
Communications in

Analysis and Geometry

Volume 23, Number 5, 1031–1068, 2015

Davies-Gaffney-Grigor’yan Lemma

on graphs

Frank Bauer, Bobo Hua and Shing-Tung Yau

We prove a variant of the Davies-Gaffney-Grigor’yan Lemma for
the continuous time heat kernel on graphs. We use it together with
the Li-Yau inequality, to obtain strong heat kernel estimates for
graphs satisfying the exponential curvature dimension inequality.
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1. Introduction and main results

1.1. Introduction

The Davies-Gaffney-Grigor’yan Lemma (DGG Lemma for short) on mani-
folds can be stated in the form

Lemma 1.1 (Davies-Gaffney-Grigor’yan). Let M be a complete Rie-
mannian manifold and pt(x, y) the minimal heat kernel on M . For any two
measurable subsets B1 and B2 of M and t > 0, we have∫

B1

∫
B2

pt(x, y)dvol(x)dvol(y)(1)

≤
√

vol(B1)vol(B2) exp (−μt) exp
(
−d2(B1, B2)

4t

)
,

where μ is the greatest lower bound of the L2-spectrum of the Laplacian on
M and d(B1, B2) = infx1∈B1,x2∈B2

d(x1, x2) the distance between B1 and B2.

A lemma of this type appeared for the first time in a paper of Davies [15],
see also Li and Yau’s paper [30] for an earlier version of this lemma. However
Davies mentions that the idea goes back to Gaffney [21]. Later the lemma
was improved by Grigor’yan [23] who introduced the term exp(−μt) on the
right hand side. If μ > 0 (for instance for Hyperbolic spaces with constant
negative sectional curvature) the term exp(−μt) is particularly important
since it gives asymptotically the correct speed of decay of the heat kernel.

The DGG Lemma on Riemannian manifolds is of fundamental impor-
tance. Because of its generality (note that no assumptions on the geometry
of the manifold are made in Lemma 1.1), it can be applied in many different
situations. Among other applications it was used to obtain eigenvalue esti-
mates [10] and in combination with the Li-Yau inequality it yields strong
heat kernel estimates [29, 30].

In view of its importance, the question is whether one can prove the
DGG Lemma for graphs. The answer to this question is negative. Indeed,
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it was shown by Coulhon and Sikora [14] in a very general setting that
for nonnegative self-adjoint operators on general metric measure spaces the
DGG Lemma is equivalent to the finite propagation speed property of the
wave equation. In particular, the results in [14] can be applied in the graph
setting. However, it is well-known that for graphs the wave equation does
not have the finite propagation speed property, see Friedman-Tillich [20,
pp. 249].

The main contribution of this paper is that, despite this negative answer,
we are surprisingly able to prove a variant of the DGG Lemma for the
continuous time heat kernel on graphs that approximates the DGG Lemma
on manifolds if the time t is big compared to the distance d. Moreover we
demonstrate the power of the DGG Lemma by obtaining novel heat kernel
and eigenvalue estimates.

1.2. Main results and organization of the paper

In the following we state and discuss the main results of our paper in detail.
For the precise definitions of the quantities used we refer to Section 1.3 and
Section 2. Our main result is:

Theorem 1.1 (Davies-Gaffney-Grigor’yan Lemma on graphs). Let
G be an infinite graph equipped with a measure m and pt(x, y) be the minimal
heat kernel of G. For any 0 < γ < 1 there exists a constant α(γ) ≥ 1 such
that for any subsets B1, B2 ⊂ G and t ≥ 0,∑

x∈B1

∑
y∈B2

pt(x, y)m(x)m(y) ≤
√

m(B1)m(B2)e
−(1−γ)μt(2)

× exp (−ζ(αDmt+ 1, d(B1, B2))) ,

where μ is the greatest lower bound of the �2-spectrum of the graph Laplacian,
d(B1, B2) is the distance between B1 and B2 and ζ(t, d) = d arcsinh

(
d
t

)−√
d2 + t2 + t. Moreover, for the case γ = 1, we have∑

x∈B1

∑
y∈B2

pt(x, y)m(x)m(y)(3)

≤
√

m(B1)m(B2) exp

(
−1

2
ζ(Dmt, d(B1, B2))

)
.

Remark 1.1. (a) The function ζ in Theorem 1.1 is defined as a Legendre
associate and appears naturally in the graph setting, see for example
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[16, 18, 32]. In view of Lemma 1.1, ζ should be comparable to d2/2t. It
is not difficult to see that for small t/d the estimates, (2) and (3), are
not true if one replaces ζ by d2

2t , see [32]. However, for large t/d one can

show that ζ behaves like d2

2t , see (16).

(b) Compared to the Riemannian case, Lemma 1.1, it would be desirable
to prove Theorem 1.1 for γ = 0. However on graphs we cannot obtain
this result since, for γ = 0, our strategy to find a nontrivial solution
for (11) in the integral maximum principle (Lemma 3.2) breaks down.
Nevertheless, we can recover the part of the exponential factor (up to a
parameter γ ∈ (0, 1]) which is nontrivial in applications.

(c) In the special case γ = 1, the theorem can be directly derived from
the results in Delmotte [18]. However, it is important to obtain the
exponential factor in μ on the right hand side. In this case, i.e. 0 < γ < 1,
one cannot use the results of Delmotte and a more delicate argument
is needed. We prove a new variant of integral maximum principle on
graphs, Lemma 3.2, that involves the exponential factor in μ. Moreover,
we construct nontrivial solutions which satisfy the condition (11) in the
new integral maximum principle, see Lemma 3.4. This is non-trivial for
0 < γ < 1, and we need to rescale and shift the time and make use of
the crucial fact that on graphs the combinatorial distance function can
only attain integer values.

(d) Discrete time versions of the integral maximum principle and the DGG
Lemma for γ = 1 were proved in [13].

In [30], Li and Yau obtained their famous heat kernel estimates for main-
folds with Ricci curvature bounded from below by −K for some K ≥ 0.
It was open for a long time whether similar heat kernel estimates hold on
graphs. One particular problem was that, on graphs, it is not apparent which
the right notion of Ricci curvature is. Here we solve this open problem and
prove Li and Yau’s heat kernel estimates for graphs satisfying the exponen-
tial curvature dimension inequality on graphs which was introduced in [4].
In the proof of the heat kernel estimate we combine the Harnack inequality,
which follows from the Li-Yau inequality, with the DGG Lemma (Theo-
rem 1.1).

Theorem 1.2. Let ε > 0, 0 < γ ≤ 1, β > 0 and pt(x, y) be the minimal heat
kernel of G. If G satisfies the curvature dimension inequality CDE(n,−K),
then there exist constants C1(n, ε, β, γ,Dm,mmax, μmin), C2(ε, β, γ,Dm,
mmax, μmin) and C3(γ, β,Dm) such that
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pt(x, y) ≤ C1
exp(−(1− γ)μt)√

m(Bx(
√
t))m(By(

√
t))

exp

(
−C3d

2(x, y)

4(1 + 2ε)t
+ C2

√
Knt

)
,

for any x, y ∈ G and t ≥ βd(x, y) ∨ 1.

In Theorem 1.2, we only assume the exponential curvature dimension
inequality. Delmotte [18] proved the special case (K = 0 and γ = 1) of the
heat kernel estimate in Theorem 1.2 by assuming the volume doubling prop-
erty and the Poincaré inequality. In contrast to the volume doubling property
and the Poincaré inequality, the exponential curvature dimension inequality
CDE(n,−K) is a local condition. The advantage is that the exponential
curvature dimension inequality can more easily be verified at the cost of
being less robust to local perturbations. On Riemannian manifolds it is
well known that nonnegative Ricci curvature implies the volume doubling
property and the Poincaré inequality. However on graphs it is still an open
problem weather CDE(n, 0) implies these properties.

The paper is organized as follows. In Section 2 we review the Li-Yau
inequality on graphs introduced in [4] and derive some interesting corollaries
of it. In particular, we prove Yau’s Liouville theorem, Cheng’s Liouville
theorem and Cheng’s eigenvalue estimate on graphs. While Yau’s Liouville
theorem was already known under slightly different assumptions, Cheng’s
Liouville theorem seems to be only known in very special cases (for instance
for lattices or Cayley graphs [26]). In Section 3 we prove the DGG Lemma
by establishing our main tool the integral maximum principle. In Section 4
we use the DGG Lemma to prove the heat kernel estimates of the Li-Yau
type and as a corollary we derive new heat kernel estimates for finite graphs.
Moreover we show how the DGG Lemma can be used to give a purely discrete
proof of higher order eigenvalue estimates in terms of the distances between
subsets of a finite graph.

