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Harmonic maps of conic surfaces with

cone angles less than 2π

Jesse Gell-Redman

We prove the existence and uniqueness of harmonic maps in degree
one homotopy classes of closed, orientable surfaces of positive genus,
where the target has non-positive Gauss curvature and conic points
with cone angles less than 2π. For a homeomorphism w of such a
surface, we prove existence and uniqueness of minimizers in the
homotopy class of w relative to the inverse images of the cone
points with cone angles less than or equal to π. The latter can be
thought of as minimizing maps from punctured Riemann surfaces
into conic surfaces. We discuss the regularity of these maps near
the inverse images of the cone points in detail. For relative min-
imizers, we relate the gradient of the energy functional with the
Hopf differential.

When the genus is zero, we prove the same relative minimization
provided there are at least three cone points of cone angle less than
or equal to π.
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1. Introduction

The study of harmonic maps into singular spaces, initiated in [GS], has
reached a refined state; beyond general existence and uniqueness theorems,
there are regularity and compactness results in the presence of minimal
regularity assumptions on the spaces involved, see, among many others,
[KS], [Mese1], [DM], [W2], and [EF].

Particularly detailed results are available in the case of maps of surfaces.
In [K], Kuwert studied degree one harmonic maps of closed Riemann surfaces
into flat, conic surfaces with cone angles bigger than 2π. He showed that the
minimizing maps can be obtained as limits of diffeomorphisms, and that the
inverse image under a degree one harmonic map of each point in the singular
set is the union of a finite number of vertical arcs of the Hopf differential.
Away from this inverse image the map is diffeomorphism onto its image.
In [Mese1], Mese proved the same when the target is a metric space with
curvature bounded above, in particular when it is a conic surface with cone
angles bigger than 2π. In this paper, we study cone angles less than 2π.

We will state our main theorems assuming for simplicity’s sake that there
is just one cone point. The energy functional is conformally invariant with
respect to the domain metric (see §3.1), so we state all results in terms of
conformal structures on the domain. First, we have

Theorem 1. Let Σ be a closed surface of genus > 0, equipped with a con-
formal structure, c, and a Riemannian metric G, with a conic point p of
cone angle less than 2π and non-positive Gauss curvature away from p. Let
φ : Σ −→ Σ be a homeomorphism. Then there is a unique map u : Σ −→ Σ
which minimizes energy in the homotopy class of φ. This map satisfies

u−1(p) is a single point

and u : Σ− u−1(p) −→ Σ− p is a diffeomorphism.

Second, we have a more refined result for surfaces with cone angles less
than π, which can be thought of as a theorem about maps from punctured
Riemann surfaces.

Theorem 2. Let Σ, c, and G be as in the previous theorem. If the cone angle
at p is less than or equal to π, then for each q ∈ Σ and each homeomorphism
φ of Σ with φ(q) = p, there is a unique map u : Σ −→ Σ with u(q) = p which
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minimizes energy in the rel. q homotopy class of φ (see (2.31) for the defi-
nition of relative homotopy class). This map satisfies

u−1(p) = q

and u : Σ− q −→ Σ− p is a diffeomorphism.

See Theorem 3 in Section 2.2 for a precise restatement of these results,
including multiple cone points and the genus 0 case.

This problem is motivated by the role of harmonic maps in Teichmüller
theory and recent work that extends classical uniformization results to the
case of conic metrics on punctured surfaces. The uniformization theorems
for cone metrics of McOwen and Troyanov, [Mc1], [Mc2], [Tro], recent work
by Schumacher and Trapani, [ST], [ST2], and unpublished work of Mazzeo
and Weiss have shown that where hyperbolic metrics are used in standard
Teichmüller theory, hyperbolic cone metrics can be used to similar effect
in the Teichmüller theory of punctured surfaces. In the unpunctured case,
harmonic maps enter the picture in the works of [Tr], [W1], [W2], and [W3],
in the creation of various functionals and in the important parametrization
of Teichmüller space by holomorphic quadratic differentials. Thus, this paper
lays the groundwork for the extension of these results to the punctured case
if the uniformizing metrics are conic with cone angles less than or equal to π.

The proofs follow the method of continuity, and accordingly the paper
is divided into a portion with a perturbation result and a portion with a
convergence result. In both we make frequent use of the fact that minimizers
as in both theorems solve a differential equation. Let Mconic(p, α) denote
the space of smooth metrics on Σ− p with a cone point at p of cone angle
2πα (see §2.1). The ‘tension field’ operator τ is a second order, quasi-linear,
elliptic partial differential operator, arising as the Euler-Lagrange equation
for the energy functional, which takes a triple (u, g,G) of maps and metrics
to a vector field over u, denoted by τ(u, g,G). For g ∈ Mconic(q, α), G ∈
Mconic(p, α), in Section 5 we show that a diffeomorphism u : (Σ− q, g) −→
(Σ− p,G) subject to certain conditions on the behavior near q minimizes
energy in its rel. q homotopy class if τ(u, g,G) = 0.

The perturbation result is an application of the Implicit Function The-
orem to the tension field operator. Fix g ∈ Mconic(q, α), G ∈ Mconic(p, α)
and a minimizer u as in Theorem 2. The proofs rest mainly in finding the
right space of perturbations of u, call them P(u), and the right space of
perturbations of g, call them M∗(g) ⊂ Mconic(q, α), so that τ acting on
P(u)×M∗(g) has non-degenerate differential in the P(u) direction at (u, g).
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There are two not-quite-correct points in this last sentence. First, to apply
the Implicit Function Theorem, one needs to work with Banach and not
Fréchet manifolds like Mconic(p, α); for a precise definition of the spaces
we use see Section 3. Second, the map τ actually takes values in a bundle,
specifically the bundle E −→ P(u)×M∗(g) whose fiber over (ũ, g̃) is (some
Banach space of) sections of ũ∗TΣ, so in fact we do not show that τ has
surjective differential but rather that τ is transversal to the zero section of E.

If z denotes conformal coordinates near q, the linear operator L can
be written L = |z|2α L̃, where L̃ falls into a broad class of linear operators
known as elliptic b-differential operators, pioneered and elaborated by R.
Melrose, and used subsequently in countless settings. For detailed properties
of b-operators, see [Me] and [Me-Me]. The main difficulty we encounter is
that L is degenerate on a natural space of perturbations. Following the
example of previous authors, including [MP], we supplement the domain
of τ with ‘geometric’ perturbations; in our case, we let it act on a space
C of diffeomorphisms of the domain which look like conformal dilations,
rotations, and translations near the cone point (§3).

As we will discuss in Section 6.2, the natural domains for L are weighted
Banach spaces rcX k,γ

b , which for the moment should be thought of as vec-
tor fields vanishing to order rc near q, with some Hölder regularity naturally
adapted to the geometry. In particular L acts from r1−εX 2,γ

b to r1−ε−2αX 0,γ
b ,

and is Fredholm for sufficiently small ε > 0. Let K denote its cokernel (see
(6.4)). The leading order behavior of a vector field in K near the inverse
image of the cone point is characterized by the homogeneous solutions of a
related ‘indicial’ equation, c.f. Lemma 6.8. A dichotomy between the behav-
ior of elements in K near cone points of cone angle less than π and cone
angle greater than π arises.

Lemma 1.1. Let ψ ∈ K, and suppose that G has only one cone point, p,
with u−1(p) = q. If the cone angle 2πα is bigger than π, then near q

ψ(z) = w +
a

1− α
|z|2(1−α) +O

(
|z|2(1−α)+δ

)
(1.1)

for some w, a ∈ C and δ > 0. If the cone angle is less than π, then near q

ψ(z) = μz +O
(
|z|1+δ

)
(1.2)

for some μ∈C and δ>0. Here and below, O(|z|c) denotes a quantity bounded
by C |z|c for some C > 0 and |z| sufficiently small.
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This lemma is central to the proof of the main theorems, since an accurate
appraisal of the cokernel is needed to show that the geometric perturbations
(the space C described above) are sufficient to give a surjective problem.

To prove energy minimization, both in relative and absolute homotopy
classes, we use an argument from [CH], in which the authors prove unique-
ness for harmonic maps of surfaces with genus bigger than 1. They show that
the pullback of the target metric via a harmonic map can be written as a
sum of two metrics, one conformal to the domain metric and the other with
negative curvature, thereby decomposing the energy functional into a sum
of two functionals which the harmonic map jointly minimizes. In Section 5,
we adapt this argument to prove uniqueness in the conic setting.

For fixed domain and target structures c and G, if the cone point of G has
cone angle less than π, the harmonic maps in Theorem 2 from (Σ, c) to (Σ, G)
are parametrized by points q and rel. q homotopy classes of diffeomorphisms
taking q to p. Denote this space by Harmc,G. Given any diffeomorphism
φ of Σ, let [φ]rel. = [φ;φ−1(p)], and denote the corresponding element of
Harmc,G by u[φ]rel. . One of our main results is a formula for the gradient of
the energy functional on Harmc,G in terms of the Hopf differential Φ(u[φ]rel.)
of u[φ]rel. . (See Section 5 for a definition of the Hopf differential.) It turns
out that Φ(u[φ]rel.) is holomorphic on Σ− q with at most a simple pole at

q. Given a path ut in Harmc,G with u0 = u[φ]rel. , and writing J := d
dt

∣∣
t=0

ut,
the gradient is given by

d

dt

∣∣∣∣
t=0

E(ut) = �2πiRes|qιJΦ
(
u[φ]rel.

)
,(1.3)

where ι is contraction. The one form ιJΦ(u[φ]rel.) is not holomorphic, but

admits a residue nonetheless. By Theorem 1 there is a unique choice [φ]rel.
such that the corresponding solution u is an absolute minimum of energy
in the free homotopy class [φ], and we use (1.3) to prove that u is the
unique element in Harmc,G for which Φ(u) extends smoothly to all of Σ
(§6). In other words, u is the unique critical point of E : Harmc,G −→ R.
We refer to u as an absolute minimizer to distinguish it from the other
relative minimizers in Harmc,G.

As a corollary to (1.3), we prove the following formula for the Hessian of
energy at u. Given a path ut through u0 = u with derivative J = d

dt

∣∣
t=0

ut,

we can define the Hopf differential of J by Φ(J) = d
dt

∣∣
t=0

Φ(ut). We have

d2

dt2

∣∣∣∣
t=0

E(ut) = �2πiRes|qιJΦ(J)(1.4)
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We use (1.4) to prove the non-degeneracy of the linearized residue map near
u (§6), and use this to show that in the cone angle less than π case one can
perturb in the direction of absolute minimizers as the geometric data varies.

In the closedness portion (Section 7), we adapt standard methods for
proving regularity of minimizing maps to the conic setting. First, we prove
that the sup norm of the energy density of a minimizing map is controlled by
the geometric data (see Proposition 7.4). This uses a standard application
of the theorems of DiGiorgi-Nash-Moser and an extension of a Harnack
inequality from [He]. It is noteworthy that if a conic metric is chosen on
the domain, with cone point at the inverse image of the cone point of a the
target via a minimizer from either of the main theorems, then the energy
density is bounded from both above and below if and only if the cone angles
are equal, and we work with such conformal metrics on the domain in what
follows.

Control of the energy density near the (inverse image of) the cone points
is insufficient, and to obtain stronger estimates we proceed by contradiction,
employing a rescaling argument, and the elliptic regularity of b-differential
operators, to produce a minimizing map of the standard round cone. We also
classify such maps, and the map produced by rescaling is not among them;
thus the desired bounds hold near the cone points (see Proposition 7.9).

Finally, we point out that the fact that the minimizers in Theorem 1
take only a single point to the cone point is consistent with the work of
Hardt and Lin on maps into round cones in Euclidean space, see [HL].

This work was completed under the supervision of Rafe Mazzeo for my
thesis at Stanford University, and I would like to thank him for many helpful
discussions, ideas, and suggestions. I would also like to thank Andras Vasy,
Leon Simon and Dean Baskin for their help and encouragement, and Chikako
Mese for a helpful email discussion. I also thank the NSF for the financial
support I received through Rafe Mazzeo’s research grant.

2. Setup and an example

In this section, we give the precise statements of the theorems and outline
the method of proof.

Let Σ be a closed surface, p = {p1, . . . , pk} ⊂ Σ a collection of k distinct
points, and set

(2.1) Σp := Σ− p.
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Given a smooth metric G on Σp, let u : Σ −→ Σ be a continuous map so
that u−1(p) is a single point for all p ∈ p. Let

p′ = u−1(p)

and assume that

u : Σp′ −→ Σp(2.2)

is smooth. Let g be a smooth metric on Σp′ . The differential, du, is a sec-
tion of T ∗Σp′ ⊗ u∗TΣp, which we endow with the metric g−1 ⊗ u∗G. The
Dirichlet energy of u for the metrics g and G is given by

E(u, g,G) =
1

2

∫
Σp′

‖du‖2g−1⊗u∗G dV olg =
1

2

∫
Σp′

gijGαβ
∂uα

∂xi
∂uβ

∂xj
dV olg.

(2.3)

Maps u in (2.2) which are critical points of the energy with respect
to compactly supported perturbations are smooth [Si] and satisfy that the
tension field

(2.4) τ(u, g,G) : = Tr∇(u,g,G)du = Δgu
γ + GΓ

γ
αβ

〈
duα, duβ

〉
g
= 0

where ∇(u,g,G) is the Levi-Cevita connection on T ∗Σp′ ⊗ u∗TΣp with metric
g−1 ⊗ u∗G. Thus, for a C∞ map u as in (2.2),

(2.5) τ(u, g,G) ∈ Γ (u∗TΣp) ,

where Γ(B) denotes the space of smooth sections of a vector bundle B −→ Σ.
That is to say, the tension field is a vector field over u, and it is minus the
gradient of the energy functional in the following sense [EL].

Lemma 2.1 (First Variation of Energy). Let (M, g) and (N, g̃) be
smooth Riemannian manifolds, possibly with boundary, and let u : (M, g) −→
(N, g̃) be a C2 map. If ut is a variation of C2 maps through u0 = u and
d
dt

∣∣
t=0

ut = ψ, then

d

dt

∣∣∣∣
t=0

E(ut, g, g̃) = −
∫
M
〈τ(u, g, g̃), ψ〉u∗g̃dV olg(2.6)

+

∫
∂M

〈u∗∂ν , ψ〉u∗g̃ds,

where ∂ν is the outward pointing normal to ∂M and ds is the area form.



Harmonic maps of conic surfaces 725

Solutions to (2.4) are called harmonic maps.
Much of what follows can be explained by carefully studying the example

of standard cones. For α < 1, the standard cone of cone angle 2πα is the sec-
tor in R2 of angle 2πα with its boundary rays identified. Thus in polar coordi-
nates (r̃, θ̃) we can write this as a quotient R+ × [0, 2πα]/ ((r̃, 0) ∼ (r̃, 2πα)),

with metric gα := dr̃2 + r̃2dθ̃2. Let z̃ = r̃ei
˜θ, and set

z̃ =
1

α
zα(2.7)

Then, in terms of z,

gα = |z|2(α−1) |dz|2 .(2.8)

We denote this space by

Cα := (C, gα)

C∗
α := Cα − {0}(2.9)

LetD ⊂ C be the standard disc of radius one, and letD∗ := D − {0}. We
will discuss the Dirichlet problem for harmonic maps from D to Cα. In this
case (see (3.5)), the tension field operator for a smooth map u : D∗ −→ C∗

α

is

τ(u) = uzz +
α− 1

u
uzuz.

Therefore the identity map id(z) = z is harmonic. Given a map φ : ∂D −→
Cα near to id|∂D, we would like to find a harmonic map

u : D −→ Cα

τ(u) = 0 on D − u−1(0)

u|∂D = φ

(2.10)

Let z = reiθ. Initially, we consider τ acting on maps of the form

u(z) = z + v(z)

v ∈ r1+εC2,γ
b (Cα(1)),

(2.11)

where, given v : D −→ C,

v ∈ rcC2,γ
b (D) ⇐⇒

r−cv has uniformly bounded C2,γ norm
on balls of uniform size with respect to

the rescaled metric gα/r
2α = dr2

r2 + dθ2.

(2.12)
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We will describe this space more precisely in Section 2.1, but we mention
now that in particular |v(z)| = O(r1+ε). We refer to the space of u in (2.11)
by B1+ε. Let B1+ε

0 ⊂ B1+ε be those u with u|∂D = id|∂D, i.e. those u whose
v in (2.11) satisfy v|∂D ≡ 0. Near id we can write B1+ε as the product of
B1+ε
0 × C2,γ(S1;C), the latter being the space of C2,γ Hölder continuous

functions from the circle S1 into C. To be precise, pick a smooth cutoff
function χ with

(2.13) χ(z) ≡ 0 for |z| ≤ 1/2 and χ(z) ≡ 1 for |z| ≥ 3/4.

An open neighborhood of (id, 0) in B1+ε
0 × C2,γ(S1;C) can be be identified

with an open neighborhood of id in B1+ε via the map (u, φ) �→ u+ χφ.
Consider τ acting on a neighborhood of id in B1+ε

0 × C2,γ(S1;C). If the
derivative of τ at id in the B1+ε

0 were an isomorphism onto its image, then
the zero set of τ near id would be a smooth graph over C2,γ(S1;C) by the
Implicit Function Theorem, so for each boundary value sufficiently close to
id we would have a unique solution close to id in form (2.11). This turns
out to be false. The reason for this failure is that form (2.11) is insufficient
to encompass the behavior of solutions. Consider the spaces

D = {Mλ(z) = λz : λ ∈ C}
T = {Tw(z) = z − w : w ∈ C}

and define the two, 2−dimensional spaces using χ from (2.13),

D0 =
{
M̃λ = (1− χ)Mλ(z) + χ · id : |λ− 1| < ε

}
T0 =

{
T̃w = (1− χ)Tw(z) + χ · id : |w| < ε

}
,

(2.14)

where ε is chosen small enough that all these maps are diffeomorphisms of
D. In words, D0 is a space of diffeomorphisms equal to id on ∂D which are
conformal dilations and rotations near the cone point, and T0 is the same
but for conformal translations. The dichotomy between cone angles less than
π and between π and 2π now enters. It turns out that for ε > 0 sufficiently
small

Didτ : T
(
B1+ε
0 ◦ D0

)
−→ r−1+εC0,γ

b (D)(2.15)

is an isomorphism if 0 < 2πα < π
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while

Didτ : T
(
B1+ε
0 ◦ D0 ◦ T0

)
−→ r−1+εC0,γ

b (D)(2.16)

is an isomorphism if 2π > 2πα > π.

In the 0 < 2πα < π case, for boundary values φ near id in C2,γ we can find
solutions of the form u(z) = λz + v(z) while in the latter the solutions are in
the form u(z) = λ(z − w) + v(z − w), i.e. we must move the inverse image
of the cone point.

As we will see in Section 3.1, the precomposition of a harmonic map
u with a conformal map is harmonic. Define Cα(1) = Cα ∩ {z : |z| ≤ 1}.
By (2.8), Cα(1) is conformally equivalent to D, so for the moment we think
of id not as a map from D to Cα but from Cα(1) to Cα, and applying the
inverse of (2.7) to both spaces, think of id as the identity map on the wedge

(2.17) W = {r ≤ 1, 0 ≤ θ ≤ 2πα} .

