
i
i

“6-soufi” — 2015/1/5 — 16:43 — page 639 — #1 i
i

i
i

i
i

communications in
analysis and geometry
Volume 23, Number 3, 639–670, 2015

Eigenvalues of the Laplacian on a compact

manifold with density
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In this paper, we study the spectrum of the weighted Laplacian
(also called Bakry-Émery or Witten Laplacian) Lσ on a compact,
connected, smooth Riemannian manifold (M, g) endowed with a
measure σdvg. First, we obtain upper bounds for the k−th eigen-
value of Lσ which are consistent with the power of k in Weyl’s
formula. These bounds depend on integral norms of the density σ,
and in the second part of the article, we give examples showing
that this dependence is, in some sense, sharp. As a corollary, we
get bounds for the eigenvalues of Laplace type operators, such as
the Schrödinger operator or the Hodge Laplacian on p−forms. In
the special case of the weighted Laplacian on the sphere, we get
a sharp inequality for the first nonzero eigenvalue which extends
Hersch’s inequality.

1. Introduction

In this article, our main aim is to study the spectrum of the weighted
Laplacian (also called Bakry-Émery Laplacian) Lσ on a compact, connected,
smooth Riemannian manifold (M, g) endowed with a measure σdvg, where
σ = e−f ∈ C2(M) is a positive density and dvg is the Riemannian measure
induced by the metric g. Such a triple (M, g, σ) is known in literature as a
weighted Riemannian manifold, a manifold with density, a smooth metric
measure space or a Bakry-Emery manifold. Denoting by ∇g and ∆g the
gradient and the Laplacian with respect to the metric g, the operator Lσ is
defined by

Lσ = ∆g −
1

σ
∇gσ · ∇g = ∆g +∇gf · ∇g

so that, for any function u ∈ C2(M), satisfying Neumann boundary condi-
tions if ∂M 6= ∅, ∫

M
|∇gu|2σdvg =

∫
M
u Lσu σdvg.
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Note that Lσ is self-adjoint as an operator on L2(σdvg) and is uni-
tarily equivalent (through the transform

√
σ : L2(σdvg)→ L2(dvg)) to the

Schrödinger operator Hσ = ∆g + 1
4 |∇

gf |2 + 1
2∆gf , which is nothing but the

restriction to functions of the Witten Laplacian associated to f . That is why
Lσ itself is sometimes called Witten Laplacian.

Weighted manifolds arise naturally in several situations in the context of
geometric analysis and their study has been very active in recent years. Their
Bakry-Émery curvature Ricσ = Ricg + Hessf plays a role which is similar
in many respects to that played by the Ricci curvature for Riemannian
manifolds, and appears as a centerpiece in the analysis of singularities of
the Ricci flow in Perelman’s work (see [39, 40]). The weighted Laplacian Lσ
appears naturally in the study of diffusion processes (see e.g., the pioneering
work of Bakry and Émery [2]). Eigenvalues of Lσ are strongly related to
asymptotic properties of mm-spaces, such as the study of Levy families (see
[14, 22, 38]). Without being exhaustive, we refer to the following articles
and the references therein: [5, 31, 33–35, 41–43, 47] and, closely related to
our topic, [1, 3, 6, 15, 16, 24, 36, 37, 45, 48, 49]

The spectrum of Lσ, with Neumann boundary conditions if ∂M 6= ∅,
consists of an unbounded sequence of eigenvalues

Spec(Lσ) = {0 = λ1(Lσ) < λ2(Lσ) ≤ λ3(Lσ) ≤ · · · ≤ λk(Lσ) ≤ · · · }

which satisfies the Weyl’s asymptotic formula

λk(Lσ) ∼ 4π2ω
− 2

n
n

(
k

Vg(M)

) 2

n

, as k →∞

where Vg(M) is the Riemannian volume of (M, g) and ωn is the volume of
the unit ball in Rn. The first aim of this paper is to obtain bounds for λk(Lσ)
which are consistent with the power of k in Weyl’s formula.

Before stating our results, let us recall some known facts about the
eigenvalues (λk(g))k≥1 of the usual Laplacian ∆g (case σ = 1). Firstly, the
well-known Hersch’s isoperimetric inequality (see [27]) asserts that on the 2-
dimensional sphere S2, the first positive normalized eigenvalue λ2(g)Vg(M)
is maximal when g is a “round” metric (see [12, 13, 28, 30, 44] for similar
results on other surfaces). Korevaar [29] proved that on any compact mani-
fold of dimension n = 2, λk(g)Vg(M) is bounded above independently of g.
More precisely, if M is a compact orientable surface of genus γ, then

λk(g)Vg(M) ≤ C(γ + 1)k(1)
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where C is an absolute constant (see [23] for an improved version of this
inequality). On the other hand, on any compact manifold M of dimension
n ≥ 3, the normalized first positive eigenvalue λ2(g)Vg(M)2/n can be made
arbitrarily large when g runs over the set of all Riemannian metrics on M
(see [7, 32]). However, the situation changes as soon as we restrict ourselves
to a fixed conformal class of metrics. Indeed, on the sphere Sn, round metrics
maximize λ2(g)Vg(Sn)2/n among all metrics g which are conformally equiv-
alent to the standard one (see [11, Proposition 3.1]). Furthermore, Korevaar
[29] proved that for any compact Riemannian manifold (M, g) one has

λk(g)Vg(M)2/n ≤ C([g])k2/n(2)

where C([g]) is a constant depending only on the conformal class [g] (i.e.
the inequality (2) remains valid with the same constant C([g]) if the metric
g is replaced by a metric g′ conformal to g). Korevaar’s approach has been
revisited and placed in the context of metric measure spaces by Grigor′yan
and Yau [19] and, then, by Grigor′yan, Netrusov and Yau [21].

The first observation we can make about possible extensions of these
results to weighted Laplacians is that, given any compact Riemannian man-
ifold (M, g), the eigenvalues λk(Lσ) cannot be bounded above independently
of σ. Indeed, from the semi-classical analysis of the Witten Laplacian (see
[25]), we can easily deduce that (Proposition 2.3) if f is any smooth Morse
function on M with m0 stable critical points, then the family of densities
σε = e−f/ε satisfies for k > m0,

λk(Lσε) −→
ε→0

+∞.

Therefore, any extension of the inequalities (1) and (2) to Lσ must nec-
essarily have a density dependence in the right-hand side. The following
theorem gives such an extension in which the upper bound depends on the
ratio between the L

n

n−2 -norm and the L1-norm of σ. In all the sequel, the
Lp norm of σ with respect to dvg will be denoted by ‖σ‖gp.

Theorem 1.1. Let (M, g, σ) be a compact weighted Riemannian manifold.
The eigenvalues of the operator Lσ, with Neumann boundary conditions if
∂M 6= ∅, satisfy :

(I) If n ≥ 3, then, ∀k ≥ 1,

λk(Lσ) ≤ C([g])
‖σ‖g n

n−2

‖σ‖g1
k2/n
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where C([g]) is a constant depending only on the conformal class of g.

