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Completeness of hyperbolic centroaffine

hypersurfaces

V. Cortés, M. Nardmann, and S. Suhr

This paper is concerned with the completeness (with respect to the
centroaffine metric) of hyperbolic centroaffine hypersurfaces which
are closed in the ambient vector space. We show that complete-
ness holds under generic regularity conditions on the boundary of
the convex cone generated by the hypersurface. The main result is
that completeness holds for hyperbolic components of level sets of
homogeneous cubic polynomials. This implies that every such com-
ponent defines a complete quaternionic Kähler manifold of negative
scalar curvature.

Introduction

By a celebrated theorem of Cheng and Yau [CY] a locally strictly convex
affine hypersphere which is closed in the ambient vector space is complete
with respect to the Blaschke metric. Proper affine hyperspheres are precisely
the centroaffine hypersurfaces for which the Blaschke metric coincides with
the centroaffine metric (up to a constant factor). In this paper we investigate
the completeness of locally strictly convex centroaffine hypersurfaces with
respect to the centroaffine metric.

Our main motivation stems from the scalar geometry of 5-dimensional
supergravity as described in [GST]. The manifolds carrying this geometry are
called projective special real manifolds, see Definition 2.1. They form a class
of hyperbolic (and thus locally strictly convex) centroaffine hypersurfaces.
In Theorem 2.3 and Definition 2.2 we give an intrinsic characterization in
terms of the underlying centroaffine geometry. The crucial ingredient is the
differential equation (2.2) expressing the covariant derivative of the cubic
form in terms of the metric.

Mathematics Subject Classification: 53A15, 53C26 (primary).
Key words and phrases: Completeness, centroaffine hypersurfaces, cubic hyper-

surfaces, projective special real manifolds, special geometry, very special real man-
ifolds, special Kähler manifolds, quaternionic Kähler manifolds, r-map, c-map.

59



60 V. Cortés, M. Nardmann, and S. Suhr

Using constructions from supergravity, known as the r-map and the c-
map, it was shown in [CHM], where these constructions are explicitly de-
scribed, that every complete projective special real manifold of dimension
n gives rise to a complete quaternionic Kähler manifold of negative scalar
curvature of dimension 4n+ 8. More specifically, it was shown that given a
complete projective special real manifold of dimension n, the r-map asso-
ciates with it a complete projective special Kähler domain (see [CHM, p. 198]
for a definition) of real dimension 2n+ 2 and that the c-map associates a
complete quaternionic Kähler manifold of real dimension 4n+ 8 of negative
scalar curvature with the latter. This method was used in [CHM, CDL] to
construct new explicit examples of complete quaternionic Kähler manifolds
of dimension 12 and 16. Moreover, a classification of all complete projective
special real manifolds of dimension less than or equal to 2 was given. Based
on these results, it was observed [CDL, Cor. 1] that a projective special real
manifold of dimension less than or equal to 2 is complete if and only if it is
closed and it was asked whether this property extends to higher dimensions.
Here we prove that this is indeed the case, see Theorem 2.5. This gives a
powerful method for the verification of the completeness of projective spe-
cial real manifolds and the corresponding quaternionic Kähler manifolds, cf.
Theorem 2.6.

Let us now summarize the structure of the paper and mention some fur-
ther results. In Section 1 we discuss centroaffine structures and centroaffine
hypersurfaces from an intrinsic as well as extrinsic point of view. Our main
focus is on locally strictly convex centroaffine hypersurfaces and the relation
between:

1) closedness (the property of being closed in the ambient space),

2) Euclidean completeness (completeness with respect to the metric in-
duced by a Euclidean scalar product in the ambient space) and

3) completeness (with respect to the centroaffine metric).

Section 1.2 contains some basic results relating these properties. In partic-
ular, under natural assumptions, completeness implies closedness and the
latter is equivalent to Euclidean completeness, see Proposition 1.8.

After these preliminaries, we concentrate on Euclidean complete hyper-
bolic centroaffine hypersurfaces H ⊂ R

n+1 in Section 1.3. We show that
U = R

>0 ·H is an open convex cone, which is intersected in a relatively
compact domain B = U ∩ E ⊂ E by any affine hyperplane E tangent to
H. We equip U with a smooth homogeneous function h : U → R of degree
k > 1 such that H = {p ∈ U | h(p) = 1} and with a Lorentzian metric gL
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which is a multiple of the Hessian of h. We observe that the completeness
of H is equivalent to the global hyperbolicity of (U, gL). Then we prove that
H is complete if there exists ε ∈ (0, k) such that f = k−ε

√
h
∣∣
B

is concave,
see Lemma 1.15. This allows us to prove the completeness if h is a cubic
polynomial and is the key lemma for the proof of Theorem 2.5 about projec-
tive special real manifolds. As discussed in the last section of the paper, the
result for cubic polynomials can not be extended to real analytic functions
but might hold for polynomials of higher degree.

In Section 1.4 we prove that a Euclidean complete hyperbolic centroaffine
hypersurface is complete if the boundary of U satisfies certain regularity as-
sumptions, see Theorem 1.18. Furthermore, these conditions are generically
satisfied by Theorem 1.20.

In Section 2 we specialize to the case of projective special real manifolds.
The main results are the intrinsic characterization developed in Section 2.1
and the equivalence of closedness and completeness proven in Section 2.2,
with the application to quaternionic Kähler manifolds in Section 2.3.
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1. Centroaffine structures

1.1. Centroaffine hypersurfaces and centroaffine structures

In this subsection we review some basic notions from affine differential geom-
etry, see [NS] for a more detailed discussion. Let us consider Rn+1 endowed
with its canonical flat connection ∇̃ and the parallel volume form det.

Definition 1.1. A hypersurface immersion ϕ : M → R
n+1 is called cen-

troaffine if the position vector field ξ : M → R
n+1, p �→ ξp := ϕ(p), is trans-

versal, that is for all p ∈ M we have ϕ(p) 	∈ dϕTpM .
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A centroaffine hypersurface immersion ϕ : M → R
n+1 induces a torsion-

free connection ∇ and a symmetric tensor field g on M such that the Gauß
equation

(1.1) ∇̃XdϕY = dϕ∇XY + g(X,Y )ξ

holds for all X,Y ∈ X(M). Furthermore, we have an induced volume form
ν := det(ξ, . . .), which is ∇-parallel, as a consequence of the Weingarten
equation ∇̃Xξ = dϕX. In these formulas, ∇̃ denotes the connection in
ϕ∗TRn+1 induced by the connection ∇̃ in the vector bundle TRn+1. For
simplicity of notation, we will usually identify TM with the subbundle
dϕTM ⊂ ϕ∗TRn+1 and drop the isomorphism dϕ : TM → dϕTM in the
equations of Gauß and Weingarten.

Definition 1.2. The above geometric data (∇, g, ν) will be called the
induced (centroaffine) data of the centroaffine hypersurface immersion
ϕ. The hypersurface (immersion) is called nondegenerate if g is nondegen-
erate and definite if g is definite. More specifically, it is called elliptic if
g < 0 and hyperbolic if g > 0.

Remark: The above definition is consistent with the usual notions of el-
lipticity and hyperbolicity in affine differential geometry. In fact, the tensor
field (tr S)g is positive definite in the elliptic case and negative definite in
the hyperbolic case, where S = −Id is the shape tensor associated with our
choice of transversal vector field ξ. This ensures for instance that ellipsoids
around 0 are elliptic and standard hyperboloids are hyperbolic.

Example: Let U ⊂ R
n+1 be an open subset and h : U → R a smooth func-

tion which is homogeneous of degree k ∈ R
∗, in the sense that

(1.2)

n+1∑
i=1

xi
∂

∂xi
h = kh.

We consider the level set

H := {x ∈ U | h(x) = 1},

which we assume nonempty. Notice that if h is not the zero function we can
always rescale h such that this assumption holds.
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Proposition 1.3. For every homogeneous function h as in the above
example the inclusion map

ι : H → R
n+1

is a centroaffine hypersurface embedding with

g = −1

k
ι∗(∇̃2h),

where (∇, g, ν) are the induced centroaffine data on H. In particular, H ⊂
R
n+1 is nondegenerate if and only if the Hessian ∇̃2h is nondegenerate on

TH.

Proof. By the homogeneity of h, dh(ξ) = k 	= 0 onH. ThereforeH is smooth
and centroaffine. In order to check the formula for the metric, let X and Y
be vector fields defined on some open subset of Rn+1, which are tangent to
the level sets of h. Then on H we have

g(X,Y ) =
1

k
dh(∇̃XY ) =

1

k

(∇̃X(dhY )− (∇̃Xdh)Y
)

= −1

k
(∇̃Xdh)Y = −1

k
(∇̃2h)(X,Y ).

