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A note on center of mass

Pak-Yeung Chan and Luen-Fai Tam
†

We will discuss existence of center of mass on asymptotically
Schwarzschild manifold as defined by Huisken-Yau and by Regge-
Teitelboim, Beig-Ó Murchadha, Corvino-Schoen. Conditions of ex-
istence and examples on non-existence are given.

1. Preliminary

In this note, we will discuss the existence and non-existence of center of
mass as defined in [2, 5, 11, 14]. The results are related in particular to
Theorem 4.2 in [11].

Let (M3, g) be an asymptotically Schwarzschild (AS) manifold. That is:
M is diffeomorphic to R

3 with metric g such that for some R0 > 0, g is given
by

(1) gij =
(
1 +

m

2r

)4
δij + pij

on R
3 \B0(R0), where pij(x) = O4(|x|−2), and m > 0 is the ADM mass of

the manifold. Here and below B0(r) := {x ∈ R
3| |x| < r}. The notation φ =

Ok(r
α) means that there is a constant C such that for all 0 ≤ i ≤ k, and for

all multi-index β with |β| = i, |∂βφ|(x) ≤ C|x|α−i on R
3 \B0(R0).

In [11], Huisken-Yau proved the existence and uniqueness of stable con-
stant mean curvature foliation {Σr}r≥R1

near infinity on an AS manifold for
some R1 > R0, where each Σr is a perturbation of coordinate sphere S(r) =
∂B0(r). Let F (r) : Σr → R

3 be the embedding of Σr in M . The Huisken-
Yau center of mass is defined as follows: Let c

HY
(r) = (c1

HY
(r), c2

HY
(r), c3

HY
(r)),
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where

(2) cα
HY

(r) =

∫
Σr

xαdσ0∫
Σr

dσ0
.

for α = 1, 2, 3. Here dσ0 is the area element induced by the Euclidean metric
and xα are the coordinate functions on Σr. The Huisken-Yau center of mass
c

HY
is defined as:

(3) c
HY

= lim
r→∞ c

HY
(r)

provided the limit exists. Note that c
HY

(r) depends only on Σr and the
asymptotic coordinates chosen. Consider the foliation Σ̃s obtained by Ye
[16] which is a perturbation of {|x− p(s)| = s} for some p(s) with p(s) being
uniformly bounded as s → ∞. By the uniqueness result in [11] for s large
Σ̃s = Σr(s) with r(s) → ∞ as s → ∞. Hence if we use the foliation by Ye
in (2), then the limit in (3) will give the Huisken-Yau center of mass, provided
the limit exists. See [8] for more details.

There is a Hamiltonian formulation of center of mass by Regge-
Teitelboim [14], also by Beig-Ó Murchadha [2] and Corvino-Schoen [5]. Fol-
lowing [8], we denote it by c

CS
which is defined as follows. Let

cα
CS
(r) =

1

16πm

∫
|x|=r

[
xα(gij,i − gii,j)ν

j
g −

(
hiαν

i
g − hiiν

α
g

)]
dσg(4)

where hij = gij − δij and νg is the unit outward normal of {|x| = r} with re-
spect to g. Here and below repeated indices means summation. Let c

CS
(r) =

(c1
CS
(r), c2

CS
(r), c3

CS
(r)). The Hamiltonian formulation of center of mass is

given by

(5) c
CS

= lim
r→∞ c

CS
(r)

provided the limit exists.
Let ν0 be the unit outward normal of {|x| = r} with respect to Eu-

clidean metric and let dσ0 be the area element induced by the Euclidean
metric. Then one can check that on {|x| = r}, νg = (1 + m

2r )
−2ν0 +O(r−2)

and dσg = (1 + m
2r )

4(1 +O(r−2))dσ0. Hence we have

cα
CS
(r) =

1

16πm

∫
|x|=r

[
xα(gij,i − gii,j)ν

j
0 −

(
hiαν

i
0 − hiiν

α
0

)]
dσ0(6)

