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Broken ray transform on a Riemann
surface with a convex obstacle

JOONAS ILMAVIRTA AND MIKKO SALO

We consider the broken ray transform on Riemann surfaces in the
presence of an obstacle, following earlier work of Mukhometov [22].
If the surface has nonpositive curvature and the obstacle is strictly
convex, we show that a function is determined by its integrals over
broken geodesic rays that reflect on the boundary of the obstacle.
Our proof is based on a Pestov identity with boundary terms, and
it involves Jacobi fields on broken rays. We also discuss applications
of the broken ray transform.

1. Introduction
1.1. Basic setup

This article considers X-ray transforms in domains with obstacles. A basic
setting would be a domain M = B\ UéV:l int K, where B C R? is an open
ball and K; C B are compact pairwise disjoint obstacles. We assume that
f: M — Ris an unknown continuous function, and that we can obtain X-ray
measurements for f on 9B but not on the boundaries of the obstacles Kj.

Let us first assume that we know the integrals of f over all line segments
in M that do not touch €', where C is the convex hull of U;L; K. Then the
Helgason support theorem [6] implies that f|yp ¢ is uniquely determined by
these integrals. Clearly these integrals do not contain any information about
finC\ Uj-vle j, and more information is needed to determine f in this set.

In certain applications, such as inverse problems for Schrodinger equa-
tions [4] or the Calderén problem [13] with partial data, one has knowledge
of integrals of f over all broken rays in M that start and end on OB and
reflect on the boundaries of the obstacles according to geometrical optics.
In particular, one knows the integrals of f over all line segments that do not
touch C as above, but one additionally has information on f along broken
rays that reach the set C'\ Uj-VZIK j. One could try to use this additional
information to determine f in all of M.
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There are easy counterexamples showing that if the obstacles are not
strictly convex, then it is not possible to determine f everywhere (see Fig-
ures 1 and 2). It is therefore natural to consider the case of strictly convex
obstacles. If there are at least two obstacles, one will always have broken rays
with infinite length or with multiple tangential reflections that will make the
analysis considerably more complicated. For this reason, we begin our study
of this problem by considering the case of only one reflecting obstacle in this
paper.

Our main result is a uniqueness theorem for the broken ray transform in
a compact nonpositively curved Riemannian manifold (M, g) with bound-
ary, so that M contains one strictly convex reflecting obstacle. As described
above, such a uniqueness result follows whenever a Helgason support the-
orem is available. Besides in Euclidean space, Helgason support theorems
are known on simple manifolds of dimension > 2 with real-analytic met-
ric [14], and on manifolds of dimension > 3 having a suitable foliation by
convex hypersurfaces [28, 31]. Our theorem below contains the case of non-
positively curved 2D manifolds with smooth (not necessarily real-analytic)
metric, and is therefore not a consequence of any known Helgason support
theorem. More importantly, the proof involves a general PDE method based
on energy estimates (Pestov identity with boundary terms) that may extend
to the case of several obstacles.

The PDE approach to integral geometry problems with reflected rays is
due to by Mukhometov [19-24], following his earlier work for non-reflected
rays [18]. In particular, [22] states a theorem (without proof) that is very
close to our main result below, even for certain weights and including a
stability estimate. The same approach was used by Eskin [4] in R? to obtain
a result for several obstacles under additional restrictions, including that the
obstacles necessarily contain corner points.

In this paper we also follow the general approach of Mukhometov. A
major motivation for this paper is to prepare for the possible treatment of
several convex obstacles. In view of this we discuss the regularity of solutions
and Jacobi fields on broken rays in some detail, and also give a convenient
proof of the relevant energy estimate in the spirit of [25].

1.2. Main result

Let (M,g) be an orientable, compact smooth Riemannian surface with
smooth boundary. We make the assumption that (M, g) is contained in some
disc (D, g) in R?, which will ensure that there are global isothermal coordi-
nates on M. Suppose OM is composed of two disjoint parts E and R which
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are unions of connected components but need not be connected. Below we
will think of the manifold as a larger manifold M from which an (open)
obstacle O C M has been removed. In this setting M = M\ O, E = 0M
and R = 00; in this sense R is the inner and F the outer boundary of M.

We say that a curve v on M is a broken ray if it is geodesic in int M and
reflects on R according to the usual reflection law: the angle of incidence
equals the angle of reflection. The broken ray transform of a function f :
M — R is the map that takes a broken ray with both endpoints in F into
the integral of f over the broken ray.

We denote the unit sphere bundle of M by SM = J,cps Ses Se = {v €
Tp,M;|v| =1}. Let v be the outer unit normal at M. We write EL =
{(z,v) e SM;z € E,+v-v >0}, Ey = {(x,v) € SM;x € E,v-v =0}, and
SE=FE;UEyUE_. We define Ry, Rp and SR similarly, and note that
0SM = SE USR.

For any (z,v) € SM \ SE there is a unique broken ray v2 : [0,7] — M
with 77 (0) = 2, 4%, (0) = v for maximal T such that the broken ray remains
in M. We let 7, = min{t > 0;7%,(t) € E} be the exit time. It may happen
that 47, (t) € M \ E for all t > 0; in this case 7, = co. If (z,v) € SE we
define va as above if v- v <0, and Tgv = 0 otherwise.

Theorem 1. The broken ray transform is injective on C?*(M) if the fol-
lowing conditions hold:

1) E is strictly convez,
2) the Gaussian curvature of M is nonpositive,

3) there is a number a € (0,1] such that every broken ray has at most one
reflection with |(%,v)| < a, and

4) there is a constant L such that for any (z,v) € int SM we have 77, <
L.

Remark 2. Condition 3 implies that R is concave (or the obstacle is con-
vex). For if the obstacle were not convex, there would be a point on R
where R is strictly convex. Near such a point one can easily construct a
geodesic segment which hits R in two points close to each other and both
hits are as close to tangential as one wishes. Continuing this segment to a
broken ray shows that condition 3 is not satisfied.