Locally every centroaffine hypersurface is defined by a homogeneous func-
tion:

Proposition 1.4. Let ϕ : M → R
n+1 be a centroaffine hypersurface im-

mersion, p ∈ M and k ∈ R
∗. Then there exist open neighbourhoods U ′ ⊂ M

of p and U ⊂ R
n+1 of ϕ(p) and a smooth homogeneous function of degree k

on U such that ϕ(U ′) = {x ∈ U | h(x) = 1}.

Definition 1.5. A centroaffine structure on a smooth manifold M is a
triple (∇, g, ν) consisting of a torsion-free connection, a pseudo-Riemannian
metric and a volume form satisfying the following compatibility conditions:

(i) ∇ν = 0,

(ii) the curvature tensor R of ∇ is given by

R(X,Y )Z = −(
g(Y, Z)X − g(X,Z)Y

)
, X, Y, Z ∈ X(M),

(iii) ∇g is completely symmetric.
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If these conditions are satisfied, (M,∇, g, ν) is called a centroaffine man-
ifold. The pseudo-Riemannian metric g is called the centroaffine metric
and the symmetric tensor field C := ∇g is called the cubic form of the
centroaffine manifold (M,∇, g, ν).

Theorem 1.6.

(i) Let ϕ : M → R
n+1 be a nondegenerate centroaffine hypersurface im-

mersion of a connected manifold M with induced data (∇, g, ν). Then
(M,∇, g, ν) is a centroaffine manifold.

(ii) Conversely, for a connected and simply connected centroaffine man-
ifold (M,∇, g, ν), there exists a centroaffine hypersurface immersion
ϕ : M → R

n+1 with induced data (∇, g, ν). Furthermore, the immer-
sion ϕ is unique up to linear unimodular transformations of Rn+1.

Proof. To prove (i) it remains to check the equations (ii) and (iii) in Def-
inition 1.5. The first equation is obtained by computing the tangent part
of R̃(X,Y )Z = 0 with the help of the equations of Gauß and Weingarten,
where R̃ denotes the curvature tensor of ∇̃. Similarly, the second equation is
obtained by computing the part proportional to ξ. (These are in fact special
cases of the equations of Gauß and Codazzi for general hypersurface immer-
sions.) The statement (ii) can be proven in a similar way as the fundamental
theorem [NS, Thm. 8.1] of affine differential geometry.

1.2. Completeness and closedness of centroaffine hypersurfaces

Our overall approach for proving the completeness of a Riemannian manifold
is based on the following fact, see [CHM, Lemma 1] for a proof.

Lemma 1.7. A Riemannian manifold (M, g) is complete if and only if
every curve γ : I → M which is not contained in any compact subset of M
has infinite length.

Recall that a submanifold of Euclidean space is called Euclidean com-
plete if it is complete with respect to the Riemannian metric induced by
the Euclidean scalar product 〈·, ·〉.

Proposition 1.8. Let h : V → R be a smooth homogeneous function of
degree k 	= 0 defined on some open set V ⊂ R

n+1 and let U ⊂ V be an open
subset such that H ⊂ V , where H := {x ∈ U | h(x) = 1}. Assume that the
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centroaffine metric of the hypersurface H ⊂ R
n+1 is definite. Then the fol-

lowing hold for every component H0 of H.

(i) If (H0, g) is complete then H0 ⊂ R
n+1 is a closed subset.

(ii) H0 ⊂ R
n+1 is a closed subset if and only if H0 ⊂ R

n+1 is Euclidean
complete.

Proof. In order to prove (i), let us denote by L the connected component of
the level set {x ∈ V | h(x) = 1} which contains H0. Thanks to the assump-
tionH ⊂ V , the closure ofH0 is contained in the level set {x ∈ V | h(x) = 1}
and thus in L. Therefore, ifH0 is not closed, then there exists a smooth curve
c : [0, 1] → L such that c(0) ∈ H0 and c(1) 	∈ H0. We can assume without loss
of generality that c([0, 1)) ⊂ H0. The length of c with respect to the metric
g is finite, since it is given by the integral∫ 1

0

√∣∣gc(t)(c′(t), c′(t))∣∣dt, g = −1

k
ι∗∇̃2h,

see Proposition 1.3, of a continuous function over a compact interval. The
continuity of the integrand follows from the continuity of the Hessian ∇̃2h
on V . This proves (i).

Since the Euclidean length∫ 1

0

√
〈c′(t), c′(t)〉dt

is also finite, the same argument shows that Euclidean completeness implies
that H0 ⊂ R

n+1 is closed. The converse statement follows from the next
simple lemma which finishes the proof of (ii).

Lemma 1.9. Let ϕ : M → N be an embedding into a complete Rieman-
nian manifold (N, gN ). If ϕ(M) ⊂ N is a closed subset, then (M,ϕ∗gN ) is
complete.

Remark: The lemma does not extend to injective immersions.

1.3. Completeness of hyperbolic centroaffine hypersurfaces

In this section we provide some basic results about Euclidean complete con-
nected hyperbolic centroaffine hypersurfaces H ⊂ R

n+1, which will be used
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in Sections 1.4, 2.2 and 2.3. We will first show that the cone

U := R
>0 ·H

is open and convex and that it intersects every affine tangent space Ep :=
p+ TpH of H, p ∈ H, in a relatively compact convex domain U ∩ Ep ⊂ Ep.
We will then parametrize the hypersurface as a radial graph over such a
domain and compute the centroaffine metric in that parametrization as well
as its pullback under the radial projection U → H. The explicit formulas
involve a positive homogeneous function h on U that is constant on the
hypersurface. Building on these preparations, the upshot of this section is
Lemma 1.15, which provides a criterion for the completeness of the cen-
troaffine metric in terms of a concavity property of the function h|U∩Ep

.
All these results require the Euclidean completeness, with exception of the
explicit formulas for the metric, which hold also for local radial parametriza-
tions and projections. Let us emphasize that Lemma 1.15 will play a key
role in the proof of Theorem 2.5, which is the main result of this paper.
Another important result of this section is Proposition 1.16, which asserts
that U carries a natural Lorentzian metric that is globally hyperbolic if and
only if the Euclidean complete hypersurface H is complete with respect to
the centroaffine metric.

Proposition 1.10. The cone U = R
>0 ·H is open and convex. The map

φ : R>0 ×H → U given by (λ, x) �→ λx is a diffeomorphism.

Proof. Since H is centroaffine, φ is a surjective local diffeomorphism. Thus
U is open.

By the Sacksteder–van Heijenoort theorem, see for instance [W], any
Euclidean complete connected hypersurface with positive sectional curvature
of dimension n ≥ 2 is the boundary of a convex domain D in R

n+1. We want
to apply this result to our situation.

For this we have to show that the curvature of (H, ι∗〈., .〉) is positive.
Note that by Proposition 1.4 we can assume that locally H is {h = 1} for
some homogeneous function h : U ′ → R on some subcone U ′ ⊂ U . It follows
that (see [GKM]) the second fundamental form of (H, ι∗〈., .〉) in (Rn+1, 〈., .〉)
is 1

|grad h|∇̃2h with respect to the normal − grad h
|grad h| , where grad h denotes the

gradient of h with respect to the Euclidean scalar product 〈., .〉. By our
assumptions the second fundamental form is thus definite. Now the Gauß
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equation

gEuc(R
Euc(X,Y )Y,X) =

1

|grad h|2
(
∇̃2h(X,X)∇̃2h(Y, Y )− ∇̃2h(X,Y )2

)
> 0

for the curvature REuc of the induced metric gEuc = ι∗〈., .〉 of the immer-
sion ι : (H, ι∗〈., .〉)→ (Rn+1, 〈., .〉) shows that the sectional curvatures are
positive. Hence in the case n ≥ 2, there exists a convex domain D ⊂ R

n+1

whose boundary is H.
Notice that H separates U into two domains U+ := R

>1 ·H and U− :=
R
<1 ·H with common boundary H. The first domain lies on the convex

side of H; i.e., every x ∈ H has a neighbourhood Wx such that Wx ∩ U+ is
convex and thus equal toWx ∩D. This can be seen as follows. The Euclidean
second fundamental form of H with respect to its outer unit normal ν (with
respect to the origin) and the centroaffine metric g on H differ by a positive
conformal factor, because they are affine fundamental forms of H defined by
the Gauß equation with respect to vector fields ν and ξ that induce the same
orientation of H. Since H is hyperbolic, its Euclidean second fundamental
form with respect to ν is therefore positive definite, which implies the claim
that U+ lies on the convex side of H.

Moreover, U+ is contained in D, and φ is injective. Otherwise some ray
R
>1 · x with x ∈ H would meet the boundary of D, i.e., it would contain

some x′ ∈ H. Since D is convex, the line from x to x′ would lie in D, in
contradiction to the fact that the convex side of H at x′ is the outer one.

