S

1 can
not be in Kq because Kq ⊂ H, and the factor SO(2)� Ḡq acts freely on the
unit sphere of the slice T⊥

q . Thus, the fixed point set MS1

coincides with the
orbit G q = G /Gq. From the classification of positively curved homogeneous
spaces we get immediately that, G is the product of S1 (or T2 if d = 2) with
one of a few orthogonal groups or unitary groups, each of which is not big
enough to contain the simple group Gt. The desired result follows. �

Although what remains is in spirit the same for all the flip cases, we will
cary out the arguments for each case individually, beginning with d = 8.

Proposition 5.3. In the Flip (8,8,1) case, C (M,G) or an S1 covering is a
building, with the isotropy representation of E7 /E6× S1 as a linear model.
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Proof. From Lemma 5.1 and Tables 4.4 and 4.3 we obtain the following in-
formation about the local data: Gt = F4 ⊃ Spin(8) = H, G�q = Spin(9), G�r =
Spin(9), Gq = S1 · Spin(10) ⊃ Δ(S1) · Spin(8) = G�t , and Gr = S1 · Spin(9).

Also Gr �K = Δ(S1) ⊂ G�t ⊂ Gq, and from Lemma 5.2 and Lemma 4.2
we see that the corresponding reduction, MK is S19, S19/Zm, or S19/ S1 =
CP

9 with the tensor product representation by SO(2) SO(10) of type C2 or
induced by it. It is easily seen that the Assumption (P) in Lemma 3.4 is
satisfied as well. In particular, if MK = S19, the associated chamber system
C (MK) is the a building of type C2 and by Lemma 3.4 we conclude that
C (M,G) is a building.

For the latter two cases, we will use the bundle construction for polar
actions to obtain a free S1 covering of C (M ;G). Guided by our knowledge
of the cohomogeneity one diagrams , i.e., data for the cohomogeneity one
manifolds S19/Zm or CP9 we proceed as follows:

Note that since Gt, G�r and G�q are simple groups, only the trivial ho-

momorphism to S1 exists. Now let Ĝq, Ĝr be the graphs of the projection
homomorphisms Gq → S1, and Gr → S1. We denote the total space of the
corresponding principal S1 bundle over M by P . Then P is a polar S1 ·G
manifold, and C (P ; S1 ·G) covers C (M ;G).

Let K̂ ⊂ Ĝ�t be the graph of K in S1 ·G. From 3.5 and our choice of data

in S1 ·G it follows that P K̂ → MK is the Hopf bundle if MK = CP
9, and the

bundle S1×Zm
S19 → S19/Zm if MK = S19/Zm. In the former case, C (P K̂)

is the C2 building C (S19, SO(2) SO(10)) and we are done by Lemma 3.4

via 3.5. In the latter case, the action on the reduction P K̂ is not primitive,

so C (P K̂) is not connected. However, each connected component is the C2

building C (S19, SO(2) SO(10)) and hence by 3.5 the corresponding compo-
nent of C (P ) is a C3 building covering C (M). When combined with the
previous section, this in turn shows that MK cannot be a lens space when
M is simply connected. �

Proposition 5.4. In the Flip (4,4,1) case C (M,G) or an S1 covering is a
building, with the isotropy representation of SO(12)/U(6) as a linear model.

Proof. From Lemma 5.1 and Tables 4.4 and 4.3 we obtain the following in-
formation about the local data modulo a common Z2 kernel: Gt = Sp(3) ⊃
Sp(1)3 = H, G�q = Sp(1) Sp(2), G�r = Sp(2) Sp(1), Gq = S1 Spin(6) Sp(1) ⊃
Δ(S1) · Spin(4) Sp(1) = G�t , and Gr = S1 Spin(5) Sp(1).

In this case Gr �K = Δ(S1) Sp(2)� G�t ⊂ Gq, and from Lemma 5.2 and
Lemma 4.2 we see that the corresponding reduction, MK is S11, S11/Zm, or
S11/ S1 = CP

5 with the linear tensor product representation by SO(2) SO(6)
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of type C2 or induced by it. It is easily seen that the Assumption (P) in
Lemma 3.4 is satisfied as well. In particular, if MK = S11, the associated
chamber system C (MK) is the a building of type C2 and by Lemma 3.4 we
conclude that C (M,G) is a building.

If MK = CP
5 or a lens space S11/Zm, we proceed as above with an S1

bundle construction. Again only the trivial homomorphism to S1 exists from
Gt, G�r and G�q , and we choose Ĝq, Ĝr to be the graphs of the projection
homomorphisms Gq → S1, and Gr → S1. We denote the total space of the
corresponding principal S1 bundle over M by P . As above, P is a polar S1 ·G
manifold, and C (P ; S1 ·G) covers C (M ;G).

From 3.5 and our choice of data in S1 ·G it follows that P K̂ → MK is the
Hopf bundle if MK = CP

5, and the bundle S1×Zm
S11 → S11/Zm if MK =

S11/Zm. The proof is completed as above. �

Proposition 5.5. In the Flip (2,2,1) case C (M,G) or an S1 covering is a
building, with the isotropy representation of SU(6)/ S(U(3)U(3)) as a linear
model .

Proof. We begin by verifying our earlier claim (see 2.4) that Ḡt is connected
also in this case. From (5.1) we already know that Gr and hence Ḡr is
connected, and that its slice representation is the product action of Ḡr =
SO(3)× SO(2) on R3 ⊕ R2. The singular isotropy group along R2 (away
from origin) is SO(3). Hence, the isotropy group Ḡ�q = SO(3).

On the other hand, suppose Ḡt is not connected. Then, by 5.1 Ḡt =
Gt = PSU(3)� Z2 and G�q = (S(U(2)U(1))/Z3)� Z2. In particular the slice
representation along �q is by Ḡ�q = PSU(2)� Z2 acting on S2 = CP

1 where
Z2 acts by complex conjugation. Contradicting Ḡ�q = SO(3).

The above and Tables 4.4 and 4.3 yield the following information
about the local data modulo the Z3 kernel: Gt = SU(3) ⊃ T2 = H, G�q =
S(U(2)U(1)) = U(2), G�r = S(U(1)U(2)) = U(2), Gq = U(2)U(2). Moreover,
G�t = T3 and Gr = S1 ·U(2), where the U(2) factor in Gr is the face isotropy
group of G�q .

Here, Gr �K = T2�G�t ⊂ Gq, and from Lemma 5.2 and Lemma 4.2 we
see that the corresponding reduction, MK is S7, S7/Zm, or S7/ S1 = CP

3

with the linear tensor product representation by SO(2) SO(4) of type C2 or
induced by it. Again, the Assumption (P) in Lemma 3.4 is easily checked
to hold. In particular, if MK = S7, we conclude as above that C (M,G) is a
building.