(II) if n = 2 and M is orientable of genus γ, then, ∀k ≥ 1,

λk(Lσ) ≤ C ‖σ‖∞
‖σ‖g1

(γ + 1) k

where C is an absolute constant.

It is clear that taking σ = 1 in Theorem 1.1, we recover the inequal-
ities (1) and (2). Moreover, as we will see in the next section, if M is
boundaryless and the conformal class [g] contains a metric g0 with nonneg-
ative Ricci curvature, then C([g]) ≤ C(n), where C(n) is a constant which
depends only on the dimension.

Notice that there already exist upper bounds for the eigenvalues of Lσ
in the literature, but they usually depend on derivatives of σ, either directly
or indirectly, through the Bakry-Émery curvature. The main feature of our
result is that the upper bounds we obtain depend only on Lp-norms of the
density. The proof of Theorem 1.1 relies in an essential way on the technique
developed by Grigor′yan, Netrusov and Yau [21].

Regarding Hersch’s isoperimetric type inequalities, they extend to our
context as follows (see Corollary 3.3): Given any metric g on Sn which is
conformally equivalent to the standard metric g0, and any positive density
σ ∈ C2(Sn), one has

λ2(Lσ) ≤ n|Sn|
n

2

‖σ‖g n
n−2

‖σ‖g1
where |Sn| is the volume of the standard n-sphere and with the conven-
tion that ‖σ‖g n

n−2

= ‖σ‖∞ when n = 2. Moreover, the equality holds in the

inequality if and only if σ is constant and g is a round metric.
Next, let us consider a Riemannian vector bundle E over a Riemannian

manifold (M, g) and a Laplace type operator

H = D∗D + T

acting on smooth sections of the bundle. Here D is a connection on E which
is compatible with the Riemannian metric and T is a symmetric bundle endo-
morphism (see e.g., [4, Section E]). The operator H is self-adjoint and ellip-
tic and we will list its eigenvalues as: λ1(H) ≤ λ2(H) ≤ · · · ≤ λk(H) ≤ · · · .
Important examples of such operators are given by Schrödinger operators
acting on functions (here T is just the potential), the Hodge Laplacian acting
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on differential forms (in which case T is the curvature term in Bochner’s for-
mula), and the square of the Dirac operator (T being in this case a multiple
of the scalar curvature). Another important example is the Witten Lapla-
cian acting on differential forms, whose restriction to functions is precisely
given by a weighted Laplacian, the main object of study of this paper.

In Section 4 we will prove (Theorem 4.1) an upper bound for the gap
between the k-th eigenvalue and the first eigenvalue of H involving integral
norms of a first eigensection ψ. For example, if n ≥ 3, then

(3) λk(H)− λ1(H) ≤ C([g])

‖ψ‖g2nn−2

‖ψ‖g2

2

k2/n,

where C[g] is a constant depending only on the conformal class of g. The
reason why we bound the gap instead of λk(H) itself is due to the fact that,
even when σ = 1 and H is the standard Hodge Laplacian acting on p-forms,
the first positive eigenvalue is not bounded on any conformal class of metrics
(see [8]). For estimates on the gap when a finite group of isometries is acting,
we refer to [10].

Inequality (3) should be regarded as an extension of Theorem 1.1. In-
deed, if Hσ =

√
σLσ

1√
σ

is the Schrödinger operator which is unitarily equiv-

alent to the operator Lσ, then λ1(Hσ) = λ1(Lσ) = 0 and any first eigenfunc-
tion of Hσ is a scalar multiple of

√
σ. Thus, taking ψ =

√
σ in (3) we recover

the first estimate in Theorem 1.1.
Our main aim in Section 5 is to discuss the accuracy of the upper bounds

given in Theorem 1.1 regarding the way they depend on the density σ.
That is why we exhibit an explicit family of compact manifolds (M, g), each
endowed with a sequence of densities {σj}, and give a sharp lower estimate
of the first positive eigenvalue λ2(Lσj ) in terms of j. This enables us to see
that both λ2(Lσj ) and the ratio ‖σj‖g n

n−2

/‖σj‖g1 tend to infinity linearly with

respect to j. Thus, we have

A
‖σj‖g n

n−2

‖σj‖g1
≤ λ2(Lσj ) ≤ B

‖σj‖g n
n−2

‖σj‖g1

with λ2(Lσj ) −→ +∞ as j → +∞, and A and B are two positive constants
which do not depend on j.

The examples of densities we give are modeled on Gaussian densities (i.e.
σj(x) = e−j|x|

2

) on Rn. For example, if Ω is a bounded convex domain in Rn,
we observe that λ2(Lσj ) ≥ 2j for all j. We then extend the lower bound to
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manifolds of revolution (at least asymptotically as j →∞). However, in
the case of a closed manifold of revolution, there is an additional difficulty
coming from the fact that we need to extend smoothly this kind of density
to the whole manifold in such a way as to preserve the estimates on both
the eigenvalues and the Lp-norms.

2. Upper bounds for weighted eigenvalues in a smooth
metric measure space and proof of Theorem 1.1

Let (M, g) be a compact connected Riemannian manifold, possibly with a
non-empty boundary. Let σ ∈ L∞(M) be a bounded nonnegative function
on M and let ν be a non-atomic Radon measure on M with 0 < ν(M) <∞.
To such a pair (σ, ν), we associate the sequence of non-negative numbers
{µk(σ, ν)}k∈N given by

µk(σ, ν) = inf
E∈Sk

sup
u∈E\{0}

Rσ,ν(u)

where Sk is the set of all k-dimensional vector subspaces of H1(M) and

Rσ,ν(u) =

∫
M |∇

gu|2gσdvg∫
M u2dν

.

In the case where σ is of class C2 and ν = σdvg, the variational char-
acterization of eigenvalues of the weighted Laplacian Lσ = ∆g − 1

σ∇
gσ · ∇g

gives (see e.g. [20])

(4) λk(Lσ) = µk(σ, σdvg).

Theorem 1.1 is a direct consequence of the following

Theorem 2.1. Let (M, g) be a compact Riemannian manifold possibly with
nonempty boundary. Let σ ∈ L∞(M) be a nonnegative function and let ν be
a non-atomic Radon measure with 0 < ν(M) <∞.
(I) If n ≥ 3, then for every k ≥ 1, we have

µk(σ, ν) ≤ C([g])
‖σ‖g n

n−2

ν(M)
k2/n,

where C([g]) is a constant depending only on the conformal class of g. More-
over, if M is closed and [g] contains a metric with nonpositive Ricci curva-
ture, then C([g]) ≤ C(n) where C(n) is a constant depending only on n.
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(II) If M is a compact orientable surface of genus γ, then for every k ≥ 1,
we have

µk(σ, ν) ≤ C ‖σ‖∞
ν(M)

(γ + 1) k.

where C is an absolute constant.

The proof of this theorem is based on the method described by Grigor′yan,
Netrusov and Yau in [21] and follows the same lines as the proof they have
given in the case σ = 1. The main step consists in the construction of a
family of disjointly supported functions with controlled Rayleigh quotient.

