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Higher rank stable pairs and virtual

localization

Artan Sheshmani

We introduce a higher rank analog of the Pandharipande-Thomas
theory of stable pairs [PT09a] on a Calabi-Yau threefold X. More
precisely, we develop a moduli theory for frozen triples given by

the data O⊕r
X (−n) φ−→ F where F is a sheaf of pure dimension 1.

The moduli space of such objects does not naturally determine an
enumerative theory: that is, it does not naturally possess a perfect
symmetric obstruction theory. Instead, we build a zero-dimensional
virtual fundamental class by hand, by truncating a deformation-
obstruction theory coming from the moduli of objects in the de-
rived category of X. This yields the first deformation-theoretic
construction of a higher-rank enumerative theory for Calabi-Yau
threefolds. We calculate this enumerative theory for local P1 using
the Graber-Pandharipande [GP99] virtual localization technique.
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1. Introduction

Pandharipande and Thomas (PT for short) in [PT09b, PT09a] introduced
the notion of stable pairs, given by a tuple (F, s) where s ∈ H0(X,F ) and

139
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F is a pure sheaf with scheme-theoretically one dimensional support (with
fixed Hilbert polynomial and fixed second Chern character).

Roughly speaking, these were sheaf theoretic objects representing a sys-
tem of curves and points (on the curves) embedded in a fixed ambient Calabi-
Yau threefold. The advantage of working with stable pairs was that they
were realized as two term complexes O s−→ F , and the authors proved that
they were deforming as objects in the derived category. The robust yet pow-
erful machinery of deformation theory of objects in the derived category
then enabled the authors to construct well defined deformation-obstruction
complexes over the moduli space of stable pairs and their associated virtual
fundamental classes and compute their corresponding invariants. These en-
abled algebraic geometers to verify many more exciting results in the context
of enumerative geometry of Calabi Yau manifolds, as well as mathematical
string theory among some of which, one can mention the proof of MNOP
conjecture [PP12] as well as the proof of KKV conjecture over K3 surfaces
[PT14].

This article consists of two parts, Part I (theory) and Part II (Calcula-
tions). In Part I, we develop a higher rank analog of the theory of stable pairs,
in particular we produce a truncated well defined deformation-obstruction
theory of correct amplitude for this higher rank theory which, based on
a crucial assumption, provides a globally well defined virtual fundamental
class for the theory.

In Part II of the paper we apply our constructions to a toric variety, the
local P1. In Part II we show that over the torus fixed loci of the moduli space,
the higher rank objects of rank r become isomorphic to r copies of (twisted)
PT stable pairs. This fact implies two outcomes; firstly we can show that
over the torus fixed loci of the moduli space, the deformation-obstruction
theory of higher rank objects becomes isomorphic to multiple copies of PT
deformation-obstruction theory which is proven to be perfect of correct am-
plitude [PT09a]. Therefore, this implies that the restriction of the truncated
theory, constructed in Part I, to the torus fixed loci becomes perfect, which
automatically implies that the assumption made in Part I, independently,
holds true over the torus-fixed loci. Secondly via direct equivariant calcu-
lation of the theory of higher rank objects, and using the identification of
their torus fixed loci, we verify at the end of the article that their corre-
sponding equivariant vertex matches precisely with a twisted version of an
r-fold product of PT equivariant vertex. Below we elaborate further about
the content of Part I and Part II;
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Part I (Theory)

First we need the notion of triples; Let X be a nonsingular Calabi-Yau 3-fold
over C with H1(OX) = 0 and with a fixed polarization L. A triple of type
(PE , PF ) over X is given by a triple (E,F, φ) where E and F are coherent
sheaves with fixed Hilbert polynomials PE and PF respectively, F is given
as a pure sheaf with one dimensional support over X and φ : E → F is a
holomorphic morphism.

In this article however, in order to generalize the PT theory of stable
pairs, we will use two special cases of the above triples; First we will intro-
duce the notion of “frozen triples” of type (r, PF ) which are given as a special
case of the triples (E,F, φ) of type (PE , PF ), in the sense that E ∼= O⊕r

X (−n)
and F has fixed Hilbert polynomial PF . In other words we “freeze” E to be
isomorphic to O⊕r

X (−n) for fixed choice of r, but the choice of this isomor-
phism is not fixed. Secondly, we will also work with closely related objects,
called “highly frozen triples”, given as quadruples (E,F, φ, ψ) where E, F
and φ have the same definition as above however, this time we have “highly”
frozen the triple by fixing a choice of isomorphism

ψ : E
∼=−→ O⊕r

X (−n).

The stability condition for frozen and highly frozen triples is compatible with
PT stability of stable pairs (c.f. Remark 2.8). We call this stability condition
τ ′-limit-stability or in short τ ′-stability. As it turns out (Lemma 2.7), a frozen
(respectively highly frozen) triple (E,F, φ) of type (r, PF ) is τ́ -stable if and

only if the map E
φ−→ F has zero dimensional cokernel.

Naturally, the moduli spaces of τ ′-stable frozen and highly frozen triples
are given as algebraic stacks. In fact the notion of τ ′-stability condition turns
out to be a limiting GIT stability and thus we apply the results of Wandel
[Wan10] (Section 3) to prove in Remark 3.4, Theorem 3.5 and Theorem 3.7
that the moduli stack of τ ′-stable highly frozen triples of type (r, PF ), which

we denote by M
(r,PF )
HFT (τ ′), is given as a scheme which is a GLr(C)-torsor over

the (Artin) moduli stack of τ ′-stable frozen triples, denoted by M
(r,PF )
FT (τ ′).

Remark 1.1. Our constructions in this article depend on the fixed choice
of large enough integer n for which H i(F (n)) = 0 for all i > 0. In fact
our computation of the deformation-obstruction theories for frozen and

highly frozen triples hold true over the sub-loci, N
(r,PF )
HFT (τ ′) ⊂M

(r,PF )
HFT (τ ′)

and N
(r,PF )
FT (τ ′) ⊂M

(r,PF )
FT (τ ′) over which the higher cohomologies of F (n)

vanish (c.f. Definition 4.1).
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Remark 1.2. Note that, as the choice of n, (r, PF ), as well as the stability
condition τ ′ throughout this article is fixed, later whenever needed, we will
omit from our notation the fixed parameters in our construction and use
NHFT,MHFT and/or NFT,MFT for our moduli spaces.

For a 3-fold X the natural deformation-obstruction theories of stable
frozen and highly frozen triples fail to provide well behaved complexes of
correct amplitude over NFT and NHFT and they do not admit virtual fun-
damental cycles. Therefore, in order to find a remedy to this issue, we carry
out a careful study of deformation theory of frozen and highly frozen triples
viewed as objects in Db(X) given by I• : O⊕r

X (−n)→ F and compute the
fixed-determinant obstruction theory of I•. It then turns out that, despite
the fact that the object I• (with the fixed determinant) in the derived cat-
egory does not distinguish between a frozen or a highly frozen triple, its
deformation space does; In other words, it can be shown that given a frozen
triple (E,F, φ) and a highly frozen triple (E,F, φ, ψ), both associated to the
same object I• ∈ Db(X), the space of flat deformations of (E,F, φ) and I•

are equally given by the group Ext1(I•, I•)0 while the space of flat deforma-
tions of (E,F, φ, ψ) is not equal to that of I• given by Ext1(I•, I•)0.

We use this fact to compute the deformation space of highly frozen
triples (Proposition 4.3) and then, using a comparison between the two mod-
uli spaces (Proposition 4.4), obtain the deformation space of frozen triples
(Theorem 4.5); Finally we prove that the deformations of frozen triples are
equal to that of objects in the derived category (Theorem 4.9). We summa-
rize these results as follows;

Theorem. (Proposition 4.3, Proposition 4.4, Theorem 4.5, Theorem 4.9).

• Fix a map f : S → NHFT. Let S
′ be a square-zero extension of S with

ideal I. Let DefS(S′,NHFT) denote the deformation space of the map
f obtained by the set of possible deformations, f ′ : S′ → NFT. The
following statement is true:

DefS(S′,NHFT) ∼= Hom(I•S , F )⊗ I

• Fix a map f : S → NFT. Fixing f corresponds to fixing an S-flat family
of frozen triples given by [OX(−n)�MS → F ] as in Definition 2.3.
Let S′ be a square-zero extension of S with ideal I. Let DefS(S′,NFT)
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denote the deformation space of the map f obtained by the set of pos-
sible deformations, f ′ : S′ → NFT. The following statement is true:

DefS(S′,NFT) ∼= Hom(I•S , F )⊗ I/Im
(
(glr(OS)→ Hom(I•S ,F))⊗ I

)

• Let p ∈ NFT be a point represented by the complex with fixed determi-

nant I• := OX(−n)⊕r φ−→ F . The following is true:

TpNFT
∼= Ext1(I•, I•)0.

We will then show that overNFT, the deformation of the universal object
in the derived category induces a 4-term deformation-obstruction complex
of perfect amplitude [−2, 1]:

Theorem. (Theorem 4.12). There exists a map in the derived category
given by:

RπN∗ (RH om(I•, I•)0 ⊗ π∗
XωX) [2]

ob−→ L
•
NFT

.

After suitable truncations, there exists a 4 term complex E• of locally free
sheaves , such that E•∨ is self-symmetric of amplitude [−2, 1] and there exists
a map in the derived category:

(1) E
•∨ obt−−→ L

•
NFT

,

such that h−1(obt) is surjective, and h0(obt) and h1(obt) are isomorphisms.
Here L•

NFT
stands for the truncated cotangent complex of the Artin stack

MFT which is of amplitude [−1, 1].

Now we give a brief overview of the main result of the paper which is:
to construct a virtual fundamental class from the non-perfect obstruction
theory of stable frozen and highly frozen triples.

Let π : NHFT → NFT denote the natural forgetful map in Diagram (10).
The complex π∗E•∨ is perfect of amplitude [−2, 1] and the main obstacle in
constructing a well-behaved deformation-obstruction theory over NHFT is to
truncate π∗E•∨ in to a 2-term complex, and define (globally) a well-behaved
deformation-obstrution theory of perfect amplitude [−1, 0].

The simplest solution to this problem is to apply a cohomological trun-
cation operation. Doing so requires obtaining a certain lifting map from
g : Ωπ → π∗E•∨ (c.f. Proposition 4.14), taking the mapping cone of this lift
(and shifting by −1) and proving that the resulting complex satisfies the con-
ditions of being a perfect deformation-obstruction theory for NHFT. Here Ωπ
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is the relative cotangent sheaf of π : NHFT → NFT. This procedure will re-
move the degree 1 term from the complex π∗E•∨. We also require to remove
the degree −2 term of π∗E•∨.

Then we use the self-symmetry of E•∨ and apply the same procedure as
above to the dual map g∨ : π∗E• → Tπ (c.f. Theorem 4.15) obtained from
dualizing the map g. We finally obtain a local truncation of π∗E•∨ of perfect
amplitude [−1, 0] which we denote by G•. Knowing that π∗E•∨ is quasi-
isomorphic to a 4 term complex of vector bundles:

(2) π∗E−2 → π∗E−1 → π∗E0 → π∗E1

it can be seen from our construction (Lemma 8.18) that, locally, the complex
G• is given by

π∗E−2 d′
−→ π∗E−1 ⊕ Tπ → π∗E0 ⊕ Ωπ

d−→ π∗E1

which is quasi-isomorphic to a 2-term complex of vector bundles

(3) Coker(d′)→ Ker(d)

concentrated in degrees −1 and 0. The existence of the lifting map g is
guaranteed Zariski locally over NHFT but not globally. Hence our strategy
is to locally truncate π∗E•∨ as explained above, construct the corresponding
local virtual cycles and, assuming that certain technical condition holds true
(c.f. Assumption 4.21), glue the local cycles together to define a globally-
defined virtual fundamental class. Our main summarizing theorems of this
part are as follows:

Theorem. (Theorem 4.15 and Theorem 4.22).

• Consider the 4-term deformation-obstruction theory E•∨ of perfect am-
plitude [−2, 1] over NFT. Locally in the Zariski topology over NHFT

there exists a perfect two-term deformation-obstruction theory of per-
fect amplitude [−1, 0] which is obtained from the suitable local trunca-
tion of the pullback π∗E•∨ via the map π : NHFT → NFT.

• Assuming the technical condition in Assumption 4.21, the local
deformation-obstruction theory in Theorem 4.15 satisfies the condi-
tions of being a semi perfect deformation-obstruction theory in the
sense of [CL11, Definition 3.1] and hence, it defines a globally well-
behaved virtual fundamental class over NHFT.
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Part II (Calculations)

IfX has a torus action, then the moduli space of highly frozen triples inherits
it (once we have chosen an equivariant structure of OX(−n)). Let T denote
the torus action induced on NHFT. It can be shown that a torus fixed point
in the moduli scheme corresponds to a T -equivariant highly frozen triple of
type (r, PF ) (Proposition 5.2). The key observation is that a T -equivariant
highly frozen triple of rank r is always written as a direct sum of r-copies of
T := C∗3-equivariant PT stable pair:

(4) I•,T ∼=
r⊕

i=1

(OX(−n)→ Fi)
T .

The consequence of identity (4) is of significant importance, since it en-
ables one to immediately realize that the T -fixed loci of NHFT are given as
r-fold product of T-fixed loci of PT moduli space of stable pairs which are
conjectured by Pandharipande and Thomas in [PT09a] (Conjecture 2) to be
nonsingular and compact. Therefore, it turns out that even though, origi-
nally, our moduli scheme is non-compact, its torus-fixed loci are compact,
over which we are able to carry out localization computations.

Moreover here we can see that Assumption 4.21 for Theorem 4.22 holds
true independently over T -fixed loci (c.f. Lemma 5.9); the reason is due to
the fact that over the T -fixed loci of NHFT the restriction of the truncated
deformation-obstruction complex in Theorem 4.22 becomes isomorphic to r
copies of T-fixed PT deformation obstruction complex (c.f. Proposition 5.8)
which is perfect of amplitude [−1, 0] naturally (also look at Remark 4.24).

