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Some knots in S1 × S2 with lens space

surgeries

Kenneth L. Baker, Dorothy Buck, and Ana G. Lecuona

We propose a classification of knots in S1 × S2 that admit a lon-
gitudinal surgery to a lens space. Any lens space obtainable by
longitudinal surgery on some knot in S1 × S2 may be obtained
from a Berge-Gabai knot in a Heegaard solid torus of S1 × S2,
as observed by Rasmussen. We show that there are yet two other
families of knots: those that lie on the fiber of a genus one fibered
knot and the ‘sporadic’ knots. Assuming results of Cebanu, we are
able to further conclude that these three families constitute all the
doubly primitive knots in S1 × S2. Thus we bring the classification
of lens space surgeries on knots in S1 × S2 in line with the Berge
Conjecture about lens space surgeries on knots in S3.
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1. Introduction

A knot K in a 3–manifold M is doubly primitive if it may be embedded
in a genus 2 Heegaard surface of M so that it represents a generator of
each handlebody, i.e. in each handlebody there is a compressing disk that K
transversally intersects exactly once. With such a doubly primitive presen-
tation, surgery on K along the slope induced by the Heegaard surface yields
a lens space. Berge introduced this concept of doubly primitive and provided
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twelve families (which partition into three coarser families) of knots in S3

that are doubly primitive [Ber]. The Berge Conjecture asserts that if longi-
tudinal surgery on a knot in S3 produces a lens space, then that knot admits
a presentation as a doubly primitive knot in a genus 2 Heegaard surface in
S3 in which the slope induced by the Heegaard surface is the surgery slope.
This conjecture is often regarded as implicit in [Ber].

This conjecture has a prehistory fueled by the classification of lens space
surgeries on torus knots [Mos71], notable examples of longitudinal lens space
surgeries on non-torus knots [BR77, FS80], the Cyclic Surgery Theorem
[CGLS87], the resolution of the Knot Complement problem [GL89a], several
treatments of lens space surgeries on satellite knots [BL89, Wan89, Wu90],
and the classification of surgeries on knots in solid tori producing solid
tori [Gab89, Gab90, Ber91] to name a few. The modern techniques of Hee-
gaard Floer homology [OS04b, OS04a] opened new approaches that reinvig-
orated the community’s interest and gave way to deeper insights of positivity
[Hed10], fiberedness [Ni07], and simplicity [OS05, Ras07, Hed11].

One remarkable turn is Greene’s solution to the Lens Space Realization
Problem [Gre13]. Utilizing the correction terms of Heegaard Floer homology
[OS03], Greene adapts and enhances Lisca’s lattice embedding ideas [Lis07]
to determine not only which lens spaces may be obtained by surgery on a
knot in S3 but also the homology classes of the corresponding dual knots
in those lens spaces. This gives the pleasant corollary that Berge’s listing of
doubly primitive knots in S3 is complete.

Our present interest lies in the results of Lisca’s work [Lis07] which, with
an observation by Rasmussen [Gre13, Section 1.5], solves the S1 × S2 ver-
sion of the Lens Space Realization Problem. That is, the lens spaces which
bound rational homology 4–balls as determined by Lisca may each be ob-
tained by longitudinal surgery on some knot in S1 × S2. (Note that if a lens
space results from longitudinal surgery on a knot in S1 × S2 then it neces-
sarily bounds a rational homology 4–ball.) In fact, as Rasmussen observed,
the standard embeddings into S1 × S2 of the Berge-Gabai knots in solid
tori with longitudinal surgeries yielding solid tori suffice. Due to the unique-
ness of lattice embeddings in Lisca’s situation versus the flexibility of lattice
embeddings in his situation, Greene had initially conjectured that these ac-
counted for all knots in S1 × S2 with lens space surgeries [Gre13]. In this
article we show that there are yet two more families of knots. Blending our
work with the thesis and further work in progress of Cebanu [Ceb13, Ceb]
we bring the status of the classification of knots in S1 × S2 with lens space
surgeries in line with the present state of the Berge Conjecture. The main
purpose of this article is to propose such a classification of knots and provide



Some knots in S1 × S2 433

the foundation that, together with Cebanu’s work, shows our knots consti-
tute all the doubly-primitive knots in S1 × S2. (Please refer to Section 1.6
for basic definitions and notation.)

Conjecture 1.1 (Cf. Conjecture 1.9 [Gre13]). The knots in S1 × S2

with a longitudinal surgery producing a lens space are all doubly-primitive.

Theorem 1.13. A doubly-primitive knot in S1 × S2 is either a Berge-
Gabai knot, a knot that embeds in the fiber of a genus one fibered knot,
or a sporadic knot.

The three families of knots in Theorem 1.13 are analogous to the three
coarse families of Berge’s doubly primitive knots in S3 and will be described
below.

1.1. Lens spaces obtained by surgery on knots in S1 × S2

Lisca determines whether a 3–dimensional lens space bounds a 4–dimensional
rational homology ball by studying the embeddings into the standard diag-
onal intersection lattice of the intersection lattice of the canonical plumbing
manifold bounding that lens space, [Lis07]. From this and that lens spaces
are the double branched covers of two-bridge links, Lisca obtains a classi-
fication of which two-bridge knots in S3 = ∂B4 bound smooth disks in B4

(i.e. are slice) and which two-component two-bridge links bound a smooth
disjoint union of a disk and a Möbius band in B4. As part of doing so, he
demonstrates that in the projection to S3 these surfaces may be taken to
have only ribbon singularities. Indeed he shows this by using a single banding
to transform these two-bridge links into the unlink, except for two families:
one for which he uses two bandings and another which was overlooked.

Via double branched covers and the Montesinos Trick, the operation of
a banding lifts to the operation of a longitudinal surgery on a knot in the
double branched cover of the original link. Since the double branched cover of
the two component unlink is S1 × S2, Lisca’s work shows in many cases that
the lens spaces bounding rational homology balls contain a knot on which
longitudinal surgery produces S1 × S2. As mentioned above, the lens spaces
bounding rational homology balls are precisely those that contain a knot on
which longitudinal surgery produces S1 × S2: Greene notes Rasmussen had
observed that Lisca’s list of lens spaces corresponds to those that may be
obtained from considering the Berge-Gabai knots in solid tori with a solid
torus surgery [Ber91, Gab89] as residing in a Heegaard solid torus of S1 × S2,
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[Gre13, Section 1.5]. By appealing to the classification of lens spaces up to
homeomorphisms we may condense the statement as follows:

Theorem 1.2 (Rasmussen via [Gre13, Section 1.5] + Lisca [Lis07]).
The lens space L may be transformed into S1 × S2 by longitudinal surgery on
a knot if and only if there are integers m and d such that L is homeomorphic
to one of the four lens spaces:

1) L(m2,md+ 1) such that gcd(m, d) = 1;

2) L(m2,md+ 1) such that gcd(m, d) = 2;

3) L(m2, d(m− 1)) such that d is odd and divides m− 1; or

4) L(m2, d(m− 1)) such that d divides 2m+ 1.

Note that we do permitm and d to be negative integers. We will augment
this theorem in Theorem 1.7 with the homology classes known to contain
the knots dual to these longitudinal surgeries from S1 × S2.

Since the Berge-Gabai knots in solid tori all have tunnel number one,
the corresponding knots in S1 × S2 are strongly invertible. Quotienting by
this strong inversion gives the analogous result for bandings of two-bridge
links to the two component unlink.

Corollary 1.3. The two-bridge link K may be transformed into the two
component unlink by a single banding if and only if there are integers m and
d such that K is homeomorphic to one of the four two-bridge links:

1) K(m2,md+ 1) such that gcd(m, d) = 1;

2) K(m2,md+ 1) such that gcd(m, d) = 2;

3) K(m2, d(m− 1)) such that d is odd and divides m− 1; or

4) K(m2, d(m− 1)) such that d divides 2m+ 1,

In section 2.1, using tangle versions of the Berge-Gabai knots, we offer
a direct proof of this corollary from which one may obtain Theorem 1.2
through double branched covers. Of course the content is tantamount to
Rasmussen’s observation.