Let us fix a reference metric g0 ∈ [g] and denote by d0 the distance
associated to g0. An annulus A ⊂M is a subset of M of the form {x ∈M :
r < d0(x, a) < R} where a ∈M and 0 ≤ r < R (if necessary, we will denote
it A(a, r, R)). The annulus 2A is by definition the annulus {x ∈M : r/2 <
d0(x, a) < 2R}.

To such an annulus we associate the function uA supported in 2A and
such that

uA(x) =


1− 2

rd0(x,A) if r
2 ≤ d0(x, a) ≤ r

1 if x ∈ A
1− 1

Rd0(x,A) if R ≤ d0(x, a) ≤ 2R

We introduce the following constant:

Γ(g0) = sup
x∈M,r>0

Vg0(B(x, r))

rn

where B(x, r) stands for the ball of radius r centered at x in (M,d0). Notice
that since M is compact, the constant Γ(g0) is finite and depends only on
g0. This constant can be bounded from above in terms of a lower bound of
the Ricci curvature Ricg0 and an upper bound of the diameter diam(M, g0)
(Bishop-Gromov inequality). In particular, if the Ricci curvature of g0 is
nonnegative, then Γ(g0) is bounded above by a constant depending only on
the dimension n.

Lemma 2.2. For every annulus A ⊂ (M,d0) one has

∫
M
|∇guA|2σdvg ≤ 8 Γ(g0)

2

n

(∫
2A
σ

n

n−2dvg

)1− 2

n

.
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Proof. Let A = A(a, r,R) be an annulus of (M,d0). Since uA is supported
in 2A we get, using Hölder inequality,∫

M
|∇guA|2σdvg =

∫
2A
|∇guA|2σdvg

≤
(∫

2A
|∇guA|ndvg

) 2

n
(∫

2A
σ

n

n−2dvg

)1− 2

n

.

From the conformal invariance of
∫

2A |∇
guA|ndvg we have∫

2A
|∇guA|ndvg =

∫
2A
|∇g0uA|ndvg0

with

|∇g0uA|
a.e.
=


2
r if r

2 ≤ d0(x, a) ≤ r
0 if r ≤ d0(x, a) ≤ R
1
R if R ≤ d0(x, a) ≤ 2R.

Hence,∫
2A
|∇g0uA|ndvg0 ≤

(
2

r

)n
Vg0(B(a, r)) +

(
1

R

)n
Vg0(B(a, 2R)) ≤ 2n+1Γ(g0)

where the last inequality follows from the definition of Γ(g0). Putting together
all the previous inequalities, we obtain the result of the Lemma. �

Proof of part (I) of Theorem 2.1: Let us introduce the constant N(M,d0),
that we call the covering constant, defined to be the infimum of the set of
all integers N such that, for all r > 0, any ball of radius 2r in (M,d0) can
be covered by N balls of radius r. Again, the compactness of M ensures
that N(M,d0) is finite, and Bishop-Gromov inequality allows us to bound
it from above in terms of the dimension when the Ricci curvature of (M, g0)
is nonnegative.

Since the metric measure space (M,d0, ν) has a finite covering constant
and a non atomic measure, one can apply Theorem 1.1 of [21] and conclude
that there exists a constant c(N) depending only on N(M,d0) such that for
each positive integer k, there exists a family of 2k annuli A1, . . . , A2k on M
such that the annuli 2A1, . . . , 2A2k are mutually disjoint and, ∀i ≤ 2k,

(5) ν(Ai) ≥ c(N)
ν(M)

k
.
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Since the annuli 2Ai are mutually disjoint, one has∑
i≤2k

∫
2Ai

σ
n

n−2dvg ≤
∫
M
σ

n

n−2dvg.

Thus, at most k annuli among 2A1, . . . , 2A2k satisfy∫
2Ai

σ
n

n−2dvg >
1

k

∫
M
σ

n

n−2dvg.

Therefore, we can assume without loss of generality that the k annuli A1, . . . ,
Ak satisfy (∫

2Ai

σ
n

n−2dvg

)1− 2

n

≤ 1

k1− 2

n

‖σ‖g n
n−2

.

The corresponding functions uA1
, . . . , uAk are such that (Lemma 2.2)

Rσ,ν(uAi) =

∫
M |∇

guAi |2gσdvg∫
M u2

Ai
dν

≤ 1

ν(Ai)
8Γ(g0)

2

n

(∫
2Ai

σ
n

n−2dvg

)1− 2

n

≤ 1

ν(Ai)
8Γ(g0)

2

n

‖σ‖g n
n−2

k1− 2

n

.

Using inequality (5), we get

Rσ,ν(uAi) ≤ 8
Γ(g0)

2

n

c(N(M,d0))

‖σ‖g n
n−2

ν(M)
k

2

n .

Since the functions uA1
, . . . , uAk are disjointly supported, they form a k-

dimensional subspace on which the Rayleigh quotient is bounded above by

the right hand side of the last inequality. We set C([g]) = 8 Γ(g0)
2
n

c(N(M,d0)) and
conclude using the min-max formula.

As we mentioned above, if M is closed and the Ricci curvature of g0

is non negative, then the constants Γ(g0), N(M,d0) and, hence, C([g]) are
bounded in terms of the dimension n.

Proof of part (II) of Theorem 2.1. Assume now that (M, g) is a compact ori-
entable surface of genus γ, possibly with boundary, and let ρ ∈ C∞(M) be
a positive function on M . If M has nonempty boundary, then we glue a disk
on each boundary component of M and extend ν by 0. This closed surface
admits a conformal branched cover ψ over S2 with degree deg(ψ) ≤ bγ+3

2 cWe
endow S2 with the usual spherical distance d0 and the pushforward mea-
sure µ = ψ∗(ν), We apply Theorem 1.1 of [21] to the metric measure space
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(S2, d0, µ) and deduce that there exist an absolute constant c = c
(
N(S2, d0)

)
and k annuli A1, . . . , Ak ⊂ S2 such that the annuli 2A1, . . . , 2Ak are mutually
disjoint and, ∀i ≤ k,

µ(Ai) ≥ c
µ(S2)

k
.(6)

We set for each i ≤ k, vi = uAi ◦ ψ. From the conformal invariance of the
energy and Lemma 2.2, one deduces that, for every i ≤ k,∫

M
|∇gvi|2 dvg = deg(ψ)

∫
S2

|∇g0uAi |2 dvg0 ≤ 8Γ(S2, g0)

⌊
γ + 3

2

⌋
,

while, since uAi is equal to 1 on Ai,∫
M
v2
i dν ≥ ν

(
ψ−1(Ai)

)
= µ(Ai) ≥ c

µ(S2)

k
= c

ν(M)

k
.

Therefore,

Rσ,ν(vi) ≤
8Γ(S2, g0)

cν(M)

⌊
γ + 3

2

⌋
k ≤ C(γ + 1)

ν(M)
k

where C is an absolute constant. Noting that the k functions v1, . . . vk are
disjointly supported in M , we deduce the desired inequality for µk(σ, ν).

We end this section with the following observation showing that the
presence of the density in the RHS of the inequalities of Theorem 1.1 is
essential. This question will also be discussed in Section 5.