1.3. Setting

In this subsection we introduce the setting used throughout this paper. Let
G = G(V,E) be a locally finite, connected graph with vertex set V and edge
set E. We consider a symmetric weight function μ : V × V → [0,∞) that
satisfies μxy > 0 if and only if x and y are neighbors, in symbols x ∼ y.
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Moreover we assume that this weight function satisfies

μmin := inf
(x,y)∈E

μxy > 0

and

deg(x) :=
∑
y∈V

μxy <∞

for all x ∈ V .
Let m : V → R+ be an arbitrary measure on the vertex set V and let

mmax := supx∈V m(x) and mmin := infx∈V m(x) . We denote by C(V ) the
space of real functions on V, by �p(V,m) = {f ∈ C(V ) :

∑
x∈V |f(x)|pm(x) <

∞}, 1 ≤ p <∞, the space of �p integrable functions on V with respect to
the measure m (For p =∞, �∞(V,m) = {f ∈ C(V ) : supx∈V |f(x)| <∞}).
For the Hilbert space �2(V,m), we write the inner product as (f, g)�2(V,m) =∑

x∈V f(x)g(x)m(x).We define the Laplace operator Δ : C(V )→ C(V ) with
respect to m pointwise by

Δf(x) =
1

m(x)

∑
y∈V

μxy(f(y)− f(x)), ∀ x ∈ V,

which coincides with the generator of the Dirichlet form

f �→ 1

2

∑
x,y∈V

μxy|f(x)− f(y)|2

with respect to �2(V,m) on its domain, see Keller-Lenz [27]. The two most
natural choices are m(x) = deg(x) for all x ∈ V and m ≡ 1. In the first
case we obtain the normalized Laplace operator and in the second case the
combinatorial Laplace operator, respectively. It will be useful to define:

(4) Dμ = max
x,y∈V,(x,y)∈E

deg(x)

μxy
and Dm = max

x∈V
deg(x)

m(x)
.

2. The Li-Yau inequality on graphs

In 1975, Yau [36] proved a Liouville type theorem for positive harmonic
functions on Riemannian manifolds with nonnegative Ricci curvature and
together with Cheng, Yau [8] used Bochner’s technique to derive the gradient
estimate for positive harmonic functions on such manifolds, which yields
Cheng’s Liouville theorem on sublinear growth harmonic functions. Later
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on, Li and Yau [30] derived the parabolic gradient estimate for positive
solutions to the heat equations, the so-called Li-Yau inequality. In general,
gradient estimates proved to be one of the most powerful tools in geometric
analysis. For instance they played a key role in the proof of the Poincaré
conjecture.

It was open for a long time to prove a Li-Yau inequality on graphs.
The two main obstacles were that firstly the chain rule is not available on
graphs and secondly it is non-trivial to find the right notion of curvature
in the discrete setting. Recently progress was made and a Li-Yau inequality
and the corresponding Harnack inequality on graphs were obtained in [4] by
introducing the so-called exponential curvature dimension inequality.

2.1. The exponential curvature dimension inequality

Following the work of Bakry and Emery [2], there are two natural bilinear
forms associated to the Laplacian.

Definition 2.1. The gradient form Γ is defined by

Γ(f, g)(x) =
1

2

(
Δ(fg)− fΔ(g)−Δ(f)g

)
(x)

=
1

2m(x)

∑
y∈V

μxy(f(y)− f(x))(g(y)− g(x)).

The iterated gradient form is defined by

Γ2(f, g)(x) =
1

2
(ΔΓ(f, g)− Γ(f,Δg)− Γ(Δf, g))(x),

For simplicity, we write Γ(f) = Γ(f, f) and Γ2(f) = Γ2(f, f).

Using these bilinear forms one can define the curvature dimension inequal-
ity.

Definition 2.2. A graph G satisfies the curvature dimension inequality
CD(n,K) if, for any function f

Γ2(f) ≥ 1

n
(Δf)2 +KΓ(f).

Moreover, G satisfies CD(∞,K) if

Γ2(f) ≥ KΓ(f).
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In the case of an n-dimensional Riemannian manifold whose Ricci cur-
vature is bounded from below by K the curvature dimension inequality is
a direct consequence of Bochner’s identity. Even in more general settings
where Bochner’s identity is not available, the curvature dimension inequal-
ity has proven to be an important definition of curvature [3, 31].

However there are some problems with the curvature dimension inequal-
ity when one wants to prove the Li-Yau inequality for graphs. Indeed it
turns out that a natural modification of the curvature dimension inequality
is needed in order to prove the Li-Yau inequality.

Definition 2.3. A graph G satisfies the exponential curvature dimension
inequality CDE(n,K) if for any vertex x ∈ V and any positive function
f : V → R such that Δf(x) < 0 we have

Γ2(f)− Γ

(
f,

Γ(f)

f

)
≥ 1

n
(Δf)2 +KΓ(f).

Moreover, G satisfies the infinite dimensional exponential curvature dimen-
sion inequality CDE(∞,K) if

Γ2(f)− Γ

(
f,

Γ(f)

f

)
≥ KΓ(f).

From a general perspective, the exponential curvature dimension inequal-
ity is quite natural since it was shown in [4] that it follows from the classical
curvature dimension inequality in situations where the chain rule holds.
Moreover on graphs (where the chain rule does not hold) the exponential
curvature dimension inequality has some very nice properties compared to
the curvature dimension inequality, see [4] for more details.

2.2. Gradient estimates and the Harnack inequality

We recall some results in [4] about the Li-Yau inequality (gradient estimate)
and the corresponding Harnack inequality on graphs.

Theorem 2.1. Let G(V,E) be a (finite or infinite) graph, R > 0, and fix
x0 ∈ V . Let u : (0,∞)× V → R a positive solution to the heat equation (Δ−
∂t)u(t, x) = 0 if d(x, x0) ≤ 2R. If G satisfies CDE(n, 0), then

(5)
Γ(
√
u)

u
− ∂t

√
u√
u

<
n

2t
+

n(1 +Dμ)Dm

R

in the ball of radius R around x0.
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For general negative curvature lower bound and the Schrödinger opera-
tors with the potential q, we have the following modification of Theorem 2.1.

Theorem 2.2. Let G(V,E) be a (finite or infinite) graph, R > 0, and x0 ∈
V . Let u : (0,∞)× V → R a positive function such that (Δ− ∂t − q)u(t, x) =
0 if d(x, x0) ≤ 2R, for some constant q. If G satisfies CDE(n,−K) for some
K ≥ 0, then for any 0 < ρ < 1

(1− ρ)
Γ(
√
u)

u
− ∂t

√
u√
u
− q

2
<

n

(1− ρ)2t
+

n(2 +Dμ)Dm

(1− ρ)R
+

Kn

2ρ
,

in the ball of radius R around x0.

Remark 2.1. Theorem 2.1 and Theorem 2.2 are special cases of the main
result in [4]. In the most general case the potential q may depend on the
variables x and t. For simplicity of exposition we restrict ourselves to the
special case when q is constant. However our results can easily be extended
to the general case.

On Riemannian manifolds [30], a result similar to Theorem 2.2 holds
with 1/R2 instead of 1/R without any further assumptions. In one of the
key steps of the proof in the Riemannian case, the Laplacian comparison
theorem is applied to the distance function. This together with the chain
rule implies that one can find a cut-off function φ that satisfies

(6) Δφ ≥ −c(n)1 +R
√
K

R2
,

and

(7)
|∇φ|2
φ

≤ c(n)

R2

where c is a constant that only depends on the dimension n.
In contrast to manifolds, on graphs, one can only prove the Li-Yau

inequality with 1/R (instead of 1/R2) without any further assumptions,
see Theorem 2.2. The reason is that on graphs it is not clear that a cut-off
function with similar properties always exists. However in order to prove the
Li-Yau inequality with 1/R2 such a cut-off function is needed. This motivates
the following definition.

Definition 2.4. Let G(V,E) be a graph satisfying CDE(n,−K) for some
K ≥ 0. We say that the function φ : V → [0, 1] is an (c, R)-strong cut-off
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function centered at x0 ∈ V and supported on a set S ⊂ V if φ(x0) = 1,
φ(x) = 0 if x �∈ S and for any vertex x ∈ S

1) either φ(x) < c(1+R
√
K)

2R2 ,

2) or φ does not vanish in the immediate neighborhood of x and

φ2(x)Δ
1

φ
(x) ≤ Dm

c(1 +R
√
K)

R2
and φ3(x)Γ

(
1

φ

)
(x) ≤ Dm

c

R2
,

where the constant c = c(n) only depends on the dimension n.