Remark 1.4. By an oversight in the statement of [Lis07, Lemma,7.2], a
family of strings of integers was left out though they are produced by the
proof (cf. [Lec12, Footnote p. 247]). The use of this lemma in [Lis07, Lemma
9.3] causes the second family in Theorem 1.2 above to be missing from [Lis07,
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Definition 1.1]. Consequentially, the associated two-bridge links (these nec-
essarily have two components) were also not shown to bound a disjoint union
of a disk and a Möbius band in B4 in that article.

We next consider which knots in S1 × S2 admit longitudinal surgeries
producing the lens spaces of Theorem 1.2. Prompted by the uniqueness of
Lisca’s lattice embeddings (which follows from [Lis07, Lemma 2.4 and The-
orem 6.4]) and seemingly justified by Rasmussen’s observation, Greene had
originally conjectured that if a knot in S1 × S2 admits a longitudinal lens
space surgery, then it arises from a Berge-Gabai knot in a Heegaard solid
torus of S1 × S2, [Gre13, Conjecture 1.8]. These knots belong to five families
which we call bgi, bgii, bgiii, bgiv, and bgv and refer to collectively as
the family bg of Berge-Gabai knots. They are all doubly primitive knots.
We show Greene’s original conjecture is false, Theorem 1.12, by exhibiting
two new families of doubly primitive knots in S1 × S2: gofk of knots that
embed in the fiber of a genus one fibered knot and spor of ‘sporadic’ knots
that generically don’t belong to either of the other two families. Our clas-
sification of homology classes of the surgery duals to these three families,
Theorem 1.7, shows that indeed the gofk and spor families contain knots
that do not belong to the bg family, yielding Theorem 1.12. Let us note
that Yamada had previously observed the gofk family of knots and their
lens space surgeries [Yam07]. Using the thesis and further work in progress
of Cebanu, Theorem 1.13 shows that these three families constitute all the
doubly primitive knots. Conjecture 1.1 (also presented as Conjecture 1.9 in
[Gre13]) updates Greene’s original conjecture with these knots.

In order to fully state Theorem 1.7 we must first discuss simple knots in
lens spaces. This is also the setting for a key ingredient, Theorem 1.6 in our
characterization of doubly primitive knots in S1 × S2.

1.2. Simple knots

A (1, 1)–knot is a knot K that admits a presentation as a 1–bridge knot with
respect to a genus 1 Heegaard splitting of the manifold M that contains it.
That is, M may be presented as the union of two solid tori Vα and Vβ in
which each K ∩ Vα and K ∩ Vβ is a boundary parallel arc in the respective
solid torus. We say K is simple if furthermore there are meridional disks
of Vα and Vβ whose boundaries intersect minimally in the common torus
Vα ∩ Vβ in M such that each arc K ∩ Vα and K ∩ Vβ is disjoint from these
meridional disks. One may show there is a unique (oriented) simple knot
in each (torsion) homology class of a lens space. Let us write K(p, q, k) for
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the simple knot in M = L(p, q) oriented so that it represents the homology
class kμ where (for a choice of orientation) μ is the homology class of the
core curve of one of the Heegaard solid tori and qμ is the homology class of
the other. Observe that trivial knots are simple knots and, as such, permits
both S3 and S1 × S2 to have a simple knot. There are no simple knots
representing the non-torsion homology classes of S1 × S2. Non-trivial simple
knots have also been called grid number one knots, e.g. in [BGH08, BG09]
among others.

The Homma-Ochiai-Takahashi recognition algorithm for S3 among genus
2 Heegaard diagrams [HOT80] says that a genus 2 Heegaard diagram of S3

is either the standard one or contains what is called a wave, see Section 4.
A wave in a Heegaard diagram indicates the existence of a handle slide that
will produce a new Heegaard diagram for the same manifold with fewer
crossings. As employed by Berge [Ber], the existence of waves ultimately
tells us that any (1, 1)–knot in a lens space with a longitudinal S3 surgery
is isotopic to a simple knot. As the dual to a doubly primitive knot is nec-
essarily a (1, 1)–knot, it follows that the dual to a doubly primitive knot in
S3 is a simple knot in the resulting lens space.

Negami-Okita’s study of reductions of diagrams of 3–bridge links gives
insights to the existence of wave moves on genus 2 Heegaard diagrams.

Theorem 1.5 (Negami-Okita [NO85]). Every Heegaard diagram of genus
2 for S1 × S2#L(p, q) may be transformed into one of the standard ones by
a finite sequence of wave moves.

Here, a standard genus 2 Heegaard diagram H = (Σ, {α1, α2}, {β1, β2})
for S1 × S2#L(p, q) is one for which α1 and β1 are parallel and disjoint
from α2 ∪ β2, and α2 ∩ β2 consists of exactly p points. If p �= 1, then the
standard diagrams are not unique. For our case at hand however, p = 1 and
the standard diagram is unique (up to homeomorphism). This enables a
proof of a result analogous to Berge’s.

Theorem 1.6.

1) A (1, 1)–knot in a lens space with a longitudinal S1 × S2 surgery is a
simple knot.

2) The dual to a doubly primitive knot in S1 × S2 is a simple knot in the
corresponding lens space.

A proof of this follows similarly to Berge’s proof for doubly primitive
knots in S3 and their duals, though there is a technical issue one ought
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mind. We will highlight this as we sketch the argument of a more general
result, Theorem 4.1, in section 4 following Saito’s treatment of Berge’s work
in the appendix of [Sai08].

1.3. The known knots in lens spaces with longitudinal
S1 × S2 surgeries.

Since our knots in families bg, gofk, and spor are all doubly primitive,
then Theorem 1.6 implies their lens space surgery duals are simple knots. In
particular, this means these duals are all at most 1–bridge with respect to the
Heegaard torus of the lens space, and thus they admit a nice presentation
in terms of linear chain link surgery descriptions of the lens space. This
surgery description (which we first obtained by simplifying ones suggested
by the lattice embeddings) facilitates the calculation of the homology classes
of these dual knots and hence their descriptions as simple knots.

Given the lens space L(p, q), let μ and μ′ be homology classes of the core
curves of the Heegaard solid tori oriented so that μ′ = qμ. The homology
class of a knot in L(p, q) is given as its multiple of μ.

Theorem 1.7. The lens spaces L(m2, q) of Theorem 1.2 may be obtained by
longitudinal surgeries on the following simple knots K = K(m2, q, k) listed
below.

1) q = md+ 1 such that gcd(m, d) = 1 and either
• k = ±m so that K is the dual to a bgi knot or
• k = ±dm so that K is the dual to a gofk knot;

2) q = md+ 1 such that gcd(m, d) = 2 and
• k = ±m so that K is the dual to a bgii knot;

3) q = d(m− 1) such that d is odd and divides m− 1 and either
• k = ±dm so that K is the dual to a bgiii knot,
• k = ±m so that K is the dual to a bgv knot, or
• k = ±2m = ±4m so that K is the dual to a spor knot if m =
1− 2d; or

4) q = d(m− 1) such that d divides 2m+ 1 and
• k = ±m or k = ±dm so that K (in each case) is the dual to a bgiv
knot.

Theorem 1.8 (Cebanu [Ceb13, Ceb]). If a knot in a lens space L rep-
resents the homology class κ ∈ H1(L) and admits a longitudinal surgery to
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S1 × S2 then, up to homeomorphism, L = L(m2, q) and κ = kμ are as in
some case of Theorem 1.7.

Remark 1.9. Let us outline an argument for the proof of Theorem 1.8 that
flows slightly differently than what’s in [Ceb13]. AssumeK is a knot in a lens
space with a longitudinal surgery to S1 × S2. Up to homeomorphism, K is
in one of Lisca’s lens spaces L(m2, q) listed in Theorem 1.2, and homological
arguments show that K has order m in homology. The problem is then to
determine which of the homology classes of order m could contain K.

Cebanu shows in his thesis that K must have genus 0 [Ceb13, Theo-
rem 3.4.1 and Section 3.5]. Since a simple knot in a lens space minimizes
genus in its homology class [NW14], it is sufficient to identify the simple
knots of order m in Lisca’s lens spaces L(m2, q) that have genus 0 and then
observe that their homology classes coincide with the classes listed in The-
orem 1.7.