Proposition 2.3. Let (M, g) be a compact Riemannian manifold and let
f be a smooth Morse function on M . For every ε > 0 we set σε = e−f/ε. If
m0 denotes the number of stable critical points of f , then there exists ε0 > 0
such that, ∀ε ∈ (0, ε0),

λm0+1(Lσε) ≥
1√
ε
.

Proof. First observe that for any density σ = e−f , the operator Lσ is uni-
tarily equivalent to the Schrödinger operator

Hσ = ∆g −
∆g
√
σ√
σ

= ∆g +
1

4
|∇gf |2 +

1

2
∆gf

acting on L2(dvg) (indeed, Lσ = 1√
σ
Hσ
√
σ, where multiplication by

√
σ is

a unitary transform from L2(σdvg) to L2(dvg)). Consequently, denoting by
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(λk(ε))k≥1 the eigenvalues of the semiclassical Schrödinger operator ε2∆g +
1
4 |∇

gf |2 + ε
2∆gf , we get

λk(Lσε) =
1

ε2
λk(ε).

According to [25] (see also [26, proposition 2.2]), there exists ε0 > 0 such
that, ∀ε < ε0, the number of eigenvalues λk(ε) contained in the interval
[0, ε3/2) is exactly m0, that is, λm0

(ε) < ε3/2 and λm0+1(ε) ≥ ε3/2. Therefore,

λm0+1(Lσε) =
1

ε2
λm0+1(ε) ≥ 1√

ε
.

�

3. Sharp estimates for the first positive eigenvalue

Let (M, g) be a compact connected Riemannian n-dimensional manifold,
possibly with a non-empty boundary. Li and Yau introduced in [30] the
notion of conformal volume as follows : Given any immersion φ from M
to the standard sphere (Sp, gSp) of dimension p, we denote by V (φ) the
volume of M with respect to the metric φ∗gSp , and by Vc(φ) the supremum of
V (γ ◦ φ) as γ runs over the group of conformal diffeomorphisms of (Sp, gSp).
The conformal volume of (M, [g]) is

Vc(M, [g]) = inf
p>n

inf {Vc(φ) : φ ∈ conf ((M, g),Sp)}

where conf ((M, g),Sp) is the set of all conformal immersions from (M, g)
to Sp.

With the same notations as in the previous section, we have the following

Theorem 3.1. Let (M, g) be a compact Riemannian manifold possibly with
nonempty boundary. Let σ ∈ L∞(M) be a nonnegative function and let ν be
a non-atomic Radon measure on M with 0 < ν(M) <∞. One has

(7) µ2(σ, ν) ≤ nVc(M, [g])2/n
‖σ‖g n

n−2

ν(M)
,

with the convention that ‖σ‖ n

n−2
= ‖σ‖∞ if n = 2.

Proof. From the definition of µ2(σ, ν), it is clear that if u ∈ C1(M) is any
nonzero function such that

∫
M u dν = 0, then, taking for E the 2-dimensional
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vector space generated by constant functions and u, we have

µ2(σ, ν) ≤ sup
w∈E

Rσ,ν(w) ≤ Rσ,ν(u).

Let φ ∈ conf ((M, g),Sp). Using standard center of mass lemma (see e.g.,
[18, Proposition 4.1.5]), there exists a conformal diffeomorphism γ of Sp so
that the Euclidean components of the map φ̄ = γ ◦ φ satisfy∫

M
φ̄j dν = 0, j ≤ p+ 1.

Thus, for every j ≤ p+ 1,

(8) µ2(σ, ν)

∫
M
φ̄2
jdν ≤

∫
M
|∇gφ̄j |2σdvg.

From the fact that φ is conformal one has φ̄∗gSp =
(

1
n

∑
j≤p+1 |∇gφ̄j |2

)
g

and

V (φ̄) =

∫
M

 1

n

∑
j≤p+1

|∇gφ̄j |2
n/2

dvg.

We sum up in (8) and use Hölder’s inequality to get

µ2(σ, ν) ν(M) ≤
∫
M

∑
j≤p+1

|∇gφ̄j |2σdvg

≤ nV (φ̄)2/n‖σ‖g n
n−2

≤ nVc(φ)2/n‖σ‖g n
n−2

.

The proof of the theorem follows immediately. �

An immediate consequence of Theorem 3.1 is the following

Corollary 3.2. Let (M, g) be a compact Riemannian manifold possibly with
nonempty boundary and let σ ∈ C2(M) be a positive function. One has

(9) λ2(Lσ) ≤ nVc(M, [g])2/n
‖σ‖g n

n−2

‖σ‖g1
.

In [11], Ilias and the second author proved that if the Riemannian mani-
fold (M, g) admits an isometric immersion into a Euclidean space Rp whose
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Euclidean components are first non-constant eigenfunctions of the Laplacian
∆g, then the following equality holds

(10) λ2(∆g)Vg(M)2/n = nVc(M, [g])2/n.

In this case, the inequality (9) reads

(11) λ2(Lσ) ≤ λ2(∆g)Vg(M)2/n
‖σ‖g n

n−2

‖σ‖g1
where the equality holds whenever σ is a constant function. This proves the
sharpness of the inequality of Corollary 3.2.

Notice that all compact rank one symmetric spaces satisfy (10) and
hence (11). In particular, we have the following result that extends Hersch’s
isoperimetric inequality [27] and its generalization to higher dimensions [11].

Corollary 3.3. Let g be a Riemannian metric on Sn which is conformal to
the standard metric gSn, and let σ ∈ C2(Sn) be a positive function. One has

(12) λ2(Lσ) ≤ n|Sn|
2

n

‖σ‖g n
n−2

‖σ‖g1

where |Sn| is the volume of the Euclidean unit sphere. Moreover, the equality
holds in (12) if and only if σ is constant and g is homothetically equivalent
to gSn.

Proof. Let γ = (γ1, ..., γn+1) : Sn → Sn be conformal transformation of Sn
such that, for every i ≤ n+ 1, we have∫

Sn
γiσ dvg = 0.

Using the same arguments as in the proof of Theorem 3.1, we get

λ2(Lσ)

∫
Sn
γ2
i σ dvg ≤

∫
Sn
|∇gγi|2σ dvg, i ≤ n+ 1,

λ2(Lσ)‖σ‖g1 ≤
∫
Sn

∑
i≤n+1

|∇gγi|2σ dvg

≤ n

∫
Sn

 1

n

∑
i≤n+1

|∇gγi|2
n/2

dvg


2/n

‖σ‖g n
n−2
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with (since γ is conformal from (Sn, g) to (Sn, gSn) )

∫
Sn

 1

n

∑
i≤n+1

|∇gγi|2
n/2

dvg = Vγ∗gSn (Sn) = |Sn|.

The inequality (12) follows immediately.
Assume that the equality holds in (12). This implies that

• Lσγi = λ2(Lσ)γi, i ≤ n+ 1, and

• the function σ is constant if n = 2 and, if n ≥ 3, the functions

(
n+1∑
i=1

|∇gγi|2
)n/2

and σ
n

n−2

are proportional.