+O(r−1).
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In this note we want to discuss the existence of c
HY

and c
CS
. As men-

tioned above, c
HY

may be defined using the foliation constructed by Ye [16].
Let us recall the construction by Ye. For r > 0 large enough, we can find
a perturbed rescaled center τ(r) ∈ R

3 and a real-valued function φ(r)(z) on
the unit sphere S

2 such that the surface of the constant mean curvature in
the foliation is given by

(7) Σ̃r =
{
r
(
z + τ(r) + φ(r)(z)ν0(z)

)
| z ∈ S

2
}

which has constant mean curvature 2
r − 4m

r2 . Here ν0 is the unit outward

normal of unit sphere S
2 in R

3. By [16], |τ(r)| ≤ Cr−1 and |φ(r)|
C2, 1

2 (S2)
≤

Cr−2. Huang [8] proved the following:

Proposition 1.

lim
r→∞ (c

CS
(r)− c

HY
(r)) = 0.

Proof. We sketch the proof here. Let y = x− rτ(r), and y = rz, z ∈ S
2. So

x = r(z + τ(r)). Let Σ̃r be as in (7). Using the fact that |φ(r)|
C2, 1

2 (S2)
=

O(r−2), one can check that

(8) lim
r→∞(rτ(r)− c

HY
(r)) = 0.

On the other hand, by [16, (1.14)], for α = 1, 2, 3, τ = τ(r) satisfies:

(9) 6mrτα + Pα

(
rf(r, z, τ) + rbij(z, τ)τ

iτ j + w
)
= 0

where bij is smooth in (z, τ), z ∈ S
2, w = w(r, z) with |w| = O(r−1), Pα is

the L2 projection of functions on S
2 to the linear space spanned by zα, and

f is given by the following relation:

(10) H(r, τ(r), 0) =
2

r
− 4m

r2
+

6mz · τ
r2

+
1

r2
f(r, z, τ(r)) +O(r−4).

Here H(r, τ(r), 0) is the mean curvature of the surface {|x− rτ | = r} with
respect to g. H(r, τ(r), 0) is given by (see [8, (5.1)])

H(r, τ(r), 0) =
2

r
− 4m

r2
+

6mz · τ
r2

+
9m2

r3
(11)

+
1

2r3
qij,k(y)y

iyjyk +
2

r3
qij(y)y

iyj

− 1

r

(
qij,i(y)y

j + qii(y)− 1

2
qii,j(y)y

j

)
+ E
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where E = O(r−4), qij = pij +
(
1 + m

2r

)4
δij −

(
1 + 2m

r

)
δij .

Hence by [8, Lemma 5.1]

Pα(rf) =
3

4π

∫
|z|=1

zαrfdσ0(12)

=
3

4π

∫
|z|=1

zαr3
(
H(r, τ(r), 0)− 2

r
+

4m

r2
− 6mz · τ

r2

)
dσ0

+O(r−1)
= −6mcα

CS
(r) +O(r−1).

Combining this with (8) and (9), the result follows. �

2. A necessary and sufficient condition and an example

In this section we will give a condition so that c
CS

and hence c
HY

exists and
give examples of AS manifolds so that the center of mass do not exist. The
following result is a direct consequence of the computation in [4, section 5] by
Corvino, in [5, p. 215] by Corvino-Schoen and in [2] by Beig-Ó Murchadha.
However, we would like to state the result explicitly. We will sketch the proof
in the appendix for the convenience for the readers.

Theorem 1. c
CS

exists if and only if limr→∞
∫
B(r) x

αRgdvg exists for α =
1, 2, 3, where Rg is the scalar curvature of g.

It was remarked by Huang [10], the theorem is still true for asymptot-
ically flat metric gij − δij = O2(|x|−1) with AS condition replaced by the
following more general Regge-Teitelboim type parity condition: goddij (x) :=

gij(x)− gij(−x) ∈ O2(|x|−2).
By the theorem, one may expect to find an example of AS metric so that

c
CS

and hence c
HY

does not exist. In fact, one may construct such kind of
examples in an elementary way.

