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Good degeneration of Quot-schemes

and coherent systems

Jun Li and Baosen Wu

We construct good degenerations of Quot-schemes and coherent
systems using the stack of expanded degenerations. We show that
these good degenerations are separated and proper DM stacks of
finite type. Applying to the projective threefolds, we derive degen-
eration formulas for DT-invariants of ideal sheaves and PT stable
pair invariants.
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1. Introduction

Good degenerations are a class of degenerations suitable to study the geom-
etry of moduli spaces via degenerations. Successful applications include
the degeneration formula of Gromov-Witten invariants [Li01, Li02]. In this
paper, we will construct the good degenerations of Hilbert schemes, of
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Grothendieck’s Quot-schemes, and of the moduli of coherent systems intro-
duced by Le Potier [LP93]. As applications, we obtain the degeneration
formulas of Donaldson-Thomas invariants of ideal sheaves, and of invariants
of PT stable pairs of threefolds.

The degenerations we study in this paper are simple degenerations π :
X → C over pointed smooth curves 0 ∈ C.

Definition 1.1. We say π : X → C is a simple degeneration if

1) X is smooth, π is projective, π has smooth fiber over c �= 0 ∈ C;

2) the central fiber X0 has normal crossing singularity and the singular
locus D of X0 is smooth;

3) let Y be the normalization of X0 and D̃ = Y ×X0
D ⊂ Y , then D̃ → D

is isomorphic to a union of two copies of D.

We denote the two copies of D̃ → D by D− and D+. We call (Y,D±)
the relative pair associated with X0.

We fix a relatively ample line bundle H on X/C, and a polynomial
P (v); we form the Hilbert scheme HilbPXc

of closed subschemes Z ⊂ Xc with
Hilbert polynomial χH

OZ
(v) := χ(OZ ⊗H⊗v) = P (v). We will use the tech-

nique developed by the first named author in [Li01] to find a good degenera-
tion of the relative Hilbert scheme (denoting X∗ = X −X0 and C∗ = C − 0)

HilbPX∗/C∗ =
∐
c∈C∗

HilbPXc
.

To fill in the central fiber of this family over 0 ∈ C, we consider closed
subschemes in X[n]0 that are normal to the singular loci of X[n]0; where
X[n]0 is obtained by inserting a chain of n-copies of the ruled variety (over
D)

Δ = PD(1⊕ND+/Y )

to D in X0, (X[n]0 is constructed in the next section,) and normal to the
singular loci means that it is flat along the normal direction to the singular
loci of X[n]0.

The central fiber of the good degeneration has set-theoretic description{
Z ⊂ X[n]0

∣∣∣∣ n ≥ 0, Z is normal to the singular loci
of X[n]0, AutX(Z) is finite, χH

OZ
(v) = P (v).

}/
∼= .

Here the equivalence and the automorphism group are defined in the next
section. In case D is irreducible, it has a simple description: two closed



844 J. Li and B. S. Wu

subschemes Z1, Z2 ⊂ X[n]0 are equivalent if there is an isomorphism σ :
X[n]0 → X[n]0 preserving the projections X[n]0 → X0 such that σ(Z1) =
Z2. The self-equivalences of a Z ⊂ X[n]0 form a group, which we denote by
AutX(Z). We call Z stable if AutX(Z) is finite. Finally, χH

OZ
(v) = χ(OZ ⊗

p∗H⊗v), where p : X[n]0 → X0 is the projection by contracting the fibers
of Δ.

Constructing the stack structure of this set-theoretic description of the
central fiber, and fitting it into the family HilbPX∗/C∗ , is achieved by working
with the stack X → C of expanded degenerations. Using X → C, we prove
that the set-theoretic description of good degeneration is a Deligne-Mumford
stack. The first part of this paper is devoted to prove

Theorem 1.2. Let π : X → C be a simple degeneration, H be relative
ample on X → C, and P be a polynomial. Then the good degeneration
described is a Deligne-Mumford stack proper and separated over C; it is
of finite type.

Similar results hold for good degenerations of Grothendieck’s Quot-
schemes and of coherent systems of Le Potier.

The primary goal to construct such a good degeneration is to derive a
degeneration formula of Donaldson-Thomas invariants and PT stable pair
invariants of threefolds. For simplicity, we only state the degeneration for-
mula in case Y is a union of two irreducible complements Y = Y− ∪ Y+, and
D is connected. We let D± = Y± ∩ D̃.

Let Λspl
P be the set of splittings δ = (δ±, δ0) of P , (i.e. δ+ + δ− − δ0 =

P .) For each δ ∈ Λspl
P , we construct the moduli stack I

δ±,δ0
Y±/A�

of relative

ideal sheaves of (Y±, D±). This moduli space is constructed using the stack
D± ⊂ Y± of expanded pairs of D± ⊂ Y±. Closed points of this moduli space
consists of ideal sheaves IZ of Y±[n±] relative to D±, meaning that Z is
normal to the singular loci of Y±[n±] and to D±. This moduli space is also
a proper and separated Deligne-Mumford stack of finite type. Furthermore,
we have a natural morphisms

ev± : I
δ±,δ0
Y±/A�

−→ Hilbδ0D ,

to the Hilbert scheme of ideal sheaves on D of Hilbert polynomial δ0, defined
via restricting ideal sheaves on Y±[n±] to its relative divisor D±.

Using the evaluation morphisms, we form the fiber product

Iδ
X†

0/C
†
0
= I

δ−,δ0
Y−/A�

×Hilb
δ0
D
I
δ+,δ0
Y+/A�

.
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Each Iδ
X†

0/C
†
0
is a closed substack of IPX/C, and is indeed a “virtual” Cartier

divisor.

Theorem 1.3. Let π : X → C be a simple degeneration of projective three-
folds such that X0 = Y− ∪ Y+ is a union of two smooth irreducible com-
ponents. Let [IPX/C]

vir ∈ A∗IPX/C be the virtual class of the good degenera-

tion, and let � be the diagonal morphism Hilbδ0D → Hilbδ0D ×Hilbδ0D . Then
i!c[I

P
X/C]

vir = [IPXc
]vir for c �= 0 ∈ C, and

(1.1) i!0

[
IPX/C

]vir
=

∑
δ∈Λspl

P

�!
(
[I

δ−,δ0
Y−/A�

]vir × [I
δ+,δ0
Y+/A�

]vir
)
.

Using the Chern characters of the universal ideal sheaves, we also obtain
the numerical version of the Donaldson-Thomas invariant and its degenera-
tion, first introduced in the work of Maulik, Nekrasov, Okounkov and Pand-
haripande [MNOP06]. For a smooth projective threefoldX and a polynomial
P (v) = d · v + n, we let IPX (∼= HilbPX canonically) be the moduli of ideal
sheaves of curves IZ ⊂ OX with Hilbert polynomial P ; and let IZ ⊂ OX×IP

X

be its universal family. For any γ ∈ H l(X,Z), we define

chk+2(γ) : H∗
(
IPX ,Q

) −→ H∗−2k+2−l

(
IPX ,Q

)
,

via

chk+2(γ)(ξ) = π2∗ (chk+2(IZ) · π∗
1(γ) ∩ π∗

2(ξ)) ,

where π1 and π2 are the first and second projection ofX×IPX . The Donaldson-
Thomas invariants (in short DT-invariants) with descendent insertions are
the degree of the following cycle class〈

r∏
i=1

τ̃ki
(γi)

〉P

X

=

[
r∏

i=1

(−1)ki+1chki+2(γi) ·
[
IPX

]vir]
0

,

where γi are cohomology classes of pure degree li, and [·]0 is taking the
dimension zero part of the term inside the bracket. The partition function
is

Zd

(
X; q

∣∣∣∣ r∏
i=1

τ̃ki
(γi)

)
=
∑
n∈Z

deg

〈
r∏

i=1

τ̃ki
(γi)

〉d·v+n

X

qn.

The commonly used form of DT-invariants as introduced in [MNOP06],
uses the moduli In(X, β) of ideal sheaves of subschemes Z ⊂ X with fixed
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curve class β = [Z]. In this paper we package the DT-invariant using the
moduli IPX of ideal sheaves with fixed Hilbert polynomial. This enables us to
avoid the technical issue of decomposing curve classes during degenerations.
In explicit application, one should be able to derive the general case after
analyzing this issue in details.

Next, we let β1, . . . , βm be a basis of H∗(D,Q). Let {Cη}|η|=k be a Naka-

jima basis of the cohomology of HilbkD (where η is a cohomology weighted
partition w.r.t. βi). The relative DT-invariants with descendent insertions
[MNOP06] are the degree of〈

r∏
i=1

τ̃ki
(γi)

∣∣∣∣ η
〉δ±

Y±

=

[
r∏

i=1

(−1)ki+1chki+2(γi) ∩ ev∗±(Cη) ·
[
I
δ±,δ0
Y±/A�

]vir]
0

which form a partition function

Zd±,η

(
Y±, D±; q

∣∣∣∣ r∏
i=1

τ̃ki
(γi)

)
=
∑
n∈Z

deg

〈
r∏

i=1

τ̃ki
(γi)

∣∣∣∣ η
〉d±·v+n

Y±

qn.

Using the cycle version of the degeneration formula in Theorem 1.3, we
verify the following form of degeneration formula

Theorem 1.4 ([MNOP06]). Fix a basis β1, . . . , βm of H∗(D,Q). Let γi
be cohomology classes of X of pure degree li. The degeneration formula of
Donaldson-Thomas invariants has the following form

Zd

(
Xc; q

∣∣∣∣ r∏
i=1

τ̃0(i
∗
cγi)

)
=

∑
d−,d+; η
d=d−+d+

(−1)|η|−l(η)z(η)

q|η|

· Zd−,η

(
Y−, D−; q

∣∣∣∣ r∏
i=1

τ̃0(i
∗
−γi)

)

· Zd+,η∨

(
Y+, D+; q

∣∣∣∣ r∏
i=1

τ̃0(i
∗
+γi)

)

where ic :Xc→X, i± :Y±→X are the inclusions, η are cohomology weighted
partitions w.r.t. βi, and z(η) =

∏
i ηi|Aut(η)|.

Comments. In this paper, parallel results on the PT stable pairs invari-
ants are proved. The PT stable pair invariant was introduced by Pandhari-
pande and Thomas in [PT09]. Their degeneration was essentially proved
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in [MPT10], though in a special form. For future reference, we include the
statement and the necessary constructions that lead to a proof of the degen-
eration of PT stable pair invariants in this paper.

The notion of relative ideal sheaves was developed through email commu-
nication between Pandharipande and the first named author. The technical
part of this paper is the proof of the properness and boundedness of good
generations of Grothendieck’s Quot-schemes. The parallel results for PT sta-
ble pairs are simpler. The part on perfect obstruction theory necessary for
proving the degenerations of invariants are taken from the work [MPT10].

The good degeneration of ideal sheaves for threefolds was constructed
by the second named author in his thesis [Wu07]. The properness, separat-
edness and the boundedness were proved there. The proofs in this paper for
Grothendieck’s Quot-schemes are new.

Acknowledgments. The first named author is partially supported by an
NSF grant and a DARPA grant. The second named author is grateful to
Professor Shing-Tung Yau for his support and encouragements. We thank
Zijun Zhou and the referees for their comments.

2. The stack of expanded degenerations

We work with a fixed algebraically closed field k of characteristic 0. We
denote Gm = GL(1,k). Let π : X → C, 0 ∈ C, be a simple degeneration; let
Y be the normalization of X0; let D̃ ⊂ Y be the preimage of D ⊂ X0, and
fix D̃ = D− ∪D+, as defined in Definition 1.1. In this paper, we call (Y,D±)
the relative pair associated with X0.

In [Li01] and [Li02], the first named author proved the degeneration of
Gromov-Witten invariants of a simple degeneration in case Y is a union of
two irreducible components Y = Y− ∪ Y+ and D is connected. Often, one
needs to deal with simple degeneration X → C when Y is irreducible or
contains more than two connected components, or D is not connected. In
this paper, we will construct good degenerations of moduli spaces for general
simple degenerations.

In this section, we review the construction of the stack of expanded
degenerations and its family X → C: presented in the survey article [Li10].
Some formulation of the stack X is new; however, the proofs of the results
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listed follow directly from the arguments in [Li01].

(2.1)

X
p−−−−→ X⏐⏐� ⏐⏐�π

C −−−−→ C

2.1. The stack C

We consider An+1 with the group action

(t1, . . . , tn+1)
σ = (σ1t1, σ

−1
1 σ2t2, . . . , σ

−1
n−1σntn, σ

−1
n tn+1), σ ∈ Gn

m.

This group action generates a class of equivalence relations on An+1.
We need another class of equivalences. We fix the convention on indices.

We denote by [n+ 1] = {1, . . . , n+ 1}; for any I ⊂ [n+ 1], we let I◦ = [n+
1]− I be its complement. For |I| = m+ 1, we let

indI : [m+ 1] → I ⊂ [n+ 1] and indI◦ : [n−m] → I◦ ⊂ [n+ 1]

be the order preserving isomorphisms; let

(2.2) An+1
U(I) = {(t) ∈ An+1 | ti �= 0, i ∈ I◦} ⊂ An+1.

We let

(2.3) τ̃I : Am+1 ×Gn−m
m

∼=−→An+1
U(I)

be defined by the rule

(t′1, . . . , t
′
m+1;σ1, . . . , σn−m) → (t1, . . . , tn+1),

{
tk = t′l, if k = indI(l);

tk = σl, if k = indI◦(l).

Restricting to (σ1, . . . , σn−m) = (1), it defines

(2.4) τI : Am+1 −→ An+1, (t′1, . . . , t
′
m+1) → τ̃I(t

′
1, . . . , t

′
m+1, 1, . . . , 1).

We call such τI standard embeddings. Given two I, I ′ ⊂ [n+ 1] of same
cardinalities, we define the isomorphism

(2.5) τ̃I,I′ = τ̃I ◦ τ̃−1
I′ : An+1

U(I′) −→ An+1
U(I).
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Next, we let An+1 → An+2 be the closed immersion τI using I = [n+ 1] ⊂
[n+ 2]. Let Gn

m → Gn+1
m be the homomorphism defined via (σ1, . . . , σn) →

(σ1, . . . , σn, 1). Via this homomorphism, and viewing An+1 as scheme over
A1 via (t) → t1 · · · tn+1, the morphism

(2.6) τI : An+1 → An+2

is a Gn
m equivariant A1-morphism with Gn

m acting on A1 trivially.
Further, for general I, I ′ ⊂ [n+ 1] of |I| = |I ′|, the equivalence τ̃I,I′ of

An+1 is the restriction of the equivalence τ̃I,I′ of An+2, by considering I, I ′

as subsets in [n+ 2] via I, I ′ ⊂ [n+ 1] ⊂ [n+ 2].

Definition 2.1. We define An be the quotient [An+1/ ∼] by the equiva-
lences generated by the Gn

m action and by the equivalences τ̃I,I′ for all pairs
I, I ′ ⊂ [n+ 1] with |I| = |I ′|. The morphism (2.6) defines an open immersion
An → An+1. We define A be the direct limit A = lim−→An.

Note that the tautological An+1 → An is a surjective smooth chart; the
collection {An+1 → A}n≥0 forms a smooth atlas of A.

Now let 0 ∈ C be the pointed smooth affine curve given. Without loss of
generality, we assume there is an étale morphism C → A1 so that the inverse
image of 0 ∈ A1 is the distinguished point 0 ∈ C. We define

C = C ×A1 A.

It is clear that C does not depend on the choice of C → A1, and is covered
by smooth charts

C[n] := C ×A1 An+1 −→ C = C ×A1 A.

Let on ∈ A be the image of 0 ∈ An+1 under the tautological An+1 → A.
By abuse of notation, we denote by the same on ∈ C the lift of on ∈ A and
0 ∈ C. By construction, on has automorphism group Gn

m; and ok = {ok′ :
k′ ≥ k}.

2.2. The stack X

We begin with describing X×C 0. We keep the decomposition D̃ = D− ∪D+

specified at the beginning of this section. Let N± be the normal line bundles
of D± in Y . Since π is a simple degeneration, N− ⊗N+

∼= OD. (Here and
later we implicitly identify D± with D using D− ∪D+ = D̃ → D.)
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We introduce the ruled variety

Δ = PD(N+ ⊕ 1);

it is a P1-bundle over D coming with two distinguished sections D+ = P(1)
and D− = P(N+). For any σ ∈ Gm, the Gm-action on N+ ⊕ 1 via (a, b)σ =
(σ · a, b) defines a Gm-action

(2.7) σ : Δ −→ Δ, [a, b]σ = [σa, b],

called the tautological Gm-action on Δ. This action fixes D− and D+ ⊂ Δ.
We now construct X[n]0. We take n copies of Δ, indexed by Δ1, . . . ,Δn,

and form a new scheme X[n]0 according to the following rule: we identify
D− ⊂ Y with D+ ⊂ Δ1, (D− ∼= D+ is via the isomorphism D± → D;) iden-
tify D− ⊂ Δi with D+ ⊂ Δi+1, and identify D− ⊂ Δn with D+ ⊂ Y . We
denote

X[n]0 = Y �Δ1 � · · · �Δn � (Y ). 1(2.8)

We denote Di ⊂ X[n]0 be D− in Δi−1, which is also the D+ ⊂ Δi.
2 The

singular locus of X[n]0 is the union of D1, . . . , Dn+1.

� � · · · � �D1 D2Y Δ1

D− D−D+ D+

Dn Dn+1Δn Y

D− D−D+ D+

Figure 1: The two ends are the same Y , in the middle a chain of n Δ’s are
inserted; the D− of Y is glued to D+ of Δ1, which is named D1.

Because the inserted Δi intersects the remainder components along Di

and Di+1 ⊂ Δi, the tautological Gm-action on Δi (cf. (2.7)) lifts to an auto-
morphism of X[n]0 that acts trivially on all other Δj 	=i. We let Gn

m acts on
X[n]0 so that its i-th factor acts on X[n]0 via the tautological Gm-action on
Δi and trivially on Δj 	=i. Let p : X[n]0 −→ X0 be the projection contract-
ing all inserted components Δ1, . . . ,Δn; it is G

n
m-equivariant with the trivial

action on X.
We now construct the family X → C associated with X → C. Let 0 ∈

C[n] be the preimage of 0 ∈ An+1 in C[n]. We denote C∗ = C − 0 and let
C[m]∗ = C[m]×C C∗.

1Here � means that we identify D− ⊂ Δi with D+ ⊂ Δi+1, agreeing that Y =
Δ0 = Δn+1; we put the further right Y in parenthesis indicating that it is the same
Y appearing in the further left.

2Thus D+ ⊂ Δi is Δi−1 ∩Δi and D− ⊂ Δi is Δi ∩Δi+1.
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Lemma 2.2. We let X[n] be the small resolution X[n] → X ×C C[n], cou-
pled with the projection p : X[n] → X induced from X ×C C[n] → X. It is
characterized by the properties:

1) X[n] is smooth;

2) the central fiber (X[n]×C[n] 0, p) is the (X[n]0, p) constructed;

3) let τ̄I : C[m] → C[n] be a morphism induced by τI : Am+1 → An+1

(cf. (2.4)); then the induced family (τ̄∗IX[n], τ̄∗I p) is isomorphic to
(X[m], p) as families over C[m], extending the identity map

τ̄∗IX[n]|C[m]∗ = X[m]|C[m]∗ = X ×C C[m]∗;

4) let �l be the l-th coordinate line of An+1; let Ll = C[n]×An+1 �l, and let
ιl : Ll → C[n] be the inclusion; then the induced family ι∗lX[n] smooths
the l-th singular divisor Dl of X[n]0.

Because of (2), we will view X[n]0 as the central fiber X[n]×C[n] 0.

Lemma 2.3. The Gn
m action on C[n] with the trivial action on X lifts to

a unique Gn
m-action on X[n]. The induced Gn

m action on X[n]0 is the action
described before Lemma 2.2. For I, I ′ ⊂ [n+ 1] of identical cardinalities, the
equivalence τ̃I,I′ in (2.5) lifts to a C-isomorphism

(2.9) τ̃I,I′,X : X[n]×C[n] C[n]U(I′)
∼= X[n]×C[n] C[n]U(I),

where C[n]U(I) = C[n]×An+1 An+1
U(I).

As an illustration, let C = A1, and X/A1 is a smoothing of X0 = Y1 � Y2
with a single nodeD. Then C[1] = A2; the central fiberX[1]0 = Y1 �Δ � Y2,
Δ = P1, has two singular divisorsD1 = Y1 ∩Δ andD2 = Δ ∩ Y2. Restricting
X[1] to the first coordinate line A2

1, we obtain a family that smoothes D1 ⊂
X[1]0 but not D2; restricting to the second coordinate line A2

2 the family
smoothes D2 but not D1.

Definition 2.4. We define Xn be [X[n]/∼ ], where ∼ are equivalence rela-
tions generated by the Gn

m action and the equivalences τ̃I,I′,X for all I, I ′ ⊂
[n+ 1] of |I| = |I ′|. We let pn : Xn → X be the morphism induced by the
tautological projection p : X[n] → X.

The quotient is an Artin stack; it is over C since the Gn
m action and the

equivalence τ̃I,I′,X are defined over C.
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�
��

�
�Y1

Δ1

D1

Y2

�
A
2
1

�
�

�
��

�
�Y1

Δ1

D2

Y2

�
A
2
2

Figure 2: It shows that D1 is smoothed over A2
1; D2 smoothed over A2

2.

Using the inclusion [n+ 1] ⊂ [n+ 2], the induced An+1 → An+2 in (2.6)
and the induced C[n] → C[n+ 1], we have tautological immersion of stacks

(2.10) Xn −→ Xn+1

that commute with the projections pn and pn+1.

Definition 2.5. We define X = lim−→Xn; we define p : X → X be the induced
projection.

Theorem 2.6. The morphisms X[n] → C[n] induce a representable C-
morphism X → C. It fits into the commutative square (2.1).

We call (X → C, p) the stack of expanded degenerations of X → C. For
any C-scheme S, we call X×C S → S an S-family of expanded degenera-
tions.

2.3. The stack D± ⊂ Y

We now construct the stack

(2.11) D± ⊂ Y −→ A


of expanded pairs of (Y,D±).
We fix the convention on indexing An−+n+ and G

n−+n+
m . In this paper,

whenever we see product of n− + n+ copies, we index the individual factor
by indices −n−, . . . ,−1, 1, . . . , n+. (Note that index 0 is skipped.) Thus the
(−n−)-th coordinate line of An−+n+ is (t, 0, . . . , 0), and the n+-th coordi-
nate line is (0, . . . , 0, t). The same convention applies to indexing factors of
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G
n−+n+
m . We let G

n−+n+
m acts on An−+n+ via the traditional convention

(t−n− , . . . , t−1, t1, . . . , tn+
)σ = (σ−n−t−n− , . . . , σ−1t−1, σ1t1, . . . , σn+

tn+
).