For the latter two cases, we are again guided by the reduction for our
bundle construction. For Ĝt we have no choice but Ĝt = {1} · Gt. We let
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Ĝq be the graph of the homomorphism U(2)U(2) → S1 defined by sending

(A,B) to det(A) det(B)−1, and Ĝr the graph of the projection homomor-
phism Gr = S1 ·U(2) → S1. This yields a compatible choice of data for a
polar S1 ·G action on a principal S1 bundle P over M whose corresponding
chamber system C (P ; S1 ·G) is a free S1 cover of C (M,G).

Again from 3.5 and our choice of data in S1 ·G it follows that P K̂ →
MK is the Hopf bundle if MK = CP

3, and the bundle S1×Zm
S7 → S7/Zm if

MK = S7/Zm, and the proof is completed as above. �

Remark 5.6. The tensor representation of SU(3) SU(3) on C3 ⊗ C3 is not
polar, but it is polar on the projective space P(C3 ⊗ C3). On the other hand,
it is necessary in the above construction of the covering that both Gq and
Gr have T2 factors, since the face isotropy groups G�r

∼= G�q
∼= U(2) which

are subgroups in Gt = SU(3), hence a compatible homomorphism to S1 will
be trivial on the face isotropy groups.

6. Non minimal Grassmann Series for Gq slice representation

Recall that there are three infinite families of cases (1, 1, k), k ≥ 1, (2, 2, 2k +
1), k ≥ 1 and (4, 4, 4k + 3), k ≥ 0 corresponding the real, complex and quater-
nion Grassmann series for the Gq slice representation.

We point out that (1, 1, 1) is special in two ways: There are two scenarios.
One of them corresponding to the “Flip” case of d = 1 not covered in the
previous subsection, the other being “standard”. Yet the standard (1, 1, 1)
does not appear as a reduction in any of the general cases (1, 1, k), k ≥ 2.
For the (2, 2, 3) case, there are two scenarios as well, both with the same
local data(!): One of them belonging to the family, the other not. Moreover,
each of the cases (2, 2, 2k + 1) with k ≥ 2 admit a reduction to the “Flip”
(2, 2, 1) case, whereas (2, 2, 3) does not.

For the reasons just provided, this subsection will deal with the multiplic-
ity cases (1, 1, k), k ≥ 2, (2, 2, 2k + 1), k ≥ 2 and (4, 4, 4k + 3), k ≥ 0, each of
which has a uniform treatment.

Although the case (2, 2, 3) is significantly different from the other general
cases to be treated here, we begin by pointing out some common features
for all the cases (1, 1, k), k ≥ 2, (2, 2, 2k + 1), k ≥ 1 and (4, 4, 4k + 3), k ≥ 0,
i.e., including the case (2, 2, 3).

To describe the information we have about the local data in a uniform
fashion, we use Gd(k) to denote SO(k), SU(k) and Sp(k), k ≥ 1, according
to d = 1, 2 and d = 4, with the exceptional convention that G1(−1) = Z2,
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G2(−1) = S1 or T2, depending on whether the center of Kt is finite or not,
and G4(0) = G4(−1) = {1}. Also, we use the symbol ”=” to mean ”isomor-
phic” up to a finite connected covering.

Lemma 6.1. In all cases Gt is connected as are Gq and Gr when d 	=
1. Moreover Kt = Gd(k) with the additional possibility that Kt = Gd(k) · S1
when d = 2.

For the q and r vertex isotropy groups we have: Gq = Gd(2)Gd(k + 2) ·
Gd(−1), Gr = Gd(2)Gd(k + 1) · Gd(−1). Moreover, the normal subgroup K�
Gr is Gd(k + 1) · Gd(−1), where Gd(k + 1) is a block subgroup of Gd(k + 2)�
Gq, and if d = 1, “·Gd(−1)” denotes a nontrivial extension. In particular,
Gq = S(O(2)O(k + 2)).

Proof. The connectedness claim is a direct consequence of transversality.
The proof follows the same strategy in all cases, just simpler when all ver-
tex isotropy groups are connected. The two possibilities for Gt when d = 2
correspond to the different rank possibilities for Ḡq, cf. Table 4.4. For these
reasons we only provide the proof in the most subtle case of d = 1.

First, notice that the effective slice representation Ḡt = SO(3) on T⊥
t is

of type A2 with principal isotropy group H̄ = Z2
2. Hence, H is an extension

of Z2
2 by the kernel Kt. On the other hand, (Ḡq)0 = SO(2) SO(k + 2) (cf.

Table 4.4), and Ḡq ⊂ O(2)O(k + 2), up to a possible quotient by a diagonal
Z2 in the center if k is even. Therefore, H is also an extension of SO(k),
SO(k) · Z2 or SO(k) · Z2

2 by Kq. This together with Lemma 2.3, implies that
Kt = SO(k) and hence Gt = SO(3) SO(k). In particular, H = SO(k)× Z2

2.
We conclude that G�r = O(2) SO(k), and similarly, G�q = O(2) SO(k),

acting on the normal sphere S1 with principal isotropy group H. Thus
K�r = SO(k)× Z2 = Kt × Z2. Since Kq � K�r , we get easily that Kq = {1}
or Z2, since Kq ∩ Kt = {1}. On the other hand, as a subgroup of Gq, G�r =
Δ(O(2)) SO(k). Hence Gq contains exactly two connected components, whose
identity component is SO(2) SO(k + 2) ⊃ (G�r)0. All in all it follows that,
Gq = S(O(2)O(k + 2)). The rest of the proof is straightforward. �

Note that Kt contains Gd(k) as a normal subgroup. The fact that the re-
duction MGd(k) with the action by the identity component of its normalizer,
N0(Gd(k)), will give a geometry of type A3 or C3 will play an important role
in the d = 1, 2 cases below (cf. 3.6).

In what follows we will consider the reduction MK′
by K′ = Gd(k + 1)�

Gd(k + 1) · Gd(1) = K ⊂ Gr rather than the one by K.
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Lemma 6.2. The cohomogeneity one N(K′) manifold MK′
has multiplicity

pair (d, 2d− 1), and the action is not equivalent to the reducible cohomo-
geneity one action on S2d−1 ∗ Sd.

Proof. For simplicity we give a proof for d = 2, all other cases are the same.
First note that the orbit space of the cohomogeneity one N(K′)-action

is rq, and the two singular isotropy groups (mod kernel) are SU(2) · S1 and
SU(2) · T2 respectively, with principal isotropy group T2. Hence the multi-
plicity pair is (2, 3).