In case a strong cut-off function exists, one can prove the Li-Yau inequal-
ity with 1/R2.

Theorem 2.3. Let G(V,E) be a (finite or infinite) graph satisfying CDE(n,
−K) for some K ≥ 0. Let R > 0 and x0 ∈ V . Assume that G has a (c, R)-
strong cut-off function supported on S⊂V and centered at x0. Let u : (0,∞)×
V → R be a positive function such that (Δ− ∂t − q)u(t, x) = 0 if x ∈ S, for
some constant q. Then for 0 < ρ < 1,(

(1− ρ)
Γ(
√
u)

u
− ∂t

√
u√
u
− q

2

)
(t, x0)

<
n

2(1− ρ)t
+

Dmcn

2(1− ρ)R2

(
1 +R

√
K +

n(Dμ + 1)2

4ρ(1− ρ)

)
+

Kn

2ρ
.

A corollary of the Li-Yau inequality is the following Harnack inequality
that we will use together with the DGG Lemma to prove the heat kernel
estimate in Section 4.

Theorem 2.4. Let G(V,E) be a (finite or infinite) graph satisfying CDE(n,
−K) for some K ≥ 0. If u : (0,∞)× V → R is a positive solution to the
equation (Δ− ∂t − q)u(t, x) = 0 for some constant q on the whole graph,
then for any 0 < ρ < 1, 0 < T1 ≤ T2, and x, y ∈ V ,

u(T1, x) ≤ u(T2, y)

(
T2

T1

) n

1−ρ

exp

((
Kn

ρ
+ q

)
(T2 − T1)

+
4mmaxd

2(x, y)

(1− ρ)(T2 − T1)μmin

)
.
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2.3. Applications of the Li-Yau inequality

In this section, we show several applications of the Li-Yau inequality on
graphs.

As a first application of Li-Yau inequality in [4], we obtain Yau’s Liouville
theorem on positive harmonic functions on graphs satisfying CDE(n, 0).

Theorem 2.5 (Yau’s Liouville theorem on graphs). Let G(V,E) be a
graph satisfying the exponential curvature dimension inequality CDE(n, 0).
Then any positive harmonic function on G is constant. In particular, bounded
harmonic functions are constant.

Proof. For any time-independent positive harmonic function on G, the Li-
Yau gradient estimate (5) implies the Liouville theorem by letting t→∞
and R→∞. The second part follows from the first one by considering the
positive function v(x) = u(x)− inf u. �

As we have seen, Yau’s Liouville theorem follows directly from the Li-Yau
inequality. Yau’s Liouville theorem can also be proved by using the Moser
iteration. This was initiated by Grigor’yan [22] and Saloff-Coste [33] indepen-
dently on Riemannian manifolds. Following their strategy, if we assume the
volume doubling property and the Poincaré inequality, the Moser iteration
[17] yields the Harnack inequality which will imply Yau’s Liouville theorem
on graphs. However it is difficult to compare these results since it is still
unknown if the volume doubling property and the Poincaré inequality hold
for graphs satisfying CDE(n, 0). Moreover, Saloff-Coste [34] proved Yau’s
Liouville theorem for graphs satisfying certain conditions on the growth
behavior of the volume of distance balls.

Our second application is an analogue to Cheng’s Liouville theorem
that any sublinear growth harmonic function on a Riemannian manifold
with nonnegative Ricci curvature is constant. On general graphs satisfying
CDE(n, 0), we can only prove the sub-square-root growth harmonic func-
tions are constant, see below for the definition. However, if we further assume
the existence of strong cut-off functions, then we obtain Cheng’s Liouville
theorem [7, 36] for sublinear growth harmonic functions.

Definition 2.5. For any R > 0, x ∈ V and u : BR(x)→ R, we define the
oscillation of u over the ball BR(x) by

oscBR(x)u := max
BR(x)

u− min
BR(x)

u.



1042 F. Bauer, B. Hua and S.-T. Yau

The function u is called of sub-square-root growth if

max
BR(x)

|u| = o(R
1

2 ) as R→∞.

It is called of sublinear growth if

max
BR(x)

|u| = o(R) as R→∞.

Clearly, u is of sub-square-root growth if and only if oscBR(x)u = o(R
1

2 )
as R→∞. Similarly, u is of sublinear growth if and only if oscBR(x)u = o(R)
as R→∞.

Theorem 2.6 (Cheng’s Liouville theorem on graphs). Let G = (V,E)
be a graph satisfying the exponential curvature dimension inequality CDE(n,
0). Then any sub-square-root growth harmonic function is constant. Fur-
thermore, if a strong cut-off function exists for any large ball, any sublinear
growth harmonic function is constant.

Proof. Let u be a sub-square-root growth harmonic function on G, i.e.
for any x ∈ V, oscBR(x)u = o(R

1

2 ) as R→∞. For any R ≥ 1, set v := u−
infB2R(x) u+ ε, for some ε > 0. Then v is a positive harmonic function on
B2R(x). Theorem 2.1 implies the following gradient estimate for any time-
independent positive harmonic functions f

Γ(
√
f)

f
(x) ≤ C

R
,

for some constant C. This yields

Γ(u)(x) = Γ(v)(x) =
1

2m(x)

∑
y∼x

μxy(v(x)− v(y))2

=
1

2m(x)

∑
y∼x

μxy

(
v(x)− v(y)√
v(x) +

√
v(y)

)2

(
√

v(x) +
√

v(y))2

≤ 4Γ(
√
v)(x)(oscB2R(x)u+ ε) ≤ C

(oscB2R(x)u+ ε)2

R

asR→∞ and ε→ 0. Hence Γ(u)(x) = 0 for any x ∈ V. Thus, u is a constant
function.

If we assume the existence of strong cut-off functions, then the same
argument as above using Theorem 2.3 yields the second assertion. �



Davies-Gaffney-Grigor’yan Lemma on graphs 1043

As a further application of the Li-Yau inequality, we obtain an estimate
for the greatest lower bound of the �2-spectrum known as Cheng’s eigenvalue
estimate [6].

Theorem 2.7 (Cheng’s eigenvalue estimate on graphs). Let G be a
graph satisfying the exponential curvature dimension inequality CDE(n,−K)
and let μ be the greatest lower bound for the �2-spectrum of the graph Lapla-
cian Δ. Then

μ ≤ Kn.

Proof. We note that Theorem 3.1 in [25] implies that if λ ≤ μ, then there
exists a positive solution u to the equation

Δu = −λu.

Moreover, for positive time-independent solutions to the equation Δu = qu,
the Li-Yau inequality Theorem 2.2 reduces to

(1− ρ)
Γ(
√
u)

u
− q

2
≤ Kn

2ρ
, ∀ρ ∈ (0, 1).

Setting q = −λ it follows that there exists a positive solution u for Δu = −λu
and λ ≤ μ that satisfies

(8) (1− ρ)
Γ(
√
u)

u
+

λ

2
≤ Kn

2ρ
.

Noting that (1− ρ)Γ(
√
u)

u > 0 and taking the limit ρ→ 1, we conclude that

μ ≤ Kn,

since (8) is true for all λ ≤ μ. �

3. Davies-Gaffney-Grigor’yan Lemma

In this section we give a proof of our main result, the DGG Lemma (Theo-
rem 1.1). In order to do that we need some preparation.
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Definition 3.1. We say u : [0,∞)× V → R solves the Dirichlet heat equa-
tion on Ω ⊂ V if

(9)

⎧⎪⎨⎪⎩
∂
∂tu(t, x) = ΔΩu(t, x) ∀x ∈ Ω, t ≥ 0,

u(0, x) = f(x) ∀x ∈ Ω

u(t, x) = 0 ∀x /∈ Ω, t ≥ 0.

where ΔΩ is the Dirichlet Laplace Operator on Ω, see for instance [12].
The Dirichlet heat kernel on Ω, pt(x, y,Ω), is defined as the solution of the
Dirichlet heat equation on Ω with the initial condition f(x) = 1

m(y)δy(x).

For a general initial data f(x), the solution can be written as

u(t, x) =
∑
y∈Ω

pt(x, y,Ω)f(y)m(y).

It is easy to see that

pt(x, y,Ω) =

|Ω|∑
k=1

e−λk(Ω)tφk(x)φk(y),

where {φk}|Ω|
k=1 is an orthonormal basis of eigenfunction of ΔΩ and |Ω| is the

number of vertices in Ω.