We then construct

(2.12) D[n−]−, D[n+]+ ⊂ Y [n−, n+] −→ An−+n+ , p : Y [n−, n+] −→ Y,

inductively by the rule:

1) (Y [0, 0], D[0]±) = (Y,D±);

2) Y [n−, n+ + 1] is the blow-up of Y [n−, n+]× A1 along D[n+]+ × 0, and
D[n−]− andD[n+ + 1]+ are the proper transforms ofD[n−]− × A1 and
D[n+]+ × A1, respectively;

3) Y [n− + 1, n+] is the blow-up of A1 × Y [n−, n+] along 0×D[n−]−, and
D[n− + 1]− andD[n+]+ are the proper transforms of A1 ×D[n−]− and
A1 ×D[n+]+, respectively;

4) p : Y [n−, n+] → Y is the one induced by the identity Y → Y .

Following the convention, the extra copy of A1 added to the right in item
(2) is the (n+ + 1)-th factor of An−+(n++1); the copy A1 added to the left in
item (3) is the (−n− − 1)-th copy in A(n−+1)+n+ .

The central fiber of (2.12) is easily described. We let N± be the normal
line bundle of D± in Y ; let Δ = PD(N+ ⊕ 1) with distinguished divisors
D+ = P(1) and D− = P(N). Then

Y [n−, n+]0 = Y [n−, n+]×A
n−+n+ 0 and D[n±]±,0 = D[n±]± ×

A
n−+n+ 0

are

Y [n−, n+]0(2.13)

=Δ−n− � · · · �Δ−1 � Y �Δ1 � · · · �Δn+
, n−, n+ ≥ 0,

where the square cup “� ” means that we identify the divisor D− ⊂ Δi with
D+ ⊂ Δi+1, understanding that Δ0 = Y , and Δi = Δ for i �= 0; D[n−]−,0 is
the divisor D+ in Δ−n− , and D[n+]+,0 is the divisor D− ⊂ Δn+

.
We let p : Y [n−, n+]0 → Y be induced by p : Y [n−, n+] → Y (cf. item

(4)); it is by contracting all Δi 	=0. The scheme Y [n−, n+]0 has simple normal
crossing singularities when (n−, n+) �= (0, 0).
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We call

(2.14) (Y [n−, n+]0, D[n±]±,0) with p : Y [n−, n+]0 → Y

and the G
n−+n+
m -action an expanded relative pair of (Y,D±).

� � · · · � � � � · · · � �
Δ−n− Δ−1 Y Δ1 Δn+

D− D+ D− D−D+ D+ D− D+D+

||
D[n−]−,0

D−
||

D[n+]+,0

Figure 3: The Y , Δ’s glue to form Y [n−, n+]0; the two end divisors are the
new relative divisors of Y [n−, n+]0.

The families Y [n−, n+] → An−+n+ has the following additional proper-
ties:

5) let �l → An−+n+ be the l-th coordinate line of An−+n+ , −n− ≤ l ≤ n+,
l �= 0, then the restriction Y [n−, n+]×A

n−+n+ �l smoothes the divisor
Dl = Δl−1 ∩Δl if l > 0, of Dl = Δl ∩Δl+1 if l < 0.

(Notice that Y [n−, n+]0 has singular divisors Dl, −n− ≤ l ≤ n+ and l �= 0.)
The family (2.12) and the pair (2.14) are G

n−+n+
m -equivariant. The k-th

factor of the Gm in G
n−+n+
m acts trivially on all Δi except Δk; on Δk the

action is the tautological Gm-action of (2.7).
Like the stack X → C, the stack (2.11) we aim to construct will be the

limit of the quotients of (2.12) by G
n−+n+
m and another class of equivalences

associated to subsets

(2.15) I ⊂ [−n−, n+]− {0}.

(We define its complement I◦ = [−n−, n+]− I ∪ {0}.)
Given an I as in (2.15), we define A

n−+n+

U(I) ⊂ An−+n+ be as in (2.2).

Like (2.3), letting m± = |I ∩ Z±|, we have an isomorphism

(2.16) τ̃I : Am−+m+ ×G(n−−m−)+(n+−m+)
m −→ A

n−+n+

U(I) ,

and for any I ′ as in (2.15) with

(2.17) m± = |I ∩ Z±| = |I ′ ∩ Z±|,

the pair (I, I ′) defines an isomorphism

(2.18) τ̃I,I′ = τ̃I ◦ τ̃−1
I′ : A

n−+n+

U(I′) −→ A
n−+n+

U(I) .
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As before, we let

(2.19) τI : Am−+m+ −→ An−+n+

be τ̃I restricting to A
m−+m+ × {1}, where 1 ∈ G

(n−−m−)+(n+−m+)
m is the iden-

tity element.
Following the construction, one checks that for any I as in (2.15), we

have a canonical isomorphism

τI,Y : Y [m−,m+] −→ τ∗I Y [n−, n+],

lifting the τI in (2.19); for any pair (I, I ′) of subsets in (2.15) satisfy-
ing (2.17), we have a canonical isomorphism

τ̃I,I′,Y : Y [n−, n+]×A
n−+n+ A

n−+n+

U(I′) −→ Y [n−, n+]×A
n−+n+ A

n−+n+

U(I) ,

lifting the τ̃I,I′ in (2.18).

Definition 2.7. We define A
,n−+n+
be the quotient [An−+n+/∼ ], quo-

tient by the equivalence relations generated by the G
n−+n+
m -action and the

equivalences τ̃I,I′ for all allowable pairs (I, I ′) in (2.15); using (2.19), for
m± ≤ n±, we have open immersion A
,m−+m+

→ A
,n−+n+
; we define A
 =

limn−,n+
A
,n−+n+

. A
 is an Artin stack.
We define Dn±,± ⊂ Yn−+n+

be the quotient of D[n±]± ⊂ Y [n−, n+] by

G
n−+n+
m and the equivalences τ̃I,I′,Y for all pairs (I, I ′) satisfying (2.17); we

define D± ⊂ Y be the limit of Dn±,± ⊂ Yn−+n+
as n−, n+ → +∞. We let

p : Y → Y be the projection induced by the tautological Y [n−, n+] → Y .

Theorem 2.8. The projections Y [n−, n+] → An−+n+ induce a representable
morphism D± ⊂ Y → A
.

We call D± ⊂ Y → A
 with p : Y → Y the stack of expanded relative
pairs of (Y,D±). Using (D± ⊂ Y → A
, p), we define the collection Y(S) of
expanded families of pair (Y,D±) over a scheme S be

D± ×A� S ⊂ Y×A� S, S → A
.

In case Y = Y− ∪ Y+ is a union of two connected components, we use
D± = D̃ ∩ Y±. We define the pair of stack

(2.20) D+ ⊂ Y+ := Y×Y Y+.
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Or Y+ can be defined as in Definition 2.7 with Y replaced by Y+, n− = 0
and D− = ∅. The pair D− ⊂ Y− is defined similarly.

2.4. Decomposition of degenerations I

To state the decomposition of good degenerations, we introduce the stack
of node-marking objects in X0 := X×C 0. This construction was first intro-
duced in [KL07].

Definition 2.9. A node-marking of X[n]0 is a marking of one of the sin-
gular divisor Dk of X[n]0. A node-marking of a family X → S in X0(S) is
an S-morphism η : D × S → X so that for any closed s ∈ S, η(D × s) ⊂ Xs

is a node-marking of Xs.
An arrow between two X and X ′ in X0(S) with node-markings η and η′

is an arrow ρ : X → X ′ in X0(S) so that for any closed s ∈ S, ρ ◦ η(D × s) =
η′(D × s).

Proposition 2.10. The collection of families in X0 with node-markings
form an Artin stack, denoted by X†

0. Forgetting the node-marking defines a
morphism

X†
0 −→ X0.

Proof. The smooth chart X[n] → X induces a smooth chart X[n]×C 0 →
X0. We denote An+1

tk=0 = {(t) ∈ An+1 | tk=0}. Then An+1×A10 =
⋃n+1

k=1 A
n+1
tk=0.

Further,

X[n]tk=0 := X[n]×An+1 An+1
tk=0

has normal crossing singularity and its singular divisor is the image of the
X × An+1

tk=0-morphism

(2.21) ηk : D × An+1
tk=0 −→ X[n]tk=0.

According to Definition 2.9, one checks that (2.21) is a node-marking of
X[n]tk=0; thus

(2.22) (X[n]tk=0, ηk) ∈ X†
0(A

n+1
tk=0).

The disjoint union of (2.22) for all 1 ≤ k ≤ n+ 1 form a smooth atlas of X†
0.

This proves that X†
0 is an Artin stack. �
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It will be useful to construct a stack C†
0 and an arrow C†

0 → C that fits
into a Cartesian product

(2.23)

X†
0 −−−−→ X⏐⏐� ⏐⏐�

C†
0 −−−−→ C.

We construct C†
0 as follows. For a pair of integers 1 ≤ k ≤ n+ 1, we let

Gn
m acts on An+1

tk=0 via the Gn
m action on An+1 and the inclusion An+1

tk=0 ⊂ An+1.

Such action generates equivalence relation on An+1
tk=0.

For any I ⊂ [n+ 1] and k an integer, we denote I<k = {i ∈ I | i < k};
similarly for I>k. Let k ∈ I ⊂ [n+ 1] and k′ ∈ I ′ ⊂ [n+ 1] such that

(2.24) |I<k| = |I ′<k| and |I>k| = |I ′>k|.

The equivalence τ̃I,I′ of (2.5) restricted to An+1
tk=0 ∩ An+1

U(I′) defines

(2.25) τ(I,k),(I′,k′) : A
n+1
k′c ∩ An+1

U(I′)

∼=−→An+1
kc ∩ An+1

U(I).

These isomorphisms generate equivalence relations too.
We define the closed immersion

(2.26) τ+1 : A
n+1
tk=0 −→ An+2

kc , (z) → (z, 1).

Definition 2.11. We define C†
n,0 be the quotient [

∐n+1
k=1 A

n+1
tk=0/ ∼], where

∼ is the equivalence generated by the Gn
m action on An+1

tk=0 and by τ(I,k),(I′,k′)

for all pairs k ∈ I and k′ ∈ I ′ satisfying (2.24); we define open immersions
C†
n,0 → C†

n+1,0 using (2.26); we define C†
0 = lim−→C†

n,0.

Proposition 2.12. The morphisms X[n]tk=0 → An+1
tk=0, where X[n]tk=0 is

with the node-marking (2.22), induce a morphism X†
0 → C†

0 that fits into the
Cartesian product (2.23).

As
∐

An+1
tk=0 → C†

n,0 is a smooth chart of C†
n,0, and the former is the

normalization of An+1 ×A1 0, the morphism C†
0 → C0 is a normalization. It

is fitting to call X†
0 → X0 the decomposition of locally complete intersection

singularity of X0.
The final step of the decomposition is the following isomorphism result.
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Proposition 2.13. There is a canonical isomorphism C†
0
∼= A
 so that X†

0

is derived from Y by identifying the stacks D− with D+ via the isomorphisms
D− ∼= D × A
 ∼= D+, and declaring the identifying loci the node-marking.

Proof. We define An−+n+ → An+1
tk=0, k = n− + 1, n = n− + n+, via

(t−n− , . . . , t−1, t1, . . . , tn+
) → (t−1, . . . , t−n− , 0, tn+

, . . . , t1).

This is Gn
m equivariant via a homomorphism Gn

m → Gn+1
m , and induces a

morphism A
 → C†
0. The remainder of the proof is straightforward. �

2.5. Decomposition of degenerations II

This decomposition works for the case Y = Y− ∪ Y+ is the union of two irre-
ducible components; we let D± = D̃ ∩ Y± and define D± ⊂ Y± as in (2.20).

We fix an additive group Λ. Using Y = Y− ∪ Y+, we index the irreducible
components of X[n]0 as Δ0 = Y−, Δn+1 = Y+, and other Δi are as usual.

Definition 2.14. A weight assignment of X[n]0 is a function

w : {Δ0, . . . ,Δn+1, D1, . . . , Dn+1} −→ Λ

that assigns weights in Λ to Δi and Dj in X[n]0. A weight assignment of
Xt, t �= 0, is a single value assignment w(Xt) ∈ Λ. A weight assignment w
of X ∈ X(S) is a collection {ws | s ∈ S} of weight assignments ws of Xs.

We make sense of continuous weight assignments of families. For any
subchain Δ[l,l′] := Δl ∪ · · · ∪Δl′ we define its weight to be (recall Di =
Δi−1 ∩Δi)

w(Δ[l,l′]) =
∑

l≤i≤l′

w(Δi)−
∑

l<i≤l′

w(Di).

Let s0 ∈ S be an irreducible curve, and let w be a weight assignment of
X ∈ X(S). Suppose Xs0

∼= X[n]0 and Xs
∼= X[m]0 for a general s ∈ S, Then

m ≤ n, and there are

(2.27) k0 = 0 < k1 < · · · < km+1 < km+2 = n+ 2

so that the Δi ⊂ Xs specializes to the chain Δ[ki,ki+1−1] ⊂ Xs0 , (i.e. the singu-
lar divisors Dki

⊂ Xs0 are not smoothed in the family X .) The total weight
of w is w(X[n]0).
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Definition 2.15. Let s0 ∈ S be an irreducible curve, and X ∈ X(S) be
as stated. We say a weight assignment w of X is continuous at s0 if the
followings hold:

1) In case for a general s ∈ S we have Xs = X[m]0, letting ki be as
in (2.27), then ws(Δi) = ws0(Δ[ki,ki+1−1]) and ws(Di) = ws0(Dki

).

2) In case for a general s ∈ S we have Xs = Xt for a t �= 0 ∈ C, then
ws(Xs) = ws0(Xs0).

In general, a weight assignment of X ∈ X(S′) is continuous if for any irre-
ducible curve s0 ∈ S and S → S′, the pull back family X ×S′ S with the
induced weight assignment is continuous at s0.

Example 2.16. Suppose dimX/C = 1. In case there is a locally free sheaf
E on X , assigning each Δk ⊂ Xs the degree of E|Δk

and assigning each
Dl ⊂ Xs zero is a continuous weight assignment taking values in Z.

We define the stack of weighted expanded degenerations Xβ .

Definition-Proposition 2.17. Given a β∈Λ, we define the groupoid Xβ(S)
be the collections of pairs (X , w), where X ∈ X(S) and w is a continuous
weight assignment of X of total weights β. An arrow between (X , w) and
(X ′, w′) ∈ Xβ(S) consists of an arrow ρ : X → X ′ in X(S) that preserves
the weights w and w′. The groupoid Xβ is an Artin stack.

By forgetting the weights, we obtain the forgetful morphism Xβ → X. We
claim that there is a weighted stack Cβ together with a forgetful morphism
Cβ → C so that Xβ is the Cartesian product

(2.28)

Xβ −−−−→ X⏐⏐� ⏐⏐�
Cβ −−−−→ C.

The easiest way to do this is to define a weight assignment of a t ∈ C[n]
be a weight of X[n]t. Or a weight of S → C is a weight of X×C S. We then
define Cβ to be the groupoid consisting of (S → C, w), where w is a weight
assignment of S → C, etc.

Proposition 2.18. The groupoid Cβ is an Artin stack, together with a
tautological morphism Xβ → Cβ; the forgetful morphism Cβ → C is étale and
fits into the Cartesian square (2.28).



860 J. Li and B. S. Wu

Replacing X/C by X†
0/C

†
0, we obtain a pair

X†,β
0 −→ C†,β

0 ,

where closed points in X†,β
0 are (X[n]0, Dk, w) of whichDk ⊂ X[n]0 are node-

markings and w are weight assignments ofX[n]0 of total weights β. We define
C†,β
0 parallelly, combining the construction of C†

0 and Cβ .

The pair X†,β
0 −→ C†,β

0 is a disjoint union of open and closed substacks
indexed by the set of splittings of β. We let

Λspl
β = {δ = (δ±, δ0) | δ−, δ+, δ0 ∈ Λ, δ− + δ+ − δ0 = β}.

For each δ ∈ Λspl
β , we define X†,δ

0 (k) be the collection of those (X[n]0, Dk, w) ∈
X†,β
0 (k) such that

w(Δ[0,k−1]) = δ−, w(Δ[k,n+1]) = δ+ and w(Dk) = δ0.

It is both open and closed in X†,β
0 (k); thus defines an open and closed sub-

stack X†,δ
0 −→ X†,β

0 .

Accordingly, we can form the stack C†,δ
0 and a morphism C†,δ

0 → C†,β
0 that

fits into a Cartesian product

X†,δ
0 −−−−→ X†,β

0⏐⏐� ⏐⏐�
C†,δ
0

Φ†
δ−−−−→ C†,β

0

We let

(2.29) Φδ : C
†,δ
0 −→ Cβ

be Φ†
δ composed with the forgetful morphism C†,β

0 → Cβ . The following
Proposition says that they are Cartier divisors.

Proposition 2.19. There are canonical line bundles with sections (Lδ, sδ)
on Cβ, indexed by δ ∈ Λspl

β , such that
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1) let t ∈ Γ(OA1) be the standard coordinate function and π : Cβ → A1 be
the tautological projection, then⊗

δ∈Λspl
β

Lδ
∼= OCβ and

∏
δ∈Λspl

β

sδ = π∗t;

2) the morphism Φδ factors through s−1
δ (0) ⊂ Cβ and effects an isomor-

phism C†,δ
0

∼= s−1
δ (0).

The proof of this decomposition is essentially given in [Li02]. Note that
this Proposition states that Cβ

0 ⊂ Cβ is a complete intersection substack, and

the disjoint union of C†,δ
0 is its normalization.

We complete the weighted decomposition by introducing the stack of
weighted relative pairs. We define a weight assignment of (Y+[n], D+[n]) be
a function w that assigns values in Λ to the irreducible components of Y+[n],
of its Dk’s, and of D+[n]. We define the continuous weight assignments of
(Y+,D+) ∈ Y+(S) parallel to Definition 2.15.

For a δ ∈ Λspl
β , we define the stack Y

δ+,δ0
+ so that Y

δ+,δ0
+ (S) consists of

data (Y+,D+, w), where (Y+,D+) ∈ Y+(S) and w are weight assignments of
(Y+,D+), so that for any closed s ∈ S, ws(D+,s) = δ0 and the total weights
ws(Y+,s) = δ+. The case for (Y−, D−) and similar objects are defined with
“+” replaced by “−”.

We let A
δ±,δ0
 be the stack defined similarly so that we have Cartesian

product

Y
δ±,δ0
± −−−−→ Y±⏐⏐� ⏐⏐�

A
δ±,δ0
 −−−−→ A


By gluing the two relative divisorsD− andD+ of (Y±,D±,w±)∈Y
δ±,δ0
± (S)

and combining the weights w− and w+, we obtain the following commutative
square of morphisms

Y
δ−,δ0
− ∪Y

δ+,δ0
+ −−−−→ X†,δ

0⏐⏐� ⏐⏐�
A
δ−,δ0
 × A

δ+,δ0

Ψδ−−−−→ C†,δ

0

where ∪ is the usual gluing along the substack D.

Proposition 2.20. The morphism Ψδ is an isomorphism.
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3. Admissible coherent sheaves

We develop necessary technical results on admissible coherent sheaves on
singular schemes. In this paper, we adopt the convention that for any closed
or open V ⊂ Wand F a sheaf of OW -modules, we denote F|V = F ⊗OW

OV .

3.1. Coherent sheaves normal to a closed subscheme

Let W be a noetherian scheme and D ⊂ W be a closed subscheme.

Definition 3.1. Let F be a coherent sheaf on W . We say F is normal to
D if TorOW

1 (F,OD) = 0.

In this paper, we are interested in two situations. One is when D ⊂ W is
a Cartier divisor; the other is when W = W1 ∪W2 is a union of subschemes
W1 and W2 ⊂ W that intersect transversally along a Cartier divisor D =
W1 ∩W2.

To study flat families of coherent sheaves, we quote the following known
fact.

Lemma 3.2. Let (A,m) be a noetherian local ring with residue field k, and
B a finitely generated A-algebra, flat over A. Let M be a finitely generated
B-module. Then TorB1 (M,B/mB) = 0 if and only if M is flat over A.

Proof. SinceM is a finitely generatedB-module, it fits into an exact sequence

0 −→ M ′ −→ B⊕n −→ M −→ 0.

Tensoring withB/mB, we know TorB1 (M,B/mB) = 0 if and only ifM ′/mM ′ =
M ′ ⊗A k → (B/mB)⊕n is injective. On the other hand, applying ⊗Ak to the
above exact sequence, we obtain

TorA1 (B
⊕n,k) −→ TorA1 (M,k) −→ M ′ ⊗A k −→ B⊕n ⊗A k = (B/mB)⊕n.

Since B is A-flat, TorA1 (B
⊕n,k) = 0. Thus the last arrow is injective if and

only if TorA1 (M,k) = 0. By local criterion of flatness [Mat80, Theorem 49],
this is equivalent to M being A-flat. This proves the Lemma. �

For the case whereD ⊂ W is a Cartier divisor in a smoothW , a coherent
sheaf F on W normal to D is equivalent to that F is flat along the “normal
direction” of D ⊂ W . To make this precise, we assume W is affine and
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pick a regular z ∈ Γ(OW ) so that D = (z = 0). We define τ : W → A1 =
Speck[u] via τ∗(u) = z. For any scheme S, we denote by πS : W × S → S
the projection and view W × S as a family over A1 × S via

(3.1) (τ, πS) : W × S −→ A1 × S.

Proposition 3.3. Let D ⊂ W , S and (3.1) be as stated. Suppose F an S-
flat family of coherent sheaves on W × S, and s ∈ S is a closed point so that
Fs = F ⊗OS

k(s) is normal to D. Then there is an open subset (0, s) ∈ U ⊂
A1 × S so that the sheaf F|U is flat over U .

Conversely, let U ⊂ A1 × S be an open subset such that F is flat over U ,
then for (0, s) ∈ U , Fs is normal to D.

Proof. We let

U = {x ∈ A1 × S | F ⊗O
A1×S

OA1×S,x is OA1×S,x-flat}.

By [Mat80, Theorem 53], U is an open subset of A1 × S (possibly empty)
and F|U is flat over U .

To prove the Proposition, we only need to show that (0, s) ∈ U . But this
is a direct application of Lemma 3.2. We let

A = OA1×S,(0,s), B = Γ(OW×S ⊗O
A1×S

A), M = Γ(F ⊗O
A1×S

A).

Since the assumption that Fs is normal toD implies that TorB1 (M,B/mB) =
0, Lemma 3.2 implies that M is flat over A, that is, (0, s) ∈ U .

For the converse, given (0, s) ∈ U , by the base change property of flat-
ness, Fs = F|W×s is flat over Us = U ∩ (A1 × s). Since (0, s) ∈ U , we have
0 ∈ Us. By Lemma 3.2, TorOW

1 (Fs,OD) = 0; by Definition 3.1, Fs is normal
to D. �

Corollary 3.4. Let the situation be as in Proposition 3.3 and let F be
an S-flat family of coherent sheaves on W × S. Then the set V = {s ∈ S |
Fs is normal to D} is open in S, and F|D×V is a V -flat family of coherent
sheaves on D × V .