(For simplicity, we have dropped the tildes from the notation.) We can think
of a boundary map, φ near id as a map from the arc {r = 1, 0 ≤ θ ≤ 2πα}
into C, satisfying the condition that

φ(e2παi) = e2παiφ(1).(2.18)

We decompose φ in terms of the eigenfunctions of ∂2θ which satisfy (2.18),

i.e. we write φ(eiθ) =
∑

j∈Z aje
i(1+ j

α
)θ. Assuming convergence, these are the

values on the arc of the harmonic map

(2.19) u(z) =
∑
j≥0

ajz
1+ j

α +
∑
j>0

a−jz−1+ j

α ,

from the sector into R2. (In the flat metric dr2 + r2dθ2 on the sector, the
tension field of u is simply Δu, so by the decomposition Δ = 4∂z∂z, the sum
of a conformal and an anti-conformal function is harmonic.)

Consider the coefficient a−1. If α > 1/2 then −1 + 1/α < 1, so the term
a−1z

−1+ 1

α is the leading order term in (2.19) at z = 0. The map z−1+ 1

α from
the wedge W into C does not pass to a map of the cone Cα (it wraps around
the wrong way), so u as in (2.19) gives a harmonic map of Cα(1) if and
only if a−1 = 0. The Implicit Function Theorem together with (2.16) can be
read as saying that, after identifying the wedge W with Cα(1) as in (2.7),
composition with a conformal translation z �→ z − z0 can be used to produce
a harmonic map of Cα(1) with boundary value φ close to id.
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When α < 1/2, any power series as in (2.19) gives a map on the cone, so
for any sufficiently regular boundary data near id, there is a harmonic map
of D∗ with that boundary data. To go deeper, as we show in Section 5, the
map u is minimizing among all maps with its boundary values if and only
if the residue of the Hopf differential of u is zero, and a simple computation
shows that (in the case under consideration,)

ResΦ(u) = a−1

(
−1 +

1

α

)
.

That is, if α < 1/2, a−1 is the obstruction to having a minimizer (w.r.t. the
boundary values) on all of D, not just D∗. Thus it is natural, in the case
α < 1/2, to ask if we can solve the augmented Dirichlet problem

u : D −→ Cα

τ(u) = 0 on D − u−1(0)

a−1 = 0

u|∂D = φ

.(2.20)

In fact we can. By (2.15) there is a graph of solutions to (2.10) over T0 ×
C2,γ(S1;C). The solutions lying over T0 × {id} solve (2.10) with identity
boundary value. Call this space S. In Section 6, we show that the map from
S to a−1 has non-degenerate differential. Since it is a map of two dimensional
vector spaces, it is an isomorphism, and we get a smooth graph of solutions
to (2.20) over T0 × C2,γ(S1;C), see Figure 1.

2.1. Conic metrics and minimizing maps

Let

(2.21) D(σ) = {z : |z| ≤ σ} ⊂ C.

The space Ck,γb (D(σ)) was defined above as the space of functions with
Ck,γ norm uniformly bounded on balls of uniform size with respect to the
rescaled metric g/(e2μ |z|2α) = 1

r2dr
2 + dθ2, but here we give an alternative

characterization that is easier to work with. Given f : D(R) −→ C, let

(2.22) ‖f‖C0,γ
b (D(R)) = sup

0<|z|≤R
|f |+ sup

0<|z|,|z′|≤R

|f(z)− f(z′)|
|θ − θ′|γ + |r−r′|γ

|r+r′|γ
.
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S

C2,γ(S1;C)

B1+ε
0 ◦ D0

T0
τ−1(0) ∩ {a−1 = 0}

id

τ−1(0)
C2,γ(S1;C)

τ−1(0)

B1+ε
0id

D0 ◦ T0
(or just D0 if α < 1/2)

Figure 1: Solutions to the augmented equation (2.20) are found by applying
the inverse function theorem to the map from S to a−1.

(Here, as always, z = reiθ, z′ = r′eiθ′ .) For the higher regularity spaces, define

(2.23) ‖f‖Ck,γ
b (D(R)) =

∑
i+j≤k

∥∥∥(r∂r)i∂jθf∥∥∥
C0,γ

b (D(R))

Finally, define the weighted Hölder spaces by

f ∈ rcCk,γb (D(R)) ⇐⇒ r−cf ∈ Ck,γb (D(R))

‖f‖rcCk,γ
b (D(R)) =

∥∥r−cf∥∥
Ck,γ

b (D(R))

(2.24)

The standard cone metric in (2.8) motivates our definition of a conic
metric. Given αj ∈ R+ and νj > 0, a Riemannian metric G on Σp is said to
have a conic singularity at pj ∈ p with cone angle 2παj and type νj if there
are conformal coordinates z centered at pj such that

G = ce2μj |z|2(αj−1) |dz|2

μj = μj(z) ∈ rνjCk,γb (D(σ))

c > 0.

(2.25)

The form (2.25) is invariant under conformal change of coordinates, so our
notion of conic surface is well defined. For convenience, we single out those
coordinates for which c = 1, and we refer to these as normalized conformal
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coordinates. Given a = (α1, . . . , αk) ⊂ (0, 1)k and ν = (ν1, . . . , νk) ∈ Rk+, we
define

Mk,γ,ν(p, a) =

⎧⎨⎩
Ck,γloc metrics on Σp with cone points p
and cone angles 2πa such that in (2.25)

we have μj ∈ rνjCk,γb (D(σ)) for some σ.

⎫⎬⎭(2.26)

Let κG denote the Gauss curvature of G ∈ M2,γ,ν(p, a), and near pj ∈
p, write G = ρ |dz|2 with ρ = e2μ |z|2(α−1). Using κG = −1

ρ∂z∂z log ρ
2 and

z∂z =
1
2 (r∂r − i∂θ), it follows that

(2.27) k ≥ 2 and ν ≥ 2α =⇒ κG ≤ C <∞,

and we will always make this assumption below.
We will work with a subspace of the metrics in (2.26).

Definition 2.2. A function f : D(R) −→ C is polyhomogeneous if f is
smooth in the interior of D and admits an asymptotic expansion

(2.28) f(r, θ) ∼
∑

(s,p)∈E
rs logp ras,p(θ),

where E ⊂ R× N is a discrete set for which each subset {s ≤ c} ∩ E is finite.
In this setup, E is called the ‘index set’ of f , and the symbol ∼ means that

f(r, θ)−
∑

(s,p)∈E,N>s
rs logp ras,p(θ) = o(rN )

The metrics of interest are

Mphg
ν (p, a) =

⎧⎨⎩
C∞
0 metrics on Σp with cone points p

and cone angles 2πa such that in (2.25)
we have μj is polyhomogeneous.

⎫⎬⎭(2.29)

We will look for harmonic maps which have specified behavior near the
inverse images of the cone points. For easy reference, we state this as

Form 2.3. We say that u : (Σ, g) −→ (Σ, G) is in Form 2.3 (with respect
to g and G) if

1) u is a homeomorphism, and writing p′ = u−1(p), u : Σp′ −→ Σp is a
C2,γ
loc diffeomorphism.
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2) For each p ∈ p, if z is a centered conformal coordinate around u−1(p)
w.r.t. g and w is a centered conformal coordinate around p w.r.t. G,
then u is given by

(2.30) w(z) = λz + v(z)

where λ∈C∗ and v∈r1+εC2,γ
b (D(R)) for some sufficiently small ε>0.

In words, in normal coordinates near p and u−1(p), u is a dilation composed
with a rotation to leading order.

Remark 2.4. Writing z̃ = λz in (2.30) reduces to the case λ = 1, but the
variable z̃ is no longer a normalized conformal coordinate for the domain
metric g, i.e. the constant c in (2.25) is not equal to 1. If one is willing to
scale g by a suitible constant factor, then z̃ will be a normalized conformal
coordinate. In what follows we prefer not to do this scaling and to preserve
the λ (except notably in Lemma 6.7 below), because in Section 7, where we
have a sequence of domain metrics, the fact that the corresponding sequences
of λ’s are uniformly bounded is quite subtle.

2.2. Restatement of theorems

Given two maps ui : Σ −→ Σ, i = 1, 2, and a finite subset q ⊂ Σ, consider
the standard relative homotopy relation

u1 ∼q u2 ⇐⇒
u1 is homotopic to u2 via
F : [0, 1]× Σ −→ Σ
Ft(q) = u1(q) for all (t, q) ∈ [0, 1]× q.

(2.31)

If u1 ∼q u2, we say that the two maps are homotopic relative to q (or simply
rel. q). For fixed u1, the set of all u2 satisfying (2.31) is referred to as the
rel. q homotopy class of u1, and is denoted by [u1; q]. By u1 ∼ u2 we mean
that u1 and u2 are homotopic with no restrictions on the homotopy.

Define

p<π = {pi ∈ p | 2παi < π}
p>π = {pi ∈ p | 2παi > π}(2.32)

p=π = {pi ∈ p | 2παi = π}

and assume that

p=π = ∅.
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We discuss the case p=π �= ∅ in Section 8. Our main theorem is the following.

Theorem 3. Assume that genus Σ > 0. For Σ and p as above, let G ∈
Mphg

ν (p, a) have cone angles less than 2π, and κG ≤ 0. Let c be a conformal
class on Σ. Fix a (possibly empty) subset q ⊂ p<π, let w0 : Σ −→ Σ be a
homeomorphism.

If q �= ∅, set q′ := w−1
0 (q). Then there exists a unique energy minimizing

map u in [w0; q
′]. Furthermore,

u−1(pi) is a single point for all i = 1, . . . , k,(2.33)

and

(2.34) u : Σ− u−1(p) −→ Σ− p

is a diffeomorphism.
If q = ∅, there exists an energy minimizing map u in [w0], unique up to

precomposition with a conformal automorphism of (Σ, c). These also satisfy
(2.33) and (2.34).

If Σ = S2 then, assumptions as above, there is a unique energy minimiz-
ing map in the rel. q homotopy class of w0 provided |q| ≥ 3. Again the map
satisfies (2.33) and (2.34).

All of these minimizers are in Form 2.3 with respect to c and G.

A simple argument using the isometry invariance of the energy allows
us to reduce Theorem 3 to the case in which q′ = q and w0 ∼q id. Indeed,
given a homeomorphism w0 : Σ −→ Σ with w−1

0 (q) = q′, let w̃0 be a diffeo-
morphism in [w0; q

′]. (Such a diffeomorphism always exists. When q = ∅,
this is the standard fact that every homotopy of surfaces is homotopic to
a diffeomorphism [BT, chapter 17]. When q �= ∅, if Ft, t ∈ [0, 1] denotes a
free homotopy between w0 and a diffeomorphism, then composing with a
homotopy through diffeomorphisms which takes Ft(q

′) back to q gives the
desired relative homotopy.) If ũ : (Σ, (w−1

0 )∗g) −→ (Σ, G) is the unique mini-
mizer in [id; q], then u := ũ ◦ w−1

0 : (Σ, g) −→ (Σ, G) is the unique minimizer
in [w0; q

′].
Our approach to proving the theorem is to find maps whose tension

fields vanish away from u−1(p). Among diffeomorphisms in Form 2.3 with
vanishing tension field, minimizing energy in the sense of Theorem 3 turns
out to be equivalent to a condition on the Hopf differential of u, which
we discuss now. Given u : Σp′ −→ Σp with τ(u, g,G) = 0 on Σp′ , let u∗G◦
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denote the g-trace-free part of u∗G. Among maps that are C2 away from
the cone points

(2.35) τ(u, g,G) = 0 =⇒ δg (u
∗G◦) = 0,

where δg is the divergence operator for the metric g acting on symmetric
(0, 2)− tensors. Trace-free, divergence-free tensors are equal to the real parts
of holomorphic quadratic differentials w.r.t. the conformal class [g], so in
conformal coordinates, we can write

(2.36) u∗G = e |dz|2 + 2�
(
φ(z)dz2

)
where φ is holomorphic. Parting slightly with standard notation, e.g. from
[W3], we use the symbol Φ to refer to the tensor which in conformal coor-
dinates is expressed φ(z)dz2; this is called the Hopf differential of u. In
Section 5 we will show that, writing p′<π = u−1(p<π), then

Φ(u) is holomorphic on Σ− p′<π with at most simple poles on p′<π.

Our proof of Theorem 3 then relies on the following lemma, proven in Sec-
tion 5.

Lemma 2.5. If genus Σ > 0, given a harmonic diffeomorphism u : (Σp′ , g)
−→ (Σp, G) (not necessarily in Form 2.3,) for any q ⊂ p, write q′ = u−1(q).
Then u is energy minimizing in its rel. q′ homotopy class if and only if the
Hopf differential Φ(u) extends smoothly to all of Σp−q′.

If Σ = S2, the same is true so long as |q| ≥ 3.

Remark 2.6. If q = ∅, this lemma means that u is minimizing in its free
homotopy class if and only if Φ(u) is smooth on all of Σ. We say that such
maps are absolute minimizers.

Thus a diffeomorphism with vanishing tension field on Σp′ is minimizing
in the sense of Theorem 3 if and only if the residues of its Hopf differential
vanish on p′<π − q, i.e. when it solves the augmented equation

(HME(q))

u : Σ −→ Σ a homeomorphism

u ∼q id

τ(u, g,G) = 0 on Σp′

Res|pΦ(u) = 0 for each p ∈ p′<π − q.
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Definition 2.7. When the subset q ⊂ p in Theorem 3 is nonempty, we will
call the corresponding minimizing map u a relative minimizer. The unique
map u′ which minimizes energy in the free homotopy class (which exists by
taking q = ∅ in Theorem 3) will be called an absolute minimizer.

3. The harmonic map operator

In this section we discuss the global analysis of the map τ . We begin by
discussing the invariance under conformal change of the domain metric.

3.1. Conformal invariance

Let g,G ∈ M2,γ,ν(p, a), and suppose that u is a C2 map of Σp. Suppose
we have conformal expressions G = ρ |du|2 at some x ∈ Σp and g = σ |dz|2
and near u−1(q). The energy density (the integrand in (2.3)) in conformal
coordinates is

(3.1) e(u, g,G)(z) :=
1

2
‖du(z)‖2g⊗u∗G =

ρ(u(z))

σ(z)

(
|∂zu|2 + |∂zu|2

)
From this expression it is easy to verify that if

(3.2) (Σ1, g)
C �� (Σ1, g)

u �� (Σ2, G)

z � �� w = C(z) � �� u(w)

for arbitrary surfaces Σi, i = 1, 2 and if C is conformal, then

(3.3) e(u ◦ C, g,G)(z) = |∂zC(z)|2 e(u,C∗g,G)(z).

It follows that

E(u ◦ C, g,G) = E(u,C∗g,G) = E(u, g,G).(3.4)

Now consider the tension field in conformal coordinates [SY]

τ(u, g,G) =
4

σ

(
uzz +

∂ log ρ

∂u
uzuz

)
(3.5)

The tension field enjoys a point-wise conformal invariance; in the situation
of (3.2), if at a point z0 we have ∂zC(z0) = 0, then

(3.6) τ(u ◦ C, g,G) = τ(u,C∗g,G) ◦ C
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3.2. Global analysis of τ

Given a diffeomorphism ũ0 : (Σp, g0) −→ (Σp′ , G̃) solving HME(q), we will

now discuss spaces of maps and metrics near the triple ũ0, g0, G̃. To avoid
tedious repetition below, we give a name to our main assumption on the
metrics and maps.

Assumption 3.1. 1) G ∈ M2,γ,ν(p, a) with αj < 1 for each 2παj ∈ a,
and νj > 2αj (see Section 2.1)

2) g0 is also in M2,γ,ν(p, a).

Note that the identity map id : (Σp, g0) −→ (Σp, ũ
∗
0G̃) solves HME(q)

and is still in Form 3.1. We focus our attention on such a triple (id, g0, G0).
Thinking informally for a moment, note that, by (2.5), τ(u, g,G) lies in

a vector space that depends on u. Letting u vary, τ is most naturally viewed
as a section of a vector bundle. We will now define precisely the domain of
τ and the vector bundle E in which it takes values.

Fix coordinates zj near each pj ∈ p, conformal with respect to g0, and
let zj = rje

iθj . Let wj be conformal coordinates for G near pj . (We will often
omit j from the notation when it is understood that we work with a fixed
cone point.) Given any u in Form 2.3 with respect to g0 and G0, we define
the Banach space rcX k,γ

b (u) for any c ∈ Rk by

ψ ∈ rcX k,γ
b (u) ⇐⇒

⎧⎨⎩
ψ ∈ Γ(u∗TΣp)

ψ ∈ Ck,γloc away from u−1(p)

ψ ∈ rcjCk,γb (D(σ)) near pj ∈ p,

(3.7)

for some σ > 0.

Remark 3.2. We will often write r1+εX k,γ
b (u) for a positive number ε, by

which we mean rcX k,γ
b (u) where cj = 1 + ε for all j. Given δ ∈ R, by c > δ

we mean that cj > δ for all j.

• Let B1+ε(u0) be the space of perturbations of u0 defined by

(3.8) B1+ε(u0) =
{
expu0

ψ | ψ ∈ r1+εX 2,γ
b (u0), ‖ψ‖r1+εX 2,γ

b
< δ

}
.

The δ > 0 is a fixed number, small enough that all the maps in B1+ε(u0)
are diffeomorphisms of Σp. Note that

(3.9) Tu0
B1+ε(u0) = r1+εX 2,γ

b (u0)
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• We also need automorphisms of Σ, analogous to those in (2.14), that
are locally conformal near p with respect to g. Scaling the domain met-
ric g0 by a constant, we may assume that all the conformal coordinates
zj are valid on the unit disc. Let χ be a cutoff function with χ(z) ≡ 1
for |z| < 1 and χ(z) ≡ 0 for |z| > 3/4. Writing λ = (λ1, . . . , λn) ∈ C|p|,
there is an ε > 0 so that if |θj − 1| < ε for all j, then the map defined
locally by

(3.10) Mλ(zj) = χ(zj)λjzj + (1− χ(zj))zj

is a local diffeomorphism and coincides with the identity when |z| >
3/4. Extending Mλ by the identity, we have a |p| complex dimensional
space,

(3.11) D := {Mλ : |λj − 1| < ε for all j}

satisfying (3.10) near pj . Similarly, given ζ = (ζ1, . . . , ζp) ∈ C|p|, there
is an ε so that if |ζj | < ε for all j, the maps defined locally by

(3.12) Tζ(zj) = χ(zj)(zj − ζj) + (1− χ(zj))zj

is a local diffeomorphism and coincides with id outside, |ζj | > 3/4.
Extending Tζ by the identity, we have a space

(3.13) T := {Tζ : |ζj | < ε for all j}

satisfying (3.12) near pj . For any subset p̃ ⊂ p, define T
˜p ⊂ by the

condition that that ζj = 0 for pi �∈ p̃. This can be done in such a way
that

(3.14) T = T>π ◦ T<π ◦ T=π.

where these are, respectively, spaces of local conformal translations
near p<π, p=π, and p>π. Finally, set

(3.15) C := D ◦ T
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• Finally, given h0 ∈ Mk,γ,ν(p, a), define a subspace

M∗
k,γ,ν(h0, p, a) ⊂ Mk,γ,ν(p, a)

as follows. Let Dj = {zj ≤ 1} where now zj are conformal coordinates
for h0 near pj .