Definition 3.2. Let {Ωi}∞i=1 be an exhaustion of V by finite subsets, i.e.

Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωi ⊂ · · · ⊂ Ω, and ∪∞
i=1 Ωi = V.

Then we define the minimal heat kernel on G by

pt(x, y) := lim
i→∞

pt(x, y,Ωi).

The maximum/minimum principle implies that the limit exists and that pt
is minimal, i.e. for any other fundamental solution qt we have qt ≥ pt. This
indicates that the definition of the minimal heat kernel is independent of
the choice of the exhaustion.

First we prove a variant of the integral maximum principle on graphs
which was introduced on Riemannian manifolds by Grigor’yan [23]. For sim-
plicity, we denote by Kt(t, x) the partial derivative w.r.t. the variable t of
the C1 function K(t, x).
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Lemma 3.1 (Integral maximum principle for finite subsets). Let
u : [0,∞)× V → R solve the Dirichlet heat equation on Ω ⊂ V for some
finite Ω and let μ1 = μ1(Ω) be the first Dirichlet eigenvalue of Ω. Suppose
that K(t, x) is a nonnegative and nonincreasing C1−function in t and there
exists a constant γ ∈ [0, 1] such that for any t ≥ 0, x ∼ y (x, y ∈ V )(

K(t, x) +K(t, y)− 2(1− γ)
√

K(t, x)K(t, y)
)2

(10)

≤
(

1

Dm
Kt(t, x)− 2γK(t, x)

)(
1

Dm
Kt(t, y)− 2γK(t, y)

)
,

then

e2(1−γ)μ1tI(t) := e2(1−γ)μ1t
∑
x∈Ω

K(t, x)u2(t, x)m(x),

is nonincreasing in t ∈ [0,∞).

Proof. Direct calculation shows that

I ′(t) =
∑
x∈Ω

Kt(t, x)u
2(t, x)m(x)

+ 2
∑
x∈Ω

∑
y∈V

μxyK(t, x)u(t, x)(u(t, y)− u(t, x)),

=
∑
x∈V

Kt(t, x)u
2(t, x)m(x)

+ 2
∑
x∈V

∑
y∈V

μxyK(t, x)u(t, x)(u(t, y)− u(t, x)).

Using (4), Kt(t, x) ≤ 0 and the symmetry of μxy, we conclude that∑
x∈V

u2(t, x)Kt(t, x)m(x)

≤ 1

2Dm

∑
x,y∈V

μxy(u
2(t, x)Kt(t, x) + u2(t, y)Kt(t, y))

and

2
∑

x,y∈V
μxyK(t, x)u(t, x)(u(t, y)− u(t, x))

=
∑

x,y∈V
μxy(u(t, y)− u(t, x))(u(t, x)K(t, x)− u(t, y)K(t, y)).
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Hence

I ′(t) ≤ 1

2

∑
x,y∈V

μxy

(
u2(t, x)

(
1

Dm
Kt(t, x)− 2K(t, x)

)
2u(t, x)u(t, y)(K(t, x) +K(t, y))

+u2(t, y)

(
1

Dm
Kt(t, y)− 2K(t, y)

))
≤ −2(1− γ)

1

2

∑
x,y∈V

μxy

(
u(t, x)

√
K(t, x)− u(t, y)

√
K(t, y)

)2

≤ −2(1− γ)μ1I(t),

where we have used (10) for the quadratic expression in u(t, x) and u(t, y) in
the second inequality. The last inequality follows from the Rayleigh quotient
characterization of the first Dirichlet eigenvalue (see for instance [12])

μ1 = inf
f :supp(f)⊆Ω,

f 	≡0

1
2

∑
x,y∈N1(Ω) μxy(f(x)− f(y))2∑

x∈Ωm(x)f2(x)
,

where N1(Ω) = {x ∈ V |d(x,Ω) ≤ 1} is the 1-neighborhood of Ω and supp(f)
= {x ∈ V : f(x) �= 0}. In fact, the choice f(x) = u(t, x)

√
K(t, x) yields

μ1 ≤ 1

2

∑
x,y∈N1(Ω)

(
u(t, x)

√
K(t, x)− u(t, y)

√
K(t, y)

)2∑
x∈Ωm(x)u2(t, x)K(t, x)

=
1

2

∑
x,y∈V μxy

(
u(t, x)

√
K(t, x)− u(t, y)

√
K(t, y)

)2∑
x∈Ωm(x)u2(t, x)K(t, x)

and hence

μ1I(t) ≤ 1

2

∑
x,y∈V

μxy

(
u(t, x)

√
K(t, x)− u(t, y)

√
K(t, y)

)2

This proves the Lemma. �

Using an exhaustion argument as in [29, Corollary 13.2], we can extend
the integral maximum principle to the whole graph.
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Lemma 3.2 (Integral maximum principle). Let

u(t, x) =
∑
y∈V

pt(x, y)f(x),

solve the heat equation on [0,∞)× V for f ∈ �p(V,m), p ∈ [1,∞], and μ be
the greatest lower bound for the �2-spectrum of the graph Laplacian. Suppose
that K(t, x) is a nonnegative and nonincreasing C1−function function in t
and there exists a constant γ ∈ [0, 1] such that for any t ≥ 0, x ∼ y (x, y ∈ V )(

K(t, x) +K(t, y)− 2(1− γ)
√

K(t, x)K(t, y)
)2

(11)

≤
(

1

Dm
Kt(t, x)− 2γK(t, x)

)(
1

Dm
Kt(t, y)− 2γK(t, y)

)
,

then

e2(1−γ)μtI(t) := e2(1−γ)μt
∑
x∈V

K(t, x)u2(t, x)m(x),

is nonincreasing in t ∈ [0,∞).

Remark 3.1. The special case γ = 1 in the integral maximum principle
was already obtained in [18] for continous time random walks and in [12, 13]
for the discrete time random walk on graphs. However, the case γ < 1 is of
particular interest since it allows us to recover the exponential factor in the
first Dirichlet eigenvalue. This exponential factor is very important (see also
Remark 3.5) and also appears in the DGG Lemma, Theorem 1.1, and the
heat-kernel estimates, Theorem 1.2.

Proof. We consider an exhaustion of V by finite subsets {Ωi}∞i=1. Let ui(t, x)
be the solution of the Dirichlet heat equation on Ωi with the initial condition
ui(0, ·) = u|Ωi

(0, ·). By Lemma 3.1 for any finite Ωi,

t �→ e2(1−γ)μ1(Ωi)t
∑
x∈Ωi

K(t, x)u2i (t, x)m(x)

is nonincreasing in t. Passing to the limit i→∞ we obtain the result since
μ1(Ωi)→ μ and ui → u. �

Remark 3.2. By settingK(t, x) = e2η(t,x) = e2η(t,d(x)) where d(x) = d(x,B),
the distance function to some subset B of V, the Equation (11) is equivalent
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to

(12) (χ(η(t, x)− η(t, y)) + γ)2 ≤
(

1

Dm
ηt(t, x)− γ

)(
1

Dm
ηt(t, y)− γ

)
,

where χ(s) = cosh(s)− 1.

We want to use the integral maximum principle to prove the DGG Lemma.
For that we need to find a non-trivial solution to (11) or (12). Recall that
on Riemannian manifolds in order to apply the integral maximum principle,
one needs to find a non-trivial solution to

(13)
∂η

∂t
+

1

2
|∇η|2 ≤ 0.

In this case η = d2

2t is a solution since the distance function d satisfies |∇d| ≤
1 [23]. Noting that χ(s) behaves like s2

2 for small s and setting γ = 0, Dm = 1,
one observes the obvious correspondence between (12) and (13). However, it
is easy to see that d2

2t is not a solution to (12) for small t (or more precisely
t/d small). Still we want to find a non-trivial solution to (12) which behaves
like d2

2t except for t/d small.
In order to find such a solution of (12) we consider the Legendre associate

(14) ζ(t, d) = max
λ≥0

{dλ− χ(λ)t}

for any t ≥ 0 and d ≥ 0. Then

ζ(t, d) = d arcsinh

(
d

t

)
−

√
d2 + t2 + t,

and

(15)
∂

∂t
ζ(t, d) = −χ(λ(t, d))

where λ(t, d) = arcsinh(dt ) is the value of λ which attains the maximum
in (14). The Legendre associate ζ was already used by Davies, Pang and
Delmotte to obtain heat-kernel estimates [16, 18, 32].