To motivate the construction, let b be a nonzero vector in R
3 and let g

be the metric given by

(13) gij =

(
1 +

m

2r
+

b · x
r3

)4

δij

with m > 0. Then it is well-known that c
CS

for this metric is given by

c
CS

=
2b

m
,
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see [6]. Let φ : [a,∞) → R be a smooth bounded function. Consider the
metric

(14) gij =

(
1 +

m

2r
+

φ(r)b · x
r3

)4

δij

with m > 0. If φ(t) is oscillating near infinity, then one may expect that c
CS

does not exist. More precisely, we have the following:

Theorem 2. Let a > 0. Suppose φ : [a,∞) → R is a smooth function such
that for some constant C the following holds for all t ≥ a, and 0 ≤ l ≤ 4:

(15) |φ(l)| ≤ C

(1 + t)l
.

Then the metric given by (14) is AS outside B0(R) for some R > 0. More-
over, if b �= 0, then c

CS
exists if and only if limt→∞ (3φ(t)− tφ′(t)) exists.

If limt→∞ (3φ(t)− tφ′(t)) = λ exists, then

c
CS

=
2λb

3m
.

Remark 1. It is easy to construct φ satisfying (15), but the limit
limt→∞ (3φ(t)− tφ′(t)) does not exist. For example, we may take φ(t) =
sin(log(t)) or φ(t) = sin(log(log(t))). Similar examples for the nonexistence
of center of mass have also been obtained independently by Cederbaum and
Nerz [3, p.13], whom we thank for pointing this out to us.

Proof of Theorem 2. To simplify the notations, let

v =
φ(r)b · x

r3

and

u = 1 +
m

2r
+ v.

Then gij = u4δij . Now |v| = O(r−2), and

(16)
∂v

∂xk
=

1

r3

(
xk

r
φ′(r)b · x+ φ(r)bk − 3xkφ(r)b · x

r2

)
.

By the assumption (15), we have |∂v| = O(r−3). Similarly, one can prove
that |∂2v| = O(r−4), |∂3v| = O(r−5), |∂4v| = O(r−6). From these, one can
see that the metric g is well-defined and is AS.
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Next, we want to compute cα
CS
(r). We have

gij,k =4u3
∂u

∂xk
δij

=4u3
[
−mxk

2r3
+

1

r3

(
xk

r
φ′(r)b · x+ φ(r)bk − 3xkφ(r)b · x

r2

)]
δij

=:fkδij .

Hence

∑
i,j

(gij,i − gii,j)x
j(17)

= −2
∑
j

fjxj

= −8u3
∑
j

xj
[
−mxj

2r3
+

1

r3

(
xj

r
φ′(r)b · x+ φ(r)bj − 3xjφ(r)b · x

r2

)]

= −8u3
[
−m

2r
+

(rφ′(r)− 2φ(r))b · x
r3

]

= −8(1 +
3m

2r
)

[
−m

2r
+

(rφ′(r)− 2φ(r))b · x
r3

]
+O(r−3)

= −8

[
−m

2r
− 3m2

4r2
+

(rφ′(r)− 2φ(r))b · x
r3

]
+O(r−3)

=
4m

r
+

6m2

r2
− 8(rφ′(r)− 2φ(r))b · x

r3
+O(r−3).

On the other hand, hij = gij − δij = (u4 − 1)δij . Hence

∑
i

(
hiαx

i − hiix
α
)
= −2(u4 − 1)xα(18)

= −2xα
(
2m

r
+

3m2

2r2
+

4φ(r)b · x
r3

)
+O(r−2).