To prove that it is not reducible, we argue by contradiction. Indeed,
if MK′

is equivariantly diffeomorphic to S2 ∗ S3 with the product action of
SU(2)U(2), it follows that the normal subgroup SU(2)� Gq is also normal in
N(K′). By primitivity G = 〈Gr,Gq〉 = 〈N,Gq〉 and hence SU(2) is normal in
G. On the other hand, the face isotropy group G�r ⊂ Gt contains a subgroup
SU(2) which sits as Δ(SU(2)) ⊂ Gq. Therefore, the projection homomor-
phism p : G → SU(2) is an epimorphism on Δ(SU(2)). However, since it sits
in SU(3)� Gt it must be trivial, because any homomorphism from SU(3) to
SU(2) is trivial. A contradiction. �

When d = 1 this is not immediately of much help since there are several
positively curved irreducible cohomogeneity one manifolds with multiplicity
pair (1, 1) (cf. Tables A and E in [GWZ]) whose associated chamber system
is not of type C2. However, when d = 2, respectively d = 4 corresponding to
multiplicity pairs (2, 3), respectively (4, 7) we read off from the classification
in [GWZ] that

Corollary 6.3. The universal covering of MK′
is equivariantly diffeomor-

phic to a linear action of type C2 on S11, CP5 or HP
2 when d = 2, and on

S23 when d = 4.

We are now ready to deal with each family individually, beginning with
d = 1, i.e. with the standard (1, 1, k ≥ 2) case, where the (almost) effective
slice representation at q ∈ Q is the defining tensor product representation
of SO(2) SO(k + 2).

Proposition 6.4. In the standard (1, 1, k) case with k ≥ 2, the associated
chamber system C (M ;G) is a building, with the isotropy representation of
SO(k + 3)/ SO(3) SO(k) as a linear model.

Proof. By Lemma 6.1 Kt = SO(k), which is a normal subgroup of the prin-
cipal isotropy group H. Consider the reduction MKt with the action of its
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normalizer N(Kt), once again a polar action with the same section Σ. By
Lemma 6.1 it is clear that the identity component of N(Kt) ∩ Gq is T

2. Hence,
the subaction by N0(Kt), the identity component of N(Kt), is of type A3,
with a right angle at q. Therefore, from the classification of A3 geometries
(cf. Section 7 in [FGT]) it is immediate that, the universal cover of MKt is
equivariantly difffeomorphic to S8 with the linear action of SO(3) SO(3). In
particular, if the section Σ = S2, then MKt = S8 and the chamber complex
for the subaction is a building of type A3, and we are done by Remark 3.6,
since Property (P) is clearly satisfied for K = SO(k + 1)� Gr.

It remains to prove that MKt is simply connected. Consider the nor-
mal subgroup SO(2)� Gq, and the fixed point component MSO(2), a homo-
geneous manifold of positive curvature with dimension at least two, since
MSO(2) ∩MKt ⊂ MKt is of dimension 2. Since the identity component of
the isotropy group, (Gq)0 = SO(2) SO(k + 2), we see that MSO(2) = Sk+2

or RP
k+2, according to MKt ∩MSO(2) = S2 or RP

2, equivalently, accord-
ing to MKt = S8 or RP

8. We argue by contradiction. If MSO(2) = RP
k+2,

then the identity connected component of the normalizer N(SO(2)) acts
transitively on it with principal isotropy group SO(2)O(k + 2) ⊂ Gq. Hence
Gq = SO(2)O(k + 2), a contradiction, since Gq = S(O(2)O(k + 2)). �

Proposition 6.5. In the standard (2, 2, 2k + 1) case, with k ≥ 2 the cham-
ber system C (M ;G) is covered by a building, with the isotropy representation
of U(k + 3)/U(k)U(3) as a linear model.

Proof. First note that the reduction MSU(k), where SU(k)� Kt, k ≥ 2, is a
positively curved cohomogeneity two manifold of type C3 with multiplicity
triple (2, 2, 1). Moreover, SU(k) is a block subgroup in K′ ⊂ K, where K′ =
SU(k + 1) ⊂ SU(k + 2)� Gq and of course MK′ ⊂ MSU(k).

We will prove that both reductions above are simply connected, by ap-
pealing to the Connectivity Lemma 2.6 of Wilking [Wi3]. To do this we now
proceed to prove that codimMK′ ⊂ MSU(k) = 6, and codimMSU(k) ⊂ M =
6k.

By the Spherical isotropy Lemma 2.8, every irreducible isotropy sub-
representation of K′ = SU(k + 1) is the defining representation μk+1. From
Table B in [GWZ] and the above fact that SU(k + 2) ⊃ K′ it follows that,
there is a simple normal subgroup L� G such that, SU(k + 2)� Gq projects
to a block subgroup of L where L = SU(n) if k ≥ 4, L = SU(n) or SO(n) if
k = 3, and finally L = SU(n), SO(n) or one of the exceptional Lie groups
F4 ⊂ E6 ⊂ E7 ⊂ E8, if k = 2.
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On the other hand, by the Flip Proposition 5.5 the normalizer N(SU(k))
is either SU(3) SU(3) or U(3) SU(3) modulo Kt. Since SU(k)� Kt is a block
subgroup in K′, this together with the above implies that in fact L = SU(k +
3) for all k ≥ 2, and only one such factor exist. In particular, the K′-isotropy
representation along �t contains exactly 3 copies of μk+1, one copy along
the normal slice T⊥

�t
, and two copies along the orbit G /G�t . Therefore, the

codimension of MK′
in M is 6(k + 1), and hence the codimension of MSU(k)

in M is 6k. By the Connectivity lemma 2.6 of Wilking, we conclude that
πi(M) ∼= πi(M

SU(k)) for i ≤ 2, by induction on k. In particular, MSU(k) is
simply connected and hence S17 if dim(M) is odd and CP

8 if dim(M) is
even, by the Flip Proposition 5.5. Since Assumption (P) in Lemma 3.4 is
satisfied we conclude from 3.6 that C (M ;G) is a building if dim(M) is odd.

It remains to prove that C (M ;G) is covered by a building if dim(M)
is even. In this case, by the above we know that π2(M) ∼= π2(M

SU(k)) ∼=
Z. On the other hand, from the Transversality Lemma 2.5 it follows that
π2(M) ∼= π2(G /Gt), and hence Gt contains at least an S1 in its center, i.e,
SU(3)U(k)� Gt. By Lemma 6.1 we get that, both Gq and Gr have at least
a T2 factor, and we are now in the same situation as in the proof of Lemma
5.5 above. As a consequence we can proceed with the same construction of
a principal S1 bundle P over M and conclude that its associated chamber
system is a building covering C (M ;G). �

Proposition 6.6. In the standard (4, 4, 4k + 3) case where k ≥ 0, the cham-
ber system C (M ;G) is a building, with the isotropy representation of Sp(k +
3)/ Sp(k) Sp(3) as a linear model.