Finally we apply our results to threefolds given as toric varieties (Sec-
tion 5.1) and directly compute the 1-legged equivariant Calabi-Yau vertex
for when X is given as the total space of OP1(−1)⊕OP1(−1)→ P1 (Equa-
tion (105));

(5) WHFT
1,∅,∅ =

(
(1 + q)

(n+1)(s2+s3)

s1

)r
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2. Part I (Theory)

Definition 2.1. (Holomorphic Triples) Let X be a nonsingular projec-
tive Calabi-Yau 3-fold over C (i.e KX

∼= OX and π1(X) = 0 which implies
H1(OX) = 0) with a fixed polarization L . A holomorphic triple supported
on X is given by (E,F, φ) consisting of a torsion free coherent sheaf E and
a pure sheaf F with one dimensional support, together with a holomor-
phic morphism φ : E → F . A homomorphism of triples from (E′, F ′, φ′) to
(E,F, φ) is a commutative diagram:

E′ F ′

E F

φ′

φ

Now let S be a C scheme of finite type and let πX : X × S → X and πS :
X × S → S be the corresponding projections. An S-flat family of triples
over X is a triple (E ,F , φ) consisting of a morphism of OX×S modules

E φ−→ F such that E and F are flat over S and for every point s ∈ S the fiber
(E ,F , φ) |s is given by a holomorphic triple over X. Two S-flat families of
triples (E ,F , φ) and (E ′,F ′, φ′) are isomorphic if there exists a commutative
diagram of the form:
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É1 É2

E F

φ′

∼= ∼=φ

Definition 2.2. (Type of a triple) A triple of type (PE , PF ) is given by a
triple (E,F, φ) such that P (E(m)) = PE and P (F (m)) = PF . Note that by
the Grothendieck-Riemann-Roch theorem, fixing the Hilbert polynomial of
E,F is equivalent to fixing their Chern characters.

Definition 2.3. (Frozen triples) Define a frozen triple as a holomorphic
triple in Definition 2.1 such that E ∼= OX(−n)⊕r for some fixed large enough
n ∈ Z. For the frozen triples we simplify the notation for type of a frozen
triple by writing “of type (r, PF )”. Now, an S-flat family of frozen-triples of
type (r, PF ) is a triple (E ,F , φ) consisting of a morphism of OX×S modules
φ : E → F , such that E and F satisfy the condition of Definition 2.1 and
moreover E ∼= π∗

XOX(−n)⊗ π∗
SMS where MS is a vector bundle of rank

r on S. Two S-flat families of frozen-triples (E ,F , φ) and (E ′,F ′, φ′) are
isomorphic if there exists a commutative diagram:

É1 É2

E F

φ′

∼= ∼=φ

Definition 2.4. (Highly frozen triples) A highly frozen triple of type (r, PF )
is a quadruple (E,F, φ, ψ) where (E,F, φ) is a frozen triple of type (r, PF ) as

in Definition 2.3 and ψ : E
∼=−→ OX(−n)⊕r is a fixed choice of isomorphism.

A morphism between highly frozen triples (E′, F ′, φ′, ψ′) and (E,F, φ, ψ) is

a morphism F ′ ρ−→ F such that the following diagram is commutative.

OX(−n)⊕r E′ F ′

OX(−n)⊕r E F

φ′

id

ψ′−1

ρ
ψ−1 φ

An S-flat family of highly frozen triples is a quadruple (E ,F , φ, ψ) consisting
of a morphism of OX×S modules E φ−→ F such that E and F satisfy the

condition of Definition 2.1 and moreover ψ : E ∼=−→ π∗
XOX(−n)⊗ π∗

SO⊕r
S is

a fixed choice of isomorphism. Two S-flat families of highly frozen-triples



148 Artan Sheshmani

(E ,F , φ, ψ) and (E ′,F ′, φ′, ψ′) are isomorphic if there exists a commutative
diagram:

π∗
XOX(−n)⊗ π∗

SO⊕r
S E ′ F ′

π∗
XOX(−n)⊗ π∗

SO⊕r
S E F

φ′

id

ψ′−1

ψ−1 ∼=φ

Stability condition

Definition 2.5. (Stability of holomorphic triples) Let q1(m) and q2(m)
be positive rational polynomials of degree at least 2. A holomorphic triple
T = (E,F, φ) of type (PE , PF ) is called τ́ -semistable (respectively, stable) if
for any subsheaves E′ of E and F ′ of F such that 0 �= E′ ⊕ F ′ �= E ⊕ F and
φ(E′) ⊂ F ′:

q2(m)

(
PE′ − rk(E′)

(
PE

rk(E)
− q1(m)

rk(E)

))
(6)

+ q1(m)

(
PF ′ − rk(F ′)

(
PF

rk(F )
+

q2(m)

rk(F )

))
≤ 0/resp. < 0.

Now we simplify Definition 2.5 and obtain a tailored version of τ ′-
stability condition for the frozen triples of type (r, PF ). Fix a frozen triple
(E,F, φ) of type (r, PF ) and let the subtriple (E′, F ′, φ′) be given as
(OX(−n)⊕r, F ′, φ′) such that F ′ ⊂ F and φ factors through F ′, then the
stability condition is written as:

q2(m)

(
��PE′ −

�
�
�
��

r

(
PE′

r

)
+ q1(m)

)

+ q1(m)

(
PF ′ − rk(F ′)

(
PF

rk(F )
+

q2(m)

rk(F )

))
< 0.

Divinding by q1(m) and setting the new variable q(m) = q2(m)
q1(m) as the ratio

of the two, we obtain:

(7)
PF ′

rk(F ′)
+

q(m)

rk(F ′)
≤ PF

rk(F )
+

q(m)

rk(F )
.

Which is similar to the notion of Le Potier’s stability condition for coherent
systems [LP95]. Now we state our conclusion as the following definition;
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Definition 2.6. (τ ′-stability for frozen triples) Let q(m) be given by a poly-
nomial with rational coefficients such that its leading coefficient is positive.
A frozen triple (E,F, φ) of type (r, PF ) is τ́ -stable with respect to q(m) if
and only if the following conditions are satisfied;

1) For all proper nonzero subsheaves G ⊂ F for which φ does not factor
through G we have:

PG

rk(G)
<

PF

rk(F )
+

q(m)

rk(F )
.

2) For all proper subsheaves, G ⊂ F for which the map φ factors through:

(8) q(m) +

(
PG − rk(G)

(
PF

rk(F )
+

q(m)

rk(F )

))
< 0.

Limit stability. We show here that the τ ′-stability condition for frozen
and highly frozen triples is asymptotically similar to stability of PT pairs
[PT09a, Lemma 1.3].

Lemma 2.7. (τ ′-limit-stability) Fix q(m) to be given as a polynomial of
degree at least 2 with rational coefficients such that its leading coefficient is
positive. A frozen triple (E,F, φ) of type (r, PF ) is τ́ -limit-stable if and only

if the map E
φ−→ F has zero dimensional cokernel.

Proof. For simplicity, we use O⊕r
X (−n) instead of E. The exact sequence

0→ K → OX(−n)⊕r φ−→ F → Q→ 0 induces a short exact sequence 0→
Im(φ)→ F → Q→ 0. Therefore one obtains the following commutative di-
agram of the triples:

OX(−n)⊕r Im(φ)

OX(−n)⊕r F

φ

=

Now we use the assumption for q(m) and assume that OX(−n)⊕r φ−→ F is
stable, therefore we obtain:

q(m) +

(
PIm(φ) − rk(Im(φ)) ·

(
PF

rk(F )
+

q(m)

rk(F )

))
< 0.
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In other words by rearrangement:

(9) q(m)

(
1− rk(Im(φ)

rk(F )

)
< rk(Im(φ))

PF

rk(F )
− PIm(φ).

Consider the polynomials on both sides of inequality (9). One finds that the
right hand side of (9) is a polynomial in m of degree at most 1. However
by the assumed choice of q(m), the left hand side of inequality is given by a
polynomial of degree at least two with positive leading coefficient. Hence the
left hand side becomes larger than the right hand side and the only way for
the inequality to make sense is to have the left hand side to be equal to zero,
i.e rk(Im(φ)) = rk(F ) and therefore Qmust be a zero dimensional sheaf. For
the other direction: assume that Q is not a zero dimensional sheaf and the
triple is τ́ -limit-stable. Now by similar argument, since degree of q(m) is
chosen to be sufficiently large enough, rk(Im(φ)) = rk(F ) which contradicts
the assumption of Q not being zero dimensional sheaf and this finishes the
proof. �

Remark 2.8. (Relation to PT stability) Note that setting r = 1 and fol-
lowing the same steps to obtain Equation (7), will enable us to see that
the stability conditions defined in part (1) and (2) of Definition 2.6 are the
same as the ones used by Pandharipande-Thomas [PT09a, Equation (1.1)
and (1.2) ]. Moreover, the result of Lemma 2.7 shows that the limit-stable
frozen triples do satisfy the conditions, same as conditions (i) and (ii) of
PT pair stability [PT09a, Lemma 1.3]. This result is certainly expected, due
to the fact that PT stable pairs are special case of frozen triples where the
value of r is set to be equal to 1.

Throughout the rest of this article by τ ′-stability we mean τ ′-limit-stability.

3. Construction of moduli stacks

Definition 3.1. (Moduli stack of highly frozen triples) DefineM
(r,PF )
HFT (τ ′) to

be the fibered category p : M
(r,PF )
HFT (τ ′)→ Sch/C such that for all S ∈ Sch/C

the objects in M
(r,PF )
HFT (τ ′) are S-flat families of τ ′-stable highly frozen triples

of type (r, PF ). Given a morphism of C-schemes g : S → K and two families
of highly frozen triples TS := (E ,F , φ, ψ)S and T́K := (E ′,F ′, φ′, ψ′)K as in
Definition 2.4 (sub-index indicates the base parameter scheme over which

the family is constructed), a morphism TS → T́K in M
(r,PF )
HFT (τ ′) is defined

by an isomorphism:

νS : TS
∼=−→ (g × 1X)∗T́K .
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Definition 3.2. (Moduli stack of frozen triples) Define M
(r,PF )
FT (τ ′) to be

the fibered category p : M
(r,PF )
FT (τ ′)→ Sch/C such that for all S ∈ Sch/C

the objects in M
(r,PF )
FT (τ ′) are S-flat families of τ ′-stable frozen triples of

type (r, PF ) as in Definition 2.3. Given a morphism of C-schemes g : S → K
and two families of frozen triples TS := (E ,F , φ)S and T́K := (E ′,F ′, φ′)K
as in Definition 2.3, a morphism TS → T́K in M

(r,PF )
FT (τ ′) is defined by an

isomorphism:

νS : TS
∼=−→ (g × 1X)∗T́K .

Proposition 3.3. Use definitions 3.1 and 3.2. The fibered categories

M
(r,PF )
HFT (τ ′) and M

(r,PF )
FT (τ ′) are stacks.

Proof. This is immediate from faithfully flat descent of coherent sheaves and
homomorphisms of coherent sheaves [vis04, Theorem 4.23]. �

Remark 3.4. (Fibered diagram of moduli stacks) There exists a forget-

ful morphism g′ : M(r,PF )
FT (τ ′)→ BGLr(C) which is given by taking a frozen

triple {(E,F, φ)} ∈M
(r,PF )
FT (τ ′) to {E} ∈ BGLr(C) by forgetting F and φ.

Moreover, there exists a forgetful mapM
(r,PF )
HFT (τ ′)

π−→M
(r,PF )
FT (τ ′) which takes

(E,F, φ, ψ) to (E,F, φ). Following the definition of fiber products of stacks,
it can be shown that the natural diagram:

(10)

M
(r,PF )
HFT (τ ′) pt = Spec(C)

M
(r,PF )
FT (τ ′) BGLr(C) =

[
Spec(C)
GLr(C)

]
g

π i
ǵ

,

is a fibered diagram in the category of stacks. We leave the details to the
interested reader to verify this.

Next we show that the moduli stacks of frozen and highly frozen triples are
given as algebraic stacks; The main requirement to construct the moduli
stacks is the boundedness property for the family of triples of fixed given
type. Wandel [Wan10, Definition 1.1] studies the construction of the moduli
space of objects φ : D → E , denoted as pairs. These objects are defined sim-
ilar to triples in Definition 2.1. The author introduces the notion of Hilbert
polynomial for a pair [Wan10, Definition 1.3] and δ-semistability [Wan10,
Definition 1.4] where δ is given as a stability parameter. The author then
shows [Wan10, Proposition 2.1] that the family of δ-stable pairs with Fixed
Hilbert polynomial is bounded.
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Replacing δ with q(m), it is easily seen that Wandel’s notion of δ-
semistability is completely compatible with our notion of τ ′-semistability in
Definition 2.6 and therefore the family of highly frozen triples, (E,F, φ, ψ) of
type (r, PF ) is bounded. Now the boundedness property implies that there
exists an integer n′ (we call it n′ to distinguish it from the fixed integer n
appearing in the description of E = Or

X(−n)) for which, E and F satisfy
regularity condition. In other words for all sheaves appearing in the family
we have that E(n′) and F (n′) are globally generated. Therefore, there exists
a surjective morphism VF ⊗OX(−n′)→ F where VF := H0(F ⊗ Ln′

) is a
complex vector space of dimension dV = PF (n

′). Now following the usual
constructions, one constructs the Quot-scheme

QF := QuotPF
(VF ⊗OX(−n′)),

and so the scheme parameterizing the morphisms φ : O⊕r
X (−n)→ F is given

by a bundle P over QF whose fibers are given by H0(F (n))⊕r. Now let
S(τ ′) ⊂ P be given as an open subscheme of P whose fibers parametrize
τ ′-stable highly frozen triples E → F .

VF ⊗OX(−n′)

OX(−n)⊕r F
φ

Theorem 3.5. The following isomorphism of stacks holds true:

1)

M
(r,PF )
HFT (τ ′) ∼=

[
S(τ ′)
GL(VF )

]
.

2) Moreover, there exists an isomorphism of stacks:

M
(r,PF )
FT (τ ′) ∼=

[
S(τ ′)

GLr(C)×GL(VF )

]
.

Proof. Part (1): The proof is immediate, following the definition of algebraic

quotient stacks. Part (2) follows from part (1) and the fact that M
(r,PF )
HFT (τ ′)

is a GLr(C) torsor over M
(r,PF )
FT (τ ′) (c.f. Remark 3.4). �

Now we study automorphisms of highly frozen triples.

Lemma 3.6. Given a τ ′-stable highly frozen triple (E,F, φ, ψ) as in Defi-
nition 2.4 and a commutative diagram
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OX(−n)⊕r E F

OX(−n)⊕r E F

φ

id

ψ−1

ρ
ψ−1 φ

,

the map ρ is given by idF .