So

xα
∑
i,j

(gij,i − gii,j)x
j −

∑
i

(
hiαx

i − hiix
α
)

(19)

= xα
[
8m

r
+

9m2

r2
+

8(3φ(r)− rφ′(r))b · x
r3

]
+O(r−2).
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Hence

1

r

∫
|x|=r

[
xα(gij,i − gii,j)x

j − (
hiαx

i − hiix
α
)]

dσ0(20)

=
32πbα

3

[
3φ(r)− rφ′(r)

]
+O(r−1).

cα
CS
(r) =

2bα

3m

[
3φ(r)− rφ′(r)

]
+O(r−1).

From this the results follow. �

Remark 2. (i) If m < 0, the theorem is still true if we use the foliation of
Ye [16] to define the center of mass as in (2) and (3).

(ii) One can check the examples in the theorem satisfy the property
that c

CS
(r) remain bounded for all r. On the other hand, in [9], Huang

constructed examples of asymptotically flat manifold so that c
CS
(r) → ∞.

3. Examples with nonnegative scalar curvature

The examples constructed in the previous section are very simple. How-
ever, there is a drawback. In fact, after the first draft of this work, Huang
[10] asked whether there is an example with nonnegative scalar curvature.
Wang [15] also pointed out that the above examples do not have nonneg-
ative scalar curvature. For a time symmetric spacelike slice in a space-
time satisfying dominant energy condition, the scalar curvature of the slice
must be nonnegative. Hence it is desirable to obtain examples of asymptoti-
cally Schwarzschild manifolds with nonnegative scalar curvature and yet the
Huisken-Yau center of mass and Hamiltonian formulation of center of mass
do not exist.

By [11], the scalar curvature of an asymptotically Schwarzschild mani-
fold must decay like r−4. Given a function f with this decay rate, it is not
so difficult to construct a conformally flat and asymptotically flat manifold
with scalar curvature being a positive constant times f . However, in order to
obtain asymptotically Schwarzschild metric, we need an additional assump-
tion on f . We begin with the following. Let Bx(r) be the Euclidean ball
with center at x and with radius r. dv0 is the Euclidean volume element. As
before B0(r) is the Euclidean ball with center at the origin.

Lemma 1. Let f be a smooth function on R
3.

(a) Suppose
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(i) f = O(|x|−4); and
(ii) there is a constant C > 0 such that

(21)

∣∣∣∣∣
∫
B0(r)

xαf(x)dv0

∣∣∣∣∣ ≤ C

for α = 1, 2, 3 and for all r > 0.
Then the Newtonian potential

V(x) = − 1

4π

∫
R3

1

|x− y|f(y)dv0(y)

is well defined such that ΔV = f . Moreover, near infinity V(x) = c
|x| +

w(x) with w = O(|x|−2) where

c = − 1

4π

∫
R3

f(x)dv0.

(b) Suppose in addition to (i) and (ii) in (a), f = O3(|x|−4), then w =
O4(|x|−2).

Proof. To prove (a), by (i) it is easy to see that V is well-defined and ΔV = f .
We want find the asymptotically behavior of V. For any x ∈ R

3, let r = |x|.
Suppose r = |x| > 1, we have:

−4πV(x) =
∫
R3

1

|x− y|f(y)dv0(y)(22)

=

(∫
Bx(

r

2
)
+

∫
B0(

r

2
)
+

∫
R3\(Bx(

r

2
)∪B0(

r

2
))

)
1

|x− y|f(y)dv0(y)

= I + II + III.

Now

(23) | I | ≤ C1r
−4

∫
Bx(

r

2
)

1

|x− y|dv0(y) ≤ C2r
−2.

Here and below, Ci will denote a positive constant which is independent of
x and r.
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Since outside Bx(
r
2), |x− y| ≥ r

2 , we have

(24) |III| ≤ C3r
−1

∫
R3\B0(

r

2
)
|y|−4dv0(y) ≤ C4r

−2.

To estimate II, let 4πc = − ∫
R3 fdv0 which is well-defined and is finite

by (i). For r = |x| > 1,

II +
4πc

r
= −1

r

∫
R3\B0(

r

2
)
fdv0 +

∫
B0(

r

2
)

(
1

|x− y| −
1

|x|
)
f(y)dv0(y)(25)

= IV + V.