Remark 3. Condition 3 is not easy to check, but it is worth noting that it
is between two more intuitive conditions:
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e every broken ray hits R at most once (stronger than 3);

e no broken ray has two tangential reflections (weaker than 3).

Condition 3 demands the absence of two close to tangential reflections on a
single broken ray in a uniform and strong way.

The following result gives the basic example of a domain where the
conditions in Theorem 1 hold true:

Proposition 4. Let M be an oriented, compact Riemann sw:f\ace with non-
positive curvature and strictly convex boundary, and let O C M be a strictly
convex smooth domain such that O C int M. Then M = M \ O satisfies the
assumptions of Theorem 1 with E = 0M and R = 00.

Proof. 1t suffices to show that every broken ray hits R at most once. For
contradiction, suppose we had a geodesic segment 7y connecting two points
on R; a broken ray with two reflections gives rise to such a segment.

Let o be the path joining the endpoints of v along R such that ¢ and ~
describe a domain Q such that QN E = (). Parametrize o : [0,a] — M and
v :[0,b] = M by arclength so that the concatenation o A v rotates counter-
clockwise around 2. Let a be the oriented angle from %(b) to ¢(0) and
similarly from ¢ (a) to 4(0). Let v denote the unit normal on R pointing out
of M. Since 7 is a geodesic, the Gauss-Bonnet theorem yields

(1) /QKdZ - /0 (Dy6, v(o(t)) dt = 21 — (o + B),

where X is the area measure of M and K is the Gaussian curvature. By
convexity of O we have (D;d,v(o(t))) > 0 for all ¢ € [0,a]. Also K <0, so
the left-hand side of (1) is negative. But a and § cannot exceed 7 (the
limit corresponds to v hitting R tangentially), so the right-hand side is
nonnegative. This contradiction concludes the proof. 0

Remark 5. If one could prove the Pestov identity (Lemma 6) for u arising
from f with nonvanishing broken ray transform, one obtains immediately
the following stability result corresponding to Theorem 1: If the curvature
of E is bounded from above by kg > 0, we have the stability estimate

R0
: o |7
) 20 v

> 2
P 11l 220

where V is the vertical vector field. The function u/ is defined in (3). We
emphasize that we have not proved (2) since we have not proved our Pestov
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identity for sufficiently low regularity. In the case of Euclidean plane a sta-
bility estimate was given by Eskin [5].

An immediate corollary of Theorem 1 in the Euclidean case is as follows:
If Q C R? is a bounded smooth strictly convex domain and O C Q is a
smooth compact convex obstacle, then the broken ray transform is injective
on C?(2\ O) with E = 0Q and R = 9O. As discussed above, this result also
follows immediately from the Helgason support theorem [6]. Other Helgason
support theorems that would imply similar results are given in [14] and [31].
These support theorems assume that the manifold has a simple real-analytic
metric or is at least three dimensional, but our result holds true also for
negatively curved surfaces with smooth (not real-analytic) metric. We do
not rely on support theorems, since we aim towards a theory of the broken
ray transform with any number of obstacles. Our approach would allow to
deal with any number of obstacles, provided that the regularity Lemma 7
could be proven in that case.

As illustrated in Figures 1 and 2, there are planar domains with non-
convex obstacles or more than one convex obstacle such that the broken ray

Figure 1: A counterexample. The broken ray transform is not injective in
this domain with an obstacle. Any ray passing through the shaded area has
to go all the way through without changing velocity in the direction of the
tube. Take any function in the gray tube depending only on the axial (not
transversal) coordinate and integrating to zero and extend it by zero to the
whole domain.
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Figure 2: A counterexample similar to that of Figure 1 with two convex
obstacles.

transform is not injective. Therefore the assumptions of Theorem 1 have to
include some restrictions on the geometry of R.

As mentioned above, problems of this type have been studied by Mukho-
metov [19-24], and [22] states a theorem that is very close to our main
result. Eskin [4] considered several reflecting obstacles in a Euclidean planar
domain, but assumed the obstacles to have enough corners to eliminate
periodic billiard trajectories. For other recent results for the broken ray
transform we refer to [7-11]. For results on the usual (non-reflected) geodesic
ray transform, we refer to [25, 26, 29]. The concept of broken rays also
appears in different meanings, and another integral transform (the V-line
Radon transform) is also known as the broken ray transform; see [1, 15, 17,
30].

In Section 2 we mention some facts related to analysis on the unit circle
bundle required for our approach. Section 3 gives an outline of the proof of
Theorem 1. In Section 4 we prove the Pestov identity with boundary terms
in the form needed in this paper, and Section 5 establishes the required
regularity for solutions of transport equations in order to apply the Pestov
identity. There we also discuss Jacobi fields related to reflected rays. Finally,
we will consider applications of the broken ray transform in Section 6.
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2. Preliminaries

Here we discuss some preliminaries concerning analysis on the unit circle
bundle. For more details we refer to [25]. The Riemannian geometry notation
in this paper mostly follows [16].

Let (M, g) be a compact oriented Riemann surface with smooth bound-
ary. The circle bundle SM is the set of unit tangent vectors on M. Let
be the geodesic flow on SM, so

Sot(xa U) = (7(t7 T, U)v ﬁ/(ta Z, U))

where (¢, x,v) is the unit speed geodesic starting at (z,v) € SM.
Let X be the geodesic vector field, defined for w € C*°(SM) by

Xw(z,v) = %w(tpt(ﬂf, v))

=0

We wish to introduce two further vector fields on SM, the vertical vector
field V' and the orthogonal vector field X . If x = (z1,22) is a system of
oriented isothermal coordinates in U C M, so that the metric has the form
9ik = 62>\5jk for some A € C*°(U) in these coordinates, we may write ¢ for
the angle between v and 0/dx;. Then SU may be identified with the set
{(z,9); z € U9 € 0,27)}, and the vertical vector field is given by

V = 0y.