Proof. Let U be the open subset introduced in the proof of Proposition 3.3.
Then U ∩ (0× S) ⊂ S is exactly the locus where Fs is normal to D.

By Proposition 3.3, we know that there exists an open subset U ⊂ A1 ×
S, so that 0× V ⊂ U and F|U is flat over U . Thus, by the base change
property of flatness, F|D×V is V -flat. This proves the second part of the
Corollary. �
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Now we move to the second case where W = W1 ∪W2 is a union of two
smooth schemesW1 andW2 intersecting transversally along a Cartier divisor
D = W1 ∩W2 (in W1 and W2). Assume W is affine; we find zi ∈ Γ(OW ) so
that W1 = (z2 = 0) and W2 = (z1 = 0), thus D = (z1 = z2 = 0). We let

T = Speck[u1, u2]/(u1u2),

and let ξ : W → T be defined by ξ∗(ui) = zi. As before, since the fiber of
W → T over 0 ∈ T is D, which is smooth, by shrinking W if necessary, we
can assume that ξ is smooth.

Now let S be any scheme, πS : W × S → S be the projection. We will
view W × S as a family over T × S via

(3.2) (ξ, πS) : W × S −→ T × S.

By our choice, it is smooth.

Proposition 3.5. Proposition 3.3 and Corollary 3.4 hold with the fam-
ily (3.1) replaced by the family (3.2).

Proof. The proof is exactly the same. �

Proposition 3.6. Let the situation be as in (3.2). Let F be an S-flat family
of coherent sheaves on W × S. Suppose for any s ∈ S the sheaf Fs is normal
to D. Then Fi = F|Wi×S is an S-flat family of coherent sheaves each of its
members normal to D.

Proof. We prove the case i = 1. Since this is a local problem, we assume W
is affine. We pick the morphism in (3.2). Applying Proposition 3.5, we can
find an open D × S ⊂ U ⊂ W × S so that F|U is flat over T × S. By the
base change property of flatness, F|U∩W1×S is flat over T1 × S, where T1 =
(u2 = 0). Since D × S ⊂ U , F1 = F|W1×S is flat over S near D ⊂ W1 × S.
Since W1 −D is open in W and F|W1−D = F1|W1−D, F1 is flat over S.

Finally, because Fs is normal to D, F1|W1×s is normal to D as well. This
proves the Proposition for i = 1. The case i = 2 is the same. �

We also have the converse.

Lemma 3.7. Let F be a sheaf on W in the situation (3.2). Then F is
normal to D ⊂ W if and only if both F|Wi

, i = 1, 2, are normal to D ⊂ Wi.
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Proof. Let T1 = (u2 = 0) and T2 = (u1 = 0) ⊂ T . It is proved in Proposi-
tion 3.6 that F normal to D implies that both F|Wi

are normal to D. Sup-
pose both F|Wi

are normal to D. Then both F|Wi
are flat over Ti near 0 ∈ Ti.

We prove that F is flat over T near 0 ∈ T . Since ÔT,0 = k[[u1, u2]]/(u1u2),

each ideal I ⊂ ÔT,0 is either principal or has the form I = (ua1

1 , ua2

2 ). We
show that I ⊗

ÔT,0
F → IF is injective. Assume that I = (ua1

1 , ua2

2 ); (for I

principal, the argument is the same.) Let αi ∈ F so that

ua1

1 ⊗ α1 + ua2

2 ⊗ α2 → 0 ∈ F.

Since OT → OW is defined by ui → zi. Using z1z2 = 0, we get za1+1
1 α1 =

0. Because F|W1
is flat over 0 ∈ T1, this is possible only if α1 = z2β for

some β ∈ F. Then ua1

1 ⊗ α1 = ua1

1 u2 ⊗ β = 0. For the same reason, ua2

2 ⊗
α2 = 0. Hence I ⊗

ÔT,0
F → IF is injective. This proves that F is flat over T

near 0. �

We have a parallel result.

Lemma 3.8. Let D1, D2 ⊂ X be smooth divisors intersecting transversally
in a smooth variety. Suppose a sheaf F is normal to D1 and D2, then it is
normal to the union D1 ∪D2.

Proof. The proof is similar, and will be omitted. �

3.2. Admissible coherent sheaves

We shall study coherent sheaves on a simple degeneration π : X → C.

Definition 3.9. We call a coherent sheaf F on X[n]0 admissible if it is nor-
mal to all Di ⊂ X[n]0. Let (X , p) be an S-family of expanded degenerations.
Let F be an S-flat family of coherent sheaves on X . We say F is an S-family
of admissible coherent sheaves if Fs := F|Xs

is admissible for every closed
s ∈ S.

We agree that any coherent sheaf on a smooth Xt is admissible.

Proposition 3.10. Let F be an S-flat family of coherent sheaves on X .
Then the set {s ∈ S | Fs is admissible} is open in S.

Proof. This follows directly from Proposition 3.5. �
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Similarly, we have the relative version. We agree that for (Y,D±) an
S-family of relative pairs and s ∈ S a closed point, we denote Ys = Y ×S s
and D±,s = D± ×S s.

Definition 3.11. We call a coherent sheaf F on Y [n−, n+]0 relative to
D[n±]±,0 if it is normal to all Di ∈ Y [n−, n+] and is normal to the distin-
guished divisor D[n±]±,0. Let (Y,D±) be an S-family of relative pairs. We
say an S-flat sheaf F on Y relative to D± if for every closed s ∈ S, Fs is a
sheaf on Ys relative to D±,s.

Proposition 3.12. Let F be an S-flat family of coherent sheaves on Y.
Then the set {s ∈ S | Fs is relative to D±,s} is open in S.

Proof. This follows directly from Corollary 3.4 and Proposition 3.5. �

For later study, we show that the failure of admissible property of a
class of Gm-equivariant quotient sheaves are constant in t. Since this is a
local study, we work with modules. We let B be an integral k-algebra of
finite type; let A be the Gm k-algebra

(3.3)
A = B[z1, z2, t]/(z1z2);

zσ1 = σaz1, zσ2 = z2, tσ = σbt; a ∈ Z+, b ∈ Z−.

We let R = A⊕m be an A-module with the Gm-action acting on individual
factors as in (3.3).

Given an A-module M , for f ∈ M we denote by ann(f) ⊂ A the anni-
hilator of f : ann(f) = {a ∈ A | af = 0}. Let

I = (z1, z2) ⊂ A

be the ideal generated by z1 and z2. We define MI = {f ∈ M | ann(f) ⊃
Ik for some k ∈ N}. Namely, MI consists of elements annihilated by Ik for
some k.

We use the Gm-spectral decomposition to study Gm-sheaves. Given a
Gm-module M , we let M[�] = {v ∈ M | vσ = σ�v}. Since Gm is reductive and
commutative, we have direct sum decomposition M = ⊕�∈ZM[�]. We call an
element v ∈ M of weight � if v ∈ M[�]. By the weight assignments of zi and
t, we see that for an element f ∈ A of weight � ≥ 0 and is divisible by t, then
f is divisible by z1.

Let A0 = A/(t) be the quotient ring. For any R-module M , we denote
M0 = M ⊗A A0. Let R0 = A⊕m

0 = R⊗A A0, and I0 = (z1, z2) ⊂ A0.
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Lemma 3.13. Let ϕ : R → M be a Gm-equivariant quotient A-module. Sup-
pose M is k[t]-flat, then the natural homomorphism MI ⊗A A0 → (M0)I0 is
an isomorphism.

We next study the failure of the flatness of M over T = k[z1, z2]/(z1z2).
We let A− = A/(z2), letM

− = M ⊗A A−, R− = R⊗A A−, and defineK− =
ker{R− → M−}. We consider the localization K−

(t) of K
− by the ideal (t);3

consider its further localization by (z1), its intersection with R−
(t), and the

quotient:

(3.4)
(
(K−

(t))(z1) ∩R−
(t)

)
⊗A−

(t)
A−

(t)/(z1) ⊂ B[t, t−1]⊕m.

By the construction, the inclusion is Gm-invariant, thus the B[t, t−1]-
submodule is generated by elements in B⊕m. In other words, there is a
B-submodule Cgen ⊂ B⊕m such that as submodules of B[t, t−1]⊕m,

Cgen ⊗B B[t, t−1] =
(
(K−

(t))(z1) ∩R−
(t)

)
⊗A−

(t)
A−

(t)/(z1).

Applying the same construction to the module K−
0 = ker{R−

0 → M−
0 },

where R−
0 = R0 ⊗A0

A−
0 , where A

−
0 = A0/(z2), and same for M−

0 , we obtain
a submodule C0 ⊂ B⊕m such that as submodules of B⊕m,

C0 =
(
(K−

0 )(z1) ∩R−
0

)
⊗A−

0
A−

0 /(z1).

Lemma 3.14. Let the situation be as in Lemma 3.13. Then as B-modules,
C0 ⊂ B⊕m coincide with Cgen ⊂ B⊕m.

The proofs will be given in Appendix.

3.3. Numerical criterion

We introduce numerical criterion to measure the failure of a coherent sheaf
normal to a closed subscheme. This will be used to prove the properness of
moduli spaces.

3Since (K−)(t) = (K(t))
−, there is no confusion using K−

(t) to denote either.
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Let Il ⊂ OX[n]0 be the ideal sheaf of Dl ⊂ X[n]0. For a sheaf F on X[n]0,
as in the previous subsection, we define

FIl = {v ∈ F | ann(v) ⊂ Ikl for some k ∈ Z+}.

We define

Ft.f. = F/(⊕n+1
l=1 FIl).

It is the sheaf F quotient out its subsheaf supported on a sufficiently thick-
ening of the singular loci of X[n]0. We then denote (Ft.f.)l = Ft.f.|Δl

, and
form

(Ft.f.)l,Il :=
(
(Ft.f.)l

)
Il

and (Ft.f.)l,Il+1
:=

(
(Ft.f.)l

)
Il+1

;

they are subsheaves of (Ft.f.)l supported along Dl and Dl+1 respectively.

Example. We give an example of non-admissible quotient sheaf of OX . For
simplicity, we consider the affine case where Y = Δ1 ∩Δ2 ⊂ A4 is defined
via Δ1 = {(zi)|z2 = 0} and Δ2 = {(zi)|z1 = 0}. We let

F1 = OΔ1
/
(
z4, z

3
3 , z

2
3z1

)
, and F2 = OΔ2

/
(
z3, z

3
4 , z

2
4z2

)
.

Let ιi : Δi → Y be the inclusion. We define F = ker{ι1∗F1 ⊕ ι2∗F → k(0)},
where k(0) is the structure sheaf of the origin 0∈A4. Then Ft.f.

1 =OΔ1
/(z4, z

2
3),

and Ft.f.
2 = OΔ2

/(z3, z
2
4) (cf. (3.6) below); further

Ft.f. = ker{ι1∗Ft.f.
1 ⊕ ι2∗Ft.f.

2 → k(0)}, length
(
F/Ft.f.

)
= 2,

and Ft.f.|Δ1
has a dimension zero element support at 0.

For an integer v, we continue to denote by F(v) = F ⊗ p∗H⊗v, where
p : X[n]0 → X is the projection.

Definition 3.15. We define the l-th error of F be

(3.5) ErrlF = χ(FIl(v)) +
1

2
χ
(
(Ft.f.)l,Il(v)

)
+

1

2
χ
(
(Ft.f.)l−1,Il(v)

)
;

we define the total error of F be ErrF =

n+1∑
l=0

ErrlF.

Lemma 3.16. A sheaf F on X[n]0 is admissible along Dl if and only if all
FIl, (F

t.f.)l,Il and (Ft.f.)l−1,Il are zero.
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Proof. This is a local problem. We pick an affine open W ⊂ X[n]0 so that
W ⊂ Δl−1 ∪Δl −Dl−1 ∪Dl+1. We let W1 = W ∩Δl−1 and W2 = W ∩Δl.
We form ξ : W → T as in (3.2) so that for Ti ⊂ T the lines A1 ∼= Ti ⊂ T , we
have Wi = W ×T Ti; thus ξ

−1(0) = Dl ∩W .
By Proposition 3.3 and Lemma 3.7, F|W is admissible if and only if F|Wi

are flat over Ti near 0. Let J (resp. Ji) be the ideal sheaf of W1 ∩W2 ⊂ W
(resp. W1 ∩W2 ⊂ Wi); let (F|W )J be the torsion subsheaf of F|W supported
along W1 ∩W2, and let F|t.f.W = (F|W )/(F|W )J . By the flatness criterion,
this is true if and only if (F|W )J = 0 and

(
(F|t.f.W )|Wi

)Ji
= 0 for i = 1, 2.

This proves that F|W is admissible if and only if all FIl |W , (Ft.f.)l,Il |W and
(Ft.f.)l−1,Il |W are zero. Going over a covering of Dl ⊂ X[n]0, the lemma
follows. �

There is a useful identity expressing χ(F(v)) in terms of ErrF and the
Hilbert polynomial of

(3.6) Ft.f.
l := F|Δl

/(Fl,Il ⊕ Fl,Il+1
).

(It is F|Δl
quotient out its subsheaf support along Dl ∪Dl+1 ⊂ Δl.)

Lemma 3.17. Let

δl,i = χ(Ft.f.
l (v)) + χ

(
(Ft.f.)l,Il+i

(v)
)− χ

(
Ft.f.|Dl+i

(v)
)
, i = 0, 1.

Then we have the identity

(3.7) χ(F(v)) = ErrF +
1

2

n+1∑
l=0

(
δl,0 + δl,1

)
.

Proof. Since Ft.f. = F/FI ,

(3.8) χ (F(v)) = χ
(
Ft.f.(v)

)
+ χ(FI(v)).

For Ft.f., we have the exact sequence

(3.9) 0 −→ Ft.f. −→
n+1⊕
l=0

Ft.f.|Δl
−→

n+1⊕
l=1

Ft.f.|Dl
−→ 0.

(Here we view both Ft.f.|Δl
and Ft.f.|Dl

as sheaves of OX[n]0-modules.) Using

χ
(
Ft.f.|Δl

(v)
)
= χ

(
Ft.f.
l (v)

)
+ χ

(
(Ft.f.)l,Il(v)

)
+ χ

(
(Ft.f.)l,Il+1

(v)
)
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and (3.9), after regrouping, we conclude

χ(F(v)) =

(
χ(FI(v)) +

1

2

n+1∑
l=0

1∑
i=0

χ
(
(Ft.f.)l,Il+i

(v)
))

+
1

2

n+1∑
l=0

(δl,0 + δl,1).

This proves the lemma. �

We have the following positivity in case F is a quotient sheaf of p∗V for
a locally free sheaf V on X.

Lemma 3.18. Suppose F is a quotient sheaf of p∗V. For 1 ≤ l ≤ n, the
leading coefficients of δl,0 and δl,1 are non-negative; moreover, δl,0 is zero if
and only if p∗V|Δl

→ Ft.f.
l is a pull back of a quotient p∗V|Dl

→ E of sheaves
on Dl via the projection πl : Δl → Dl.

Proof. Let 1 ≤ l ≤ n. The quotient p∗V → F induces a quotient homomor-
phism p∗V|Δl

→ Ft.f.
l . We let K be its kernel, which fits into the exact

sequence

0 −→ K −→ p∗V|Δl
−→ Ft.f.

l −→ 0.

Let πl : Δl → Dl be the projection. We claim R1πl∗Ft.f.
l = 0. Indeed, since πl

is a P1-bundle, R≥2πl∗K = 0. By base change, R1πl∗(p∗V|Δl
) = 0 since for all

closed x ∈ Dl, H
1(π−1

l (x), p∗V|π−1
l (x)) = 0. Applying πl∗ to the above exact

sequence, by the induced long exact sequence, we conclude that R1πl∗Ft.f.
l =

0. Therefore, since p∗H|Dl
is ample, for large v,

χ
(
Ft.f.(v)

)
= χ

(
πl∗Ft.f.(v)

)
= χ

(
(πl∗Ft.f.)(v)

)
.

On the other hand, the surjective homomorphisms p∗V|Δl
→ Ft.f. →

Ft.f.|Dl
induces a surjective πl∗Ft.f. → Ft.f.|Dl

. This implies that the lead-
ing coefficient of χ((πl∗Ft.f.)(v))− χ(Ft.f.|Dl

(v)) is non-negative; and is zero
if and only if πl∗Ft.f. = Ft.f.|Dl

.
Finally, we suppose δl,0 = 0. Then πl∗Ft.f. = Ft.f.|Dl

. Using π∗
l πl∗F

t.f. →
Ft.f., we obtain a homomorphism π∗

l (F
t.f.|Dl

) → Ft.f.. As this homomorphism
is an isomorphism when restricted to Dl, it is injective. Suppose it has non-
trivial cokernel, then χ(Ft.f.(v)) �= χ(π∗

l F
t.f.|Dl

(v)) = χ(Ft.f.|Dl
(v)), a con-

tradiction. This proves the lemma. �

A parallel result holds for coherent sheaves on Y [n−, n+]0. For the singu-
lar divisor Dl ⊂ Y [n−, n+]0, we define ErrlF be as in (3.5). For the relative
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divisor D[n±]±,0, we let I± be the ideal sheaf of D[n±]±,0 ⊂ Y [n−, n+]0, and
define Err±F = χ(FI±(v)). We define

(3.10) ErrF =
∑

−n−≤l≤n+

ErrlF + Err−F + Err+F.

Lemma 3.19. A coherent sheaf F on Y [n−, n+]0 is relative to D[n±]±,0 if
and only if ErrF = 0.

4. Degeneration of Quot schemes and coherent systems

We construct good degenerations of Quot schemes and moduli spaces of cer-
tain types of coherent systems. We shall focus on the case of Quot schemes.
For coherent systems, we will comment on the modification needed at the
end of the section.

4.1. Stable admissible quotients

We let π : X → C be a simple degeneration. We fix a relative ample line
bundle H on X/C, and fix a locally free sheaf V on X.

We begin with admissible quotients on X[n]0. Let p : X[n]0 → X be the
projection.

Definition 4.1. We call a quotient (sheaf) φ : p∗V → F onX[n]0 admissible
if F is admissible.

For two quotients φ1 : p
∗V → F1 and φ2 : p

∗V → F2 on X[n]0, an equiv-
alence between them consists of a pair (σ, ψ), where σ : X[n]0 → X[n]0 is
an automorphism induced from the canonical Gn

m action on X[n]0, and
ψ : F1

∼= σ∗F2 is an isomorphism, so that the following square is commu-
tative:

(4.1)

p∗V λ1−−−−→ F1

σ�

⏐⏐� ψ

⏐⏐�
p∗V ∼= σ∗p∗V σ∗λ2−−−−→ σ∗F2.

Here the isomorphism p∗V ∼= σ∗p∗V is the (unique) one whose restriction to
Δ0 ∪Δn+1 is the identity map.

Suppose (σ, ψ1) and (σ, ψ2) are autoequivalences of a quotient φ : p∗V →
F, then ψ−1

2 ◦ ψ1 is an automorphism of φ : p∗V → F, which is identity.
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Therefore ψ1 = ψ2. It follows that the group AutXφ of autoequivalences
of φ : p∗V → F is a subgroup of Gn

m.

Definition 4.2. We say a quotient φ : p∗V → F on X[n]0 is stable if it is
admissible and AutXφ is finite.

Let (X , p) ∈ X(S) be an S-family of expanded degenerations, let F be
a coherent sheaf on X and φ : p∗V → F be a quotient. We call φ : p∗V → F

an S-flat family of stable quotients if F is flat over S, and for every closed
point s ∈ S the restriction φs : p

∗V|Xs
→ F|Xs

(of φ to Xs) is stable.

Lemma 4.3. Let φ : p∗V → F be an S-flat family of quotients on (X , p) ∈
X(S). Then the set {s ∈ S | φs : p

∗V|Xs
→ F|Xs

is stable} is an open subset
of S.

Proof. Because automorphism groups being finite is an open condition, the
Lemma follows from Proposition 3.10. �

We define the category QuotVX/C of families of stable quotients. For any

scheme S over C, we define QuotVX/C(S) be the set of all (φ;X , p) so that
(X , p) ∈ X(S) and φ : p∗V → F is an S-flat family of stable quotients on
X . An arrow between (φ1;X1, p) and (φ2;X2, p) in QuotVX/C(S) is an arrow

σ : X1 → X2 in X(S) so that φ1
∼= σ∗φ2. For ρ : S → T , the mapQuotVX/C(ρ) :

QuotVX/C(T ) → QuotVX/C(S) is defined by pull back.

Sending (φ;X , p) ∈ QuotVX/C to the base scheme of X defines QuotVX/C

as a groupoid over C.

Proposition 4.4. QuotVX/C is a Deligne-Mumford stack locally of finite
type.

Proof. First we show that QuotVX/C is a stack. We let SchC be the category

of schemes over C. For any S in SchC and two families φ1, φ2 in QuotVX/C(S),
we define a functor

IsomS(φ1, φ2) : SchC → (Sets)

that associates to any morphism ρ : S′ → S the set of isomorphisms in
QuotVX/C(S

′) between ρ∗φ1 and ρ∗φ2. Since stable quotients have finite auto-
morphism groups, by a standard argument, IsomS(φ1, φ2) is represented by
a finite group scheme over S. An application of descent theory shows that
QuotVX/C is a stack.
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Now we show that QuotVX/C admits an étale cover by a Deligne-Mumford

stack locally of finite type. Let p :X[n]→X be the projection; let Quotp
∗V

X[n]/C[n]

be the Quot scheme on X[n]/C[n] of p∗V. We form the subset Quotp
∗V,st

X[n]/C[n]

⊂ Quotp
∗V

X[n]/C[n] of stable quotients as in Definition 4.2. By Lemma 4.3, it is

open in Quotp
∗V

X[n]/C[n]. Since G
n
m acts on X[n]/C[n], it acts on Quotp

∗V
X[n]/C[n],

and then on Quotp
∗V,st

X[n]/C[n]. By the stable assumption, Gn
m acts with finite

stabilizers on Quotp
∗V,st

X[n]/C[n], thus the quotient stack [Quotp
∗V,st

X[n]/C[n]/G
n
m] is a

Deligne-Mumford stack.
Let

Fn :
[
Quotp

∗V,st
X[n]/C[n]/G

n
m

] −→ QuotVX/C

be the morphism induced by the universal family over Quotp
∗V,st

X[n]/C[n]. By
construction Fn is étale. Hence, the induced∐

n≥0

Fn :
∐
n≥0

[
Quotp

∗V,st
X[n]/C[n]/G

n
m

] −→ QuotVX/C

is étale and surjective. This proves the Proposition. �
We define relative stable quotients on an expanded pair in the same way

by replacing X[n]0 with (Y [n−, n+]0, D[n±]±,0). Let

V0 = V⊗OX
OY ,

where Y → X is induced by the normalization Y → X0 ⊂ X. Let

p : (Y [n−, n+]0, D[n±]±,0) → (Y,D±)

be the projection. For any quotient φ : p∗V0 → F on Y , the group AutYφ is
defined in the same way as that of AutXφ, which is a subgroup of Gn

m.