An elementary computation gives

0 =
∑
i≤n+1

Lσγ
2
i = 2

∑
i≤n+1

(
γiLσγi − |∇gγi|2

)
= 2

λ2(Lσ)−
∑
i≤n+1

|∇gγi|2
 .

From the previous facts we see that σ is constant in all cases and, since

γ∗gSn =
(

1
n

∑
j≤n+1 |∇gγj |2

)
g = λ2(Lσ)

n g, the metric g is homothetically

equivalent to gSn . �

4. Eigenvalues of Laplace type operators

In this section we show that Theorem 1.1 extends to a much more gen-
eral framework to give upper bounds of the eigenvalues of certain operators
acting on sections of vector bundles, precisely the Laplace-type operators
defined in the introduction. Throughout this section, (M, g) denotes a com-
pact Riemannian manifold without boundary. We will use the notations
introduced in Section 2 and refer to [4, 17] for details on Laplace type oper-
ators.

Theorem 4.1. Let H = D?D + T be an operator of Laplace type acting
on sections of a Riemannian vector bundle E over (M, g), and let ψ be an
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eigensection associated to λ1(H). One has for all k ≥ 1

λk(H)− λ1(H) ≤ µk(σ, ν)

with σ = |ψ|2 and ν = |ψ|2dvg. Thus,

a) If n ≥ 3 then

λk(H)− λ1(H) ≤ C([g])

‖ψ‖g2nn−2

‖ψ‖g2

2

k2/n.

where C([g]) is a constant depending only on the conformal class of g.

b) If M is a compact, orientable surface of genus γ then :

λk(H)− λ1(H) ≤ C
(
‖ψ‖∞
‖ψ‖g2

)2

(γ + 1)k

where C is an absolute constant.

Proof. As H = D?D + T , the quadratic form associated to H is given by:

Q(ψ) =

∫
M
〈Hψ,ψ〉dvg =

∫
M

(
|Dψ|2 + 〈Tψ, ψ〉

)
dvg,

where ψ denotes a generic smooth section. If u is any Lipschitz function on
M , then an integration by parts gives (see [9, Lemma 8])

Q(uψ) =

∫
M

(
u2〈Hψ,ψ〉+ |∇u|2|ψ|2

)
dvg.

Now assume that ψ is a first eigensection: Hψ = λ1(H)ψ. Then we obtain:

Q(uψ)∫
M u2|ψ|2dvg

= λ1(H) +

∫
M |∇u|

2|ψ|2dvg∫
M u2|ψ|2dvg

for all Lipschitz functions u. Let σ = |ψ|2 and ν = |ψ|2dvg. Restricting the
test-sections to sections of type uψ, where u is Lipschitz (hence in H1(M))
and ψ is a fixed first eigensection, an obvious application of the min-max
principle gives:

λk(H) ≤ λ1(H) + µk(σ, ν).

The remaining part of the theorem is an immediate consequence of the last
inequality and Theorem 1.1. �
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Corollary 4.2. Assume that a Laplace type operator H acting on sections
of a Riemannian vector bundle E over (M, g), admits a first eigensection of
constant length. Then, for all k ≥ 1

λk(H)− λ1(H) ≤ λk(∆g).

Indeed, when σ is constant, µk(σ, σdvg) is nothing but the k-th eigen-
value of the Laplacian ∆g acting on functions. In the particular case where
H(p) is the Hodge Laplacian acting on p-forms, Corollary 4.2 says that the
existence of a nonzero harmonic p-form of constant length on M leads to

λk(H
(p)) ≤ λk(∆g)

for every positive integer k, which extends the result of Takahashi [46].

5. Lower bounds for eigenvalues on weighted Euclidean
domains and manifolds of revolution

The scope of this section is to show that our main upper bound is asymptot-
ically sharp for some special weighted manifolds, namely convex Euclidean
domains and revolution manifolds endowed with a Gaussian density. By a
Gaussian density we mean a function of type

σj(x) = e−jd(x,x0)2

where x0 is a fixed point and j is a positive integer (a slight modification
is needed for closed revolution manifolds). We will give a lower bound of
λ2(Lσj ) and verify that in all these cases both λ2(Lσj ) and our main upper
bound grow to infinity linearly in j as j →∞.

In what follows, we make use of the Reilly formula, recently extended to
weighted manifolds (see [37]). Here M is a compact Riemannian manifold
of dimension n with smooth boundary ∂M ; we let σ = e−f be a positive
smooth density and u ∈ C∞(M). Then we have:

(13)

∫
M

(Lσu)2σ =

∫
M
|∇2u|2σ + Ric(∇u,∇u)σ +∇2f(∇u,∇u)σ

+

∫
∂M

2
∂u

∂N
L∂Mσ u · σ +B(∇∂Mu,∇∂Mu)σ

+

∫
∂M

(
(n− 1)H +

∂f

∂N

)( ∂u
∂N

)2
σ
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where N is the inner unit normal, B the second fundamental form of ∂M
with respect to N and (n− 1)H = trB is the mean curvature. By L∂Mσ we
denote the induced operator on ∂M , naturally defined as

L∂Mσ u = ∆∂Mu+ 〈∇∂Mf,∇∂Mu〉.

When not explicitly indicated, integration is taken with respect to the canon-
ical Riemannian measure.

5.1. Convex Euclidean domains

Here is the main statement of this section.

Theorem 5.1. Let Ω be a convex domain of Rn containing the origin,
endowed with the Gaussian density σj(x) = e−j|x|

2

. There exists a constant
Kn,R depending only on n and R = dist(O, ∂Ω) such that, for all j ≥ Kn,R,

(14)
‖σj‖ n

n−2

‖σj‖1
≤ λ2(Lσj ) ≤ Bn

‖σj‖ n

n−2

‖σj‖1

where Bn is a constant that depends only on n. Moreover, λ2(Lσj ) tends to
infinity with a linear growth as j →∞.

The proof follows from Theorem 1.1 and the following estimates.

Proposition 5.2. Let Ω be a convex domain in Rn. Then, for all j > 0,

λ2(Lσj ) ≥ 2j.

Proof. We apply the Reilly formula (13) to an eigenfunction u associated to

λ = λ2(Lσj ). By definition, f = j|x|2 so that ∇2f = 2jI. As
∂u

∂N
= 0 (Neu-

mann condition) and B ≥ 0 by the convexity assumption, we arrive at

λ2

∫
Ω
u2σ ≥ 2j

∫
Ω
|∇u|2σ = 2jλ

∫
Ω
u2σ,

and the inequality follows. �

Lemma 5.3. Let j ∈ N∗.

a) For all p > 1 one has ‖σj‖p ≤ Cn,p

j
n
2p

. In particular ‖σj‖ n

n−2
≤ Cn

j
n−2
2

.
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b) There exists a constant Kn,R depending only on n and R such that, if
j ≥ Kn,R, then ‖σj‖1 ≥ Cn

2j
n
2
.

The constants Cn, Cn,p will be given explicitely in the proof. From the
above facts we obtain for j ≥ Kn,R,

‖σj‖ n

n−2

‖σj‖1
≤ 2j ≤ λ2(Lσj ).