This defines invariantly a vector field V on SM. The vector field X may
be then defined as the commutator

X, =[X,V].

If SM is equipped with the natural metric induced by the Sasaki metric
on T'M, it turns out that {X, X |, V'} is a global orthonormal frame on SM.
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We will also use the corresponding inner product on L?(SM) and the in-
duced inner product on L?(9(SM)).

We will need some very basic facts related to the calculus of semibasic
tensor fields, see [29] and also [3] for a version on SM (an alternative ap-
proach to this calculus is found in [27]). If u € C*°(SM), we write u(x,y/ |y|)
for its extension as a function in C*°(T'M \ {0}) that is homogeneous of de-
gree zero. We then define the horizontal and vertical derivatives

_ 9 Lk
Ve = g (ulay/ Jy) = Th* B
0
Do = ——(u(w,y/ 1y)))

Ay; SM’

Here Fi.k are the Christoffel symbols of the metric g. The quantities Vu =
Vg, udz' and Ou = 0,,udx’ are invariantly defined, and one has the identities

Xu=(v,Vu), X u=—(v,Vu), Vu= (vt du).

Here we identify v with the corresponding 1-form, and v+ is the g-rotation
of v by 90 degrees counterclockwise. We also observe that one always has
(v,0u) = 0.

3. Outline of proof of Theorem 1

Assume the conditions in Theorem 1. Given f € C%(M), suppose that the
broken ray transform of f vanishes. We define uf : SM — R by

3) o (z,0) = /0 T FOE ()t

Since Uf|E+UE0 =0 and uf\E_ is the broken ray transform of f, we have u/ =
0on SE.

At SR we define the reflection map p: SR — SR by p(x,v) = (z,v —
2(v, v)v). Because of the reflection law imposed on broken rays, uf = uf o p
on SR. That is, the odd part of u/ with respect to p vanishes on SR.

If X is the geodesic vector field, it follows from the definition of u/ that

(4) Xul = —f
in int SM. If V' is the vertical vector field, applying it to the PDE (4) gives

(5) VXul =0
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in int SM.

Now we know that u/ satisfies the PDE (5) in int SM and it satisfies the
boundary conditions u/|sg = 0, u/|sr = u/ o p|sr. From this information
we would like to deduce that u/ = 0 in all of SM, hence showing that f = 0
which would prove injectivity of the broken ray transform.

The key identity is the following Pestov identity with boundary terms.
Energy identities of this type were introduced by Mukhometov [18, 22], and
in the case of R? the estimate below was also proved by Eskin [4] . See
[25, 26, 29] for more facts about Pestov identities.

Lemma 6. Let (M, g) be a compact Riemann surface with smooth boundary
that is contained in some disc (D, g) in R%. Supposeu € C(SM) N CH(SM \
Ro) N C?(SM \ SR). If u satisfies u =wo p on OSM and VXu € L*(SM),
then

2 2 2
(©) IV Xul[72snry = I XVullzesnn + 1 Xullzz s
— (KVu,Vu)2(sary — (6Vu, Vu) 295y,

where K is the Gaussian curvature of M and k is the signed curvature
of OM.

In order to use Lemma 6, we need to ensure that u/ has enough regu-
larity. This is provided by the following lemma:

Lemma 7. If the broken ray transform of f vanishes and the conditions 1,
3, and 4 in Theorem 1 are satisfied, then uf is Lipschitz continuous in SM.
Moreover, uf € C?(SM \ SR) N CY(SM \ Ryp).

With these results we can prove Theorem 1.

Proof of Theorem 1. Suppose the broken ray transform of f € C?(M) van-
ishes and define u/ by (3). Since u/|sg = 0 and the vector field V is vertical,
we have Vu/ |se = 0. Now ul |sr is even with respect to p and Lemma 7 gives
sufficient regularity, we may use Lemma 6.

Using the PDEs (4) and (5) the Pestov identity (6) becomes

2
0= HXVuf‘

2
(S M) + 122 0sam)

— (KVuf, Vuf)Lz(SM) — (ﬁVuf,Vuf)Lz(SR).
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Since K < 0 by assumption 2 and x < 0 by assumption 3 (see Remark 2),
we have

2
0= [fllz2(snr -
This concludes the proof of injectivity. O

The estimate (2) of Remark 5 would follow similarly from the Pestov
identity, but it is not obvious how to establish sufficient regularity for u/
when f has nonvanishing broken ray transform. If one considers f = 1 and M
is a Buclidean annulus, it becomes clear that u/ is not in C?(SM); at least
in the Euclidean case it should be in C*/2(SM). Lemma 14 and the proof of
Lemma 7 suggest that C''/2(SM) regularity may be true on any M satisfying
the assumptions of Theorem 1.

4. Proof of Lemma 6

We denote P =V X and write P* = XV for the formal adjoint of P. The
proofs of Lemmas 8 and 9 are given for u € C®°(SM); the claims for C?
follow by density of C* in C2.

Lemma 8. Ifuc C?(SM) then
HPUH%?(SM) = ||P*U||i2(5M) + HXUH2L2(SM)
— (KVu,Vu) 2 sy + (Vru, V) gsan
where V= (T, V) with T = v+ the oriented tangent vector on M.