Definition 4.5. Let (Y [n−, n+]0, D[n±]±,0) be a relative pair. A relative
quotient φ : p∗V0 → F on (Y [n−, n+]0, D[n±]±,0) is a quotient so that F is
admissible and is normal to D[n±]±,0. We call φ : p∗V0 → F stable if in
addition AutYφ is finite.

We define families of relative quotients on (Y,D±, p) ∈ (D± ⊂ Y)(S)
similarly. We have

Proposition 4.6. Let φ : p∗V0 → F be an S-flat family of relative quotients
on (Y,D±). Then the restriction φD± : p∗V0|D± → F|D± is an S-flat family
of quotients on D±.
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Proof. This follows from Corollary 3.4. �
We remark that Lemma 4.3 still holds after replacing families X/S by

families Y/S. We define the category QuotV0

D±⊂Y of families of relative stable
quotients accordingly.

Proposition 4.7. QuotV0

D±⊂Y is a Deligne-Mumford stack locally of finite
type.

Proof. The proof is parallel to that of Proposition 4.4. �

4.2. Coherent systems

Coherent systems we will consider are sheaf homomorphisms

ϕ : OX[n]0 → F

(or on Y [n−, n+]0) so that F is pure of dimension one and ϕ has finite
cokernel. Since an automorphism of ϕ : OX[n]0 → F is a sheaf isomorphism
σ : F ∼= F so that σ ◦ ϕ = ϕ, that F is pure of dimension one and cokerϕ
is finite imply that σ is the identity map. We define the group AutXϕ be
the collection of pairs (σ, ξ) so that σ ∈ Gn

m and ξ form an isomorphism of
ϕ : OX[n]0 → F with σ∗ϕ : OX[n]0 = σ∗OX[n]0 → σ∗F; in other words, such
pairs (σ, ξ) consist of commutative diagrams as in (4.1). Obviously AutXϕ
is a subgroup of Gn

m.

Definition 4.8. We say a coherent system ϕ : OX[n]0 → F admissible if
both F and cokerϕ are admissible. We say it is stable if it is admissible and
AutXϕ is finite.

Since cokerϕ has dimension zero and F is pure, ϕ is admissible implies
that cokerϕ is away from the singular locus of X[n]0. We adopt the con-
vention that any coherent system on a smooth Xt is admissible and stable.
We define families of stable coherent systems in the same way as families of
stable quotients. We have

Proposition 4.9. Let ϕ : OX → F be an S-flat family of coherent sys-
tems on an expanded degeneration (X , p) ∈ X(S). Then the set {s ∈ S |
ϕs : OXs

→ Fs is stable} is an open subset of S.

We form the category PX/C of families of stable coherent systems. We
have
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Proposition 4.10. PX/C is a Deligne-Mumford stack locally of finite type.

Accordingly, we have the following relative version.

Definition 4.11. We say a coherent system ϕ : OY [n−,n+]0 → F relative if
both F and cokerϕ are admissible, and cokerϕ is normal to D±[n±]0. We
say it is stable if it is admissible and AutYϕ is finite.

Proposition 4.12. Let ϕ : OY → F be an S-flat family of relative coher-
ent systems on (Y,D±). Then the restriction ϕD+

: OD+
→ F|D+

and ϕD− :
OD− → F|D− are S-flat families of quotient sheaves on D+ and D−.

Proof. This is because for a family of relative coherent systems ϕ : OY → F,
cokerϕ is away from D+ and D−. Therefore, the restrictions ϕD+

: OD+
→

F|D+
and ϕD− : OD− → F|D− are surjective. The flatness follows from Corol-

lary 3.4. �
We form the stack PD±⊂Y of families of relative coherent systems. Ana-

logue to Proposition 4.10, we have

Proposition 4.13. PD±⊂Y is a Deligne-Mumford stack locally of finite
type.

4.3. Components of the moduli stack

The moduli stacksQuotVX/C andPX/C can be decomposed into disjoint pieces
according to the topological invariants of the sheaves. We will discuss the
case for Quot scheme; it is the same for the moduli of coherent systems.

We use Hilbert polynomials to keep track of the topological data of
quotients. For any coherent sheaf F on an (X , p) ∈ X(S), and for a closed
s ∈ S, denote Fs = F|Xs

and define

χH
Fs
(v) = χ(Fs ⊗ p∗H⊗v), p : Xs −→ X, v ∈ Z.

Let P (v) be a fixed polynomial. We define QuotV,P
X/C(k) ⊂ QuotVX/C(k)

be the subset consisting of [ϕ : OX[n]0 → F] ∈ QuotVX/C(k) so that χH
F = P .

Since the Hilbert polynomials of a flat family of sheaves are locally constant
in their parameter space,QuotV,P

X/C(k) ⊂ QuotVX/C(k) is both open and closed.

Thus it defines an open and closed substack QuotV,P
X/C ⊂ QuotVX/C.

Similarly, we let q : Y → X and p : Y [n−, n+]0 → Y be the projections;
for a sheaf F on Y [n−, n+]0, we denote χH

F (v) = χ(F ⊗ p∗q∗H⊗v). We
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define the open and closed substack QuotV0,P
D±⊂Y ⊂ QuotV0

D±⊂Y be so that

QuotV0,P
D±⊂Y(k) consists of relative stable quotients φ : p∗V → F such that

χH
F = P .

For moduli of coherent systems, following the same procedure, we have
open and closed substacks PP

X/C of PX/C and PP
D±⊂Y of PD±⊂Y.

We state the main theorems of the first part of this paper whose proofs
will occupy the next section.

Theorem 4.14. The Deligne-Mumford stacks QuotV,P
X/C and PP

X/C are sep-
arated, proper over C, and of finite type.

Theorem 4.15. The Deligne-Mumford stacks QuotV0,P
D±⊂Y and PP

D±⊂Y are
separated, proper and of finite type.

5. Properness of the moduli stacks

We apply the valuative criterion to prove Theorems 4.14 and 4.15. We let S
be an affine scheme such that Γ(OS) is a discrete valuation k-algebra; let η
and η0 ∈ S be its generic and closed point. We will often denote by S′ → S a
finite base change; in this case we denote by η′ and η′0 its generic and closed
points.

For any quotient homomorphism φ : p∗V→F on (X , p)∈X(S), we denote
by φη and φη0

the restriction of φ to Xη = X ×S η and Xη0
, respectively.

Proposition 5.1. Let (S,η,η0) be as stated. Given any (φη,Xη)∈QuotV,P
X/C(η),

we can find a finite base change S′ → S so that (φη,Xη)×η η
′ ∈ QuotV,P

X/C(η
′)

extends to a family in QuotV,P
X/C(S

′). Further, the same conclusion holds for

QuotV0,P
D±⊂Y.

Proposition 5.2. Let (S, η, η0) be as stated. Given (φ1,X1), (φ2,X2) ∈
QuotV,P

X/C(S), any isomorphism (φ1,X1)×S η ∼= (φ2,X2)×S η in QuotV,P
X/C(η)

extends to an isomorphism (φ1,X1) ∼= (φ2,X2) in QuotV,P
X/C(S). Further, the

same conclusion holds for QuotV0,P
D±⊂Y.

We need an ordering on a set of polynomials.

Definition 5.3. We let A∗ ⊂ Q[k] be the set of polynomials whose leading
terms are of the form ar

kr

r! with ar ∈ Z+; let A = A∗ ∪ {0}. For any f(k) =
ar

kr

r! + · · · and g(k) = bs
ks

s! + · · · in A∗, we say f(k) ≺ g(k) if either r < s,
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or r = s and ar < bs; we say f(k) ≈ g(k) if r = s and ar = bs. We agree that
0 is ≺ to all other elements.

For convenience, we use � to denote ≺ or ≈.

Lemma 5.4. The set A satisfies the descending chain condition.

Proof. For any sequence f1(k) � f2(k) � · · · , since 0 is the minimal element
in A, we can assume fi(k) �= 0 for all i. By Definition 5.3, we know the
pairs (r, ar) of the degrees and the leading coefficients of polynomials fi(k)
decrease according to the lexicographic order. Since the pairs consist of
non-negative integers, we can find an integer n, so that fn(k) ≈ fn+1(k) ≈
· · · . �

5.1. The completeness I

Let (S, η, η0) be as stated in the beginning of this section, and S → C be a
scheme over C; let (φη : p∗ηV → Fη) ∈ QuotV,P

X/C(η) be a quotient on (Xη, pη) ∈
X(η). In this subsection, we assume Xη is smooth. Since the case where
S → C sends η0 to C − 0 is trivially true, (following from the properness of
Quot-schemes,) we assume it sends η0 to 0 ∈ C.

Lemma 5.5. We can extend φη to a family of S-flat quotient φ : p∗V → F

on an (X , p) ∈ X(S) such that AutXφη0
is finite.

Proof. Since Xη is smooth, S → C sends η ∈ S to a point in C − 0. Using
that S is a C-scheme, we define X = X ×C S, and denote p : X → X the
projection. Because Grothendieck’s quot-scheme is proper, the quotient φη

on Xη extends to a quotient φ : p∗V → F, flat over S. Since Xη0
has no added

Δl, AutXφη0
is {e}. �

We will show that by varying the extensions (X , p) ∈ X(S) of Xη, we
can decrease ErrFη0

while keeping AutXφη0
finite. By the descending chain

condition, this implies that we can find an extension with stable quotient at
the special fiber.

Lemma 5.6. Let φη : p∗ηV → Fη be a quotient as in Lemma 5.5, and let φ :
p∗V → F be an S-flat quotient that extends φη with AutXφη0

finite. Suppose
ErrFη0

�= 0, then we can find a finite base change S′ → S, an S′-flat quotients
φ′ : p′∗V → F′ on (X ′, p′) ∈ X(S′) such that

1) X ′
η′ ∼= Xη ×η η

′ ∈ X(η′), and under this isomorphism φ′
η′ = φη ×η η

′;
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2) AutX(φ
′
η′
0
) is finite, and

3) ErrF′
η′
0
≺ ErrFη0

.

We prove the Lemma by proving a sequence of lemmas. Since S is local,

X = X[n]×C[n] S for a ξ : S → C[n]

such that ξ(η0) = 0 ∈ C[n]. We let u be a uniformizing parameter of S.
Denoting by πn : C[n] → An+1 the projection, we express

(5.1) πn ◦ ξ =
(
c1u

e1 , . . . , cn+1u
en+1

)
, ci ∈ Γ(OS)

∗.

(Γ(OS)
∗ are the invertible elements in Γ(OS).) Since ξ(η0) = 0, all ei > 0.

Since ErrFη0
�= 0, we pick an 1 ≤ l ≤ n so that

deg ErrlFη0
= degErrFη0

.

We let

τl : C[n]×Gm → C[n+ 1]

be induced from the An+1 ×Gm → An+2:

(5.2) (t1, . . . , tn+1, σ) → (t1, . . . , tl−1, σ
el , σ−eltl, tl+1, . . . , tn+1).

We then introduce

ξl = τl ◦ (ξ, id) : S ×Gm −→ C[n]×Gm −→ C[n+ 1],

and let X ′ := ξ∗l X[n+ 1] over S ×Gm be the pull back family. Because of the
canonical isomorphism τ∗l X[n+ 1] ∼= X[n]×Gm as families over C[n]×Gm,

X ′ ∼= ξ∗X[n]×Gm = X ×Gm.

We let p′ : X ′ → X and π1 : X ′ → X be the projections.
We let φ′ = π∗

1φ : p′∗V → F′ be the pullback quotient sheaves (of φ).
Since (X ′, p′) is induced by ξl : S ×Gm → C[n+ 1], the family of quotients
φ′ induces a C[n+ 1]-morphism

(5.3) fl : S ×Gm −→ Quotp
∗V,P

X[n+1]/C[n+1].

For simplicity, we abbreviate Q = Quotp
∗V,P

X[n+1]/C[n+1].
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We now construct a regular Gm-surface V and Gm-morphisms that fit
into the following commutative diagram

V
j̄ �� Q := Quotp

∗V,P
X[n+1]/C[n+1]

π

��
S ×Gm

j

��

ξl ��

fl
��

C[n+ 1]

so that π ◦ j̄ : V → C[n+ 1] is proper.
We first loot at the composite

(5.4) ξl ◦ πn : S ×Gm −→ C[n+ 1] −→ An+2;

it is given by

ξl ◦ πn(u, t) = (c1u
e1 , . . . , cl−1u

el−1 , tel , clt
−eluel , cl+1u

el+1 , . . . , cn+1u
en+1).

We embed S ×Gm ⊂ S × A1 via the embedding Gm ⊂ A1 so that the induced
Gm-action on A1 is tσ = σt. We then blow up S × A1 at (η0, 0) ∈ S × A1, let
S̃ be the proper transform of S × 0, and form

V ′ = bl(η0,0)S × A1 − S̃.

Note that V ′ ⊂ S × A1 × A1 is defined via u = vt, where v is the standard
coordinate of the last A1-factor.

By construction, (5.4) extends to a V ′ → An+2, in the form

(5.5) (v, t) → (c1u
e1 ,. . ., cl−1u

el−1 , tel , clv
el , cl+1u

el+1 ,. . ., cn+1u
en+1), u = vt.

Because C[n+ 1] → An+2 is proper over a neighborhood of 0 ∈ An+2, and
because all ei > 0, (cf. (5.1)), V ′ → An+2 lifts to a unique

ξ′l : V
′ −→ C[n+ 1],

extending ξl : S ×Gm → C[n+ 1].
We let Gm acts on S × A1 × A1 be (u, t, v)σ = (u, σt, σ−1v). It leaves V ′ ⊂

S × A1 × A1 invariant, thus induces a Gm-action on V ′. We let E ⊂ V ′ be
the exceptional divisor of V ′ → S × A1; let E′ ⊂ V ′ be the proper transform
of η0 × A1. In coordinates, E = (t = 0) and E′ = (v = 0).

By construction, fl is a morphism from V ′ − E to Q. Since Q is proper
over C[n+ 1], fl extends to f̃l : U → Q for an open U ⊂ V ′ that contains
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V ′ − E and the generic point of E. On the other hand, since all schemes and
morphisms are Gm-equivariant, U ⊂ V ′ can be made Gm-invariant. There-
fore, either U = V ′ or U = V ′ − {o}, where {o} = E ∩ E′.

We now consider the case U = V ′ − {o}. Since Q is proper over C[n+ 1],
after successive blowing up, say

b : V −→ V ′,

we can extend f̃l : V
′ − {o} → Q to a morphism

j̄ : V → Q.

Since all the relevant schemes and morphisms are Gm-equivariant, we are
able to make the blowing-up V → V ′ Gm-equivariant and the extension j̄
Gm-equivariant.

Since V → V ′ is a Gm-equivariant blowing up, and since the Gm-action
on the tangent space of the (only) fixed point o ∈ V ′ has weights el and −el,
the exceptional divisor of V → V ′ can be made a chain of rational curves
Σ1, . . . ,Σk. We let Σ0 ⊂ V (resp. Σk+1 ⊂ V ) be the proper transform of
E′ ⊂ V ′ (resp. E ⊂ V ′); then possibly after reindexing,

Σ := Σ0 ∪ Σ1 ∪ · · · ∪ Σk ∪ Σk+1

forms a connected chain of rational curves; namely, Σi ∩ Σi+1 �= ∅, for 0 ≤
i ≤ k. Using the explicit expression (5.5), we conclude that under the mor-
phism

(5.6) πn ◦ ξ′l ◦ b : V −→ An+2,

Σ1, . . . ,Σk are mapped to 0 ∈ An+2, and Σ0 (resp. Σk+1) is mapped to the
line �l = {ti = 0, i �= l} ⊂ An+2 (resp. �l+1 ⊂ An+2). (Recall Σ0 is the proper
transform of (v = 0) and Σk+1 of (t = 0).)

The proof of Lemma 5.6 will be carried out by studying the pull back of
the universal family of Q via j̄ : V → Q. We fix our convention on this pull
back family. In the remainder of this subsection, we denote

(5.7)
(
p̃ : X̃ = X[n+ 1]×C[n+1] V −→ X

) ∈ X(V );

we denote Φ the universal family on Q and denote φ̃ = j̄∗Φ:

(5.8) φ̃ : p̃∗V −→ F̃ on p̃ : X̃ → X.
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For any closed subscheme A ⊂ V , we use φ̃A to denote the restriction of φ̃
to X̃A := X̃ ×V A:

φ̃A : p̃∗AV −→ F̃A on p̃A : X̃A → X.

Lemma 5.7. The family φ̃ is Gm-equivariant, where the Gm-action is the
one induced from the Gm-morphism j̄. The chain of rational curves Σ is
Gm-invariant, and the Gm-fixed points of Σi are qi = Σi ∩ Σi−1 and qi+1.

Proof. The first part follows from that j̄ is Gm-equivariant. The second part
follows from that V → V ′ is a successive Gm-equivariant blowing up, and
that Gm acts on the tangent space T0V

′ with weights el and −el. �

Lemma 5.8. The fiber of X̃Σ0
over a �= q1 ∈ Σ0 (resp. a = q1) is X[n]0

(resp. X[n+ 1]0); the family X̃Σ0
is a smoothing of the divisor Dl ⊂ X̃q1

∼=
X[n+ 1]0. The Gm-action on X̃q1

∼= X[n+ 1]0 leaves all Δi ⊂ X[n+ 1]0
except Δl fixed, and acting on Δl with fixed loci Dl ∪Dl+1.

Proof. By the construction of X[n+ 1] → C[n+ 1], for the l-th coordinate
line �l ⊂ An+2, X[n+ 1]×An+2 �l is a family over �l whose fiber over a �= 0 ∈
�l is isomorphic to X[n]0, and whose fiber over 0 ∈ �l is isomorphic to X[n+
1]0; the family is a smoothing of the l-th singular divisor Dl ⊂ X[n+ 1]0.

Applying this to the Lemma, knowing that Σ0 → An+2 (cf. (5.6)) is
mapped onto the coordinate line �l, the first part of the lemma follows
immediately.

For the second part, we need to understand the Gm-action on

X[n+ 1]�l := X[n+ 1]×An+2 �l.

Recall the Gm-action on An+2 is via

(z)σ = (z1, . . . , zl−1, σ
elzl, σ

−elzl+1, zl+2, . . . , zn+2).

By the construction ofX[n+ 1]/C[n+ 1], thisGm-action onX[n+ 1]0 leaves
Δi ⊂ X[n+ 1]0 except Δl fixed, and leaves Δl invariant with fixed loci Dl ∪
Dl+1. (This can be seen using explicit description of X[n+ 1]; it is also
apparent in case n = 0, since then l = 1 and the Gm-action on Δ0 can only
be trivial.) This proves the second part of the lemma. �

We have a parallel Lemma.
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Lemma 5.9. The fiber of X̃Σk+1
over a �= qk+1 ∈ Σk+1 (resp. a = qk+1)

is X[n]0 (resp. X[n+ 1]0); the family X̃Σk+1
is a smoothing of the divisor

Dl+1 ⊂ X̃qk+1
∼= X[n+ 1]0. The Gm-action on X̃qk+1

leaves all Δi ⊂ X̃qk+1

except Δl fixed, and acting on Δl with fixed loci Dl ∪Dl+1.

Using that the families over Σi, 1 ≤ i ≤ k are all pull backs of the central
fiber X[n+ 1]0 over 0 ∈ C[n+ 1], and combining with the results proved in
the previous two Lemmas, we have

Lemma 5.10. For 1 ≤ i ≤ k, X̃Σi
∼= X[n+ 1]0 × Σi; the Gm-action on X̃Σi

are the product action of the Gm-action on Σi, and the Gm-action on X̃q1,

(which is identical to that on X̃qk+1
).
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Figure 4: In the figure, the slated lines represent Δi; the horizontal lines
represent Δi × Σj ; the arrows represent the Gm-action; lines w/o arrows are
fixed by Gm.

In the figure, the left column represents X̃Σ0
, of which only Δl+1 × Σ0

(the top parallelgram) and the Θ are shown. The piece Θ is the blowing
up of Δl−1 × Σ0 along Dl × q1, where Δl−1 ⊂ X[n]0. We endow Θ with the
Gm-action induced by the product action on X[n]0 × Σ0, where Gm-acts on
Δl−1 trivially, and acts on Σ0 by that induced from the Gm-action on V .
The family X̃Σ0

is by replacing Δl−1 × Σ0 ⊂ X[n]0 × Σ0 with Θ.
The right column represents X̃Σk+1

. The piece Θ′ ⊂ X̃Σk+1
is constructed

similarly: it is the blowing up of Δl × Σk+1 along Dl × qk+1; the total family
X̃Σk+1

is by replacing Δl × Σk+1 in X[n]0 × Σk+1 by Θ′. The Gm-action is
the one induced from the product action on X[n]0 × Σk+1, where the action
on X[n]0 is via the trivial action, and on Σk+1 is via the one induced from
that on V .

The next lemma explains the role of the families X̃Σi
in our proof of

Lemma 5.6
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Lemma 5.11. For a ∈ Σ0 − q1 or a ∈ Σk+1 − qk+1, φ̃a : p̃∗aV → F̃a on X̃a

is isomorphic to φη0
: p∗η0

V → Fη0
.

Proof. We comment that since C[n+ 1] = C ×A1 An+2, a morphism h : S →
C[n+ 1] is given by a pair of morphisms h′ : S → C and h′′ : S → An+2

so that their corresponding compositions S → C → A1 and S → An+2 → A1

coincide.
We pick a morphism ϕ1 : S → V that is the lift of S = S × 1

⊂−→S ×Gm.
By the description of V → V ′ → An+2 (cf. (5.5)), we see that ϕ1(η0) ∈ V lies
over (. . . , 0, 1, 0, . . .) ∈ An+2, thus ϕ1(η0) ∈ Σk+1 − qk+1.

By the construction of ϕ1, we see that the composite j̄ ◦ ϕ1 : S → V → Q
coincide with the restriction of fl (cf. (5.3)) to S × 1: j ◦ ϕ1 = fl|S×1. Since
fl is induced by the family φ, we obtain

φ ∼= (j̄ ◦ ϕ1)
∗Φ ∼= ϕ∗

1φ̃,

where Φ is the universal family of Q. Let a′ = ϕ1(η0); this proves φ̃a′ ∼=
φη0

. Finally, since all points in Σk+1 − qk+1 form a single Gm-orbit, for a ∈
Σk+1 − qk+1, φ̃a

∼= φ̃a′ ∼= φη0
. This prove the part of the Lemma for the case

Σk+1 − qk+1.
For the other case, we let ϕ2 : S → V be the lift of (1S , ρ) : S → S × A1,

where ρ : S → A1 is via ρ∗(t) = u. By the construction, we see that ϕ2(η0) ∈
Σ0 − q1.