Proof. Since ψ is a choice of isomorphism, for simplicity replace E by
OX(−n)⊕r and consider the diagram:

(11)

OX(−n)⊕r F

OX(−n)⊕r F

φ

id ρ
φ

,

Then, diagram (11) induces:

OX(−n)⊕r Im(φ) E

OX(−n)⊕r Im(φ) E
id

φ

ρ |Im(φ) ρ
φ

.

By commutativity of (11), ρ ◦ φ = φ ◦ id = φ, then ρ(Im(φ)) = Im(φ). Hence
ρ(Im(φ)) ⊂ Im(φ). It follows that ρ |Im(φ)= idIm(φ). Indeed if s ∈ Im(φ)(U),
where U ⊂ X is affine open with s̃ ∈ OX(−n)⊕r(U) satisfying φ(s̃) = s, then
ρ(s) = ρ(φ(s̃)) = φ(id(s̃)) = φ(s̃) = s. Now apply Hom(−, F ) to the short ex-
act sequence 0→ Im(φ)→ F → Q→ 0, where Q denotes the corresponding
cokernel. One obtains:

0→ Hom(Q,F )→ Hom(F, F )→ Hom(Im(φ), F ).

Since (E,F, φ, ψ) is τ ′-stable then by Lemma 2.7, Q is a sheaf with 0-
dimensional support. Hence by purity of F , Hom(Q,F ) ∼= 0. Hence one ob-
tains an injection Hom(F, F ) ↪→ Hom(Im(φ), F ). Now

ρ |Im(φ)= idIm(φ) = (idF ) |Im(φ) .

So ρ = idF . �

Theorem 3.7. The moduli stack M
(r,PF )
HFT (τ ′) is given by an algebraic scheme.
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Proof. It is enough to show that for every C-point p := M
(r,PF )
HFT (τ ′)(Spec(C))

its stabilizer group Stab
M

(r,PF )

HFT (τ ′)
(p) is finite group with one element, given

as identity. Since the point p is represented by a τ ′-stable highly frozen triple
(E,F, φ, ψ), then Stab

M
(r,PF )

HFT (τ ′)
(p) is obtained by the automorphism group

of (E,F, φ, ψ) which is given by the identity element, following Lemma 3.6
�

4. Deformation theory of of triples

As was shown, the construction of the moduli stack of stable frozen triples
depends on choices of two fixed large enough integers n� 0 and n′ � 0. The
first integer appears in the description E := OX(−n)⊕r and the latter is the
one for which F (n′) is globally generated. The fact that the sheaf F (n′) is
globally generated for large enough values of n′ does not a priori imply that
H i(F (n)) = 0 for all i > 0 and our fixed choice of n. Therefore, we fix this
issue by introducing the following definition:

Definition 4.1. Consider M
(r,PF )
HFT (τ ′) and M

(r,PF )
FT (τ ′) in definitions 3.1

and 3.2 respectively. Define the open substacksN
(r,PF )
HFT (τ ′) ⊂M

(r,PF )
HFT (τ ′) and

N
(r,PF )
FT (τ ′) ⊂M

(r,PF )
FT (τ ′) such that:

1) N
(r,PF )
HFT (τ ′) = {(E,F, φ, ψ) ∈M

(r,PF )
HFT (τ ′) | H1(F (n)) = 0}.

2) N
(r,PF )
FT (τ ′) = {(E,F, φ) ∈M

(r,PF )
FT (τ ′) | H1(F (n)) = 0}.

From now on, we will omit “(r, PF )” and “(τ ′)” in the notation used
for our moduli stacks, in order to avoid notational complexity. Moreover,
all our calculations are carried out over NHFT and NFT and the results in
the following sections hold true for NHFT and NFT only. Also we assume
that it is implicitly understood that in the following sections by the “moduli
stack of frozen or highly frozen triples” we mean the open substack of the
corresponding moduli stacks as in Definition 4.1.

Deformation space of frozen and highly frozen triples. First we
state the result of Illusie with no proof;

Theorem 4.2. [Ill71, Section IV 3.2.12]. Given a graded morphism of

graded modules OX×S(−n)⊕r φ−→ F , there exists an element

ob ∈ Ext2Db(X×S)(Cone(φ), I ⊗ F)
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whose vanishing is necessary and sufficient in order to obtain nontrivial flat

deformations of OX×S(−n)⊕r φ−→ F . If ob = 0 then the set of isomorphism
classes of deformations forms a torsor under Ext1Db(X×S)(Cone(φ), I ⊗ F).

Now we apply Theorem 4.2 to our case and obtain the following propo-
sition;

Proposition 4.3. Given a τ ′-stable highly frozen triple (E,F, φ, ψ), repre-
sented by the complex I• : OX(−n)⊕r → F , its space of infinitesimal defor-
mations is given by Hom(I•, F ).

Proof. A square zero embedding S ↪→ S′ is a closed immersion whose defin-
ing ideal I satisfies I2 = 0. Note that here, Cone(φ) = I•S [1]. Now apply
Illusie’s result and see that the obstructions ob : Cone(φ)→ I ⊗F are given
by the composite morphism [Ill71, Section 3.2.14.3]:

Cone(φ)→ k1
(
LOX×S⊕OX×S(−n)⊕r/OX

⊗F [1]
)

(12)

→ k1
(
I ⊗ (OX×S(−n)⊕OX×S(−n)⊕r)⊗ (OX×S ⊕F)

)
→I ⊗F [2].

which induce the composite morphism:

(13) Cone(φ)→ LOX×S/OX
⊗F [1]→ I ⊗F [2],

the set of such composite homomorphisms is given by Hom(I•S [1], I ⊗ F [2]) ∼=
Ext1(I•S , I ⊗ F) ∼= Ext1(I•S ,F)⊗ I, similarly if ob = 0, then the set of iso-
morphism classes of deformations of highly frozen triples makes a torsor
under

Ext1(I•S [1], I ⊗ F) ∼= Hom(I•S , I ⊗ F) ∼= Hom(I•S ,F)⊗ I. �

Proposition 4.4. The tangent space of NFT at a point {p} : (E,F, φ) rep-
resented by a complex I• := [E → F ] satisfies the following identity:

(14) TpNFT
∼= Hom(I•, F )/Im(glr(C)→ Hom(I•, F )).

or equivalently;

(15) TpNFT
∼= Coker [glr(C)→ Hom(I•, F )] .
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Proof. Since our analysis is over a point in the moduli stack, we assume that
S = Spec(C) and S′ is a square-zero extension over S. Following Remark 3.4
we have that, NHFT is a Glr(C)-torsor over NFT. Therefore, in the level of
tangent spaces we obtain:

(16) glr(C)→ TpNHFT → TpNFT → 0,

hence it is immediately seen that

TpNFT
∼= Coker[glr(C)→ TpNHFT].

Now use the fact that, TpNHFT
∼= Hom(I•,F) by Proposition 4.3. �

A similar analysis can be carried out when S is given by an affine scheme
and S′ is an S-scheme. We state this result without further proof;

Theorem 4.5. Fix a map f : S → NFT. Fixing f corresponds to fixing an
S-flat family of frozen triples given by [OX(−n)�MS → F ] as in Defini-
tion 2.3. Let S′ be a square-zero extension of S with ideal I. Let DefS(S′,
NFT) denote the deformation space of the map f obtained by the set of
possible deformations, f ′ : S′ → NFT. The following statement is true:

(17) DefS(S′,NFT) ∼= Hom(I•S , F )⊗ I/Im
(
(glr(OS)→ Hom(I•S ,F))⊗ I

)
Deformation of frozen triples as objects in the derived category.

Lemma 4.6. Let I• := [OX(−n)⊕r φ−→ F ] correspond to a point of NHFT

or NFT. Then:

Ext2(F,OX(−n)) ∼= 0 ∼= Ext1(F,OX(−n)).

Proof. Use Serre duality and obtain:

Exti(F,OX(−n)) ∼= (Ext3−i(OX(−n), F ⊗ ωX)∨

∼= Ext3−i(OX(−n), F )∨ ∼= H3−i(F (n))∨.

The statement follows from the definitions of NHFT and NFT. �

Let I•∈Db(X) represent the complex I• :=OX(−n)⊕r φ−→ F with OX(−n)⊕r

in degree 0 and F in degree 1. Let K := Ker(φ) and Q := Coker(φ). There
exist the following exact triangles in the derived category:

F [−1]→ I• → OX(−n)⊕r → F → · · ·(18)

K → I• → Q[−1]→ K[1]→ · · ·(19)
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Lemma 4.7. Suppose that a frozen triple (E,F, φ) of type (r, PF ) is τ ′-
stable. Then Ext≤−1(I•, I•) = 0.

Proof. Note that Extk(I•, I•) = 0 for k ≤ −2 for degree reasons. We now
consider k = −1. Apply Hom(I•, ·) to (18) and obtain:

Ext−2(I•, F )→ Ext−1(I•, I•)(20)

→ Ext−1(I•,O⊕r
X (−n))→ Ext−1(I•, F )

Now apply Hom(·, F ) to (19) and obtain:

· · · → Exti(Q[−1], F )→ Exti(I•, F )(21)

→ Exti(K,F )→ Exti+1(Q[−1], F ) · · ·

It is easy to see that Ext−2(Q[−1], F )∼=0, Ext−2(K,F )∼=0 and Ext−1(K,F )
∼= 0 for degree reasons. Moreover, Ext−1(Q[−1], F ) = Hom(Q,F ) ∼= 0 since
Q is zero dimensional (by τ ′-stability) and F is of pure dimension one. Hence

(22) Ext−2(I•, F ) ∼= 0 and Ext−1(I•, F ) ∼= 0,

and therefore

Ext−1(I•, I•) ∼= Ext−1(I•,O⊕r
X (−n)).

Now apply Hom(·,O⊕r
X (−n)) to (18) and obtain:

Ext−1(F,O⊕r
X (−n))→ Ext−1(O⊕r

X (−n),O⊕r
X (−n))(23)

→ Ext−1(I•,O⊕r
X (−n))→ Hom(F,O⊕r

X (−n)).

Now Ext−1(O⊕r
X (−n),O⊕r

X (−n))∼=0 by degree reasons and Hom(F,
O⊕r

X (−n)) ∼= 0 by purity of O⊕r
X (−n). Hence Ext−1(I•,O⊕r

X (−n)) ∼= 0 and
Ext−1(I•, I•) ∼= Ext−1(I•,O⊕r

X (−n)) ∼= 0. �

Lemma 4.8. Let I• ∈ Db(X) represent a τ ′-stable frozen triple (E,F, φ) of
type (r, PF ). Then there exists an injective map:

Hom(I•, I•) ↪→ End(OX(−n)⊕r).
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Proof. Apply Hom(I•, ·) to (18) and obtain the following exact sequence:

Ext−1(I•, F )→ Hom(I•, I•)→ Hom(I•,OX(−n)⊕r)→ Hom(I•, F )(24)

→ Ext1(I•, I•)→ Ext1(I•,OX(−n)⊕r)

→ Ext1(I•, F )→ Ext2(I•, I•)·

Observe that the leftmost term in (24) vanishes because of degree reasons:

0→ Hom(I•, I•)→ Hom(I•,OX(−n)⊕r)→ Hom(I•, F )(25)

→ Ext1(I•, I•)→ Ext1(I•,OX(−n)⊕r)→ Ext1(I•, F )→ · · ·

Now apply Hom(·,OX(−n)⊕r) to (18) and obtain:

Hom(F,OX(−n)⊕r)→ End(OX(−n)⊕r)→ Hom(I•,OX(−n)⊕r)(26)

→ Ext1(F,OX(−n)⊕r)

Using Lemma 4.6, it is immediately seen that the leftmost and the rightmost
terms in (26) vanish. Hence End(OX(−n)⊕r) ∼= Hom(I•,OX(−n)⊕r). Hence
it is seen from (25) that Hom(I•, I•)→ End(OX(−n)⊕r) is injective. �

Theorem 4.9. Let p ∈ NFT be a point represented by the complex with

fixed determinant I• := OX(−n)⊕r φ−→ F . The following is true:

TpNFT
∼= Ext1(I•, I•)0.

Proof. Consider the exact sequence in (25). Now use the result of Lemma 4.8
to obtain the following exact sequence:

Hom(I•, I•) ↪→ glr(C)→ Hom(I•, F )→ Ext1(I•, I•)(27)

→ Ext1(I•,OX(−n)⊕r)→ Ext1(I•, F )→ ·

where we have replaced End(OX(−n)⊕r) with glr(C). Now recall that
H1(OX) ∼= 0 by assumption. In that case, assuming that the complex I•

has fixed determinant, then we have Exti(I•, I•)0 ∼= Exti(I•, I•). Hence, the
exact sequence in (27) is rewritten as:

0→ Hom(I•, I•)→ glr(C)→ Hom(I•, F )(28)

→ Ext1(I•, I•)0 → 0→ Ext1(I•, F ).

Hence we obtain Hom(I•, F )/Im[glr(C)→ Hom(I•, F )] ∼= Ext1(I•, I•)0.
Now use Proposition 4.4 and obtain TpNFT

∼= Ext1(I•, I•)0. �
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Corollary 4.10. Let I•S be defined as in Theorem 4.9. The higher order
deformation I•S′ over Ś of I•S with trivial determinant is quasi-isomorphic to
a complex:

[OX×CŚ
(−n)⊕r φ′

−→ F́ ]

Proof. This is a direct consequence of Theorem 4.9. �

Deformation-obstruction theories and virtual
fundamental class

By Theorem 3.5 the moduli stack of stable frozen triples NFT is an Artin
stack. The definition of a perfect deformation-obstruction theory for NFT is
as follows:

Definition 4.11. Following [LMB00] and [Ols07], a perfect deformation-
obstruction theory for NFT is given by a perfect 3-term complex E•∨ of

strongly perfect amplitude [−1, 1] and a map in the derived category E•∨ φ−→
L•
NFT

such that h1(φ) and h0(φ) are isomorphisms and h−1(φ) is an epimor-
phism. Here L•

NFT
is the truncated cotangent complex of the Artin moduli

stack of τ ′-stable frozen triples concentrated in degrees −1, 0 and 1 whose
pullback via the projection map π : NHFT → NFT has the form:

π∗
L
•
NFT

:= I/I2 → ΩA |NHFT
→ (glr(C))

∨ ⊗ONHFT
.

Note that (glr(C))
∨ ⊗ONHFT

∼= Ωπ, A denotes an ambient smooth Artin
stack and I is the ideal corresponding to the embedding NHFT ↪→ A.