Proof. In this proof all norms and inner products will be in the space
L?(SM) unless stated otherwise.
One has the integration by parts formulas for w, z € C*°(SM),

Vw,z) =—(w,Vz),
(Xw,z) = _(vaZ) + (<U7V>w7z)a(SM)‘
Then
[Pul® — || P*ul|?
= (Pu,VXu) — (P*u, XVu)

= —(VPu, Xu) + (X P*u, Vu) — (P*u, (v,v)Vu) s
- ([P*) P]U,U) - (VPU, <U7 V>U)a(SM) - (P*U, <U7 V>Vu)(9(SM)'
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One has [P*, P] = —X? + VKV (see [25, Section 3]), which implies that
([P*, Plu,u) = ||Xu||2 — (KVu,Vu) — ((v,v) Xu, U)a(SM)'
Consequently
1Pull* = [|[P*ul® + | Xul|? - (KVu, Vu)

— (VPu, (v, v)u)ssary — (P u, (v, v)Vu) gisan
- ((Uv V>Xu7 U)B(SM)'

To simplify the boundary term we note that for w,z € C*°(S;)
/ (Vw)zdS; = —/ wVzdS;.
Sz Sz

Using that P — P* = [V, X| = — X, the boundary term becomes

*(XLuv <v7 V>Vu>8(SM) + (Pu7 V(<Ua V))“)a(SM) - (<Ua V>Xuv u)a(SM)-

Since P = V X, integrating by parts once more with respect to V shows that
the boundary term will be

—(X1u, (v,1)Vu)asnry — (Xu, V({v,v))Vu)ssan
- (Xuv V2(<U7 V>)u)8(SM) - ((Uv V>Xu7 u)@(SM)-
One has V({v,v)) = (v*,v) and V2({v,v)) = —(v,v). This shows that the

last two terms in the boundary term will cancel, and the boundary terms
simplify to

(<U7 V> <vl7 Vu), Vu)a(SM) - (<UJ_7 V> <U’ Vu>’ Vu)a(SM)
(<’U, Vl><v7 VU), VU)Q(SM) + (<UJ_7 VJ_><UL7 Vu>, VU)B(SM)
(v, Vu), V) ogsan) -

O
Lemma 9. Ifuc C%(SM) then
(Vru, Vu)osary = (Vrue, Vuo)asary + (Vruo, Vue)asar
— (KVu, Vu)ysar
where k := — (DT, v) is the signed curvature of OM, and u. and u, are the

even and odd components of u|3(SM) with respect to the reflection p.
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Proof. Let = = (2!, 22) be positively oriented isothermal coordinates on
(M, g), so that the metric has the form

2
Gjk = €70k

for some smooth function \. Let (z, 1) be corresponding coordinates on SM,
defined via

(2,9) = (z,0), v(z,9):=e@uy

where wy := (cos ¥, sin)). We may assume that we are working on a fixed
component of M, given by the oriented unit speed curve (t). Let a(v(t))
be the angle of (¢):

3(t) = e 0w 4y

Below we will write a(t) instead of a(y(t)). It follows that in the (z,9)
coordinates, the reflection is given by

The vertical vector field is given by
V = 0y.
We wish to compute V7, which involves the horizontal derivative
Vju = 0,1 — ngvkawu

where @ is the homogeneous degree 0 extension of uw € C*°(SM) to TM \
{0}. Using the form of the metric, the Christoffel symbols are

T, = (030 + (0k)5; — (DN
The vertical gradient du := 9y, u dx' satisfies
(v,0u) =0, (v, du) = dyu.

Consequently
Vju = 0z, 4 — (dX,v)0p,u + (dX, Qu)v;

and

Vru =TIV u =T, i — [(dX\, v)(T,v") — (dX\, v ) (T, v)]|dgu.
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The expression in brackets is a determinant and independent of v:

Vou(z,9) = T (2)0y,0(x,9) + c(z)dyu(z,d), x € M,
c(x) := det(T(x),d\(x)) = T O\ — T?O1 \.

Let us determine how V1 and V behave under reflection. One has

(P Vu)(7(£),9) = dpu((t), 2a(t) — 0)
= —V(p"u)(7(t),9)

and, after a short computation,

(p VTU)( (1), 0) = (Vru)(v(t), 2a(t) — 9)
Y (1)0z,a(y(t), 20(t) = 0) + c(4(t))Dou(v(t), 2a(t) — V)
= &a( (v(1), 2a(t) = 0)) = 26(t)Igu(~(t), 2a(t) — )
+c(v(8))dpu(y(t), 2a(t) — 9)
= Vr(p'u)(7(1),9) + 2[c(v(t)) = a®)](p"Vu)(y(t), 7).

We may write the part in brackets in terms of the signed curvature of M,
since

a(t) = r(v(t) +n(¥(t))

where 7 = o\ dat — 01\ dx? (see [16, Theorem 9.3]). Thus 7(¥(t)) = c(v(t))
and

(p"Vru)(y(t),9) = Vr(p*u)(7(t),9) = 26(v(£)) (0" Vu) (v(t), V).

These facts imply that

(Vru)e = Vrue — kp™Vu, (Vru), = Vrue, + kp™Vu,
(Vu)e =Vuy, (V)= V.

Since p is an isometry on S, for each x € 9M, the L?(9(SM)) inner
product of an even function and an odd one vanishes and we obtain

(Vru, Vu)asary = (Vru)e, Vu)e)asary + (Vru)o, (Vu)o)aisar
= (Vrue, Vuo)asary — (KV o, Vuo)a(sar)
+ (VTUO, Vue)a(SM) - (mVue, Vue)@(SM).

This proves the result. 0
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Now we are ready to begin the proof of Lemma 6.

Proof of Lemma 6. For € > 0 denote M, = {x € M;d(z,R) > ¢} and R. =
{z € M;d(z, R) = e}. If € is small enough, M, is a Riemannian surface with
boundary, with two boundary components F and R..

We can extend the normal vector field v from R to M \ M, for ¢ small
enough so that v is normal to R.. Let SRS = {(z,v) € SM;2 € R.,|{v,v)| <
6} and SR’ C SR similarly.