We have the following elementary lemma:

Lemma 3.3. For any fixed t ∈ (0,∞), the function ζ(t, d) = d arcsinh
(
d
t

)−√
d2 + t2 + t is increasing and convex in d ∈ (0,∞).
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Proof. Since ζ(t, d) = tζ(1, dt ), it suffices to show that ζ(1, d) is convex. An
elementary calculation yields the first and second derivative with respect
to d,

ζ ′(1, d) = arcsinh(d) ≥ 0,

ζ ′′(1, d) =
1√

d2 + 1
≥ 0.

This proves the lemma. �

Moreover, one can show that [18]

(16)

{
ζ(t, d) ≤ d2

2t , for t ≥ 0

ζ(t, d) ≥ σ arcsinh(σ−1)d
2

2t , for t ≥ σd.

The estimates in (16) suggest that ζ is a good candidate for a solution
of (12) since it behaves like d2

2t for d/t small. Indeed the next lemma shows
that ζ is a solution of (12) up to the rescaling and shifting of the time.

Lemma 3.4. For any 0 < γ ≤ 1 there exists a constant α(γ) ≥ 1 such that

(17) K(t, x) := e2ζ(αDmt+ 1

2
,d(x))

is nonincreasing in t ∈ [0,∞) and satisfies (11) where d(x) is a distance
function to some subset B and ζ is defined in (14).

Remark 3.3. One can consider an arbitrary time shift in (17). However
this does not give new insights and the choice 1/2 leads to nice constants in
our results.

Proof. Set η(t, x) = ζ(αDmt+ 1
2 , d(x)). Using (15), we can rewrite Equa-

tion (12) in the form

(χ(η(t, x)− η(t, y)) + γ)2 ≤
[
αχ(λ(αDmt+

1

2
, d(x))) + γ

]
(18)

×
[
αχ(λ(αDmt+

1

2
, d(y))) + γ

]
.

Note that we have to prove (18) only for x ∼ y. It is obvious that (18) is
satisfied if d(x) = d(y). By the symmetry of x and y, we may assume w.l.o.g.
that d(x) > d(y). We distinguish the following two cases.
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Case 1. 1 ≤ d(y) < d(x). First we observe that

0 < η(t, x)− η(t, y) = ζ

(
αDmt+

1

2
, d(x)

)
− ζ

(
αDmt+

1

2
, d(y)

)
≤ λ

(
αDmt+

1

2
, d(x)

)
.

This can be seen as follows: Since d(x) > d(y), it follows from Lemma 3.3
that

ζ

(
αDmt+

1

2
, d(x)

)
≥ ζ

(
αDmt+

1

2
, d(y)

)
.

By the definition of ζ we have

0 ≤ ζ

(
αDmt+

1

2
, d(x)

)
− ζ

(
αDmt+

1

2
, d(y)

)
= d(x)λ(x)−

(
αDmt+

1

2

)
χ(λ(x))− d(y)λ(y) +

(
αDmt+

1

2

)
χ(λ(y))

where λ(x) := λ(αDmt+ 1
2 , d(x)) and λ(y) := λ(αDmt+ 1

2 , d(y)) are the val-
ues of λ that achieve the maximum in the definition of ζat the time αDmt+ 1

2
for d = d(x) and d = d(y) respectively.
Since

ζ(αDmt+
1

2
, d(y)) = max

λ≥0

{
d(y)λ− χ(λ)

(
αDmt+

1

2

)}
= d(y)λ(y)− χ(λ(y))

(
αDmt+

1

2

)
≥ d(y)λ(x)− χ(λ(x))

(
αDmt+

1

2

)
we have

0 ≤ ζ

(
αDmt+

1

2
, d(x)

)
− ζ

(
αDmt+

1

2
, d(y)

)
≤ (d(x)− d(y))λ(x) = λ(x)

where the last equality holds since x ∼ y and d(x) > d(y). Thus it suffices
to find some constant α ≥ 1, such that

χ

(
λ

(
αDmt+

1

2
, d(x)

))
+ γ ≤ αχ

(
λ

(
αDmt+

1

2
, d(y)

))
+ γ
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holds, or equivalently

χ(λ(αDmt+ 1
2 , d(x)))

χ(λ(αDmt+ 1
2 , d(y)))

≤ α.

By the discreteness of the distance function, i.e. d(x) ∈ N, and d(x) > d(y) ≥
1, and x ∼ y, it follows that d(x) ≤ 2d(y). This yields

χ
(
λ

(
αDmt+ 1

2 , d(x)
))

χ
(
λ

(
αDmt+ 1

2 , d(y)
)) =

√
1 + d(x)2

(αDmt+ 1

2)
2 − 1√

1 + d(y)2

(αDmt+ 1

2)
2 − 1

≤

√
1 + 4d(y)2

(αDmt+ 1

2)
2 − 1√

1 + d(y)2

(αDmt+ 1

2)
2 − 1

≤ 4.

This proves the result in the first case by setting α ≥ 4. Note that for this
case we neither used the time shift nor assumed that γ �= 0.

Case 2. d(y) = 0 and d(x) = 1. In this case, Equation (18) is equivalent to

(19)

(
χ

(
ζ

(
αDmt+

1

2
, 1

))
+ γ

)2

≤ γ

(
αχ

(
λ

(
αDmt+

1

2
, 1

))
+ γ

)
.

Note that (19) is false for γ = 0. That is why we have to assume γ > 0. By
definition ζ

(
αDmt+ 1

2 , 1
) ≤ λ

(
αDmt+ 1

2 , 1
)
, which implies(

χ

(
ζ

(
αDmt+

1

2
, 1

))
+ γ

)2

≤
(
χ

(
λ

(
αDmt+

1

2
, 1

))
+ γ

)2

.

Moreover since we introduced the time shift 1/2, we have χ
(
λ
(
αDmt+

1
2 , 1

))
=

√
1 + 1

(αDmt+ 1

2
)2
− 1 ≤ √5− 1 for any t ≥ 0. Choosing α ≥

√
5−1
γ +

2, we have(
χ

(
ζ

(
αDmt+

1

2
, 1

))
+ γ

)2

≤
(
χ

(
λ

(
αDmt+

1

2
, 1

))
+ γ

)2

≤ γ

(
αχ

(
λ

(
αDmt+

1

2
, 1

))
+ γ

)
.

This proves the result in the second case. Hence the lemma follows by choos-

ing α(γ) = max
{
4,

√
5−1
γ + 2

}
. �
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Remark 3.4. Unfortunately, we cannot prove the lemma for γ = 0. The
reason is that in our proof the constant α(γ)→∞ as γ → 0.

Now, we are ready to prove the DGG Lemma for graphs.

Proof of Theorem 1.1. For infinite subsetsB1 andB2, we can take an exhaus-
tion by finite subsets. Since the estimates (2) and (3) are stable by passing to
the limit of the exhaustion, it suffices to prove the theorem for finite subsets
B1 and B2. For the case 0 < γ < 1, we set

fi(t, x) :=
∑
y∈Bi

pt(x, y)m(y),

Ki(t, x) := e2ζ(αDmt+ 1

2
,d(x,Bi)), i = 1, 2

where α = α(γ) is the constant in Lemma 3.4. Lemma 3.2 and Lemma 3.4
imply that for any t ≥ 0,

e2(1−γ)μt
∑
x∈V

Ki(t, x)f
2
i (t, x)m(x) ≤

∑
x∈V

Ki(0, x)f
2
i (0, x)m(x).

Note that

fi(0, x) =
∑
y∈Bi

p0(x, y)m(y) = 1Bi
(x)

where 1Bi
is the characterization function of Bi, i = 1, 2. This yields that∑

x∈V
Ki(0, x)f

2
i (0, x)m(x) = m(Bi).

Hence

(20) e2(1−γ)μt
∑
x∈V

Ki(t, x)f
2
i (t, x)m(x) ≤ m(Bi), for all t ≥ 0.

By Lemma 3.3, ζ(t, ·) is increasing and convex in d. Applying Jensen’s
inequality together with the triangle inequality implies that for any t ≥ 0
and x ∈ V

ζ

(
αDmt+

1

2
,
d(B1, B2)

2

)
≤ ζ

(
αDmt+

1

2
,
d(x,B1) + d(x,B2)

2

)
≤ 1

2

[
ζ

(
αDmt+

1

2
, d(x,B1)

)
+ ζ

(
αDmt+

1

2
, d(x,B2)

)]
.
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This yields

eζ(2αDmt+1,d(B1,B2)) ≤
√

K1(t, x)K2(t, x)

since ζ(t, d) = tζ(1, dt ), and thus

ζ(2αDmt+ 1, d(B1, B2)) = 2ζ

(
αDmt+

1

2
,
d(B1, B2)

2

)
.