M∗
k,γ,ν(h0, p, a) =

{
h ∈ Mk,γ,ν(p, a)

∣∣∣∣ id|Dj
: (Dj , h0) −→ (Σ, h)

is conformal for all j

}
(3.16)

In words, this means the conformal coordinates for h0 near p are
conformal coordinates for h. This definition may seem arbitrary, but
as we will see in Section 9, it is motivated by the requirement that τ
be a continuous map.

To clarify the relationship between M∗
k,γ,ν(h0, p, a) and Mk,γ,ν(p, a),

we can construct, locally near h0, a smooth injection from an open ball
U in Mk,γ,ν(p, a) into Diff0(Σ; p)×M∗

k,γ,ν(h0, p, a) by uniformizing locally
around p. To be precise, given any h ∈ Mk,γ,ν(p, a), let vh : Dj −→ (Dj , h)
be the solution to the Riemann mapping problem normalized by the con-
dition that vh(0) = 0 and vh(1) = 1. Let χ : Dj −→ R be a smooth cutoff
function with χ ≡ 1 near 0 and χ ≡ 0 near ∂Dj . Consider the map

ṽh(z) =

{
χ(zj)vh(zj) + (1− χ(zj)) zj on Dj

id elsewhere

Then ṽh is well-defined, and is a diffeomorphism if ‖vh − id‖C∞(D) < ε. We
have

Lemma 3.3. The map — defined locally near h0 — given by

Mk,γ,ν(p, a) −→ Diff0(Σ; p)×M∗
k,γ,ν(h0, p, a)

h �−→ (ṽh, ṽ
∗
hh)

is an isomorphism onto its image on a ball near h0.

Proof. This follows from the fact that the solution to the Riemann mapping
problem has C∞ norm controlled by the distance from h to h0 [TII]. �
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Note that, by construction, id : (Σ, h0) −→ (Σ, ṽ∗hh) is conformal near p.
With these definitions, we consider

(3.17)
τ :

(
B1+ε(u0) ◦ C

)
×M∗

2,γ,ν(g0, u
−1(p), a)×M∗

2,γ,ν(G0, p, a) −→ E

(u, g,G) �−→ τ(u, g,G),

where π : E −→
(
B1+ε(u0) ◦ C

)
×M∗

2,γ,ν(g0, u
−1(p), a)×M∗

2,γ,ν(G0, p, a) is
the bundle whose fibers are

(3.18) π−1(u ◦ C, g,G) = r1+ε−2aX 0,γ
b (u)

In Section 9, we will prove

Proposition 3.4. Let (u0, g0, G0) solve (HME(q)) and satisfy Assump-
tion 3.1. Then the map (3.17) is C1.

3.3. Proof of Theorem 3

Let c be any conformal structure on Σ and G ∈ Mphg
ν (p, a) any metric sat-

isfying the hypotheses of Theorem 3. Given q ⊂ p with q �= ∅ (resp. q = ∅),
we would like to find a map u : (Σ, c) −→ (Σ, G) that minimizes energy in
the rel. q homotopy class of the identity (resp. the free homotopy class of the
identity.) We will do so by varying the conformal structure of the domain,
as follows. Let c0 := [G] be the conformal class of G, and let ct, t ∈ [0, 1] be
a smooth path of conformal structures from c0 to c1 = c. (That the space of
conformal structures is connected follows immediately from the convexity of
the space of metrics.) Finally, define

H(q) =

{
t ∈ [0, 1]

∣∣∣∣ there is a map ut : (Σ, ct) −→ (Σ, G)
so that (ut, ct, G) satisfies (HME(q)).

}
(3.19)

The following is a consequence of Propositions 4.4 and 7.2

Proposition 3.5. If genus Σ > 0, H(q) is closed, open, and non-empty. If
Σ = S2, then the same is true provided |q| ≥ 3.

Remark 3.6. H(q) is non-empty since c0 = [G], so id : (Σ, c0) −→ (Σ, G) is
conformal and thus a global energy minimizers in its homotopy class, [EL].

We can now prove Theorem 3 modulo the proofs of Propositions 3.5
and 5.2.
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Proof of Theorem 3. The content of Proposition 5.2 is that solutions to
(HME(q)) are minimizing in their rel. q (or free if q = ∅) homotopy classes,
and that such minimizers are unique in the appropriate sense. Thus it suf-
fices to solve Equation (HME(q)), but Proposition 3.5 implies that a solution
always exists. �

4. Openness via non-degeneracy

Our proof that H(q) in (3.19) is open relies on Propositions 4.1 and 4.3. We
state these now and use them to prove openness.

Let (u0, g, G) solve (HME(q)) with u0 in Form 2.3. Let ut be a C1 path
in B1+ε(u0) ◦ D ◦ T>π and write ψ := u̇0. Define

(4.1) Lψ :=
d

dt

∣∣∣∣
t=0

τ(ut, g, G).

Assume, as discussed at the beginning of Section 3.2, that u0 = id. By (3.9),
the domain of L is T

(
B1+ε ◦ D ◦ T>π

)
= r1+εX 2,γ

b + TidD + TidT>π. We will
see that

(4.2) L : r1+εX 2,γ
b + TidD + TidT>π −→ r1+ε−2aX 0,γ

b

is bounded
To state our non-degeneracy result, we recall that a conformal Killing

field for g is a vector field C satisfying LCg = μg for some function μ, where
L denotes the Lie derivative. This is the derivative of the conformal map
equation F ∗

t g = eμtg for some family Ft with F0 = id. It is well known that
for surfaces the conformal killing fields are exactly the tangent space to the
identity component of the conformal group,

(4.3) Conf0 =
{
C : (Σ, g) −→ (Σ, g) : C∗g = e2μg

}
This space contains only the identity map if genus Σ > 1 and is two or three
dimensional if the genus is 1 or 0, respectively. Our first non-degeneracy
result is

Proposition 4.1. Notation as above, if genus Σ ≥ 2 then (4.2) is an iso-
morphism. If genus Σ = 1 then the kernel (4.2) is the space of conformal
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Killing fields and

(4.4) L
(
T
(
B1+ε ◦ D ◦ T>π

))
⊕

(
TConf0 ∩ r1+ε−2aX 0,γ

b

)
= r1+ε−2aX 0,γ

b .

If genus Σ = 0 and |p<π| ≥ 3 then (4.2) is an isomorphism.

Proposition 4.1 is proven in Section 6.5 below.
To state the second non-degeneracy result, Proposition 4.3, we begin by

describing the space of harmonic maps near a given solution to (HME(q))
with fixed geometric data, see (4.10). Proposition 4.1 says that the map (4.2)
is almost surjective. Though it is not in general surjective, in the cases of
interest here, the relevant conclusion of the Implicit Function Theorem is
true.

Lemma 4.2. Let (u0, g0, G) solve (HME(q)) and satisfy Assumption 3.1.
If genus Σ = 0, assume that |p<π| ≥ 3. Then there is an open neighborhood
N of (u0, g0) in

(
B1+ε(u0) ◦ C

)
×M∗

2,γ,ν(g0, u
−1(p), a) such that

τ−1(0) ∩N is a smooth Banach manifold.

Excluding the case of genus Σ = 1 and p<π = ∅, there is an open set
U ⊂ T<π ×M∗

2,γ(g0, p, a) and a map graphing zeros of the tension field τ ,

S : U −→ B1+ε(u0) ◦ D ◦ T>π
(T, g) �−→ u with τ(u, g,G) = 0,

(4.5)

so that u = ũ ◦D ◦ T ′ ◦ T , where T ′ ∈ T>π, D ∈ D, ũ ∈ B1+ε(u0).
If Σ = 1 and p<π = ∅, the solutions form a graph over an open subset

of M∗
2,γ(g, p, a)× Conf0(g0) (the identity component of the conformal group

for g0.)

Proof. If genus Σ > 1, then TConf0 = ∅ and (4.2) is an isomorphism, so the
Implicit Function Theorem applies directly.

If genus Σ = 0 and |p<π| ≥ 3, then TConf0 ∩ r1+ε−2aX 0,γ
b = ∅ since sec-

tions of r1+ε−2aX 0,γ
b vanish at p<π, and the only conformal Killing field

vanishing at three points is identically zero. Thus, again the IFT applies
Now suppose genus Σ = 1. Let {Ci} be a basis for TConf0 ∩ r1+ε−2aX 0,γ

b .
Note that

(4.6) TConf0 ∩ r1+ε−2aX 0,γ
b =

{
TConf0 if p<π = ∅

{0} if p<π �= ∅
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(Since conformal Killing fields are nowhere vanishing.) Thus if p<π �= ∅ we
can again apply the Implicit Function Theorem.

Finally, assume that p<π = ∅ and genus = 1. In this case T>π = T . Con-
sider the quotient bundle Ẽ whose fiber over (u, g,G) is given by Eu/Vu,
where

Vu := u∗TConf(g) ⊂ r1−ε−2aX 2,γ
b (u)

Let π : E −→ Ẽ be the natural projection. Proposition 4.1 says that the dif-
ferential of the composition π ◦ τ in the direction of B1+ε ◦ D ◦ T is an iso-
morphism. Thus the zero set of π ◦ τ near (u0, g, G) is a smooth graph over
a neighborhood of M∗

2,γ,ν(g0, p, a), so for each g ∈ M∗
2,γ,ν(g0, p, a) there is a

map u = ũ ◦D ◦ T with T such that

(4.7) τ(u, g,G) ∈ Vu.

We will show that (4.7) implies that τ(u, g,G) = 0. Suppose that τ(u, g,G) =
u∗C for some C ∈ TConf(g). Let ft ⊂ Conf0 be a family with d

dt

∣∣
t=0

ft = C.
By the conformal invariance of energy, (3.4), we have.

(4.8)
d

dt

∣∣∣∣
t=0

E(u ◦ ft, g, G) = 0

On the other hand, we will show using the first variation formula (2.1)
and (3.4) that

d

dt

∣∣∣∣
t=0

E(u ◦ ft, g, G) =
∫
Σ
〈τ(u, g,G), u∗C〉

√
gdx(4.9)

= ‖u∗C‖2L2 ,

with L2 norm as in (6.29), below. Some care is needed in the proof since
in general the boundary term in the first variation (2.1) can be singular.
We postpone the rigorous computation to Section 6.4, where several similar
computations are done at once, see Lemma 6.11. This implies that τ−1(0)
is a smooth manifold and thus completes the proof. �

Fix q ⊂ p<π, and let Tp<π−q := {Tw : wi = 0 for pi ∈ p<π − q}. Given the
identification of Tp<π−q with a ball U ⊂ C|p<π−q| around the origin, if U is
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sufficiently small we can define a 2 |p<π − q|-dimensional manifold of har-
monic maps fixing q by

(4.10) Harmq = {uw := S(Tw, g0) : w ∈ U} ,

We identify the tangent space Tu0
Harmq with C|p<π−q| by mapping w ∈

Cp<π−q to the Jacobi field

(4.11) Jw :=
d

dt

∣∣∣∣
t=0

utw.

Consider the residue map,

Resu−1
w (p<π−q) : Harmq −→ C

|p<π−q|

uw �−→ Res|u−1
w (p<π−q)Φ(uw),

where Φ(uw) is the Hopf differential defined in (2.35)–(2.36). Differentiating
Res at u0 gives

DResp<π−q : Tu0
Harmq. −→ C

|p<π−q|

Jw �−→ Res(Φ(Jw)).
(4.12)

(The Jw also have Hopf differentials, defined by Φ(Jw) =
d
dt

∣∣
t=0

Φ(utw).) We
will prove the following

Proposition 4.3. For any Jacobi field Jw as above, if Res(Φ(Jw)) = 0 ∈
C|p<π−q| then Jw ∈ TConf0, i.e. Jw is a conformal Killing field.

Proposition 4.12 is proven in Section 6.6 below.
Assuming for the moment that Propositions 4.1 and 4.3 are true, we can

now prove

Proposition 4.4. H(q) in (3.19) is open.

Proof. Given t0 ∈ H(q), let g0 ∈ ct0 be a metric satisfying Assumption 3.1.
(See Section 3.3 for definitions.) We now use Lemma 3.3; there is a small
δ > 0 and a path of diffeomorphisms ṽt, each isotopic to the identity, for
t ∈ (t0 − δ, t0 + δ), such that the pullback conformal structures ṽ∗t ct have the
property that id : (Σ, ct0) −→ (Σ, ṽ∗t ct) is conformal near p. Let g̃t ∈ ṽ∗t ct be
any family of metrics that equal the standard conic metric of cone angle αj on
the conformal ball Dj near pj . This can be done uniformly for t near t0 since
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all the conformal structures ṽ∗t ct are equal. Thus g̃t ∈ M∗
2,γ,ν(g0, p, a). We

claim that for t near t0 there exists a unique solution ũt : (Σ, g̃t) −→ (Σ, G)
to (HME(q)). Assuming this for the moment, the proof is finished, since(
ṽ−1
t

)∗
g̃t ∈ ct, and

(4.13) ut := ũt ◦ ṽ−1
t : (Σ,

(
ṽ−1
t

)∗
g̃t) −→ (Σ, G)

solves (HME(q)) and the zeroes of the Hopf differential of ũt are the same
as those of ut. (See Section 5, where this last fact is made obvious.) Thus
the proposition is proven modulo the existence of ũt.

Consider the manifold Harmq of harmonic maps from (Σ, g̃t0) to (Σ, G)
that fix q. If q = p<π, the existence of the ũt is implied by Lemma 4.2.

Assume q �= p<π. In all the remaining cases under consideration except
for genus 1 and q = ∅, Proposition 4.3 implies that DResp<π−q : Tu0

Harmq

−→ C|p<π−q| is injective (and thus an isomorphism since the two spaces
have the same dimension.) This is simply because in all these cases there
are no conformal Killing fields in Tu0

Harmq. (If genus > 1 there are no non-
trivial conformal Killing fields. For genus 1, vectors in Tu0

Harmq fix q are
only conformal Killing if they are identically zero.) The Implicit Function
Theorem then implies that the set

{
τ−1(0)

}
∩
{
Res−1

p<π−q(0)
}

is locally a
graph over Tq ×M∗

2,γ,ν(g0, p, a), and therefore there exists a ũt as above.
Finally, suppose that genus = 1 and q = ∅. We have already coverd the

case p<π = q, so assume that p<π �= ∅. Lift to the universal cover of Σ, which
we can take to be C, and let z denote the coordinate there. By integrating
around a fundamental domain, we claim that, writing φwdz

2 = Φ(Jw) then

(4.14)
∑

pi∈p<π

Res|piφw = 0.

This follows immediately from the fact that the deck transformations are
z �→ z + z0 for some z0, so φw is actually a periodic function with respect
to the deck group. Define a subset V ⊂ C|p<π−q| by V = span〈(1, . . . , 1),
(i, . . . , i)〉. Thus by (4.14), V ⊥ = DRes(THarmq), where the orthocom-
plement is taken with respect to the standard hermitian inner product on
C|p<π−q|. Letting X ⊂ Harmq be any subspace whose tangent space is com-
plimentary to TConf0, by Proposition 4.3 and the fact that TConf0 has one
complex dimension,

DRes: THarm′
q −→ V ⊥

is an isomorphism, and again the existence of the ũt follows from the Implicit
Function Theorem. �
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5. Uniqueness and convexity

The main result of this section is Proposition 5.2, which states that if
(u, g,G) is a solution to (HME(q)) in Form 2.3 satisfying Assumption 3.1,
then, up to conformal automorphism, u is uniquely energy minimizing in its
rel. q homotopy class.

Let (u, g,G) solve (HME(q)) and satisfy Assumption 3.1. In conformal
coordinates, (3.1) yields

u∗G = e(u)σ |dz|2 + 2�ρ(u)uzuzdz2.(5.1)

where g = σ |dz|2. The Hopf differential (see (2.36)) thus satisfies

Φ(u) := φ(z)dz2 = ρ(u)uzuzdz
2.(5.2)

It follows directly (see Section 9 of [S]) that for z0 ∈ Σp

τ(u, g,G)(z0) = 0 =⇒ ∂zφ(z0) = 0

∂zφ(z0) = 0 & J(u)(z0) �= 0 =⇒ τ(u, g,G)(z0) = 0,
(5.3)

where J(u)(z0) is the Jacobian determinant of u. Thus among local diffeo-
morphisms the vanishing of the tension field is equivalent to the holomor-
phicity of the (locally defined) function φ. By Form 2.3, near p ∈ p we have
u(z) = λz + v(z) with λ ∈ C∗ and v(z) ∈ r1+εC2,γ

b for some ε > 0. By the

definition of C2,γ
b and ∂z =

1
2z (r∂r − i∂θ),

φ(z) =
(
|λz|2(α−1) + o(|z|2(α−1))

)
(λ+ o(1))O(|z|ε)(5.4)

= O(|z|−2+2α+ε).

Since −2 + 2α+ ε > −2, the function φ has at worst a simple pole at z = 0.
If α ≥ 1/2 then −2 + 2α+ ε > −1, so φ extends to a holomorphic function
over p. Thus we have proven

Lemma 5.1. Let Φ(u) be the Hopf differential of a solution (u, g,G) to
(HME(q)) in Form 2.3, with G ∈ M2,γ,ν(p, a).

Φ(u) is holomorphic on Σ− p<π with at worst simple poles on p<π.

We will prove
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Proposition 5.2. Let (u, g,G) solve (HME(q)) with u in Form 2.3, and
assume that ResΦ(u)|q �= 0 and that Φ(u) is holomorphic on Σq.

If q �= ∅, then for any w : Σ → Σ with w ∼q u (see (2.31); in particular
w|q = u|q) we have

E(u, g,G) ≤ E(w, g,G)

with equality if and only if u = w.
If q = ∅ and w : Σ −→ Σ satisfies w ∼ u, then

E(u, g,G) ≤ E(w, g,G)

with equality if and only if u = w ◦ C for C ∈ Conf0. In particular, if genus
Σ > 1, equality holds if and only if u = w.

Proof. Assume q = ∅. We use a trick from [CH] to reduce to the smooth
case.

First assume that the genus of Σ > 1. Let ω(z) |dz|2 be the unique con-
stant curvature −1 metric in the conformal class of [g], see [TII]. By Sec-
tion 5, for any ε > 0 in local coordinates we can write

u∗G = e(u)σdzdz + 2�φ(z)dz2(5.5)

=

(
e(u)σ −

(
εω2 + |φ|2

)1/2
)
|dz|2︸ ︷︷ ︸

:=H1

+
(
εω2 + |φ|2

)1/2
|dz|2 + 2�φ(z)dz2︸ ︷︷ ︸

:=H2

For ε sufficiently small, H1 is positive definite on Σp; this follows from the
fact that for u∗G to be positive definite we must have that e(u)σ(z) > |φ(z)|.
As for H2, if q = ∅, φ extends smoothly to all Σ, so H2 is a smooth metric. It
is slightly more involved (See Appendix B of [CH]) to verify that the Gauss
curvature of H2 satisfies

(5.6) κH2
< 0.

Since u is a local diffeomorphism by Form 2.3), (5.3) implies that

id : (Σ, g) −→ (Σ, H1) is conformal

id : (Σ, g) −→ (Σ, H2) is harmonic
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From Equation (2.3), for any w : Σ −→ Σ we have

(5.7) E(w, g,G) = E(w, g,H1) + E(w, g,H2),

Unique minimization now follows from (5.7), the fact that degree one confor-
mal maps are energy minimizing, and fact that a harmonic diffeomorphism
into a negatively curved surface is uniquely energy minimizing in its homo-
topy class (see e.g. [Tr], [Har]).