Proof of Lemma 5.3. We use the well-known formula∫ ∞
0

rn−1e−jr
2

dr =
Γ(n2 )

2j
n

2

,

where Γ is the Gamma function. Then∫
Rn
e−j|x|

2

dx = |Sn−1|
∫ ∞

0
rn−1e−jr

2

dr =
Cn

j
n

2

.

with Cn = 1
2 |S

n−1|Γ(n2 ). This implies that

‖σj‖p =
(∫

Ω
e−jp|x|

2

dx
) 1

p ≤
(∫

Rn
e−jp|x|

2

dx
) 1

p

=
Cn,p

j
n

2p

with Cn,p = (Cn)
1
p

p
n
2p

, which proves a). Now, one has

‖σj‖1 =

∫
Ω
e−j|x|

2

dx =

∫
Rn
e−j|x|

2

dx−
∫

Ωc
e−j|x|

2

dx =
Cn

j
n

2

−
∫

Ωc
e−j|x|

2

dx.

On the complement of Ω one has |x| ≥ R by the definition of R. Then,∫
Ωc
e−j|x|

2

dx =

∫
Ωc
e−

j

2
|x|2e−

j

2
|x|2 dx ≤ e−

jR2

2

∫
Rn
e−
|x|2

2 dx = Dne
− jR

2

2 .

As R is fixed and j
n

2 e−
jR2

2 tends to zero when j tends to infinity, one sees
immediately that there exists Kn,R such that, for j ≥ Kn,R,∫

Ωc
e−j|x|

2

dx ≤ Dne
− jR

2

2 ≤ Cn

2j
n

2

.

In that range of j one indeed has

‖σj‖1 ≥
Cn

2j
n

2

.
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�

5.2. Revolution manifolds with boundary

A revolution manifold with boundary of dimension n is a Riemannian mani-
fold (M, g) with a distinguished point N such that (M \ {N}, g) is isometric
to (0, R]× Sn−1 endowed with the metric

g = dr2 + θ2(r)gSn−1 ,

gSn−1 denoting the standard metric on the sphere. Here θ(r) is a smooth func-
tion on [0, R] which is positive on (0, R] (note that we assume in particular
θ(R) > 0) and is such that:

θ(0) = θ′′(0) = 0, θ′(0) = 1.

We notice that, as R < +∞, M is compact, connected and has a smooth
boundary ∂M = {R} × Sn−1 isometric to the (n− 1)−dimensional sphere
of radius θ(R). If we make the stronger assumption that θ has vanishing
even derivatives at zero then the metric is C∞-smooth everywhere. Given a
Gaussian radial density of the form σj(r) = e−jr

2

centered at the pole N , we
wish to study the first non-zero eigenvalue λ2(Lσj ) of Lσj , with Neumann
boundary conditions.

Theorem 5.4. Let (M, g) be a revolution manifold with boundary endowed
with the Gaussian density σj(r) = e−jr

2

, j ≥ 1. Then there is a (possibly
negative) constant C, not depending on j, such that

λ2(Lσj ) ≥ 2j + C.

Moreover, if (M, g) has non-negative Ricci curvature, then λ2(Lσj ) ≥ 2j.

We start the proof by making general considerations which are valid
for any radial density σ(r) = e−f(r) (Lemmas 5.5 and 5.6). As for the usual
Laplacian, we can separate variables and prove that there is an orthonormal
basis of L2(σ) made of eigenfunctions of type

(15) u(r, x) = φ(r)ξ(x)

where φ is a smooth function of r ∈ [0, R] and ξ(x) is an eigenfunction of
the Laplacian on Sn−1. Listing the eigenvalues of Sn−1 as {µk}, where k =
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1, 2, . . . , and computing the Laplacian, one arrives at

∆u(r, x) =
(
− φ′′(r)− (n− 1)

θ′(r)

θ(r)
φ′(r) +

µk
θ(r)2

φ(r)
)
ξ(x).

As f = f(r) is radial one has 〈∇f,∇u〉(r, x) = f ′(r)φ′(r)ξ(x) so that
(16)

Lσu(r, x) =
(
− φ′′(r)− (n− 1)

θ′(r)

θ(r)
φ′(r) + f ′(r)φ′(r) +

µk
θ(r)2

φ(r)
)
ξ(x)

Let us now focus on the first positive eigenvalue λ2(Lσ) with associated
eigenfunction u of the form (15). There are only two cases to examine:

• either µk = µ1 = 0, so that ξ(x) is constant and the eigenfunction u
is radial,

• or µk = µ2 = n− 1, the first positive eigenvalue of Sn−1.
In fact, higher eigenvalues of Sn−1 do not occur, otherwise u would have
too many nodal domains. We summarize this alternative in the following
lemma.

Lemma 5.5. Let M = (0, R]× Sn−1 be a manifold of revolution as above,
endowed with a radial density σ(r) = e−f(r). Then, either Lσ admits a (Neu-
mann) radial eigenfunction associated to λ2(Lσ), or λ2(Lσ) is the first pos-
itive eigenvalue of the problemφ′′ +

(
(n− 1)

θ′

θ
− f ′

)
φ′ +

(
λ− n− 1

θ2

)
φ = 0

φ(0) = φ′(R) = 0

Note that the condition φ′(R) = 0 follows from the Neumann bound-
ary condition, while the condition φ(0) = 0 is imposed to insure that the
eigenfunction is continuous at the pole N .

We then prove the following lower bound for the “radial spectrum”.

Lemma 5.6. In the hypothesis of Lemma 5.5, assume that Lσ admits a
(Neumann) radial eigenfunction associated to the eigenvalue λ. Then

λ ≥ inf
(0,R)

{
(n− 1)

(θ′
θ

)2
+ Ric0 + f ′′

}
,

where Ric0 is a lower bound of the Ricci curvature of M .
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Proof. Let u = u(r) be a radial eigenfunction associated to λ. We apply the
Reilly formula (13) to obtain:

λ2

∫
M
u2σ =

∫
M
|∇2u|2σ + Ric(∇u,∇u)σ +∇2f(∇u,∇u)σ.

In fact, the boundary terms vanish because on ∂M one has ∂u
∂N = 0 and, as

u is radial (hence constant on ∂M), one also has ∇∂Mu = 0. We now wish to
bound from below the terms involving the hessians. For that we need to use
a suitable orthonormal frame. So, fix a point p = (r, x) and consider a local
frame (ē1, . . . , ēn−1) around x which is orthonormal for the canonical metric
of Sn−1. We can assume that this frame is geodesic at x. Taking ei = 1

θ ēi it
is clear that (e1, . . . , en−1,

∂
∂r ) is a local orthonormal frame on (M, g). If ∇

denotes (as usual) the Levi-Civita connection of (M, g) one sees easily that
at p,

∇eiej = −δij
θ′

θ

∂

∂r
, ∇ei

∂

∂r
=
θ′

θ
ei, ∇ ∂

∂r
ei = ∇ ∂

∂r

∂

∂r
= 0.