Proof. Since the Assumption (P) for K′ = Sp(k + 1) in Lemma 3.4 is easily
seen to be satisfied, it suffices by Corollary 6.3 to prove that MK′

is simply
connected. As in the proof of the general (2, 2, 2k + 1) case above this is
achieved via Wilkings Connectivity Lemma 2.6.

Consider the normal subgroup Sp(2)� Gq. It is clear that MSp(2) is a
homogeneous space with a transitive action by the identity component of its
normalizer N0(Sp(2)) with isotropy group Gq. By the classification of posi-
tively curved homogeneous spaces we get that MSp(2) is either S4(k+3)−1 or
RP

4(k+3)−1. Moreover, the universal cover Ñ0(Sp(2)) is Sp(k + 3) Sp(2) Sp(1),
and in particular has the same rank as G by the Rank Lemma.

On the other hand, by Lemma 2.8 and Table B in [GWZ] it follows that,
G contains a normal subgroup isomorphic to Sp(n) so that K′ ⊂ Sp(k + 2) ⊂
Sp(k + 3) ⊂ Sp(n) is in a chain of block subgroups. Up to a finite cover, we
let G = Sp(n) · L. On the other hand, by Corollary 6.3 we know that N0(K

′) =
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Sp(2) Sp(3)K′. This together with the information on Ñ(Sp(2)) implies that
G = Sp(k + 3) · L. As in the proof of the (2, 2, 2k + 1) case we see that the
isotropy representation of K′, along �t contains exactly three copies of νk+1,
one copy along the normal slice T⊥

�t
, and two copies along the orbit G /G�t .

In particular, the codimension of MK′
in M is 12(k + 1). Recalling that the

dimension of MK′
is 23, it follows again by connectivity and induction on k

as before that MK′
is simply connected. �

7. Minimal Grassmann Gq slice representation

This section will deal with the multiplicity cases (1, 1, 1) and (2, 2, 3), includ-
ing the appearance of an exceptional Cayley plane action. In all previous
cases all reductions considered have been irreducible polar actions. Here,
however, we will encounter reductions, that are reducible cohomogeneity two
actions, and we will rely on the independent classification of such actions in
Sections 6 and 7 of [FGT].

We begin with the d = 2 case, where by 6.3 we know that the universal
covering M̃K′

of the reduction MK′
is diffeomorphic to S11, CP5 or HP

2.
The first two scenarios follow the outline of the general (2, 2, 2k + 1) case,
whereas the latter is significantly different.

Proposition 7.1. In the case of multiplicities (2, 2, 3), C (M ;G) is covered
by a building, with the isotropy representation of U(7)/U(4)U(3) as a linear
model, provided MK′

is not diffeomorphic to HP
2.

Proof. By Lemma 6.1, Gt is either SU(3) or U(3) depending on whether Kt

is finite or S1. In the latter case, the reduction MKt is a positively curved
cohomogeneity two manifold of type C3 with multiplicity triple (2, 2, 1), as in
the general (2, 2, 2k + 1) case, where k ≥ 2 (cf. 6.5). Therefore, N0(Kt)/Kt =
SU(3) · SU(3) or U(3) · SU(3), by the Flip Proposition 5.5. The desired result
follows, as in the proof of Proposition 6.5.

From now on we assume that, up to finite kernel, Gt = SU(3), and cor-
respondingly, Gq = U(2) SU(3), and Gr = U(2) SU(2). Moreover, K′ = SU(2),
and from our assumption on the reductionMK′

, by Corollary 6.3 the normal-
izer N(K′) contains SU(2) SU(2) SU(3) as its semisimple part. On the other
hand, by the Rank Lemma 2.7 we know that rk(G) = 5 (resp. rk(G) = 4) if
dim(M) is odd (resp. even). In particular, SU(2) SU(2) SU(3) is a maximal
rank subgroup of G if rk(G) = 4. In this case, it is immediate, by Borel and
de Siebenthal [BS] (see the Table on page 219), that G is not a simple group
of rank 4. Similarly, we claim that G is not a simple group when its rank is
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5: Indeed if so, by Lemma 2.8 and Table B in [GWZ], it would follow that
G = SU(6) and K′ = SU(2) ⊂ SU(3)� Gq is a block subgroup. This, however,
is not possible, since then N(K′) would contain SU(4). Thus, G = L1 · L2,
where L1, L2 are nontrivial Lie groups. Without loss of generality, we assume
that the projection of SU(3)� Gq to L2 has nontrivial image. But then SU(3)
must be contained in L2, because otherwise, the normalizer N(K′) would be
much smaller than SU(2) SU(2) SU(3). By Primitivity 2.2 it is easy to see
that Gt is diagonally imbedded in L1 · L2, since G = 〈Gt,G�t〉 = 〈Gt,K

′〉. In
particular, both L1 and L2 have rank at least two since the projections from
Gt are almost imbeddings, i,e,, have finite kernel. If both L1 and L2 have
rank two, it is easy to see that, L1 = SU(3) and K′ ⊂ L2, where L2 = SU(3)
or G2. Neither scenario is possible: For the latter since, by the primitiv-
ity, G = 〈Δ(SU(3)),K′〉 = SU(3) · SU(3), while for the former the semisimple
part of N(K′) is L1. Therefore rk(G) = 5 and once again by Lemma 2.8 and
Table B in [GWZ], G = SU(3) SU(4).

Note that dimM = 21 and the principal orbit of K′ in M is of dimension
at least 2. In particular, it follows from Wilkings Connectivity Lemma2.6
that MK′

is simply connected. Thus, as in the general case the desired result
follows from Lemma 3.4. �

Proposition 7.2. In the case of multiplicities (2, 2, 3), M is equivariantly
diffeomorphic to the Cayley plane OP2 with an isometric polar action by
SU(3) · SU(3), provided MK′

is diffeomorphic to HP
2.

Proof. Recall that K′ = SU(2)� G�t . By Lemma 2.8 and the slice represen-
tation of G�t it follows that, every irreducible subrepresentation of K′ on the
normal space to MK′

is the standard representation μ2 on C2. In particular,
the codimension of MK′

is a multiple of 4, and so M has dimension divisible
by 4. By 6.1 the isotropy group Gt = SU(3) or U(3), and correspondingly,
Gq = U(2) SU(3) or U(2)U(3), and Gr = U(2) SU(2) or U(2)U(2). By the
Rank Lemma rk(G) = rk(Gq) = 4 or 5.