Deformation-obstruction theory of amplitude [−2, 1] over NFT.
In what follows, we use the following notation:

πN : X ×NFT → NFT and πX : X ×NFT → X.

Theorem 4.12. (a). There exists a map in the derived category given by:

RπN (RH om(I•, I•)0 ⊗ π∗
XωX) [2]

ob−→ L
•
NFT

.

(b). After suitable truncations, there exists a 4 term complex E• of locally
free sheaves , such that E•∨ is self-symmetric of amplitude [−2, 1] and there
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exists a map in the derived category:

(29) E
•∨ obt−−→ L

•
NFT

,

such that h−1(obt) is surjective, and h0(obt) and h1(obt) are isomorphisms.

Proof. Here we prove (a). Consider the universal complex:

I
• = [M ⊗OX×NFT

(−n)→ F] ∈ Db(X ×N).

Since the composition of the maps id : OX×NFT
→ RH om(I•, I•) and tr :

RH om(I•, I•)→ OX×NFT
is multiplication by rk(I•), one obtains a splitting

RH om(I•, I•) ∼= RH om(I•, I•)0 ⊕OX×NFT

Recall that by part (2) of Theorem 3.5, NFT = [S(τ ′)
G ] where G = GLr(C)×

GL(VF ). For simplicity denote S := S(τ ′). Let I•S denote the pullback of I•

to X ×S. We write L• to mean the full, untruncated cotangent complex,
and write L• = τ≥−1L• for the truncated cotangent complex. Consider the
Atiyah class I•S → L•

X×S ⊗ I•S[1] defined by Illusie [Ill71, Section IV2.3.6].
The Atiyah class can be identified with a class in Ext1(IS, L•

X×S ⊗ I•S). The
composite

I
•
S → L•

X×S ⊗ I
•
S[1]→ τ≥−1L•

X×S ⊗ I
•
S[1] = L

•
X×S ⊗ I

•
S[1]

is the truncated Atiyah class of [HT10, Section 2.2]. By [HL10, Proposi-
tion 2.1.10] the complex I• is perfect. It then follows from [Ill71, Corollaire
IV.2.3.7.4] that the composite I•S → L•

X×S ⊗ I•S[1]→ Ω1
X×S ⊗ I•S[1], when

identified with a 1-extension, agrees with the canonical 1-extension

(30) 0→ Ω1
X×S ⊗ I

•
S → P1

X×S ⊗ I
•
S → I

•
S → 0,

defined by tensoring with the first-order principal parts P1
X×S. We want

to show that the Atiyah class descends to X ×NFT = X × [SG ] where G =
GLr(C)×GL(VF ).

More precisely, this means the following; Let qN : X ×S→ X ×NFT

denote the projection. Then we want a morphism

I
• → L•

X×NFT
⊗ I

•[1]

on NFT, such that the natural composite

q∗NI
• → q∗NL•

X×NFT
⊗ q∗NI

•[1]→ L•
X×S ⊗ I

•
S[1]
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agrees with the Atiyah class of Illusie. The complex I•S is G-equivariant by
construction (it comes via pullback from X ×NFT), and the construction
of the Atiyah class shows that it too is naturally G-equivariant. The pulled
back cotangent complex q∗NL•

X×NFT
has the following description;

There is a natural composite map L•
X×S → Ω1

X×S → g∨ ⊗OX×S, where
the second map is dual to the infinitesimal g-action (and g = Lie(G)). Then
q∗NL•

X×NFT
� Cone[L•

X×S → g∨ ⊗OX×S][−1]. Thus, to prove that the
Atiyah class descends to X ×NFT in the sense explained above, it suffices
to show that the composite

I
•
S → L

•
X×S ⊗ I

•
S[1]→ Ω1

X×S ⊗ I
•
X×S[1]→ g∨ ⊗ I

•
S[1]

represents an equivariantly split extension. By the above discussion, this ex-
tension is obtained by pushing out the principal parts extension (30) along
the natural map Ω1

X×S ⊗ I•S → g∨ ⊗ I•S. Just as a splitting of the principal
parts extension corresponds to a choice of connection, however, a splitting
of its pushout corresponds to a choice of an L-connection [CRdB10, Sec-
tion 4] where L = g⊗OX×S is the action Lie algebroid associated to the
infinitesimal G-action. Since I• is G-equivariant, it comes equipped with
a g⊗OX×S-connection, hence a G-equivariant splitting of the required 1-
extension. It follows that the Atiyah class descends to X ×NFT.

We now have the truncated Atiyah class of the universal complex, given
by a class in

Ext1X×NFT
(I•, I• ⊗ L

•
X×NFT

)(31)

∼= Ext1X×NFT
(RH om(I•, I•),L•

X×NFT
)

∼= Ext1X×NFT
(RH om(I•, I•)0 ⊕OX×NFT

,L•
X×NFT

),

where L•
X×NFT

denotes the truncated cotangent complex of X ×NFT. Note
that over X ×NFT, L•

X×NFT
= π∗

XL•
X ⊕ π∗

NL•
NFT

and so one obtains the
following map between the Ext groups:

Ext1X×NFT
(RH om(I•, I•)0 ⊕OX×NFT

,L•
X×NFT

)(32)

→ Ext1X×NFT
(RH om(I•, I•)0, π

∗
NL

•
NFT

).

On the other hand:
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Ext1X×NFT

(
RH om(I•, I•)0, π

∗
NL

•
NFT

)
(33)

∼= Ext
dim(X)+dim(NFT)−1
X×NFT

(
π∗
NL

•
NFT

, RH om(I•, I•)0 ⊗ ωX×NFT

)∨
∼= Ext

dim(X)+dim(NFT)−1
NFT

(
L
•
NFT

, RπN ∗ (RH om(I•, I•)0 ⊗ ωX×NFT
)
)∨

∼= Ext
dim(NFT)−[dim(X)+dim(NFT)−1]
MP

FT(
RπN ∗ (RH om(I•, I•)0 ⊗ ωX×NFT

) ,L•
NFT

⊗ ωNFT

)
∼= Ext

−dim(X)+1
N

(
RπN ∗ (RH om(I•, I•)0 ⊗ ωX×N)

⊗RπN ∗π
∗
Nω−1

NFT
,L•

NFT

)
,

where the first isomorphism is obtained by Serre duality, the second isomor-
phism is induced by the adjointness property of the left derived pullback
and the right derived pushforward and the third isomorphism is obtained
by Serre duality. By projection formula and the definition of the relative
dualizing sheaf ωπN = ωX×N ⊗ ω−1

N = π∗
XωX and since X is a threefold, the

last term in (33) is rewritten as:

(34) RπN ∗ (RH om(I•, I•)0 ⊗ π∗
XωX) [2]→ L

•
NFT

.

Now for part (b) use Theorem 4.9 as well as [HT10, PT09a] and see that
(34) induces isomorphisms in h0 and h1 levels and a surjection at h−1 level.
Finally, we apply [PT09a, Lemma 2.10] to (34) and see that the complex
on the left hand side of (34) is quasi-isomorphic to a 4 term complex of
vector bundles. We briefly review their strategy here; Start from A•, a finite
locally free resolution of I•. ThenA•∨ ⊗A• is a finite locally free resolution
of RH om(I•, I•) and moreover,

A•∨ ⊗A• ∼= OX×NFT
⊕ (A•∨ ⊗A•)0

where the complex (A•∨ ⊗A•)0 is the locally free resolution of RH om(I•,
I•)0. Now let B• be a finite locally free resolution of (A•∨ ⊗A•)0, trimmed
to start at least 4 places earlier than (A•∨ ⊗A•)0, such that B• satisfies
the property that R≤2π∗Bj ∼= 0 and R3π∗Bj is locally free. Then following
the same strategy as in [PT09a, Lemma 2.10], we can define a complex E•,
whose terms are defined by

Ek := R3π∗B
k+3
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which is a finite complex of locally free sheaves, quasi-isomorphic to
RH om(I•, I•)0 and by base change, the restriction of E• to a point I• ∈ NFT

computes Exti(I•, I•)0 which, by the local to global spectral sequence and
Serre duality, is nonvanishing only for 0 ≤ i ≤ 3. Finally, we can use the
vanishing cohomologies at degrees less than 0 and greater than 3 and trim
the complex E• [PT09a, Lemma 2.10] (by replacing Ei at its ends with the
corresponding kernel and cokernel sheaves) and obtain a 4 term complex of
vector bundles such that

(35) E
• ∼=q−isom {E0 → E1 → E2 → E3}.

Now by the above construction, we can see that E•∨ in (29) satisfies the
conditions of being a deformation-obstruction theory of perfect amplitude
[−2, 1]. �

Deformation-obstruction theory of amplitude [−1, 0] over NHFT.

Lemma 4.13. The complex E• in Theorem 4.12 is self-dual in the sense
of [Beh09]. In other words, there exists a quasi-isomorphism of complexes

E• ∼=−→ E•∨[1].

Proof. The derived dual of E• overNFT is given by E•∨ :=RH om(E•,ONFT
).

Use Grothendieck duality and obtain the following isomorphisms:

RH om(E•,ONFT
)(36)

∼= RπN ∗(RH omX×NFT
(RH om(I•, I•)0 ⊗ π∗

XωX) [2], π!ONFT
))

∼= RπN ∗(RH omX×NFT
(RH om(I•, I•)0 ⊗ π∗

XωX) [2], π∗
XωX [3])

∼= RπN ∗RH om(OX×NFT
, RH om(I•, I•)0[1]) ∼= E

•[−1].

Hence we conclude that E•∨[1] ∼= E•; The second isomorphism in (36) is
obtained using the fact that X is a Calabi-Yau threefold and ωX

∼= OX . �

Let π : NHFT → NFT denote the natural projection map (c.f. Diagram (10)).
Note that as was mentioned in Definition 4.11, the following isomorphism
holds true in Db(NHFT)

π∗
L
•
NFT

= I/I2 → ΩA |NHFT
→ Ωπ.

Now we study the properties of the pullback of E•∨ to NHFT.



164 Artan Sheshmani

Proposition 4.14. Let U =
∐

α Uα be an atlas of affine schemes for NHFT.
Fix one of the maps q : Uα → NHFT. The following isomorphism holds true
in Db(Uα):

(37) Hom(q∗Ωπ, q
∗(π∗

E
•
NFT

[1])) ∼= Hom(q∗Ωπ, q
∗(π∗

L
•
NFT

[1])).

Hence, in particular it is true that there exists a nontrivial lift gα : q∗Ωπ →
q∗(π∗E•

NFT
[1]).

Proof. Consider the exact triangle

(38) q∗(π∗
E
•∨)

obtα−−→ q∗(π∗
L
•
NFT

)→ Cone(obtα),

induced by pulling back the deformation-obstruction theory in Theorem 4.12
via π ◦ q : Uα → NFT. Note that Ωπ

∼= (glr(C))
∨ ⊗ONHFT

. Hence, q∗Ωπ
∼=

(glr(C))
∨ ⊗OUα

. Now apply Hom0(q∗Ωπ, ) to the exact triangle (38) and
obtain

Hom0(q∗Ωπ,Cone(ob
t
α))→ Hom0(q∗Ωπ, q

∗(π∗
E
•∨)[1])(39)

→ Hom0(q∗Ωπ, q
∗(π∗

L
•)[1])

→ Hom0(q∗Ωπ,Cone(ob
t
α)[1]).

We prove the statement of the proposition by showing that

(40) Hom0(q∗Ωπ,Cone(ob
t
α))

∼= 0 ∼= Hom0(q∗Ωπ,Cone(ob
t
α)[1]).

To prove (40), we will use the fact that by construction q∗Ωπ
∼= (glr(C))

∨ ⊗
OUα

. Therefore, our proof reduces to showing that

(41) Hom0(OUα
,Cone(obtα)[l])

∼= 0,

for l = 1, 0. In order to prove (41), first we will show that the complex
Cone(obtα) has no cohomologies in degrees greater than −1. For this, consider
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the long exact sequence of cohomology induced by the exact triangle (38):

0→��������
h−3(q∗(π∗

E
•∨))→�������

h−3(q∗(π∗
L
•))→ h−3(Cone(obtα))(42)

∼=−→ h−2(q∗(π∗
E
•∨))→�������

h−2(q∗(π∗
L
•))→ h−2(Cone(obtα))

→ h−1(q∗(π∗
E
•∨)) � h−1(q∗(π∗

L
•))→��������

h−1(Cone(obtα))

→ h0(q∗(π∗
E
•∨))

∼=−→ h0(q∗(π∗
L
•))→��������

h0(Cone(obtα))

→ h1(q∗(π∗
E
•∨))

∼=−→ h1(q∗(π∗
L
•))→��������

h1(Cone(obtα))

→�������
h2(q∗(π∗

E
•∨))→�������

h2(q∗(π∗
L
•))→ 0,

where we have used the fact that q∗(π∗L•) and q∗(π∗E•∨) are perfect com-
plexes of amplitudes [−1, 1] and [−2, 1] respectively, and hi(obtα) is an iso-
morphism for i = 0, 1 and a surjection for i = −1. Hence, we conclude that
Cone(obtα)) only has cohomologies on degrees −2 and −3 and so, we can
replace the complex Cone(obtα) with a representative complex A• such that
Ak = 0 for k ≥ −1. Therefore, the proof of (41) follows by showing that
Hom0(OUα

,A•[l]) ∼= 0 for all l ≥ 0.
Now use the general fact that given complexes T and F, in order to com-

pute the Grothendieck hypercohomolgy Homi(T ,F), one replaces F with
its injective resolution F→ K•. Moreover replacing F with K• is equivalent
with replacing T with P• such that P• → T is a projective resolution. On
the other hand, locally over Uα, OUα

is given as a free and in particular
projective module hence its projective resolution consists of one term only
and we can use OUα

itself, instead of the complex P•. Now it is seen that,
Hom0(OUα

,A•[l]) ∼= 0 since OUα
is a flasque sheaf sitting in degree zero. This

proves the isomorphism (41), which implies the isomorphism (40), which
proves the statement of Proposition 4.14. �

Theorem 4.15. Consider the 4-term deformation-obstruction theory E•∨

of perfect amplitude [−2, 1] over NFT. Locally in the Zariski topology over
NHFT there exists a perfect two-term deformation-obstruction theory of per-
fect amplitude [−1, 0] which is obtained from the suitable local truncation of
the pullback π∗E•∨ via the map π : NHFT → NFT.