Calculating the genus of a simple knot in any given homology class in a
lens space is a straightforward application of a formula of Ni [Ni09]. However,
determining which homology classes have simple knots of genus 0 for infinite
families of lens spaces becomes a tricky elementary number theory problem.
By ad hoc means, Cebanu solves this problem for the homology classes of
order m in the first two families of Lisca’s lens spaces in his thesis [Ceb13,
Theorem 4.8.5] and has claimed to have since done this for the remaining
two families [Ceb].

Remark 1.10. While Greene’s work on lattice embeddings produced a
classification of the homology classes of knots in lens spaces with a lon-
gitudinal S3 surgery [Gre13], Lisca’s work on lattice embeddings does not
appear to produce information about the classification of homology classes
of knots in lens spaces with longitudinal S1 × S2 surgeries [Lis07].

Remark 1.11. In [DIMS12], the authors classify the strongly invertible
knots in L((2n− 1)2, 2n) with longitudinal S1 × S2 surgeries. These belong
to the first case of Theorem 1.7 with m = 2n− 1 and d = 1. These knots
may be realized as both bgi knots and as gofk knots.

Theorem 1.12. The two families gofk and spor of knots in S1 × S2

that admit a longitudinal lens space surgery, generically do not arise from
Berge-Gabai knots.

Proof. As stated earlier, this follows from the listing of the homology classes
in Theorem 1.7 of the surgery duals to the knots in our three coarse families
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of doubly primitive knots. This is examined explicitly for the spor family in
Proposition 3.5. Alternatively, for the gofk family, Proposition 2.2 shows
that generically these knots are hyperbolic and “most” have volume greater
than the hyperbolic bg knots. �

Theorem 1.13. A doubly-primitive knot in S1 × S2 is either a Berge-
Gabai knot, a knot that embeds in the fiber of a genus one fibered knot,
or a sporadic knot.

Proof. Theorem 1.8 confirms that the only homology classes in lens spaces
that may be realized by surgery duals to knots in S1 × S2 are those described
in Theorem 1.7. In particular, each of these homology classes are represented
by simple knots in lens spaces that are surgery dual to a doubly-primitive
knot in family bg, gofk, or spor. Theorem 1.6 implies that the surgery dual
to a doubly-primitive knot in S1 × S2 (with its doubly-primitive surgery) is
a simple knot in the resulting lens space. Since each first homology class in
a lens space has a unique simple knot, the result follows. �

Remark 1.14. Conjecture 1.1 then asserts that a knot in S1 × S2 with a
lens space surgery belongs to family bg, gofk, or spor.

Furthermore, Conjecture 1.1 may be rephrased as saying if a knot K in
a lens space L admits a longitudinal S1 × S2 surgery, then up to homeo-
morphism L = L(p, q) and [K] = κ = kμ in some case of Theorem 1.7 and
moreover K = K(p, q, k).

1.4. Fibered knots and spherical braids

Ni shows that knots in S3 with a lens space surgery have fibered exterior
[Ni07]. One expects the same to be true for any knot in S1 × S2 with a lens
space surgery. Using knot Floer Homology, Cebanu shows this is indeed the
case.

Theorem 1.15 ([Ceb13, Theorem 3.7.1]). A knot in S1 × S2 with a
longitudinal lens space surgery has fibered exterior.

Prior to learning of Cebanu’s results, we had confirmed this for all our
doubly primitive knots by explicitly showing they are spherical braids. A
link in S1 × S2 is a (closed) spherical braid if it is transverse to {θ} × S2

for each θ ∈ S1. Braiding characterizes fiberedness for non-null homologous
knots in S1 × S2.
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Lemma 1.16. A non-null homologous knot in S1 × S2 has fibered exterior
if and only if it is isotopic to a spherical braid.

Proof. If K is a spherical braid, then the punctured spheres ({θ} × S2)−
N(K) for θ ∈ S1 fiber the exterior of K.

Now let X(K) = S1 × S2 −N(K) denote the exterior of a knot K in
S1 × S2. If K is non-null homologous in S1 × S2, then the algebraic intersec-
tion number ofK with a level sphere (its winding number) must be non-zero.
Hence the kernel of the map H1(∂X(K)) → H1(X(K)) induced by inclusion
is generated by a non-zero multiple of the meridian of K. Therefore, if X(K)
is fibered, then the image of H2(X(K), ∂X(K)) → H1(∂X(K)), which is
generated by the boundary of a fiber, is a collection of oriented meridional
curves. Moreover, these meridional curves are coherently oriented since the
fibration of X(K) must restrict to a fibration of ∂X(K). Therefore the triv-
ial (meridional) filling of X(K) which returns S1 × S2 must also produce a
fibration over S1 by closed surfaces, the capped off fibers of X(K). Hence
the fibers of X(K) must be punctured spheres, and so K is isotopic to a
spherical braid. �

Remark 1.17. Together Theorem 1.15 and Lemma 1.16 suggest the study
of surgery on spherical braids.

One may care to compare these results with Gabai’s resolution of Prop-
erty R [Gab87]: The only knot in S1 × S2 with a surgery yielding S3 is a
fiber S1 × ∗.

1.5. Geometries of knots and lens space surgeries

For completeness, here we address the classification of lens space Dehn surg-
eries on non-hyperbolic knots in S1 × S2.

Theorem 1.18. A non-hyperbolic knot in S1 × S2 with a non-trivial lens
space surgery is either a (p, q)–torus knot or a (2,±1)–cable of a (p, q)–torus
knot.

Proof. We say a knot K in a 3–manifold M is either spherical, toroidal,
Seifert fibered, or hyperbolic if its exterior M −N(K) contains an essential
embedded sphere, contains an essential embedded torus, admits a Seifert
fibration, or is hyperbolic respectively. By Geometrization for Haken mani-
folds, a knot K in S1 × S2 is (at least) one of these. By the Cyclic Surgery
Theorem [CGLS87], if a non-trivial knot K admits a non-trivial lens space
surgery, then either the surgery is longitudinal or K is Seifert fibered.
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If K is spherical, then one may find a separating essential sphere in
the exterior of K. Since S1 × S2 is irreducible, K is contained in a ball.
Therefore K only admits a lens space surgery (in fact an S1 × S2 surgery)
if K is the trivial knot, [Gab87, GL89b].

If K is Seifert fibered then K is a torus knot. This follows from the clas-
sification of generalized Seifert fibrations of S1 × S2, [JN83]. Note that the
exceptional generalized fiber of M(−1; (0, 1)) is a regular fiber of M(0; (2, 1),
(2,−1)), and its exterior is homeomorphic to both the twisted circle bun-
dle over the Möbius band and the twisted interval bundle over the Klein
bottle. For relatively prime integers p, q with p ≥ 0, we define a (p, q)–
torus knot Tp,q in S1 × S2 to be a regular fiber of the generalized Seifert
fibration M(0; (p, q), (p,−q)). (The exceptional fibers may be identified with
S1 × n and S1 × s for antipodal points n, s ∈ S2.) Equivalently, we may
regard Tp,q as a curve on ∂N(S1 × ∗), ∗ ∈ S2, that is homologous to qμ+
pλ ∈ H1(∂N(S1 × ∗)) for meridian-longitude classes μ, λ and an appropriate
choice of orientation on Tp,q. Observe [Tp,q] = p[S1 × ∗] ∈ H1(S

1 × S2) and
Tp,q = Tp,q+Np for any integer N . Following [Mos71, Gor83] (though note
that on the boundary of a solid torus, a (p, q) curve for them is a (q, p)
curve for us) any non-trivial lens space surgery on a (p, q)–torus knot with
p ≥ 2 has surgery slope 1/n, taken with respect to the framing induced by
the Heegaard torus, and yields the lens space L(np2, npq + 1).

If K is toroidal (and not spherical) then there is an essential torus T
in the exterior of K which compresses in S1 × S2. Thus in S1 × S2, this
torus must either be non-separating or bound a ∂–reducible manifold M
that contains K. If T is a non-separating torus in S1 × S2, then any lens
space obtained by surgery on K must also contain a non-separating torus
and hence also be S1 × S2. Gabai shows that this implies K is a trivial knot
[Gab87], but then T would have a compression disjoint from K. So let us
assume T bounds a ∂–reducible manifold M that contains K. Furthermore,
since T is essential and K is not contained in a ball, M −K is irreducible
and ∂–irreducible. If surgery on K produces the lens space Y with surgery
dual knot K ′, then the image of T in Y bounds a ∂–reducible manifold M ′

that contains K ′ (because T must compress in Y ′ while being essential in
the exterior of K ′).