We claim that D ⊂ U+. Notice that the origin is not a point of D,
because else the convexity of D and the hyperbolicity of H would again yield
a contradiction. Thus the line segment connecting any point p ∈ D to the
origin has to intersectH in some point q. This implies that p ∈ R

>1 · q ∈ U+,
proving that D = U+. It now follows from the convexity of D that U+ and,
hence, U = R

>0 · U+ is convex if n ≥ 2.
In the case n = 1, H ⊂ (R≥1 · x) + TxH holds for some (in fact, every)

x ∈ H, because otherwise an intermediate value argument (involving x and a
hypothetical second element of H ∩ (x+ TxH)) would yield a contradiction
to the hyperbolicity of H. In particular, H and, hence, U is contained in
the open half-space R

>0 · x+ TxH ⊂ R
2. This proves the convexity of the

connected cone U if n = 1.
We consider the projection π : R2 \ {0} → S1 given by x �→ x

|x| , and the

inclusion inclH : H → R
2 \ {0}. Since φ has image contained in a half-space,
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π ◦ inclH : H → S1, which is by centroaffineness an immersion, is not sur-
jective. This implies that π ◦ inclH and thus φ is injective if n = 1.

For every n, the injectivity of φ shows now that φ is a diffeomorphism.

Let us recall that Ep = p+ TpH ⊂ R
n+1 denotes the affine hyperplane tan-

gent to H at p ∈ H.

Corollary 1.11. The intersection U ∩ Ep ⊂ Ep is a convex domain for
all p ∈ H.

Next we observe thatH ⊂ U can be described as the level set of a smooth
positive function h : U → R homogeneous of degree k ∈ R

∗. The function
h = hk is defined by

h(λx) := λk for all λ ∈ R
>0, x ∈ H.

It is well-defined and smooth because φ considered in Proposition 1.10 is a
diffeomorphism.

We denote by

ψ : U → H, x �→ x
k
√

h(x)
,

the radial projection onto H. The restriction

(1.3) ϕ := ψ
∣∣
U∩Ep

: U ∩ Ep → H

is a parametrization of the hypersurface. In view of Proposition 1.3, the
centroaffine metric of H in this parametrization is given by

g = −1

k
ϕ∗(∇̃2h) = −1

k
ψ∗(∇̃2h)

∣∣
U∩Ep

.

Lemma 1.12.

−ψ∗(∇̃2h) = −1

h
∇̃2h+

k − 1

kh2
dh2.

Proof. For λ > 0 let us denote by μλ : U → U the scalar multiplication by
λ. By homogeneity (1.2), we have μ∗

λh = λkh. Since μλ is affine, this implies

μ∗
λ∇̃�h = λk∇̃�h

for all  ≥ 0. As a consequence, we also have

∇̃�h
∣∣
λx

= λk−�∇̃�h
∣∣
x
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for all  ≥ 0. In fact,

(μ∗
λ∇̃�h)x(v1, . . . , v�) = ∇̃�h

∣∣
λx
(λv1, . . . , λv�) = λ�∇̃�h

∣∣
λx
(v1, . . . , v�)

for all x ∈ U , v1, . . . , v� ∈ TxU = R
n+1. Next we compute

dψx = h(x)−
1

k Id− 1

k
h(x)−

1

k
−1dhx ⊗ x.

Using these formulas, we calculate

(ψ∗∇̃2h)x = ∇̃2hψ(x)(dψx·, dψx·) = h(x)−
k−2

k ∇̃2hx(dψx·, dψx·)
= h(x)−

k−2

k

[
h(x)−

2

k ∇̃2hx − 2

k
h(x)−

2

k
−1dhx ⊗ ∇̃2hx(x, ·)

+
1

k2
h(x)−

2

k
−2∇̃2hx(x, x)dhx ⊗ dhx

]
= h(x)−1 · ∇̃2hx − 2(k − 1)

k
h(x)−2dhx ⊗ dhx

+
k − 1

k
h(x)−3+1dhx ⊗ dhx

= h(x)−1∇̃2hx − k − 1

k
h(x)−2dhx ⊗ dhx,

where at the penultimate step we have used that

(1.4) ∇̃2hx(x, ·) = (k − 1)dhx

in combination with dhx(x) = kh(x). The former equation holds because the
partial derivatives of first order of h are homogeneous of degree k − 1.

Corollary 1.13. The centroaffine metric of the hypersurface H in the
parametrization (1.3) is given by

g = − 1

kh̄
∇̃2h̄+

k − 1

(kh̄)2
dh̄2 = −1

u
∇̃2u,

where h̄ denotes the restriction of h to U ∩ Ep, u :=
k
√
h̄ and ∇̃ denotes the

flat connection of the affine space Ep.

Remark: The function k
√
h = k

√
hk coincides with h1 and is thus indepen-

dent of k.
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Lemma 1.14. The convex domain U ∩ Ep ⊂ Ep is relatively compact for
all p ∈ H.

Proof. The positive function u = k
√
h
∣∣
U∩Ep

= h1
∣∣
U∩Ep

: U ∩ Ep → R is con-

cave by Corollary 1.13, because g is positive definite. Let Bδ(p) be a Eu-
clidean ball in Ep, which is relatively compact in U ∩ Ep. There exists ε > 0
such that

(1.5) − ε〈·, ·〉 ≥ ∇̃2u

on Bδ(p). We will compare u to the concave C1-function v : Ep → R defined
by

v(x) :=

{
1− ε|x− p|2 if x ∈ Bδ(p)

1 + εδ2 − 2εδ|x− p| otherwise.

We claim that v ≥ u on E ∩ Ep. We have v(p) = u(p) = 1 and both functions
take their global maximum at p, so dvp = dup = 0. For any x ∈ U ∩ Ep \ {p}
we consider the line segment c : [0, 1] → U ∩ Ep, t �→ (1− t)p+ tx, from p
to x. Put

f := (v − u) ◦ c : [0, 1] → R

and t0 := min
(
1, δ

|x−p|
)
. We will prove that f ≥ 0, which implies v ≥ u, since

x was arbitrary. Notice that f is smooth if x ∈ Bδ(p). Otherwise f |[0,t0] and
f |[t0,1] are smooth. We have f(0) = f ′(0) = 0 and, in virtue of (1.5), also
(f |[0,t0])′′ ≥ 0. Using the initial conditions, this implies f ′ ≥ 0 on [0, t0] and,
hence, f ≥ 0 on [0, t0]. In particular, f(t0) ≥ 0 and f ′(t0) ≥ 0. This proves
that f ≥ 0 if t0 = 1. Else it suffices to observe (f |[t0,1])′′ = −(u ◦ c|[t0,1])′′ ≥ 0,
which implies f ′ ≥ 0 and finally f ≥ 0 using the inequalities at t0. So we have
proven that v ≥ u. As a consequence

U ∩ Ep = u−1((0,∞)) ⊂ v−1([0,∞))

and the latter set is compact.

Lemma 1.15. Let H ⊂ R
n+1 be a Euclidean complete connected hyper-

bolic centroaffine hypersurface, h : U = R
>0 ·H → R the corresponding ho-

mogeneous function of degree k > 0 and p ∈ H. Assume that there exists
ε ∈ (0, k) such that f =

k−ε
√
h̄ is concave, where h̄ = h|U∩Ep

. Then H is com-
plete (with respect to the centroaffine metric g).
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Proof. We first compute

−1

k
∇̃2f =

f

(k − ε)

[(
k − k

k − ε

)
1

(kh̄)2
dh̄2 − 1

kh̄
∇̃2h̄

]
.

Comparing with Corollary 1.13, we see that

g =
k − ε

f

(
−1

k
∇̃2f

)
+

ε

(k − ε)(kh̄)2
dh̄2.

Since the first term is positive semidefinite by assumption, we obtain the
estimate

(1.6) g ≥ ε

(k − ε)(kh̄)2
dh̄2 =

ε

k2(k − ε)
(d ln h̄)2,

which implies the completeness as follows. Let γ : I := [0, T ) → H, T ∈
R
>0 ∪ {∞}, be a curve which is not contained in any compact subset of

H and γ0 : I → U ∩ Ep the corresponding curve in the parametrization ϕ :
U ∩ Ep

∼−→ H, see (1.3). Then there exists a sequence ti → T such that
limi→∞ h(γ0(ti)) = 0. In view of (1.6), putting f0 = h ◦ γ0, we can estimate
the length of γ as follows:

L(γ) ≥ 1

k

√
ε

k − ε︸ ︷︷ ︸
C:=

∫ ti

0

∣∣∣∣ ddt ln f0
∣∣∣∣ dt

≥ C

∣∣∣∣
∫ ti

0

d

dt
ln f0 dt

∣∣∣∣ = C
∣∣ ln f0(ti)− ln f0(0)

∣∣ i→∞−−−→ ∞.