If the genus of Σ is 1, then lifting to the universal cover C, we obtain a
harmonic map ũ : (C, π∗g) −→ (C, π̃∗G), where π and π̃ are conformal cover-
ing maps with respect to the standard conformal structure on C. The metric
|dz|2 descends to Σp and is in the unique ray of flat metrics in the conformal

class of g. Here Φ(ũ) = φ̃(z̃)dz̃2 is defined globally on C and φ̃ is entire and
periodic with respect to the deck transformations, hence bounded, hence
constant. Write Φ(ũ) = adz̃2. For sufficiently small ε > 0, we decompose

ũ∗(π∗G) = (e(ũ)σ − ε) |dz̃|2︸ ︷︷ ︸
:= ˜K1

+ ε |dz̃|2 + 2�
(
adz̃2

)︸ ︷︷ ︸
:= ˜K2

(5.8)

Since e(ũ)σ > 2 |a| and (e(ũ)σ) (z̃) is periodic, there is an ε so that the K̃i

are positive definite. If Ki := π∗K̃i, then id : (Σ, g) −→ (Σ,Ki) is harmonic
for both i = 1, 2. We now argue as above, invoking both the minimality of
conformal maps, and the minimality up to conformal automorphisms for
harmonic maps of flat surfaces. This completes the q = ∅ case.

Finally, if genus = 0, it is standard that Φ(u) ≡ 0, and thus u is conformal
away from q, hence globally conformal. Since conformal maps are energy
minimizing this case is complete.

This completes the q = ∅ case. To relate the q = ∅ case to the q �= ∅

case, we will use the following

Lemma 5.3. Given a closed Riemann surface R = (Σ, c) (here c is the
conformal structure) with genus > 0 and any finite subset q ⊂ Σ, there is
a finite sheeted conformal covering space π : S −→ R which has non-trivial
branch points exactly on f−1(q). Furthermore, genus S > genus Σ.

If R = S2, the above is true provided |q| ≥ 3.

This is a well-known fact from the theory of Riemann surfaces. We
include a sketch of a proof here for the convenience of the reader. First
assume genus Σ > 0. For each q ∈ q, there is a branched cover Yq −→ R
ramified above q, constructed as follows. The fundamental group of R− {q}
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is a free group with 2g generators, where g is the genus. Let Zq be any
normal covering space of R− q that is not a covering of R, i.e. let Zq cor-
respond to a normal subgroup of π1(R− {q}) that is not the pullback of
a normal subgroup in π1(R) via the induced map. Let Yq be the unique

closure of Zq. Finally, let S̃ be the composite of the Zq, i.e. the covering of
R− q corresponding to the intersection of the groups corresponding to the
Zq. Then S̃ is normal and has a unique closure S with a branched covering
of R that factors through each of the Yq −→ R. The deck transformations of

S̃ extend to S and by normality act transitively on the fibers, and therefore
S is ramified exactly above q. If Σ = S2 and |q| ≥ 3, let q0 ⊂ q have exactly
three points. There is a branched cover of Σ by a torus branched over q0.
Applying the previous argument to the torus and branching over all the lifts
of cone points to the torus gives the result. [Ya]

Assuming q �= ∅, let S be a covering map branched exactly over q. (By
our assumption that |q| ≥ 3 in case Σ = S2, such a cover exists.) and lift u
to a map ũ to obtain the commutative diagram

(S, π∗g) ũ ��

π

��

(S, π∗G)

π

��
(Σp, g)

u �� (Σp, G).

(5.9)

In particular, ũ∗π∗G = π∗u∗G, so the Hopf differential of ũ is the pullback
via the conformal map π of the Hopf differential of u. Pick any p ∈ q, and
let φ(z)dz2 be a local expression of the Hopf differential of u in a conformal
neighborhood centered at p. Given q ∈ π−1(p), since q is a non-trivial branch
point we can choose conformal coordinates z̃ near q so that the map π is
given by z̃k = z for some k ∈ N, k > 1. By Lemma 5.1

φ(z)dz2 =
(a
z
+ h(z)

)
dz2

where h is holomorphic. Pulling back to z̃ gives(a
z
+ h(z)

)
dz2 = k2

(
az̃k−2 + z̃2k−2h(z̃k)

)
dz̃2,

so Φ(ũ) is holomorphic on all of S, and therefore ũ solves (HME(q)) with
respect to the pullback metrics. Note that by Lemma 5.3, the genus of S is
at least 2, so we are in the right situation to apply the preceding argument.
Finally, suppose that w ∼q u, and thus there exists a commutative diagram
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as in (5.9) with u and ũ replaced by w and w̃. Then ũ ∼ w̃ and

( # of sheets )E(u, g,G) = E(ũ, π∗g, π∗G)
≤ E(w̃, π∗g, π∗G)
= ( # of sheets )E(w, g,G)

with equality if and only if ũ = w̃, i.e. u = w. �

6. Linear Analysis

6.1. The linearization

We now explicitly compute the derivative of τ at u0 in the B1+ε(u0) direction.
That is, given a solution (u0, g0, G) to (HME(q)) with u0 in Form 2.3 and
g0, G ∈ M2,γ,ν(p, a), and a path ut ∈ B1+ε(u0) through u0 with d

dt

∣∣
t=0

ut =
ψ, we compute

Lψ :=
d

dt

∣∣∣∣
t=0

τ(ut, g0, G).

For any u ∈ B1+ε(u0), near p ∈ p, by abuse of notation, we write

u0 = λz + v

u = u0 + ṽ,

v, ṽ ∈ r1+εC2,γ
b ,

that is, we think of u0 and u as complex valued functions, and write the
metrics as g0 = σ |dz|2 , G = ρ |du|2. From (3.5), we have

(σ
4

)
τ(u0+ṽ, g0, G) = ∂z∂z (u0+ṽ) +

∂ log ρ(u)

∂u
∂z (u0+ṽ) ∂z (u0+ṽ)(6.1)

=
σ

4
τ(u0, g0, G) + ∂z∂z ṽ

+

(
∂ log ρ(u)

∂u
− ∂ log ρ(u0)

∂u

)
∂zu0∂zu0

+
∂ log ρ(u)

∂u
(∂zu0∂z ṽ + ∂z ṽ∂zu0 + ∂z ṽ∂z ṽ) .
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Using τ(u0, g0, G) = 0, we have

σ

4
Lψ =

d

dt

(σ
4
τ(ut, g0, G)

)∣∣∣∣
t=0

(6.2)

= ∂z∂zψ +
∂ log ρ(u)

∂u
(∂zu0∂zψ + ∂zu0∂zψ) +Aψ

where, writing ρ = |u|2(α−1) e2μ |du|2, μ ∈ rνC2,γ
b by definition and

σ

4
Aψ := ∂zu0∂zu0 ·

d

dt

∣∣∣∣
t=0

∂ log ρ(ut)

∂u
(6.3)

= 2∂zu0∂zu0

(
∂2μ

∂u∂u
ψ +

∂2μ

∂u2
ψ

)
+ ∂zu0∂zu0

α− 1

u20
ψ.

As a preliminary to the analysis below, we can now see that L is a bounded
map of weighted Hölder spaces (see (2.24)):

(6.4) L : rcX 2,γ
b −→ rc−2αX 0,γ

b

In fact, if we define the operator L̃ := σ|z|2
4 L then

(6.5) L̃ψ = I(L̃)ψ + E(ψ)

where

I(L̃)ψ = (z∂z) (z∂z)ψ + (α− 1) z∂zψ(6.6)

and E is defined (locally near p) by this equation. It follows immediately
that

(6.7) I(L̃) : rcC2,γ
b (D) −→ rcC0,γ

b (D)

Furthermore, using |z|
∣∣∣∂μ∂u ∣∣∣+ |∂zv|+ |∂zv| = O (|z|ε) we see that if ψ ∈ rcC2,γ

b

near p ∈ p then

(6.8) E(ψ) ∈ rc+εC0,γ
b (D).

The boundedness of (6.4) follows from (6.7) and (6.8).
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For the arguments in Section 7 we must also compute the mapping
properties of the locally defined operator

Qṽ = τ(u0 + ṽ, g0, G)− L(ṽ)(6.9)

From (6.1)–(6.3), we have

σ

4
(τ(u0 + ṽ, g0, G)− L(ṽ)) =

(
∂ log ρ(u)

∂u
− ∂ log ρ(u0)

∂u

)
∂zu0∂zu0

+
∂ log ρ(u)

∂u
∂z ṽ∂z ṽ −Aṽ

From this formula and the fact that ṽ ∈ r1+εC2,γ
b , μ ∈ rεC1,γ

b , and ∂zu ∈
rεC2,γ

b we see that

(6.10) ‖Q(ṽ)‖r1+2ε−2αC1,γ
b

< C ‖ṽ‖r1+εC2,γ
b

holds for ε > 0 small, k ∈ N and some γ ∈ (0, 1).

6.2. The b-calculus package for L

This section links the study of L to a large body of work on b-differential
operators. For more detailed definitions and proofs of what follows we refer
the reader to [Me]. Fixing conformal coordinates zi near each pi ∈ p, we
make a smooth, positive function r : Σp −→ C that is equal to |zi| in a
neighborhood of each pi. There is a smooth manifold with boundary [Σ; p]
constructed via radial blowup and a smooth map β : [Σ; p] −→ Σ which is a
diffeomorphism from the interior of [Σ; p] onto Σp, with β

−1(p) = ∂[Σ; p] �
∪ki=1S

1, on which the map r ◦ β is smooth up to the boundary. Smooth
functions on [Σ, p] are pullbacks via β of those functions on Σ that are
polyhomogeneous with only integer powers in r. Finally, let

(6.11) Vb =
smooth vector fields on [Σ; p]
which are tangent to the boundary

The Lie algebra Vb generates a filtered algebra of differential operators called
b-differential operators.

For a more concrete definition, V ∈ V if and only if

(6.12) V = ar∂r + b∂θ for a, b ∈ C∞([Σ, p]).
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let Bi, i = 1, 2 be any two vector bundles over [Σ; p]. Then P is a differential
b-operator of order N on sections of B if it admits a local expression

P =
∑

i+j≤N
ai,j (r∂r)

i ∂jθ where aI ∈ C∞ ([Σ; p];End(B1;B2))(6.13)

near the boundary of [Σ; p]. We will call P b-elliptic if for all (r, θ) and
(ξ, η) ∈ R2 − {(0, 0)}, ∑

i+j≤N
ai,j(r, θ)ξ

iηj is invertible.

Let (u, g,G) solve (HME(q)) and satisfy Assumption 3.1. In (6.5), the
operator L̃ can be defined globally by extending the local functions σ to
positive smooth functions on Σ. We immediately see that L̃ is an ellip-
tic b-operator, and that E is a b-operator which, in local coordinates as
in (6.13), has coefficients aI tending to zero at a polynomial rate. In par-
ticular, L̃ : rcX k,γ

b −→ rcX k−2,γ
b is continuous for any c ∈ R and k ∈ N. It

follows that

(6.14) L : rc−2aX k,γ
b −→ rcX k−2,γ

b ,

is continuous for any c ∈ R and k ∈ N.
We will now state the properties of elliptic b-differential operators to be

used below. To begin we define the set Λ ⊂ C of indicial roots of L̃. Given p ∈
p, let Λp consist of all ζ ∈ C such that for some function a = a(θ) : S1 −→ C

(6.15) L̃rζa(θ) = o(rζ).

The total set of indicial roots is

(6.16) Λ = {z ∈ C
n : zi ∈ Λpi for some i} .

(We will compute Λ in (6.42) below.) By [Me, Theorem 4.26], there is a
discrete set Λ̃ ⊃ Λ such that for all c �∈ �Λ̃, (6.14) is Fredholm, meaning its
range is closed and its kernel and cokernel are finite dimensional.

The same is true for b-Sobolev spaces, which are defined as follows. Let
dμ be a smooth, nowhere-vanishing density on Σp so that near p

dμ =
drdθ

r
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Let L2
b(T

∗Σ, dμ) be the completion of r∞X∞
b (smooth vector fields vanishing

to infinite order at p) with respect to the norm

‖ψ‖2L2
b(dμ)

=

∫
Σ
‖ψ‖2u∗G dμ

As in the Hölder case, we write ψ ∈ rcL2
b(T

∗Σ, dμ) if and only if r−cψ ∈
L2
b(T

∗Σ, dμ). Also, rcL2
b(T

∗Σ, dμ) is a Hilbert space with inner product

(6.17) 〈ψ, ψ′〉rcL2
b(dμ)

= 〈r−cψ, r−cψ′〉L2
b(dμ)

We define the weighted b-Sobolev spaces by

(6.18) ψ ∈ rcHk
b (T

∗Σ, dμ) ⇐⇒ for all k-tuples V1, . . . , Vk ∈ Vb,
∇V1

· · · ∇Vk
ψ ∈ rcL2

b(T
∗Σ, dμ)

It follows that

(6.19) L : rcHk
b (T

∗Σ, dμ) −→ rc−2aHk−2
b (T ∗Σ, dμ),

is bounded. In fact, for c �∈ Λ̃ as above, (6.19) is also Fredholm [Me-Me].
It follows that for each such c �∈ Λ̃, there is a generalized inverse Gc :

rc−2aHk−2
b (T ∗Σ, dμ) −→ rcHk

b (T
∗Σ, dμ), defined by the equations

Gc ◦ L = I − πker

L ◦ Gc = I − πcoker,
(6.20)

where πker is the r
cHk

b (T
∗Σ, dμ) orthogonal projection onto the kernel of L,

and πcoker is the r
c−2aHk−2

b (T ∗Σ, dμ) orthogonal projections onto orthogonal
compliment of the range of L

See [M], Section 3 for more on the relationship between b-Hölder and
b-Sobolev spaces and for the proof of the following lemma.

Lemma 6.1. For any c �∈ Λ,

Ker
(
L : rcH2

b (T
∗Σ, dμ) −→ rc−2aH0

b (T
∗Σ, dμ)

)
(6.21)

=Ker
(
L : rcX 2,γ

b −→ rc−2aX 0,γ
b

)
,

and

(6.22) L(rcX 2,γ
b )⊕W = rc−2aX 0,γ

b ,
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where

W = Coker
(
L : rcH2

b (T
∗Σ, dμ) −→ rc−2aH0

b (T
∗Σ, dμ)

)
(6.23)

:=
(
L
(
rcH2

b (T
∗Σ, dμ)

))⊥
.

Here the orthocomplement is computed with respect to the rc−2aH0
b (T

∗Σ, dμ)
inner product.

If in addition to the above assumptions we assume both that u0 is poly-
homogeneous (See (2.28) above) and that G ∈ Mphg

ν (p, a), then approxi-
mate solutions to the equation Lψ = 0 admit partial expansions. To be pre-
cise, from Corollary 4.19 in [M], if ψ ∈ rcX k,γ

b and Lψ ∈ rc+δ−2aX k−2,γ
b for

δ > 0, i.e. if Lψ vanishes faster than the generically expected rate of rc−2a

from (6.4), then ψ decomposes as

ψ = ψ1 + ψ2 where

ψ1 ∈ rc+δXb
ψ2(z) =

∑
(s,p)∈E,c+δ>s>c

as,p(θ)r
s logp r,

(6.24)

for some discrete E ⊂ C× N which intersects {�z < C} at a finite number
of points and functions as,p ∈ C∞(S1). In particular, we have

Lemma 6.2. Assume that u0 is polyhomogeneous and that G ∈ Mphg
ν (p, a).

Then solutions to Lψ = 0 are polyhomogeneous. (See Definition (2.28).)

This follows from the mapping properties of the generalized inverse Gc
in (6.20), proved e.g. in [M]; if AE

phg denotes the space of polyhomogeneous
functions with index set E , then, given c′ > c,

Gc : rc
′−2aX 0,γ

b −→ rcX 2,γ
b +

(
AE
phg ∩ rc

′X 2,γ
b

)
(6.25)

We can also use (6.25) to prove that if u0 is polyhomogeneous,G∈Mphg
ν (p,a),

and u ∈ B1+ε(u0) is a solution to (HME(q)), then u is polyhomogeneous.
Recall from (6.9) that τ(u, g,G) = Lv +Q(v) where u = λz + v. Since u is
harmonic, we have L(v) = −Q(v). We now want to let our parametrix Gc,
with ci = 1 + ε for all i, act on both sides of this equation and to use the
fact that L is injective on r1+εX 2,γ

b , as we show below, in particular GcL = I.
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This yields

(6.26) v = −GQ(v)

Working locally, v ∈ r1+εC2,γ
b . From (6.10) we have Q(v) ∈ r1+2ε−2αC1,γ

b , so

by (6.25), v = −GQ(v) = v1 + v2 where v1 ∈ r1+2εC1,γ
b and v2 ∈ r1+εAE

phg.
The full expansion follows from induction; assuming that v = v1,k + v2,k,
where v1,k ∈ X 1+kε

k+1,γ and v2,k ∈ AE
phg, a trivial computation shows thatQ(v) =

w1 + w2 where w1 ∈ r1−2a+(k+1)εC0,γ
b and w2 ∈ r1−2a+εAE

phg. Applying the
same logic to (6.26), we have proved the following

Proposition 6.3. Let u0 be polyhomogeneous and assume that G∈Mphg
ν (p,a).

Then any solution u to (HME(q)) in B1+ε(u0) is polyhomogeneous.

6.3. The cokernel of L : r1−εX 2,γ
b −→ r1−ε−2aX 0,γ

b

We continue to let (u0, g0, G) denote a solution to (HME(q)) in Form 2.3
satisfying Assumption 3.1, and to let L denote the linearization of τ at u0.

An important step in the proof of Proposition 4.1 is an accurate identi-
fication of ‘the’ cokernel of the map

(6.27) L : r1−εX 2,γ
b −→ r1−ε−2aX 0,γ

b

(note the ‘−ε.’) In this section we will prove the following lemma.

Lemma 6.4.

r1−ε−2aX 0,γ
b = L

(
r1−εX 2,γ

b

)
⊕K

where

K := Ker(L : r1+ε−2aXb −→ r1+ε−4aXb),(6.28)

and this decomposition is L2 orthogonal with respect to the inner product
in (6.29).