Hence ∑
x∈V

eζ(2αDmt+1,d(B1,B2))f1(t, x)f2(t, x)m(x)

≤
∑
x∈V

√
K1(t, x)K2(t, x)f1(t, x)f2(t, x)m(x)

≤
(∑

x∈V
K1(t, x)f

2
1 (t, x)m(x)

) 1

2
(∑

x∈V
K2(t, x)f

2
2 (t, x)m(x)

) 1

2

≤ e−2(1−γ)μt
√

m(B1)m(B2),

where we used Cauchy-Schwarz in the second and (20) in the third inequality.
In addition, by the semigroup property, the left-hand side can be written as∑

x∈V
eζ(2αDmt+1,d(B1,B2))f1(t, x)f2(t, x)m(x)

= eζ(2αDmt+1,d(B1,B2))
∑
x∈V

∑
y∈B1

∑
z∈B2

pt(x, y)pt(x, z)m(x)m(y)m(z)

= eζ(2αDmt+1,d(B1,B2))
∑
y∈B1

∑
z∈B2

(∑
x∈V

pt(y, x)pt(x, z)m(x)

)
m(y)m(z)

= eζ(2αDmt+1,d(B1,B2))
∑
y∈B1

∑
z∈B2

p2t(y, z)m(y)m(z).

Combining these results and rescaling the time by the factor 1
2 , the result

follows.
For the case γ = 1, i.e. the case when we do not have the exponential

factor in μ, we do not need to rescale and shift the time. In this case one
can show that ∑

x∈V
K̃i(t, x)f

2
i (t, x)m(x), i = 1, 2

is non-increasing in t ∈ [0,∞) where

K̃i(t, x) := eζ(Dmt,d(x,Bi)).
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The same argument yields the result in this case. �
Using the properties of ζ, (16), we obtain the following corollary.

Corollary 3.1. Let pt(x, y) be the minimal heat kernel of the graph G and
β > 0. Then for any 0 < γ < 1, there exist a constant C3(γ, β,Dm) such that
for any subsets B1, B2 ⊂ G, t ≥ βd(B1, B2) ∨ 1,∑

x∈B1

∑
y∈B2

pt(x, y)m(x)m(y)(21)

≤ e−(1−γ)μt
√

m(B1)m(B2) exp

(
−C3

d2(B1, B2)

4t

)
.

Moreover, for the case γ = 1, we have for any t ≥ βd(B1, B2),∑
x∈B1

∑
y∈B2

pt(x, y)m(x)m(y) ≤
√

m(B1)m(B2) exp

(
−Cd2(B1, B2)

4t

)
,

where C = C(β,Dm) = β arcsinh( 1
Dmβ ).

Remark 3.5. (a) For γ = 1, a similar result was obtained in [12, 13] for
the discrete time heat kernel on graphs.

(b) This result shows the importance of the case γ < 1. Although we obtain
the right constant in the exponential in d2/t for γ = 1 and t large (note
that σ arcsinh(σ−1)→ 1 as σ →∞) we cannot recover the exponential
factor in μ. In contrast, for γ < 1 we lose some constant in the exponen-
tial in d2/t but we are able to recover the exponential factor in μ. This
is important since for large t the right hand side for γ < 1 goes to zero
whereas the right hand side for γ = 1 converges to a positive constant.

(c) The constant C3 in this corollary can be chosen as

C3 = C3(γ, β,Dm) =
2αDmβ arcsinh

(
1

αDmβ

)
αDm + 1

,

where α = α(γ) is the constant in Lemma 3.4.

In particular, we have the following explicit estimate.

Corollary 3.2. Let G be an infinite graph, Dm = 1 and pt(x, y) be the min-
imal heat kernel of G. Then for any subsets B1, B2⊂G and t≥d(B1, B2)∨1,
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∑
x∈B1

∑
y∈B2

pt(x, y)m(x)m(y)(22)

≤ e−( 3−√5

2
)μt

√
m(B1)m(B2) exp

(
−8 arcsinh(1/4)

5

d2(B1, B2)

4t

)
.

4. Applications of the Davies-Gaffney-Grigor’yan Lemma

4.1. Heat kernel estimates

Combining the Harnack inequality, Theorem 2.4, and the DGG Lemma, The-
orem 1.1, we can now prove the heat kernel estimates for graphs satisfying
the exponential curvature dimension inequality.

Proof of Theorem 1.2. Since we have the DGG Lemma on graphs, we can
closely follow the standard proof in the continuous case, see [29]. Fix x, y ∈ V
and δ > 0. Applying the Harnack inequality, Theorem 2.4, to the heat kernel
pt(x, y) with T1 = t and T2 = (1 + δ)t yields

pt(x, y) ≤ p(1+δ)t(x
′, y)(1 + δ)C4 exp

(
C5δt+

4mmaxd
2(x, x′)

(1− ρ)δtμmin

)
≤ p(1+δ)t(x

′, y)(1 + δ)C4 exp

(
C5δt+

4mmax

(1− ρ)δμmin

)
, ∀x′ ∈ Bx(

√
t),

where C4 =
n

1−ρ , C5 =
Kn
ρ . Summing over all x′ ∈ Bx(

√
t) yields

m(Bx(
√
t))pt(x, y)(23)

≤ (1 + δ)C4 exp

(
C5δt+

4mmax

(1− ρ)δμmin

) ∑
x′∈Bx(

√
t)

m(x′)p(1+δ)t(x
′, y).

Using again the Harnack inequality for the following positive solution to the
heat equation,

h(y, s) =
∑

x′∈Bx(
√
t)

m(x′)ps(x′, y),
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and setting T1 = (1 + δ)t, T2 = (1 + 2δ)t yields

m(By(
√
t))

∑
x′∈Bx(

√
t)

m(x′)p(1+δ)t(x
′, y)

≤
(
1 + 2δ

1 + δ

)C4

exp

(
C5δt+

4mmax

(1− ρ)δμmin

)
×

∑
x′∈Bx(

√
t)

∑
y′∈By(

√
t)

m(x′)m(y′)p(1+2δ)t(x
′, y′).

Together with (23) this yields

pt(x, y) ≤ (1 + 2δ)C4 exp

(
2C5δt+

8mmax

(1− ρ)δμmin

)
× 1

m(Bx(
√
t))m(By(

√
t))

∑
x′∈Bx(

√
t)

∑
y′∈By(

√
t)

m(x′)m(y′)p(1+2δ)t(x
′, y′).

For t ≥ βd(x, y) ∨ 1 ≥ 1
1+2δ (βd(x, y) ∨ 1) ≥ 1

1+2δ (βd(Bx(
√
t), By(

√
t)) ∨

1) Corollary 3.1 implies that there exists C3(γ, β,Dm) such that∑
x′∈Bx(

√
t)

∑
y′∈By(

√
t)

p(1+2δ)t(x
′, y′)m(x′)m(y′)

≤ exp(−(1− γ)μ(1 + 2δ)t)

√
m(Bx(

√
t))m(By(

√
t))

· exp
(
−C3

d2(Bx(
√
t), By(

√
t))

4(1 + 2δ)t

)
.

Using this we obtain

pt(x, y) ≤ (1 + 2δ)C4 exp

(
2C5δt+

8mmax

(1− ρ)δμmin

)
1√

m(Bx(
√
t))m(By(

√
t))

× exp

(
−(1− γ)μ(1 + 2δ)t− C3

d2(Bx(
√
t), By(

√
t))

4(1 + 2δ)t

)
.

We observe the following

d(Bx(
√
t), By(

√
t)) =

{
0, if d(x, y) ≤ 2�√t�,
d(x, y)− 2�√t�, if d(x, y) > 2�√t�,
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where �√t� is the greatest integer less than or equal to
√
t. It follows that

d(Bx(
√
t), By(

√
t)) ≥

{
0, if d(x, y) ≤ 2�√t�,
d(x, y)− 2

√
t, if d(x, y) > 2�√t�.

Hence we have

−d2(Bx(
√
t), By(

√
t))

4(1 + 2δ)t
= 0 ≤ 1− d2(x, y)

4(1 + 4δ)t
, if d(x, y) ≤ 2�√t�

and

−d2(Bx(
√
t), By(

√
t))

4(1 + 2δ)t
≤ −(d(x, y)− 2

√
t)2

4(1 + 2δ)t

≤ − d2(x, y)

4(1 + 4δ)t
+

1

2δ
, if d(x, y) > 2�√t�.