If M is a solid torus, then the proof in [BL89] applies basically unaltered
(because Seifert fibered knots in S1 × S2 are torus knots and lens spaces are
atoroidal) to show K must be a (2,±1)–cable of a torus knot. Here the
cable is taken with respect to the framing on the torus knot induced by
the Heegaard torus. In this situation ±1 surgery on K with respect to its
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framing as a cable is equivalent to ±1/4 surgery on the (p, q)–torus knot
and thus yields L(4p2, 4pq ± 1) or its mirror.

If M is not a solid torus then M = S1 × S2#S1 ×D2 and T bounds
the exterior X of a non-trivial knot in S3 for which a meridian in T = ∂X
bounds a compressing disk D in M . Gabai shows that if M ′ were a solid
torus then K ′ would have to be disjoint from a compressing disk for T
[Gab89] and hence T would not be essential in the exterior of K; hence
M ′ = Y#S1 ×D2. Scharlemann then implies that K must be isotopic into
T [Sch90], but this now contradicts that K is not contained in a ball. �

Corollary 1.19.

• The smallest order lens space obtained by surgery on a toroidal knot
in S1 × S2 is homeomorphic to L(4, 1). The surgery dual is the simple
knot K(4, 1, 2).

• The smallest order lens space obtained by surgery on a non-torus,
toroidal knot in S1 × S2 is homeomorphic to L(16, 9). The surgery
dual is the (unoriented) simple knot K(16, 9, 4).

Note that the orientation of a knot has no bearing upon its surgeries.
Ignoring orientations, K(16, 9, 4) is equivalent to K(16, 9, 12). The simple
knot K(4, 1, 2) is isotopic to its own orientation reverse.

Also note, because the (2, 1)–torus knot in S1 × S2 contains an essential
Klein bottle in its exterior, it is toroidal.

Bleiler-Litherland conjecture that the smallest order lens space obtained
by surgery on a hyperbolic knot in S3 is homeomorphic to L(18, 5) [BL89].
Among our list of doubly primitive knots in S1 × S2, up to homeomorphism,
we find three hyperbolic knots of order 5 in families bgiii, bgv, and gofk
with integral lens space surgeries; all the doubly primitive knots with smaller
order are non-hyperbolic.

Conjecture 1.20. Up to homeomorphism, L(25, 7) and L(25, 9) are the
smallest order lens spaces obtained by surgery on a hyperbolic knot in S1 ×
S2. Moreover, the surgeries occur on the knots shown with their correspond-
ing doubly primitive family in Figure 1. From left to right, their surgery duals
are the (unoriented) simple knots K(25, 7, 5), K(25, 7, 10), and K(25, 9, 10)
respectively.

Remark 1.21. The knots on the right and left of Figure 1 are actually
isotopic. Kadokami-Yamada show that among the non-torus gofk knots
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this is the only knot (up to homeomorphism) that admits two non-trivial
lens space surgeries [KY14]. Along these lines, Berge shows there is a unique
hyperbolic knot in the solid torus with two non-trivial lens space surgeries
[Ber91], and this gives rise to a single bgiv knot (up to homeomorphism)
having surgeries to both orientations of L(49, 18) [BHW99].

BGIII BGV

0

GOFK

00

Figure 1: Three presentations of hyperbolic knots in S1 × S2 with surgeries
to lens spaces of order 25. The ones on the left and right are actually isotopic
and have two distinct lens space surgeries.

1.6. Basic definitions and some notation

1.6.1. Dehn surgery. Consider a knot K in a closed 3–manifold M with
regular solid torus neighborhood N(K). The isotopy classes of essential sim-
ple closed curves on ∂N(K) ∼= ∂(M −N(K)) are called slopes. The merid-
ian of K is the slope that bounds a disk in N(K) while the slopes that
algebraically intersect the meridian once (and hence are isotopic to K in
N(K)) are longitudes. Given a slope γ, the manifold obtained by removing
the solid torus N(K) from M and attaching another solid torus so that γ
is its meridian is the result of γ–Dehn surgery on K. The core of the at-
tached solid torus is a new knot in the resulting manifold and is the surgery
dual to K. If γ is a longitude, then γ–Dehn surgery is a longitudinal surgery
or simply a surgery. Fixing a choice of longitude and orienting both the
meridian and this longitude so that they represent homology classes μ and
λ in H1(∂N(K)) with μ · λ = +1 enables a parametrization associating the
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slope γ to the extended rational number p
q ∈ Q ∪ {1/0}, gcd(p, q) = 1, if for

some orientation [γ] = pλ+ qμ. Then γ–Dehn surgery may also be denoted
p
q–Dehn surgery. Consequentially longitudinal surgery is also called integral
surgery.

1.6.2. Tangles and bandings. The knot K in M is said to be strongly
invertible if there is an involution u on M that set-wise fixes K and whose
fixed set intersects K exactly twice (and thus the fixed set is a non-empty
link), and the involution is said to be a strong involution. The quotient of
M by u is a 3–manifold M/ ∼, where x ∼ u(x), in which the fixed set of
u descends to a link J and the knot K descends to an embedded arc α
such that J ∩ α = ∂α. A small ball neighborhood B = N(α) of α intersects
J in a pair of arcs t so that (B, t) is a rational tangle, i.e. a tangle in a
ball homeomorphic to (D2 × I, {±1

2} × I) where D2 is the unit disk in the
complex plane and I is the interval [−1, 1]. The solid torus neighborhood
N(K) of K may be chosen so that the image of its quotient under u is
B, and equivalently so that it is the double cover of B branched along t.
The Montesinos Trick refers to the correspondence through branched double
covers and quotients by strong involutions between replacing the rational
tangle (B, t) with another and Dehn surgery on K. In particular, a banding
of J along the arc α corresponds to longitudinal surgery on K. A banding of
J is the act of embedding of a rectangle I × I in M/ ∼ to meet J in the pair
of opposite edges I × ∂I and exchanging those sub-arcs of J for the other pair
of opposite edges ∂I × I. The banding occurs along an arc α = {0} × I and
the banding produces the dual arc I × {0}. Figure 2 illustrates the banding
operation and both its framed arc and literal band depictions that we use in
this article. Figure 3 shows how a rectangular box labeled with an integer n
denotes a sequence of |n| twists in the longer direction. The twists are right
handed if n > 0 and left handed if n < 0. To highlight cancellations, a pair
of twist boxes will be colored the same if their labels have opposite sign.

1.6.3. Lens spaces, two bridge links, plumbing manifolds. The lens
space L(p, q) is defined as the result of −p/q–Dehn surgery on the unknot
in S3. The lens space L(p, q) may be obtained by surgery on the linear
chain link as shown at the top of Figure 4 with integral surgery coefficients
−a1, . . . ,−an that are the negatives of the coefficients of a continued fraction
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framed arc

0
0

0
3

band=
dual

framed arc

banding

Figure 2: Two examples of bandings along a framed arc.

=3=3

Figure 3: Sequences of twists are represented with oblong rectangles and
integers.

expansion

p

q
= [a1, . . . , an]

− = a1 −
1

a2 −
1

...

an−1 −
1

an

.

The picture of this chain link also shows the axis of a strong involution
u that extends through the surgery to an involution of the lens space. The
quotient of this involution of the lens space, via the involution of this surgery
diagram, is S3 in which the axis descends to the two-bridge link K(p, q)
with the diagram L(−a1, . . . ,−an) as shown at the bottom of Figure 4. The
orientation preserving double cover of S3 branched over K(p, q) is the lens
space L(p, q). Observe that the two-component unlink is K(0, 1), 0/1 = [0]−,
and we regard S1 × S2 as the lens space L(0, 1).
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Figure 4: Integer surgery on a linear chain link (above) admits an involution
along an axis whose quotient is a two-bridge link S3 (below).

n is even n is odd

Figure 5: Alternative versions of Figure 4.

From a 4–manifold perspective, the top of Figure 4 is a Kirby diagram for
a plumbing manifold whose boundary is L(p, q). By an orientation preserving
homeomorphism, we may take p > q > 0 and restrict the continued fraction
coefficients to be integers ai ≥ 2 so that L(p, q) is the oriented boundary
of the negative definite plumbing manifold P (p, q) associated to the tuple
(−a1, . . . ,−an).