Given two vector fields ψ, ψ′ ∈ Γ(u∗0TΣp) which are smooth and vanish
to infinite order near p, we define the geometric L2 pairing by

〈ψ, ψ′〉L2 :=

∫
Σ

〈
ψ, ψ′〉

u∗
0(G)

dV olg = �
∫
Σ
ψφρ(u0)σ(z) |dz|2(6.29)
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It is straightforward to check using g,G∈Mk,γ,ν(p, a) and u0 − λz∈r1+εC2,γ
b

near each cone point, that if ψ ∈ rcX 0,γ
b (u0) and ψ

′ ∈ rc
′X 0,γ
b (u0), then

(6.30) ci + c′i > 2− 4αi for each pi ∈ p =⇒ 〈ψ, ψ′〉L2 <∞

It is standard (see e.g. [EL]), that the linearization of τ in (4.1) is sym-
metric with respect to this inner product and appears in the formula of the
Hessian of the energy functional near a harmonic map. For reference, we
state this here as

Lemma 6.5 (Second Variation of Energy). Let (M,h) and (N, h̃) be
smooth Riemannian manifolds, possibly with boundary, and let u0 : (M,h)
−→ (N, h̃) be a C2 map satisfying τ(u0, h, h̃) = 0. If ut is a variation of C2

maps through u0 = 0 with d
dt

∣∣
t=0

ut = ψ, and L is the linearization of τ at
u0 (see (4.1)), then

Lψ = ∇∗∇ψ + trhR
˜h(du, ψ)du,

where ∇ is the natural connection on u∗0(TN) induced by h̃, and R
˜h is its

curvature tensor. If ∂ν denotes the outward pointing normal to ∂M , then

d2

dt2
E(ut)

∣∣∣∣
t=0

=

∫
M

(
‖∇ψ‖2

u∗˜h
− trhR

˜h(du, ψ, ψ, du)
)
dV olh(6.31)

+

∫
∂M

〈∇u∗∂νψ,ψ〉u∗˜hds

= −〈Lψ,ψ〉L2 +

∫
∂M

(
〈∇ψψ, u∗∂ν〉u∗˜h + 〈∇u∗∂νψ,ψ〉u∗˜h

)
ds(6.32)

Note that the boundary term in the last line can be expressed in terms
of the Lie derivative∫

∂M

(
〈∇ψψ, u∗∂ν〉u∗˜h + 〈∇u∗∂νψ, ψ〉u∗˜h

)
ds(6.33)

=

∫
∂M

Lu∗ψh̃(u∗ψ, u∗∂ν)ds.

Furthermore, L is symmetric with respect to the L2 inner product; as we
will see, if ψ ∈ rcX 2,γ

b and ψ′ ∈ rc
′X 2,γ
b , then

(6.34) 〈Lψ,ψ′〉L2 = 〈ψ,Lψ′〉L2 if ci + c′i > 2(1− αi).
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If we take the target (N, h) in (6.31) to be (Σ, G) and the domain to
be (Σ− ∪pi∈pDi(ε), g0) where Di(ε) is the conformal ball around pi with
|zi| ≤ ri < ε, and if ψ ∈ rcX 2,γ

b (u0), then the integrand in (6.33) satisfies

Lu∗ψh̃(u∗ψ, u∗∂ν)ds = O(r2ci+2(αi−1)−1)drdθ. Thus,

(6.35) for ut ∈ B1−a+ε,
d

dt

∣∣∣∣
t=0

ut = ψ,
d2

dt2

∣∣∣∣
t=0

E(ut, g, G) = −〈Lψ,ψ〉L2

To see that (6.34) holds, note that using (6.2) and the subsequent estimates

〈Lψ,ψ′〉L2 − 〈ψ,Lψ′〉L2(6.36)

=
∑
i

∫ 2π

0
(−(r∂rψ)ψρ+ ψr∂r(ψρ)− 2(αi − 1)ψψ)(1 +O(rε))dθ

The proof of (6.35) is similar.
To prove Lemma 6.4, we will need a version of (6.34) for b-Sobolev

spaces. Below, given a constant δ ∈ R and c = (c1, . . . , ck) ∈ Rk, we will write
c+ δ for the weight (c1 + δ, . . . , ck + δ)

Lemma 6.6. Again, let (u0, g0, G) solve (HME(q)) and satisfy Assump-
tion 3.1. If c ∈ Rk and if, notation as in (6.18), ψ ∈ rc−a+1Hk

b (T
∗Σ, dμ), ψ′ ∈

r−c−a+1Hk−2
b (T ∗Σ, dμ), we have

(6.37)
〈
Lψ,ψ′〉

L2 =
〈
ψ,Lψ′〉

L2

Proof. Equation (6.37) holds for ψ, ψ′ ∈ r∞X 2,γ
b by (6.34), and both sides

of (6.37) are continuous with respect to the stated norms. �
We can now prove Lemma 6.4.

Proof of Lemma 6.4. There exist positive functions f and g such that for
ψ ∈ rc−a+1H2

b (T
∗Σ, dμ) and ψ̃ ∈ r−c−a+1H2

b (T
∗Σ, dμ)

〈Lψ, fψ̃〉rc−3a+1L2(dμ) = 〈Lψ, ψ̃〉L2 = 〈ψ,Lψ̃〉L2(6.38)

= 〈gψ, Lψ̃〉r−c−3a+1L2(dμ),

where f ∼ r2(ci−αi), g ∼ r−2(ci−αi) near pi ∈ p. Note that the middle equality
in (6.38) is a consequence of Lemma 6.6. This implies that

(L(rc−a+1H2
b (T

∗Σ, dμ))⊥(6.39)

= f Ker(L : r−c−a+1H2
b (T

∗Σ, dμ) −→ r−c−3a+1L2(T ∗Σ, dμ))
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where the orthogonal compliment on the left is taken with respect to the
rc−3a+1L2(T ∗Σ, dμ)) inner product. In (6.39) we take c− a+ 1 = 1− ε, i.e.
c = a− ε. Thus, using Lemma 6.1

(L(r1−εH2
b (T

∗Σ, dμ))⊥(6.40)

= f Ker(L : r1+ε−2aH2
b (T

∗Σ, dμ) −→ r1+ε−3aL2(T ∗Σ, dμ))

= f Ker(L : r1+ε−2aX 2,γ
b −→ r1+ε−3aX 0,γ

b )

This shows that the space K in (6.28) has the correct dimension. Since K ⊂
r1−ε−2aX 2,γ

b , it is complimentary to L(r1−εH2
b (T

∗Σ, dμ)) is and only if they
have trivial intersection. Given ψ′ ∈ K and ψ ∈ r1−εH2

b (T
∗Σ, dμ, again by

Lemma we have 6.6 〈Lψ,ψ′〉L2 = 〈ψ,Lψ′〉L2 = 0. This shows both that the
intersection is empty and that the compliment is orthgonal, so Lemma 6.4
is true. �

We now compute the indicial roots of L defined in (6.15) above. It is
sufficient to find all r-homogeneous solutions to

(6.41) I(L̃)ψ̃ = 0,

with I(L̃) defined in (6.6). Fixing p ∈ p, solutions to (6.41) take the form
rseijθ, and

(6.42) I(L̃)rseijθ = eijθrs
(
s2 + 2 (α− 1) s− j2 − 2 (α− 1) j

)
.

s ∈ {j, 2− 2α− j}. Setting

(6.43) Λp =
⋃
j∈Z

{j, 2− 2α− j}

As in (6.16), the set of indicial roots of L is the union Λ = ∪pΛp.
We now prove precise asymptotics for solutions to (HME(q)).

Lemma 6.7 (Leading order asymptotics). Notation as above, near
a cone point p of cone angle 2πα > π, we have u = λz + v where v ∈
r3−2αC2,γ

b ∩ AE
phg. Moreover,

(6.44) u = λz + cr2−2αz + o(|z|3−2α).

Here and below o(|z|c) denotes a quantity such that lim sup|z|→0

∣∣|z|−c o(|z|c)∣∣
= 0.



758 Jesse Gell-Redman

Proof. By Proposition 6.3, u ∈ AE
phg. By (6.1), the leading order term of

v, call it v0, satisfies I(L̃)v0 = 0. Since v0 ∈ r1+εC2,γ
b , this implies that it

in fact vanishes to the first order indicial root bigger than 1 + ε. By (6.43)
and (6.42), this root is 3− 2α and in fact v0 = cr2−2αz for some c ∈ C. �

We now describe the behavior of the elements in K (see (6.28)) near the
conic set.

Lemma 6.8. Let ψ ∈ K (see (6.28)), let pi ∈ p, and let z be conformal
coordinates near pi. If 2παi < π, then

(6.45) ψ(z) = μiz +O(|z|1+δ)

for some μi ∈ C, δ > 0.
If 2παi > π, and the solution u0(z) = z + v (which we may assume by

rescaling the domain metric, see Remark 2.4), then

(6.46) ψ(z) = wi +
ai

1− α
|z|2(1−α) +O

(
|z|2(1−α)+δ

)
for some wi, ai ∈ C, δ > 0.

Proof. Fix ψ∈K. By Lemma 6.2, ψ is polyhomogeneous. Fix p∈p. By (6.6),
the lowest order homogeneous term in the expansion of ψ at p, which we
can write as f(r, θ) = rδa(θ) for a : S1 −→ C, must solve I(L̃)f = 0 for I(L̃)
in (6.6), and so δ must be an indicial root, i.e. δ ∈ Λp (see (6.43)). If p ∈ p<π,
then the smallest such indicial root is 1. The eigenvector is λz, so the lemma
is proven in this case. If p ∈ p>π, the smallest such indicial root is 0, and the
eigenvector for this indicial root is a constant complex number wi. To get
the second term in (6.46), we consider the Hopfy differential of ψ defined by
the linearization of (5.2). Precisely, suppose d

dt

∣∣
t=0

ut = ψ, and define

Φ(ψ) :=

((
∂ρ

∂u
ψ +

∂ρ

∂u
ψ

)
∂zu0∂zu0 + ρ(u0)

(
∂zψ∂zu0 + ∂zψ∂zu0

))
dz2

(6.47)

It follows from (6.2) that Φ(ψ) is holomorphic on Σp. Near p ∈ p>π, since
ψ = w + ψ0 for ψ0 ∈ rcC2,γ

b for some c > 0 and v ∈ r3−2αC2,γ
b (Lemma 6.7),
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Φ(ψ) has at most a simple pole. Suppose that

Res|pΦ(ψ) = a(6.48)

We claim that the only term in (6.47) that contributes to this residue is

ρ(u0)∂zψ∂zu0. To see this, using ρ = e2μj |u|2(αj−1) |du|2 note that

(6.49)

∂ρ

∂u
= (α− 1)λ |z|2α−4 z + o(|z|2α−3) and

∂ρ

∂z
= (α− 1)λ |z|2α−4 z + o(|z|2α−3),

and that by (6.44),

(6.50) ∂zu = λ and ∂zu = |z|2−2α (2− α).

Combining (6.49) and (6.50) gives
( ∂ρ
∂uψ + ∂ρ

∂uψ
)
∂zu0∂zu0 = c′ |z|−2 (λzw −

λzw) + o(|z|−1), which implies

(6.51) lim
ε→0

∫
|z|=1

(
∂ρ

∂u
ψ +

∂ρ

∂u
ψ

)
∂zu0∂zu0dz = 0.

Using 6.7, the other term is term is ρ(u0)∂zψ∂zu0 = o(|z|−1), and therefore
does not contribute to the residue.

Finally, let |z|δ b(θ) be the lowest order homogeneous term in ψ0 = ψ −
w. Then the leading order part of ρ(u0)∂zψ∂zu0 is |z|2(α−1) ∂z|z|δ b(θ), which
implies that

|z|δ b(θ) = a

1− α
|z|2(1−α) . �

Remark 6.9. Note that, as a consequence of the proof, u0 is a solu-
tion to (HME(q)) in Form 2.3 for which λ = 1 (see Remark d 2.4), then
Res|piΦ(ψ) = ai with ai as in (6.46).

Writing p>π =
{
q1, . . . , q|p>π|

}
, the map

Res: K −→ C
|p>π|

ψ �−→ ResΦ(ψ) = (Res|q1Φ(ψ), . . . ,Res|q|p>π|Φ(ψ))

is obviously linear. We define a basis of K, Ka1 , . . . ,Kam1 , C1, . . . , Cm2
with

aj ∈ C|p>π|, so that C1, . . . , Cm2
is a basis of ker(Res : K −→ C|p>π|), i.e.

(6.52) ResCj = 0 ∈ C
|p>π| and ResKaj = aj ∈ C

|p>π|.

It follows that the aj are linearly independent.
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6.4. The Cj are conformal Killing fields

We will prove that the Cj are conformal Killing fields. The most important
step in the proof is that they are zeros of the Hessian of the energy functional,
and we begin by proving this.

Lemma 6.10. Let (u0, g0, G) solve (HME(q)) and satisfy Assumption 3.1.
Let C ∈ K have ResC = 0 ∈ Cn. By Lemma 6.8, we can find ut ∈ Bc ◦ D ◦
T>π, ε > 0 so that d

dt

∣∣
t=0

ut = C, where

ci > 1 for pi ∈ p<π

ci > 2− 2αi for pi ∈ p>π.
(6.53)

Then

d2

dt2

∣∣∣∣
t=0

E(ut, g0, G) = 0(6.54)

The proof hinges on a nice cancellation of boundary terms related to the
conformal invariance of energy. We begin by proving Equation (4.9) above,
which illustrates this phenomenon in a simpler setting.

Lemma 6.11. Equation (4.9) holds.

Proof. We are given a u ∈ B1+ε(u0) ◦ D ◦ T>π, and we assume that p<π = ∅

and genus Σ = 1. In particular, near each q ∈ u−1(p) we can choose confor-
mal coordinates so that u ∼ λz. Let C ∈ TConf0. Choose ft ∈ Conf0 with
d
dt

∣∣
t=0

ft = C and consider E(u ◦ ft, g, G). By (4.8) above,

d

dt

∣∣∣∣
t=0

E(u ◦ ft, g, G) = 0.

By lifting to the universal cover we can assume that

ft(z) = z − tw

for some fixed w. Let

(6.55) Dw(r) = {z : |z − w| < r} ,

be the conformal disc (not necessarily a geodesic ball), so ft (Dtw(r)) =
D0(r). In particular, for δ > 0 sufficiently small, ft (Σ−Dtw(δ)) = Σ−D0(δ).
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For the moment we drop the geometric data from the notation and, given a
subset A ⊂ Σ, let

E(w,A) =

∫
A
e(w, g,G)

√
gdx

By the conformal invariance of the energy functional, for all t,

E(u ◦ ft,Σ−Dtw(δ)) = E(u,Σ−D0(δ)) and

E(u ◦ ft, Dtw(δ)) = E(u,D0(δ)).

Thus the functions E(u ◦ ft,Σ), E(u ◦ ft,Σ−Dtw(δ)), and E(u ◦ ft, Dtw(δ))
are all constant in t. In particular

0 =
d

dt

∣∣∣∣
t=0

E(u ◦ ft,Σ)

=
d

dt

∣∣∣∣
t=0

E(u ◦ ft,Σ−Dtw(δ)) +
d

dt

∣∣∣∣
t=0

E(u ◦ ft, Dtw(δ))

=
d

dt

∣∣∣∣
t=0

E(u ◦ ft,Σ−Dtw(δ))

We can also evaluate this last expression using the first variation formula (2.1)
and the chain rule to get the expression

d

dt

∣∣∣∣
t=0

E(u ◦ ft,Σ−Dtw(δ))(6.56)

= −
∫
Σ−D0(δ)

〈τ(u, g,G), u∗C〉u∗GdV olg +

∫
∂D0(δ)

〈u∗∂ν , u∗C〉u∗Gds

+
d

dt

∣∣∣∣
t=0

(∫
Σ−Dtw(δ)

e(u, g,G)
√
gdx

)

Here ∂ν is the outward pointing normal from Σ−D0(δ). The last integral
satisfies

d

dt

∣∣∣∣
t=0

(∫
Σ−Dtw(δ)

e(u, g,G)
√
gdx

)
(6.57)

= −
∫
∂Dtw(δ)

e(u, g,G)〈∂ν , u∗C〉gds
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To compare this integral to the second term in (6.56), we use the decompo-
sition (5.1), u∗G = e(u)g + u∗G◦.∫

∂D0(δ)
〈u∗∂ν , u∗C〉u∗Gds =

∫
∂D0(δ)

e(u, g,G)〈∂ν , u∗C〉gds

+

∫
∂D0(δ)

〈∂ν , u∗C〉u∗G◦ds

By (6.57), the first term on the right exactly cancels the last term in (6.56).
For the second term, note that although u∗G◦ is not holomorphic, the bound
from (5.4) still holds, so

(6.58)

∫
∂D0(δ)

〈∂ν , u∗C〉u∗G◦ds =

∫ 2π

0
O

(
r2α−2+ε

)
rdθ,

which goes to zero since α > 1/2. Looking back at (6.56), we have proven
that

lim
δ→0

{(
d

dt

∣∣∣∣
t=0

E(u ◦ ft,Σ−Dtw(δ))

)

+

∫
Σ−D0(δ)

〈τ(u, g,G), u∗C〉u∗GdV olg

}
= 0

This proves (4.9) �

Remark 6.12. Note that this last proof works if α > 1/2 is replaced by
α ≥ 1/2 since (6.58) still holds. This will be important when we deal with
that case in Section 8.

A similar cancellation of boundary terms will lead to the proof of
Lemma 6.10. Here we take two derivatives, so the relevant boundary terms
look slightly different. To illustrate this, let g = σ |dz|2 be a conformal metric
on C with finite area, and let Tt = z − tw, and d

dt

∣∣
t=0

Tt = C(= w). Notation
as above

d2

dt2

∣∣∣∣
t=0

E(Tt,C−Dtw(δ)) = 0

As above, a direct computation of the second derivative using (6.5) and the
chain rule will produce boundary terms which must cancel one another. If
we let et = e(Tt, |dz|2 , g), and let ∂νt be the outward pointing normal to
C−Dtw(δ), then a simple computation using (6.32)–(6.33) and the product
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rule shows that

d2

dt2

∣∣∣∣
t=0

E(Tt,C−Dtw(δ)) =
d2

dt2

∣∣∣∣
t=0

E(Tt,C−Dtw(δ))(6.59)

=

∫
∂D0(δ)

LṪ0
g
(
Ṫ0, ∂ν

)
ds− 2

∫
∂D0(δ)

ė0〈Ṫ0, ∂ν〉gds

−
∫
∂D0(δ)

e0
d

dt

∣∣∣∣
t=0

〈Ṫ−t, ∂ν−t
〉g(T−t)ds.

Thus the expression on the right must be equal to zero.

Proof of Lemma 6.10. Assume that u0 = id. By (3.1) and conformal invari-
ance, we may replace g by g/e(u0) and assume that

(6.60) e(u0) ≡ 1.

We arrange it so that

ut = ũt ◦ Tt
ũt ∈ r2(1−α)C2,γ

b near p ∈ p>π

Tt ∈ T>π,

with c as in (6.53), so Tt(zi) = zi − twi near pi ∈ p>π. Define

Di,t(δ) = Dtwi
(δ) in conformal coordinates zi near pi ,

where Dtwi
(δ) is the conformal disc defined in (6.55). We can then write

d2

dt2

∣∣∣∣
t=0

E (ut,Σ) =
d2

dt2

∣∣∣∣
t=0

E

(
ut,Σ−

⋃
pi∈p>π

Di,t(δ)

)
︸ ︷︷ ︸

:=A(δ)

+
d2

dt2

∣∣∣∣
t=0

E

(
ut,

⋃
pi∈p>π

Di,t(δ)

)
︸ ︷︷ ︸

:=B(δ)

.
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For the term B(δ) we can use conformal invariance

E

(
ut,

⋃
pi∈p>π

Dt(δ)

)
= E

(
ũt,

⋃
pi∈p>π

Tt (Dt(δ))

)

= E

(
ũt,

⋃
pi∈p>π

D0(δ)

)
.