Since ∇u = u′ ∂∂r we have 〈∇u, ei〉 = 0 for all i. Then

∇2u(ei, ej) = 〈∇ei∇u, ej〉 = ei · 〈∇u, ej〉 − 〈∇u,∇eiej〉 = δij
θ′

θ
u′.

Similarly, one shows that ∇2u(ei,
∂
∂r ) = 0 and ∇2u( ∂∂r ,

∂
∂r ) = u′′. It follows

that the matrix of ∇2u in the given basis is diagonal, that is

∇2u = diag
(θ′
θ
u′, . . . ,

θ′

θ
u′, u′′

)
which in turn implies that

|∇2u|2 ≥ (n− 1)
(θ′
θ

)2
u′2 = (n− 1)

(θ′
θ

)2
|∇u|2.

On the other hand

∇2f(∇u,∇u) = u′2∇2f(
∂

∂r
,
∂

∂r
) = f ′′|∇u|2.

Substituting in the Reilly formula above, we obtain

λ2

∫
M
u2σ ≥

∫
M

(
(n− 1)

(θ′
θ

)2
+ Ric0 + f ′′

)
|∇u|2σ
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so that, if

C = inf
(0,R)

{
n
(θ′
θ

)2
+ Ric0 + f ′′

}
then

λ2

∫
M
u2σ ≥ C

∫
M
|∇u|2σ = Cλ

∫
M
u2σ

which implies λ ≥ C as asserted. �

We are now ready to prove Theorem 5.4. Let σj = e−jr
2

so that f ′′(r) =
2j. If λ2(Lσj ) is associated to a radial eigenfunction, Lemma 5.6 gives

λ2(Lσj ) ≥ 2j + C1,

with C1 independent of j. It is also clear that if M has non-negative Ricci
curvature then λ2(Lσj ) ≥ 2j.

Taking into account Lemma 5.5, Theorem 5.4 will now follow from

Lemma 5.7. Let λ2 be the first positive eigenvalue of the problemφ′′ +
(

(n− 1)
θ′

θ
− 2jr

)
φ′ +

(
λ− n− 1

θ2

)
φ = 0

φ(0) = φ′(R) = 0

Then

λ2 ≥ 2j + C2

where C2 = (n− 1) inf
{
r−θ′θ
rθ2 : r ∈ (0, R)

}
. Moreover, if M has non-negative

Ricci curvature, then C2 ≥ 0.

We observe that C2 is always finite because r → r−θ′θ
rθ2 approaches−2

3θ
′′′(0)

as r → 0, and then is bounded on [0, R].

Proof. Set φ(r) = ry(r) so that φ′ = y + ry′ and φ′′ = 2y′ + ry′′. Substitut-
ing in the equation we obtain

y′′ +
(2

r
+ (n− 1)

θ′

θ
− 2jr

)
y′ +

(
λ− 2j + (n− 1)

θ′θ − r
rθ2

)
y = 0.

If β = r2θn−1e−jr
2

, then 2
r + (n− 1) θ

′

θ − 2jr = β′

β and the equation takes
the form

(βy′)′ +
(
λ− 2j + (n− 1)

θ′θ − r
rθ2

)
βy = 0.
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Multiplying by y and integrating on (0, R) we end-up with

(λ− 2j)

∫ R

0
βy2 dr = −

∫ R

0
(βy′)′y dr +

∫ R

0
(n− 1)

r − θ′θ
rθ2

βy2 dr.

We observe that β(0) = 0 and, as φ′(R) = 0, we have y(R) = −Ry′(R).
Then, integrating by parts:

−
∫ R

0
(βy′)′y dr = −β(R)y′(R)y(R) +

∫ R

0
βy′2 dr

= β(R)y′(R)2R+

∫ R

0
βy′2 dr ≥ 0.

From the definition of the constant C2 we obtain

(λ− 2j)

∫ R

0
βy2 dr ≥ C2

∫ R

0
βy2 dr

which gives the assertion.
Finally, it is well-known that Ric

(
∂
∂r ,

∂
∂r

)
= −(n− 1) θ

′′

θ . If M has non-
negative Ricci curvature then θ′′ ≤ 0; in turn we have θ′ ≤ 1 and θ ≤ r,
which implies that r − θ′θ ≥ 0 and, then, C2 ≥ 0. �

5.3. Closed revolution manifolds

A closed revolution manifold of dimension n is a compact manifold (M, g)
without boundary, having two distinguished points N,S such that (M \
{N,S}, g) is isometric to (0, R)× Sn−1 endowed with the metric dr2 +
θ2(r)gSn , where θ : [0, R]→ R is smooth and

θ(0) = θ(R) = 0, θ′(0) = −θ′(R) = 1, θ′′(0) = θ′′(R) = 0.

Under these assumptions, the metric g is C2. To have a C∞ metric it is
enough to assume that θ(2i)(0) = θ(2i)(R) = 0 for all i = 0, 1, 2, . . . .

Our aim is to construct a sequence of radial densities {σj} on M such
that λ2(Lσj ) grows linearly with j. These densities will be Gaussian functions
centered at the pole N of M , suitably smoothened near the pole S so that
the resulting function is globally C1 (this is enough for our purpose). Thus,
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let us define

(17) σj(r) = e−fj(r)

where fj(r) = jh2
j (r) and

(18) hj(r) =


r if 0 ≤ r ≤ rj

.
= R− 1

αj

r − αj

2
(r − rj)2 if rj ≤ r ≤ R

Here α ≥ 1 is a fixed number, which is large enough so that

(n− 1)α2

16
− 2αR ≥ 2.

The function hj is of class C1 on [0, R]. Since σ′j(0) = σ′j(R) = 0, we see that

σj is a C1 function on M .

Theorem 5.8. Let (M, g) be a closed revolution manifold endowed with the
density σj defined in (17) and (18). Then there exist an integer j0 and a
constant C, not depending on j, such that, for all j ≥ j0, one has:

λ2(Lσj ) ≥ 2j + C.

We give the proof of Theorem 5.8 in the next subsection. We just want
to mention here the analogue of Theorem 5.1.

Theorem 5.9. Let (M, g) be a revolution manifold with boundary (resp. a
closed revolution manifold) endowed with the density σj as in Theorem 5.4
(resp. Theorem 5.8). Then, for j sufficiently large,

A
‖σj‖ n

n−2

‖σj‖1
≤ λ2(Lσj ) ≤ B

‖σj‖ n

n−2

‖σj‖1

where A and B are positive constants depending on M , but not on j. More-
over, λ2(Lσj ) tends to infinity with a linear growth as j →∞.

The proof of Theorem 5.9 is quite similar to that of the corresponding
statement in Theorem 5.1, and we only sketch it. Assume that M has a
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boundary and n ≥ 3. We start from:

‖σj‖pp =

∫
M
σpj (r)dvg = |Sn−1|

∫ R

0
θn−1(r)σpj (r) dr.

Now |θ(r)− r| ≤ cr3 and θn−1(r) ∼ rn−1 as r → 0; since, for p = n
n−2 and j

large: ( ∫ R
0 rn−1e−jpr

2

dr
) 1

p∫ R
0 rn−1e−jr2 dr

≤ C ′j,

we get in turn
‖σj‖ n

n−2

‖σj‖1
≤ C ′′j.