Proposition 1.16. Let H ⊂ R
n+1 be a Euclidean complete connected

hyperbolic centroaffine hypersurface, h : U = R
>0 ·H → R the corresponding

homogeneous function of degree k > 1. Then

gL := −1

k
∇̃2h

is a Lorentzian metric on the convex domain U . The Lorentzian manifold
(U, gL) is globally hyperbolic if and only if H is complete (with respect to the
centroaffine metric g).
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Proof. By the homogeneity of h, the position vector ξ satisfies

gL(ξ, ξ) = −(k − 1)h < 0

gL(ξ, ·) (1.4)
= −k − 1

k
dh.(1.7)

The latter equation shows that ξ is perpendicular to the level sets of h, on
which the metric gL restricts to a positive definite metric. Therefore gL is
Lorentzian.

Also due to the homogeneity of h, the position vector field ξ on U is a
homothetic Killing vector field:

LξgL = kgL.

The equation (1.7) shows that it is also a gradient vector field . Thus

DLξ =
k

2
Id,

where DL is the Levi-Civita connection of gL. Rescaling ζ := 2
kξ we get

DLζ = Id. Since the vector field ζ is obviously complete, this implies that
(U, gL) is a metric cone:

gL = −ds2 + s2g.

Here U is identified with R
>0 ×H by means of the diffeomorphism

R
>0 ×H � (s, p) �→ 2

k
sp ∈ U.

With the substitution s = et we obtain

gL = e2t(−dt2 + g).

This shows that the metric gL is globally hyperbolic if and only if the product
metric −dt2 + g on R×H is. If (H, g) is complete then the level sets of t are
Cauchy hypersurfaces, which implies the global hyperbolicity by [O, Cor. 39].
Otherwise there exists an inextendible geodesic γ : [0, T ) → (H, g) of finite
length T . This implies that J(p, q) is noncompact if we put p = (0, γ(0)),
q = (2T, γ(0)) ∈ R×H. Recall [O, p. 410] that J(p, q) stands for the smallest
set containing all future-pointing causal curves from p to q and that the sets
J(p, q) are compact in every globally hyperbolic Lorentzian manifold M ,
for all p, q ∈ M , see [O, p. 411]. This shows that (U, gL) is not globally
hyperbolic if (H, g) is incomplete.
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1.4. Completeness for hyperbolic centroaffine hypersurfaces with
regular boundary behaviour

In this subsection, H ⊂ R
n+1 will be always a Euclidean complete connected

hyperbolic centroaffine hypersurface, U = R
>0 ·H and h : U → R a smooth

homogeneous function of degree k > 1 such thatH = {p ∈ U | h(p) = 1}. We
assume that h extends to a smooth homogeneous function h : V → R defined
on some open subset V ⊂ R

n+1 such that U \ {0} ⊂ V . This assumption is
satisfied, for instance, if the function h : U → R is polynomial. 0 ∈ R

n+1 is
excluded in order to keep the level of generality. Note that if a homogeneous
function is smooth at the origin then the degree of homogeneity k is a
nonnegative integer. This follows from the fact that all radial derivatives,
especially those of order n > k, have to be bounded in 0, which is not possible
for negative or non integer degrees of homogeneity.

Definition 1.17. Under the above assumptions, we say that the hyper-
surface H has regular boundary behaviour if

(i) dhp 	= 0 for all p ∈ ∂U \ {0}. In particular, ∂U \ {0} is smooth.

(ii) −∇̃2h is positive semi-definite on T (∂U \ {0}) with only 1-dimensional
kernel.

Example: The curve {x(x2 − y2) = 1, x > 0} ⊂ R
2 has regular boundary

behaviour (and is therefore complete by the following theorem), whereas
{x2y = 1, x > 0} ⊂ R

2 does not have regular boundary behaviour (but is
still complete). These are the only complete hyperbolic curves defined by a
homogeneous cubic polynomial h, up to linear transformations, see [CHM,
Cor. 4].

Theorem 1.18. Let H ⊂ R
n+1 be a Euclidean complete hyperbolic cen-

troaffine hypersurface with regular boundary behaviour. Then H is complete
(with respect to the centroaffine metric).

Before we give the proof we would like to discuss the relation of this
result to the literature. Melrose [Me, Ch. 8] considers Riemannian metrics
on compact manifolds M with nonempty boundary of the form x2adx2 +
x2bH where x : M → [0,∞) is a “boundary defining function”, i.e. {x = 0} =
∂M and dx|∂M 	= 0 and H is a smooth tensor field inducing a Riemannian
metric on the boundary. Up to a constant factor, the centroaffine metrics for
functions with regular boundary behaviour correspond to the “marginally
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complete” case a = −1, b = −1/2 with x = h̄ the boundary defining function
and H a constant multiple of −∇̃2h̄, see Corollary 1.13. In this case the
map x �→ y =

√
x transforms the metric to a “conformally compact” metric

4
y2

(
dy2 + 1

4H
)
. The completeness follows from the claim [Ma, p. 311] that

metrics of this form are complete. For the particular metric considered here
this is shown below.

[Ma] further claims that each geodesic ray of the conformally compact
metric is asymptotic to a single point in the boundary, the direction ap-
proaches the outer normal and the curvature is eventually negative.

[CG13] consider metrics as [Me], with a = 2b, but the additional pos-
sibility of multiplying the x2adx2-term by a smooth function C such that
the metric still extends smoothly to the boundary. Under these assumptions
and with a ≤ −1

2 they prove completeness of geodesics whose asymptotic
tangents are transversal to the boundary. In [CG14] the same authors show
that C can be assumed constant under certain conditions by an appropriate
choice of the boundary function x.

As a consequence of Proposition 1.16, Theorem 1.18 implies the global
hyperbolicity of the Lorentzian metric gL on U = R

>0 ·H for hypersurfaces
H with regular boundary behaviour, see [FHS, Cor. 4.34] for a related result
in Lorentzian geometry.

Proof. Let v ∈ U and E a hyperplane trough v which intersects the convex
cone U in a relatively compact domain B = E ∩ U . Such hyperplanes exist
thanks to Lemma 1.14. We denote by ∂B = E ∩ ∂U the (smooth) boundary
of B in E. For ε > 0, we consider the conical hypersurface F = Fε which is
the union of all the rays emanating from εv and intersecting ∂B. It is smooth
outside the vertex εv and so is the homeomorphism ψ

∣∣
F∩U : F ∩ U → H.

Here we recall that ψ : U → H is the map x �→ h(x)−1/kx.

Lemma 1.19. There exists ε0 > 0 such that the tensor field −∇̃2h re-
stricts to a positive definite metric on a neighbourhood N0 of ∂B in Fε for
all 0 < ε < ε0.

Proof. Let us denote by η ∈ X(V ) the gradient of h ∈ C∞(V ) with respect
to the Euclidean scalar product 〈·, ·〉 in R

n+1. Then, for all x ∈ ∂B,

TxV = Tx∂U ⊕ span{ηx}, Tx∂U = Tx∂B ⊕ span{ξx}.
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The symmetric tensor field β = −∇̃2h on V is positive definite on Tx∂B, by
(ii) in Definition 1.17, and satisfies

β(ξx, ξx) = −k(k − 1)h(x) = 0,

β(ξx, ηx) = −(k − 1)dh(ηx) = −(k − 1)〈ηx, ηx〉 =: c < 0,

and

β(ξx, y) = −(k − 1)dh(y) = 0,

for all y ∈ Tx∂B, as follows from the homogeneity of h, cf. (1.4). Now let
(e3, . . . , en+1) be a β-orthonormal basis of Tx∂B, which we extend by e1 :=
ηx and e2 = ξx to a basis (e1, . . . , en+1) of TxV . Then

det(β(ei, ej)i,j=1,...,n+1) = −c2 det(β(ea, eb)a,b=3,...,n+1) < 0.

This shows that βx is a Lorentzian scalar product and implies that the
Lorentzian metric gL is extended by 1

kβ to a Lorentzian metric on a neigh-
bourhood of U \ {0} in V . Now, to prove the lemma, it suffices to check for
all x ∈ ∂B that β(ν, ν) > 0 for a non-zero vector ν ∈ TxF which is orthog-
onal to the positive definite hyperplane Tx∂B ⊂ TxF with respect to β. As
such a vector we can take the orthogonal projection of εv − x ∈ TxF onto
the orthogonal complement of Tx∂B in TxF :

ν = εv − x−
n+1∑
a=3

β(εv − x, ea)ea = εv − x− ε

n+1∑
a=3

β(v, ea)ea.

Then

β(ν, ν) = −2εβ(v, x) + ε2β(v, v)− ε2
n+1∑
a=3

β(v, ea)
2.