By the assumption u € C?(SM \ SR) we have that u € C?(SM.). Using
Lemmas 8 and 9 for M, instead of M we obtain

(7) 1Pull?2(snry = 1P ullZ2(sary + 1 X0l 229
— (KVu,Vu)p2(sar) + (Vrue, Vuo)asar)
+ (Vuo, Vue)osary — (KVu, Vu)gsar)-

We partition d(SM.) as SRS U (O(SM.) \ SR?).

We then let ¢ — 0 with § > 0 fixed. Since u € C'(SM \ SR?), all of the
inner products in (7) satisfy (-, -)asmpnsr: = (-, - )asmynsrs as € = 0.
But since u is also Lipschitz, its first order derivatives are uniformly bounded
in SM. Thus the inner products evaluated on S Rg and SR? are bounded by a
constant (depending on ) times ¢. The parameter ¢ can be chosen arbitrarily
small, so each inner product in (7) satisfies (-, -)acsar) = (5 - )a(sar) as
e — 0.

Also, u being Lipschitz implies that Xu € L?(SM) and we have assumed
that Pu € L?(SM), so their norms in L?(SM.) converge to the norms in
L?*(SM) as € — 0. Since (7) holds for all € and all terms but one are known
to converge, also HP*UH%Q( s,y must have a finite, nonnegative limit, which
implies that P*u € L?(SM).

We have found that

HPUHiz(SM) = HP*UH%z(SM) + HXUH%Z(SM)
— (KVu,Vu)r2sary + (Vrte, Vuo)acsarn
+ (VTUO, Vue)a(SM) — (kVu, VU)B(SM)-

But u is even by assumption, so u, = 0 on SR, and also u = 0 on SFE. This
concludes the proof of Lemma 6. O
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5. Proof of Lemma 7

We begin by some preparations, and then prove the claims of Lemma 7 in
Sections 5.2 and 5.3. The preparations aim at understanding how a bro-
ken ray depends on its initial direction; this dependence is captured in the
concept of Jacobi fields along broken rays.

5.1. Jacobi fields along broken rays

We begin by a basic observation about Jacobi fields along geodesics.

Lemma 10. On a smooth compact Riemannian manifold any Jacobi field J
along a unit speed geodesic satisfies

[T@)1? + D ()2 < (1T () + |DeJ (0))
for all t > 0, where C is a uniform constant.

Proof. Let v be the geodesic in question. Let Z;, i = 1, 2, be two vector fields
along v. Define Z = (Zy, Z3) and suppose it satisfies

DtZI = ZQ and

(8) s
DtZ2 - _R(Zla’y)/ya
where R is the Riemann curvature tensor. Then D;Z = A]Z, where the
mapping A, is linear for each t. By compactness there is a constant C' such
that ||A}|] < C/2 for all geodesics v and all times ¢.
Thus

Dy |Z|> =2(2,A]Z) < C|Z]*.

By Gronwall’s inequality this implies that |Z(¢)[* < €€t |Z(0)[* for all t > 0.
If J is a Jacobi field, then Z = (J, D;.J) satisfies the equations (8), from
which the claim follows. O

We are now ready to introduce Jacobi fields along a broken ray. Jacobi
fields along geodesics can be understood as infinitesimal geodesic deviations,
and we want to generalize this idea to broken rays. The key problem is to
find the correct behaviour of Jacobi fields at reflection points.

We begin by introducing some notation. Let o € M be a point and v
the outward unit normal at it. We recall that that the reflection map p :
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TyoM — Ty, M is defined by

pE=E—2(&v)v.

For any vector ¢ € T, M that is not orthogonal to v we define the map
Q¢ Ty M — T M by

q)cé' = 2(<V¢,C§I/, C:> v+ <I/, C> nglj).
Here the map ¢¢ : Ty M — Ty M is

(& v)
(Cv)

and it is easy to see that always ¢c§ L v. Since pc§ L v and v is a vector
field defined on M, the derivative V¢ is well defined. One also has
Ve = s(@c€) where s is the shape operator of M C M, that is, the map
s:T(OM) — T(OM) defined by s(X) = Vxv.

The maps p, ¢ and @ are linear and have the following properties:

pcf =&~ ¢

pop=id,
PO Pe = ¥
P oY= P¢
$Y—¢ = P
Ppc O P = P¢,
¢ =0,
d_ =,

Ppcop=—pode

These properties are easy to check when one keeps in mind that V ¢v is or-
thogonal to v and the map p only changes the sign of the normal component
of a vector.

Definition 11. Let v be a broken ray without tangential reflections. Then
a vector field J along v is a Jacobi field along ~ if

e it is a Jacobi field along the geodesic segments of v in the usual sense
and
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e if v has a reflection at v(tg) € 9M, then the left and right limits of .J
at to are related via

(9) J(to—) = pJ(to—i—) and DtJ(to—) = thJ(to—i-) - (I’,y(t0+)J(t0+)
or equivalently
J(t0+) == pJ(tQ—) and DtJ(to-l-) == thJ(to—) - (I),y(tO,)J(t()—).

The next lemma shows that this is the definition of a Jacobi field along
a broken ray we sought for.

Lemma 12. Let (—¢,€) 3 s+ (x5,v5) € int SM be a C* map and denote
by vs : [0, T] = M the broken ray starting at (zs,vs). Suppose none of the
broken rays vs have tangential reflections up to time T. Then

d

I0 = gw0|

1s a Jacobi field along the broken ray ~o.
Conversely, any Jacobi field can be realised in this way as a variation of
the broken ray vo.

Proof. 1t is obvious that J satisfies the Jacobi equation on geodesic segments,
so the only matter to check is behaviour at reflections. We assume that
7 = is a broken ray with a non-tangential reflection at t =ty and (after
possibly shrinking the domain of definition) this is the only reflection of
and moreover each 4 has only one reflection. We will show that J satisfies
the condition (9).