We let hi = π ◦ j̄ ◦ ϕi : S → C[n+ 1] be the composite of ϕi with the
tautological V → C[n+ 1]. By inspection, we see that the composites of h1
and h2 with C[n+ 1] → C are identical, and their composites with An+2 →
A1 are of the form

h′′1(u) = (. . . , 1, clu
el , . . .) and h′′2(u) = (. . . , uel , cl, . . .).

Here the expressed terms are in the l and (l + 1)-th places, and the omitted
terms of h′′1 and h′′2 are identical.

We let X̃i := X[n+ 1]×hi
S. Using the isomorphism τ̃I,I′,X in (2.9) with

I = [n+ 2]− {l} and I ′ = [n+ 2]− {l + 1}, we conclude that

1) the generic points h1(η) and h2(η) lie in the same Gn+1
m -orbit;

2) there is an isomorphism X̃1
∼= X̃2 extending the isomorphism X̃1 ×S

η ∼= X̃2 ×S η given by the Gn+1
m -action in (1).

Let ϕ∗
2φ̃ be the pull back of φ̃ via ϕ2 : S → V ; it is an S-flat family of

quotient sheaves on X̃2. Since ϕ1(η) and ϕ2(η) lie in the same Gm-orbit in
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V , (following from the construction,) we have an induced isomorphism

(5.9) (ϕ∗
1φ̃)η

∼= (ϕ∗
2φ̃)η.

(Recall (ϕ∗
1φ̃)η = (ϕ∗

1φ̃)×S η.) As the Gn+1
m -action on Q is induced by the

Gn+1
m -action onX[n+ 1]/C[n+ 1], the isomorphism (5.9) is compatible with

the isomorphism X̃1 ×S η ∼= X̃2 ×S η in (1).
Finally, using X̃1

∼= X̃2 given by (2), we pull back the family φ on X̃1
∼= X

to a quotient family φ̄ on X̃2; knowing that the isomorphism X̃1
∼= X̃2 extends

the isomorphism (X̃1)η ∼= (X̃2)η given by (5.9), the isomorphism (5.9) gives
an isomorphism (φ̄)η ∼= (ϕ∗

2φ̃)η.

Let p̃2 : X̃2 → X be the projection. Since both φ̄ and ϕ∗
2φ̃ are S-flat

family of quotient sheaves of p̃∗2V, and are isomorphic as quotient sheaves
over the generic fiber of X̃2/S, by that Q is separated, we conclude φ̄ ∼= ϕ∗

2φ̃.
This implies

(ϕ∗
2φ̃)η0

∼= (φ̄)η0
∼= (ϕ∗

1φ̃)η0
∼= φη0

as quotient sheaves on X[n]0. In the end, using that Σ0 − q1 is a single
Gm-orbit, φ̃a

∼= φη0
for all a ∈ Σ0 − q1; the Lemma follows. �

Lemma 5.12. The sheaf F̃q1 (resp. F̃qk+1
) is normal to Dl (res. Dl+1). Let

Δ∗
l = Δl −Dl ∪Dl+1; the restriction φ̃q1 |Δ∗

l
(resp. φ̃qk+1

|Δ∗
l
) is Gm-invariant.

Proof. We prove the case for F̃q1 . We consider the Θ ⊂ X̃Σ0
mentioned before

Lemma 5.11. Let Θ∗ = Θ− closure(X̃Σ0
−Θ). We let bl : Θ → Δl−1 × Σ0 be

the blowing up morphism, and g be the composite

g : Θ∗ ⊂−→Θ
bl−→Δl−1 × Σ0

pr−→Δl−1.

Let pl−1 : Δl−1 → X be the tautological projection, let Ft.f.
η0,l−1 be Fη0

|Δl−1

quotient by its subsheaf supported along Dl ∪Dl−1. By Lemma 3.2 and
Proposition 3.3, Ft.f.

η0,l−1 is normal to both Dl and Dl−1.
We consider the quotient on Δl−1 induced by φη0

|Δl−1
:

φt.f.
l−1 : p

∗
l−1V −→ Ft.f.

η0,l−1.

We claim

(5.10) g∗φt.f.
l−1

∼= φ̃Σ0
|Θ∗ .

First, we know that Θ is a blowing up of Δl−1 × Σ0 along Dl × 0, and that
Gm-acts on Θ via the trivial action on Δl−1 and that on Σ0 with the only
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fixed point q1. Second, we know that φ̃Σ0
: p̃∗Σ0

V → F̃Σ0
is Gm-equivariant,

and for an a ∈ Σ0 − q1, φ̃a
∼= φη0

. From these two, we conclude

(5.11) g∗φt.f.
l−1|Θ∗− ˜Xq1

∼= φ̃Σ0
|Θ∗− ˜Xq1

.

To conclude the claim, we notice that the isomorphism

(5.12) g∗p∗l−1V|Θ∗− ˜Xq1

∼= p̃∗Σ0
V|Θ∗− ˜Xq1

,

which is part of the isomorphism (5.11), is the identity map of the pull back
of V via the tautological projection; Θ∗ − X̃q1 → X. Thus (5.12) extends to
a

(5.13) g∗p∗l−1V|Θ∗ ∼= p̃∗Σ0
V|Θ∗ .

On the other hand, the family p̃∗Σ0
V|Θ∗ → F̃Σ0

|Θ∗ is flat over Σ0. By the
uniqueness of flat completion of quotient sheaves, the claim follows if we can
show that g∗p∗l−1V → g∗Ft.f.

l−1 is flat over Σ0.

Since Ft.f.
l−1 is normal to Dl, by Proposition 3.3, Ft.f.

l−1 is flat along the

normal direction ofDl ⊂ Δl−1. Thus g
∗Ft.f.

l−1 is flat along the normal direction
of the exceptional divisor of Θ∗ → Δl−1 × Σ0. Applying Proposition 3.3, we
conclude that it is flat over Σ0, and in addition, g∗Ft.f.

l−1|Θ∗∩ ˜Xq1

is admissible.

This proves that F̃q1 is normal to Dl. It is Gm-equivariant because φ̃Σ0

is Gm-equivariant. �

Lemma 5.13. For all 1 ≤ i ≤ k, we have

(5.14) ErrlF̃qi + Errl+1F̃qi = ErrlF̃qi+1
+ Errl+1F̃qi+1

.

Suppose for an 1 ≤ i ≤ k, ErrlF̃qi ≺ Errl+1F̃qi and ErrlF̃qi+1
� Errl+1F̃qi+1

,
then for a ∈ Σi − {qi, qi+1},

(5.15) ErrlF̃qi + Errl+1F̃qi � ErrlF̃a + Errl+1F̃a.

Proof. Since F̃ is flat over Σ, we get χ(F̃qi(v)) = χ(F̃qi+1
(v)) for all 1 ≤ i ≤ k.

Moreover, since Gm leaves Δj fixed for j �= l, we know the restriction of F̃
to (X[n+ 1]0 −Δl)× Σi is a constant family of sheaves parameterized by
Σi for all 1 ≤ i ≤ k. Therefore, for any j �= l, l + 1, the quantities ErrjF̃a are

the same for all a ∈ Σi. If we let δ
a
j,i be the quantities associated to sheaf F̃a

defined as δl,i in Lemma 3.17, then for j �= l, δaj,0 (resp. δaj,1) are the same
for all a ∈ Σi.
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Applying identity (3.7) in Lemma 3.17, and subtracting these identical
quantities from the right hand side of (3.7), we conclude that

(5.16) ErrlF̃a + Errl+1F̃a +
1

2
(δal,0 + δal,1)

have the same values for all a ∈ Σ1 ∪ · · · ∪ Σk.
Since by Lemma 5.7 and 5.10, qi, qi+1 ∈ Σi are Gm-fixed points of Σi, and

Gm acts linearly on Δl with fixed locus Dl ∪Dl+1, we know the restriction
of φ̃qi to Δ∗

l is Gm-invariant. Moreover, for 1 ≤ l ≤ k,

φt.f.
qi,l : p

∗
l V −→ Ft.f.

qi,l

is the pull back of a quotient sheaf on Dl via the projection Δl → Dl.
Applying Lemma 3.18, δqil,0 = δqil,1 = 0 for 1 ≤ l ≤ k. For the same reason, we

have δqil+1,0 = δqil+1,1 = 0 for 2 ≤ i ≤ k + 1. The identity (5.14) follows from
that (5.16) takes same values for a = q1, . . . , qk+1.

Next we prove (5.15). By (5.16) and the previous argument, for any
a ∈ Σi,

(5.17) ErrlF̃qi + Errl+1F̃qi = ErrlF̃a + Errl+1F̃a +
1

2
(δal,0 + δal,1)

Applying Lemma 3.13 and 3.14, for a ∈ Σi − {qi, qi+1}, we have

ErrlF̃qi = ErrlF̃a and Errl+1F̃qi+1
= Errl+1F̃a.

Therefore, (5.17) gives us

Errl+1F̃qi = Errl+1F̃qi+1
+

1

2
(δal,0 + δal,1), a ∈ Σi − {qi, qi+1}.

Applying (5.14), we also have

ErrlF̃qi+1
= ErrlF̃qi +

1

2
(δal,0 + δal,1).

Now suppose for a 1≤ i≤k, ErrlF̃qi≺Errl+1F̃qi and ErrlF̃qi+1
�Errl+1F̃qi+1

.

Then deg(δal,0 + δal,1) = deg Errl+1F̃qi ≥ deg ErrlF̃qi . Therefore, in the iden-
tity (5.17), the degree of the left hand side is equal to the degree of the
last term on the right hand side; because of the weak positivity of δal,0 + δal,1
proved in Lemma 3.18, (5.15) follows. �
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Proof of Lemma 5.6. For any quotient φη : p∗ηV → Fη and its extension to
an S-flat quotient φ : p∗V → F such that ErrFη0

�= 0 as stated in the Lemma,
according to our construction, we pick 1 ≤ l ≤ n so that

deg ErrlFη0
= degErrFη0

,

and form a regular Gm-surface V , together with a family p̃ : X̃ → X in X(V )
and a Gm-equivariant quotient φ̃ : p̃∗V → F̃ on X̃ .

We further find a connected chain of rational curves Σ = Σ0 ∪ · · · ∪ Σk+1

in V so that the restriction of φ̃ to Σ satisfies the properties stated in Lem-
mas 5.11 and 5.12;

According to Lemma 5.12, we know

0 = ErrlF̃q1 ≺ Errl+1F̃q1 = ErrlFη0
�= 0

and 0 = Errl+1F̃qk+1
≺ ErrlF̃qk+1

= ErrlFη0
�= 0. By (5.14) in Lemma 5.13,

we can find a Σi, so that the assumptions in Lemma 5.13 ErrlF̃qi ≺ Errl+1F̃qi

and ErrlF̃qi+1
� Errl+1F̃qi+1

are satisfied. For such i,

ErrlF̃qi + Errl+1F̃qi � ErrlF̃a + Errl+1F̃a, a ∈ Σi − {qi, qi+1}.

Moreover, F̃a|Δ∗
l
is not Gm-invariant by the non-vanishing of its associ-

ated quantity δal,0 + δal,1 via Lemma 3.18. By our choice of l, we conclude

that ErrF̃qi � ErrF̃a. Combined with ErrF̃qi = ErrFη0
, we have the ErrF̃a ≺

ErrFη0
, and dimAutX(φ̃a) ≤ dimAutX(φη0

).
Finally we find the desired curve S′ ⊂ V . Because V is smooth at the

point a, and b : V → V ′ is a sequence of blow-ups whose exceptional divisor
contains a, we can find a smooth curve S′ ⊂ V ′ that contains a, and that
the composition S′ → V ′ → S × A1 → S is non constant, thus branched at
η′0 = a ∈ S′, and S′ → S is finite. Furthermore, we can take such S′ so that
its image in V ′ is not contained in E′ ∪ E ⊂ V ′. For such an S′ ⊂ V , the
induced family of quotients φ′ = φ̃S′ on p′ : X ′ = X̃ ×V S′ → X satisfies the
properties stated in Lemma 5.6. �

5.2. The completeness II

We complete the proof of Theorems 4.14 and 4.15 by working out the remain-
der cases.

Let (S, η, η0) be as stated in the beginning of this section. We prove a
Lemma analogous to Lemma 5.6 for QuotV0,P

D±⊂Y.
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Lemma 5.14. Let (φη,Yη) ∈ QuotV0,P
D±⊂Y(η), and let φ : p∗V0 → F be an S-

flat extension of φη over (Y, p) ∈ Y(S). Suppose Yη is smooth, AutYφη0
is

finite, and ErrFη0
�= 0. Then we can find a finite base change S′ → S, an

S′-flat quotients φ′ : p′∗V0 → F′ on (Y ′, p′) ∈ Y(S′) such that

1) Y ′
η′ ∼= Yη ×η η

′ ∈ Y(η′), and under this isomorphism φ′
η′ = φη ×η η

′;

2) AutY(φ ′
η′
0
) is finite, and

3) ErrF′
η′
0
≺ ErrFη0

.

Proof. We follow the same strategy used to prove Lemma 5.6. Since S is
local, we can find a ξ : S → An−+n+ so that ξ(η0) = 0 and Y ∼= ξ∗Y [n−, n+].
Since ErrFη0

�= 0, we pick an l so that as polynomials,

deg ErrlFη0
= degErrFη0

, −n− − 1 ≤ l ≤ n+ + 1, l �= 0

Here we agree that Err−n−−1 = Err− and Errn++1 = Err+ (cf. (3.10)). With-
out loss of generality, we assume l > 0.

We let u be a uniformizing parameter of S, and express

(5.18) ξ =
(
c−n−u

e−n− , . . . , cn+
uen+

)
, ci ∈ Γ(OS)

∗.

Since ξ(η0) = 0, all ei ≥ 0. We let

τl : A
n−+n+ ×Gm → An−+n′

+ , n′
+ = n+ + 1,

be defined by

(5.19) (t−n− , . . . , tn+
;σ) → (t−n− , . . . , tl−1, σ

−eltl, σ
el , tl+1, . . . , tn+

).

(In case l = 1, we replace tl−1 = t0 by t−1.) We then introduce

ξl = τl ◦ (ξ, id) : S ×Gm −→ An−+n+ ×Gm −→ An−+n′
+ ,

and let Y ′ := ξ∗l Y [n−, n′
+] over S ×Gm be the pull back family. By the con-

struction of Y [n−, n+], we have Y ′ ∼= ξ∗Y [n−, n+]×Gm = Y ×Gm. We let
p′ : Y ′ → Y and π1 : Y ′ → Y be the projections.

We let φ′ = π∗
1φ : p′∗V → F′ be the pullback quotient sheaves. By the

universal property of Grothendieck’s Quot-scheme, the family φ′ induces an
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An−+n′
+-morphism

(5.20) fl : S ×Gm −→ Quotp
∗V0,P

Y [n−,n′
+]/A

n−+n′
+
.

Mimic the proof of Lemma 5.6, We construct a regular Gm-surface V
and Gm-morphisms that fit into the following commutative diagram

V
j̄ �� Quotp

∗V0,P

Y [n−,n′
+]/A

n−+n′
+

π

��
S ×Gm

j

��

ξl ��

fl ��

An−+n′
+

so that π ◦ j̄ : V → An−+n′
+ is proper.

Once we have the surface the pull back family over V from j̄, we can
repeat the proof of Lemma 5.6 line by line to conclude the existence of
S′ ⊂ S that satisfies the requirement of the Lemma. Since the proof is a
mere repetition, we omit the details. This completes the proof. �

Proof of Proposition 5.1. We first prove the Proposition for QuotV0,P
D±⊂Y. Let

(φη : p∗ηV0 → Fη) ∈ QuotV0,P
D±⊂Y(η) be a quotient on (Yη, pη) ∈ Y(η). Then

Yη = Y [n−, n+]0 × η for some n−, n+ ≥ 0. Following the convention (2.13),

Y [n−, n+]0 = Δ−n− ∪ · · · ∪Δ0 ∪ · · · ∪Δn+
,

where Δ0 = Y .
In the remainder of this proof, we adopt the convention that Wl = Δl

for −n− ≤ l ≤ n+; following the rule specified after (2.14) we endow Wl the
relative divisors El,− and El,+ by the rule: for l > −n−, El,+ = Δl−1 ∩Δl; for
l < n+, El,− = Δl ∩Δl+1; E−n−,+ = D[n−]−,0 and En+,− = D[n+]+,0, where
D[n−]−,0 and D[n+]+,0 are the two relative divisors of Y [n−, n+]0.

We let Wl,η = Wl × η ⊂ Yη; we let El,±,η = El,± × η ⊂ Wl,η, let pl,η :
Wl,η → X be the tautological projection, and let Gm,η = Gm × η. We adopt
the same convention when η is replaced by η0 or S.

We consider

(5.21) φl,η := φη|Wl,η
: p∗l,ηV −→ Fl,η := Fη|Wl,η

Since φη is stable, Fl,η is normal to the relative divisors El,±,η of Wl,η.
Because the Grothendieck’s Quot-scheme is proper, we can extend φl,η to
an S-flat quotient family φ̃l : p

∗
l V0 → F̃l on Wl,S = Wl × S.
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In the ideal case where all F̃l,η0
= F̃l|Wl,η0

are normal to El,±,η0
, then we

will show that we can patch φ̃l to a quotient family φ̃ on Y [n−, n+]0 × S
whose quotient sheaf is admissible. Suppose further that its automorphism
group AutY(φ̃|η0

) is finite, this family will be the desired family that proves
Proposition 5.1.

In general, we divide the proof into several steps. We first take care of
the automorphism groups caused by the Gm-action on Wl, l �= 0. Suppose at
least one of n− and n+ is positive. For any n− ≤ l �= 0 ≤ n+, suppose φ̃l|Wl,η0

is not invariant under the tautological Gm action on Wl,η0
and p∗l,η0

V0, we

do nothing. Suppose it is invariant under Gm. We claim that φ̃l|Wl,η0
is not

a pull back quotient sheaf from Wl,η0
→ D × η0. Suppose it is a pull back

quotient sheaf, then F̃l is flat over S implies that F̃l is a pull back sheaf
from W × S → D × S; in particular F̃l|Wl,η

= Fl,η is a pull back sheaf from
Wl,η → D × η. But this is impossible since φη is stable implies that φl,η is
not invariant under the Gm-action, a contraction.

We continue to suppose φ̃l|Wl,η0
is Gm-invariant. This invariance together

with that φ̃l|Wl,η0
is not a pull back sheaf from D × η0 implies that F̃l|Wl,η0

is not normal to at least one of El,±,η0
⊂ Wl,η0

. Therefore, by repeating
the proof of Lemma 5.6, and possibly after a base change, we can find a
ξl : η → Gm,η so that under

ψl : Wl,η
(1,ξ̄l)−→ Wl,η ×η Gm,η

×−→Wl,η

where ξ̄ : Wl,η → Gm,η is via Wl,η
pr−→ η

ξl−→Gm,η, and the second arrow is
the Gm,η-action on Wl,η, the pull back family ψ∗

l (φl,η) extends to a new
S-flat family φ̃l (denoted by the same φ̃l) on Wl × S so that φ̃l|Wl,η0

is not
invariant under Gm.

For the modified families φ̃l, n− ≤ l ≤ n+, our next step is to modify
them so that they are normal to El,±,η0

⊂ Wl,η0
. We let El,± ⊂ Wl over

A
 be the stack of expanded relative pairs of El,± ⊂ Wl. (Like D± ⊂ Y

with D± ⊂ Y replaced by El,± ⊂ Wl.) Then φ̃l,η ∈ Quot
p∗
l V0

Wl/A�
(η). In case

F̃l,η0
= F̃l|Wl,η0

is normal to El,±,η0
, which is equivalent to ErrFη0

= 0 by the

criteria Lemma 3.19, F̃l,η0
is admissible and φ̃l,η0

is stable. Otherwise, by
Lemma 5.14, we can find a finite base change S′

l → S and an S′
l-flat family

of quotients φ′
l on (W ′

l , p
′
l) so that, letting η′0 and η′ be the closed and the

generic points of S′
l,

1) W ′
l,η′ ∼= Wl,η ×η η

′, that under this isomorphism φ′
l,η′ = φl,η ×η η

′;

2) AutWl
(φ′

l,η′
0
) is finite;
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3) ErrF′
η′
0
≺ ErrFη0

.

If ErrF′
η′
0
is still nonzero, we repeat this process. By Lemma 5.4 on descend-

ing chain, this process terminates at finitely many steps. Thus we obtain an
S′
l-family of quotient family φ′

l satisfying (1) and (2) above together with

(3) replaced by ErrF′
l,η′

0
= 0. Namely, {φ′

l : p
′∗
l V0 −→ F′

l} ∈ Quot
p∗
l V0

Wl/A�
(S′

l).

In case l �= 0, we can say more of the symmetry of φ′
l,η′

0
. When l �= 0,

W ′
l,η′

0

∼= Δ ∪ · · · ∪Δ, is the union of a chain of, say nl copies, of Δ. We
define

(5.22) AutWl,Gm
(φ′

l,η′
0
) =

{
g ∈ G×nl

m | g · (φ′
l,η′

0
) ∼= φ′

l,η′
0

}
.

Here g · (φ′
l,η′

0
) is the pull back family of φ′

l,η′
0
under theG×nl

m actionW ′
l,η′

0

·g−→
W ′

l,η′
0
, and g · (φ′

l,η′
0
) ∼= φ′

l,η′
0
is the isomorphism as quotient families, using

that p′∗l V0|Wl,η′
0
is invariant under G×nl

m . It follows from the construction of

φ′
l and the proof of Lemma 5.14 that AutWl,Gm

(φ′
l,η′

0
) is finite.

By replacing each S′
l by the fiber product of all S′

l over S, we can
assume all S′

l = S′ for a single finite base change S′ → S. Let η′ be the
generic point of S′. We now show that we can glue the families φ′

l to a

family φ′ ∈ QuotV0,P
D±⊂Y(S′) that extends φη ×η η

′. Let Wl over S′ be the
underlying family of φ′

l. Since φ′
l is an extension of φl,η ×η η

′, we have
Wl ×S′ η′ = Wl,η ×η η

′. We let El,± ⊂ Wl be the closure of El,±,η ×η η
′ ⊂

Wl,η ×η η
′; El,± ⊂ Wl is the the pair of relative divisors of Wl ∈ Wl(S

′).
Thus, they are smooth divisor in Wl and El,± ∼= El,± × S′ canonically.

We then form the union ∪n+

l=−n−
Wl; using the canonical isomorphism

El,− ∼= El+1,+, we identify El,− ⊂ Wl with El+1,+ ⊂ Wl+1 for n− < l < n+,
resulting a family, denoted by Y ′ → S′. Let p′ : Y ′ → Y be the projection
induced by p′l : Wl → Y , which exists. In conclusion, our construction of W
(or Y) ensures that (Y ′, p′) ∈ Y(S′).