Since −β(v, x) = (k − 1)dh(v) > 0 and ∂B is compact, we see that β(ν, ν) >
0 for all x ∈ ∂B if ε is sufficiently small.

Let ε, N0 be as in Lemma 1.19 and put N = N0 ∩ U , F = Fε. Then, by
Lemma 1.12, we have

(1.8) (ψ∗g)
∣∣
N

= − 1

kh
∇̃2h

∣∣
N
+

k − 1

(kh)2
dh2

∣∣
N

>
k − 1

(kh)2
dh2

∣∣
N
.

This implies the completeness of g as follows. Let γ : [0, b) → H, 0 < b ≤
∞, be a curve which is not contained in any compact subset of H and
γF : [0, b) → F ∩ U the corresponding curve in F ∩ U . Then there exists
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δ > 0 and sequences ti ∈ [0, b) and si ∈ (ti, b) such that γF ([ti, si]) ⊂ N ,
h(γF (ti)) > δ and h(γF (si)) → 0. In view of (1.8), we have

L(γ) ≥ L
(
γ|[ti,si]

)
= L(γF |[ti,si]) ≥ C

∫ si

ti

∣∣∣∣ ddt lnh ◦ γF
∣∣∣∣ dt

≥ −C

∫ si

ti

d

dt
lnh ◦ γF dt = C

(
lnh(γF (ti))− lnh(γF (si))

) → ∞,

where C =
√
k−1
k . This shows that γ has infinite length and proves Theo-

rem 1.18.

Next we will show that the hypersurfaces with regular boundary be-
haviour are generic in the class of hypersurfaces considered in this section.
In order to make this statement precise, let V ⊂ R

n+1 be an open subset
and k ∈ (1,∞). We denote by F = F(V, k) ⊂ C∞(V ) the cone consisting of
homogeneous functions h of degree k with the property that there exists an
open cone U ⊂ V such that U \ {0} ⊂ V and

H = H(h, U) := {p ∈ U | h(p) = 1}

is a Euclidean complete connected hyperbolic centroaffine hypersurface. (No-
tice that for F to be nonempty V has to contain an open cone U .) We
endow F with the topology induced by the standard Fréchet topology of
C∞(V ). Recall that the latter is the coarsest topology for which the semi-
norms supK

∣∣∇̃�h
∣∣ are continuous for all compact subsets K ⊂ V and all

 = 0, 1, . . ., where | · | stands for the Euclidean norm on tensors.
Then we put

Freg = Freg(V, k) :=
{
h ∈ F

∣∣ H(h, U) has regular boundary behaviour

for some U as above
}
.

Theorem 1.20. Freg is a dense open subset of F.

Proof. Let h ∈ F and U ⊂ V an open cone such that U \ {0} ⊂ V and H =
H(h, U) is a Euclidean complete connected hyperbolic centroaffine hyper-
surface. Replacing U by {p ∈ U | h(p) > 0}, if necessary, we can assume that
h > 0 on U . Then U = R

>0 ·H. Further let p ∈ H = H(h) ⊂ U and E = Ep

the affine hyperplane tangent to H at p. Then we choose linear coordinates
x1, . . . , xn+1 on R

n+1 such that x1(p) = · · · = xn(p) = 0 and xn+1

∣∣
E
= 1. We
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claim that

hε := h− εxkn+1 ∈ Freg

for all ε ∈ (0, 1).
H is closed, by Proposition 1.8 (ii). It is mapped to Hε := H(hε, U) by

the following diffeomorphism of the upper half-space {xn+1 > 0} ⊂ R
n+1:

x = (x1, . . . , xn+1) = (�x, xn+1) �→
(

�x

(1 + εxkn+1)
1/k

, xn+1

)
.

This shows that Hε is a closed connected smooth hypersurface and therefore
Euclidean complete, again by Proposition 1.8 (ii). Next we show that the
symmetric tensor field βε := −∇̃2hε on V is Lorentzian on the cone Uε :=
R
>0 ·Hε. This implies that Hε is hyperbolic and, hence, that hε ∈ F. First

we notice that βε is Lorentzian when evaluated at points of ∂Uε \ {0}. In
fact, since hε − h is constant on E, βε coincides with β on E and is therefore
positive definite on T∂Bε, where ∂Bε is the boundary of the domain Bε :=
Uε ∩ E in E. Here we are using that ∂Bε = {p ∈ E | h(p) = ε} is a level set
of h. On the other hand, ξx ∈ Tx∂Uε is a null vector of βε for all x ∈ ∂Bε:

βε(ξx, ξx) = −k(k − 1)hε(x) = 0.

Moreover, for all y ∈ Tx∂Bε we have

βε(ξx, y) = −(k − 1)dhε(y)− k(k − 1)dh(y) = 0.

Finally, let ηε be the Euclidean gradient of hε. Then

βε(ξx, η
ε
x) = −(k − 1)dhε(η

ε
x) < 0.

As in the proof of Lemma 1.19 , this implies that βε
x has negative determinant

and is a Lorentzian scalar product on TxV for all x ∈ ∂Bε. By homogeneity,
the same is true for all x ∈ ∂Uε \ {0}. To prove that βε is Lorentzian on Uε

it suffices now to show that detβε is negative on Uε. For all x ∈ Bε, we have

detβε
x = detβx − k(k − 1)ε detA,

where the determinant is computed with respect to the basis of TxV = R
n+1

associated with the coordinates x1, . . . , xn+1 and A is the principal n× n-
minor obtained by deleting the last row and column of the Gram matrix of
βε
x. Recall that βx is Lorentzian and thus detβx < 0. So if detA ≥ 0 then
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it follows that detβε
x < 0 and we are done. Therefore we can assume that

detA < 0 and, since ε < h(x) on Bε,

detβε
x = detβx + k(k − 1)ε |detA|
< detβx + k(k − 1)h(x) |detA| = detβh(x)

x .

Now observe that x ∈ ∂Bh(x) if h(x) < maxB h = 1. It follows from the above

discussion that in this case β
h(x)
x is Lorentzian and detβ

h(x)
x < 0. This shows

that detβ
h(x)
x ≤ 0 for all x ∈ Bε and implies detβε

x < 0 for all x ∈ Bε. By
homogeneity, this proves that βε

x is a Lorentzian metric on Uε.
Finally, we have to show that Hε has regular boundary behaviour. Since

hε = h− ε on E, we have that

dh
∣∣
TpE

= dhε
∣∣
TpE

and β
∣∣
TpE×TpE

= βε
∣∣
TpE×TpE

for all p ∈ V ∩ E . As dhTpE 	= 0 for all p ∈ B ⊃ Bε and hε is homogeneous,
condition (i) in Definition 1.17 is clearly satisfied for all p ∈ ∂Uε \ {0}. Simi-
larly, since β is positive definite on Tp∂Bε = ker dh|TpE for all p ∈ ∂Bε and hε
is homogeneous, we see that also condition (ii) in Definition 1.17 is satisfied
on T (∂Uε \ {0}).

For any integer k > 1 let us denote by P(k) ⊂ F(Rn+1, k) the subset
consisting of polynomial functions and Preg(k) = P(k) ∩ Freg(R

n+1, k).

Corollary 1.21. Preg(k) ⊂ P(k) is an open dense subset.

Next we discuss how many functions with Euclidean complete connected
hyperbolic centroaffine level sets there are.

Theorem 1.22. Let V ⊂ R
n+1 be an open cone. Then for every k ≥

2, every compact subset K ⊂ V and every integer n ≥ 1 there exists C =
C(k,K, n) < ∞ such that for all smooth functions h : V → R homogeneous
of degree k there exists h′ ∈ Freg(V, k) such that

sup
K

∣∣∇̃lh− ∇̃lh′
∣∣ ≤ C

(
sup
K

max(l,2)∑
i=0

∣∣∇̃ih
∣∣+ 1

)

for every 0 ≤ l ≤ n.

Proof. We will distinguish two cases, namely 0 /∈ V and 0 ∈ V .
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First assume that 0 /∈ V . Let p ∈ V with |p| = 1. Consider an open sub-
cone V ′ of V not containing any nonzero vectors orthogonal to p. First we
will construct h′ on V ′ and then extend it to V .

Consider an orthonormal basis {v1, . . . , vn+1} of R
n+1 with vn+1 = p

and dual basis {α1, . . . , αn+1}. For η ∈ R define the function hη : V
′ → R,

x �→ h(x) + ηαn+1(x)
k. Putting η = |h(p)|+ 1 we have hη(p) > 0.

Next consider the smooth and homogeneous function of degree k

P : Rn+1 \ {0} → R, x �→ −αn+1(x)
k−2

n∑
i=1

αi(x)
2.