Figure 5 shows alternative (and isotopic) versions of this chain link and
two-bridge link diagrams for the two cases of n even and n odd.
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2. Generalizing Berge’s doubly primitive knots

Berge describes twelve families of doubly primitive knots in S3, [Ber]. Greene
confirms that this list is complete, [Gre13]. The first author gives surgery
descriptions of these knots and tangle descriptions of the quotients by their
strong involutions, [Bak08a, Bak08b]. (These knots admit unique strong
involutions, [WZ92].)

We partition Berge’s twelve families into three coarse families: bg, the
Berge-Gabai knots, arising from knots in solid tori with longitudinal surg-
eries producing solid tori; gofk, the knots that embed in the fiber of a genus
one fibered knot (the figure eight knot or a trefoil); and spor, the so-called
sporadic knots, which may be seen to embed in a genus one Seifert surface
of a banding of a (2,±1)–cable of a trefoil. (The framing of this cabling is
with respect to the Heegaard torus containing the trefoil.)

Here, we generalize these three families of doubly primitive knots in S3

to obtain three analogous families of doubly primitive knots in S1 × S2 that
we also call bg, gofk, and spor. Since they are strongly invertible, we
explicitly describe them through their quotient tangles.

2.1. The bg knots

Let us say a strong involution of a knot in a solid torus is an involution of
a solid torus whose fixed set is two properly embedded arcs such that the
knot intersects this fixed set twice and is invariant under the involution. The
quotient of the pair of the solid torus and fixed set under this involution is a
rational tangle (B, t) where B is a 3–ball and t is a pair of properly embedded
arcs together isotopic into ∂B. The image of the knot in this quotient is an
arc α embedded in B with ∂α = α ∩ t. A knot with a strong involution is
strongly invertible.

The Berge-Gabai knots in solid tori are all strongly invertible as evi-
denced by them being 1–bridge braids (or torus knots) and hence tunnel
number 1. We say an arc α in a rational tangle is a Berge-Gabai arc if it
is the image of a Berge-Gabai knot under the quotient by a strong involu-
tion. By virtue of the Berge-Gabai knots admitting longitudinal solid torus
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surgeries, there are bandings along these arcs that produce rational tan-
gles. The dual arcs to these bandings in the new rational tangles are also
Berge-Gabai arcs. Using these we obtain a proof of Theorem 1.2 (through a
proof of Corollary 1.3 and taking double branched covers) along the lines of
Rasmussen’s observation.

Direct proof of Corollary 1.3. Lisca’s work constrains which two-bridge links
admit a single banding to the unlink [Lis07]. Therefore, it remains to demon-
strate that each of these lens spaces indeed do admit a single banding. We
do so here, and in the process show that each banding may be done with a
Berge-Gabai arc.

Doubling a rational tangle (by gluing it to its mirror) produces the two-
component unlink K(0, 1). Therefore, if (B, t) is a rational tangle and α
is a Berge-Gabai arc in (B, t) along which a banding produces the rational
tangle (B, t′), then banding the double (B, t) ∪ −(B, t) = (S3,K(0, 1)) along
α produces the two-bridge link (B, t′) ∪ −(B, t).

In [BB13], descriptions of the Berge-Gabai arcs are derived from the quo-
tient tangle descriptions in [Bak08b] of the knots in Berge’s doubly primitive
families I – VI [Ber]. As done in [BB13], one may then explicitly observe
that family VI is contained within family V, and (with mirroring) family V
is dual to family III. Families I, II, and IV are each self-dual. (One family of
Berge-Gabai arcs is dual to another if the arc dual to the banding along any
arc in the first family, together with the resulting tangle, may be isotoped
while fixing the boundary of the tangle into the form of a member of the
second family.) It is also shown in [BB13] that these knots in solid tori ad-
mit a unique strong involution in which the solid torus quotients to a ball,
and hence up to homeomorphism there is a unique arc in a rational tangle
corresponding to each Berge-Gabai knot in the solid torus. The resulting
classification of bandings between rational tangles up to homeomorphism
from [BB13] is shown in Figure 6. Figures 7, 8, and 9 show the result of dou-
bling these families (with their duals) to obtain K(0, 1) and then banding
along a Berge-Gabai arc to obtain a two-bridge link. Observe that the two-
bridge links produced by the dual pairs in families III and V in Figures 7 are
equivalent as are the two-bridge links produced by the dual pairs in family
IV. For the purposes of proving Corollary 1.3 only one among each of these
dual pairs is required.

We now observe that the two-bridge links produced match with those
of Lisca’s Section 8 [Lis07]. He shows that up to homeomorphism these
links may be presented as in the first of one of his Figure 2, Figure 3, or
Figure 4. We redraw these three in Figure 10 for the reader’s convenience,
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q =

[a, 2, b, 2,−a+ 1,−b+ 1]− corresponding to families bgiii and bgv.

isotoping his Figure 2. In each of his Figure 2 and Figure 4 Lisca exhibits a
single banding as shown in our Figure 10 that transforms those two-bridge
links to the unlink. In his Figure 3 he uses two bandings as also shown in our
Figure 10. As one may now observe, the two bridge links of Lisca’s Figures 2,
3, and 4 correspond (with mirroring and reparametrizations as needed) to
those produced respectively in families I, IV, and III of Figures 7, 9, and 8.
Note that family II produces two-bridge links not accounted for in Lisca’s
pictures. Nevertheless the corresponding lens spaces are accounted for in his
proof of [Lis07, Lemma 7.2], as discussed in Remark 1.4. �

Remark 2.1. In S1 × S2, as in S3, family I consists of the torus knots
while family II consists of the (2,±1)–cables of torus knots. (This cable is
taken with respect to the framing induced by the Heegaard torus containing
the torus knot.) Families III, IV, and V contain hyperbolic knots.
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2.2. The gofk knots

Conjecture 1.8 of [Gre13] proposes that the knot surgeries corresponding to
the double branched covers of the above bandings are, up to homeomor-
phisms, the only way that integral surgery on a knot in S1 × S2 may yield a
lens space. However since S1 × S2 contains a genus one fibered knot, we may
form the family gofk of knots that embed in the fiber of genus one fibered
knots in S1 × S2 and then mimic [Bak08a] to produce our first infinite family
of counterexamples.

The annulus together with the identity monodromy gives an open book
for S1 × S2. Plumbing on a positive Hopf band along a spanning arc pro-
duces a once-punctured torus open book, i.e. a (null-homologous) genus one
fibered knot. One may show (e.g. [Bak14]) that this and its mirror are the
only two genus one fibered knots in S1 × S2. Any essential simple closed
curve in one of these fibers is then a doubly primitive knot in S1 × S2 and
thus admits a lens space surgery along the slope of its page framing. We
call the family of these essential simple closed curves the gofk. These knots
are analogous to the knots in Berge’s families VII and VIII, [Ber]. Yamada
had previously developed this family of knots with these lens space surgeries
[Yam07], though he constructs them from a different viewpoint.

Proposition 2.2. There are gofk knots that are not Berge-Gabai knots.
Moreover the gofk knots contain hyperbolic knots of arbitrarily large vol-
ume.

Proof. Following [Bak08a] each gofk knot admits a surgery description on
the Minimally Twisted 2n+ 1 Chain link (the MT(2n+ 1)C for short) for
some n ∈ Z. Furthermore, for each positive integer n and any value N , there
is a doubly primitive knot on a once-punctured torus page of this open
book with a surgery description on the MT(2n+ 1)C whose surgery coeffi-
cients all have magnitude greater than N . Therefore, as in [Bak08a], since
MT(2n+ 1)C is hyperbolic for n ≥ 2 we may conclude using Thurston’s Hy-
perbolic Dehn Surgery Theorem [Thu97] and the lower bound on the volume
of a hyperbolic manifold with n cusps [Ada92] that the set of volumes of
hyperbolic knots on this once-punctured torus page is unbounded.