We let ιl : Wl → Y ′ be the tautological closed immersion. We claim that
we can find a quotient family φ′ : p′∗V0 → F′ so that ι∗l φ

′ ∼= φ′
l. Indeed,

since p′l : Wl → Y is equal to p′ ◦ ιl : Wl → Y ′ → Y , we have canonical iso-
morphism ι∗l p

′∗V0
∼= p′∗l V0. Hence, using the canonical p′∗V0 → ιl∗ι∗l p

′∗V0
∼=

ιl∗p′∗l V0, we obtain quotient sheaf p′∗V0 → ιl∗F′
l. We now verify that as quo-

tient sheaves

(
p′∗V0 → ιl−1∗F′

l−1

)⊗OY′ Oιl−1(El−1,+)(5.23)
∼= (

p′∗V0 → ιl∗F′
l

)⊗OY′ Oιl(El,−).
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(Note ιl−1(El−1,+) = ιl(El,−) ⊂ Y ′.) First, the above two sides are canonically
isomorphic after restricting to fibers over η′ ∈ S′; this is true because the
two sides of (5.23) restricted to fiber over η′ are the quotient φη restricted to
El−1,+ × η = El,− × η ⊂ Yη. On the other hand, since both φ′

l−1 and φ′
l are

families of stable quotients, by Corollary 3.4, both sides of (5.23) are flat
over S′. Therefore, by the separatedness of Grothendieck’s Quot-scheme,
(5.23) holds. Consequently, the desired quotient family φ′ exists.

Finally, we check that φ′ is a family in QuotV0,P
D±⊂Y(S′). The fact that φ′

is admissible follows from Lemma 3.7; that AutY(φ′
η′
0
) is finite follows from

that AutWl
(φ′

l,η′
0
) is finite for l = 0 and (5.22) is finite for l �= 0. This shows

that φ′ ∈ QuotV0,P
D±⊂Y(S′). This completes the proof of Proposition 5.1 for the

stack QuotV0,P
D±⊂Y.

The proof for QuotV,P
X/C is exactly the same. In case φ ∈ QuotV,P

X/C(η) has
its underlying scheme Xη smooth, then the existence of its extension to an

φ′ ∈ QuotV,P
X/C(S

′) for a finite base change S′ → S follows from Lemma 5.5

and 5.6. In case Xη is singular, then it is isomorphic to X[n]0 × η. Like in
the proof of the previous case, we split X[n]0 as union of smooth Δi and Y ;
study the extension problem for the restriction of φ to Δi × η and Y × η,
and glue them to form a desired extension. The proof is exactly the same to
the first part of the proof. This proves the Proposition. �

5.3. The separatedness

We show the separatedness part in Theorems 4.14 and 4.15. By valuative
criteria, this is equivalent to show that the extension of φη to φ constructed
in the previous subsections is unique.

We prove Proposition 5.2 for smooth generic fibers, the others are the
same.

Proof of Proposition 5.2. Let (φ1,X1) and (φ2,X2)∈QuotV,P
X/C(S) be two fam-

ilies of quotients, where S is as before, such that there is a ρη : X1,η → X2,η

in X(η) such that φ1,η = ρ∗ηφ2,η.
Suppose ρη : X1,η → X2,η extends to ρ : X1 → X2, then ρ∗φ2 is a family of

stable quotient sheaves. By the separatedness of the Quot-schemes, we have
ρ∗φ2

∼= φ1. Adding that (ρ∗φ2)η0
is stable, we conclude that ρ : X1 → X2 is

an isomorphism, and the Proposition is done.
Suppose such an extension ρ does not exist. Instead, we will construct

X̄i ∈ X(S), and morphisms hi : X̄i → Xi so that hi,η : X̄i,η
∼= Xi,η and the

arrow h−1
2,η ◦ ρη ◦ h1,η : X1,η → X2,η extends to an arrow h : X̄1

∼= X̄2.
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We express Xi as ξ
∗
iX[ni] induced by ξi : S → C[ni] with ξi(η0) = 0. Let

u be a uniformizing parameter of S; we express

πni
◦ ξi =

(
ci,1u

ei,1 , . . . , ci,ni+1u
ei,ni+1

)
as in (5.1). Because X1,η = X2,η ∈ X(η), we have

(5.24) n :=

n1+1∑
j=1

e1,j =

n2+1∑
j=1

e2,j .

We then define ξ′i and ξ̄i : S → C[n] by the rule

(5.25) π[n] ◦ ξ′i =
(
ci,1u

ei,1 , 1 . . . , 1, ci,2u
ei,2 , 1, . . . , 1, ci,ni+1u

ei,ni+1 , 1, . . . , 1
)
,

where after each term ci,ju
ei,j we repeat 1 exactly ei,j − 1 times, and by

(5.26) π[n] ◦ ξ̄i =
(
ci,1u, u, . . . , u, ci,2u, u, . . . , u, ci,ni+1u, u, . . . , u

)
,

where after each term ci,ju we repeat u exactly ei,j − 1 times.
We let X ′

i = ξ′∗i X[n] and let X̄i = ξ̄∗iX[n]. We describe the relations
between these families. First, since (5.25) has the form of the standard
embedding defined in (2.4), the families X ′

i
∼= Xi ∈ X(S). Next, we let σi,η :

η → Gn
m be defined via

σi,η(u) =
(
uei,1−1, uei,1−2, . . . , 1, uei,2−1, uei,2−2, . . . ,

1, uei,ni+1−1, uei,ni+1−2, . . . 1
)
,

then ξ′i = (ξ̄i)
σi,η . Lastly, because ci,j are elements in Γ(OS)

∗, from the
expression (5.26), there is a σ : S → Gn

m so that ξ̄1 = (ξ̄2)
σ, which induces

an isomorphism h : X̄1
∼= X̄2.

Moreover, because in the coordinate expression of the morphism σi,η :
η → Gn

m, all powers of u are nonnegative, the isomorphisms X̄i,η
∼= Xi,η in-

duced by σi,η and the standard embedding (5.25) extend to morphisms hi :
X̄i → Xi, and the restriction of hi to η0, hi,η0

: X̄i,η0
→ Xi,η0

, is a contraction
of all components Δj ⊂ X̄i,η0

except Δ0, Δei,1 ,Δei,1+ei,2 , . . . ,Δei,1+···+ei,ni+1
.

We now show that the isomorphism φ1,η = ρ∗ηφ2,η extends to (φ1,X1) ∼=
(φ2,X2). We first prove e1,j = e2,j for all j. Indeed, using isomorphism X̄i,η

∼=
Xi,η we define φ̄i,η be the pull back of φi,η to X̄i,η. Let φ̄i on X̄i be the S-flat
completion of φ̄i,η. Such completion exists since the relative Quot-scheme
QuotPXi/S

is proper over S.
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Since φi,η0
is stable, in particular admissible, one checks that the pull

back of φi via hi : X̄i → Xi is flat over S. Then by the separatedness of the
relative Quot-scheme, φ̄i = h∗iφi.

Then since φ̄1,η = h∗φ̄2,η under the isomorphism h : X̄1 → X̄2, we must
have φ̄1 = h∗φ̄2. This implies e1,1 = e2,1, e1,1 + e1,2 = e2,1 + e2,2, etc. Thus
combined with identity (5.24), we conclude n1 = n2 and e1,j = e2,j for all j.
This implies that the arrow X1,η

∼= X2,η in X(η) extends to an arrow X1
∼= X2

in X(S). By the separatedness of the Quot-scheme, we get (φ1,X1) ∼= (φ2,X2)
in QuotV,P

X/C(S). This proves that QuotV,P
X/C is separated. �

5.4. For the stable pairs

We now investigate the properness and separatedness of PP
X/C and PP

D±⊂Y.
Let S = SpecR → C with η0 and η ∈ S be as in the statement of Proposi-
tion 5.1. Let φη : OXη

→ Fη be an element in PP
X/C(η). We indicate how to

find a finite base change S′ → S and a φ′ : OX ′ → F′ in PP
X/C(S

′) so that

φ′ ×S′ η′ = φη ×η η
′.

By definition, φ′ ∈ PP
X/C(S

′) if the following hold:

1) F′ is a flat S′-family of pure one-dimensional sheaves; cokerφ′ has rel-
ative dimension at most zero;

2) cokerφ′ is away from the singular divisor of Xη0
;

3) F′ is normal to the singular divisor of Xη0
;

4) AutX(φ
′
η0
) is finite.

Let Kη = coker(φη) and let Eη ⊂ Yη be its support. We first study the
case where Xη is smooth. In this case, following the proof in [Li02], possibly
after a finite base change of S, which by abuse of notation we still denote
by S, we can find an X ∈ X(S) that extends Xη so that

(a) the closure Eη of Eη in X is disjoint from the singular divisors of Xη0
;

(b) for any added Δ ⊂ Xη0
, we have Δ ∩ Eη �= ∅.

Since the moduli of stable pairs over a projective scheme is projective
(cf. [LP93]), we can extend φη to a φ : OY → F that satisfies (1); because
of (b), (4) holds as well. Suppose (2) is violated for the family φ, then by
repeating the argument in Subsection 5.1, we conclude that by a further
finite base change, which we still denote by S, we can find an extension φ of
φη that satisfies (1), (2) and (4). In case the extension φ does not satisfies (3).
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Then because of (2), φ : OX → F near where F is not normal to the singular
divisor of Xη0

is a quotient homomorphism. Thus we can apply the result
in Subsection 5.1 directly to conclude that we can find a finite base change
S′ → S and an extension φ′ ∈ PP

X/C(S
′) of φη as desired.

The general case for PP
X/C and PP

D±⊂Y is similar to the proof developed
in Section 5. Since it is merely a duplication of the previous argument, we
will not repeat it here. This completes the proof of the separatedness and
the properness of Theorems 4.14 and 4.15.

5.5. The boundedness

We prove the boundedness part in Theorems 4.14, 4.15.

Proposition 5.15. The set QuotV,P
X0/C0

(k) is bounded.

We quote the following known result (cf. [HL97]).

Proposition 5.16. A set of isomorphism classes of coherent sheaves on a
projective scheme is bounded if and only if the set of their Hilbert polynomials
is finite, and there is a coherent sheaf F so that every sheaf in this set is a
quotient sheaf of F.

These two Propositions imply that QuotV,P
X/C(k) is bounded. We prove

Proposition 5.15 by induction on the degree of the polynomial P (v). To
carry out the induction, we need the following lemma. For simplicity, in the
remainder part of this Section, we assume that H on X → C is sufficiently
ample.

Lemma 5.17. Let W be either X[n]0 or Y [n−, n+]0, and let p : W → X0 be
the projection. For any coherent sheaf F on W , there is an open dense subset
U ⊂ |p∗H| such that each divisor V ∈ U has normal crossing singularity; is
smooth away from the singular locus of W , and F is normal to V . Moreover,
if F is normal to the singular divisors of W (resp. the distinguished divisor
of Y [n−, n+]0), so does F|V , viewed as a sheaf on W .

Proof. Given F, we can find a finite length filtration

0 ⊂ F≤0 ⊂ F≤1 ⊂ · · · ⊂ F≤d = F,

where F≤k is the subsheaf of F consisting of elements of dimension at most
k. Let Zk be the support of F≤k; it is closed in W . Because H is sufficiently
ample, |H| is base point free.
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We then let U ⊂ |p∗H| be the open subset of those divisors V ∈ U that
have normal crossing singularities; are smooth away from the singular locus
of W , and do not contain any irreducible component of Zk for all k. By
Bertini’s theorem, U is open and non-empty. For V ∈ U , by Definition 3.1,
F is normal to V if and only if no element of F≤k is supported entirely in
V . Because of the construction, U satisfies the requirement of the lemma.

By the same reason, if F is normal, we can choose U so that in addition
to the requirement stated, we have that for every V ∈ U , all F and F|Di

are
normal to V . Therefore, F|V is normal to Di for all V ∈ U . �

Remark 5.18. Following the proof of the Lemma, one sees that the set U
in the Lemma covers every Di ⊂ X[n]0 (of Y [n−, n+]0) up to finite points
in that

dim
(
Di − ∪S∈US ∩Di

)
= 0.

We state the following lemma due to Grothendieck [HL97].

Lemma 5.19. Let W be a projective scheme with an ample line bundle h.
Let V be a fixed coherent sheaf on W . Let S be the set of those quotients
φ : V → F so that F is pure of dimension d. Suppose there is a constant N
so that for any F ∈ S, its Hilbert polynomial

χh
F(v) = adv

d + ad−1v
d−1 + · · · ,

satisfies |ad| ≤ N and ad−1 ≤ N . Then S is bounded.

Here we use χh
F(v) = χ(F ⊗ h⊗v) to indicate the dependence on the

polarization h of the Hilbert polynomial of F. Also we use (φ,F) to abbre-
viate a quotient sheaf φ : V → F when V is understood.

Corollary 5.20. Let W and V be as in Lemma 5.19, and let N and d ≥ 0
be two integers. Let S be a set of quotient sheaves φ : V → F on W . Suppose
for any (φ,F) ∈ S, every subsheaf of F has dimension ≥ d, and the Hilbert
polynomial χh

F(v) = amvm + · · ·+ a0 satisfies |ai| ≤ N for i ≥ d and ad−1 ≤
N . Then S is bounded.

Proof. We let Sk = {(φ,F) | degχh
F ≤ k, (φ,F) ∈ S}. We prove that Sk are

bounded by induction on k.
When k = d, every sheaf F in the Sd is of pure dimension d. The result

then follows from Lemma 5.19. We now suppose the statement is true for a
k ≥ d; we will show that it is true for k + 1.
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For any quotient (φ,F) ∈ Sk+1, we let F≤k ⊂ F be the maximal subsheaf
of dimension at most k. Since F has dimension at most k + 1, F>k := F/F≤k

is either zero or is pure of dimension k + 1. Also, the quotient homomor-
phism φ : V → F induces a quotient φ>k : V → F>k; we let S′ be the set
{(φ>k,F>k) | (φ,F) ∈ Sk+1}, and let T = {(φ≤k : kerφ>k → F≤k) | (φ,F) ∈
Sk+1}, where φ≤k is induced from φ>k. Let

Sk+1 −→ S′ × T, φ → (φ>k, φ≤k),

which is injective.
Since F≤k has dimension at most k, its Hilbert polynomial χh

F≤k
(v) =

bkv
k + · · · has bk ≥ 0. Since

χh
F>k

(v) = χh
F(v)− χh

F≤k
(v) = ak+1v

k+1 + (ak − bk)v
k + · · · ,

and by assumption ak+1 and ak are bounded, we see that ak − bk is bounded
from above. Applying Lemma 5.19, we see that S′ is bounded. It also implies
that {kerφ>k | (φ,F) ∈ Sk+1} is bounded.

Finally, we consider the quotients (φ≤k : kerφ>k → F≤k) ∈ T. Since F≤k

has dimension at most k, and since the collection {kerφ>k | (φ,F) ∈ Sk+1} is
bounded, we can apply the induction hypothesis to obtain the boundedness
of the set T. Therefore, Sk+1 is bounded since Sk+1 → S′ × T is injective.

�

For any polynomial f(v), we denote [f(v)]>0 = f(v)− f(0), which is
f(v) taking out the constant term.

Lemma 5.21. Let D ⊂ W be a divisor in a smooth variety W ; h be an
ample line bundle on W ; U be a coherent sheaf on W , and B be a finite set
of polynomials in v. Let S be a set of quotients φ : U → E so that for any
(φ,E) ∈ S, E is normal to D and [χh

E(v)]>0 ∈ B. Then SD = {(φ|D,E|D) |
(φ,E) ∈ S} is bounded. Further, suppose {χ(E) | (φ,E) ∈ S} is finite, then
S is bounded.

Proof. For (φ,E) ∈ S, we denote by φ>1 : U → E>1 the induced quotient
homomorphism. We claim that S′ = {(φ>1,E>1) | (φ,E) ∈ S} is bounded.
Indeed, since B is finite, there is a constant M so that for any (φ,E) ∈ S,
the coefficients of χh

E(v) = anv
n + · · ·+ a0 satisfy |ai| ≤ M for i ≥ 1. Since

E≤1 has dimension ≤ 1, χh
E≤1

(v) = b1v + b0 has b1 ≥ 0. Then
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χh
E>1

(v) = χh
E(v)− χh

E≤1
(v) = anv

n + · · ·+ a2v
2 + (a1 − b1)v + (a0 − b0)

has |ai| ≤ M for i ≥ 2 and a1 − b1 ≤ M . Applying Corollary 5.20, we con-
clude that S′ is bounded. Thus, a1 − b1 is bounded; thus by replace M by
a larger constant if necessary, we have |b1| ≤ M .

We now study E|D. As (φ,E) ∈ F, E is normal to D, thus both E≤1 and
E>1 are normal to D; therefore

(5.27) 0 −→ E≤1|D −→ E|D −→ E>1|D −→ 0

is exact. SinceS′ is bounded, the set {(φ>1|D,E>1|D) |(φ,E)∈S} is bounded.
On the other hand, since the leading coefficients b1 of χh

E≤1
(v) for (φ,E) ∈

S satisfy b1 ≤ M , using that the set of effective one-dimensional cycles
in W of bounded degree is bounded, we conclude that the restrictions
E≤1|D form a set of zero dimensional sheaves of bounded length. There-
fore, the set {E≤1|D | (φ,E) ∈ S} is bounded. By (5.27), together with that
{(φ>1|D,E>1|D) |(φ,E)∈S} is bounded, we conclude thatSD={(φ|D,E|D) |
(φ,E) ∈ S} is bounded.

Finally, assuming {χ(E) | (φ,E) ∈ S} is finite, then B finite implies that
{χh

E(v) | (φ,E) ∈ S} is finite. Since h is ample, by Proposition 5.16, we con-
clude that S is bounded. �

Let p : Δ → D be the ruled variety over D used to construct X[n]0; let
D± ⊂ Δ be its two distinguished sections. Denote h = p∗(H|D), where H
is sufficiently ample on X, we form L = h(D+), which is ample. Let V be
a locally free sheaf on X as before, and we denote p∗V = p∗(V|D). Let B
be a bounded set of sheaves of OΔ-modules, and let B be a finite set of
polynomials. For S ∈ |h|, we denote by ιS : S → Δ the embedding.

Lemma 5.22. Let R be a set of quotients φ : p∗V → E on Δ. Suppose every
E ∈ R is normal to D+, χ

h
E|D+

(v) ∈ B, and there is a smooth S ∈ |h| so that

ιS∗(E|S) ∈ B. Then the set {[χL
E(v)]>0 | (φ,E) ∈ R} is finite. Moreover, if

there is an N so that χ(E) ≤ N for all (φ,E) ∈ R, then R is bounded.

Proof. Let (φ,E) ∈ R. By the proof of Lemma 5.17, we can find a smooth
S ∈ |h| so that E is normal to S. Since E is normal to D+, E is normal to
the divisor S +D+. We can also require that E|S is normal to D+. Using
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that L ∼= OΔ(S +D+), we obtain the exact sequence

0 −→ E⊗ L−1 −→ E −→ E|S+D+
−→ 0.

It follows that

(5.28) χL
E|S+D+

(v) = χL
E(v)− χL

E(v − 1).

Using the exact sequence

0 −→ E|D+
(−S ∩D+) −→ E|S+D+

−→ E|S −→ 0,

and ιS∗(E|S) ∈ B, which is bounded, and χh
E|D+

(v) ∈ B, by the standard

argument used in Corollary 5.20, the set of quotients {p∗V→ES+D+
} induced

from (p∗V→E)∈R is bounded. Therefore, the set of polynomials {χL
E|S+D+

(v)

| (φ,E) ∈ R} is finite. By (5.28), the set {[χL
E(v)]>0 | (φ,E) ∈ R} is finite.

This proves the first part of the lemma.
Moreover, when χ(E) ≤ N for all (φ,E) ∈ R, Corollary 5.20 implies that

R is bounded. �

Lemma 5.23. Let φ : p∗V → E be a quotient sheaf on Δ, and E is normal
to both D+ and D−. Suppose there is an open subset U ⊂ |h| such that
every V ∈ U has the following property: V is smooth; E is normal to V ;
dim

(
D− − ∪V ∈UD− ∩ V

)
= 0, and the restriction φ|V : p∗V|V → E|V is Gm-

invariant. Then

χh
E|D−

(v) = χh
E|D+

(v).

Proof. As before, we let E≤1 ⊂ E be the subsheaf of elements of dimension
at most 1, and form the quotient sheaf E>1 = E/E≤1. Let φ>1 : p

∗V → E>1

be the induced quotient homomorphism. We claim that the tautological
p∗p∗E>1 → E>1 is an isomorphism.

Since E is normal to D−, E>1 is normal to D−. Thus we have

0 −→ E>1(−D−) −→ E>1 −→ E>1|D− −→ 0.

Applying p∗, we obtain

0 −→ p∗(E>1(−D−)) −→ p∗E>1 −→ p∗(E>1|D−) −→ R1p∗(E>1(−D−)) = 0.

Here the last term is zero because E>1 is a quotient sheaf of p∗V. We claim
that p∗(E>1(−D−)) = 0. Suppose not, then it is supported on a positive



900 J. Li and B. S. Wu

dimensional subset since Δ → D has dimension one fibers. Let A ⊂ D be an
irreducible positive dimensional component of the support of p∗(E>1(−D−)).
Because dim

(
D− − ∪V ∈UD− ∩ V

)
= 0, the union ∪{p−1(A) ∩ V | V ∈ U} is

dense in p−1(A). Therefore, for an open S ⊂ D such that S ∩A �= ∅, we
have that E|p−1(S)

∼= p∗(E|D−∩S). Thus p∗(E>1(−D−))|S = 0, contradicting
to S ∩A �= ∅. This proves p∗(E>1(−D−)) = 0; consequently, p∗p∗E>1

∼= E>1,
and

χh
E>1|D−

(v) = χh
p∗E>1

(v) = χh
E>1|D+

(v).

Repeating the same argument, we conclude that E≤1 is supported at
finite fibers of p : Δ → D. Since E is normal to D− and D+, E≤1 is normal
to D− and D+ too. Thus χ(E≤1|D−) = χ(E≤1|D+

). Therefore

χh
E|D−

(v) = χh
E>1|D−

(v) + χ(E≤1|D−) = χh
E>1|D+

(v) + χ(E≤1|D+
) = χh

E|D+
(v).

This proves the Lemma. �

In the remainder of this Section, we abbreviate QP := QuotV,P
X0/C0

(k).

Proof of Proposition 5.15. We prove that QP is bounded by induction on
the degree of the polynomial P (v).

Suppose P (v) = c is a constant. Let (φ,F, X[n]0) ∈ QP . Then F is a zero
dimensional sheaf such that its support is away from the singular locus of
X[n]0 and its length is c. The stability of F implies that F|Δi

is nonzero for
every 1 ≤ i ≤ n. Therefore, n ≤ length(F) = c. Applying Proposition 5.16,
we conclude that QP is bounded in this case.

Next we assume that for an integer d, QP is bounded when degP (v) ≤
d− 1. We show that QP is bounded when P (v) has degree d.