Denote with Ep the affine hyperplane in R
n+1 intersecting and orthogonal

to p, i.e. Ep = p+ span{v1, . . . , vn}. The second derivative of P |Ep
at p is

negative definite. In fact we have ∇̃2
(
P |Ep

)
p
= −2

∑n
i=1 αi ⊗ αi.

For λ ∈ R define hη,λ : V ′ → R, x �→ hη(x) + λP (x). Setting λ =∣∣∇̃2(h|Ep
)p
∣∣+ 1 we conclude that ∇̃2(hη,λ|Ep∩V )p < 0. Hence ∇̃2(hη,λ|Ep∩V ′)

is negative definite in a neighbourhood of p in Ep ∩ V ′. Especially p is a lo-
cal maximum of hη,λ

∣∣
Ep
. For λ sufficiently large Ep ∩ (hη,λ)

−1[0,∞) is con-

tained in the connected component of
{
q ∈ V ′ ∩ Ep

∣∣ ∇̃2(hη,λ|Ep∩V ′)q < 0
}

around p. Note that since ∇̃2(hη,λ|Ep∩V ′)p is nondegenerate the map q ∈
Ep ∩ V ′ �→ d(hη,λ|Ep∩V ′)q is a local diffeomorphism on a neighbourhood U
of p in Ep ∩ V ′, i.e. d(hη,λ|Ep∩V ′) vanishes in U only at p. This now im-
plies that the connected component H′ of h−1

η,λ(1) containing p has regular
boundary behaviour. The Euclidean completeness of H follows from Propo-
sition 1.8.

Now consider a smooth function μ : Sn → [0, 1] with support in V ∩ Sn

and μ
∣∣
V ′∩Sn ≡ 1 such that μ · hη,λ ≤ 0 on (V \ V ′) ∩ Sn and μ(q) = 0 for all

q ∈ Sn orthogonal to p.
Define ĥ :≡ μ · hη,λ

∣∣
V ∩Sn and consider the canonical k-homogeneous ex-

tension h′ of ĥ to V \ {0}. This completes the proof for the case 0 /∈ V .
Now assume 0 ∈ V . Then k is a nonnegative integer. Following the above

construction we see that h− hη,λ is polynomial. In this case we can neglect
the cutoff function μ and define h′ := hη,λ. The claim is now immediate.
This completes the proof.

Corollary 1.23. For every k ≥ 2 and every compact set K ⊆ V there
exists C = C(K, k) < ∞ such that for all polynomials h : Rn+1 → R homo-
geneous of degree k there exists h′ ∈ Preg(k) such that
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sup
K

∣∣∇̃lh− ∇̃lh′
∣∣ ≤ C sup

K

(
|h|+ |∇̃2h|+ 1

)
for every l ≥ 0.

2. Projective special real manifolds

2.1. Centroaffine structure and intrinsic characterization of
projective special real manifolds

Definition 2.1. A projective special real manifold is a smooth hyper-
surface H ⊂ R

n+1 for which there exists a homogeneous cubic polynomial h
on R

n+1 such that

(i) H ⊂ {h = 1} := {x ∈ R
n+1 | h(x) = 1},

(ii) the Hessian ∇̃2h is negative definite on TH.

As a consequence of Proposition 1.3, for every projective special real
manifold H ⊂ R

n+1, the inclusion ι : H ⊂ R
n+1 is a hyperbolic centroaffine

immersion and, hence, induces a centroaffine structure (∇, g, ν) on H, such
that

(2.1) g = −1

3
ι∗(∇̃2h).

Definition 2.2. An intrinsic projective special real manifold is a
centroaffine manifold (M,∇, g, ν) with positive definite metric g such that
the covariant derivative of the cubic form C = ∇g is given by

(∇XC)(Y, Z,W ) = g(X,Y )g(Z,W ) + g(X,Z)g(W,Y )(2.2)

+ g(X,W )g(Y, Z),

for all X,Y, Z,W ∈ X(M).

Remark: The equation (2.2) implies that ∇C is totally symmetric, that is
a quartic form.

Theorem 2.3.

(i) Let H ⊂ R
n+1 be a projective special real manifold with induced cen-

troaffine structure (∇, g, ν). Then (H,∇, g, ν) is an intrinsic projective
special real manifold, that is satisfies (2.2).
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(ii) Conversely, let (M,∇, g, ν) be a connected and simply connected in-
trinsic projective special real manifold. Then there exists an immersion
ϕ : M → R

n+1 such that H := ϕ(M) ⊂ R
n+1 is a projective special real

manifold whose induced centroaffine structure has ϕ-pullback (∇, g, ν).
The immersion ϕ is unique up to linear unimodular transformations
of Rn+1.

Remark: A similar characterization in terms of covariant derivatives of C
up to order k − 2 can be given for nondegenerate hypersurfaces which are
locally defined by a homogeneous polynomial h of degree k ≥ 2.

Proof. Let H ⊂ R
n+1 be a projective special real manifold with induced

centroaffine structure (∇, g, ν). In order to check (2.2), we denote by H
the trilinear form on R

n+1 such that H(v, v, v) = h(v), for all v ∈ R
n+1.

Differentiating the equation H(ξ, ξ, ξ) = h(ξ) = 1 yields:

0 = H(ξ, ξ,X)

0 = 2H(ξ,X, Y ) +H(ξ, ξ,∇Y X + g(X,Y )ξ) = 2H(ξ,X, Y ) + g(X,Y )

for all X,Y ∈ X(H). Thus

(2.3) g = −2H(ξ, ·, ·)∣∣
TH⊗TH

and, hence,

C(X,Y, Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ) = −2H(X,Y, Z),

for all X,Y, Z ∈ X(H). Thus

(2.4) C = −2H
∣∣
TH⊗TH⊗TH

.

Next we calculate ∇C using the previous equations:

(∇XC)(Y, Z,W )

= XC(Y, Z,W )− C(∇XY, Z,W )− C(Y,∇XZ,W )− C(Y, Z,∇XW )

= −2XH(Y, Z,W ) + 2H(∇XY, Z,W ) + 2H(Y,∇XZ,W )

+ 2H(Y, Z,∇XW )

(1.1)
= −2g(X,Y )H(ξ, Z,W )− 2g(X,Z)H(Y, ξ,W )− 2g(X,W )H(Y, Z, ξ)

= g(X,Y )g(Z,W ) + g(X,Z)g(Y,W ) + g(X,W )g(Y, Z),
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for all X,Y, Z,W ∈ X(H). This proves (i).
Let (M,∇, g, ν) be a connected and simply connected intrinsic projective

special real manifold. Let us denote by N = M × R the trivial line bundle
over M , and by ξ0 its canonical trivializing section. We claim that (2.2) is
equivalent to the equation

∇̃H = 0,

where ∇̃ = ∇̃E is the flat connection on the vector bundle E = TM ⊕N ,
which is defined by

∇̃XY := ∇XY + g(X,Y )ξ0

∇̃Xξ0 := X,

for all X,Y ∈ X(M) and H = HE ∈ Γ(S3E∗) is defined by

H
∣∣
TM⊗3 := −1

2
C = −1

2
∇g

H(ξ0, ·, ·)
∣∣
TM⊗2 := −1

2
g

H(ξ0, ξ0, ·)
∣∣
TM

:= 0

H(ξ0, ξ0, ξ0) := 1.

Let us first show that the curvature R̃ of ∇̃ is zero. The vanishing of the
torsion of ∇ implies the equation R̃(X,Y )ξ0 = 0 and the equations (ii) and
(iii) in Definition 1.5 imply R̃(X,Y )Z = 0 for all X,Y, Z ∈ X(M). Next we
prove that ∇̃H = 0. For X,Y, Z,W ∈ X(M) we compute:

(∇̃XH)(ξ0, ξ0, ξ0) = XH(ξ0, ξ0, ξ0)︸ ︷︷ ︸
=1

−3H(∇̃Xξ0, ξ0, ξ0)︸ ︷︷ ︸
=H(X,ξ0,ξ0)=0

= 0

(∇̃XH)(ξ0, ξ0, Y ) = XH(ξ0, ξ0, Y )− 2H(ξ0, X, Y )−H(ξ0, ξ0, g(X,Y )ξ0)

= −2H(ξ0, X, Y )− g(X,Y ) = 0

(∇̃XH)(ξ0, Y, Z) = XH(ξ0, Y, Z)−H(X,Y, Z)−H(ξ0,∇XY, Z)

−H(ξ0, Y,∇XZ)

=
1

2

(
−Xg(Y, Z) + C(X,Y, Z) + g(∇XY, Z)

+ g(Y,∇XZ)
)

= 0
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(∇̃XH)(Y, Z,W ) = XH(Y, Z,W )−H(∇̃XY, Z,W )−H(Y, ∇̃XZ,W )

−H(Y, Z, ∇̃XW )

= −1

2
(∇XC)(Y, Z,W )−H(ξ0, Z,W )g(X,Y )

−H(ξ0, Y,W )g(X,Z)−H(ξ0, Y, Z)g(X,W )

= −1

2

(
(∇XC)(Y, Z,W )− g(Z,W )g(X,Y )

− g(Y,W )g(X,Z)− g(Y, Z)g(X,W )
)
.