By Lemma 2.8 the isotropy representations of K′ ⊂ SU(3)� Gq, as well
as of SU(2) ⊂ G�q ⊂ Gt, are spherical transitive. By Table B in [GWZ] it
follows that, G can not be a simple group of rank 5, and moreover, G can
not contain F4, Sp(4), SO(8) and SO(9) as a normal subgroup, since if so,
the semisimple part of N0(K

′)/K′ would not be SU(3), a contradiction to our
assumption on the reduction MK′

, for which N0(K
′)/K′ = SU(3) · S1. On the

other hand, note that the identity component of the normalizer N0(Gt) = Gt

since Gt is a maximal isotropy group and hence N0(Gt)/Gt acts freely on the
positively curved fixed point set MGt of even dimension. Therefore, G can



510 F. Fang, K. Grove, and G. Thorbergsson

not contain SU(5) as a normal subgroup, since otherwise, Gt would be a block
subgroup in SU(5) and hence N0(Gt)/Gt would not be trivial. Consequently,
G is not a simple group, and moreover, G = L1 · L2, where SU(3)� Gt is
diagonally imbedded in G. In particular, both L1 and L2 contain SU(3) as
subgroups. It is easy to see that, SU(3)� Gq ⊂ G = L1 · L2 is a subgroup in
either L1 or L2, say in L2. Hence, K

′ ⊂ L2, and L1 � N(K′). It follows that
L1 = SU(3). Furthermore, L2 can neither be a semi-simple group of rank 3 or
G2, since otherwise, N0(K

′)/K′ contains a rank 3 semisimple group. Hence,
L2 is SU(3) or U(3). The latter, however, is impossible: Indeed, in this case
Gt = U(3), and the center S1 ⊂ Z(G) would be contained in Kt, and hence in
every principal isotropy groups (the center is invariant under conjugation)
thus MS1

= M .
In summary we have proved that G = SU(3) · SU(3) (indeed a quotient

group by Δ(Z3)), with Gt = SU(3) diagonally imbedded in G. We claim that
this combined with the above analysis of the isotropy groups modulo con-
jugation will force the polar data (Gt,Gq,Gr) ⊂ G (noting that face isotropy
groups are intersections of vertex isotropy groups) to be (Gt,Gq,Gr) =
(Δ(SU(3)),U(2) · SU(3), S(U(2)U(2))), where U(2) ⊂ SU(3) is the upper 2×
2 block subgroup in SU(3), and S(U(2)U(2)) ⊂ SU(3) · SU(3) is the product
of the lower 2× 2 block subgroups. In other words, by the recognition theo-
rem for polar actions [GZ] there is at most one such polar action. - On the
other hand the unique action by the maximal subgroup SU(3) · SU(3) ⊂ F4,
the isometry group of the Cayley plane OP2 is indeed polar of type C3 [PTh].

To prove the above claim, by conjugation we may assume that Gt =
Δ(SU(3)) and Gq = U(2) · SU(3) as claimed. Moreover, up to conjugation by
an element of the face isotropy group G�r = Gt ∩Gq, we may further assume
that K′ � G�t ⊂ Gq is the lower 2× 2 block subgroup in the second factor
SU(3)� G. Note that K′ is a normal subgroup of Gr, indeed the second factor
of SU(2) · SU(2)� Gr ⊂ SU(3) · SU(3). Since G�q = Δ(SU(3)) ∩ Gr, it follows
that SU(2) · SU(2)� Gr is the product of the lower 2× 2 block subgroups.
Since Gr = 〈SU(2) · SU(2),H〉 where H = Δ(T2) is the principal isotropy
group, the desired assertion follows. �

Next we deal with the case of multiplicity (1, 1, 1), where there are two
scenarios: One is naturally viewed as part of the infinite family (1, 1, k),
whereas the other should be viewed as the flip case with d = 1.

We point out that unlike all other cases an S3 chamber system cover
arises in the first case, corresponding to a polar action of SO(3) SO(3) on
HP

2.
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Proposition 7.3. For the multiplicity (1, 1, 1) case, the chamber system
C (M ;G) is covered by a building, with the isotropy representation of either
SO(7)/ SO(4) SO(3), or of Sp(3)/U(3) as a linear model.

Proof. Recall that, Ḡt = SO(3), and H̄ = Z2
2. We first claim that the identity

component (Gt)0 = SO(3). To see this, recall that the kernel Kt ⊂ K�r , and Ḡq

is either SO(2) SO(3) or S(O(2)O(3)). The claim follows since, if dimKt ≥ 1
or (Gt)0 = S3, then Kt ∩ Kq is nontrivial, a contradiction to Lemma 2.3. From
this we also conclude that (Gq)0 is not S

1× S3, since otherwise again Kt ∩ Kq

is non-trivial. Hence it is isomorphic to either SO(2) SO(3) (the “standard”
case) or to the 2 fold covering U(2) of SO(2) SO(3) (the “flip” case). By the
Rank Lemma 2.7 it follows that rankG ≤ 3.

We start with the following observation:
• Let z be cyclic subgroup of the principal isotropy group H with non-

trivial image [z] ⊂ H̄. Then the action by N0(z) on the reduction M z is a
reducible polar action of cohomogeneity 2. To see this note that the type
t orbit in the reduction is no longer a vertex. Indeed the normalizer of
[z] ⊂ H̄ ⊂ SO(3) is O(2).

In addition, note that the identity component of every face isotropy
group is S1. By the Dual Generation Lemma in [FGT] we conclude that

• 7.3.1. The semisimple part of N0(z) has rank at most one.

To proceed we will prove that
(a). G is not a simple group of rank 3.
This is a direct consequence of 7.3.1 combined with the following alge-

braic fact: If G is a rank 3 simple group, i.e., one of SO(6) = SU(4), SO(7)
or Sp(3) (up to center), then, the normalizer of any order 2 subgroup Z2 ⊂
SO(3) = (Gt)0 contains a semisimple subgroup of rank at least 2. The alge-
braic fact is easily established by noticing that the inclusion map SO(3) → G
either can be lifted to a homomorphism into one of the four matrix groups,
or SO(3) sits in the quotient image of a diagonally imbedded SU(2) in one
of the matrix groups.

Next we are going to prove that
(b). If G is a rank 2 group, then either (M,G) = (CP5, SU(3)) or (HP

2,
SO(3) SO(3)) up to equivariant diffeomorphism.