Using the computations in (6.34)–(6.37), since ũt ∈ r2−2αi+εC2,γ
b near pi ∈

p>π, B(δ) → 0 as δ → 0. Note that for fixed t and δ the integrals E
(
ut,Σ−⋃

pi∈p>π
Di,t(δ)

)
are improper since we did not delete balls around the points

p ∈ p<π, but again the boundary contributions from deleted discs here do
not contribute to A(δ). Let

Σ(δ) := Σ− ∪Di,t(δ).(6.61)

We use the same reasoning as in (6.59) to deduce that

A(δ) =

∫
Σ(δ)

LCG(C, ∂ν)ds− 2

∫
Σ(δ)

ė0〈Ṫ0, ∂ν〉gds

−
∫
Σ(δ)

e0
d

dt

∣∣∣∣
t=0

〈u̇−t, ∂ν−t
〉g(T−t)ds,

where we have once again set et = e(ut). At this point we use that C is a
Jacobi field, so in conformal coordinates g = σ

∣∣dz2∣∣, writing Φ(C) = φ(z)dz2

for the the Hopf differential of C,

LCG = ė0g + 2�φ(z)dz2.

Since ResC = 0, φ(z)dz2 is smooth on all of Σ. Plugging in and separating
everything from the Hopf differential bit, we have (using (6.60))

A(δ) =
∑
p∈p>π

∫ 2π

0
2
(
�φ(z)dz2

)
(C, ∂r) δdθ(6.62)

+
∑
p∈p>π

∫ 2π

0

(
ė0〈C, ∂r〉g − 2ė0〈Ṫ0, ∂r〉g

− d

dt

∣∣∣∣
t=0

〈u̇−t, ∂r−t
〉g(T−t)

)
δdθ

Since φ is bounded, the first term on the right hand side goes to zero as
δ → 0.
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The point is that up to terms vanishing with δ the bottom line consists
exactly of the cancelling terms from (6.59), proving Lemma 6.10. To show
this, we start with the rightmost term. Since T̈ ≡ 0 near p ∈ p>π and ¨̃u0 ∈
r2−2a+εX 2,γ

b , we see that∫
∂Σ(δ)

e0
d

dt

∣∣∣∣
t=0

〈u̇−t, ∂ν−t
〉g(T−t)ds

=
∑
p∈p>π

∫ 2π

0

d

dt

∣∣∣∣
t=0

(
〈Ṫt + ˙̃ut, ∂r−t

〉g(T−t)

)
δdθ

=
∑
p∈p>π

∫ 2π

0

d

dt

∣∣∣∣
t=0

〈Ṫt, ∂r−t
〉g(T−t)δdθ

+
∑
p∈p>π

∫ 2π

0

d

dt

∣∣∣∣
t=0

(
〈 ˙̃ut, ∂r−t

〉eucσ(T−t)
)
δdθ

=
∑
p∈p>π

∫ 2π

0

d

dt

∣∣∣∣
t=0

〈Ṫt, ∂r−t
〉g(T−t)δdθ +

∑
p∈p>π

∫ 2π

0
O(δ2−2α+ε)σ(z)δdθ

but in the last term, since σ = O(δ2(α−1)), the integrand is O(δ1+ε)dθ so∫
∂Σ(δ)

e0
d

dt

∣∣∣∣
t=0

〈u̇−t, ∂ν−t
〉g(T−t)ds(6.63)

=
∑
p∈p>π

∫ 2π

0

d

dt

∣∣∣∣
t=0

〈Ṫt, ∂r−t
〉g(T−t)δdθ +O(δ1+ε)

Thus as δ → 0 this approaches the final term in (6.59). Note that in the end
¨̃u0 disappears completely. Next comes the middle term in (6.62). Using that
T0 = id, ũ0 = id, we have

ė0 =
d

dt

∣∣∣∣
t=0

e(Tt) +
d

dt

∣∣∣∣
t=0

e(ũt),

and by (3.1), d
dt

∣∣
t=0

e(ũt) = O(δ1+ε−2α). Using this and T̈0 ≡ 0 near p, we
see that∑

p∈p>π

∫ 2π

0
−2ė0〈Ṫ0, ∂r〉gδdθ =

∑
p∈p>π

∫ 2π

0

d

dt

∣∣∣∣
t=0

e(Tt)〈Ṫ0, ∂ν〉g +O(δε),

And this indeed approaches the middle term of (6.59). That the first term
in (6.62) limits to the first term in (6.59) follows in the same way. This
completes the proof �
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We can now prove

Corollary 6.13. The Cj are conformal Killing fields.

This is an immediate corollary of Lemma 6.10 and the following.

Lemma 6.14. The Hessian of the energy E(·, g0, G), considered as a bilin-
ear form on T (B1+ε(u0) ◦ D) + span {Ci} is positive semi-definite and van-
ishes only on the conformal Killing fields.

Proof. Assume that u0= id. For genus Σ>1, Conf0={id}. From the decom-
position (5.7) and our work above, it follows that

d2

dt2

∣∣∣∣
t=0

E(ut, g, G) =
d2

dt2

∣∣∣∣
t=0

E(ut, g,H1) +
d2

dt2

∣∣∣∣
t=0

E(ut, g,H2).

Note that this is a non-trivial statement, since it is by no means clear that,
for example, the function t �−→ E(ut, g,H1) is twice differentiable; but it
indeed is, by exactly the same computations we just preformed. The fact
that conformal maps are global minimizers of energy now implies that

d2

dt2

∣∣∣∣
t=0

E(ut, g,H1) ≥ 0,

so since the left hand side of our first equation is zero by Lemma 6.10, we
arrive at

d2

dt2

∣∣∣∣
t=0

E(ut, g,H2) = 0.

But in fact E(·, g,H2) if positive definite, as we now show. Cutting out
conformal discs Dj(ε) as above, near p ∈ p>π the boundary term in (6.31) is

lim
ε→0

∫
∂Dj(ε)

〈∇u∗∂νC,C〉u∗H2
ds = lim

ε→0

∫ 2π

0
∂r〈C,C〉u∗H2

εdθ

= lim
ε→0

∫ 2π

0
∂r

∣∣w +O(r2−2αj )
∣∣ εdθ

= 0.

Near p ∈ p<π the same computation shows that the contribution is also zero.
We now see from (6.31) that∫

M

(
〈∇C,∇C〉u∗H2

+ trg R
H2(du,C,C, du)

)
dV olg = 0,
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which immediately implies that C = 0 by negative curvature. (In particular
C is conformal Killing.)

Now assume the genus of Σ is 1. As above we lift to the universal cover
and use (5.8). As in the previous paragraph we conclude that∫

M

(
〈∇C,∇C〉u∗K2

+ trg R
K2(du,C,C, du)

)
dV olg = 0,

but now we can only have flatness and thus can only conclude that

K2∇C = 0.(6.64)

The lift of K2 to the universal cover, K̃2, written with respect to the global
coordinates z̃ on C, is a constant coefficient metric. Hence (6.64) means
C ≡ v for some constant vector v ∈ C, which, as desired, is conformal Killing.
The first statement follows exactly as in the genus Σ > 1 case. �

6.5. Proof of Proposition 4.1

Recall from Lemma 6.4 that the Fredholm map

L : r1−εX 2,γ
b −→ r1−ε−2aX 0,γ

b

satisfies

L(r1−εX 2,γ
b )⊕K = r1−ε−2aX 0,γ

b ,(6.65)

and the sum is L2 orthogonal. Thus(
L(r1−εX 2,γ

b )⊕K
)
∩ r1+ε−2aX 0,γ

b = r1+ε−2aX 0,γ
b .(6.66)

Since L : r1+εX 2,γ
b −→ r1+ε−2aX 0,γ

b is also Fredholm for ε small, L
(
r1+εX 2,γ

b

)
⊂ L(r1−εX 2,γ

b ) ∩ r1+ε−2aX 0,γ
b is a finite index inclusion, and we can find

W ⊂ L(r1−εX 2,γ
b ) ∩ r1+ε−2aX 0,γ

b(6.67)

so that (
L
(
r1+εX 2,γ

b

)
+W

)
⊕K = r1+ε−2aX 2,γ

b .(6.68)
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We now use (6.25) and the subsequent paragraph to show that

(6.69) ψ ∈W =⇒
{
ψ ∈ r1+ε−2aX 0,γ

b

ψ = Lψ′ for ψ′ ∈ r1−εX 0,γ
b ,

so from (6.24) we have ψ′ = ψ1 + ψ2, where

ψ1 =
∑

(s,p)∈Λ∩[1−ε,1+ε]
rs logp(r)as,p(θ),

and ψ2 ∈ r1+εX 2,γ
b . Looking at the eigenvectors in (6.42) shows that ψ1(z)

= λz for some λ ∈ C. Thus ψ′ ∈ TidD + r1+εX 2,γ
b , which implies that

L(r1+εX 2,γ
b ) +W = L(r1+εX 2,γ

b + TidD). By (6.68)

(6.70) L(r1+εX 2,γ
b + TidD)⊕K = r1+ε−2aX 0,γ

b ,

where K ⊥ L(r1+εX 2,γ
b + TidD). Let

πK = projection onto K in (6.70).

Now we add TidT>π to the domain of L. Let ψ ∈ TidT>π corresponding to
w ∈ Cn, so near pi ∈ p>π we have ψ ≡ wi Since near pi we have Lwi ≡ 0, we
know that

Lψ ∈ r1+ε−2aX 0,γ
b .(6.71)

Using the basis for K in (6.52), (6.71) implies that we can write πKLψ =∑N
j=1〈Lψ,Kai〉L2Kai+

∑M
k=1〈Lψ,Ck〉L2Ck, for the L

2 inner product in (6.29).

Using (6.36) for any ψ̃ ∈ K, 〈Lψ, ψ̃〉L2 = −4π�∑
pi∈p>π

wiRes|piΦ(ψ̃). This
immediately implies that πKL(r1+εX 2,γ

b ⊕ TidD ⊕ TidT>π) = span〈Kai〉, and
thus we have shown that

L
(
r1+εX 2,γ

b ⊕ TidD ⊕ TidT>π
)
⊕ TConf0 ∩ r1+ε−2aX 0,γ

b = r1+ε−2aX 0,γ
b ,

which is what we wanted.

6.6. Proof of Proposition 4.3

For the proof of Proposition 4.3 we will need a formula for the second vari-
ation of energy in the direction of an arbitrary Jw ∈ Tu0

Harmq. First, we
compute the first variation near a solution (HME(q)).
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Proposition 6.15. Let (u0, g0, G) solve (HME(q)) and satisfy Assump-
tion 3.1. With notation as in the previous section, for any w ∈ C|q| we have

(6.72)
d

dt

∣∣∣∣
t=0

E(utw, g0, G) = �
(
2πi

∑
pi∈p<π

Res|pi (ιJw
Φ(u0))

)
,

and if Φ(u0) = φu0
dz2

(6.73) Res|pi (ιJw
Φ) = wiRes|piφu0

.

Corollary 6.16. Let (u0, g0, G) be a solution to (HME(q)). Then u0 mini-
mizes E(·, g0, G) in its free homotopy class if and only if it solves (HME(q))
with q = ∅, i.e. if and only if Φ(u0) is holomorphic on (Σ, g0).

Proof. That ResΦ(u0) = 0 implies the minimizing property is the content
of Proposition 5.2.

For the other direction, if (u0, g0, G) solves (HME(q)) and satisfies As-
sumption 3.1, then

ResΦ(u) �= 0 =⇒ u0 is not energy minimizing

since by (6.72), if w ∈ C|q| has �2πi∑pi∈p<π
wiRes|piφu0

�= 0 (which is easy
to arrange), then

d

dt

∣∣∣∣
t=0

E(utw, g0, G) �= 0,

contradicting minimality. �

Remark 6.17. The one form ιJw
Φ(u0) is not holomorphic (since Jw is not),

but we will show that it still has a residue, meaning a limit

Res ιJw
Φ := lim

ε→0

1

2πi

∫
|z|=e

ιJw
Φ(z).

By our assumption that u0 = id and decomposition (2.36), in conformal
coordinates the metric G is expressed by

(6.74) G = σ |dz|2 + 2�φ(z)dz2.

Below, these coordinates are used on both the domain and the target.
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Proof of Proposition 6.15. The proof is similar to the proof of Lemma 6.10.
As always assume u0 = id. We can write utw = ũtw ◦ Ttw where ũtw ∈
B1+ε(u0) ◦ D ◦ T>π and Ttw ∈ Tq, and d

dt

∣∣
t=0

utw = Jw (see(4.11)). Then

d

dt

∣∣∣∣
t=0

E (utw,Σ) =
d

dt

∣∣∣∣
t=0

E

⎛⎝utw,Σ−
|p|⋃
i=1

Dtw(δ)

⎞⎠
︸ ︷︷ ︸

:=A(δ)

+
d

dt

∣∣∣∣
t=0

E

⎛⎝utw, |p|⋃
i=1

Dtw(δ)

⎞⎠
︸ ︷︷ ︸

:=B(δ)

.

As in Lemma 6.10 B(δ) → 0 as δ → 0. Thus we arrive at

d

dt

∣∣∣∣
t=0

E (utw,Σ) = lim
δ→0

A(δ).

By the chain rule,

A(δ) =
d

dt

∣∣∣∣
t=0

E

(
utw,Σ−

⋃
p

D0(δ)

)
︸ ︷︷ ︸

:=A1(δ)

+
d

dt

∣∣∣∣
t=0

E

(
u0,Σ−

⋃
p

Dtw(δ)

)
︸ ︷︷ ︸

:=A2(δ)

(6.75)

As we will see shortly, the term A2(δ) is not in general bounded as δ → 0,
but we will show that A1(δ) decomposes into a sum of two terms, A1(δ) =
A1

1(δ) +A2
1(δ) where A1

1(δ) ∼ −A2(δ) (i.e. it cancels the singularity), and
A2

1(δ) converges to the expression in (6.72). A1 is an integral over a smooth
manifold with boundary so by the first variation formula (2.6), and in the
last line using decomposition (6.74), if Σ(δ) is as in (6.61), we have

A1 =

∫
∂Σ(δ)

〈Jw, ∂ν〉Gds

= −
∑

pi∈p<π

∫ 2π

0
g (Jw, ∂r) δdθ︸ ︷︷ ︸

:=A1
1

−
∑

pi∈p<π

∫ 2π

0
�Φ (Jw, ∂r) δdθ︸ ︷︷ ︸
A2

1

.

It thus remains only to show: 1) limδ→0A
2
1 = � (2πiRes (ιJw

Φ)), 2) (6.73)
holds, and 3) limδ→0

∣∣A1
1 +A2

∣∣ = 0.
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We prove numbers 1 and 2 together:∫
∂D0(δ)

�Φ (Jw, ∂r) δdθ =

∫
∂D0(δ)

�φ(z)dz2 (Jw, ∂r) δdθ.

Since

dz2 (Jw, ∂r) = Jwdz (∂r) = Jw
z

|z| ,

we have

(6.76)

∫ 2π

0
�Φ (Jw, ∂r) δdθ = �

∫ 2π

0
Jwφ(z)dz,

and by definition

(6.77)

∫ 2π

0
�Φ (Jw, ∂r) δdθ = �

∫ 2π

0
ιJw

Φ(z).

So ∑
pi∈p<π

lim
δ→0

∫ 2π

0
Jwφ(z)dz =

∑
pi∈p<π

lim
δ→0

∫ 2π

0
(−wi +O(|z|))φ(z)dz(6.78)

= −2πi
∑

pi∈p<π

wiRes|piφu0
.

Putting (6.78) together with (6.77) gives us what we wanted.

For number 3, note that from the expression g = e2μ |z|2(α−1) we have

A1
1(δ) =

∫ 2π

0
〈−wi +O(|z|), ∂r〉grdθ =

∫ 2π

0
〈−wi, ∂r〉grdθ +O(δ2α)

Using (6.57) and that fact that near p ∈ p, T−1
tw (z) = z + tw parametrizes

the boundary of ∂Dtw(δ) we have

A2 =

|p|∑
i=1

∫ 2π

0
〈Ṫ−1

0 , ∂r〉grdθ =
|p|∑
i=1

∫ 2π

0
〈wi, ∂r〉gds+O(δ2α).

Thus
∣∣A1

1 +A2

∣∣ = O(δ2α), and the proof is finished. �
Now suppose that u0 solves (HME(q)). Thus u0 is an absolute minimum

of E(·, g, G). By differentiating again, we get the following as a corollary to
Proposition 6.15.
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Corollary 6.18. Suppose that (u0, g, G) solves (HME(q)) and satisfies
Assumption 3.1. Then

d2

dt2

∣∣∣∣
t=0

Ẽ(utw) = �
(
2πi

∑
pi∈p<π

Res|pi (ιJw
Φ(Jw))

)
(6.79)

= �
(
2πi

∑
pi∈p<π

wiRes|piφ(Jw)
)

where Φ(Jw)dz
2 = d

dt

∣∣
t=0

φutw
dz2

We now conclude the proof Proposition 4.3 using Proposition 6.15

Proof of Proposition 4.3. We proceed by interpreting the formula for the
Hessian in Corollary 6.18 in light of the characterization of the Hessian
of the energy functional at a solution to (HME(q)) in Corollary 6.13. By
Corollary 6.13, the Hessian of the energy functional is positive definite on
any compliment of the conformal Killing fields, while by Corollary 6.18, if
Res Jw = 0, Jw is a zero of the Hessian, thus a conformal Killing field. �

7. Closedness: limits of harmonic diffeomorphisms

In this section we prove that H(q) in (3.19) is closed. The following is a
consequence of Corollary 7.10 below.

Theorem 7.1. Let (uk, gk, Gk) be a sequence of solutions to (HME(q))
where gk→g0 with gk∈M∗

2,γ,ν(g0, p, a), Gk→G0 with Gk∈M∗
2,γ,ν(G0, p, a),

and all the uk in Form 2.3. Assume that the scalar curvature κGk
≤ 0 and

that each uk has non-vanishing Jacobian away from u−1
k (p). Then the uk

converge to a map u0 so that (u0, g0, G0) solves (HME(q)) in Form 2.3.
The convergence is C2,γ

loc away from u−1
0 (p). For a precise description of the

convergence near the cone points, see Corollary 7.10 below.

To be precise about the convergence of the Gk, in conformal coordinates
near p ∈ p we have

Gk = cke
2μk |w|2(α−1) |dw|2 , and G0 = c0e

2μ0 |w|2(α−1) |dw|2 .

By Gk → G0, we mean that for some σ > 0,

μk → μ in rνC2,γ
b (D(σ))

ck → c0
(7.1)
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(The b-Hölder spaces are defined in (2.22)–(2.24)). Away from the cone
points Gk → G in C2,γ

loc . We can (and do) reduce to the case ck = c0 = 1 by
replacing Gk by Gk/ck and G0 by G0/c0. Note that (7.1) easily implies that
near each cone point the scalar curvature functions κGk

converge to κG0
in

C0,γ
b (see (2.27)); in particular the is a constant c > 0 independent of k for

which

(7.2) κGk
≥ c.

For the gk, we make the stronger assumption that near u−1(p) the met-
rics look like the standard round conic metric gα (see (2.8)). To do this uni-
formly, we need the uniform bound on the modulus of continuity obtained in
the next section; the precise statement of this assumption is in Section 7.1.
In the end the theorem is true as stated (i.e. without this stronger assump-
tion), since we will change the domain metric in a bounded way and in its
conformal class.

We refer the reader to the introduction for an outline of the subsequent
arguments. Before we prove Theorem 7.1, we use it to prove

Proposition 7.2. H(q) in (3.19) is closed.