The assertion follows from the last inequality and the estimate of λ2(Lσj )
we have obtained in Theorem 5.4. If M is closed the only change is in the
definition of σj . However, this change occurs far from the pole and thus
contributes with exponentially decreasing terms, which, modulo a change in
the constants, do not show up in the final estimate. We omit further details.

5.4. Proof of Theorem 5.8

We start the proof by observing, as in the previous section, that there is
an eigenfunction associated to λ2(Lσj ) of type u(r, x) = φ(r)ξ(x) with φ
satisying a suitable Sturm-Liouville problem on the interval [0, R] and ξ
being an eigenfunction of the Laplacian on Sn−1. For a closed manifold,
Lemma 5.5 takes the following form.

Lemma 5.10. Let (M, g) be a closed revolution manifold endowed with a
radial density σ(r) = e−f(r). Then, either Lσ admits a radial eigenfunction
associated to λ2(Lσ), or λ2(Lσ) is the first positive eigenvalue of the follow-
ing Sturm-Liouville problem on [0, R]:φ′′ +

(
(n− 1)

θ′

θ
− f ′

)
φ′ +

(
λ− n− 1

θ2

)
φ = 0

φ(0) = φ(R) = 0

Note the boundary conditions on φ, which are imposed so that the cor-
responding eigenfunction u is continuous at both poles N and S.

By definition, R− rj = 1
αj and, as j →∞ we have rj → R. Since θ′

is continuous and θ′(R) = −1, there exists an integer j1 such that, for all
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j ≥ j1,

−2 ≤ θ′(r) ≤ −1

2

for all r ∈ [rj , R]. Consequently, on that interval we also have

(19)
1

2
(R− r) ≤ θ(r) ≤ 2(R− r) and |θ

′(r)

θ(r)
| ≥ 1

4(R− r)
.

According to Lemma 5.10 there are two cases to discuss.

First case: there is a radial eigenfunction associated to λ = λ2(Lσj ).
Then, we apply Lemma 5.6 (which holds without change) and for the lower
bound it suffices to verify the inequality:

(20) (n− 1)
(θ′(r)
θ(r)

)2
+ f ′′j (r) ≥ 2j

for all r ∈ (0, R). Indeed, one has f ′′j = 2j(h′2j + hjh
′′
j ). Thus, on the interval

(0, rj) one gets f ′′j = 2j and (20) is immediate. On the interval (rj , R) one
has hj ≤ r ≤ R and h′′j = −αj. Then:

f ′′j ≥ 2jhjh
′′
j ≥ −2αj2R.

On the other hand, as R− r ≤ R− rj = 1
αj , we see from (19):

(θ′(r)
θ(r)

)2
≥ 1

16(R− r)2
≥ α2j2

16
.

Recalling the definition of α we see that, for j ≥ j1:

(n− 1)
(θ′(r)
θ(r)

)2
+ f ′′j (r) ≥

(
(n− 1)

α2

16
− 2αR

)
j2 ≥ 2j2 ≥ 2j,

and the assertion follows.

Second case: λ2(Lσj ) is the first positive eigenvalue of the problem:φ′′ +
(

(n− 1)
θ′

θ
− f ′j

)
φ′ +

(
λ− n− 1

θ2

)
φ = 0

φ(0) = φ(R) = 0

First observe that there exists R̄ ∈ (0, R) such that φ′(R̄) = 0 (note that R̄
depends on j). It follows that u is a Neumann eigenfunction associated to
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λ2(Lσj ) for both of the following domains:

Ω1 = {(r, x) ∈M : r ≤ R̄}, Ω2 = {(r, x) ∈M : r ≥ R̄}.

We first assume that R̄ < rj and focus our attention on Ω1. As f ′j = 2jr on
[0, R̄], we see that λ2(Lσj ) is bounded below by the first positive eigenvalue
of the problemφ′′ +

(
(n− 1)

θ′

θ
− 2jr

)
φ′ +

(
λ− n− 1

θ2

)
φ = 0

φ(0) = φ′(R̄) = 0.

By Lemma 5.7 we have

λ2(Lσj ) ≥ 2j + C̃2,

where C̃2 = (n− 1) inf0>r>R̄

{
r−θ′θ
rθ2

}
≥ (n− 1) inf0>r>R

{
r−θ′θ
rθ2

}
, a constant

which does not depend on j, and we are done.

Finally, it remains to examine the case where R̄ ≥ rj . In this case, we
view u as a Neumann eigenfunction on the domain Ω2. Let us briefly sketch
the argument. As j →∞, Ω2 is quasi-isometric to a Euclidean ball of small
radius (of the order of 1/j) and has a density with uniformly controlled
variation. Therefore, its first positive eigenvalue must be large (of the order
of j2). Let us clarify the details. We know that

λ2(Lσj ) =

∫
Ω2
|∇u|2σjdvg∫

Ω2
u2σjdvg

.

Since hj(r) is increasing in r ∈ (rj , R), one has rj = hj(rj) ≤ hj(r) ≤ hj(R) ≤
R. Thus, for all r ∈ (R̄, R), one has (recall that rj = R− 1

αj )

e−jR
2 ≤ σj(r) ≤ e−j(R−

1

αj
)2 .

Consequently,

(21) λ2(Lσj ) ≥
∫

Ω2
|∇u|2dvg∫

Ω2
u2dvg

e−
2R

α .

As u(r, x) = φ(r)ξ(x) and
∫
Sn−1 ξ = 0, we see that

∫
Ω2
udvg = 0. Hence, by

the min-max principle:

(22)

∫
Ω2
|∇u|2dvg∫

Ω2
u2dvg

≥ µ2(Ω2, g)



i
i

“6-soufi” — 2015/1/5 — 16:43 — page 666 — #28 i
i

i
i

i
i

666 B. Colbois, A. El Soufi and A. Savo

where µ2(Ω2, g) denotes the first positive Neumann eigenvalue of the Lapla-
cian on the domain (Ω2, g). On the other hand, the first inequality in (19)
shows that the metric g is quasi-isometric, on Ω2, to the standard Euclidean
metric geuc = dr2 + r2gSn−1 , with quasi-isometry ratio bounded by 4. Thus,
(Ω2, g) is quasi-isometric to the Euclidean ball (Ω2, geuc) of radius R− R̄.
Therefore:

(23) µ2(Ω2, g) ≥ 4−(n+2)µ2(Ω2, geuc) ≥
4−(n+2)µ(n+ 1)

(R− R̄)2

where µ(n+ 1) is the first positive Neumann eigenvalue of the unit Euclidean
ball. Since R− R̄ ≤ R− rj = 1

αj , we conclude from (21), (22), (23) that:

λ2(Lσj ) ≥ C3j
2

where C3 is a constant depending only on n, α and R. By taking j larger than
a suitable integer j2 we see that λ2(Lσj ) ≥ 2j as asserted. The conclusion is
that, if j ≥ j0

.
= max{j1, j2}, then the inequality of Theorem 5.8 is verified.

This ends the proof.
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