By (i) it is easy to see that

(26) |IV| ≤ C5r
−2.

For y ∈ B0(
r
2), |x− y| ≥ r

2 , and we have

|V| =
∣∣∣∣∣
∫
B0(

r

2
)

(
2x · y − |y|2

|x| |x− y| (|x|+ |x− y|)
)
f(y)dv0(y)

∣∣∣∣∣(27)

≤
∣∣∣∣∣
∫
B0(

r

2
)

(
2x · y

|x| |x− y| (|x|+ |x− y|)
)
f(y)dv0(y)

∣∣∣∣∣+ C6r
−2.

Now for y ∈ B0(
r
2), ∣∣∣∣ 1

|x| −
1

|x− y|
∣∣∣∣ ≤ C7r

−2|y|,
and ∣∣∣∣ 1

2|x| −
1

|x|+ |x− y|
∣∣∣∣ ≤ C8r

−2|y|.
So ∣∣∣∣

∫
B0(

r

2
)

(
2x · y

|x| |x− y| (|x|+ |x− y|)
)
f(y)dv0(y)

∣∣∣∣(28)

≤ C9r
−2 +

∑
α

|xα|
r3

∣∣∣∣∣
∫
B0(

r

2
)
yαf(y)dv0(y)

∣∣∣∣∣
≤ C10r

−2

by assumption (ii).

(29) |V| ≤ (C10 + C6)r
−2.
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By (22)–(26), (29), one can see that near infinity

V(x) = c

|x| + w(x),

for some smooth w(x) so that |w(x)| = O(|x|−2). This proves (a).
To prove (b), suppose in addition f = O3(|x|−4). Since Δ 1

|x| = 0, we still
have

Δw = f

near infinity. By the interior Schauder estimate [7, Theorem 3.9], the as-
sumption that f = O3(|x|−4) and the fact that w = O(|x|−2), we conclude
that |∂w| = O(|x|−3). Differentiating the equation Δw = f and apply the
same theorem again, we have |∂∂w| = O(|x|−4). Continue in this way, using
the fact that f = O3(|x|−4), we conclude that w = O4(|x|−2). �

Remark 3. It is well known (see [1, 12] or (28) ) that if we only assume that
|f(x)| ≤ C|x|−4 near infinity, then we can only have the following estimate
of V, see also :

V(x) = c

|x| +O(|x|−2 log |x|).

In any case, we still have V(x) = O(|x|−1).

Theorem 3. Let K(x) ≥ 0 with K > 0 somewhere be a smooth function
on R

3 satisfying the following:

(i) K(x) = O3(|x|−4).
(ii) There is a constant C > 0 such that

(30)

∣∣∣∣∣
∫
B0(r)

xαK(x)dv0

∣∣∣∣∣ ≤ C

for α = 1, 2, 3 and for all r > 0.

Then there is a smooth positive function u such that near infinity u(x) =
1 + m

2|x| + w(x) for some constant m > 0 with w(x) = O4(|x|−2) and such
that the conformally flat asymptotically Schwarzschild metric

gij = u4δij

has scalar curvature Rg(x) = aK(x) for some positive constant a. Moreover,
m = 1

16π

∫
R3 aKu5dv0.
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Proof. By [13, Theorem 1.4], there is a smooth positive solution u of

8Δu+Ku5 = 0

such that b ≤ u ≤ 1
b for some constant b > 0 and such that u tends to a

constant c > 0 near infinity. Since |K(x)u5(x)| ≤ C|x|−4 for some constant C
for all x, by the proof of Lemma 1(a) and Remark 3 the Newtonian potential
V of −1

8Ku5 satisfies V = O(|x|−1). Hence u− V is a bounded harmonic
function and must be constant which is equal to c because u(x) → c and
V(x) → 0 as x → ∞. Replacing, u by u/c, still denoted by u, we see that

8Δu+ aKu5 = 0

with a = c4. Moreover, u = 1 + v, where v = 1
cV.