Let P be a polynomial of degree d, and let (φ,F, X[n]0) ∈ QP . By
Lemma 5.17, we can find an S ∈ |p∗H| so that it has normal crossing singu-
larity; is smooth away from the singular locus of X[n]0; that F is normal to
S, and the restriction F|S is normal to the singular divisor of S.

Let F′ = ιS∗(F|S) and φ′ : p∗V → F′ be the quotient homomorphism
induced by φ. We have χp∗H

F′ (v) = P (v)− P (v − 1). By our choice of S, F′

is admissible but not necessary stable. We let Λφ ⊂ {1, . . . , n} be the subset
of indices k so that φ′|Δk

is not Gm-invariant; we let nφ = #Λφ ≥ 0, and let

Iφ : {1, . . . , nφ} → Λφ

be the order-preserving isomorphism. Let Λ�
φ be the complement of Λφ. We

then contract all Δi ⊂ X[n]0, i ∈ Λ�
φ, to obtain pφ : X[n]0 → X[nφ]0. Let
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p′ : X[nφ]0 → X0 be the projection. Since φ′ is admissible, and φ′|Δi
is Gm-

invariant for i ∈ Λ�
φ, there is a quotient

(φ′)st : p′∗V −→ F′st such that φ′ = p∗φ(φ
′)st.

Then
(
(φ′)st,F′st, X[nφ]0

) ∈ QP1
, where P1(v) = P (v)− P (v − 1). By the

induction hypothesis, QP1
is bounded. Therefore, there is an N depending

on P only so that

(5.29) nφ ≤ N.

To proceed, we let pΔ : Δ → D be the ruled variety used to construct
X[n]0 with distinguished sections D± ⊂ Δ. Let h = p∗Δ(H|D), where H is
sufficiently ample on X (using H⊗m if necessary), and form L = h(D+),
which is ample. Let Hi = p∗H|Δi

; and let Li = Hi(Di), i > 0. We fix the
tautological isomorphisms

(5.30) ρi : Δ ∼= Δi, so that h = ρ∗iHi, L = ρ∗iLi,

for all intermediate components Δ1, . . . ,Δn of X[n]0.

Sublemma 1. The set {χHi

F|Di

(v) | (φ,F, X[n]0) ∈ QP , i ≤ n+ 1} is finite.

Proof. Let N be as specified in (5.29). We first construct a finite sequence of
finite sets B1, B2, . . . , BN+1 and show that for any (φ,F, X[n]0) ∈ QP , and
any 1 ≤ i ≤ n+ 1, we have χHi

F|Di

(v) ∈ Bk for some k. This will prove the

Sublemma.
Let B1 = {χH0

F|D1

(v) | (φ,F, X[n]0) ∈ QP }. We prove that B1 is a finite

set. Indeed, by induction, we can find S ∈ |p∗H| so that F′ = ιS∗(F|S) is
admissible, and χp∗H

F′ (v) = P (v)− P (v − 1). Restricting to Δ0 = Y , since
(F′)st|Δ0

= F′|Δ0
, the induction hypothesis that QP1

is bounded implies that
{χH0

F′|Δ0

(v) | ((φ′)st, (F′)st, X[nφ]0) ∈ QP1
} is finite. Therefore,

(5.31) {[χH0

F|Δ0

(v)]>0 | (φ,F, X[n]0) ∈ QP } is finite.

SinceH0 is ample on Δ0, using Lemma 5.21, we know that {F|D1
|(φ,F,X[n]0)

∈ QP } is bounded. Therefore, B1 is finite.
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We define Bi≥2 inductively. Suppose we have defined Bk. Using the iso-
morphisms (5.30), we define a set of quotient homomorphisms on Δ:

Rk = ∪i≥1

{
ρ∗i (φ|Δi

) | (φ,F, X[n]0) ∈ QP , χh
ρ∗
i (F|Di

)(v) ∈ Bk

}
.

(Recall that Di ⊂ Δi is identified with D+ ⊂ Δ under ρi (cf. (2.8)).) We
apply the first assertion of Lemma 5.22 to B = Bk and B = ∪i≥1{ρ∗i (φ|Δi

) |
(φ,F, X[n]0) ∈ QP1

} to conclude that the set {[χL
F(v)]>0 | (φ,F) ∈ Rk} is

finite. Then applying Lemma 5.21 to D− ⊂ Δ, we conclude that {(φ,F)|D− |
(φ,F) ∈ Rk} is bounded, which implies that Bk+1 = {χH

F|D−
(v) | (φ,F) ∈

Rk} is finite.
For any (φ,F, X[n]0) ∈ QP and 1 ≤ i ≤ n+ 1, we claim that χHi

F|Di

(v) ∈
Bk for some k ≤ N + 1. To show this, we consider the sequence of polyno-
mials

(5.32) χH1

F|D1

(v), . . . , χ
Hn+1

F|Dn+1

(v).

By Lemma 5.23, for i ∈ Λ�
φ, χ

Hi

F|Di

(v) = χ
Hi+1

F|Di+1

(v); for i = Iφ(k) ∈ Λφ for

some k, χ
Hi+1

F|Di+1

(v) ∈ Bk+1. Since #Λφ ≤ N , we have χHi

F|Di

(v) ∈ ∪N+1
k=1 Bk.

Since each Bk is finite, the Sublemma follows. �

Sublemma 2. There is a constant M > 0 so that for any (φ,F, X[n]0) ∈
QP , then

1) for i ∈ Λ�
φ, we have χ(F|Δi

(−Di)) ≥ 1;

2) χ(F|Δ0
(−Dn+1)) ≥ −M .

3) for i = Iφ(k) ∈ Λφ, χ(F|Δi
(−Di)) ≥ −M .

Proof. We first prove item (1). Let (φ,F, X[n]0) ∈ QP and let i ∈ Λ�
φ. We let

S ∈ |p∗H| and φ′ : p∗V → F′ = ιS∗(F|S) be as the quotient sheaf constructed
at the beginning of the this proof (of Proposition 5.15). By the construction
of Λ�

φ, we know that the restriction (to Δi) (φ
′|Δi

,F′|Δi
) is Gm-invariant. By

Lemma 3.18, χHi

F′|Δi

(v)− χHi

F′|Di

(v) = 0. Since

χHi

F′|Δi

(v) = χHi

F|Δi

(v)− χHi

F|Δi

(v − 1) and

χHi

F′|Di

(v) = χHi

F|Di

(v)− χHi

F|Di

(v − 1),
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the polynomial f(v) = χHi

F|Δi

(v)− χHi

F|Di

(v) then satisfies f(v) = f(v − 1),

which makes it a constant equal to χ(F|Δi
(−Di)). Since F|Δi

is not Gm-
invariant, by Lemma 3.18, χ(F|Δi

(−Di)) ≥ 1.
We now prove item (2). Suppose the lower bound does not exist. Then

there is a sequence (φk,Fk, X[nk]0) ∈ QP

(5.33) χ(Fk|Δ0
(−Dnk+1)) → −∞, when k → +∞.

But by (5.31) and Corollary 5.20, we know that {Fk|Δ0
}k≥1 is bounded;

contradicts to (5.33). Thus item (2) holds.
Suppose item (3) does not hold, then there is a sequence (φk,Fk, X[nk]0)

∈ QP and a sequence 1 ≤ ik ≤ nk such that

(5.34) χ(Fk|Δik
(−Dik)) → −∞, when k → +∞.

Using isomorphisms (5.30), we introduce F̄k = ρ∗ik(Fk|Δik
). Tensoring F̄k

with OΔ(−D+), we obtain a sequence of quotients φ̄k : V̄(−D+) → F̄k(−D+),
where V̄ = p∗ΔV|D, pΔ : Δ → D. By construction, χ(F̄k(−D+)) → −∞. In
particular χ(F̄k(−D+)) is bounded from above.

We claim that the set of polynomials {[χL
F̄k(−D+)

(v)]>0}k≥1 is finite. Once

this is proved, then applying Corollary 5.20 we conclude that {φ̄k}k≥1 is
bounded, which contradicts to χ(F̄k(−D+)) → −∞.

We prove the claim. By Sublemma 1, there is a finite set B so that
χHk

Fk|Dik

(v) ∈ B. Using isomorphism (5.30), we obtain χH
F̄k|D+

(v) ∈ B. Apply-

ing the first assertion of Lemma 5.22, we conclude that {[χL
F̄k

(v)]>0}k≥1 is

finite. Restricting to D+, Lemma 5.21 implies that {χL
F̄k|D+

(v)}k≥1 is finite.

The claim then follows from [χL
F̄k(−D+)

(v)]>0 = [χL
F̄k

(v)]>0 − [χL
F̄k|D+

(v)]>0.

�

We now complete the proof of Proposition 5.15. Let (φ,F, X[n]0) ∈ QP .
Since F is normal to all Di,

(5.35) χ(F) = χ(F|Δ0
(−Dn+1)) + χ(F|Δ1

(−D1)) + · · ·+ χ(F|Δn
(−Dn)).

For i ∈ Λ�
φ, we have χ(F|Δi

(−Di)) ≥ 1; for i ∈ Λφ ∪ {0}, by Sublemma2, we
have χ(F|Δi

(−Di)) ≥ −M (D0 = Dn+1). Since nφ ≤ N , we obtain χ(F) ≥
(N + 1)(−M) + (n−#Λφ), which implies

(5.36) n ≤ χ(F) + (N + 1)M +N.
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The identity (5.35) and Sublemma 2 also gives the bound,

χ(F|Δi
(−Di)) ≤ χ(F) + (N + 1)M +N, 0 ≤ i ≤ n.

Therefore, applying Lemmas 5.21 and 5.22, we conclude that for each i, the
set {F|Δi

| (φ,F, X[n]0) ∈ QP } is bounded. This together with the bound
(5.36) implies that QP is bounded. �

By a parallel argument, we have

Proposition 5.24. The set QuotV0,P
D±⊂Y(k) is bounded.

5.6. The moduli of stable pairs

We prove the boundedness of the moduli PP
X/C and PP

D±⊂Y. Here P (v) is a
degree one polynomial.

Proposition 5.25. The set PP
X/C(k) and PP

D±⊂Y(k) are bounded.

Proof. We work with the case PP
X/C(k). The other is the same. Let P (v) =

av + b. Let (ϕ,F, X[n]0) ∈ PP
X/C(k), let Fi = F|Δi

and Hi = p∗H|Δi
. Then

each χHi

Fi
(v) = aiv + bi has ai ≥ 0, and

(5.37) a = a0 + a1 + · · ·+ an.

Let Λϕ be the set of those k ≥ 1 so that χHk

Fk
(v) has positive degree. Then

by (5.37), nϕ = #Λϕ ≤ a. Let Λ�
ϕ = {1, . . . , n} − Λϕ.

First, we show that for each i ∈ Λ�
ϕ, χ(Fi(−Di)) ≥ 1. Let ϕi : OΔi

→ Fi

be the restriction of ϕ to Δi. Since cokerϕ has zero dimensional support,
χ(cokerϕ) ≥ 0. Hence χ(Fi(−Di)) ≥ χ(Imϕi(−Di)).

For Imϕi, we have the induced quotient homomorphism ϕ′
i : OΔi

→
Imϕi. Applying Lemma 3.18 to ϕ′

i, we get χ(Imϕi(−Di)) ≥ 0. Since ϕi is not
Gm-invariant, either χ(cokerϕ) > 0 or χ(Imϕi(−Di)) > 0. Thus χ(Fi(−Di))
≥ 1.

Next, we let Iϕ : {1, . . . , nϕ} → Λϕ be the order-preserving isomorphism.
We form

Ξk =
{
χ(Fj(−Dj)) | (ϕ,F, X[n]0) ∈ PP

X/C(k), j = Iϕ(k)
}
.

(For k = 0, we agree Iϕ(0) = 0 and D0 = Dn+1.) Applying the same argu-
ment as in Sublemma 2 of the proof of Proposition 5.15 to ϕ′

k, we conclude
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that there is an M > 0 so that for each k ≤ a, inf{χ ∈ Ξk} ≥ −M . (Note
that by the bound #Λϕ ≤ a, Ξk = ∅ if k > a.)

Lastly, since F is normal to Di, we have

(5.38) χ(F) = χ(F0(−Dn+1)) + χ(F1(−D1)) + · · ·+ χ(Fn(−Dn)).

Repeating the argument following (5.35), we prove the boundedness
of PP

X/C(k). �

5.7. Decomposition of the central fiber

In this subsection, we assume that Y is a disjoint union of two smooth
components Y− and Y+. We introduce a canonical decomposition of the
central fiber of the moduli stacks QuotV,P

X/C and PP
X/C over C. We shall focus

on QuotV,P
X/C and omit the details for PP

X/C.
Let

QuotV,P
X0/C0

= QuotV,P
X/C ×C 0

be the central fiber of QuotV,P
X/C over C. We denote CP be the weighted stack

of weights in Λ = Q[m] (polynomials in m) and of total weight P (cf. Sec-
tion 2.5). For each stable quotient φ : p∗V → F in QuotV,P

X/C(k), where F is a

sheaf on X[n]0, it assigns a weight w to X[n]0 by assigning each irreducible
Δl ⊂ X[n]0 (resp. divisor Dl ⊂ X[n]0) the polynomial χH

FΔl
(resp. χH

FDl
).

Since F is admissible, this rule applied to (φ,X ) ∈ QuotV,P
X/C(S) defines a

continuous weight assignment of the family X/S. In particular, the mor-
phism QuotV,P

X/C → C factors through

(5.39) πP : QuotV,P
X/C −→ CP .

We now form the set of splittings of P : Λspl
P , which is the set of triples

δ = (δ±, δ0) in Λ so that δ− + δ+ − δ0 = P . We follow the notation developed
in Subsection 2.5. For any δ ∈ Λspl

P , we form the moduli of stable relative

quotients on D± ⊂ Y± over A
: for any scheme S, we define Quot
δ−,δ0
Y−/A�

(S)

be the collection of (φ;Y,D), where (Y,D) ∈ Y−(S) and φ : p∗V → F is an
S-flat family of stable relative quotients on the pair D ⊂ Y such that for
any closed s ∈ S, χH

Fs
= δ− and χH

Fs|Ds
= δ0. We form Quot

δ+,δ0
Y+/A�

similarly.
By Theorem 4.15, we have

Proposition 5.26. The groupoids Quot
δ±,δ0
Y±/A�

are Deligne-Mumford stacks,
proper and separated, and of finite type.
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Using δ ∈ Λspl
P , we form the stack C†,δ

0 , according to the rule specified in
Section 2. We define

Quotδ
X†

0/C
†
0

= QuotV,P
X/C ×CP C†,δ

0 .

It parameterizes stable quotients φ : p∗V → F on X[n]0 with a node-marking
Dk ⊂ X[n]0 so that the Hilbert polynomials of F restricted to ∪i<kΔi, to
∪i≥kΔi and to Dk are δ−, δ+ and δ0, respectively.

For each δ ∈ Λspl
P , like the case of stable morphisms, we have the gluing

morphism that factors through Quotδ
X†

0/A
†
0

(it originally maps to QuotV,P
X/C

×C 0):

(5.40) Φδ : Quot
δ−,δ0
Y−/A�

×
Quot

VD,δ0
D

Quot
δ+,δ0
Y+/A�

−→ Quotδ
X†

0/A
†
0

,

where QuotVD,δ0
D is the Grothendieck’s Quot-scheme of quotient sheaves

VD = V|D → E with χH
E (v) = δ0.

Using the collection of pairs of line bundles and sections (Lδ, sδ) for
δ ∈ Λspl

P constructed in Proposition 2.19, and let πP be as in (5.39), we have

Theorem 5.27. Let (Lδ, sδ) and the notation be as in Proposition 2.19.
Then

1) ⊗δ∈Λspl
P

π∗
PLδ

∼= OQuotV,P
X/C

, and
∏

δ∈Λspl
P

π∗
P sδ = π∗

Pπ
∗t;

2) as closed substacks, Quotδ
X†

0/A
†
0

= (π∗
P sδ = 0);

3) The morphism Φδ in (5.40) is an isomorphism of Deligne-Mumford
stacks.

For the case of coherent systems, like Quot-schemes, the morphism
PP

X/C → C factors through

(5.41) πP : PP
X/C −→ CP .

For any δ ∈ Λspl
P , we define the moduli of relative stable pairs on D± ⊂ Y±

over A
:
P

δ−,δ0
Y−/A�

and P
δ+,δ0
Y+/A�

.

They are again Deligne-Mumford stacks, proper and separated, and of finite
type; and they both admit an evaluation morphism to the Hilbert scheme
Hilbδ0D via restriction.



Good degeneration of Quot-schemes and coherent systems 907

Accordingly, for δ ∈ Λspl
P , we define

Pδ
X†

0/C
†
0

= PP
X/C ×CP C†,δ

0 .

We have a glueing morphism

(5.42) Φδ : P
δ−,δ0
Y−/A�

×Hilb
δ0
D
P

δ+,δ0
Y+/A�

−→ Pδ
X†

0/C
†
0

.

Theorem 5.28. Let (Lδ, sδ) and the notation be as in Proposition 2.19.
Then

1) ⊗δ∈Λspl
P

π∗
PLδ

∼= OPP
X/C

, and
∏

δ∈Λspl
P

π∗
P sδ = π∗

Pπ
∗t;

2) as closed substacks, Pδ
X†

0/C
†
0

= (π∗
P sδ = 0);

3) The morphism Φδ in (5.42) is an isomorphism of Deligne-Mumford
stacks.

6. Virtual cycles and their degenerations

Let π : X → C and H ample on X be a simple degeneration of projective
threefolds. We fix a degree one polynomial P (v). Applying Theorem 4.14,
we form the good degeneration IPX/C := QuotOX ,P

X/C of Hilbert scheme of sub-

schemes of X/C, of Hilbert polynomial P .
In this section, we construct the virtual class of IPX/C, and use this class

to prove a degeneration formula of the Donaldson-Thomas invariants of ideal
sheaves. For notational simplicity, we only treat the case where the central
fiber X0 is the union of two irreducible components and their intersection
D ⊂ X0 is connected. Our construction of perfect relative obstruction theory
of IPX/C → CP is based on the work of Huybrechts-Thomas on Atiyah class

[HT10]; our proof of degeneration formula follows the proof of a similar
degeneration formula by Maulik, Pandharipande and Thomas in [MPT10];
the formulation of degeneration based on Chern characters follows the work
of Maulik, Nekrasov, Okounkov and Pandharipande in [MNOP06].

As X0 is assumed to have two irreducible components, the normalization
q : Y → X0 has two connected components

Y = Y− ∪ Y+, and D± = Y± ∩ q−1(D).
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6.1. Virtual cycle of the total space

We first construct the relative obstruction theory of IPX/C → CP (cf. (2.28)).
We let

π : X = X×C IPX/C −→ IPX/C, and IZ ⊂ OX

be the universal underlying family and the universal ideal sheaf of IPX/C.
We form the traceless part of the derived homomorphism of sheaves of OX -
modules:

(6.1) E = Rπ∗RHom(IZ , IZ)0[1].

Since X → IPX/C is a family of l.c.i. schemes, and IZ is admissible and of rank
one, by Serre duality, locally E is a two-term perfect complex concentrated
at [0, 1].

Let

LIP
X/C/C

P = τ≥−1LIP
X/C/C

P

be the truncated relative cotangent complex of IPX/C → CP .

Proposition 6.1 ([MPT10, Prop 10]). The Atiyah class constructed in
[HT10] defines a perfect relative obstruction theory

(6.2) φ : E∨ −→ LIP
X/C/C

P .

We let [IPX/C]
vir ∈ A∗IPX/C be the associated virtual class.

Proposition 6.2. Let c �= 0 ∈ C, and let i!c : A∗IPX/C → A∗−1I
P
Xc

be the

Gysin map associate to the divisor c ∈ C. Then i!c[I
P
X/C]

vir = [IPXc
]vir.

Proof. This is because the obstruction theory of IPXc
is the pull back of the

relative obstruction theory of IPX/C → CP via c ∈ C (cf. [BF97]). �

Next we construct the virtual class of the relative Hilbert schemes. In
the subsequent discussion, we use that Y = Y− ∪ Y+ is the union of Y− and
Y+. We let δ = {(δ+, δ0), (δ−, δ0)} be two pairs of polynomials.

We denote by I
δ+,δ0
Y+/A�

the moduli of stable relative ideal sheaves on

D+ ⊂ Y+ of pair Hilbert polynomial (δ+, δ0). For simplicity, we abbreviate
it to Mδ

+. Let LMδ
+/A�δ+,δ0 be the truncated relative cotangent complex of
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Mδ
+ = I

δ+,δ0
Y+/A�

→ A
δ+,δ0
 . Let

π+ : Y+ −→ I
δ+,δ0
Y+/A�

and IZ+
⊂ OY+

be the universal underlying family and the universal ideal sheaf of I
δ+,δ0
Y+/A�

.

Proposition 6.3 ([MPT10]). The Atiyah class in [HT10] defines a per-
fect relative obstruction theory

(6.3) φ+ : E∨
+ := Rπ+∗RHom(IZ+

, IZ+
)0[1]

∨ −→ LMδ
+/A�δ+,δ0.

The obstruction theory defines its virtual class [I
δ+,δ0
Y+/A�

]vir ∈ A∗I
δ+,δ0
Y+/A�

.
By replacing the subscript “+” with “−”, we obtain a parallel theory for
Mδ− := I

δ−,δ0
Y−/A�

.

6.2. Decomposition of the virtual cycle

We study the decomposition of the virtual cycles of the central fiber IPX0/C0
:=

IPX/C ×C 0.

We let Λspl
P be the collection of triples δ = (δ−, δ+, δ0) of polynomials in

A so that δ+ + δ− − δ0 = P . Following the notation developed in Section
5, the morphism IPX/C → C lifts to πP : IPX/C → CP . Fixing a splitting data

δ ∈ Λspl
P , we define the closed substack Iδ

X†
0/C

†
0
via the Cartesian diagram

(6.4)

Iδ
X†

0/C
†
0
:= IPX/C ×CP C†,δ

0 −−−−→ IPX/C⏐⏐� πP

⏐⏐�
C†,δ
0 −−−−→ CP .

We denote by (Lδ, sδ) the pair of the line bundle and the section for δ ∈
Λspl
P constructed in Proposition 2.19. Then C†,δ

0 = (sδ = 0) ⊂ CP ; and by

Theorem 5.27, Iδ
X†

0/C
†
0
= (π∗

P sδ = 0). We define

cloc1 (Lδ, sδ) : A∗IPX/C −→ A∗−1I
δ
X†

0/C
†
0

be the localized first Chern class of (Lδ, sδ).
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We define the perfect relative obstruction theory of Iδ
X†

0/C
†
0
→ C†,δ

0 by
pulling back the relative obstruction theory (6.2) of IPX/C → CP via the dia-

gram (6.4):

(6.5) φδ : E
∨
δ := Rπδ∗RHom(IZδ

, IZδ
)0[1]

∨ −→ LIδ
X

†
0
/C

†
0
/C†,δ

0
,

where

πδ : Xδ → Iδ
X†

0/C
†
0

and IZδ
⊂ OXδ

is the universal family of Iδ
X†

0/C
†
0
, which is also the pull back of (X , IZ) to

Iδ
X†

0/C
†
0
via the arrow in (6.4).