The Berge-Gabai knots in S1 × S2 of [Gre13, Conjecture 1.8] however all
admit surgery descriptions on the MT5C (as apparent from [Bak08b]) and
thus have volume less than vol(MT5C) < 11. Thus they are often distinct
from the gofk knots. Alternatively, this conclusion follows from examining
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the homology classes of their surgery duals as presented in Theorem 1.7 (1).
�

Any genus one fibered knot may be viewed as the lift of the braid axis
in the double cover of S3 branched over a closed 3–braid. This enables a
pleasant interpretation of the gofk knots and their lens space surgeries as
corresponding to bandings from a closed 3–braid presentation of the unlink
to two-bridge links. Because Lisca’s list of two-bridge links that admit band-
ings to the unlink is complete, these bandings must give different bandings
to the unlink for many of these two-bridge links; these bandings correspond
to surgeries on knots in different homology classes as presented in Theo-
rem 1.7 (1). Indeed Figure 11 shows the two different bandings between the
unlink and a two-bridge link corresponding to the gofk knots on the left
and bgi knots on the right.
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Figure 11: Left, a banding from the unlink to a two-bridge link correspond-
ing to family gofk. Right, a banding from the unlink to the same two-bridge
link corresponding to family bgi.
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ing to the sporadic family of knots. Replace either of the −2 twists in the
dashed ovals, but not both, with −3 twists to obtain bandings corresponding
to Berge’s families of sporadic knots in S3.

2.3. The spor knots

Berge’s families IX–XII of doubly primitive knots in S3 condense to two
families and are collectively referred to as the sporadic knots. In the dou-
ble branched cover, the family of blue arcs (n ∈ Z) in the second link of
Figure 12 lifts to the analogous sporadic knots in S1 × S2, the S1 × S2–
spor knots. (As one may confirm by examining the tangle descriptions in
[Bak08b], Berge’s two sporadic knot families are obtained by placing −3
instead of −2 twists in either the top or bottom dashed oval, but not both.)
This second link is the two-component unlink as illustrated by the subse-
quent isotopies. The link at the beginning of Figure 12 results from banding
as shown. It is a two-bridge link and coincides with the two bridge link in
family III of Figure 8 with a = n and b = −1 and, after mirroring, with
the two-bridge link of Lisca’s Figure 4 in our Figure 10 with a = 2 and
b = −n+ 1. In Section 3 we show these knots are generically distinct from
the Berge-Gabai knots by examining the homology classes of the correspond-
ing knots in the lens spaces.

3. Homology classes of the dual knots in lens spaces

Figure 13 gives, up to homeomorphism, strongly invertible surgery descrip-
tions of the lens space duals to the bg, gofk, and spor knots with their
S1 × S2 surgery coefficient. Figures 14 and 15 show how quotients of these
surgery descriptions produce the tangles in Figures 7, 8, 9, 11, and 12 that
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doubly primitive knots.

defined these knots. We will use these surgery descriptions to determine the
homology classes of these knots.

3.1. Continued fractions

First we establish a few basic results about continued fractions. These appear
throughout the literature in various forms, but it is useful to set notation
and collect them here.

Given the continued fraction [a1, . . . , ak]
−, define the numerators and

denominators of the “forward” convergents as follows:

P−1 = 0 P0 = 1 Pi = aiPi−1 − Pi−2

Q−1 = −1 Q0 = 0 Qi = aiQi−1 −Qi−2
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Figure 14: Quotients of the chain link surgery descriptions of the lens space
duals to the bgi, bgii, and gofk knots.

Claim 3.1. For i = 1, . . . , k, Pi

Qi
= [a1, . . . , ai]

− and Pi−1Qi − PiQi−1 = 1.

Proof. These are immediate when i = 1, so assume they are true for contin-
ued fractions of length up to i. Writing

[a1, . . . , ai−1, ai, ai+1]
− = [a1, . . . , ai−1, a

′
i]
−

where a′i = ai − 1
ai+1

, the numerator of the forward convergent of the con-
tinued fraction on the right hand side is

P ′
i = a′iP

′
i−1 − P ′

i−2 = (ai − 1

ai+1
)Pi−1 − Pi−2

= − 1

ai+1
Pi−1 + aiPi−1 − Pi−2 = − 1

ai+1
Pi−1 + Pi.

Similarly the denominator is Q′
i = − 1

ai+1
Qi−1 +Qi. Then

Pi+1

Qi+1
=

ai+1Pi − Pi−1

ai+1Qi −Qi−1
=

Pi − 1
ai+1

Pi−1

Qi − 1
ai+1

Qi−1
=

P ′
i

Q′
i

= [a1, . . . , ai+1]
−
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Figure 15: Quotients of the chain link surgery descriptions of the lens space
duals to the bgiii, bgv, and bgiv knots. (Isotopies of the arcs are done inde-
pendently even when shown on the same link. To correspond with Figure 9,
the end position for the bgiv arc is third from the bottom on the right while
further flypes and an overall rotation are still needed for the bgiv’ arc.)

as desired. Also

Pi−1Qi − PiQi−1

= Pi−1(aiQi−1 −Qi−2)− (aiPi−1 − Pi−2)Qi−1

= Pi−2Qi−1 − Pi−1Qi−2 = · · · = P−1Q0 − P0Q−1 = 1. �
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Given the continued fraction [ak, . . . , a1]
−, define the numerators and

denominators of the “backward” convergents as follows:

p−1 = 0 p0 = 1 pi = aipi−1 − pi−2

q−1 = −1 q0 = 0 qi = ai−1qi−1 − qi−2

Claim 3.2. For i = 1, . . . , k, pi

qi
= [ai, . . . , a1]

− and qi = pi−1.

Proof. These are immediate when i = 1, so assume they are true for contin-
ued fractions of length up to i. First qi+1 = aiqi − qi−1 = aipi−1 − pi−2 = pi.
Then

[ai+1, ai, . . . , a1]
− = ai+1 − 1

[ai, . . . , a1]−
= ai+1 − 1

pi/pi−1

=
ai+1pi − pi−1

pi
=

pi+1

qi+1
.

�

Lemma 3.3. [b1, . . . , bk, c,−bk, . . . ,−b1]
− =

cP 2
k

cPkQk + 1

Proof. Notice that for this continued fraction we have Pi

Qi
= [b1, . . . , bi]

− and
pi

qi
= [−bi, . . . ,−b1]

− for i = 1, . . . , k. Using the definitions of Pi and pi one

can show that pi = (−1)iPi for i = 1, . . . , k. Then we have:

[b1, . . . , bk, c,−bk, . . . ,−b1]
−

= [b1, . . . , bk, c− 1

[−bk, . . . ,−b1]−
]−

= [b1, . . . , bk, c− pk−1

pk
]− =

(c− pk−1

pk
)Pk − Pk−1

(c− pk−1

pk
)Qk −Qk−1

=
cpkPk − pk−1Pk − pkPk−1

cpkQk − pk−1Qk − pkQk−1

=
(−1)kcPkPk − (−1)k−1Pk−1Pk − (−1)kPkPk−1

(−1)kcPkQk − (−1)k−1Pk−1Qk − (−1)kPkQk−1

=
(−1)kcP 2

k

(−1)kcPkQk + (−1)k(Pk−1Qk − PkQk−1)
=

cP 2
k

cPkQk + 1
�
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3.2. Homology classes of the duals to the bg, gofk,
and spor knots

We now calculate the homology classes of the knots indicated in Figure 13.
To do so, orient and index each linear chain link L = L1 ∪ · · · ∪ Ln of n
components from right to left as in Figure 16. Denote the exterior of this
link by X(L) = S3 −N(L). Let {μi, λi} be the standard oriented meridian,
longitude pair giving a basis for the homology of the boundary of a reg-
ular neighborhood of the ith component, H1(∂N(Li)). Then H1(X(L)) =
〈μ1, . . . , μn〉 ∼= Zn. Take λi so that it is represented by the boundary of
a meridional disk in H1(S

3 −N(Li)). Then in H1(X(L)) we have λi =
μi−1 + μi+1 for i ∈ {1, . . . , n} where μ0 = μn+1 = 0. Let L(−a1, . . . ,−an)
denote the lens space obtained by this surgery description on the chain
link L with −ai surgery on the ith component. The surgery induces the
relation λi = aiμi for each i and hence the relation 0 = μi−1 − aiμi + μi+1

in H1(X(L)). Thus H1(L(−a1, . . . ,−an)) = 〈μ1, . . . , μn : μi−1 − aiμi +
μi+1, i ∈ {1, . . . , n}〉.