Let us start with the easiest Jacobi field. Namely, fix (g, vg) and let
xs = y(s) and vs = 4(s), which leads to v5(t) = (¢ + s). The corresponding
vector field (denoted by I instead of J) is I(t) = *(¢). By definition of a
broken ray we have I(to—) = pI(to+). Now we also have D;I(t) = 0 outside
reflections, so DyI(tg—) = 0 = D¢I(to+). By the property ¢¢¢ = 0 the field I
satisfies (9).

Let then J be any vector field along « as in the statement of the lemma.
We define another vector field J along v by

(J(to—),v)
(I(to—),v)

It suffices to show that J satisfies (9); this is because I satisfies it and the
condition is linear. The important property of J is that J(tp—) L v. The

J(t) = J(t) — I(t).
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vector field .J can also be realized by suitable initial directions (i, 75) as in
the statement of the lemma.

It thus suffices to show that J satisfies (9) under the additional as-
sumption that J(tp—) L v. Since p is identity on tangential vectors, we only
need to verify the second part of (9). We observe that J only depends on
%(l‘s, Vs) ‘5:07 so we may make changes of order s to (z,,vs) without alter-
ing J. Because ¥(tp—) is not tangential and J(tp—) L v, we can make such
a second order change to (x5, vs) that we have y4(tg) € M for all s (this is
possible since the curve s — v5(tg) is tangent to M at s = 0).

We now shift time so that tp = 0. We have a family v4 of broken rays
defined near ¢t = 0 with their only reflection at ¢ = 0. We write y; = 7,(0) and
us = ¥5(0+). The normal vector at y, is denoted by vs and the corresponding
reflection map by ps.

Now D;J(0+) = Dgus|,_, and D;J(0—) = Dspsus|,_,. Additionally
J(0+) = %ys‘szo. Thus evaluating the identity

Dy(psus) = Ds(us — 2 (us, Vs) vs)
= Dsus — 2 (Dgus, vs) Vs
— 2((us, Dsvs) vs + (us, vs) Dss)
= ps(Dsus) — 2((us, Vo,y,Vs) Vs + (Us, Vs) Voy. Vs)

at s =0 gives
DtJ(O—) = pthJ(O—l—) — @7(04,)(](0—’_)

This identity finally concludes the proof of the first claim.

For the converse, let J be a Jacobi field. Then before the first reflection it
is a Jacobi field in the usual geodesic sense and can be realised as a geodesic
variation. If we continue these varied geodesics to broken rays, the resulting
variation field is precisely J, because the above calculation shows that Jacobi
fields and variations of broken rays satisfy the same condition at reflection
points. Il

Remark 13. The assumption that the reflections are nontangential is im-
portant in the definition of the Jacobi field. If there is a tangential reflection,
the varied broken ray -, does not generally have C'' dependence on s and
thus J is not well defined after the reflection.
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We know how exactly a Jacobi field blows up when a reflection becomes
more and more tangential. The reflection condition is

J(to—) = pJ(tp+) and

(10) Dod(to—) = pDed (toh) + Gy(tot),v) ™ Ad(tob),

where A is a linear map satisfying uniform bounds on SR. The map A
encodes the curvature of M at the reflection point. Equation (10) gives a
good description of the nature of the singularity.

We formulate the observation of the above remark as a lemma:

Lemma 14. On a compact smooth manifold M with boundary a Jacobi
field J along a broken ray v satisfies

(o) + D (to+)? < (17ta=) + DT (t0-)I?)

¢
<"7(t0_)> V>

at every reflection point ty, where C' is a constant depending on M.

Corollary 15. Let M be a smooth Riemannian manifold with boundary.
Fiz a number a € (0,1]. Consider those broken rays v on M for which
|(,v)| > a at every reflection point. Then any Jacobi field J along such
a broken ray satisfies

TP + DI (1) < AP (170)P + DT (0))
for allt > 0, where A and B are constants depending on M and a.

Proof. Let us call the broken rays satisfying the given condition admissible
broken rays. By compactness and the transversality condition [(%,v)| > a
there is a number L such that the distance between consecutive reflection
points of any admissible broken ray is at least L. For brevity, we write
12 = |J]2 + DI .

By the transversality condition and Lemma 14 we know that there is a
constant A such that ||.J]|* can only increase by a factor A at a reflection
point of an admissible broken ray. On the other hand, Lemma 10 bounds
the growth of Jacobi fields on geodesic segments; ||J(¢)||> < et ||.J(0)]* for
positive t.

Let N(t) be the number of reflections v has in the time interval (0,1).
This number has the estimate N(¢) < 1+ ¢/L. Combining our findings, we
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get for positive times ¢

177 < ANOL (o))
< AP J(0)]*,

where B = C + log(A)/L. O

The corollary can also be formulated differently, but the proof is the
same:

Corollary 16. Let M be a smooth Riemannian manifold with boundary.
Let v be any broken ray on M without tangential reflections. Then any Jacobi
field J along ~ satisfies

P+ Dl < | ] \<§4>r e (19(0) + DI (0)?)

reflections
before t

for all t > 0, where A and C are constants depending on M.

Now that we have found the natural definition for Jacobi fields along a
broken ray, we could easily define conjugate points along a broken ray. We
do not pursue this direction here.

5.2. Existence of second derivatives
Let u/ be as in (3). For all (x,v) € int SM we have
uf (z,v) + v/ (z, —v) = 0,

because the sum is an integral of f € C2(M) over a broken ray passing
through (x,v). Because of assumption 3 we know that at least one of 'Yf,iv
has no reflections with |(},v)| < a.