Applying [BF97], we get

(6.6) [Iδ
X†

0/C
†
0
]vir = cloc1 (Lδ, sδ)[I

P
X/C]

vir.

Proposition 6.4. Let ιδ : I
δ
X†

0/C
†
0
→ IPX0/C0

be the inclusion. We have an
identity of cycle classes

(6.7) i!0[I
P
X/C]

vir =
∑

δ∈Λspl
P

ιδ∗[Iδ
X†

0/C
†
0
]vir.

Proof. This follows from item (1) of Theorem 5.27 and the identity (6.6). �
To reinterpret the terms in the summation of (6.7), we will express them

in terms of the virtual class of relative Hilbert schemes. For this, we will use
the Cartesian product (keeping the abbreviation I

δ±,δ0
Y±/A�

= Mδ±)

(6.8)

Mδ− ×Hilb
δ0
D
Mδ

+
u−−−−→ Mδ− ×Mδ

+

f

⏐⏐� ⏐⏐�(ev−,ev+)

Hilbδ0D
�−−−−→ Hilbδ0D ×Hilbδ0D ,

where ev± are the evaluation morphisms and � is the diagonal morphism,
and use the isomorphism (cf. Theorem 5.27)

(6.9) Φδ : Mδ
− ×Hilb

δ0
D
Mδ

+ −→ Iδ
X†

0/C
†
0
.

Note that the relative obstruction theory of Iδ
X†

0/C
†
0
→C†,δ

0 endowsMδ−×Hilb
δ0
D

Mδ
+ → C†,δ

0 a perfect relative obstruction theory; also

(6.10) Mδ
− ×Mδ

+ −→ A
δ−,δ0
 × A

δ+,δ0
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has a perfect relative obstruction theory induced from that of its factors.
We will compare these two obstruction theories.

We continue to denote by Xδ → Iδ
X†

0/C
†
0
with Iδ ⊂ OXδ

(resp. Y± → Mδ±
with I± ⊂ OY±) the universal family of Iδ

X†
0/C

†
0
(resp. Mδ±). We let

Ỹ± = Y± ×Mδ
±
Iδ
X†

0/C
†
0

and Ĩ± = I± ⊗OY± OỸ±
,

where Iδ
X†

0/C
†
0
→ Mδ± is the composite of Φ−1

δ (cf. (6.9)) with the projection;
we let Dδ ⊂ Xδ be the total space of the distinguished (marked) divisor (of
Iδ
X†

0/C
†
0
). We have the short exact sequence

(6.11) 0 −→ Iδ −→ Ĩ+ ⊕ Ĩ−
(1,−1)−→ Ĩ0 −→ 0,

where Ĩ0 := Iδ ⊗OXδ
ODδ

. Because of the admissible requirement, Ĩ0 is an
ideal sheaf of ODδ

, and via the f in (6.8), we have isomorphism as ideal
sheaves of ODδ

:

(6.12) Ĩ0 ∼= IZD
⊗O

Hilb
δ0
D

OIδ
X

†
0
/C

†
0

,

where ZD ⊂ D ×Hilbδ0D is the universal family of Hilbδ0D .

Let πδ : Xδ → Iδ
X†

0/C
†
0
, let π̃± : Ỹ± → Iδ

X†
0/C

†
0
and π̃0 : Dδ → Iδ

X†
0/C

†
0
be the

corresponding projections. According to [MPT10, p.961], we have the fol-
lowing commutative diagram of derived objects

L
∨
Iδ
X

†
0
/C

†
0
/C†,δ

0
[−1] −−−−→ L

∨
Mδ

+/A�δ+,δ0×Mδ
−/A�δ−,δ0[−1] −−−−→ L

∨
Iδ
X

†
0
/C

†
0
/Mδ

+×Mδ
−⏐⏐� ⏐⏐� ⏐⏐�

Rπδ∗RHom(Iδ, Iδ)0 −−−−→ ⊕
−,+Rπ̃±∗RHom(Ĩ±, Ĩ±)0 −−−−→ Rπ̃0∗RHom(Ĩ0, Ĩ0)0,

where the vertical arrows are the dual of the perfect obstruction theories, and
the lower sequence is part of the distinguished triangle induced by (6.11).

We claim that, under the morphism f in (6.8),

(6.13) Rπ̃0∗RHom(Ĩ0, Ĩ0)
∨
0
∼= f∗L�, L� := LHilb

δ0
D /Hilb

δ0
D ×Hilb

δ0
D
,

and via this isomorphism the last vertical arrow in the above diagram is
identical to the canonical arrow

(6.14) L
∨
Iδ
X

†
0
/C

†
0
/Mδ

+×Mδ
−
−→ f∗L∨

�.
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Indeed, since Hilbδ0D is smooth, and the conormal bundle of Hilbδ0D in Hilbδ0D ×
Hilbδ0D via the diagonal Δ is isomorphism to the cotangent sheaf ΩHilb

δ0
D
, we

have L� ∼= ΩHilb
δ0
D
[1].

Next, we let πH : D ×Hilbδ0D → Hilbδ0D be the projection. Then by the
deformation of ideal sheaves of smooth surfaces, the derived objects

Rπ̃H∗RHom(ĨZD
, ĨZD

)∨0 ∼= ΩHilb
δ0
D
[1].

By the isomorphism (6.12), we have canonical isomorphism

Rπ̃0∗RHom(Ĩ0, Ĩ0)0 ∼= f∗Rπ̃H∗RHom(ĨZD
, ĨZD

)0.

Combined, we have (6.13), and that the last vertical arrow is identical to
the (6.14).

Applying [BF97], we have

Proposition 6.5. The perfect relative obstruction theories of Iδ
X†

0/C
†
0
and

of (6.10) are compatible with respect to the fiber diagram (6.8) (using (6.9)).
Consequently, we have the identity

(6.15) [Iδ
X†

0/C
†
0
]vir = �!

(
[Mδ

−]
vir × [Mδ

+]
vir
)
.

We state the cycle version of the degeneration of Donaldson-Thomas
invariants.

Theorem 6.6. Let X/C be a simple degeneration of projective threefolds
such that X0 = Y− ∪ Y+ is a union of two smooth irreducible components. Let
[IPX/C]

vir ∈ A∗IPX/C be the virtual class of the good degeneration, and let � be

the diagonal morphism in (6.8). Then i!c[I
P
X/C]

vir = [IPXc
]vir for c �= 0 ∈ C,

and

(6.16) i!0[I
P
X/C]

vir =
∑

δ∈Λspl
P

�!
(
[Mδ

−]
vir × [Mδ

+]
vir
)
.

Corollary 6.7. Let the situation be as in Theorem 6.6. Suppose Xc are
Calabi-Yau threefolds for c �= 0. Then

(6.17) deg [IPXc
]vir =

∑
δ∈Λspl

P

deg
(
ev−∗[Mδ

−]
vir • ev+∗[Mδ

+]
vir
)
,

where ev± : I
δ±,δ0
Y±/A�

= Mδ± → Hilbδ0D is the restriction morphism, and • is

the intersection pairing in A∗Hilbδ0D .
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Proof. The Theorem follows from Propositions 6.4 and 6.5. The Corollary
follows from the Theorem and that deg i!c[I

P
X/C]

vir = deg i!0[I
P
X/C]

vir. �

6.3. The degeneration formula

We prove Theorem 1.4 in the Introduction, whose formulation is due to
[MNOP06].

Let the situation be as in Theorems 1.4 and 6.6. We define descendant
invariants, following [MNOP06]. We continue to denote by

π : X −→ IPX/C, πX : X −→ X, and IZ ⊂ OX

be the universal family on IPX/C. Since locally IZ admits locally free resolu-
tions of finite length, the Chern character

ch(IZ) : A∗X −→ A∗X

is well defined.
For any γ ∈ H l(X,Z), we define

(6.18) chk+2(γ) : H
BM
∗

(
IPX/C,Q

) −→ HBM
∗−2k+2−l

(
IPX/C,Q

)
(HBM

i is the Borel-Moore homology) via

chk+2(γ)(ξ) = π∗(chk+2(IZ) · π∗
X(γ) ∩ π∗(ξ)),

where π∗ is the flat pullback.
For cohomology classes γi ∈ H li(X,Z) of pure degree li, we define〈
r∏

i=1

τ̃ki
(γi)

〉P

X

=

[
r∏

i=1

(−1)ki+1chki+2(γi) ·
[
IPX/C

]vir]
2

∈ HBM
2

(
IPX/C,Q

)
,

where the term inside the bracket is a homology class of dimension

2 dim
[
IPX/C

]vir − r∑
i=1

(2ki − 2 + li),

and the [·]2 is taking the dimension two part of the term inside the bracket.
This is the family version of the descendent Donaldson-Thomas invariants
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given in [MNOP06]:

〈
r∏

i=1

τ̃ki
(γi)

〉P

Xc

=

[
r∏

i=1

(−1)ki+1chki+2(γi) ·
[
IPXc

]vir]
0

∈ HBM
0

(
IPXc

,Q
)
.

Since P has degree one, we let P (v) = d · v + n. We form the partition
function of descendent Donaldson-Thomas invariants of Xc

Zd

(
Xc; q

∣∣∣∣ r∏
i=1

τ̃ki
(γi)

)
=
∑
n∈Z

deg

〈
r∏

i=1

τ̃ki
(γi)

〉d·v+n

Xc

qn.

Accordingly, for the relative Hilbert schemes I
δ±,δ0
Y±/A�

, we define chk+2(γ)
similarly, and

〈
r∏

i=1

τ̃ki
(γi)

〉δ±

Y±

= ev±∗

(
r∏

i=1

(−1)ki+1chki+2(γi) ·
[
I
δ±,δ0
Y±/A�

]vir)
∈ H∗(Hilbδ0D ,Q).

Let β1, . . . , βm be a basis of H∗(D,Q). Let {Cη}|η|=k be a Nakajima basis of

the cohomology of HilbkD, where η is a cohomology weighted partition w.r.t.
βi. The relative DT-invariants with descendent insertions [MNOP06] are

〈
r∏

i=1

τ̃ki
(γi)

∣∣∣∣ η
〉δ±

Y±

=

[
r∏

i=1

(−1)ki+1chki+2(γi) ∩ ev∗±(Cη) ·
[
I
δ±,δ0
Y±/A�

]vir]
0

,

which form a partition function

Zd±,η

(
Y±, D±; q

∣∣∣∣ r∏
i=1

τ̃ki
(γi)

)
=
∑
n∈Z

deg

〈
r∏

i=1

τ̃ki
(γi)

∣∣∣∣ η
〉d±·v+n

Y±

qn.

Theorem 6.8 (Theorem 1.4). Fix a basis β1, . . . , βm of H∗(D,Q). Let
γi be cohomology classes of X of pure degree li. The degeneration formula
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of Donaldson-Thomas invariants has the following form

Zd

(
Xc; q

∣∣∣∣ r∏
i=1

τ̃0(i
∗
cγi)

)
=

∑
d−,d+; η
d=d−+d+

(−1)|η|−l(η)z(η)

q|η|

· Zd−,η

(
Y−, D−; q

∣∣∣∣ r∏
i=1

τ̃0(i
∗
−γi)

)

· Zd+,η∨

(
Y+, D+; q

∣∣∣∣ r∏
i=1

τ̃0(i
∗
+γi)

)

where ic :Xc→X, i± :Y±→X are the inclusions, η are cohomology weighted
partitions w.r.t. βi, and z(η) =

∏
i ηi|Aut(η)|.

Proof. Since Gysin maps commute with proper pushforward and flat pull-
back, we have

deg i!c

〈
r∏

i=1

τ̃0(γi)

〉P

X

= deg i!0

〈
r∏

i=1

τ̃0(γi)

〉P

X

.

By i!c[I
P
X/C]

vir=[IPXc
]vir, the left hand side term equals to deg

〈∏r
i=1τ̃0(i

∗
cγi)

〉P
Xc

,
which is the Donaldson-Thomas invariants of Xc.

For the other term, we will decompose it into relative invariants using
(6.16). Since the universal family Z ⊂ X has codimension at least 2, the
cohomology class −ch2(IZ) is represented by the codimension 2 cycle [Z],
which splits according to (6.11). Applying the operation

∏r
i=1(−ch2(γi)) to

both sides of (6.16), and using the restriction morphism ev± : I
δ±,δ0
Y±/A�

→
Hilbδ0D , and

〈
r∏

i=1

τ̃0(i
∗
±γi)

〉δ±

Y±

= ev±∗

(
r∏

i=1

(−ch2(i
∗
±γi)) ·

[
I
δ±,δ0
Y±/A�

]vir) ∈ H∗(Hilbδ0D ,Q),

we obtain

deg i!0

〈
r∏

i=1

τ̃0(γi)

〉P

X

=
∑

δ∈Λspl
P

deg

⎛⎝〈
r∏

i=1

τ̃0(i
∗
−γi)

〉δ−

Y−

•
〈

r∏
i=1

τ̃0(i
∗
+γi)

〉δ+

Y+

⎞⎠ .

(6.19)
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Let β1, . . . , βm be a basis of H∗(D,Q), and let η be a cohomology
weighted partition with respect to βi. Following the notation in [MNOP06,
Nak99], we denote

Cη =
1

z(η)
Pδ1 [η1] · · ·Pδs [ηs] · 1 ∈ H∗(Hilb

|η|
D ,Q)

with z(η) =
∏

i ηi|Aut(η)|. Then {Cη}|η|=k is the Nakajima basis of the coho-

mology of HilbkD, and the Kunneth decomposition of the diagonal class
[�] ∈ H∗(HilbkD ×HilbkD,Q) takes the form

[�] =
∑
|η|=k

(−1)k−l(η)z(η)Cη ⊗ Cη∨ .

Since〈
r∏

i=1

τ̃0(i
∗
±γi)

∣∣∣∣ η
〉δ±

Y±

=

[
r∏

i=1

(−ch2(i
∗
±γi)) ∩ ev∗±(Cη) ·

[
I
δ±,δ0
Y±/A�

]vir]
0

is an element in HBM
0 (Hilbδ0D ,Q), applying to (6.19), we have

deg i!0

〈
r∏

i=1

τ̃0(γi)

〉P

X

=
∑

δ∈Λspl
P ;|η|=δ0

(−1)|η|−l(η)z(η) deg

〈
r∏

i=1

τ̃0(i
∗
−γi)

∣∣∣∣ η
〉δ−

Y−

· deg
〈

r∏
i=1

τ̃0(i
∗
+γi)

∣∣∣∣ η∨
〉δ+

Y+

.

Finally, we form the partition functions of these invariants. Notice that
δ− + δ+ − δ0 = P , which accounts for the shift of the power of q. This proves
Theorem 6.8. �

6.4. Degeneration of stable pair invariants

We fix a simple degeneration π : X → C of projective threefolds with a π-
ample H on X; we suppose that X0 = Y− ∪ Y+ is a union of two smooth
irreducible components. For reference, we state the degeneration of PT-
invariants, which is proved in [MPT10].

Recall that the coherent systems we considered are homomorphisms
ϕ : OX −→ F so that F is pure of dimension one and ϕ has finite coker-
nel. Let P be a degree one polynomial. Let PP

X/C be the good degeneration
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of the moduli of coherent systems constructed in this paper. It is a sepa-
rated and proper Deligne-Mumford stack of finite type over C. We use the
relative obstruction theory of PP

X/C → CP introduced in [PT09] to construct

its virtual class [PP
X/C]

vir.

Let π : X → PP
X/C and ϕ : OX −→ F be the universal family of PP

X/C,

and let I• ∈ Db(X ) be the object corresponds to the complex [OX → F] with
OX in degree 0. We denote by LPP

X/C/C
P be the truncated relative cotangent

complex of PP
X/C → CP . In [MPT10, Prop 10], using the Atiyah classes a

perfect relative obstruction theory is constructed:

E∨ := Rπ∗RHom(I•, I•)0[1]∨ −→ LPP
X/C/C

P .

Let [PP
X/C]

vir ∈ A∗PP
X/C be its associated virtual cycle. In the same paper,

for any partition δ = (δ±, δ0), a perfect relative obstruction theory ofP
δ±,δ0
Y±/A�

→ A
δ±,δ0
 is also constructed, which gives its virtual class [P

δ±,δ0
Y±/A�

]vir ∈
A∗P

δ±,δ0
Y±/A�

.

Let c ∈ C and PP
Xc/Cc

= PP
X/C ×C c. Let

i!c : A∗PP
X/C → A∗PP

Xc/Cc

be the Gysin map. By Theorem 5.28, we can decompose PP
X0/C0

as a union of

Pδ
X†

0/C
†
0

, δ ∈ Λspl
P , and obtain the isomorphism (5.42). By going through the

argument parallel to the proof of degeneration formula for Hilbert schemes
of ideal sheaves, Maulik, Pandharipande and Thomas proved in [MPT10]
the degeneration formula of PT stable pair invariants.

Theorem 6.9 (Maulik, Pandharipande and Thomas). Let X/C be
a simple degeneration of projective threefolds such that X0 = Y− ∪ Y+ is a
union of two smooth irreducible components. Then

i!c
[
PP

X/C

]vir
=
[
PP

Xc

]vir ∈ A∗PP
Xc

for c �= 0 ∈ C,

and

i!0
[
PP

X/C

]vir
=

∑
δ∈Λspl

P

�!
([

P
δ−,δ0
Y−/A�

]vir × [
P

δ+,δ0
Y+/A�

]vir)
,

where � : Hilbδ0D → Hilbδ0D ×Hilbδ0D is the diagonal morphism.
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Appendix A. Proof of Lemmas 3.13 and 3.14

Proof of Lemma 3.13. First, because MI ⊗A A0 → M0 is injective and its
image lies in (M0)I0 , MI ⊗A A0 → (M0)I0 is injective. We next show that it
is surjective.

Since MI ⊗A A0 → (M0)I0 is Gm-equivariant, it suffices to show that
every weight � element in (M0)I0 can be lifted to a weight � element in
MI ⊗A A0. Let v ∈ (M0)I0 be a weight � element. We first lift v to a weight
� element v̄ ∈ R0; we write

v̄ = α0 + z1α1 + · · ·+ zp1αp, αi ∈ A[z2]
⊕m.

Let

K = ker{ϕ : R −→ M}, K0 = ker{ϕ⊗A A0 : R0 −→ M0}.

By the definition of (M0)I0 , there is a power zk1 , k > 0, so that zk1 v̄ ∈ K0.
Because M is k[t]-flat, tensoring the exact sequence 0 → K → R → M →
0 with A0, we obtain an exact sequence 0 → K ⊗A A0 → R0 → M0 → 0.
Therefore,

K ⊗A A0 = K0.

We let w ∈ K be a lift of zk1 v̄ ∈ K0. We write w in the form

w = w0 + tw1 + · · ·+ trwr, wi ∈ R′ := B[z1, z2]/(z1z2)
⊕m.

Since M0 only contains elements of non-negative weights, � ≥ 0. Thus w has
weight �+ ka. Since a > 0, and since the weights of wi are �+ ka− bi > ka,
we have wi = zki w

′
i for w′

i ∈ P ′. For w′
0, we can choose it to be w′

0 = α0 +
· · · zp1αp. We let

w′ = w′
0 + tw′

1 + · · ·+ trw′
r.

Then ϕ(w′) ∈ M is a lift of v ∈ (M0)I0 .
We claim ϕ(w′) ∈ M is annihilated by zk1 . This is true because zk1 ·

ϕ(w′) = ϕ(zk1w
′) = ϕ(w) = 0, since w ∈ K. We show that ϕ(w′) is also anni-

hilated by a power of z2. We distinguish two cases. The first is when � > 0.
In this case, the weight of w′

i are �− ib ≥ � > 0, thus z1|w′
i. Hence z2ϕ(w

′) =
ϕ(z2w

′) = 0.
The other case is when � = 0. In this case, we still have z2w

′
i = 0 for

i > 0. We claim that for some h > 0, zh2ϕ(w
′
0) = 0. We pick a zh2 so that
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zh2 v̄ ∈ K0, (this is possible since v ∈ (M0)I0), and then lift zh2 v̄ to a weight
0 element w̃ ∈ K. We write

w̃ = w̃0 + tw̃1 + · · ·+ tsw̃s, w̃i ∈ R′.

Then w̃i>0 has positive weight in R′, thus are annihilated by z2, and z2w̃ =
z2w̃0. Therefore by replacing h by h+ 1, we can assume w̃i>0 = 0, and w̃0

is expressed as an element in B[z2]
⊕m.

Since w̃0 is a lift of zh2 v̄ = zh2α0, and since both are expressed as elements
in A[z2]

⊕m, we have w̃0 = zh2α0. Therefore, since w̃ = w̃0 ∈ K,

zh2ϕ(w
′) = ϕ(zh2w

′) = ϕ(zh2w
′
0) = ϕ(zh2α0) = ϕ(w̃0) = ϕ(w̃) = 0.

This proves that ϕ(w′) lies in MI and is a lift of v ∈ (M0)I0 . This proves the
lemma. �
Propf of Lemma 3.14. Let β ∈ Cgen. Then there are x ∈ K−, tk and zh1 ∈ A
such that

x = tkzh1β mod (tk+1, zh+1
1 ).

Since the modules involved are Gm-equivariant, we can assume that x has
weight ah+ bk. Thus after expressing x as

x = tkzh1β + tk+1β1 + zh+1
1 β2, β1, β2 ∈ B[z1, t],

and plus the weight consideration, we conclude β2 = tk+1β′
2 for a β′

2 ∈
B[z1, t]

⊕m. Therefore, z1x = tk(zh+1
1 β + tβ3) ∈ K, where β3 ∈ B[z1, t]

⊕m.
Since K ⊂ R, we conclude zh+1

1 β + tβ3 ∈ K. In particular, zh+1
1 β ∈ K0 and

β ∈ (K−
0 )(z1) ∩R−

0 . This proves Cgen ⊂ C0.
For the other direction, we let γ ∈ C0. For the same reason, for a positive

h and a weight ah, y ∈ K−
0 , y = zh1γ1 + zh+1

1 γ2, γi ∈ A[z1]
⊕m. Since z1z2 = 0

in B, y ∈ K0. We let ỹ ∈ K be a weight ah lifting of y, expressed in the form

ỹ = (zh1γ1 + zh+1
1 γ2) + tf1 + · · ·+ tqfq, fi ∈ R′.

Since ỹ has weight ah, we conclude that fi = zh+1
1 f ′

i , for some f ′
i ∈ B[z1]

⊕m.
Therefore, ỹ = zh1 (γ + z1γ3), for a γ3 ∈ B[z1, t]

⊕m, and hence

γ + z1γ3 ∈ (K−
(t))(z1) ∩R−

(t).

This implies that γ lies in (3.4), and thus lies in C0. This proves the Lemma.
�
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