Lemma 3.4. Let L(p, q) = L(−a1, . . . ,−an) be the lens space described by
surgery on the n component chain link with surgery coefficient −ai on the
ith component so that p

q = [a1, . . . , an]
−.

Then μi = Pi−1μ1 in H1(L(p, q)) for each i = 1, . . . , n. In particular,
p = Pn and q−1 = Pn−1 so that qμn = μ1.

Proof. Since μ2 = a1μ1 = P1μ1 and μi+1 = aiμi − μi−1, the result follows
from the definition of Pi and a simple induction argument. Assuming this
statement is true up through i,

μi+1 = aiμi − μi−1 = aiPi−1μ1 − Pi−2μ1 = (aiPi−1 − Pi−2)μ1 = Piμ1.

The last statement follows since Pi−1 = Q−1
i mod Pi by Claim 3.1. �

Proof of Theorem 1.7. Figure 13 shows linear chain link surgery descriptions
of Lisca’s lens spaces with additional unknotted components that describe
knots in these lens spaces. Orient these knots in Figure 13 counter-clockwise.
The homology class of each such knot K may be determined in terms of the
meridians of the chain link by counting μi for each time K runs under the
ith component to the left and counting −μi for each time K runs under
the ith component to the right. Applying Lemma 3.4 allows us to write the
homology class of K in terms of μ1. For the four families of Theorem 1.2,
and using its notation, we obtain the following:
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(1) With (−a1, . . . ,−a4k+1) = (−b1, . . . ,−b2k,−1, b2k, . . . , b1),
p
q = [b1,

. . . , b2k, 1,−b2k, . . . , b1]
− = m2

q where m = P2k, d = Q2k and q =
P2kQ2k + 1 = md+ 1. This gives both that 1− q = −dm and that
qm = m mod p. Furthermore μ1 = qμ4k+1.

[Kbgi] = −μ2k+1 = −P2kμ1 = −mμ1 = −qmμ4k+1 = −mμ4k+1

[Kgofk] = μ1 − μ4k+1 = (1− q)μ1 = −dmμ1 = −dqmμ4k+1 = −dmμ4k+1

(2) With (−a1, . . . ,−a2k+1) = (−b1,−b2, . . . ,−bk,−4, bk, . . . , bk),
p
q = [b1,

. . . , bk, 4,−bk, . . . ,−b1] =
m2

q where m = 2Pk, d = 2Qk, and q =
4PkQk + 1 = md+ 1. This gives that qm = m mod p. Furthermore
μ1 = qμ4k+1.

[Kbgii] = μk − 2μk+1 + μk+2 = (Pk−1 − 2Pk + Pk+1)μ1

= (Pk−1 − 2Pk + (4Pk − Pk−1))μ1 = 2Pkμ1 = mμ1

= qmμ4k+1 = mμ4k+1

(3) With (−a1, . . . ,−a6) = (t+ 1,−s− 2,−2,−t− 2,−2, s+ 1), p
q =

[−t− 1, s+ 2, 2, t+ 2, 2,−s− 1]− = (4+3t+2s+2st)2

−(3+2s)2(1+t) . Then takem = 4 +

3t+ 2s+ 2st so that p = m2 and d = −(3 + 2s) so that q = d(m− 1).
This gives that d is odd, that (m− 1) = −d(1 + t) from which d−1m =
(1 + t)m mod p, and that qm = −dm mod p. Furthermore μ1 = qμ6.

[Kbgiii] = μ1 + μ4 = (1 + P3)μ1 = −(4 + 3t+ 2s+ 2st)μ1

= −mμ1 = −qmμ6 = dmμ6

[Kbgv] = μ3 − μ5 = (P2 − P4)μ1 = (1 + t)(4 + 3t+ 2s+ 2st)μ1

= (1 + t)mμ1 = d−1mμ1 = d−1qmμ6 = −mμ6

When t = 1 we have a third knot. Then (−a1, . . . ,−a6) = (2,−s−
2,−2,−3,−2, s+ 1), p

q = [−2, s+ 2, 2, 3, 2,−s− 1]− = (7+4s)2

−2(3+2s)2 , and
m = 1− 2d.

[Kbgiii] = −(7 + 4s)μ1 = −mμ1 = dmμ6,

[Kbgv] = 2(7 + 4s)μ1 = 2mμ1 = −2dmμ6 = (m− 1)mμ6 = −mμ6,

[Kspor] = μ2 − μ6 = (P1 − P5)μ1 = 4(7 + 4s)μ1 = 4mμ1 = −2mμ6.

(4) With (−a1, . . . ,−a6) = (t+ 1,−2,−s− 2,−t− 2,−2, s+ 1), p
q =

[−t− 1, 2, s+ 2, t+ 2, 2,−s− 1]− = (4+3s+3t+2st)2

−(3+2s)(3+3s+3t+2st) . Then take
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Figure 16.

m = 4 + 3s+ 3t+ 2st so that p = m2 and d = −(3 + 2s) so that q =
d(m− 1). This gives both that (2m+ 1) = −d(3 + 2t) from which
d−1m = −(3 + 2t)m mod p and that qm = −dm mod p. Furthermore
μ1 = qμ6.

[Kbgiv] = μ1 + μ4 = (1 + P3)μ1 = −(4 + 3s+ 3t+ 2st)μ1 = −mμ1

= −qmμ6 = dmμ6

[K ′
bgiv] = μ3 + μ6 = (P2 + P5)μ1 = −(3 + 2t)(4 + 3s+ 3t+ 2st)μ1

= d−1mμ1 = d−1qmμ6 = −mμ6.

Let μ and μ′ be the homology classes of the two cores of the Heegaard
solid tori of L(p, q) suitably oriented so that qμ = μ′. Then, we have μ =
μ4k+1 for (1) and (2) and μ = μ6 for (3) and (4) in the calculations above.
Since a knot’s orientation does not effect its Dehn surgeries, taking both
signs of the homology classes above competes the proof of Theorem 1.7. �

Proposition 3.5. The spor knots generically are not Berge-Gabai knots.
In particular, when t = 1 and n = s+ 2 �= −1, 0 the surgery duals to

spor, bgiii, bgv are mutually distinct. When t = 1 and n = s+ 2 = 0, these
knots are all the unknot in S3. When t = 1 and n = s+ 2 = −1 the knots
spor and bgiii are isotopic to but distinct from bgv.

Proof. Up to mirroring, the lens space obtained by longitudinal surgery on a
sporadic knot is L(p, q) = L((7 + 4s)2,−2(3 + 2s)2). Let us reparametrize by
s = n− 2 so that L(p, q) = L((4n− 1)2,−2(2n− 1)2) = L((4n− 1)2, 8n2 −
1). Again, we take μ and μ′ to be the homology classes of the oriented
cores of the Heegaard solid tori so that qμ = μ′. Then by Theorem 1.7 the
unoriented knot dual to the sporadic knot represents the homology classes
±2(4n− 1)μ while the duals to the bgiii and bgv knots in this lens space
represent the homology classes ±(2n− 1)(4n− 1)μ and ±(4n− 1)μ. Since
q2 �≡ ±1 (mod p) for n �= −1, 0, the group of isotopy classes of diffeomor-
phisms of our lens space is Z/2Z, generated by the involution whose quotient
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-nn

Figure 17: The 0–framed bandings from Figure 15 corresponding to the
surgery duals to the bgiii and bgv knots when t = 1 and the spor knots
are shown simultaneously. Each banding produces the unlink.

is the two bridge link, [Bon83, HR85]. This involution acts on H1(L(p, q))
as multiplication by −1. Therefore when n �= −1, 0 (and when s �= −3,−2)
the duals to bgiii, bgv, and spor are mutually non-isotopic.

For n = 0, L(p, q) = S3 so that the knot dual to spor, bgiii, and bgv
are all the unknot.

For n = −1, L(p, q) = L(25, 7) the knots dual to spor and bgiii repre-
sent the homology classes ±10μ. One may directly observe that the corre-
sponding knots are isotopic. The knot dual to bgv represents the homology
classes ±5μ. The knots in S1 × S2 with integral surgeries yielding L(25, 7)
are those shown to the left and center in Figure 1. �

Corollary 3.6. For each integer n �= 0,−1, the three bandings of the two-
bridge links in Figure 17 are distinct up to homeomorphism of the two-bridge
link.