Exactly as in Case (a), we can exclude G being SO(5) since a subgroup
Z2 ⊂ H̄ ⊂ (Gq)0 will have a normalizer containing SO(4). We now exclude
G being the exceptional group G2. Otherwise, (Gq)0 must be U(2), and con-
tained in either an SO(4) ⊂ G2 or an SU(3) ⊂ G2 by Borel-Siebenthal [BS].
The center Z2 ⊂ U(2) is in Kq. For the same reason as above, U(2) is not in
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SO(4) ⊂ G2. Finally, if U(2) ⊂ SU(3) ⊂ G2, the q orbit (G q)Z2 in the reduc-
tion MZ2 contains (G2 / SU(3))

Z2 = (S6)Z2 = S2. Again by the Dual Gener-
ation Lemma 7.2 of [FGT] this is impossible, since the identity component
of the isotropy group of the face opposite of q is a circle, which cannot
act transitively on the orbit (G q)Z2 . Therefore, up to local isomorphism,
G is SO(3) SO(3) or SU(3) respectively. One checks that the correspond-
ing isotropy group data are given by Gt = Δ(SO(3)) ⊂ SO(3) SO(3), and
Gq = O(2) SO(3) ⊂ SO(3) SO(3), respectively by Gt = SO(3) ⊂ SU(3) (inclu-
sion induced by the field homomorphism), and Gq = U(2) ⊂ SU(3) as a block
subgroup. The recognition theorem then yields (b).

(c). Now suppose G = L1 · L2, where Li is a rank i Lie group.
If L1 acts freely on M , then L1 = S1, SO(3), or S3, and L2 acts on M/L1

in a polar fashion of type C3. Hence, M/L1 is even dimensional and thus CP5

or HP
2 by (b). In either case, we know that the universal cover C̃ of the

chamber system C (M/L1, L2) is a building. Since C (M,G) is a connected
chamber system covering C (M/L1, L2) it follows that C̃ is the universal cover
of C (M,G).

Now consider the remaining case where
• L1 does not act freely on M , and we let Zm ⊂ L1 be a cyclic group

such that MZm 	= ∅.

Note that G can not be SO(3) · T2, since, then Gt and SO(3)� Gq would
be the same simple group factor, which is absurd. In particular, the semi-
simple part of G has rank at least two. Thus from now on we may assume
that L2 is a rank two semi-simple group. Moreover, by the argument in Case
(b) it is immediate that in fact L2 is either SO(4) or SU(3).

Notice that:
• If Kt is not trivial, then (MKt ,N0(Kt)) is a polar manifold with the same

section, which is of type A3. By the Connectivity Lemma 2.6 it follows that
MKt is simply connected. Hence, from the classification of A3 geometries,
MKt is diffeomorphic to S8, and the chamber system of (MKt ,N0(Kt)) is a
building. By 3.6 C (M,G) is a building.

Therefore, we may assume in the following that Kt = {1}, hence Gt =
SO(3). It follows that, Gq is either S(O(2)O(3)) or U(2).

We split the rest of the proof according to L1 abelian or not. In either
case note that the normalizer N0(Zm) is S1 ·L2. From this we get immediately
that Zm 	⊂ H, by appealing to 7.3.1.

(ci) G = S1 ·L2.
It suffices to prove that the S1 action is free, since then the situation

reduces to the previous rank 2 case.
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Note that Zm is normal in G. From this and the above it follows that Zm

is neither in Gt nor in G�t . To see this, if Zm ⊂ G�t then (Ḡq)�t ⊂ Ḡq would
contain a non-trivial normal subgroup of Ḡq contradicting Table 4.4. The
proof in the other case is similar but simpler. Hence, MZm is either the orbit
G r or G q.

AssumingMZm = G /Gr, it is immediate that L2 = SU(3) from the list of
positively curved homogeneous spaces. On the other hand, notice that Gr is
not connected, indeed (Gr)0 = T2 and Gr ⊃ G�q ⊃ O(2), it follows that G /Gr

is not simply connected. However, G /Gr is a totally geodesic submanifold
in M which has dimension 11. A contradiction to Wilking’s Connectivity
Lemma 2.6.

AssumingMZm = G /Gq, corresponding to L2 = SU(3) or SO(4), the uni-
versal cover of G /Gq is a sphere of dimension either 5 or 3. The latter case
is ruled out as follows: If Gq = U(2) then Kq = Z2 is in the center of U(2)
hence also in the center of G. This is impossible, since Kq ⊂ H and G acts ef-
fectively on M by assumption. If Gq = S(O(2)O(3)) there are no non-trivial
homomorphisms to S1, hence Gq ⊂ SO(4), which is impossible. For the for-
mer case, Gq = U(2) and G = U(3), with action on G /Gq equivalent to the
standard linear action on a 5-dimensional spherical space form with Zm in
the kernel. Thus, Gq ⊃ Zm × U(2), a contradiction.

(cii) G = L1 · L2, where L1 is a simple rank one group, i.e., either S3 or
SO(3).

We will show that in this case G = SO(3) SO(4), with local data Gq =
S(O(2)O(3)) ⊂ G, and Gt = Δ(SO(3)) ⊂ G forcing all data to coincide with
those of the isotropy representation of SO(7)/ SO(3) SO(4), and hence M
with the action of G is determined via recognition.

We first prove that L2 = SO(4). If not, we start with an observation that,
L1 = SO(3), and moreover, Gt is a diagonally imbedded subgroup in L1 · L2.
Indeed, otherwise, an order 2 element z ∈ H ⊂ Gt will have a normalizer
N0(z) which contains a rank 2 semisimple subgroup, contradicting 7.3.1.
For the same reason, as above, we see that Gq 	= U(2) and hence, Gq =
S(O(2)O(3)). Similarly by 7.3.1, SO(3)� Gq must be diagonally embedded
in L1 · L2. This is impossible since then N(SO(3))/ SO(3) is finite, but (Gq)0 ⊂
N(SO(3)).

Finally, given that L2 = SO(4) it follows as above that Gq 	= U(2), hence
Gq = S(O(2)O(3)). Since Gt = SO(3) and G�r = O(2) sits diagonally in Gq it
follows that Gt sits diagonally in L1 · L2, in particular L1 = SO(3). Using the
same arguments as above we see that SO(3)� Gq is in L2. All together, all
isotropy data are determined. �
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8. Exceptional Gq slice representation

This section will deal with the remaining cases, all of which are exceptional
with multiplicities (1, 1, 5), (2, 2, 2), (4, 4, 5), and (1, 1, 6). All but the latter
will occur, and the case of (1, 1, 5) will include an exceptional action on the
Cayley plane.

Proposition 8.1. In the case of the multiplicities (1, 1, 5) where the (effec-
tive) slice representation at T⊥

q is the tensor representation of SO(2)G2 on
R2 ⊗ R7, either M is equivariantly diffeomorphic to the Cayley plane OP2

with an isometric polar action by SO(3) · G2 or C (M,G) is a building, with
the tensor product representation of SO(3) Spin(7) on R3 ⊗ R8 as a linear
model.