Proof. Let tk ∈ H(q) be a sequence such that tk → t0, and let ck be the
corresponding conformal structures, so ck → c0. As in the proof of Propo-
sition 4.4, we uniformize locally, i.e. we choose diffeomorphisms vk so that
id : (Σ, c0) −→ (Σ, v∗kck) is conformal near p in such a way that vk → id in
C∞. By assumption, there is a rel. q minimizer uk : (Σ, ck) −→ (Σ, G). Let
gk be metrics in ck and g0 be a metric in c0 that are conic near near u−1

k (p)
with cone angles a. Then uk ◦ vk : (Σ, v∗kgk) −→ (Σ, G) are also rel. q mini-
mizers, but now v∗kgk → g0 in M∗

2,γ,ν(g0, p, a), and thus Theorem 7.1 applies.
The limiting map u0 is the minimizer we desire, so H(q) is closed. �

7.1. Energy bounds, uniform continuity, energy density,
and the Jacobian.

The uk in Theorem 7.1 are in fact a rel. q energy minimizing sequence for
the metric G0, meaning that

lim sup
k→∞

E(uk, gk, G0) = inf
u∼rel.qid

E(u, gk, G0).(7.3)



774 Jesse Gell-Redman

This follows from Proposition 5.2, since for any u ∼rel.q id

lim sup
k→∞

E(uk, g0, G0) = lim sup
k→∞

E(uk, gk, Gk)

≤ lim
k
E(u, gk, Gk) = E(u, g0, G0).

Assuming that genus Σ > 0, by the Courant-Lebesgue Lemma, the uk are
an equicontinuous sequence. Thus they subconverge. Let

R := u−1
0 (Σp).

It is standard that the uk converge uniformly in C2,γ
loc with Jacobian unifor-

maly bounded below on compact subsets of R, [Tr], [J]. For Σ = S2, lifting
as in (5.9) to a branched cover and applying the above arguments gives the
same results. To summarize, we have

Lemma 7.3. The uk converge in C0(Σ) ∩ C2,γ
loc (R) to a map u0. On each

compact subset of R the Jacobian of u0 is bounded below by a positive con-
stant.

Fix p ∈ p, and let

qk = u−1
k (p),

we can pass to a subsequence so that

qk → q0,

for some q0. Let S ⊂ Σ be any set containing u−1
0 (p) so that S ∩ u−1

0 (p−
{p}) = 0 and S is diffeomorphic to a disc, and choose conformal maps

Fk : D −→ S

0 �−→ qk
(7.4)

so that Fk → F0 in C∞. Finally, define

(7.5) wk := uk ◦ Fk.

Thus we have a sequence of harmonic maps wk : D −→ (Σ, Gk) with wk(0) =
p. By uniform continuity, we may choose a single conformal coordinate chart
containing wk(D) = uk ◦ Fk(D) for all k. By abuse of notation, we denote
these coordinates by w. Our goal is to prove uniform estimates for the wk.
Specifically, we wish to control their energy densities and Jacobians.
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Consider the maps

(7.6) wk : (D, gα) −→ (Σ, Gk),

where 2πα is the cone angle at p and again gα = |z|2(α−1) |dz|2.

Proposition 7.4. The maps (7.6) have uniformly bounded energy density
(see (3.1)), i.e. for some C > 0

(7.7) ek(z) = e(wk, gα, Gk)(z) < C for |z| ≤ 1/2.

At z = 0 we have the lower bound

0 < c ≤ lim
z→0

ek(z, gα, Gk)(7.8)

for some uniform c.

Remark 7.5. The uniform bounds on the energy density ek from above
and below holds only if the domain is given the type of cone metric it
is given in Theorem 7.1. This may seem enigmatic, since the question of
energy minimization is not influenced by the metric on the domain, only its
conformal class. Indeed, the conic geometry of the domain, though naturally
suited to the analysis, is not essential; it merely provides the cleanest mode
of exposition.

Before we begin the proof, recall that by Form 2.3,

wk(z) = λkz + vk(z) with vk ∈ r1+εC2,γ
b .(7.9)

Proof of Proposition 7.4. For any harmonic map w : (D,σ |dz|2) −→
(D, ρ |dw|2), as in [W3], let

h(z) =
ρ(w(z))

σ(z)
|∂zw|2 , �(z) =

ρ(w(z))

σ(z)
|∂zw|2 ,(7.10)

so the energy density and the Jacobian satisfy, respectively

e = h+ � & J = h− �.(7.11)

The proposition will follow from analysis of the following inequality and
identity, which are standard and can be found for example in [SY], where
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they appear as equations (1.19) and (1.17), respectively.

Δe(u) ≥ −2κρJ + 2κσe(u)

Δ log h = −2κρ (h− �) + κσ.
(7.12)

Here κρ and κσ are the scalar curvature functions for the range and domain,
respectively, and Δ is the Laplacian for σ |dz|2. The second equation holds
only when h(z) �= 0, and of course both equations make sense only when σ
and ρ are sufficiently regular. For the wk in (7.6), the equations simplify as
follows: 1) σ(z) |dz|2 = gα has κσ ≡ 0 away from z = 0, 2) κρk ≤ 0, J ≥ 0 by
the assumptions of Theorem (7.1), and 3) κρk > −C by (7.2). Therefore, we
restrict our attention to the inequalities

Δek ≥ 0(7.13)

Δ log hk ≤ Chk.(7.14)

To prove (7.7), we use (7.13) as follows. Since Δ = |z|2(1−α)Δ0 where
Δ0 = 4∂z∂z is the euclidean Laplacian, we also have

(7.15) Δ0ek ≥ 0,

away from z = 0. We claim that in fact each ek is a subsolution to (7.15) on
all of D. To see this, write ek = hk + �k as in (7.11). Using (7.9), we have

hk(z) =
ρk(wk(z))

|z|2(α−1)
|∂zwk(z)|2

= λ
2(α−1)
k

∣∣∣1 + |z|2(1−α) vk(z)
∣∣∣2(α−1)

e2μk(wk(z)) |λk + ∂zvk(z)|2

= λ2αk

∣∣∣1 + |z|2(1−α) vk(z)
∣∣∣2(α−1)

e2μk(wk(z)) |1 + ∂zvk(z)/λk|2 ,

so since vk ∈ r1+εC2,γ
b and μk ∈ rνC2,γ

b , we have

(7.16) hk − λ2αk ∈ rεC1,γ
b

for some ε > 0. Similarly, using ∂zz = 0,

(7.17) �k ∈ rεC1,γ
b .

Therefore

(7.18) ek = λ2αk + fk(z) for fk ∈ rεC1,γ
b (D).
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In particular, r∂rek → 0 as r → 0. Therefore, for any non-negative function
ζ ∈ C∞

c (D).

(7.19)

∫
D
∇ek · ∇ζdxdy = − lim

ε→0

∫
D−D(ε)

(Δek)ζdxdy −
∫
r=ε

(∂rek)ζrdθ ≤ 0

so the ek are indeed subsolutions. By (7.18), each ek is a bounded function, so
the standard theory of subsolutions to elliptic linear equations [Mo, Section
5] implies that for some C > 0,

sup
z∈D(1/2)

ek(z) ≤ C

∫
D
ekdxdy.

The right hand side is controlled by the energy,∫
D
ekdxdy ≤

∫
D
ek |z|2(α−1) dxdy = E(wk, D,Gk),

and this establishes (7.7).
It remains to prove (7.8). From (7.16) and (7.17), we now see that

(7.20) lim
z→0

ek(z) = lim
z→0

hk(z) = λ2αk ,

Thus, to prove (7.8), it is equivalent to prove that λk ≥ c > 0 for some c
independent of k. To do so, we use (7.14). Dropping the k’s for the moment,
by (7.16) and the fact that the logarithm is smooth and vanishes simply at
1, we have

(7.21) log h− log |λ|2α ∈ rεC2,γ
b .

We will now apply the assumption from Theorem 7.1 regarding the Jacobian,
specifically that J = h− � > 0 on compact sets away from 0, and thus by
continuity and (7.20) we may choose a δ (depending on h) satisfying

0 < δ ≤ 1

2
inf
z∈D

h(z).

Thus h/δ is bounded from below by 2. We also need control from above. We
already know by (7.7) that h+ � = e < c for some c > 0, so supz∈D h(z) < c
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for some constant depending only on the energy. Using this and the elemen-
tary bound h ≤ c

log(c′/δ) log
(
h
δ

)
we conclude from (7.14) that

Δ log (h/δ) ≤ c

log(c′/δ)
log

(
h

δ

)
.(7.22)

Note that log h/δ ≥ ln 2 > 0, so this inequality looks promising for an appli-
cation of the Harnack inequality. We use the following explicit inequality,
inspired by Lemma 6 of [He].

Remark 7.6. We prove the following lemma under more general assump-
tions than currently necessary so that it may be applied in Section 8 where
we deal with the case p=π �= ∅.

Lemma 7.7 (Harnack Inequality). Let Δ denote the Laplacian on the
standard cone (D, gα). Let f : D −→ R, f ∈ C2(D − {0}), f > 0, and assume
that for some σ ∈ R,

(
Δ− σ2

)
f ≤ 0 on D − {0} .

Furthermore, assume that

f = a+ b(θ) + v(r, θ) for v ∈ rεC2,γ
b (D),(7.23)

for a ∈ C and b ∈ C∞(S1). Then if σ < ε, there is a constant c > 0 such
that

(7.24) lim inf
z→0

f = a+ inf b ≥ e−cσ
2 1

2π

∫ 2π

0
f(eiθ)dθ.

Before proving the lemma, we conclude the proof of (7.8) (and thus of
Proposition 7.4) by applying the lemma to (7.22) as follows. By (7.21), the
lemma applies to (7.22) with f = log h/δ, σ2 = c/ log(c′/δ), and b ≡ 0. We
will choose η > 0 small so that if

δk = min

{
η,

1

2
inf

z∈D−0
hk(z)

}
(7.25)
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then the hypotheses of the lemma are satisfied. Thus by the lemma

lim
z→0

log(hk(z)/δk) ≥ e
−c

log(c′/δk)
1

2π

∫ 2π

0
log(hk/δk)dθ

lim
z→0

log hk(z) ≥ e
−c

log(c′/δk)

(∫ 2π

0
log hk dθ

)
−

(
e

−c

log(c′/δk) − 1
)
log δk.

Since
(
exp( −c

log(c′/δk)
)− 1

)
log δk ≥ c′′ > 0 for some c′′ independent of δk and

exp( −c
log(c′/δk)

) is bounded above, for some c > 0, we have

(7.26) lim
z→0

log hk(z) = |λk|2α ≥ −c
∣∣∣∣∫ 2π

0
log hk(e

iθ) dθ

∣∣∣∣+ c

By Lemma 7.3, the Jacobians, Jk, and thus the hk, are uniformly bounded
below on ∂D. Thus (7.26) gives a uniform lower bound for hk(0) from below,
which finishes the proof of Proposition 7.4 modulo the proof of Lemma 7.7.

�

Proof of Lemma 7.7. To prove the lemma we will work in normal polar coor-
dinates. Let φ = θ, ρ = rα/α. In these coordinates gα = dρ2 + α2ρ2dφ2 and
Δ = ∂2ρ +

1
ρ∂ρ +

1
α2ρ2∂

2
φ. The fact that f − (a+ b(θ)) ∈ rεC2,γ

b implies that

f − (a+ b(θ)) ∈ ρε/αC2,γ
b . The exact vanishing rate is irrelevant, and we refer

to it henceforth as ε. The proof proceeds by comparing f to the solution f̃
to the equation

(Δ− σ2)f̃ = 0

f̃ |∂D = f |∂D.
(7.27)

In fact, we have (noting that ∂D now occurs at ρ = 1/α, the explicit solution

f̃(ρ, φ) =
∑
n∈Z

In/α(σr)

In/α(σ/α)
ane

inφ
(7.28)

where an = 1
2π

∫ 2π
0 e−inφf(1/α, φ)dφ, and the In/α are the standard modi-

fied Bessel functions [AS] and we have written f as a function of ρ, φ. In
particular, by [AS, Equation 9.6.10]

f̃(z)− f̃(0) ∈ r1/αC2,γ
b

(7.29)
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It follows that F = f − f̃ satisfies

(7.30)

(
Δ− σ2

)
F ≤ 0 away from z = 0

F |∂D = 0 where ∂D = {ρ = 1/α} .

We will show that

(7.31) F (ρ, φ) ≥ 0.

Assuming this for the moment, we have in particular that

(7.32) lim inf
z→0

f(z) ≥ f̃(0) =
a0

I0(σ/α)
=

1

I0(σ/α)2π

∫ 2π

0
e−inφf(1/α, φ)dφ.

But by [AS, Equation 9.6.10], I0(σ/α) ≤ e−cσ2

for some some c > 0, which
implies (7.24).

It remains to show that F ≥ 0. Switch back to conformal coordinates,
z = reiθ. By assumption (7.23), F (z) = F (r, θ) is continuous on [0, 1]r × S1

θ ,
thus attains a minimum. If that minimum is on r = 1, we are done by (7.30).
If it is in the interior and away from z = 0, say at z0, then (7.30) implies that
0 ≤ ΔF ≤ σ2F , so since σ2 ≥ 0, F (z0) ≥ 0. Finally, assume that F attains
its minimum on r = 0, and define

−m := inf
r=0

F (r, θ) < 0.

Consider the function

Fμ(z) = F (z)− μrν , where μ > 0, ν ≥ σ.(7.33)

Since (Δ− σ)rν = rν
(
r−2αν2 − σ

)
≥ 0, Fμ also satisfies

(
Δ− σ2

)
Fμ(z) ≤

0. Since Fμ|∂D ≡ −μ and lim infz→0 Fμ(z) = −m, if −m ≤ −μ then Fμ =
Fμ(r, θ) has a (negative) minimum away from ∂D. On the other hand, given
any (r, θ) with r > 0,

Fμ(0, θ) ≥ Fμ(r, θ) ⇐⇒ −μ ≤ F (0, θ)− F (r, θ)

rν
.

Thus if we can find μ > 0 so that for some r > 0, θ, ν

−m ≤ −μ ≤ F (0, θ)− F (r, θ)

rν
,(7.34)
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then Fμ will have a negative interior minimum. By the assumptions of the
lemma and (7.29) we have that F (0, θ)− F (r, θ) ∈ rεC2,γ

b , so

ν < ε =⇒ |F (0, θ)− F (r, θ)|
rν

→ 0 as r → 0.

Thus, (7.34) can be obtained as long as

(7.35) σ < ε. �
Now we prove a classification lemma for harmonic maps of the standard

cone Cα defined in (2.8) and (2.9) above.

Lemma 7.8. Let u : Cα −→ Cα be a smooth harmonic map (i.e. a solution
to (HME(q))) in Form 2.3, with uniformly bounded energy density, that is
the uniform limit of a sequence of orientation-preserving homeomorphisms
fixing the cone point. Then u(z) = λz for some λ ∈ C− {0}.

Proof. Let e be the energy density function of u (7.11), and let h, �, and J
be the functions defined in (7.10). We will use a differential inequality for
�, similar to those used in the proof of Proposition 7.4. Namely, (1.18) from
[SY] gives

Δ� ≥ 2κρJ�+ 2κσ�,

where κρ and κσ are the scalar curvatures on the domain and target, respec-
tively, and the inequality holds only away from z = 0. Since Cα is flat
away from the cone point, this gives Δ�(z) ≥ 0 when z �= 0. The assump-
tion that the energy density of u is uniformly bounded implies � is uni-
formly bounded (� < e), and on the other hand, as in (7.19), � is a subsolu-
tion on all of C. Thus � is identically constant. (There are no non-constant,
bounded entire subsolutions.) Since � ∈ rεC2,γ

b , limz→0 � = 0, and thus � ≡ 0,
i.e. ∂zu = 0 when z �= 0. Since u bounded near 0, it is in fact entire. The fact
that u is the uniform limit of homeomorphisms and takes Form 2.3 implies
that it is 1− 1 on the inverse image of an open ball around 0. Since the only
entire holomorphic function with this behavior that fixes 0 is u(z) = λz for
λ ∈ C∗, the proof is complete. �

7.2. Uniform C2,γ
b bounds near p and the preservation

of Form 2.3

We will now make precise the sense in which the wk in (7.6) are uniformly
bounded near p. We will need the well-known Rellich lemma for b-Hölder
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spaces; given 0 < γ′ < γ < 1, c′ < c, and non-negative integers k′ ≤ k the
containment

rcCk,γb (D(R)) ⊂ rc
′
Ck

′,γ′

b (D(R))(7.36)

is compact. (HereD(R) is as in (2.21).) Given a smooth function f : C −→ R,
define

(7.37) ‖f‖c,k,γ,R := ‖f‖rcCk,γ
b (D(R)).

(See (2.22)–(2.23).) And for any map w : D(R) −→ D(R) with

(7.38) w(z) = λz + v(z) and v ∈ rcC2,γ
b (D(R)),

let

[w]c,k,γ,R := ‖v‖c,k,γ,R(7.39)

Having established the uniform energy density bound, we will now prove

Proposition 7.9. For the wk in (7.6), there exist uniform constants σ,C, ε
> 0 such that

[wk]1+ε,2,γ,σ < C.(7.40)

This proposition implies the following.

Corollary 7.10. With Fk as in (7.4) and wk = λkz + vk as in (7.5), some
subsequence of the wk converges to a map w0 = λ0z + v0, in the sense that

λk → λ0

vk → v0 in r1+εC2,γ
b ,

(7.41)

for some ε, γ > 0. Since the Fk in uk ◦ Fk = wk converge in C∞ to some
univalent conformal map F0, the limit in uk → u0 is of Form 2.3.

Proof of Corollary 7.10. The first line of (7.41) follows from Proposition 7.4
and (7.20). The second line of (7.41) follows from Proposition 7.9 and the
fact that the containment (7.36) is compact. �
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Before we prove Proposition 7.9, we discuss scaling properties of the
norm in (7.37). Let R > 0, σ > 0, and let f be a function defined on D(R).
Define

fσ(z) = f(σz).

From (2.22)–(2.24),

(7.42) ‖fσ‖c,k,γ,R/σ = σc‖f‖c,k,γ,R

For w : D −→ D as in (7.38), 1
τwσ(z) makes sense locally and equals λσ

τ z +
vσ(z)
τ . By (7.42) we have

Lemma 7.11. If w(z) = λz + v(z), then[
1

σ
wτ

]
c,k,γ,R/τ

=
τ c

σ
[w]c,k,γ,R

We will apply this lemma directly to the wk in (7.6). For these mapsGk =

e2μk |w|2(α−1) |dw|2, and the map 1
σ (wk)τ (z) is an expression in normalized

conformal coordinates (see (2.25)) of the map

(7.43) wk : (D, gα/τ
2α) −→ (Σ, Gk/σ

2α),

meaning simply that if we write z for z/τ and w for w/σ, then

gα/τ
2α = |z|2(α−1) |dz|2 and Gk/σ

2α = e2μk(σw) |w|2(α−1) |dw|2 .

Before we begin the proof of Proposition 7.9, we recall that by (7.8) we
know that λk → λ0 for some λ0 > 0, and, by setting Gk = Gk/λ

2α
k , we may

assume without loss of generality that

λk ≡ 1

so that the normalized conformal coordinate expression is wk = z + vk(z).