This shows that ∇̃H = 0 if and only if (2.2) holds.
Since (E, ∇̃) is a flat vector bundle over the simply connected mani-

fold M , there exists an isomorphism Φ : (E, ∇̃) → (M × R
n+1, ∇̃) identify-

ing (E, ∇̃) with the trivial vector bundle (M × R
n+1, ∇̃) endowed with its

canonical flat connection ∇̃. The restriction Φ|TM to the subbundle TM ⊂ E
is a closed vector valued 1-form φ = (φ1, . . . , φn+1) on M . In fact, for all
X,Y ∈ X(M) we have

Xφ(Y ) = XΦ(Y ) = Φ(∇̃XY ) = φ(∇XY ) + g(X,Y )Φ(ξ0)

and, hence,

dφ(X,Y ) = Xφ(Y )− Y φ(X)− φ([X,Y ]) = φ
(∇XY −∇Y X − [X,Y ]

)
= 0.

Since M is simply connected, there exists a smooth map ϕ : M → R
n+1

such that dϕ = φ. It is a hypersurface immersion because Φ being an iso-
morphism of vector bundles implies that φ = Φ|TM is a monomorphism of
vector bundles. The vector field ξ := Φ(ξ0) : M → R

n+1 is transversal to
ΦTM = dϕTM and verifies

(2.5) ∇̃Xξ = Φ(∇̃Xξ0) = Φ(X) = dϕX.

This implies that there exists v0 ∈ R
n+1 such that

ξ(p) = ϕ(p) + v0

for all p ∈ M . Composing ϕ with a translation we can assume that v0 = 0.
Then ϕ is a centroaffine immersion with induced data (∇, g, det(ξ, . . .)). The
induced volume form det(ξ, . . .) is ∇-parallel (due to (2.5)) and, therefore,
coincides with ν up to a constant factor. Rescaling Φ, if necessary, we can
assume that ν = det(ξ, . . .). Now the immersion ϕ is unique up to unimod-
ular linear transformation, by Theorem 1.6. Using the identification Φ of E
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with the trivial bundle M × R
n+1, the parallel section H = HE ∈ Γ(S3E∗)

corresponds to an element H = HRn+1 ∈ S3(Rn+1)∗, which in turn defines
a cubic polynomial h on R

n+1 such that h(v) = H(v, v, v) for all v ∈ R
n+1.

Now it suffices to show that h ◦ ϕ = 1, which follows from

1 = HE(ξ0, ξ0, ξ0) = HRn+1(ξ, ξ, ξ) = h(ξ) = h(ϕ).

This shows that H = ϕ(M) is a projective special real manifold.

2.2. Relation between completeness and closedness of projective
special real manifolds

Proposition 2.4. Let H ⊂ R
n+1 be a projective special real manifold with

centroaffine metric g, see (2.1). Then the following hold.

(i) If (H, g) is complete then H ⊂ R
n+1 is a closed subset.

(ii) H ⊂ R
n+1 is a closed subset if and only if H ⊂ R

n+1 is Euclidean
complete.

Proof. Assume that (H, g) is complete or that H ⊂ R
n+1 is Euclidean com-

plete. By taking V = U = R
n+1 in Proposition 1.8, we see that every com-

ponent of H is closed in R
n+1 and, hence, coincides with one of the finitely

many1 connected components of {h = 1}. Then H is a finite union of closed
subsets of Rn+1 and, therefore, closed. This proves (i) and one of the im-
plications in (ii). To prove the converse statement in (ii) it is sufficient to
remark that the components of the closed subset H ⊂ R

n+1 are again closed
in R

n+1 and, therefore, Euclidean complete by Proposition 1.8.

Remark: The previous proposition extends [CDL, Prop. 5].

Theorem 2.5. Let H ⊂ R
n+1 be a projective special real manifold en-

dowed with the centroaffine metric g. Then (H, g) is complete if and only if
the subset H ⊂ R

n+1 is closed.

Proof. In view of Proposition 2.4 (i), it suffices to show that a closed pro-
jective special real manifold H ⊂ R

n+1 is complete. We can assume without
loss of generality that H is connected, that is a component of the level set
{h = 1} of a homogeneous cubic polynomial. By Proposition 2.4 (ii), H is

1The number of connected components of a real algebraic set is finite, see [Mi]
and references therein.
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Euclidean complete and is therefore a Euclidean complete connected hyper-
bolic centroaffine hypersurface as considered in Lemma 1.15. The unique
homogeneous function of degree k = 3 on U = R

>0 ·H which has the value
1 on H coincides with the restriction of the polynomial h to U . To prove
the completeness we will apply Lemma 1.15 in the case k = 3, ε = 1. Thus
we have to show that the function

√
h
∣∣
U∩E is concave, where E := Ep is

the tangent hyperplane at some point p ∈ H. Since U ∩ E ⊂ E is relatively
compact (see Lemma 1.14), for every x ∈ U ∩ E and v ∈ TpH there ex-
ists −∞ < a < b < ∞ such that the line x+ Rv ⊂ E intersects the domain
U ∩ E in the bounded segment

{x+ tv | a < t < b}.

We consider the polynomial h0 : R → R defined by h0(t) := h(x+ tv). It
suffices to check that

√
h0

′′ ≤ 0 on (a, b). We compute

4h
3/2
0

√
h0

′′
= 2h0h

′′
0 − (h′0)

2

and

(2h0h
′′
0 − (h′0)

2)′ = 2h0h
′′′
0 .

Since h′′′0 is constant, this shows that the function f0 := 2h0h
′′
0 − (h′0)2 is

monotone on (a, b). Observing that f0(a) = −(h′0(a))2 ≤ 0 and f0(b) =
−(h′0(b))2 ≤ 0, we see that f0 ≤ 0 on (a, b). This proves that

√
h0

′′ ≤ 0 on
(a, b).

2.3. Applications

Theorem 2.6. Let h be a cubic homogeneous polynomial on R
n+1 and H a

locally strictly convex (i.e. definite) component of the set {h = 1}. Then H ⊂
R
n+1 is a complete projective special real manifold, which defines a complete

quaternionic Kähler manifold of negative scalar curvature diffeomorphic to
R
4n+8 by applying first the r-map and then the c-map.

Remark: Notice that the components of the hypersurface{
x ∈ R

n+1
∣∣ h(x) = 1 and gx is definite

}
are locally strictly convex but are not necessarily components of the level
set {h = 1}. In fact, they are in general not closed in the ambient space and
therefore incomplete.



86 V. Cortés, M. Nardmann, and S. Suhr

Proof. We claim that the centroaffine hypersurface H is hyperbolic. Assume
it is elliptic.

If n ≥ 2 and H is compact, then Hopf’s characterization of ovaloids [H,
p. 122] implies R>0 ·H = R

n+1 \ {0}. Thus h is positive on R
n+1 \ {0} and

has odd degree, a contradiction.
If n ≥ 2 and H is noncompact, then the Stoker–Wu theorem [W] yields

an element A ∈ GL(n+ 1) such that H′ := A(H) ⊂ R
n × R is the graph of

a strictly convex function f : Ω → R, where Ω is a convex open subset of
R
n and f achieves its minimum at some x0 ∈ Ω. (To apply the theorem,

we used that H is closed in R
n+1 and thus Euclidean complete by Proposi-

tion 1.8.) Ellipticity implies that 0 ∈ R
n+1 lies in C := {(x, y) | x ∈ Ω, y >

f(x)}, which is convex and has boundary H′. The convex set C ∩ (Rn × {0})
is relatively compact in R

n+1, as one sees easily by considering lines from
(x0, f(x0)) to other points onH′, taking the strict convexity of f near x0 and
the convexity of C into account. Thus every ray from 0 in P := R

n × {0}
meets H′. We infer that the homogeneous polynomial h ◦A−1|P is positive
on P \ {0} and has odd degree. This is again a contradiction.

If n = 1, then still H, being a closed embedded centroaffine curve of
elliptic type, is the boundary of a convex domain containing the origin in
its interior. Therefore, H ⊂ {h = 1} intersects every line through the origin.
The set {h = 0} contains at least one such line, because h has odd degree.
Once more, that is a contradiction.