By [7, Theorem 3.9] and the facts that aKu5 = O(|x|−4) and that u is
bounded, we conclude that |∂u| = O(|x|−1). From this we have ∂(Ku5) =
O(|x|−5). Differentiating the equation 8Δu+ aKu5 = 0 and apply the same
theorem again, we have |∂∂u| = O(|x|−2). Similarly, one can prove that
|∂∂∂u| = O(|x|−3). Hence u5K = O3(|x|−4).

On the other hand, we know that u(x) = 1 +O(|x|−1) by Remark 3.
Since |K(x)| ≤ C(|x|−4), |xα(u5(x)− 1)K(x)| is integrable. By assumption
(ii), we conclude that there is a constant C such that

∣∣∣∣∣
∫
B0(r)

xαK(x)u5(x)dv0

∣∣∣∣∣ ≤ C

for all r > 0 for α = 1, 2, 3. By Lemma 1, we conclude that near infinity

u(x) = 1 + v(x) = 1 +
m

2|x| + w(x)

with w(x) = O4(|x|−2) and m = 1
16π

∫
R3 aKu5dv0. Hence gij = u4δij is

asymptotically Schwarzschild with scalar curvature Rg(x) = aK(x). �

Combining this with Theorem 1, we have:

Corollary 1. Suppose K ≥ 0 is a smooth function on R
3 satisfying the

following:

(i) K(x) = O3(|x|−4).
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(ii) There is a constant C > 0 such that

(31)

∣∣∣∣∣
∫
B0(r)

xαK(x)dv0

∣∣∣∣∣ ≤ C

for α = 1, 2, 3 and for all r > 0.

(iii) For some α = 1, 2, 3, limr→∞
∫
B0(r)

xαK(x)dv0 does not exist.

Let u be the positive function obtained in Theorem 3. Then the asymptotically
Schwarzschild metric gij = u4δij will have nonnegative scalar curvature so
that c

CS
and hence c

HY
does not exist.

By Corollary 1, in order to find an example of conformally flat asymp-
totically Schwarzschild metric on R

3 with nonnegative scalar curvature so
that c

CS
and hence c

HY
does not exist, it is sufficient to find K(x) satisfying

the assumptions of the Corollary.

Example: Let us construct K(x) satisfying the conditions (i)–(iii) in Corol-
lary 1. Let φ be a smooth function depending only on r = |x| such that

φ(x) = cos(log |x|)
|x|5 outside |x| ≥ 1, say. Let η be another positive function de-

pending only on r = |x| such that η(x) = 1
|x|4 outside r ≥ 1. Let b be a

nonzero vector in R
3. Then one can find a positive constant A such that

K(x) = φ(x)b · x+Aη(x)

is positive on R
3. One can check that K satisfies (i) in Corollary 1. For

α = 1, 2, or 3, and for any r > 0,∫
B0(r)

xαη(x)dv0 = 0

because η depends only on r. Hence for r large enough∫
B0(r)

xαK(x)dv0 =

∫
B(r)

xαφ(x)b · xdv0

=

∫
B0(1)

xαφ(x)b · xdv0 + bα
∫ r

1

cos(log t)

t5

(∫
S(t)

(xα)2dσt

)
dt

=

∫
B0(1)

xαφ(x)b · xdv0 + bα
∫ r

1

cos(log t)

t5
· 4πt

4

3
dt

=

∫
B0(1)

xαφ(x)b · xdv0 + 4πbα

3
sin(log r)
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where S(t) = {x ∈ R
3| |x| = t} and dσt is the area element of S(t). Hence

K satisfies (ii) and (iii) in Corollary 1.
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Appendix A.

In this appendix we give a proof of Theorem 1:

Theorem 4. c
CS

exists if and only if limr→∞
∫
B(r) x

αRgdvg exists for α =
1, 2, 3.