Therefore it suffices to prove existence of second order derivatives of u/
in the absence of reflections with |(%,v)| < a. But since f € C?(M) and M
is compact, this follows immediately from (3) and smooth dependence of a
broken ray and its endpoint on the initial point and direction (in the absence
of tangential reflections).
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5.3. Boundedness of first derivatives

As for the existence of second derivatives it suffices to prove boundedness
of first order derivatives of u/ in the absence of reflections with |(,v)| <
a/2. Suppose (x,v) € SM is such that ’yﬁv has no such reflections, and
let (—¢,€) 3 s+ (xs,v5) be a unit speed C! curve on SM. Taking & small
enough we can assume that ’yfs v, has no such reflections for any s. We need
to show that s — uf(x,, vs) has a derivative at s = 0 and it has an upper
bound independent of the choice of (z,v).

We have
d d s d
= f — E E R ) B E
(1) G Gev) = FOE L)t + [ S raE L)

For the first term we use boundary determination: since E is strictly convex,
for any € E we can choose a tangential vector (z,vp) and a sequence
(z,v) € E_ with (x,v) — (z,v0). Since the geodesics in direction (z,vy)
become arbitrarily short and f is continuous, we have

E

f(z) = lim /0 T (1)) d

E
k—o0 Tx’vk

1
— f —
= klggo U (x,v) = 0.

T,V
Thus the first term on the right hand side of (11) vanishes (notice that 7% is
smooth near (z,v) whenever the broken ray 7%, reflects and exits transver-
sally).

For the second term in (11), we use that Js(t) = %’st,vs (t) is a Jacobi
field along the broken ray 'yfs v, and

d 2
| 75(0)* + | Dy J5 (0)[* = ‘dsxs +|Dsvs|? = 1.

Thus by Corollary 15 and assumption 4 |Js(t)| has some uniform bound.
The integrand in (11) is

L IOE 0 (1) = VoS GE (1),

Since |V f| is bounded and the length of the interval of integration is bounded
by assumption 4, the second term in (11) is bounded as well.
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It now remains to extend these estimates to SR. The same arguments
hold true when x € R provided that v € S, M is not tangential. Since broken
rays depend continuously on their initial point and direction (even across
tangential reflections), we see that u/ € C(SM). Thus u/ is bounded.

6. Applications of the broken ray transform

We conclude with describing some applications of the broken ray transform.
Section 6.1 below is devoted to connecting the broken ray transform with
lens data, but we will first describe some other applications briefly.

The original motivating application for the broken ray transform is in
inverse boundary value problems for partial differential equations. Eskin [4]
studied an inverse boundary value problem for the magnetic Schrodinger
equation in the presence of obstacles whose boundaries were not available
for measurements. He reduced unique determination of the electromagnetic
potential from partial Cauchy data to injectivity of the broken ray transform.

Similarly, Kenig and Salo [13] reduced a partial data problem for the
conductivity equation to the broken ray transform. Both results are based
on constructing solutions to the PDE that concentrate near broken rays.
We believe that injectivity results for the broken ray transform will find
applications in other inverse boundary value problems as well.

On a slightly different note, one may also take the entire boundary of
the domain (or manifold) to be reflective (E = )) and consider periodic bro-
ken rays. The natural question in this setting asks whether a function is
determined by its integral over all periodic broken rays, that is, whether the
periodic broken ray transform is injective. The periodic broken ray transform
was discussed by the first author in [10], where examples and counterexam-
ples to injectivity were given. The regularity assumptions under which the
periodic broken ray transform on a rectangular domain is injective have been
subsequently weakened significantly [12].

As will be shown below in Theorem 17, linearizing lengths of broken
rays with respect to the metric gives rise to the broken ray transform. It
seems plausible that linearizing lengths of periodic broken rays may lead to
the periodic broken ray transform in a similar fashion. Lengths of periodic
broken rays are intimately related to spectral geometry; see for example [2].

6.1. Boundary distance function and lens data

It is well known (see e.g. [29, Section 1.1]) that the geodesic X-ray transform
arises in linearized versions of the boundary rigidity problem. In this section
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we show that the broken ray transform arises as a linearization in a similar
manner.

The linearization leads generally to the broken ray transform of sym-
metric tensor fields on Riemannian manifolds. Theorem 1 only solves the
linearized problem in a special case when the metric is varied within a con-
formal class on a Riemannian surface.

Let M be a manifold with boundary, with its boundary divided in dis-
joint parts £ and R. Given a point on F and and an inward unit vector,
a Riemannian metric on M determines a unique broken ray. Assuming this
broken ray eventually hits £ again, we can map the starting point and direc-
tion into the exit point and direction; this map is the broken ray scattering
relation. (This map is different from the broken scattering relation used
in [15].) We can also map the initial point and direction into the travel time.

A natural question regarding these maps is the following: Does the bro-
ken ray scattering relation, the travel time map, or both of these together
determine the metric up to isometry?

This question can also be linearized. Let g5, s € (a,b) C R, be a one
parameter family of Riemannian metrics on M. The linearized question is:
Does the derivative of one or both of the two maps (scattering relation and
travel time) with respect to s determine the derivative %gs? The deriva-
tive % gs is in general a symmetric 2-tensor, but if the metric is only varied
within a conformal class, it can be viewed as a function.

Studying these questions may have applications in geophysics. For ex-
ample, in the event of an earthquake one may measure the arrival time of
seismic waves to other points on the planet’s surface. Given such data for
multiple earthquakes, one would like to infer the interior structure of the
Earth. This structure is described by a Riemannian metric (corresponding
to a possibly anisotropic wave speed) so that seismic waves travel along (unit
speed) geodesics. Measuring arrival times from earthquake sites all around
the Earth thus corresponds to measuring the lengths of all geodesics.

In practice the situation is not as simple, partly due to reflections. Seis-
mic waves (partly) reflect from the core and also on the surface. Since seismic
measurements are difficult to do in oceans, even some seismic waves near
the surface can only be measured after they have reflected — possibly sev-
eral times. Studying arrival times of reflected seismic waves is thus closely
related to studying lengths of broken rays.