Hence H is hyperbolic, as claimed. Now the completeness of H is a con-
sequence of Theorem 2.5. According to [CHM, Thm. 4], the complete pro-
jective special real manifold H defines a complete projective special Kähler
domain M of dimension 2n+ 2 by the r-map. The domain is diffeomorphic
to TU , where U = R

>0 ·H. By Proposition 1.10, U is diffeomorphic to a
convex domain. Therefore M is diffeomorphic to R

2n+2. Next, the complete
projective special Kähler domain M defines a complete quaternionic Kähler
manifold N of negative scalar curvature by the c-map, see [CHM, Thm. 5].
As a differentiable manifold, N is a product M ×G, where G is the solvable
Iwasawa subgroup of SU(1, n+ 3). The latter Lie group is diffeomorphic to
R
2n+6.

Theorem 2.7. Let h be a cubic homogeneous polynomial on R
n+1 and H

a locally strictly convex component of the level set {h = 1}. Then

gL := −1

3
∇̃2h
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is a globally hyperbolic Lorentzian metric on the convex domain U =
R
>0 ·H.

Proof. As in the previous theorem, the assumptions imply that the cen-
troaffine hypersurface H ⊂ R

n+1 is hyperbolic. Thus the result is an imme-
diate consequence of Theorem 2.5 and Proposition 1.16.

2.4. An open problem

For each two natural numbers n ≥ 1 and k ≥ 2, one can consider the follow-
ing statement:

S(n, k): For every homogeneous polynomial h of degree k on R
n+1, every

locally strictly convex component H of the level set {h = 1} is complete
with respect to the centroaffine metric.

Corollary 1.21 and Theorem 1.18 show that for all n ≥ 1 and k ≥ 2, the
property in S(n, k) is true at least for generic polynomials.

As an immediate consequence of Theorem 2.5, S(n, k) is true for all n ≥ 1
in the case k ∈ {2, 3}:

Corollary 2.8. Let h be a homogeneous polynomial of degree k ∈ {2, 3}
on R

n+1 and H a locally strictly convex component of the level set {h = 1}.
Then H ⊂ R

n+1 is complete with respect to the centroaffine metric.

Proof. The case k = 2 is trivial since in that case the tensor field −1
2∇̃2h on

R
n+1 inducing the centroaffine metric is constant. The case k = 3 is part of

Theorem 2.5.

Moreover, S(1, k) is true for every k ≥ 2:

Theorem 2.9. Let h : R2 → R be a homogeneous polynomial of degree
k ≥ 2 and H a locally strictly convex connected component of {h = 1}. Then
H is complete with respect to the centroaffine metric.

Proof. Since everything is invariant under linear unimodular transforma-
tions we can assume that U = {x, y > 0}, i.e. U is the first quadrant in the
plane.

Choose a smooth curve S in the first quadrant transversal to the position
vector field such that its closure connects the points (0, 1) and (1, 0) and is
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parallel to the x-axis near (0, 1) and parallel to the y-axis near (1, 0). Recall
from Lemma 1.12 that

−ψ∗(∇̃2h) = −1

h
∇̃2h+

k − 1

kh2
dh⊗ dh

on S ∩ U for the map ψ(x, y) = 1
k
√

h(x,y)
(x, y).

For the question of completeness we are only interested in the behaviour
of −ψ∗(∇̃2h)

∣∣
S

near (1, 0) and (0, 1). Again by the invariance under lin-
ear unimodular transformations we only need to consider the problem near
(0, 1). We want to apply the method of Lemma 1.15 for ε = 1. Therefore
we have to show that

(
k−1
√
h
∣∣
S

)′′ ≤ 0 near (0, 1). Since S is parallel to the
x-axis in this area the claim follows from

0 ≥ (k − 1)h
2k−3

k−1
∂2

∂x2

(
k−1
√
h
)
=

2− k

k − 1

(
∂h

∂x

)2

+ h
∂2h

∂x2
.

Note that the right-hand side is polynomial so we only need to consider
the monomial xlyk−l with l minimal appearing in h. We know that 1 ≤ l ≤
k − 1 since h vanishes on both the x- and the y-axis. Further note that the
respective coefficient of xlyk−l is positive since h|U > 0. Then we have

2− k

k − 1

(
lxl−1

)2
+ xll(l − 1)xl−2 =

x2l−2

k − 1

(
l2 − l(k − 1)

) ≤ 0

for x ≥ 0. Now we can use the method of Lemma 1.15 on S near (0, 1) and
the theorem follows.

If we consider instead of polynomials the larger class of analytic func-
tions, Theorem 2.9 becomes false, as the following counterexample shows:

Example: Let k > 1. The homogeneous function

h(x, y) =

(
xy

x+ y

)k

is real analytic (and even rational if k is an integer) on the quadrant U :=
{x > 0, y > 0}. The hypersurface H = {p ∈ U | h(p) = 1} is obviously closed
in R

2, Euclidean complete and can be parametrized by

ϕ : B → H, p �→ h(p)−1/kp,

where B is the intersection of U with the line {x+ y = 1}. According to
Corollary 1.13, in this parametrization, the centroaffine metric is computed
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from u = k
√
h
∣∣
B
= xy

∣∣
B
= x(1− x) by

g = −1

u
∇̃2u =

2dx2

x(1− x)
.

The centroaffine length of the curve H is thus

√
2

∫ 1

0

dx√
x(1− x)

< ∞.

Since H is symmetric with respect to the axis y = x, this implies that H is
incomplete.

Open problem 2.10. Given n ≥ 2 and k ≥ 4, decide whether the state-
ment S(n, k) is true.

Note that it is not possible to generalize the proof of Corollary 2.8, which
is based on Lemma 1.15, to any k ≥ 4. In order to do that, one would have
to prove that there exists a constant c < k−1

k such that

cη′(x)2 − η(x)η′′(x) ≥ 0

holds for all x ∈ [0, 1] and all polynomials η : R → R of degree ≤ k which

(A) satisfy η(0) = η(1) = 0 and are positive on the interval (0, 1),

(B) satisfy k−1
k (η′)2 − ηη′′ > 0 on (0, 1).

Then for ε = k
1−c

(
k−1
k − c

)
, the computations in the proof of Lemma 1.15

would show that for each affine line L in Ep which meets U , the function
ηL := h|L (which is a polynomial of degree ≤ k because h is a polynomial of
degree k, and which has an affine reparametrization η : R → R with η(0) =
η(1) = 0 such that η > 0 and k−1

k (η′)2 − ηη′′ ≥ 0 hold on (0, 1)) makes k−ε
√
ηL

concave on L ∩ U . This would imply the completeness: S(n, k) would be true
for the considered k and all n ≥ 1.

For k = 3, the proof of Theorem 2.5 shows that c = 1
2 works. For k = 2, it

is easy to see that c = 0 works. Unfortunately, a constant c with the desired
property does not exist for k ≥ 4. The following example demonstrates this
in the case k = 4:
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Example: For each a ∈ R
≥0, the fourth-order polynomial

ηa(x) := x(1− x)
((

x− 3
20

)2
+ 51

202 + a
)

is obviously positive on (0, 1) and vanishes at 0 and 1. We consider

Pa(x) :=
3
4η

′
a(x)

2 − ηa(x)η
′′
a(x)

=
3
(
14x2 + 6x− 3

)2
402

+
−80x4 + 188x3 − 42x2 − 24x+ 9

40
a

+
4x2 − 4x+ 3

4
a2.

As 14x2 + 6x− 3 has precisely one zero in the interval [0, 1], namely x0 :=
− 3

14 + 1
14

√
51 ≈ 0.2958, P0|[0,1] is nonnegative and vanishes precisely at x0.

Since the polynomial Q := −80x4 + 188x3 − 42x2 − 24x+ 9 is positive
at x0, namely Q(x0) ≈ 2.479, there exists an a0 ∈ R

>0 such that for every
a ∈ (0, a0], Pa is positive on [0, 1]. (One can even check that Q is positive on
[0, 1]. Since also 4x2 − 4x+ 3 = 2(x− 1)2 + 2x2 + 1 is positive, Pa is there-
fore positive on [0, 1] for every a > 0.)

Thus ηa satisfies (A) and (B) with k = 4 for all a ∈ (0, a0]. Assume that
there exists a constant c < 3

4 such that cη′a(x)2 ≥ ηa(x)η
′′
a(x) holds for all a ∈

(0, a0] and x ∈ [0, 1]. By continuity, cη′0(x)2 ≥ η0(x)η
′′
0(x) would hold for all

x ∈ [0, 1], in particular for x0. We would obtain cη′0(x0)2 ≥ η0(x0)η
′′
0(x0) =

3
4η

′
0(x0)

2, hence η′0(x0) = 0. But that is false:

η′0(x0) = −4x30 +
39
10x

2
0 − 9

10x0 +
3
20 ≈ 0.1215.

Thus for k = 4, there is no constant c < k−1
k with the desired property de-

scribed above.
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