Proof. By the Transversality Lemma 2.5 we conclude that Gt is connected
since G /Gt is simply connected. The kernel Kt is a normal subgroup in Gt,
as well as of the principal isotropy group H with quotients Gt /Kt = SO(3),
and H /Kt = Z2 ⊕ Z2 respectively (cf. Table 4.3). By the Slice Lemma 2.3 Kt

acts effectively on the q-slice. Combining this with Table 4.4 where (Ḡq)0 =
SO(2)G2 it follows that, the identity components (Kt)0 = H0 = S3. Thus,
Gt = SO(4), or Spin(4) = S3× S3. The latter, however, is impossible, since
then Kt = S3×Z2 � S3×Q8 = H where Q8 is the quaternion group of order
8. On the other hand, by Table 4.4 the slice representation at q is the natural
tensor representation of O(2)G2 on R2 ⊗ R7, where the center Z2 ⊂ Q8 is
in the kernel Kq and so in Kt ∩ Kq. A contradiction. Therefore, Gt = SO(4),
and consequently, Gq = O(2) · G2, Gr = O(2) · SU(3) and G�t = SU(3) · Z2

2.

By Lemma 2.7 we have 3 ≤ rk(G) ≤ 4.
Case (i). Assume rk(G) = 3:
By Lemma 2.7 again dimM is even. By [BS] (table on page 219) SO(2)G2

is not a subgroup in any rank 3 simple group. Therefore, G = L · G2, where
L is a rank one group. By Table 4.4 the face isotropy group (G�r)0 = SU(2) ·
Δ(SO(2)) is diagonally embedded in SO(2)G2�Gq ⊂ L · G2. It follows that,
the composition homomorphism Gt ⊂ G → L is nontrivial, hence surjective
onto L, because Gt = SO(4). Hence L = SO(3) and G = SO(3)G2 since the
only proper nontrivial normal Lie subgroup of SO(4) is S3 with quotient
SO(3). By the above, we already know that, Gt = SO(4) is a diagonal sub-
group given by an epimorphism SO(4) → SO(3) and a monomorphism
SO(4) → G2. It is clear that, up to conjugation, Gq = O(2) · G2 ⊂ G where
O(2) ⊂ SO(3) is the standard upper 2× 2 block matrices subgroup.
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As in the proof of Proposition 7.2 we now claim that there is at most
one polar action with the data as above. Since we are dealing with a non
classical Lie group, however, we proceed as follows:

Given another C3 type polar action of G = SO(3)G2 with isomorphic
local data along a chamber C ′ with vertices t′, q′, r′. Without loss of gener-
ality we may assume that Gq = Gq′ ⊂ SO(3)G2, and moreover, Gt = Gt′ since
any two SO(4) subgroups in G2 are conjugate. Moreover, we can further as-
sume that G�t = G�t′ since the singular isotropy groups pair for the slice
representation at q is unique up to conjugation. In particular, the principal
isotropy groups H = H′. We prove now (G�q)0 = (G�q′ )0 = SO(2) SU(2). This
clearly implies the assertion since Gr is generated by (G�q)0 and G�t . Recall
that Gt = Δ(SO(4)) ⊂ G, its composition with the projection to G2�G is a
monomorphism, so is the composition of (G�q)0 ⊂ (Gr)0 = SO(2) · SU(3) to
G2, hence, (G�q)0 is a diagonal subgroup of Gr, whose projection to the factor
SU(3) is injective. Hence it suffices to show that the projection images of
(G�q)0 and (G�q′ )0 in SU(3) = (G�t)0 = (G�t′ )0 coincide. On the other hand,
note that the projection image of (G�q)0 in SU(3) is the normalizer N0(H0) in
SU(3) = (G�t)0, where H0 is the identity component of the principal isotropy
group. The above assertion follows.

As for existence we again note that SO(3)G2 is a maximal subgroup of
the isometry group F4 of the Cayley plane OP2. The corresponding unique
isometric action is indeed polar as proved in [GK] and of type C3.

Case (ii). Assume rk(G) = 4:
By Lemma 2.7, dimM is odd. Consider the reduction MH0 with the

action of N0(H0), the identity component of the normalizer. Note that, this
is also a C3 type polar action, but the multiplicity triple is (1, 1, 1). By
appealing to Lemma 2.8, the codimension of MH0 is divisible by 4. Thus
from the (1, 1, 1) case it follows that, the universal cover M̃H0 is S11, and
the identity component N0(H0) is either U(3) or SO(3) SO(4), modulo kernel.

We are going to prove that MH0 is simply connected. It suffices to show
that MH0 ⊂ M is 2-connected. This follows trivially by the Connectivity
Lemma of Wilking 2.6, if the codimension of MH0 is at most 12.

If G2�Gq is a normal subgroup of G, then G = L · G2 where L is a rank
2 group. Then N0(H0)/H0 is isomorphic to L · SO(3). Hence L = SO(4). It is
easy to count the codimension to see that it is strictly less than 12.

If G2 is not a normal subgroup, by Lemma 2.8 the isotropy representation
of SU(3) ⊂ G2 ⊂ G is spherical transitive. Hence, G contains a normal simple
Lie subgroup L, such that G2 ⊂ Spin(7) ⊂ L is spherical. We claim that L =
Spin(7). If not, L contains Spin(8) such that Spin(7) ⊂ L is a block subgroup
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in Spin(8), and hence N0(H0) contains Spin(5), which contradicts the above.
This proves that G = L1 · Spin(7), where L1 is a rank 1 group. From this
we get that the isotropy subrepresentation of G /H0 contains exactly three
copies of the standard defining representation of SU(2), hence the desired
estimate for the codimension.

In summary we conclude that MH0 = S11, N0(H0) = SO(3) SO(4) and
hence, from the multiplicity (1, 1, 1) case, the chamber system for the action
of N0(H0) is a building of type C3. By Remark 3.6 we conclude that C (M,G)
is a building. �

Proposition 8.2. There is no polar action of type C3 type with multiplic-
ities (1, 1, 6), where the (effective) slice representation at T⊥

q is the tensor
product representation of SO(2) Spin(7) on R2 ⊗ R8.

Proof. We will prove that, if there is such a slice representation at q, the
chamber system C (M,G) is a building. The desired claim follows from the
classification of C3 buildings, i.e., indeed there is no such a building.