Proof. We prove this theorem by cohomologically truncating the 4-term

complex π∗E•∨ on right side and then left side; By Theorem 4.12, E•∨ ob−→
L•
NFT

is a perfect deformation-obstruction theory of amplitude [−2, 1] for
NFT, such that h0(ob), h1(ob) are isomorphisms and h−1(ob) is an epimor-
phism. Let q : Uα → NHFT and q′ : Uβ → NHFT be given as fixed affine charts
over NHFT such that the isomorphism in Proposition 4.14 holds true over
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Uα and Uβ . Let fα : Uα ×q×q′ Uβ → Uα and fβ : Uα ×q×q′ Uβ → Uβ be the
corresponding projection to Uα and Uβ . Then

Hom0(f∗
α(q

∗Ωπ, q
∗(π∗

E
•∨)[1])) ∼= Hom0(f∗

β(q
∗Ωπ, q

∗(π∗
L
•∨)[1])).

Moreover, the same statement is true for fα and q replaced by fβ and q′.
Because NHFT is a quasi-projective scheme, then an intersection of affine

subschemes of NHFT is affine, which implies that Proposition 4.14 holds true
over Uα ×q×q′ Uβ also. Now fix Uα. By the local existence of the map gα in
Proposition 4.14, there exists a commutative diagram over Uα:

(43)

π∗E•∨ |Uα
Cone(gα)[−1] Ωπ |Uα

π∗E•∨[1] |Uα
Cone(gα)

π∗L•
NFT

|Uα
L•
NHFT

|Uα
Ωπ |Uα

π∗L•
NFT

[1] |Uα
L•
NHFT

[1] |Uα
.

π∗(ob) |Uα ob′

gα

id π∗ob[1] |Uα

Now we show that the map ob′ : Cone(gα)[−1]→ L•
NHFT

|Uα
defines a perfect

3-term deformation-obstruction theory of amplitude [−2, 0] for NHFT over
Uα.

We show that Cone(g)[−1] is concentrated in degrees −2, −1 and 0.
Moreover, h0(ob′) is an isomorphism and h−1(ob′) is an epimorphism. The
proof uses the long exact sequence of cohomologies. For h−1(ob′) one obtains:

(44)

0 h−1(π∗E•∨ |Uα
) ∼= π∗h−1(E•∨ |Uα

) h−1(Cone(gα)[−1]) 0

0 h−1(π∗L•
NFT

|Uα
) ∼= π∗h−1(L•

NFT
|Uα

) h−1(L•
NHFT

|Uα
) 0,

∼=

∼= h−1(ob′)π∗(h−1(ob))

where the top horizontal isomorphism is due to the fact that

Cone(gα)[−1] : π∗E−2 → π∗E−1 → π∗E0 ⊕ Ωπ → π∗E1,

where Ei correspond to the terms of the complex E•∨ |Uα
. The vanishings

on the left and right of the top and bottom rows of (44) are due to the
fact that Ωπ is a sheaf concentrated in degree zero. By Theorem 4.12, the
second vertical map (from left) is a surjection and by commutativity of the
diagram (44) the map h−1(ob′) is surjective. In degrees 0 and 1 one obtains:

(45)

0 π∗h0(E•∨ |Uα
) h0(Cone(gα)[−1]) Ωπ |Uα

π∗h1(E•∨ |Uα
) h1(Cone(g)[−1]) 0

0 π∗h0(L•
Ns,FT

|Uα
) h0(L•

NHFT
|Uα

) Ωπ |Uα
π∗h1(L•

NFT
|Uα

) h1(L•
NHFT

|Uα
) 0.

π∗h0(ob) |Uα
h0(ob′) id π∗h1(ob) |Uα

h1(ob′)
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In this diagram, h1(L•
NHFT

|Uα
) ∼= 0 since over NHFT the truncated cotangent

complex does not have cohomology in degree 1. Moreover, π∗h1(ob) |Uα
is

an isomorphism by Theorem 4.12. Hence h1(ob′) ∼= 0. Moreover by Theo-
rem 4.12, π∗h0(ob) is an isomorphism, hence by the commutativity of the
diagram (45), h0(ob′) is an isomorphism.

Now in order to obtain a perfect deformation-obstruction theory of am-
plitude [−1, 0], one needs to truncate the complex Cone(gα)[−1] on the left
side, so that it does not have any cohomology in degree −2. The self-duality
of E• gives a diagram of morphisms in the derived category:

(46)

E• E•∨[1] Cone(gα)

Tπ |Uα
[1]

g∨α
q-isom

∼=

and we need to show that the natural map

(47) Hom0
D(Uα)

(Cone(gα),Tπ |Uα
[1])→ Hom0

D(Uα)
(E•,Tπ |Uα

[1])

is an isomorphism.

Note that Uα is affine and Tπ |Uα
[1] ∼= Odim(g)

Uα
[1], so the statement re-

duces to knowing that h1(Cone(gα)
∨)→ h1(E•∨) is an isomorphism. This

follows, since E•∨[1]→ Cone(gα) is an isomorphism on h−1 as shown in di-
agram (44).

By the isomorphism (47), it is now seen that the map g∨α in diagram (46)
factors through the map

Cone(gα)→ Tπ |Uα
[1]

which is unique up to homotopy. We make a choice of such lift, shift the
degrees by −1 and denote the resulting map by g′α

∨. So we get an exact
triangle

(48) Cone(g′α
∨
)[−1]→ Cone(gα)[−1]

g′
α

∨

−−→ Tπ |Uα
→ Cone(g′α

∨
).

By this construction, we are now ready to define our “two-fold” truncated
complex as

(49) G
• |Uα

:= Cone(g′α
∨
)[−1]

In order to finish the proof of Theorem 4.15, we need show that the complex
G• |Uα

in (49) defines a perfect deformation-obstruction theory of amplitude
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[−1, 0] for Uα. By Theorem 4.12, the complex π∗E•∨ is given by a 4-term
complex of vector bundles of amplitude [−2, 1] as follows

π∗
E
•∨ |Uα

:= π∗E−2 → π∗E−1 → π∗E0 → π∗E1.

Then, it is seen that by construction

G
• |Uα

:= π∗E−2 d′
−→ π∗E−1 ⊕ Tπ |Uα

→ π∗E0 ⊕ Ωπ |Uα

d−→ π∗E1,

which means G• |Uα
has no cohomologies in degree −2 and 1, however its

cohomologies in degrees −1 and 0 are the same as that of Cone(gα)[−1]1.
In other words, the G• |Uα

is the truncation of Cone(gα)[−1] on degree −2
and it can be seen that in the following commutative diagram, the top row
is quasi-isomorphic to the bottom row2:

(50)

π∗E−2 π∗E−1 ⊕ Tπ |Uα
π∗E0 ⊕ Ωπ |Uα

π∗E1

0 Coker(d′) Ker(d) 0

d′ d

,

Now the composition of morphisms φ := G• |Uα
→ Cone(g)[−1]→ L•

NHFT
|Uα

,
together with the fact that by diagrams (44) and (45), h0(ob′) is an isomor-

phism and h−1(ob′) is an epimorphism, shows that the morphism G• |Uα

φ−→
L•
NHFT

|Uα
satisfies the condition of being a deformation-obstruction theory,

i.e we have that h0(φ) is an isomorphism and h−1(φ) is an epimorphism. �

4.1. Construction of virtual fundamental class

Followed by the constructions in [BF97, Definition 3.7], in order to construct
the virtual fundamental class, one needs to choose a local embedding over
the moduli stack. Then one constructs the normal cone associated to a per-
fect local deformation-obstruction theory of amplitude [−1, 0] over this local
embedding and proves that this normal cone is independent of the local em-
bedding, i.e it remains invariant under the base change. The base-change
invariance enables one to glue the local normal cones constructed over each

1Note that the −1 and 0 cohomologies of Cone(gα)[−1] themselves, are equal to
−1 and 0 cohomologies of π∗

E
•∨ |Uα

by diagrams (44) and (45).
2Note that by self-symmetry of E•∨ the morphism d′ in diagram (50) is the dual

of the morphism d. Therefore, since Ker(d) is locally free then it is implied that
Coker(d′) is also locally free.
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local embedding, and obtain a global cone stack. Essentially a global virtual
fundamental class is constructible from a global normal cone stack.

For us, the gluability of the so-called local normal cone stacks depends
on whether the local deformation-obstruction theories over each chart satisfy
the condition of being given as a “semi-perfect obstruction theory” in the
sense of Chang-Li [CL11]. However, we realize that the latter is achievable
only if we assume a technical condition (c.f. Assumption 4.21).

We will see later in Part II that this assumption is satisfied automatically,
over the torus fixed loci of the moduli space, when we study highly frozen
triples over a toric variety (c.f. Section 5).

Definition 4.16. [CL11, Definition 2.5] Let ι : T → T ′ be a closed sub-
scheme with T ′ local Artinian. Let I be the ideal sheaf of T in T ′ and let
m be the ideal sheaf of the closed point of T ′. We call ι a small extension if
I ·m = 0. Now LetM be an Artin stack and X →M a representable mor-
phism of a DM stack to an Artin stack. Let U =

∐
α Uα∈Λ be a DM cover of

X by affine schemes. Consider Uα →M for some α ∈ Λ. Consider a small
extension (T, T ′, I,m) that fits into a commutative square

(51)

T Uα

T ′ M

g

ι

,

so that the image of g contains a closed point p ∈ Uα. Finding a morphism
g′ : T ′ → Uα that commutes with the arrows in (51) is called “infinitesimal
lifting problem of Uα/M at p”.

Definition 4.17. Given a U →M, let φ : G•
U → L•

U/M be a perfect ob-
struction theory. For the infinitesimal lifting problem in Definition 4.16 we
call the image

(52) ob(φ, g, T, T ′) := h1(φ∨)(ω(g, T, T ′)) ∈ Ext1(g∗G•
U , I) = Ob(φ, p)⊗ I

the obstruction class (of φ) to the lifting problem.

Definition 4.18. [CL11, Definition 2.9] Given two (local) deformation-
obstruction theories φ : G•

U → L•
U/M and φ′ : G′•

U → L•
U/M over U as in Def-

inition 4.17, we call them ν-equivalent if there exists an isomorphism of
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sheaves:

(53) ψ : h1(G•∨
U )→ h1(G′•∨

U )

so that for every closed point p ∈ Uα and any infinitesimal lifting problem
of Uα/M at p (as in Definition 4.16) we have

ψ |p (ob(φ, g, T, T ′)) = ob(φ′, g, T, T ′) ∈ Ob(φ′, p)⊗k I.

Let Uα,Uβ ⊂ NHFT be given as two charts with the lifting property as in
Proposition 4.14. Let φα : G•

α → L•
Uα/M and φβ : G•

β → L•
Uβ/M. Moreover,

let Uαβ = Uα ∩ Uβ , fα : Uαβ ↪→ Uα and fβ : Uαβ ↪→ Uβ .

Proposition 4.19. Let f∗
αφα and f∗

βφβ denote the pullback of φα and φβ

to Uαβ. Then f∗
αφα and f∗

βφβ are ν-equivalent over Uαβ.

Proof. We have to show that given a diagram

(54)

T Uαβ

T ′ NHFT

gαβ

ι

,

there exists a map ψ : h1(f∗
αG

•∨
α )

∼=−→ h1(f∗
βG

•∨
β ) such that given a class

ob(f∗
αφα, gαβ , T, T

′) ∈ h1(f∗
α(L

•
NHFT

|Uα
)∨) (Look at diagram (54)) and for

every point p ∈ Uαβ we have

ψ |p ob(f∗
αφα, gαβ , T, T

′) = ob(f∗
βφβ , gαβ , T, T

′).

Apply the result of Proposition 4.14 to Uα and Uβ and obtain unique iso-
morphisms as in (37) over Uα and Uβ . Now use the fact that Uαβ is affine
and pull back the obtained isomorphisms via fα and fβ to Uαβ and obtain
a unique isomorphism

Hom(Ωπ |Uαβ
,E•

αβ)
∼= Hom(Ωπ |Uαβ

,L•
αβ).

Now by the uniqueness property, there exists an isomorphism in Db(Uαβ)
given by

καβ : f∗
αE

•
α → f∗

βE
•
β .

By assumption, Uα and Uβ are given as charts with lifting property (c.f.
Theorem 4.15), hence there exists lifts Hom(Ωπ |Uα

,E•
α[1]) and Hom(Ωπ |Uβ
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,E•
β [1]) given by gα : Ωπ |Uα

→ E•
α[1] and gβ : Ωπ |Uβ

→ E•
β [1] over Uα and Uβ

respectively. Now consider the pullbacks f∗
αΩπ |Uα

[−1]→ f∗
αE

•
α and f∗

αΩπ |Uα

[−1]→ f∗
αE

•
α and note that by Proposition 4.14, f∗

αgα and f∗
βgβ are homo-

topic to each other over Uαβ and satisfy the equation:

f∗
αgα − f∗

βgβ = d ◦ hαβ + hαβ ◦ d,

where hαβ is given as a choice of homotopy. Now take the cone of f∗
αgα and

f∗
βgβ and obtain the following commutative diagram:

(55)

Cone(f∗
αgα)[−1] f∗

αΩπ |Uα
f∗
αE

•
α[1] Cone(f∗

αgα)

Cone(f∗
βgβ)[−1] f∗

βΩπ |Uβ
f∗
βE

•
β [1] Cone(f∗

βgβ),

Jαβ [−1]

f∗
αgα

id Jαβf∗
βgβ id

where Jαβ :=

(
id hαβ
0 id

)
. Since the first and the second rows in dia-

gram (55) are given by exact triangles, one computes the long exact sequence
of cohomologies and obtains the following commutative diagram:

(56)

· · · hi(f∗
αΩπ |Uα

[−1]) hi(f∗
αE

•
α) hi(Cone(f∗

αgα))[−1] · · ·

· · · hi(f∗
βΩπ |Uβ

[−1]) hi(f∗
βE

•
β) hi(Cone(f∗

βgβ))[−1] · · · .
id id hi(Jαβ)[−1]

Now use [ea87, Proposition 4.10] and conclude that the left, middle and right
squares in (56) are commutative square diagrams for all i. By computing the
cohomologies in the level of i = −1 one obtains:

(57)

0 h−1(f∗
αE

•
α) h−1(Cone(f∗

αgα)[−1]) 0

0 h−1(f∗
βE

•
β) h−1(Cone(f∗

βgβ)) 0,
h−1(Jαβ [−1])

∼=
ρ1

id ∼=
ρ2

where the vanishings on the ends are due to the fact that hi(f∗
αΩπ |Uα

[−1]) ∼=
0 and hi(f∗

βΩπ |Ubeta
[−1]) ∼= 0 for i = −1, 0. Hence, we conclude that by

commutativity of the middle square, h−1(Jαβ [−1]) is an isomorphism of
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cohomologies and moreover, given any ν ∈ h−1(Cone(f∗
αgα)[−1]):

(58) id ◦ ρ−1
1 (ν) = ρ−1

2 ◦ h−1(Jαβ [−1])(ν).