An answer to the linearized question is given by the following theorem.

Theorem 17. Let (M,g) be a manifold with boundary whose boundary is
split in disjoint parts E and R and let € > 0. Suppose gs, s € (—¢,¢), is
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a family of Riemannian metrics on M depending C*-smoothly on s such
that go = g. Let (xo,vp) be an inward pointing unit vector based in E and
V(wo,v0),9. € the broken ray starting at it with respect to the metric gs. Denote
the length of this broken ray by T(z, vy).g.5 S0 that Y(zgvo).g. * [0 T(zo,v0).9.] =
M.

1f the points where (g, v,),g. Teflects on R and where it exits E are not
in RN E and they meet OM non-tangentially, then

2

s s=0

5 T(z0,v0)90
— |9 t),A t
/(; ds |’Y(x0,v0),gg( )77(:):0,1)0),90( )

50>90

In particular the derivative of the travel time map and the scattering relation

d ) d
— gT(wo,UO),gs 0 - ’Y(ff07110),go (7(1071;0)790)) &7(930,”0),95 (T(xo,vo),gs)

with respect to the parameter s determine the broken ray transform of the
symmetric 2-tensor %gs|s:0 on such broken rays.

Actually, the claim is true whenever Yy, v,),g. 5 @ C' curve which de-
pends Cl-smoothly on s and converges uniformly to V(wo,vo)ugo @S $ — 0. In
may be replaced with the broken rays with
and have the same re-

particular, the curves Y(xo,v0),9s
respect to gs that connect the endpoints of Y(zo,v0),
flection pattern.

9o

We do not need to assume that the reflection map p is the same for
all metrics gs. Also, we do not need the full scattering map, but only the
endpoint map. If g; = fsgo for some family of scalar functions f; with fo =1,
the integral of % gs|s=o becomes the integral of the scalar function % fsls=o0-
The proof of this theorem follows quite simply from the following lemma.

Lemma 18. Let (M,g) be a manifold with boundary with boundary and
let € > 0. Suppose gs, s € (—¢,¢€), is a family of Riemannian metrics on M
depending C'-smoothly on s such that gy = g. Let x5 € OM be a point and
vs € Tp, M an inward unit vector varying C'-smoothly with s.

Denote the corresponding geodesic by 7(1%”5) and its length by T(; ..

If the velocity 1(1

1Js 3Gs”

1 . .
0,00):00 (T(xo,vo),go) is non-tangential, then
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2

T(lmomo)ygo d -1
(12) 2 /0 & 7(950,110)790 (t)’ 7(20,1)0),90 (t)

s+ (g )
= + Vo, 7—Ts
s=0 ds s=0/ g,

d
-1 1 1 1
- <7(xo,vo),go (T(wo,vo),go)’ &Wxs,vs%gs (T(:rs,vs),gs>

dt

s=0
s=0 >go

Proof. To shorten notations, we denote Ls = T(y, 4.)q.» Ls= %Ls, Vs =
fy(lzsws),gs’ Ve = %’757 and f = %gs\ s—0- We rescale the perturbed geodesics
so that they are all parametrized by the same interval [0, Lo] by letting
7s(t) = vs(tLs/Lg). We also let 7, = %f’ys. We make calculations in local co-
ordinates as if all geodesics s were contained in the same coordinate patch;
the results from different patches can be combined easily.

A simple calculation gives

gs

ds  (@a:v:).9s

d
2L = E(Lg/%ﬂs:o
d [fo . 2

] 19015 (Fo (1) (30) " (136 ()33 ()dt

Integrating by parts in the last integral and noting that 45 = vo we get

Lo o
2Ly = ; Fii (0 (8)) ¥o (8) ¥p (£)dt

Lo —\k i <] d i
+ [ o [@c(go)z’j(70(75))70(?5)%(’5) - 2dt<<go>ik<w<t>>vo<t>>} dt

+2 [ (g0)in (70(L0))3(L0) ()" (Lo) = (90)ik (30(0)36(0)(56)*(0) |
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Now k(905 (10() 3D (1) — 2 ((90)ia(0(£) (1)) = 0 since g solves
the geodesic equation. We have also

_ d _ d

76(0) = &75(0)|8:0 and ’Y(/)(LO) = &78(118”8107
SO

Lo . .
2L = ; i ()46 ()7 (£)de
) d . d
+2 VO(LO)v dif}/S(Ls”s:O - 70(0)7 d778(0)|s:0 .
5 9o o o

This is exactly equation (12). O

Proof of Theorem 17. The broken ray vs == Y(zyvy),g. 18 composed of N € N
geodesic segments s, m € {1,..., N}. Since vy has no tangential reflec-
tions, each vs, s € (—¢,¢), has the same number of reflections if ¢ is suffi-
ciently small.

Denote the lengths of the broken rays by 7s = 7(4, )¢, and the length
of the segments Yy m by Tsm. Also, let pF,, be the final (+) and initial (—)
points of the segments ~ ,,. Then, using p;fm = Dgm+1 %pgl\szo =0, and
Lemma 18, we get

N
d d
&Ts’szoz g &Ts,m|s:()
m=1

al d d
+ Z |:<;}/0,m(7—0,m)7 dsp;m‘50> - <;Y0,m(0)7 dSps,m|30>:|

dt

. d
+ <'70(7_0)7 dSpS_’m|S:0> .
This identity is precisely the claim. U

Remark 19. A given broken ray is not necessarily the shortest broken ray
joining its endpoints. Linearizing the boundary distance function does not
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give the integral of the variation of the metric over all broken rays, but
only those that minize the length. If we knew that the set of nonminimizing
broken rays is somehow small (on E_ for example), we could recover the
whole broken ray transform, but we do not know if it is small in general. In
a Euclidean domain with one strictly convex obstacle a broken ray minizes
length if and only if it has no reflections or only a tangential one.
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