To proceed, note that from Table 4.4 Ḡq = SO(2) Spin(7), and the prin-
cipal isotropy group H̄ = SU(3). It follows that, up to local isomorphism
Gt = SU(3) SO(3) with Kt = SU(3). Notice that, the reduction (MKt ,N0(Kt))
is of cohomogeneity 2 with the same section. It is clear that it is of type A3

since the q vertex is a vertex with angle π/2, because N0(Kt) ∩ Gq is T2. By
the classification of A3 geometries it follows that, MKt is either S8 or RP8.
We claim that MKt = S8, and hence the chamber system for (MKt ,N0(Kt))
is a building. By appealing to 3.6 it follows that C (M,G) is a building. To see
the claim, it suffices to prove that MKt is orientable and hence simply con-
nected, thanks to the positive curvature. By 2.8 the isotropy representation
of Kt = SU(3) is the defining complex representation. From this it is imme-
diate that, MKt = MT2

, and hence oriented, where T2 ⊂ Kt is a maximal
torus. �

Proposition 8.3. When the multiplicity triple is (2, 2, 2), there are two
scenarios. In either case C (M,G) is a building, with linear model the adjoint
polar representation of either SO(7) or of Sp(3) on S20.

Proof. By Lemma 2.5 we know that all vertex isotropy groups are con-
nected. Notice that, by Table 4.4, the slice representation at q is the ad-
joint representation of SO(5) on R10. Together with Proposition 2.3, up
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to local isomorphism, the local isotropy group data are determined as fol-
lows: Gt = U(3), Gq = SO(5) S1 and Gr = SO(3)U(2). Moreover, H = T3,
G�t = SO(3) SO(2) S1, and K′ = SO(3)� G�t .

Let SO(2) = K′ ∩ H ⊂ K′. Consider the reduction (MSO(2),N(SO(2))). It
is once again a polar manifold with the same section. For such a reduction,
notice that: the face �q has multiplicity 2, the face �t is exceptional with
normal sphere S0, and Gq ∩N(SO(2))/G�t ∩N(SO(2)) = S2. Therefore, the
action of N(SO(2)) is reducible with fundamental chamber rqq′, where q′ is a
reflection image of q, and rq = �t is of exceptional orbit type. In particular,
the multiplicities at q′ are (2, 2), hence the slice representation at q′ for
the N(SO(2))-action is again the adjoint representation of SO(5) on R10.
This clearly implies that q′ is a fixed point. On the other hand, notice that
MSO(2) is orientable and hence simply connected. Therefore, by Theorem 6.2
of [FGT] we know that MSO(2) = S10. Since Property (P) holds for SO(2) it
follows from Remark 3.6 that C (M,G) is a building. �

Remark 8.4. We remark that in the above proof, the chamber system of
(MSO(2),N(SO(2))) is a building of type A1×C2 but the one for (MSO(2),
N0(SO(2))) is not.

Proposition 8.5. In the case of the multiplicities (4, 4, 5), the chamber
system C (M ;G) is covered by a building, with the isotropy representation of
SO(14)/U(7) as a linear model.

Proof. By Lemma 2.5 we know that all isotropy groups are connected. Note
that Ḡt = Sp(3), and Ḡq = SU(5) or U(5). By Lemma 2.3, it is easy to see
that:

• if Gt is semisimple, then, up to local isomorphism, Gt = Sp(3), Gr =
Sp(2) SU(3), Gq = SU(5) Sp(1) and G�t = SU(3) Sp(1)2, where Sp(1) = Kq is
a subgroup of Gt.

• if Gt is not semisimple, then Kt = S1, and all isotropy groups data are
the product of S1 with the corresponding data above.

We now prove that G contains SU(7) as a normal subgroup. By Lemma
2.8 the isotropy representations of G / Sp(2) and G / SU(3) are both spherical,
where Sp(2), SU(3) are normal factors of face isotropy groups. Hence, a nor-
mal factor L of G is either SO(n) or SU(n), by Table B in [GWZ]. Moreover,
the subgroup Kq ⊂ Gt is contained in a block subgroup SO(4) ⊂ L (resp.
a block subgroup SU(2) ⊂ L) if L = SO(n) (resp. L = SU(n)). Since N0(Kq)
contains Gq, it follows that n ≥ 14 (resp. n ≥ 7) if L = SO(n) (resp. SU(n)).
To rule out the former case, consider the fixed point set MKq with the polar
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action of N0(Kq). It is clearly a reducible cohomogeneity 2 action with q a
vertex of angle π/4. By the Dual Generation Lemma 7.2 of [FGT] it follows
that N0(Kq) is either Gq (the fixed point case) or the product of SU(5)� Gq

with the face isotropy group opposite to q in the reduction MKq/N0(Kq).
From this it is immediate that L = SU(7).

Note that if Gt is semisimple, or dim(M) is even, then rankG ≤ 6, by the
Rank Lemma, and hence G = SU(7). For the remaining case, i.e., dim(M)
being odd and Gt = S1 · Sp(3), we now prove that G = U(7), up to local
isomorphism. Indeed, it is clear that rankG = 7, and hence G = SU(7) · L2,
where L2 is a rank 1 group. It suffices to prove that L2 = S1. Let K′ = SU(3)�
G�t . It is clear that the projection p2 : G → L2 is trivial, when restricted
to either of Sp(3)� Gt and K′ ⊂ Gq. By the primitivity lemma 2.2, G =
〈Gt,G�t〉 = 〈Gt,K

′〉. Therefore, p2(Gt) = L2 and hence, L2 = S1.
To complete the proof, we split into two cases, i.e, dim(M) being even or

odd. For the former, Kt = S1 and G = SU(7). It is clear that Gt = Sp(3) S1

is a subgroup of U(6) ⊂ SU(7) and Gq = SU(5) Sp(1) · S1 is the normalizer
N(Sp(1)) in G, where Sp(1)� G�r ⊂ Gt. This forces all isotropy groups data
to be the same as for the linear cohomogeneity 2 polar action on CP

20

induced from the isotropy representation of SO(14)/U(7). Hence, in partic-
ular, the chamber system C (M ;G) is covered by a building. For the latter,
G = SU(7) or U(7) depending on Kt = {1} or S1. The fixed point set MK′

is odd dimensional, since the isotropy representation of K′ is the defining
complex representation. Note that N0(K

′) = SU(4)Ti ·K′, i = 1, 2, and MK′

is equivariantly diffeomorphic to S11 with a standard linear cohomogeneity
one action of type C2. Hence, by Lemma 3.4, C (M ;G) is a building. �
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geschlossener Liescher Gruppen, Comment. Math. Helv., 13 (1941),
240–251.

[KL] L. Kramer and A. Lytchak, Homogeneous compact geometries,
Transform. Groups, 19 (2014), 793–852.

[Ly] A. Lytchak, Polar foliations of symmetric spaces, Geom. Funct.
Anal., 24 (2014), 1298–1315.

[Ne] A. Neumaier, Some sporadic geometries related to PGL(3, 2), Arch.
Math., 42 (1984), 89–96.
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