Note that given a choice of homotopy h∨αβ satisfying

f∗
αg

∨
α − f∗

βg
∨
β = d ◦ h∨αβ + h∨αβ ◦ d,

and via restriction of the exact triangle in (48) to Uαβ , similar to the above
procedure, we obtain a commutative diagram:

(59)

Cone(f∗
αg

∨
α)[−1] Cone(f∗

αgα)[−1] f∗
αTπ |Uα

Cone(f∗
αg

∨
α)

Cone(f∗
βg

∨
β )[−1] Cone(f∗

βgβ)[−1] f∗
βTπ |Uβ

Cone(f∗
βg

∨
β ),

J∨
αβ [−1]

f∗
αg

∨
α

Jαβ [−1] J∨
αβ

f∗
βg

∨
β

id

and so similarly, we obtain a commutative diagram induced by the long
exact sequences of cohomologies:

(60)

hi(Cone(f∗
αg

∨
α)[−1]) hi(Cone(f∗

αgα)[−1]) hi(f∗
αTπ |Uα

) hi(Cone(f∗
αg

∨
α)

hi(Cone(f∗
βg

∨
β )[−1]) hi(Cone(f∗

βgβ)[−1]) hi(f∗
βTπ |Uβ

) hi(Cone(f∗
βg

∨
β ) ,

hi(J∨
αβ [−1]) hi(Jαβ [−1]) hi(J∨

αβ)id

Now use [ea87, Proposition 4.10] and conclude that the left, middle and right
squares in (56) are commutative square diagrams for all i and in particular
for i = −1:

(61)

0 h−1(Cone(f∗
αg

∨
α)[−1]) h−1(Cone(f∗

αgα)[−1]) 0 h−1(Cone(f∗
αg

∨
α)

0 h−1(Cone(f∗
βg

∨
β )[−1]) hi(Cone(f∗

βgβ)[−1]) 0 h−1(Cone(f∗
βg

∨
β ) .

h−1(J∨
αβ [−1])

q1

h−1(Jαβ [−1]) h−1(J∨
αβ)

q2
id

Hence by commutativity of the left square, and the fact that h−1(Jαβ [−1])
is an isomorphism, then h−1(J∨

αβ [−1]) is an isomorphism and moreover, for

any μ ∈ h−1(Cone(f∗
αg

∨
α)[−1]) we have:

(62) h−1(Jαβ [−1]) ◦ q1(μ) = q2 ◦ h−1(J∨
αβ [−1])(μ).



Higher rank stable pairs and virtual localization 173

Now take an element μ∈h−1(Cone(f∗
αg

∨
α)[−1]) and note that by (58) and (62)

we have:

id ◦ ρ−1
1 ◦ h−1(Jαβ [−1]) ◦ q1(μ)(63)

= ρ−1
2 ◦ h−1(Jαβ [−1]) ◦ q2 ◦ h−1(J∨

αβ [−1])(μ).

Moreover, L•
NHFT

and L•
NFT

satisfy the condition that h−1(L•
NHFT

) ∼=
h−1(L•

NFT
). Hence, one easily observes that there exist maps λ1 : h

−1(f∗
αE

•
α)

→ h−1(f∗
α(L

•
NHFT

|Uα
)) and λ2 : h

−1(f∗
βE

•
β)→ h−1(f∗

β(L
•
NHFT

|Uβ
)) such that

the following diagram commutes:

(64)

h−1(f∗
αE

•
α) h−1(f∗

α(L
•
NHFT

|Uα
))

h−1(f∗
βE

•
β) h−1(f∗

β(L
•
NHFT

|Uβ
)).

λ1

idλ2
id

Now by (64) and (63) it is seen that given μ ∈ h−1(Cone(f∗
αg

∨
α)[−1]), we

obtain an identity

id ◦ λ1 ◦ id ◦ ρ−1
1 ◦ h−1(Jαβ [−1]) ◦ q1(μ)(65)

= λ2 ◦ id ◦ ρ−1
2 ◦ h−1(Jαβ [−1]) ◦ q2 ◦ h−1(J∨

αβ [−1])(μ).

Let ψ∨ := id ◦ ρ−1
2 ◦ h−1(Jαβ [−1]) ◦ q2 ◦ h−1(J∨

αβ [−1]). So far we have seen

that in the level of h−1 cohomology there exists a map

ψ∨ : h−1(Cone(f∗
αg

∨
α)[−1])

∼=−→ h−1(Cone(f∗
βg

∨
α)[−1])

such that λ2 ◦ Im(ψ∨) = Im(λ1).
Recall that by our notation, G•

α := Cone(g∨α)[−1] and G• |Uβ
:=

Cone(g∨β )[−1]. Now dualize the construction and conclude that there exists

a map ψ : h1(f∗
αG

•∨
α )

∼=−→ h1(f∗
βG

•∨
β ), such that given a class ob(f∗

αφα, gαβ ,

T, T ′) ∈ h1(f∗
α(L

•
NHFT

|Uα
)∨) (c.f. Diagram (54)) and for every point p ∈ Uαβ

we have

ψ |p ob(f∗
αφα, gαβ , T, T

′) = ob(f∗
βφβ , gαβ , T, T

′).

This finishes the proof of Proposition 4.19. �

Definition 4.20. [CL11, Definition 3.1]. Let X be a DM stack of finite
type over an Artin stackM. A semi perfect obstruction theory over X →M
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consists of an étale covering U =
∐

α∈Λ Uα of X by schemes, and a truncated
perfect relative obstruction theory

φα : G•
α → L

•
Uα/M

for each α ∈ Λ such that

1) for each α, β in Λ there is an isomorphism

ψαβ : h1(G•∨
α |Uαβ

)
∼=−→ h1(G•∨

β |Uαβ
)

so that the collection (h1(G•∨
α ), ψαβ) forms a descent datum of sheaves.

2) For any pair α, β ∈ Λ the obstruction theories φα |Uαβ
and φβ |Uαβ

are
ν-equivalent.

The condition (1) above, that the ν-equivalences we have constructed induce
a descent datum of sheaves on h1, requires that we carefully choose homo-
topies hαβ and h∨αβ on Uαβ so that the induced composite quasi-isomorphisms

ψγα ◦ ψβγ ◦ ψαβ induce the identity maps on h1.
For now let us make the following assumption:

Assumption 4.21. The homotopies hαβ and h∨αβ can be chosen so that the

collection of data (h1(G•∨
α ), ψαβ) forms a descent datum of sheaves.

Theorem 4.22. Assuming the technical condition 4.21, the local
deformation-obstruction theory in Theorem 4.15 satisfies the conditions of
being a semi perfect deformation-obstruction theory in the sense of [CL11,
Definition 3.1] and hence, it defines a globally well-behaved virtual funda-
mental class over NHFT.

Proof. We need to show that both conditions in Definition 4.20 are satisfied.
For part (2) of Definition 4.20, apply Proposition 4.19 and conclude that
φα |Uαβ

= f∗
αφα and φβ |Uαβ

= f∗
βφβ are ν-equivalent. To prove part (1), first

apply Proposition 4.19 and obtain the map

ψαβ : h1(G•∨
α |Uαβ

)
∼=−→ h1(G•∨

β |Uαβ
).

Now by Assumption 4.21, (h1(G•∨
α ), ψαβ) forms a descent datum. �

Remark 4.23. Making Assumption 4.21 should, morally speaking, be un-
necessary over more enhanced models of the moduli stacks. The local models
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G•
α can always be glued, up to higher homotopies, and thus should always

give an ∞-stack in which the virtual normal cone lives. This can be seen in
[Wis12] and [Wis11]. Another relevant discussion is by Schürg et al. [STV11]
who study the advantage of using higher stacks in order to construct the vir-
tual fundamental classes in more generality. We expect that in the future a
good intersection theory for ∞-stacks would allow us to construct a virtual
cycle using this ∞-stack. Such a construction is beyond the scope of the
present article, however.

Remark 4.24. Assumption 4.21 holds true in the setting of Part II when
the base variety X is chosen to be a toric variety (see Lemma 5.9). This is
due to the fact that the torus equivariant highly frozen triples are identifiable
with r copies of torus equivariant PT pairs (c.f. Proposition 5.5). Moreover,
in Part II a direct calculation of equivariant vertex for highly frozen triples
is carried out and the result is shown to match precisely with the equivariant
vertex associated to r copies of (twisted) PT deformation-obstruction theory.

5. Part II (Calculations)

Let X be given as a toric variety with an action of T = C∗3. Consider the
ample line bundle over X given by OX(1). By the usual arguments, and
similar to the theory of stable pairs [PT09a], the action of T on X induces
an action on NHFT;

Proposition 5.1. (Geometric torus action) Let X be given as a nonsingu-
lar toric threefold. Let T be the (C∗)3 action on X. Having fixed an equiv-
ariant structure on OX(1), there exists an induced action of T on moduli
stack of stable highly frozen triples mT : T×NHFT → NHFT given by pre-
composing the pullback (via the action of T on X) of triples with the inverse
of the isomorphism ψ.

Proof. The proof is essentially followed by applying the strategy of [Koo11,
Proposition 4.1] to the highly frozen triples. In other words, considering the
highly frozen triples (E,F, φ, ψ), the action of T induces an action (given
by the pullback) on the moduli spaces of sheaves associated to E and F and
this action respects the morphism E → F after pre-composing the pull back
t∗E → t∗F with the isomorphism ψ−1 : E → t∗E for all t ∈ T. �
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Proposition 5.2. Let S be a parametrizing scheme of finite type over C.
Let (E ,F , φ, ψ)S denote a family of stable highly frozen triples over S. Sup-
pose that for all t = (λ1, λ2, λ3) ∈ T we have t∗((E ,F , φ, ψ)S) ∼= (E ,F , φ, ψ)S,
then (E ,F , φ, ψ)S admits a T-equivariant structure.

Proof. We give an adaptation of the proof given in [Nev02, Lemma 3.3] to our
case. By assumption for any t ∈ T one has t∗((E ,F , φ, ψ)S ∼= (E ,F , φ, ψ)S .
Let σ : T×X → X denote the torus action on X and π2 : T×X → X be
the projection onto the second factor. Let q : X × S → S be the projection
onto S. One needs to show that there exists a map:
(66)

ρ : Ext0idT×q((π2 × idS)
∗(E ,F , φ, ψ)S , (σ × idS)

∗(E ,F , φ, ψ)S)→ OT×S ,

which is an isomorphism of line bundles over T× S. Here

Ext0idT×q((π2 × idS)
∗(E ,F , φ, ψ)S , (σ × idS)

∗(E ,F , φ, ψ)S)

:= R0(q × idT)∗(H om((π2 × idS)
∗(E ,F , φ, ψ)S , (σ × idS)

∗(E ,F , φ, ψ)S)).
(67)

By definition of NHFT, choosing a family of stable highly frozen triples over
S is equivalent to choosing a unique map S → NHFT. Since (σ × idS)

∗(E ,F ,
φ, ψ)S and (π2 × idS)

∗(E ,F , φ, ψ)S are two families over NHFT, they both
define maps f : T× S → NHFT and g : T× S → NHFT respectively. By the
uniqueness property, both maps are uniquely isomorphic to each other. On
the other hand by Lemma 3.6 the complexes representing τ ′-stable highly
frozen triples are simple objects hence:

Ext0idT×q((π2 × idS)
∗(E ,F , φ, ψ)S , (σ × idS)

∗(E ,F , φ, ψ)S)(68)

∼= Ext0idT×q((E ,F , φ, ψ)T×S , (E ,F , φ, ψ)T×S) ∼= OT×S .

Now the inverse image of 1 ∈ OT×S via the map ρ in (66) gives a section of

Ext0idT×q((E ,F , φ, ψ)T×S , (E ,F , φ, ψ)T×S)

which induces a section of

Ext0idT×q((π2 × idS)
∗(E ,F , φ, ψ)S , (σ × idS)

∗(E ,F , φ, ψ)S)

which induces a morphism (π2×idS)
∗(E ,F , φ, ψ)S→(σ×idS)

∗(E ,F , φ, ψ)S .
Moreover, it can be checked that this morphism is an isomorphism for every
point in the moduli scheme of stable highly frozen triples. Therefore, it is
an isomorphism everywhere and this finishes the proof. �
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Definition 5.3. (Non-geometric torus action) Define an action σ0 : T0 ×
NHFT → NHFT where T0 = (C∗)r, and σ0 acts on NHFT by rescaling in
components of OX(−n)⊕r.

Proposition 5.4. Let S be a parametrizing scheme of finite type over C.
Let (E ,F , φ, ψ)S denote a family of stable highly frozen triples over S. Sup-
pose that for all t0 = (z1, . . . , zr) ∈ T0, σ0(t0, (E ,F , φ, ψ)S) ∼= (E ,F , φ, ψ)S.
Then (E ,F , φ, ψ)S admits a T0-equivariant structure:

σ∗
0(E ,F , φ, ψ)S ∼= p̃∗2(E ,F , φ, ψ)S ,

where p̃2 : T0 ×NHFT → NHFT is the projection onto the second factor.

Proof. Apply the proof of Proposition 5.2 to T0 and the universal family
(E,F, φ, ψ) and use the simpleness property of stable highly frozen triples.

�

Now use the notation T := T× T0.

Proposition 5.5. A T -equivariant stable highly frozen triple is decompos-
able into r copies of T-equivariant highly frozen triples of rank 1, OX(−n)i
si−→ Fi, 1 ≤ i ≤ r. In other words the T -equivariant highly frozen triples sat-
isfy the following identity:

(69) [O⊕r
X (−n) s−→ F ]T ∼=

r⊕
i=1

[
OX(−n) si−→ Fi

]T
.