Combining all above there exists a constant C = eC3 such that

pt(x, y) ≤ C(1 + 2δ)C4 exp

(
2C5δt+

8mmax

(1− ρ)δμmin
+

C3

2δ
− (1− γ)μ(1 + 2δ)t

)
× 1√

m(Bx(
√
t))m(By(

√
t))

exp

(
−C3

d2(x, y)

4(1 + 4δ)t

)
.

We consider two cases.

Case 1. C5t ≥ 1. We choose 2δ = ε√
C5t

. This yields

pt(x, y) ≤ C

(
1 +

ε√
C5t

)C4

exp

[√
C5t

(
C3

ε
+

16mmax

(1− ρ)μminε
+ ε

)]

× 1√
m(Bx(

√
t))m(By(

√
t))

exp

⎛⎝−(1− γ)μt− C3d
2(x, y)

4
(
1 + 2ε√

C5t

)
t

⎞⎠ .

Hence

pt(x, y) ≤ C(1 + ε)C4 exp

[√
C5t

(
C3

ε
+

16mmax

(1− ρ)μminε
+ ε

)]
× 1√

m(Bx(
√
t))m(By(

√
t))

exp

(
−(1− γ)μt− C3d

2(x, y)

4(1 + 2ε)t

)
.
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Case 2. C5t < 1. We choose 2δ = ε. This yields

pt(x, y) ≤ C(1 + ε)C4 exp

(
ε
√

C5t+
C3

ε
+

16mmax

(1− ρ)μminε

)
× 1√

m(Bx(
√
t))m(By(

√
t))

exp

(
−(1− γ)μt− C3d

2(x, y)

4(1 + 2ε)t

)
.

Choosing some fixed value for ρ ∈ (0, 1), say for instance ρ = 1/2 completes
the proof. �

As an easy corollary of Theorem 1.2 we obtain heat-kernel estimate for
finite graphs, see [28] for a similar result on manifolds. For a finite graph
G on N vertices, we order the eigenvalues of G in the non-decreasing way:
0 = λ1 < λ2 ≤ · · · ≤ λN . Note that the heat kernel converges in this estimate
to 1

V in an explicit way, where V = m(G) is the volume of the whole graph.

Corollary 4.1. Let G be a finite graph on N vertices and D := max
x,y∈V

d(x, y)

its diameter. If G satisfies the exponential curvature dimension inequality
CDE(n,−K), then for all 0 < ρ < 1,∣∣∣∣pt(x, y)− 1

V

∣∣∣∣ ≤ 1

V

(
C1 exp

(
C2

√
KnD

)
− 1

)
exp(λ2D

2 − λ2t)

for any t ≥ D2, where λ2 is the smallest nontrivial eigenvalue of G and the
constants C1 and C2 are the same as in Theorem 1.2.

Proof. We follow the proof on manifolds [28]. For the heat kernel we have
the well-known eigenfunction expansion [9]

pt(x, y) =

N∑
i=1

e−λitφi(x)φi(y),

where {φi}Ni=1 is a complete set of orthonormal eigenfunctions of the Lapla-
cian, i.e. ∑

x∈V
m(x)φi(x)φj(x) = δij .

Since the graph G is finite, λ1 = 0 and φ1 =
1√
V
. For simplicity we define

ht(x, y) := pt(x, y)− 1
V . Then ht is given by

ht(x, y) =

N∑
i=2

e−λitφi(x)φi(y) = e−λ2t
N∑
i=2

e(λ2−λi)tφi(x)φi(y).
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Multiplying through by eλ2t we see that ht(x, x)e
λ2t is nonincreasing in t.

Using the heat kernel estimate Theorem 1.2 for x = y and t = D2, we get

pD2(x, x) ≤ C1

V
exp

(
C2

√
KnD

)
.

Since ht(x, x)e
λ2t is nonincreasing in t, this yields

ht(x, x)e
λ2t ≤ hD2(x, x)eλ2D2

≤ 1

V

(
C1 exp

(
C2

√
KnD

)
− 1

)
eλ2D2

, ∀ t ≥ D2.

Using Cauchy-Schwartz inequality, we get

ht(x, y)
2 =

(
N∑
i=2

e−λitφi(x)φi(y)

)2

≤
(

N∑
i=2

e−λitφ2
i (x)

) (
N∑
i=2

e−λitφ2
i (y)

)
= ht(x, x)ht(y, y).

This implies that

|ht(x, y)| ≤ 1

V

(
C1 exp

(
C2

√
KnD

)
− 1

)
eλ2D2−λ2t.

This proves the corollary. �

4.2. Eigenvalue estimates

For a compact Riemannian manifold M , Chung, Grigor’yan and Yau [10]
showed by using the DGG Lemma 1.1 that the smallest positive Neumann
eigenvalue of the Laplacian satisfies

(24) λ2 ≤ C1

d(X,Y )2

(
log

C2vol(M)√
vol(X)vol(Y )

)2

,

where X,Y are two disjoint subsets of M . Later on the constants C1 and
C2 were improved [5, 11, 19] by other methods. Moreover in their papers
[10, 11] Chung, Grigor’yan and Yau obtained similar but weaker estimates
for graphs that are of order 1/d instead of 1/d2. It was an open question
whether the eigenvalue estimates on graphs can be improved and similar
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results to those on Riemannian manifolds can be obtained. Friedman and
Tillich [20] observed that this improvement is indeed possible. Their strategy
was to use the strong estimates on manifolds and transfer them in a clever
way to the graph setting. Here as an application of the DGG Lemma, we
give a direct proof of the 1/d2 estimate for graphs that is purely discrete
and does not use the results on manifolds. However we have to point out
that our proof that follows [10] yields worse constants than the results in
[20]. We also note that higher order eigenvalue estimates similar to (24) are
known on manifolds and graphs, [10, 11, 20].

Theorem 4.1. Let G be a finite graph on N vertices and order the eigenval-
ues of G in the nondecreasing way: 0 = λ1 < λ2 ≤ · · · ≤ λN . Let A1, A2, . . . ,
Ak be k disjoint subset on G and

δ := min
i 	=j

d(Ai, Aj).

Then

(25) λk ≤ Dm

δ
max
i 	=j

log 2m(V )√
m(Ai)m(Aj)

h

(
2
δ log

2m(V )√
m(Ai)m(Aj)

) ,

where h(t) is the inverse function of ζ(t, 1).

Remark 4.1. (a) Note that in the Riemannian case, ζ(t, d) corresponds to
d2

2t , and h(t) to 1
2t .

(b) Using the properties (16) of ζ(t, 1) it is easy to see that

h(t) ≥ σ arcsinh(σ−1)
1

2t
, for t ≤ 1

2
arcsinh(σ−1).

Thus, if we choose

(26) σ =

(
sinh

(
4

δ
max
i 	=j

log
2m(V )√

m(Ai)m(Aj)

))−1

,

then

(27) λk ≤ 4Dm

σ arcsinh(σ−1)δ2
max
i 	=j

(
log

2m(V )√
m(Ai)m(Aj)

)2

.
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Note that if
4

δ
max
i 	=j

log
2m(V )√

m(Ai)m(Aj)
<< 1,

then we can choose σ such that σ arcsinh(σ−1) ≈ 1. Moreover, since
δ ≥ 1 we can always define σ independently of δ by replacing δ by 1
in (26).

Proof of Theorem 4.1. Using the DGG Lemma 1.1 we can follow closely
the proof of [10, Theorem 1.1] for Riemannian manifolds, see also [24,
Theroem 4.1]. Let {φi}Ni=1 be an orthonormal basis of �2(V,m) consisting
of eigenfunctions pertaining to the eigenvalues {λi}Ni=1 of the Laplacian Δ.

For convenience, we divide the proof into two cases:

Case 1. k = 2. The characteristic functions 1A1
and 1A2

can be expressed
as (generalized Fourier expansion)

1A1
=

N∑
i=1

aiφi, and 1A2
=

N∑
i=1

biφi,

where ai = (1A1
, φi)�2(V,m) and bi = (1A2

, φi)�2(V,m). Obviously,

N∑
i=1

a2i = ‖1A1
‖�2(V,m) = m(A1),

N∑
i=1

b2i = m(A2).

In addition, by φ1 =
1√
m(V )

,

a1 =
m(A)√
m(V )

, b1 =
m(B)√
m(V )

.