4. Doubly primitive knots, waves, and simple knots

We now generalize Berge’s results that the duals to doubly primitive knots
in S3 (under the associated lens space surgery) are simple knots and that
(1, 1)–knots with longitudinal S3 surgeries are simple knots. We will adapt
Saito’s proofs given in the appendix of [Sai08].

A wave of a genus 2 Heegaard diagram (S, x̄ = {x1, x2}, ȳ = {y1, y2}) is
an arc α embedded in S so that (up to swapping x’s and y’s) α ∩ x̄ = ∂α ⊂ xi
for i = 1 or 2, at each endpoint α encounters xi from the same side, α ∩ ȳ =
∅, and each component of xi − α intersects ȳ. A regular neighborhood of
α ∪ xi is a thrice-punctured sphere of which one boundary component is not
isotopic to a member of x̄. A wave move along α is the replacement of xi by
this component.
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Let us say two simple closed curves on an orientable surface coherently
intersect if they may be oriented so that every intersection occurs with the
same sign. (This includes the possibility that the two curves are disjoint.)
We then say a Heegaard diagram is coherent if every pair of curves in the
diagram coherently intersect.

Say a 3–manifold W of Heegaard genus at most 2 is wave-coherent if any
genus 2 Heegaard diagram (S, x̄ = {x1, x2}, ȳ = {y1, y2}) of W either admits
a wave move or is coherent.

Theorem 4.1.

1) If longitudinal surgery on a (1, 1)–knot in a lens space produces a wave-
coherent manifold, then the knot is simple.

2) Given a doubly primitive knot in a wave-coherent manifold of Heegaard
genus at most 2, the surgery dual to the associated lens space surgery
is a simple knot.

Proof. The proof of the first follows exactly the same as that of Saito’s
Theorem A.5 (with Lemma A.6) in [Sai08] except that we use Proposition 4.3
below in the stead of his Proposition A.1.

The second item then follows because the surgery dual to a doubly prim-
itive knot is a (1, 1)–knot. See Theorem A.4 [Sai08] for example. �

Corollary 4.2. A 3–manifold of genus at most 2 obtained by longitudinal
surgery on a non-trivial (1, 1)–knot in S3 or S1 × S2 is not wave-coherent.

Proof. Theorem 4.1 applies even if the (1, 1)–knot is in S3 or in S1 × S2.
The trivial knot is the only simple knot in these two manifolds. �

Proof of Theorem 1.6. S1 × S2 is wave-coherent by Theorem 1.5 ([NO85])
so the result follows from Theorem 4.1. �

Proposition 4.3 (Cf. Proposition A.1 [Sai08]). Let (S; x̄ = {x1, x2},
ȳ = {y1, y2}) be a Heegaard diagram of a 3–manifold W in which x̄ and ȳ
intersect essentially. Assume z is a simple closed curve in S such that z
intersects each x1 and y1 once and is disjoint from both x2 and y2. If W is
wave-coherent, then x2 and y2 coherently intersect.

Sketch of Proof. Saito’s proof of the analogous theorem for W = S3 applies
to any wave-coherent manifold of genus at most 2 whose genus 2 Heegaard
diagrams enjoy the NEI Property: A Heegaard diagram (S; x̄, ȳ) is said to
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Figure 18.

have the Non-Empty Intersecting (NEI) Property if every xi ∈ x̄ intersects
some yj ∈ ȳ and every yj ∈ ȳ intersects some xi ∈ x̄. Any genus 2 Heegaard
diagram for S3 (or any homology sphere) enjoys the NEI Property by [Och79,
Lemma 1], and S3 is wave-coherent by [HOT80]. The main tool is Ochiai’s
structure theorem for Whitehead graphs of genus 2 Heegaard diagrams with
the NEI Property, [Och79, Theorem 1].

Assume (S, x̄, ȳ) does not enjoy the NEI Property. Then the manifold W
contains a non-separating sphere and hence an S1 × S2 summand. It follows
that W is homeomorphic to S1 × S2#L(p, q) for some integers p, q. All such
manifolds are all wave-coherent by [NO85, Theorem 1-4].

If (S, x̄, ȳ) is a standard Heegaard diagram for W ∼= S1 × S2#L(p, q),
then it is coherent and the proposition is satisfied, so further assume the
diagram is not standard. Assume y0 ∈ {y1, y2} does not intersect x1 ∪ x2.
Then since the diagram is not standard, y0 cannot be parallel to either x1
or x2. Because y0 is non-separating, y0 ∪ x1 ∪ x2 must be the boundary of
thrice-punctured sphere in S. Since z intersects x1 just once and is disjoint
from x2, it must also intersect y0. Therefore y0 = y1. Hence the Heegaard
diagram with z must appear as in Figure 18 after gluing x+i to x−i for each
i = 1, 2 to reform S. The thick arcs labeled a and b represent sets of a or
b parallel arcs of y2 − (x1 ∪ x2). Because z intersects x1 once, it dictates
how the ends of the rest of the arcs encountering x1 must match up. Since
these other arcs all together constitute the single curve y2, we must have
either b = 1 and a = 0 or b = 0 and a > 0. In either case the conclusion of
the proposition holds. �

Question 4.4. Which 3–manifolds are wave-coherent? Homma-Ochiai-
Takahashi show S3 is wave-coherent [HOT80], and Negami-Ochiai show the
manifolds S1 × S2#L(p, q) are wave-coherent [NO85]. In each of these cases,
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wave moves reduce genus 2 Heegaard diagrams into a standard one. On the
other hand, note that Osborne shows the lens spaces L(173, 78) and L(85, 32)
admit genus 2 diagrams with fewer crossings than the standard stabilization
of a genus 1 diagram [Osb82], and hence wave moves alone will not neces-
sarily transform any genus 2 diagram of these lens spaces into the standard
stabilized diagram. Nevertheless these minimal diagrams of Osborne are co-
herent. Are all lens spaces wave-coherent?
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lens space surgeries, Topology, 44 (2005), no. 6, 1281–1300.
MR2168576 (2006f:57034)



Some knots in S1 × S2 469

[Osb82] R. P. Osborne, Heegaard diagrams of lens spaces, Proc. Amer.
Math. Soc., 84 (1982), no. 3, 412–414. MR640243 (83c:57001)

[Ras07] Jacob Rasmussen, Lens space surgeries and l-space homology
spheres, preprint arXiv:0710.2531v1 [math.GT].

[Sai08] Toshio Saito, The dual knots of doubly primitive knots, Osaka J.
Math., 45 (2008), no. 2, 403–421. MR2441947 (2009e:57014)

[Sch90] Martin Scharlemann, Producing reducible 3-manifolds by surgery
on a knot, Topology, 29 (1990), no. 4, 481–500. MR1071370

(91i:57003)

[Thu97] William P. Thurston, Three-dimensional geometry and topology.
Vol. 1, Princeton Mathematical Series, vol. 35, Princeton Univer-
sity Press, Princeton, NJ, 1997, Edited by Silvio Levy. MR1435975
(97m:57016)

[Wan89] Shi Cheng Wang, Cyclic surgery on knots, Proc. Amer. Math.
Soc., 107 (1989), no. 4, 1091–1094. MR984820 (90e:57030)

[Wu90] Ying QingWu, Cyclic surgery and satellite knots, Topology Appl.,
36 (1990), no. 3, 205–208. MR1070700 (91k:57009)

[WZ92] Shi Cheng Wang and Qing Zhou, Symmetry of knots and cyclic
surgery, Trans. Amer. Math. Soc., 330 (1992), no. 2, 665–676.
MR1031244 (92f:57017)

[Yam07] Yuichi Yamada, Generalized rational blow-down, torus knots and
Euclidean algorithm, preprint arXiv:0708.2316 [math.GT].



470 K. L. Baker, D. Buck, and A. G. Lecuona

Department of Mathematics, University of Miami

Coral Gables, FL 33124-4250, USA

E-mail address: k.baker@math.miami.edu

Department of Mathematics, Imperial College London

South Kensington, London SW7 2AZ, UK

E-mail address: d.buck@imperial.ac.uk

Aix Marseille Université, CNRS
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