Proof. By Proposition 5.4, the action of T0 on a point p ∈ NHFT induces a
T0-weight decomposition on O⊕r

X (−n). Let (w1, . . . , wr) denote the r-tuple
of weights. In fact wi for 1 ≤ i ≤ r are given by r tuples

(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1).

Now let M be the module associated to the sheaf O⊕r
X (−n), and denote by

M0 the module associated to the sheaf OX(−n). The graded piece of MT

which sits in wi weight-space is given by the module 0⊕ · · · ⊕M0 ⊕ · · · ⊕ 0,
where M0 sits in the i’th position which we denote by M0

i . Moreover observe
that, under the action of T, we obtain a T-graded weight decomposition of
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M0
i itself, given as

M0
i
∼=

⊕
(m1,m2,m3)

M0
i (m1,m2,m3)

Therefore, the T -weight decomposition of MT is given by

(70) MT ∼=
r⊕

i=1

⎛
⎝ ⊕

(m1,m2,m3)

M0
i (m1,m2,m3)

⎞
⎠

which means that, sheaf theoretically, the following T -equivariant isomor-
phism holds true

[O⊕r
X (−n)]T ∼=

r⊕
i=1

OT
X(−n).

Now apply the same argument as above to F and use the property of mor-
phisms between two graded sheaves of modules (c.f. [GP11]) to see that F
will have a T -weight decomposition compatible to that of O⊕r

X (−n) and this
proves the statement of Proposition 5.5. �

Remark 5.6. By Proposition 5.5 the τ ′-stable highly frozen triple on left
hand side of isomorphism (69) satisfies the condition of having zero dimen-
sional cockerel. Therefore, the cockerel sheaf induced by the right hand side
of (69) is also zero dimensional, which means the r-fold sum of the highly
frozen triples of rank 1 appearing on the right hand side of (69) is stable in
the sense of Lemma 2.8.

Note that by Lemma 2.7, our notion of τ ′-stability condition in
Lemma 2.7 is obtained as the q(m)→∞ limit of Le Potier’s notion of poly-
nomial stability condition with strict inequality (c.f. Equation (8)). There-
fore, we have avoided the strictly semistable objects in our construction.
Moreover, the only automorphisms of our higher rank objects on both sides
of isomorphism (69) are given by identity. In order to see this, replace F
with ⊕r

i=1Fi in Lemma 3.6.

Lemma 5.7. Consider the right hand side of T -equivariant isomorphism
(69). Then it is true that each si := OT

X(−n)→ FT
i satisfies PT stability

condition.
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Proof. We show that Coker(si) has zero dimensional support. Given a T -
graded morphism in the sense of Proposition 5.5

OT
X(−n)⊕ · · · ⊕ OT

X(−n) s1,...,sr−−−−→ FT
1 ⊕ · · · ⊕ FT

r ,

let Q1,...,r := Coker(s1, . . . , sr). Moreover, let Qi := Coker(si). Now let Q :=
Coker(s) be the cokernel sheaf induced by the left hand side of isomor-
phism (69). It is then true by Proposition 5.5 that

Q ∼=T Q1,...,r,

which implies that

Supp(Q) ∼=
r⋃

i=1

Supp(Qi).

Now assume that there exists some Qi for which di := dim(Supp(Qi)) ≥ 1 ,
then we get a contradiction with Q, being zero-dimensional, which contra-
dicts the stability of [O⊕r

X (−n) s−→ F ]T . Therefore, di = 0 for all 1 ≤ i ≤ r
which, together with Remark 2.8, proves the statement. �

Proposition 5.8. Let Q denote a T -fixed component of NHFT. The fol-
lowing quasi-isomorphism holds true over Db(Q)

G
• ∼=

r⊕
i=1

(E•,T
PT )

where E
•,T
PT is the T-fixed PT deformation-obstruction theory of perfect am-

plitude [−1, 0].

Proof. Let ι : Q ↪→ NHFT denote a natural embedding of a T -fixed compo-
nent of NHFT. By Proposition 5.5 over Q we have

[O⊕r
X (−n)→ F ]T ∼=

r⊕
i=1

[OX(−n)→ Fi]
T .

Now let U =
∐

α Uα be an atlas of affine schemes for Q. Then apply Propo-
sition 5.5 to the universal object I• ∈ Db(X ×NHFT) and conclude that

ι∗RH om(I•, I•)T0 |Uα×X
∼=

r⊕
i=1

RH om(I•,Ti , I•,Ti )0,
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where

I
•,T
i
∼= [OUα×X(−n)→ Fi]

T,

is the universal T-equivariant PT stable pair.
Now by construction in Theorem 4.12 obtain that ι∗E•|Uα

is given by a
4 term complex of vector bundles with h−2(ι∗E•|Uα

) ∼= (Gm)r ⊗OUα
. Then,

by construction in Theorem 4.15 and Diagram (50) we can immediately see
that

h−1(ι∗G•|Uα
) ∼=

r⊕
i=1

Ext1(I•,Ti,α , I•,Ti,α )0 and

h0(ι∗G•|Uα
) ∼=

r⊕
i=1

Ext2(I•,Ti,α , I•,Ti,α )0.

In other words we have the quasi-isomorphism in Db(Uα):

(71) ι∗G•|Uα
∼=

r⊕
i=1

(E•,T
PT )|Uα

.

Now it is immediately seen that the local isomorphisms (71) glue to each
other globally over Q. �

Lemma 5.9. Assumption 4.21 in Part I holds true over Q.

Proof. Use Proposition 5.5 and Proposition 5.8 and obtain that ι∗G• over Q
is given by r copies of T-fixed PT deformation-obstruction theory of perfect
amplitude [−1, 0]. Now by construction of Chang-Li [CL11, Definition 3.1]
we know that a perfect obstruction theory is also semi-perfect which means
that Assumption 4.21 is automatically satisfied for the restricted complex
ι∗G• globally over Q. �

5.1. The threefold equivariant vertex for HFT

In this section let us assume X is given as toric Calabi-Yau threefold with
the action T. Following Proposition 5.5, the identification of the highly
frozen triples of type (r, PF ) with r-fold copies of PT stable pairs makes
it easy to see that the T -fixed components of the moduli stack of highly
frozen triples are obtained as r-fold product of T-fixed components of the
moduli stack of stable pairs, which are conjectured by Pandharipande and
Thomas in [PT09a, Conjecture 2] to be nonsingular and compact. Let Q
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denote the T -fixed locus of NHFT. We assume that Q is nonsingular, con-
nected and compact. Let ιQ : Q ↪→ NHFT denote the natural embedding. Let
G•

Q := (ιQ)∗G• where G• is the deformation-obstruction theory obtained

in Theorem 4.15. Let G
•,T
Q and G

•,m
Q denote the sub-bundles of G•

Q with
zero and nonzero characters respectively. By Theorem 4.15, the T -fixed
deformation-obstruction theory restricted to Q is given by a map of per-
fect complexes:

(72) G
•,T
Q

φ−→ L
•
Q.

Here G•,T
Q is represented by a two term complex of vector bundles G−1,T

Q →
G0,T

Q . By the virtual localization formula [GP99]:

(73)

[
NHFT

]vir
=

∑
Q⊂NHFT

ιQ∗

(
e(Gm

1,Q)

e(Gm
0,Q)

∩ [Q]vir
)
.

Where Gm
0,Q and Gm

1,Q denote the dual of G0,m
Q and G−1,m

Q respectively.
Now we rewrite (73) with respect to the Euler classes e(G1,Q) and e(G0,Q)
where G0,Q and G1,Q denote the dual of G0

Q and G−1
Q respectively. In or-

der to do so, we use the description of the virtual tangent space with re-
spect to the T -fixed deformation-obstruction theory. If Q is assumed to be
nonsingular, then L•

Q := 0→ ΩQ. The T -fixed deformation-obstruction the-

ory (72) induces a composite morphism G−1,T
Q → G0,T

Q

φ−→ ΩQ. The kernel
of this composite morphism is the obstruction bundle K and by definition
[Q]vir = e(K∨) ∩ [Q]. The K-theory class of K∨ is given as follows:

(74) [K∨] = [GT
1,Q]− [GT

0,Q] + [TQ],

where GT
0,Q and GT

1,Q denote the dual of G0,T
Q and G−1,T

Q respectively. There-
fore one has:

(75) e(K∨) =
e(GT

1,Q)

e(GT
0,Q)

· e(TQ).

By (73) and (75) the virtual fundamental class of NHFT is obtained as

(76)

[
NHFT

]vir
=

∑
Q⊂NHFT

ιQ∗

(
e(G1,Q)

e(G0,Q)
· e(TQ) ∩ [Q]

)
.
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Now we compute the difference [G0,Q]− [G1,Q] in the T -equivariant K-
theory of Q. Consider a point p ∈ Q represented by the complex I•T :=
[O⊕r

X (−n)→ F ]T . The difference [G0,Q]− [G1,Q] over this point is the vir-
tual tangent space at this point. We use the quasi isomorphism in dia-
gram (50) to compute the virtual tangent space:

T Q
I• = [Coker(d′)]− [Ker(d)](77)

=
(
[π∗E1]− [π∗E0] + [π∗E−1]− [π∗E−2]

)
+
(
�
��[Tπ]−���[Ωπ]

)
,

where Ei for i = −1, . . . , 2 are described in (35), and the cancellation on the
right hand side of (77) is due to isomorphism of Ωπ and Tπ, which is seen
from their triviality. Now since the point p ∈ Q is represented by I•,T , the
following identities hold true:

T Q
I• =

3∑
i=0

(−1)i · [Exti(I•T , I•T )0] = [χ(OX ,OX)]− [χ(I•T , I•T )].(78)

5.1.1. Computation of [χ(OX ,OX)]− [χ(I•, I•)]. Using Čech coho-
mology with respect to an affine open cover

⋃
α Uα → NHFT we obtain:

χ(I•, I•) =
3∑

i,j=0

(−1)i+jCi(Extj(I•, I•)) and

χ(OX ,OX) =

3∑
i,j=0

(−1)i+jCi(Extj(OX ,OX)).

By definition, the sheaf F appearing in the stable highly frozen triples is pure
of dimension 1. Therefore, the restriction of F over the triple and quadruple
intersections of Uα’s vanishes and over such intersections I• ∼= O⊕r

X (−n).

Definition 5.10. Define:

T 1
[I•] =

⊕
α

⎛
⎝h0(Uα,OX)−

∑
j

(−1)jh0(Uα, Extj(I•, I•)))

⎞
⎠

T 2
[I•] =

⊕
α,β

⎛
⎝h0(Uαβ ,OX)−

∑
j

(−1)jh0(Uαβ , Extj(I•, I•)))

⎞
⎠(79)

T 3
[I•] =

⊕
α,β,γ

(
(1− r2)h0(Uαβγ ,OX)

)
and
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T 4
[I•] =

⊕
α,β,γ,δ

(1− r2)h0(Uαβγδ,OX).

By Definition 79 and Equation (78), the virtual tangent space is obtained
as:

(80) T[I•] = T 1
[I•] − T 2

[I•] + T 3
[I•] − T 4

[I•].

Now let (t1, t2, t3) be defined as the weights of T. Moreover, let (w1, . . . , wr)
be defined as weight of the action of T0. Here wi is given by tuples (0, . . . , 1,
. . . , 0) where 1 is positioned in the i’th position in the tuple; We need to
compute the T -character of T i

[I•] for i = 1, . . . , 4 in (80). Choose a Čech

cover U =
⋃

α Uα of X. The restriction of each copy of OT
X(−n)→ FT

i to
the underlying supporting curve Cα of FT

i induces an exact sequence of the
form:

(81) 0→ OT
Cα
(−n)→ (FT

i )α → (QT
i )α → 0,

By τ ′-stability, the sheaf (FT
i )α may be zero and if it is nonzero then the

cokernel (QT
i )α has to have zero dimensional support. Note that, following

Proposition 5.5 and Lemma 5.7, we have that Qα :=
⊕r

i=1(Q
T
i )α, where

each (QT
i )α has zero dimensional support. Now we use the strategy similar to

[PT09b, Section 4.4] and [MNOP06, Section 4.7] to compute the T character
of each summand, (FT

i )α. Let F
T
i,α denote the T-character of each summand.

Let (Pi)α(t1, t2, t3) denote the associated Poincaré polynomial of (I•i )α :=(
OT

X(−n)→ FT
i

)
|α . The Poincaré polynomial of (I•i )α is related to the T

character of Fi as:

(82) FT
i,α =

Cn
α + (Pi)α

(1− t1)(1− t2)(1− t3)
,

where the correction term Cn
α is the T-character of OX(−n) which depends

on the choice of the equivariant structure. Now the T -character of Fi is given
by:

(83) FT
i,α = wi · FT

i,α =
Cn
α · wi + wi · (Pi)α

(1− t1)(1− t2)(1− t3)
,

The T-character of each trχ((I
•
i )α, (I

•
i )α) is given as follows [MNOP06, Sec-

tion 4.7]:

(84) trχ((I
•
i )α, (I

•
i )α) =

wi · w−1
i · (Pi)α(Pi)α

(1− t1)(1− t2)(1− t3)
=

(Pi)α(Pi)α
(1− t1)(1− t2)(1− t3)

.
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The dual bar operation is negation on K(Q |Uα
) and ti → 1

ti
on the equivari-

ant variables ti. Since I
•,T
α :=

⊕r
i=1(I

•,T
i )α the T -character of χ(I•,Tα , I•,Tα )

is obtained as a sum:

(85) trχ(I
•,T
α , I•,Tα ) =

∑
1≤i≤r
1≤j≤r

wiw
−1
j · (Pi)α(Pj)α

(1− t1)(1− t2)(1− t3)
.

Moreover the T -character of Fα appearing in I
•,T
α is given by :

(86) FT
α =

∑r
i=1wi · Cn

α +
∑r

i=1wi · (Pi)α
(1− t1)(1− t2)(1− t3)

.

Now the T -character of the α-summand of T 1
[I•] in (79) is given by:

(87)

1−∑
1≤i≤r
1≤j≤r

wiw
−1
j · (Pi)α(Pj)α

(1− t1)(1− t2)(1− t3)
,

which using (83), can eventually be written as a function of FT
α :

trR−χ((I•,T )α,(I•,T )α)
= FT

α · (
r∑

j=1

w−1
j ) · Cn

α −
FT
α · (

∑r
i=1wi) · Cn

α

t1t2t3
(88)

+ FT
αF

T
α

(1− t1)(1− t2)(1− t3)

t1t2t3

+
1− (

∑r
i,j=1wiw

−1
j ) · Cn

αC
n
α

(1− t1)(1− t2)(1− t3)

Now we compute the T -character of T 2
[I•], T 3

[I•] and T 4
[I•]. Assume that Uαβ is

the affine patch, over which the equivariant parameter t1 is invertible. Given
F T =

⊕r
i=1 F

T
i , let (FT

i )αβ denote the restriction of FT
i to Uαβ . Let FT

i,αβ =∑
k2,k3∈μαβ

tk2

2 tk3

3 denote the T-character associated to this restriction (c.f.