Since pt(x, y) =
∑N

i=1 e
−λitφi(x)φi(y),

∑
x∈A1

∑
y∈A2

pt(x, y)m(x)m(y) = a1b1 +

N∑
i=2

e−λitaibi

≥ a1b1 − e−λ2t

(
N∑
i=2

a2i

) 1

2
(

N∑
i=2

b2i

) 1

2

≥ m(A1)m(A2)

m(V )
− e−λ2t

√
m(A1)m(A2).
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By (3) in DGG Lemma, we have

e−tλ2 ≥
√

m(A1)m(A2)

m(V )
− e−

1

2
ζ(Dmt,δ),

where δ = d(A1, A2). Note that for any d > 0, ζ(t, d) is strictly nonincreasing
in t, ζ(t, d)→∞, as t→ 0 and ζ(t, d)→ 0, as t→∞.

By choosing t such that

e−
1

2
ζ(Dmt,δ) =

1

2

√
m(A1)m(A2)

m(V )
,

we have

λ2 ≤ 1

t
log

2m(V )√
m(A1)m(A2)

.

By the homogeneity of ζ, ζ(t, d) = dζ( td , 1), and the definition of h, we know
that given d, a > 0, the solution of ζ(t, d) = a is t = dh(ad ). This implies that

t =
δ

Dm
h

(
2

δ
log

2m(V )√
m(A1)m(A2)

)
.

Hence

λ2 ≤ Dm

δ

log 2m(V )√
m(A1)m(A2)

h

(
2
δ log

2m(V )√
m(A1)m(A2)

) .

Case 2. k > 2. Using generalized Fourier expansion w.r.t. the orthonormal
basis {φi}, one has

1Aj
=

N∑
i=1

aijφi, j = 1, . . . , k.

where aij = (1Aj
, φi)�2(V,m). By the same argument in Case 1, for any 1 ≤

j �= l ≤ k we have
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∑
x∈Aj

∑
y∈Al

pt(x, y)m(x)m(y)

= a1ja
1
l +

k−1∑
i=2

e−λitaija
i
l +

N∑
i=k

e−λitaija
i
l

≥ m(Aj)m(Al)

m(V )
+

k−1∑
i=2

e−λitaija
i
l − e−λkt

√
m(Aj)m(Al).

Combining this with (3) in the DGG Lemma, we obtain the following by
direct calculation

e−λkt ≥
√

m(Aj)m(Al)

m(V )
(28)

+
1√

m(Aj)m(Al)

k−1∑
i=2

e−λitaija
i
l − e−

1

2
ζ(Dmt,d(Aj ,Al)).

We choose t0 > 0 such that

(29) e−
1

2
ζ(Dmt0,δ) =

1

2
min
j 	=l

√
m(Aj)m(Al)

m(V )
,

where δ = maxj 	=l d(Aj , Al). Using the inverse function, h(t), of ζ(t, 1), one
finds that

(30) t0 =
δ

Dm
min
j 	=l

h

(
2

δ
log

2m(V )√
m(Aj)m(Al)

)
.

The reason for this choice of t0 will be apparent soon.
We claim that there exists a pair {j0, l0}, 1 ≤ j0 �= l0 ≤ N, such that for

Aj0 and Al0 the second term on the right hand side of the Equation (28) is
nonnegative. For this purpose, we consider an auxiliary vector space, Rk−2,
endowed with the inner product

〈x, y〉t0 =
k−2∑
i=1

e−λi+1t0xiyi, x, y ∈ R
k−2.

We have k vectors, {Xj = (a2j , a
3
j , . . . , a

k−1
j )}kj=1, in R

k−2. By a standard
theorem in linear algebra, see [10, Lemma 2], there exists a pair 1 ≤ j0 �=
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l0 ≤ k such that 〈Xj0 , Xl0〉t0 ≥ 0, that is

k−1∑
i=2

e−λitaij0a
i
l0 ≥ 0.

This proves the claim.
For the pair j0 and l0, it follows from (28) with t = t0 that

e−λkt0 ≥
√

m(Aj0)m(Al0)

m(V )
− e−

1

2
ζ(Dmt0,d(Aj0 ,Al0 ))

≥ min
j 	=l

√
m(Aj)m(Al)

m(V )
− e−

1

2
ζ(Dmt0,δ)

=
1

2
min
j 	=l

√
m(Aj)m(Al)

m(V )
,

where we use the monotonicity of ζ in d in the second inequality and
the property (29) of t0 for our choice in the last equality. Combining this
with (30), we prove the theorem. �

Finally, we will give an example to show the sharpness of the estimate of
the order 1/δ2 in Theorem 4.1.

Example 4.1. 1. (k = 2). For any n ∈ N, let P4n+1 be a path graph iden-
tified with the induced subgraph [−2n, 2n] ∩ Z of Z. We choose A1 =
[−2n,−n] ∩ Z, A2 = [n, 2n] ∩ Z. Then

2

δ
log

(
2m(V )√

m(A1)m(A2)

)
∼ 2 log 8

n
� 1.

By our estimate (27), λ2 ≤ C
n2 ∼ C

diam2 which is optimal for large n since
λ2 = 1− cos( π

n−1).

2. (k > 2). For k copies of the path graph [0, 2n] ∩ Z, {Gl}kl=1, we glue the
origins of Gl together to get a star graph G. By setting Al = [n, 2n] ∩Gl

for 1 ≤ l ≤ k, our estimate (27) implies that λk ≤ C
n2 which is known to

be optimal.

We briefly discuss some consequences of Theorem 4.1.
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Corollary 4.2. The diameter D of a graph satisfies

D ≤ 2

(
Dm

σ arcsinh(σ−1)λ2

)1/2

log

(
2m(V )

mmin

)
,

where we can choose

σ =

[
sinh

(
4 log

(
2m(V )

mmin

))]−1

.

Proof. The proof follows immediately from Theorem 4.1 and Remark 4.1 by
choosing k = 2, A1 = {x} and A2 = {y} where d(x, y) = D. �

Using Theorem 4.1 we can easily derive isoperimetric inequalities that im-
prove and generalize earlier results in [1, 10, 35]. For a subset U ⊂ V , the
r-neighborhood of U is defined by

Nr(U) = {x ∈ V : d(x, U) ≤ r}.

Corollary 4.3. We have the following lower bound for the size of the r-
neighborhood of a subset U ⊂ V, r ≥ 1

m(Nr(U)) ≥ m(V )

⎛⎝1− 4m(V )

m(U)
exp

⎛⎝−(r + 1)

√
λ2σ arcsinh(σ−1)

Dm

⎞⎠⎞⎠ ,

where we can choose

σ =

(
sinh

(
2 log

2m(V )√
m(U)mmin

))−1

.

Proof. The proof follows immediately from Theorem 4.1 and Remark 4.1 by
choosing k = 2, A1 = U and A2 = V \Nr(U). �
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[5] S. Bobkov and M. Ledoux, Poincaré inequalities and talagrands concen-
tration phenomenon for the exponential distribution. Probability The-
ory and Related Fields, 107 (1997), pp. 383–400.

[6] S. Cheng, Eigenvalue comparison theorems and its geometric applica-
tions. Math. Z., 143 (1975), pp. 289–297.

[7] S. Cheng, Liouville theorem for harmonic maps. Proc. Symp. Pure
Math., 36 (1980), pp. 147–151.

[8] S. Cheng and S. Yau, Differential equations on Riemannian manifolds
and their geometric applications. Comm. Pure Appl. Math., 28 (1975),
pp. 333–354.

[9] F. Chung, Spectral Graph Theory. CBMS Regional Conference Series in
Mathematics, no. 92, American Mathematical Society, 1997.

[10] F. Chung, A. Grigor’yan and S. Yau, Upper bounds for eigenvalues of
the discrete and continuous Laplace operators. Adv. Math., 117 (1996),
pp. 165–178.

[11] F. Chung, A. Grigor’yan and S. Yau, Eigenvalues and diameters for
manifolds and graphs. Tsing Hua Lectures on Geometry and Analysis,
(1997), pp. 79–105.

[12] T. Coulhon and A. Grigor’yan, Random walks on graphs with regular
volume growth. Geom. and Funct. Anal., 8 (1998), pp. 656–701.

[13] T. Coulhon, A. Grigor’yan, and F. Zucca, The discrete integral max-
imum principle and its applications. Tohoku Math. J., 57 (2005),
pp. 559–587.

[14] T. Coulhon and A. Sikora, Gaussian heat kernel upper bounds via
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