Proof of Proposition 7.9. We proceed by contradiction. Supposing Proposi-
tion 7.9 false, we will produce a sequence σk → 0 so that the scaled maps

1

σk
wk,σk

,

converge to a harmonic map w∞ : Cα −→ Cα satisfying the assumptions but
not the conclusion of Lemma 7.8. This contradiction proves the lemma.
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If (7.40) does not hold then for all σ,C > 0 there is a k such that

[wk]1+ε,2,γ,σ > C.(7.44)

Thus, for every l ∈ N there is a kl such that [wkl ]1+ε,2,γ,1/l > lε, and passing
to a subsequence, we assume that [wk]1+ε,2,γ,1/k > kε. Since the the semi-
norm in (7.39) is monotone increasing in R and tends to 0 as R→ 0, for
each k there is a number σk < 1/k such that [wk]1+ε,2,γ,σk

= σ−εk . Thus[
1

σk
wk,σk

]
1+ε,2,γ,1

= 1.(7.45)

By the remarks immediately preceding the proof, this map, which is the
normalized coordinate expression of the map

wk : (D, g/σ
2α
k ) −→ (Σ, Gk/σ

2α
k )(7.46)

is harmonic and in normalized conformal coordinates satisfies 1
σk
wk,σk

(z) =

z + 1
σk
vk,σk

(z). Define ṽk :=
1
σk
vk,σk

(z). Since e(wk, g/σ
2
k, Gk/σ

2
k) = e(wk, g,

Gk), the uniform bound (7.7) holds for the maps in (7.46), and thus they
converge on compact subsets of (D(1/σk), gα) to a map w∞ : Cα −→ Cα.
The following will finish the proof of Proposition 7.9 since it contradicts
Lemma 7.8.

Claim 7.12. The map w∞ is in Form 2.3, with

(7.47) w∞(z) = z + v∞(z)

and ṽk → v∞ ∈ r1+εC2,γ
b (D), for ε′, γ′ > 0 sufficiently small. Furthermore

v∞(z) �≡ 0(7.48)

To prove the claim, set

G̃k = Gk/σ
2α
k

Using the elliptic theory of b-differential operators from Section 6.2, we will
prove that, for ε′ < ε as above and 0 < γ′ < γ < 1 we have the inequality

(7.49) ‖ṽk‖1+ε,2,γ,1 ≤ C ‖ṽk‖1+ε′,2,γ′,2 .

Note the shift in regularity and the fact that the norm on the right is on a
ball of larger radius than the norm on the left. The left hand side of (7.49) is
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bounded from below by (7.45), so the right hand side is also bounded from
below. By the compact containment (7.36), the vk,σk

converge strongly in
the norm on the left, thus they converge to a non-zero function, i.e. (7.48)
holds.

Thus it remains to prove the estimate (7.49). To do so, we apply Taylor’s
theorem to the Harmonic map operator τ around the map id : (D, gα) −→
(D, G̃k). Let rcĊk,γb (Cα) denote the set of maps v ∈ rcCk,γb (D(2)) which
vanish on ∂D(2). By Section 6.1 we have

τ(wk, gα, G̃k) = τ(id, gα, G̃k) + Lkṽk +Qk(ṽk)

Lkṽk = −Qk(ṽk)

All the materlial in Section 6.2 applies to

Lk : r
1+εĊj,γb (D(2)) −→ r1+ε−2aCj−2,γ

b (D(2)).(7.50)

In particular, it is Fredholm for any γ, j, and ε small, and it has an general-
ized inverse Gk which satisfies the mapping properties analogous to (6.25).
By Lemma 6.6, (7.50) is injective, so GkLk = I. From (6.10), for ε′ < ε as
above, we have ‖Qk(ṽk)‖1+2ε′−2α,j,γ,2 ≤ C ‖ṽk‖1+ε′,j+1,γ,2. Let χ(r) be a cut-
off function that is 1 on D and supported in D(2). Then we have

GkχQk(ṽk) = −GkχLk(ṽk) = −Gk[Lk, χ]ṽk − χṽk,

so χṽk = GkχQk(ṽk)− Gk[Lk, χ]ṽk. Since [Lk, χ] is the zero operator near
the cone point, it maps r1+εCj,γb (D(2)) to rNCj−1,γ

b (D(2)) for any N > 0.
Tracing through all of the boundedness properties above, we get

‖ṽk‖1+2ε′,2,γ,1 ≤ c ‖χṽk‖1+2ε′,2,γ,2

≤ c
(
‖GkχQk(ṽk)‖1+2ε′,2,γ,2 + ‖Gk[Lk, χ]ṽk‖1+2ε′,2,γ,2

)
≤ c ‖ṽk‖1+ε′,1,γ,2 ,

for a constant c > 0 whose value varies from line to line. But ε′ is an arbitrary
positive number less than ε, so regardless of the ε present in (7.45), we can
choose ε > ε′ > ε/2 and (7.49) is proven.

This completes the proof of Claim 7.12 and thus the proof of Proposi-
tion 7.9. �

8. Cone angle π

We now discuss the case p=π �= ∅.
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Let id = u0 : (Σp, g) −→ (Σp, G) be energy minimizing and fix p ∈ p=π.
Let φ1 : D −→ (Σp, g) and φ2 : D −→ (Σp, G), so that the φ are conformal
and φi(0) = p. Pick conformal coordinates z and w on the domain and target,
respectively. The double cover f : D −→ D with f(z) = z2 can be used to
pull back G to a metric G : = f∗φ∗2G on D with (not necessarily smooth)
cone angle 2π. The map w = φ2 ◦ u0 ◦ φ−1

1 lifts to a harmonic map

D

f

��

w̃ �� (D,G)

f

��
D

w �� (D,φ∗2G)

(8.1)

Since G has cone angle 2π, by Section 2.1, in conformal coordinates v we
can write

G = e2μ |dw̃|2 .

The reason we treat this case separately is that the form of these har-
monic maps near p=π is different than Form 2.3. We have

Form 8.1 (p=π �= ∅). We say that u : (Σ, g) −→ (Σ, G) is in Form 2.3
(with respect to g and G) if

1) u is a homeomorphism, and writing p′ = u−1(p), u : Σp′ −→ Σp is a
C2,γ
loc diffeomorphism.

2) For each p ∈ p− p=π, if z is a centered conformal coordinate around
u−1(p) w.r.t. g and w is a centered conformal coordinate around p
w.r.t. G, then u is given by w(z) = λz + v(z), where λ ∈ C∗ and v ∈
r1+εC2,γ

b (D(R)) for some sufficiently small ε > 0.

3) Near p ∈ p=π, if w is defined as in (8.1), then

w̃(z̃) = az̃ + bz̃ + v(z̃)

where v ∈ r1+εC2,γ
b (D(R)), for some sufficiently small ε > 0, a, b,∈ C,

and

|a| > |b| .(8.2)

It is easy to check that Lemma 5.1 holds, i.e. that harmonic maps in
Form 8.1 have Hopf differentials that are holomorphic with at worst simple
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poles at p. In fact, since Φ(w̃) is invariant under the deck transformation,
we can just compute Φ(w̃) and use Φ(w) = f∗Φ(w̃).

Φ(w̃) = e2μvz̃vz̃ = (ab+O(|z̃|))dz̃2.

By holomorphicity and the invariance of Φ under the deck transformation,

Φ(w̃) = (ab+ g(z̃2))dz̃2,

where g is a holomorphic function with g(0) = 0. Thus

Φ(w) = f∗Φ(w̃) =
1

4

(
ab

z
+ g(z)

)
dz2.

Thus, we have shown more than Lemma 5.1, namely,

Lemma 8.2. Suppose u : (Σp, g)−→(Σp, G) is harmonic and is in Form 8.1
with a �= 0, then u is actually in Form 2.3, i.e. b = 0, if and only if Φ(u)
extends holomorphically over p=π.

It follows that all of the results of Section 5 hold, since the only way
Form 2.3 we used in this section was in proving Lemma 5.1.

Given a harmonic u0 in Form 8.1, the space B1+ε(u0) is defined so that
u ∈ B1+ε(u0) if and only if near q ∈ p, u− u0 ∈ r1+εC2,γ

b . For p ∈ p=π, writ-
ing the lift of w0 as w̃0(z̃) = a0z̃ + b0z̃ + v0(z̃), we see that

u ∈ B1+ε(u0) =⇒ w̃(z) = a0z̃ + b0z̃ + v(z̃) for some v ∈ r1+εC2,γ
b

where w is the localized lift of u from (8.1). As above, we allow the tension
field operator τ to act on a space of geometric perturbations. Near p ∈ p=π
they can be described simply; given λ = (λ1, λ2) ∈ C2, consider the (locally
defined) map

w̃(z̃) = (a0 + λ1)z̃ + (b0 + λ2)z̃ + v(z̃).(8.3)

Following the above arguments we let D′ be a space of automorphisms which
look like (3.10) near q ∈ p− p=π and which lift to look like (8.3) near each
p ∈ p=π.

8.1. H(q) is open (p=π �= ∅)

We state and sketch the proof of the main lemma
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Lemma 8.3. The tension field operator τ acting on B1+ε(u0) ◦ D′ ◦ T>π is
C1. Its linearization L = Duτ is bounded as a map

L : r1+εX 2,γ
b ⊕ TidD′ ⊕ TidT>π −→ r1+ε−2αX 0,γ

b ,

and is transverse to (TConf0 ∩ r1+ε−2aX 0,γ
b )⊥.

By Remark 6.12, the lemma implies the openness statement exactly as
it did in the case p=π = ∅. The map

L : r1+εX 2,γ
b −→ r1+ε−2αX 0,γ

b(8.4)

is Fredholm for small ε, as is L : r1−εX 2,γ
b −→ r1−ε−2αX 2,γ

b . The latter map
has cokernelK = KerL|r1+ε−2aX 2,γ

b
. The cokernel of (8.4) can again be written

as W̃ ⊕K where W̃ consists of vectors ψ ∈ r1−εX with Lψ ∈ r1+ε−2αX , and
again such vectors have expansions determined by the indicial roots. Near
p ∈ p=π, using the lifts at the beginning of this section makes the asymptotics
easy to calculate. Note that

H(u, g,G) = (φ1)∗f∗H(w̃,D,G),

where z̃ is defined by (8.1), which immediately implies (initially on X∞),
that near p ∈ p=π, Lu0,g,G = (φ1)∗f∗Dw̃H|w̃0,D,G

. If L := Dz̃H|w̃0,D,G
, then

setting L̃ = (|z̃|2 /4)L we have

L̃ = (z̃∂z̃)
(
z̃∂z̃

)
+ E(z̃).

Any ψ ∈ r1+ε−2αX is in rεC2,γ
b near p ∈ p=π since αp = 1/2. It is now easy

to see that a solution Lψ = 0 has lift

ψ(z̃) = λ1z̃ + λ2z̃ + ψ
′
where ψ

′ ∈ r1+εC2,γ
b

(8.5)

near such a p, and this shows that

L
(
r1+εX 2,γ

b ⊕D′
)
⊕K = r1+ε−2aX 0,γ

b .

In analogy with Lemma 6.8, we have that, near p ∈ p=π, elements of K look
like (8.5). All of the material in Section 6 follows after replacing D by D′.
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8.2. H(q) is closed (p=π �= ∅).

The proof again requires only minor modifications. The main difference is
the following; consider a sequence of maps uk and converging metrics metrics
Gk → G0 and gk → g0 as in the statement of Theorem 7.1. In the same way
as in the p=π = ∅ case, we reduce to the local analysis of the uk near a cone
point p ∈ p=π. By analogy with the treatment of the λk in the p=π = ∅ case,
we want want to show that the condition (8.2) persists in the limit, and for
this we need some uniform control of the ak, bk. In fact, we claim that

|ak| ≤ c and |ak| − |bk| ≥ c > 0,

for some uniform constant c. As in the previous case, the ak and bk are relate
to the energy density ek and the function hk defined in (7.10). There exist
f1, f2 ∈ rεC2,γ

b such that

hk(z) ∼ |ak|2α
∣∣∣∣1 + bk

ak
e−2iθ

∣∣∣∣2(α−1)

+ f2

ek(z) ∼ |ak|2(α−1)

∣∣∣∣1 + bk
ak
e−2iθ

∣∣∣∣2(α−1) (
|ak|2 + |bk|2

)
+ f1

(8.6)

If follows that the ek are uniformly bounded, since they are still subsolu-

tions. In the second line, choosing θ so that bk
ak
e−2iθ =

∣∣∣ bkak

∣∣∣ < 1 and using the

uniform bound ek < c gives |ak| < c. We apply Lemma 7.7 to the log hk/δk
for δk defined as in (7.25), noting that the hypotheses are satisfied by (8.6).
As above, this leads to the lower bound

inf
z∈D−0

hk(z) ≥ c > 0,

so choosing θ such that 1 + bk
ak
e−2iθ = 1−

∣∣∣ bkak

∣∣∣ we get that |ak| − |bk| ≥ c > 0

The rest of the argument proceeds as in the p=π = ∅ case, with ak
playing the role of λk. Assuming the same type of blow-up near p ∈ p=π, and
rescaling in the exact same way, on the local double cover a harmonic map of
w∞ : C −→ C results with w∞ = a∞z + b∞z + v∞ with v∞ ∈ r1+εC2,γ

b not
identically zero. This is a contradiction by the following argument from [D],
which we outline briefly; an orientation preserving harmonic mapping map
of C can be written, globally, as a sum f + g where f and g are holomorphic.
The ratio ∂zg/∂zf is bounded by the orientation preserving property and is
clearly holomorphic, hence constant. Integrating proves the statement.
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9. H is continuously differentiable

Finally, we discuss that the map (3.17) in detail. To study its properties we
trivialize the bundle E −→ B1+ε

2,γ (u0) ◦ C ×M∗
2,γ,ν(g0, p, a)×M∗

2,γ,ν(G0, p, a)
(see (3.17)–(3.18)), and use the trivializing map to define the topology of E.
We define a map

(9.1) Ξ: E −→ X 1+ε−2a
0,γ (u0)

as follows. Let ((u ◦ C, g,G), ψ) ∈ E where ψ ∈ X 1+ε−2a
0,γ (u ◦ C). By the defi-

nition of u ∈ B1+ε(u0), there is a unique ψ̃ ∈ X 1+ε(u0) so that u = expu0
(ψ̃).

Assuming for the moment that C = id, let Ξ((u, g,G), ψ) = Ξu(ψ) where

(9.2) Ξu(ψ) :=
parallel translation of ψ along

γt := expu0
(tψ̃) from t = 1 to t = 0.

In general, motivated by pointwise conformal invariance of τ (see (3.6)),
define Ξ((u ◦ C, g,G), ψ) = Ξu(ψ ◦ C−1). Obviously, Ξ is an isomorphism on
each fiber, and we endow E with the pullback topology induced by Σ. Thus a
section σ of E is C1 if and only if Ξ ◦ σ is C1. The purpose of this section is to
prove Proposition 3.4, which states that if g0 and G0 satisfy Assumption 3.1,
then the map 9.1 is C1.

We reduce the proposition to a computation in local coordinates. Near
p ∈ p, we have

H(u ◦ C, g,G) = Ξ (τ(u,C∗g,G))
= Ξu

(
τ i(u,C∗g,G)∂i

)
= τ i(u,C∗g,G)(Ξu)i

j∂j ,

where (Ξu)i
j is the local coordinate expression for parallel translation of ∂α

along the path in (9.2).
Since (u0, g0, G0) solves (HME(q)) we have τ(u0, g0, G0) = 0, and since

G and G0 have the same the same conformal coordinates near p ∈ p− p=π,
by the computations of Section 6.1,

(9.3) τ i(u,C∗g,G) ∈ 4

σ
rε−1C0,γ

b = r1+ε−2aC0,g
b

Near p∈p=π, recall that C=D′
λ1,λ2

◦ Tw where Tw(z)=z−w and D′
λ1,λ2

(z̃)

= λ1z̃ + λ2z̃, for z̃
2 = z and ũ2 = u coordinates on the local double cover.
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Again we have, locally

H(u ◦Dλ1,λ2
◦ Tw, g, G) = Ξ (τ(u ◦Dλ1,λ2

, T ∗
wg,G))

= Ξu
(
τ i(u ◦Dλ1,λ2

, T ∗
wg,G)∂i

)
= τ i(u ◦Dλ1,λ2

, T ∗
wg,G)(Ξu)i

j∂j ,

The local computation of τ can now be done in the lifted coordinates z̃, where
ũ = az̃ + bz̃ + v for v ∈ r1+εC2,γ

b coordinates. The pulled back tension field
is

4

σ

(
ũz̃z̃ +

∂ log ρ

∂ũ
((a+ λ1) + ũz̃)((b+ λ2) + ũz̃)

)
So by ∂ log ρ(ũ0)

∂ũ = 2∂μ̃∂ũ , we have τ i ∈ rεC0,γ
b , which is (9.3) in this context.

As for the expression (Ξu)i
j∂j , a simple exercise in ODEs shows that (if

we assume u− z ∈ r1+εC2,γ
b ), then (Ξu)i

j∂j − ∂i ∈ r1+εC0,γ
b . Thus we have

established

Lemma 9.1. If (u0, g0, G0) satisfy (HME(q)) and u0 is in Form 2.3, then

τ : B1+ε
2,γ (u0) ◦ D ×M∗

2,γ,ν(G0, p, a) −→ E

(u ◦ C, g,G) −→ τ(u ◦ C, g,G)
(9.4)

is C1 near u0.

Index of Notation

a a point in (0, 1)k, page 730.

B1+ε(u0) r1+εC2,γ
b perturbations of u0, page 736.

rcC2,γ
b weighted b-Hölder spaces, page 729.

Cα the standard flat cone of cone angle 2πα, page 725.

gα metric on the standard flat cone, page 725.

D local conformal dilations, page 736.

D(R) the disc in C of radius R, page 730.

E(u, g,G) The energy of a map u : (Σ, g) −→ (Σ, G), page 724.

E bundle in which τ takes values., page 738.

Γ(B) the sections of a bundle B., page 725.

Conf0 The space of conformal automorphisms of ((Σ, g)
that are homotopic to the identity., page 739.
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Harmq harmonic maps with fixed geometric data fixing q,
page 742.

κh scalar curvature of the metric h, page 730.

Mk,γ,ν(p, a) is the space of conic metrics with cone points at p
of cone angles 2πa, page 730.

M∗
k,γ,ν(h0, p, a) metrics locally conformal to h0, page 737.

Mphg
ν (p, a) polyhomogeneous conic metrics, page 730.

Φ(u) the Hopf differential, page 733.

p<π, p>π, p=π points with various angle specifications, page 731.

q the cone points in whose relative homotopy class we
minimize, page 732.

Σ a closed, orientable, smooth surface, page 724.

p a finite subset of Σ, page 724.

Σp Σ− p, page 724.

T local conformal translations, page 736.

T
˜p local conformal translations near p̃, page 736.

τ(u, g,G) the tension field of u : (Σ, g) −→ (Σ, G), page 725.

r1+εX k,γ
b (u) r1+εC2,γ

b vector fields over u, page 735.
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[TII] M. E. Taylor, Partial Differential Equations II: Qualitative Studies
of Linear Equations. Springer-Verlag, New York, (1996).

[TIII] M. E. Taylor, Partial Differential Equations III: Nonlinear Equa-
tions. Springer-Verlag, New York, (1997).

[Th] W. Thurston, On the geometry and dynamics of diffeomorphisms
of surfaces. Bull. Amer. Math. Soc. (N.S.), 19 (2), 417–431, (1988).

[Tr] A. Tromba, Teichmüller Theorey in Riemannian Geometry. Bir-
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