[MNOP06, Equation 4.10]). We have that FT
αβ =

∑r
i=1F

T
i,αβ · wi.
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By the same argument as above, one relates the T -character of αβ’th
summand of the virtual tangent space T 2

[I•] in (79) to FT
αβ :

trR−χ((I•)αβ,(I•)αβ)
=

[
FT
αβ(

r∑
j=1

w−1
j ) · Cn

αβ −
FT
αβ · (

∑r
i=1wi) · Cn

αβ

t2t3
(89)

+ FT
αβF

T
αβ

(1− t2)(1− t3)

t2t3
+

1− (
∑r

i,j=1wiw
−1
j ) · Cn

αβC
n
αβ

(1− t2)(1− t3)

]
· δ(t1),

here Cn
αβ is a function of n and the correction term that needs to be inserted

into description of the Poincaré polynomial of OX |Uαβ
in order to obtain

the Poincaré polynomial of OX(−n) |Uαβ
. Here, we have used the notation

δ(t1) =
∑

k∈Z t
k
i . Now assume Uαβγ is the affine patch, over which the equiv-

ariant parameters t1 and t2 are invertible. The α, β, γ’th summand of T 3
[I•]

in (79) is obtained as follows:

(90) trR−χ((I•)αβγ,(I•)αβγ )
=

(1−∑r
i,j=1wiw

−1
j )

(1− t3)
δ(t1)δ(t2).

and the T-character of T 4
[I•] in (79) is obtained as:

(91) trR−χ((I•)αβγδ,(I•)αβγδ)
=

⎛
⎝1−

r∑
i,j=1

wiw
−1
j

⎞
⎠ δ(t1)δ(t2)δ(t3).

Based on above discussion, the T -character of the virtual tangent space over
a point is obtained as follows:

trR−χ(,I•) =
∑
α

trR−χ((I•)α,(I•)α)
−
∑
α,β

trR−χ((I•)αβ,(I•)αβ)
(92)

+
∑
α,β,γ

trR−χ((I•)αβγ,(I•)αβγ )
−

∑
α,β,γ,δ

trR−χ((I•)αβγδ,(I•)αβγδ)
.

5.1.2. Description of equivariant vertex. The T -character of the vir-
tual tangent space in (92) is equal to the addition of vertex contributions
(the first summand on right hand side of (92)) and the remaining edge
contributions. Similar to discussions in [PT09b, Section 4.6], we need to re-
distribute the terms in (88), (89), (90) and (91) so that they become Laurent
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polynomials in the variables ti. Let us define

Gαβ = FT
αβ(

r∑
j=1

w−1
j ) · Cn

αβ −
FT
αβ · (

∑r
i=1wi) · Cn

αβ

t2t3
(93)

+ FT
αβF

T
αβ

(1− t2)(1− t3)

t2t3
+

1− (
∑r

i,j=1wiw
−1
j ) · Cn

αβC
n
αβ

(1− t2)(1− t3)
.

then the edge character (89) is written with respect to Gαβ as

(94)
Gαβ(t2, t3)

1− t1
+ t−1

1

Gαβ(t2, t3)

1− t1
.

Now we expand
(
Gαβ(t2,t3)

1−t1

)
in ascending powers of t1 and expand(

t−1
1

Gαβ(t2,t3)

1−t−1
1

)
in descending powers of t1. Equation (94) is exactly the same

as [PT09b, Equation (4.11)]. Similarly define

Gαβγ =
(1−∑r

i,j=1wiw
−1
j )

(1− t3)
.

Hence, (90) is rewritten as

(
Gαβγ(t3)

1− t1
+ t−1

1

Gαβγ(t3)

1− t−1
1

)
1

1− t2
(95)

+ t−1
2

(
Gαβγ(t3)

1− t1
+ t−1

1

Gαβγ(t3)

1− t−1
1

)
1

1− t−1
2

,

where we expand
(
Gαβγ(t3)
1−t1

)
in ascending powers of t1 and expand(

t−1
1

Gαβγ(t3)

1−t−1
1

)
in descending powers of t1. We follow the same strategy and

expand the first term in (95) in ascending powers of t2 and the second term
in descending powers of t2. Finally let

Gαβγδ =

⎛
⎝1−

r∑
i,j=1

wiw
−1
j

⎞
⎠ ,
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and obtain a similar redistribution with respect to the ascending and de-
scending powers of t3. Now for each Uα define a new vertex character (com-
pare with [PT09b, Equation 4.12]):

(96) Vα = trR−χ((I•,T )α,(I•,T )α)
+

3∑
i=1

Gαβi
(ti′ , ti′′)

1− ti

where β1, β2, β3 are the three neighboring vertices and (ti, ti′ , ti′′)=(t1, t2, t3).
Moreover redefine the edge character Eαβ (compare with [PT09b, Sect. 4.6]):

(97) Eαβ = t−1
1

Gαβ(t2, t3)

1− t−1
1

− Gαβ(t2t
−mαβ

1 , t3t
−m′

αβ

1 )

1− t−1
1

Here the integersmαβ andm′
αβ are determined by the normal bundleNCαβ/X

to the supporting curve Cαβ := Supp(Fαβ) given by: NCαβ/X = O(mαβ)⊕
O(m′

αβ). The edge contributions Eαβγ and Eαβγδ would have a similar de-
scription as above by replacing Gαβ with Gαβγ and Gαβγδ and redistribut-
ing in ascending and descending powers of t2 and t3 respectively. According
to the above redistributions, the T -character of the virtual tangent space
in (92) can be rewritten as:

trR−χ(I•,I•) =
∑
α

Vα +
∑
αβ

Eαβ +
∑
αβγ

Eαβγδ +
∑
αβγδ

Eαβγδ(98)

Definition 5.11. Given a torus fixed component Qk of the moduli stack
of highly frozen triples (here k denotes the length of the zero dimensional
cokernel sheaf associated to the highly frozen triples) denote VQk =

∑
α Vα

where Vα are defined as in (96). By discussions in [PT09b, Section 4.7] one
defines the contribution (to the equivariant 3-fold vertex) of the locus Qk

as the evaluation of VQk over Qk, i.e:

(99) w(Qk) =

∫
Qk

e(TQk)e(−VQk).

Hence, the equivariant Calabi-Yau vertex associated to the moduli scheme
of highly frozen triples is defined as:

(100) WHFT
Q =

∑
k

w(Qk).qk
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5.1.3. Application to local P1 and more computations. First we
identify the associated equivariant data of highly frozen triples using a the-
orem of Pandharipande-Thomas [PT09b, Proposition 1.8].

Proposition 5.12. Consider a stable T -equivariant highly frozen triple

O⊕r
X (−n)T φT

−−→ F T of type (r, PF ). Let C be the one dimensional support
of F . Now consider the finite length T -equivariant cokernel Q given by
Coker(φ)T . Then Q ∼= QT

1 ⊕ · · · ⊕QT
r such that each QT

i for i = 1, . . . , r
is given as a subsheaf of

(101) H = lim−→
l

(
H om(ml,OC)/OC

)
.

In other words, the equivariant data of a stable T -equivariant highly frozen
triple with support curve C is equivalent to the data of a subsheaf of “r”
copies of H in (101).

Proof. Since O⊕r
X (−n)T → F T :=

⊕r
i=1(OT

X(−n)→ FT
i ), each OT

X(−n)→
FT
i restricted to the supporting curve of Fi, is identified with QT

i appearing
in 0→ OT

C (−n)→ FT
i → QT

i → 0 and by [PT09a, Proposition 1.8] Qi is
identified with a subsheaf of the quasi-coherent sheaf lim−→l

H om(ml,OC)/OC .
It is then seen that the cokernel of the original T -equivariant highly frozen
triple restricted to C and identified with

⊕r
i=1Q

T
i , is a subsheaf of the direct

sum of r copies of the quasi-coherent sheaf H. �

Now assume thatX is given as local P1. We use the combinatorial description
ofX, using the 3 dimensional Young tableaux diagrams as in [PT09b, Exam-
ple 4.9]. There exists two affine patches coveringX. The partitions associated
to the Newton polyhedron of X on each patch are given as three dimensional
partitions with μ1 = (1), μ2 = (0), μ3 = (0) (compare with [PT09b, Example
4.9]).

We compute the 1-legged equivariant vertex WHFT
1,∅,∅ associated to the

moduli scheme of highly frozen triples of type (r, PF ). This computation is
the higher rank analog of the computation in [PT09b, Lemma 5].

Let Uα,Uβ denote affine open charts over the divisors 0,∞ on the base
P1 respectively. Let C∗ act on C4 by

t(x0, x1, x2, x3) = (tx0, tx1, t
−1x2, t

−1x3).

We identify X as a quotient X ∼= (C4\Z)/C∗ where Z ⊂ C4 is obtained
by setting x0 = x1 = 0. Let ([x0 : x1], x2, x3) denote the coordinates in X
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where [x0 : x1] denote the homogeneous coordinates along the base P1 and
x2, x3 denote the fiber coordinates. Locally in the Uα and Uβ the defining
coordinates are given as (x1

x0
, x2x0, x3x0) and (x0

x1
, x2x1, x3x1) respectively.

Now denote the local coordinates over Uα by (x̃1, x̃2, x̃3) where x̃1 =
x1

x0
, x̃2 = x2x0, x̃3 = x3x0. Let H ⊂ X denote the hyperplane obtained as the

fiber of X over 0 ∈ P1, i.e locally in Uα by setting x̃1 = 0. Throughout this
calculation we fix the hyperplane H as a choice of equivariant structure on
OX(1). Now consider the action of T = C3 on X where locally over Uα is
given by (λ1, λ2, λ3) · x̃i = λi · x̃i.

We identify an action of (C∗)2 on X which preserves the Calabi-Yau
form by considering a subtorus T′ ⊂ T such that T′ = {(λ1, λ2, λ3) ∈ T |
λ1λ2λ3 = 1}. Let t̃1, . . . , t̃3 denote the characters corresponding to the action
of λi. Identify OX(−1) ∼= OX(−H). Then, locally over Uα, the Poincaré
polynomial of OX(−n) |Uα

is obtained as

t̃n1
(1− t̃1)(1− t̃2)(1− t̃3)

,

and moreover, the Poincaré polynomial of OX(−n) |Uβ
is obtained by:

1

(1− t̃−1
1 )(1− (t̃2t̃1))(1− (t̃3t̃1))

.

Note that in this case the correction terms Cn
α and Cn

β in (88) (which depend

on the choice of equivariant structure) are t̃n1 and 1 respectively. Similarly,
the T-character of the Poincaré polynomial of OX(−n) |Uαβ

is obtained as

(
1

(1− t̃2)(1− t̃3)

)
δ(t̃1).

Here the correction term Cn
αβ in (89) is equal to 1. To compute the contri-

butions in (96) we need to compute the trace characters in (88) over the
two patches α and β and the edge redistribution in (93). Let Qk denote
the T -fixed component of the moduli scheme of highly frozen triples over

which the highly frozen triples O⊕r
X (−n)T φ−→ F T satisfy the condition that

l(Coker(φ)T ) = k. By (98) the T -equivariant vertex VQk is given by
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VQk =
∑

d1+d2=k

(
(w−1

1 + w−1
2 ) ·

(
w1 ·

d1∑
i=1

t̃−i−n
1 + w2 ·

d2∑
i=1

t̃−i−n
1

)
(102)

− (w1 + w2) ·
(
w−1
1 ·

d1−1∑
i=0

t̃i+n
1

t̃2t̃3
+ w−1

2 ·
d2−1∑
i=0

t̃i+n
1

t̃2t̃3

))

(compare with [PT09b, Lemma 5]). Now let si for i = 1, 2, 3 and vj for
j = 1, . . . , r denote the equivariant parameters corresponding to characters
t̃i and wj respectively. By the definition of the equivariant vertex in (5.11)
the coefficient of the degree k term in the equivariant vertex in (100) is
obtained by the evaluation of the contribution of VQk on Qk, i.e:

w(Qk) =

∫
Qk

e(TQk)e(−VQk)(103)

=
∏

d1+d2=k

⎡
⎣
∏r

j=1

(
(−vj +

∏r
l=1 vl) +

∏dj−1
i=1 ((i+ n)s1)− (s2 + s3)

)
∏r

j=1

(
(vj + (−1)r−1

∏r
l=1 vl) +

∏dj

i=1(−1)i · (i+ n)s1

)
⎤
⎦.

Remark 5.13. Setting v1 = v2 = 1 in (103) would result in the following
equation:

w(Qk) =(104)

∏
d1+d2=k

⎡
⎣
(∏d1−1

i=0 ((i+ n)s1)− (s2 + s3)
)
·
(∏d2−1

i=0 ((i+ n)s1)− (s2 + s3)
)

(∏d1

i=1(−1)i · (i+ n)s1

)
·
(∏d2

i=1(−1)i(i+ n)s1

)
⎤
⎦ .

Now use the condition on Calabi-Yau torus and set s1 + s2 + s3 = 0. This
is equivalent to ns1 − (s2 + s3) = −(n+ 1)(s2 + s3). Now use this fact to
simplify (104) and obtain the 1-legged equivariant vertex over local P1 as-
sociated to highly frozen triples:

(105) WHFT
1,∅,∅ =

(
(1 + q)

(n+1)(s2+s3)

s1

)r

Remark 5.14. The computation of equivariant vertex for more general
local toric Calabi-Yau threefolds with outgoing partitions < μ1, μ2, μ3 > re-
quires more detailed combinatorial calculations. However, one can compute
the associated partition functions in those general cases if one fully under-
stands the equivariant PT vertex in rank 1. In other words it is seen from
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our calculations that if the PT vertex with respect to the variable q is given
by WP

<μ1,μ2,μ3> = G(q) then the HFT equivariant vertex is obtained by

WHFT
<μ1,μ2,μ3> = (G(q))(n+1)(r).
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(SGA 3). Tome I. Propriétés générales des schémas en groupes,
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