Proof.

Rij = ∂kΓ
k
ji − ∂jΓ

k
ki + Γk

klΓ
l
ji − Γk

jlΓ
l
ki.

On an AS manifold, outside B0(R0):

gij =
(
1 +

m

2r

)4
δij + pij

with pij = O4(r
−2). Let

ḡij =
(
1 +

m

2r

)4
δij

and let Γk
ij , Γ̄

k
ij be the Christoffel symbols for g and ḡ respectively. Smoothly

extend (1 + 2m
r ) as a positive function up to the origin, and denote it by u.

By [11] and direct computations, we have

Γk
ij − Γ̄k

ij =
1

2
ḡsk (pis,j + psj,i − pij,s)(A.1)

+
1

2

(
gsk − ḡsk

)
(gis,j + gsj,i − gij,s)

=
1

2
(pik,j + pkj,i − pij,k) +O(r−4).

Hence

(A.2)
|Γk

ij − Γ̄k
ij | = O(r−3);

|∂(Γk
ij − Γ̄k

ij)|+ |Rij − R̄ij | = O(r−4).
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In particular, |Rg| = O(r−4) because the scalar curvature of Rḡ of ḡ is zero
near infinity. Let B(R) = B0(R).∫

B(R)
xαRgdvg =

∫
B(R)

xαRgdv0 +

∫
B(R)

Edv0

=

∫
B(R)

xαgijRijdv0 +

∫
B(R)

Edv0

=

∫
B(R)

xα
(
gijRij − ḡijR̄ij

)
dv0 + C +

∫
B(R)

Edv0

=

∫
B(R)

xαḡij
(
Rij − R̄ij

)
dv0 + C +

∫
B(R)

Edv0

=

∫
B(R)

xαu4
∑
i

(Rii − R̄ii)dv0 + C +

∫
B(R)

Edv0

if R is large, where C =
∫
R3 x

αRḡdvg is a constant which may be nonzero
and E denotes an error term with |E|(x) = O(|x|−4) near infinity. Now

(
Γk
klΓ

l
ji − Γk

jlΓ
l
ki

)
−
(
Γ̄k
klΓ̄

l
ji − Γ̄k

jlΓ̄
l
ki

)
= O(r−5).

Hence ∫
B(R)

xαRgdvg(A.3)

=

∫
B(R)

xα
∑
i

[
∂k

(
Γk
ii − Γ̄k

ii

)
− ∂i

(
Γk
ki − Γ̄k

ki

)]
dv0

+ C +

∫
B(R)

Edv0

=

∫
∂B(R)

xα

⎡
⎣∑

i,k

(Γk
ii − Γ̄k

ii)ν
k
0 −

∑
i,k

(Γk
ki − Γ̄k

ki)ν
i
0

⎤
⎦ dσ0

−
∫
B(R)

[∑
i

(Γα
ii − Γ̄α

ii)−
∑
k

(Γk
kα − Γ̄k

kα)

]
dv0 + C +

∫
B(R)

Edv0

=

∫
∂B(R)

⎛
⎝xα

∑
i,k

(pik,i − pii,k) ν
k
0

⎞
⎠ dσ0 −

∫
B(R)

∑
i

(piα,i − pii,α) dv0

+ C +

∫
B(R)

Edv0
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=

∫
∂B(R)

⎡
⎣xα∑

i,k

(pik,i − pii,k) ν
k
0 −

∑
i

(
piαν

i
0 − piiν

α
0

)⎤⎦ dσ0

+ C +

∫
B(R)

Edv0

=

∫
∂B(R)

⎡
⎣xα∑

i,k

(gik,i − gii,k) ν
k
0 −

∑
i

(
hiαν

i
0 − hiiν

α
0

)⎤⎦ dσ0

+ C +

∫
B(R)

Edv0,

where dσ0 is the Euclidean area element of ∂B(R). From this it is easy to
see the theorem is true. �
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