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A family of steady Ricci solitons and

Ricci-flat metrics

M. Buzano, A. S. Dancer and M. Wang

We produce new non-Kähler complete steady gradient Ricci soli-
tons whose asymptotics combine those of the Bryant solitons and
the Hamilton cigar. The underlying manifolds are of the form
R2 ×M2 × · · · ×Mr where Mi are arbitrary Einstein manifolds
with positive scalar curvature. On the same spaces we also obtain
a family of complete non-Kähler Ricci-flat metrics with asymp-
totically locally conical asymptotics. Among these new Ricci-flat
and soliton examples are pairs with dimension 4m+ 3 which are
homeomorphic but not diffeomorphic.

1. Introduction

In this article we continue the study of Ricci solitons using methods of
dynamical systems, focusing on the case of steady solitons. A Ricci soliton
consists of a complete Riemannian metric g and a (complete) vector field X
satisfying the equation:

(1.1) Ric(g) +
1

2
LXg +

ε

2
g = 0

where ε is a real constant and L denotes the Lie derivative. The soliton is
steady if ε = 0, expanding if ε > 0, and shrinking if ε < 0. If X is Killing,
then g is Einstein and the soliton is called trivial. By the work of Perelman
[37], nontrivial steady and expanding solitons must be noncompact.

A Ricci soliton is of gradient type if the vector field X is the gradient
of a globally defined smooth function, referred to as the soliton potential.
Many examples of Kähler gradient Ricci solitons of all three types exist in
the literature, see, for example, [34], [14], [27], [41], [1], [39], and [20]. By
contrast, fewer non-Kähler gradient Ricci solitons are known.

In [21] a family of non-Kähler steady gradient Ricci solitons was con-
structed generalising the rotationally symmetric Bryant solitons [10] on
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Rn (n > 2) and Ivey’s related examples [33]. The manifolds in this family
consisted of warped products on an arbitrary number of Einstein factors with
positive Einstein constants, and they exhibited asymptotically paraboloid
geometry, like the examples of Bryant and Ivey. In particular, they gave
examples of steady gradient Ricci solitons in dimensions greater than three
which are not rotationally symmetric. For dimension 3, Brendle has recently
proved that the Bryant soliton is the only non-trivial κ-noncollapsed steady
gradient Ricci soliton [8].

In this paper we use methods similar to those in [21], but allow one of
the factors in the warped product to be a circle (hence with zero Einstein
constant). We obtain complete steady Ricci solitons whose asymptotics are
a mixture of the paraboloid Bryant asymptotics and the cylindrical asymp-
totics of Hamilton’s cigar soliton [30]. More precisely, the metric on the circle
factor is asymptotically constant while those on the other factors asymptot-
ically grow like the geodesic distance coordinate. This type of asymptotics
has been observed previously for Kähler steady solitons, cf [20]. The general
results of Buzano [12] now allow us to dispense with some of the analysis
of [21] concerning smoothness at the other end of the manifold, where the
circle collapses. It should be mentioned that the special case in which there
are two factors (including the circle factor) was discussed in Ivey’s Duke
thesis and in [33].

For dimensions greater than three, Brendle has obtained an analogue of
his 3-dimensional rigidity theorem for complete steady gradient Ricci soli-
tons [9]. Under the hypotheses of positivity of sectional curvatures and of
being “asymptotically cylindrical”, he proves that such a soliton must be
the Bryant soliton. We note that our examples always have some negative
sectional curvatures when the number of positive Einstein factors is at least
2, although the Ricci tensor is non-negative. As for the asymptotically cylin-
drical property, our examples do satisfy the upper and lower scalar curvature
bounds, but not the stronger requirement involving the Gromov-Hausdorff
convergence of rescaled flows to shrinking cylinders.

In addition we prove some general results about steady solitons of coho-
mogeneity one type, including monotonicity and concavity results for the
soliton potential, and decay estimates for the ambient scalar curvature and
the mean curvature of the hypersurfaces.

We also study a family of solutions to our equations that yield complete
Ricci-flat metrics. These are related to examples of Böhm [4] which are
multiple warped products whose factors are Einstein manifolds with positive
scalar curvature. In our examples, as in the soliton case above, one of these
factors is replaced by a circle. The resulting equations are rather different in
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character from those considered by Böhm, due to the fact that we no longer
have a solution representing a cone over a positive scalar curvature Einstein
metric on the hypersurface (which acts as an attractor for the Böhm system).
Note that the special case in which there are only two factors is explicitly
integrable, and was discussed in [2] and [3]. This special case includes the
Riemannian Schwarzschild metric.

Combining our construction with the work of Boyer, Galicki and Kollár
on Einstein metrics on exotic spheres, the work of K. Kawakubo and R.
Schultz, and the recent work of Hill, Hopkins and Ravenel, we deduce that
in all dimensions congruent to 3 mod 4 other than 3, 7, 15, 31, 63 and pos-
sibly 127, there are homeomorphic but not diffeomorphic complete non-
compact Ricci-flat manifolds as well as steady gradient Ricci solitons (cf
Corollary 5.11).

The above examples all fall within the class of multiple warped products
on Einstein factors with nonnegative Einstein constant. The analysis of the
dynamical system in such cases is aided by the fact that the scalar curvature
of the hypersurface is bounded below. In the examples treated in [21] and
(in the Einstein case) [4], the scalar curvature is in fact strictly positive.
This is related to the fact that the Lyapunov function defined in [21] for a
general cohomogeneity one steady soliton system is in these cases actually
a positive definite quadratic form (up to an additive constant). This gives
coercive estimates on the flow which facilitate the analysis. In the examples
of the present paper, where one factor in the warped product is flat, the
Lyapunov is no longer definite, but it becomes definite upon restriction to a
subsystem of one dimension lower. This turns out to be enough for many of
the arguments to go through, and allows us to deduce the desired existence
results.

2. Generalities on cohomogeneity one steady solitons

In [20] two of the authors set up the formalism for Ricci solitons of coho-
mogeneity one. More precisely, we considered the situation of a manifold M
with an open dense set foliated by equidistant diffeomorphic hypersurfaces
Pt of real dimension n. In other words, the metric is taken to be of the form
ḡ = dt2 + gt where gt is a metric on Pt and t is the arclength coordinate
along a geodesic orthogonal to the hypersurfaces. This formalism is some-
what more general than the cohomogeneity one ansatz, as it allows us to
consider metrics with little or no symmetry provided that appropriate addi-
tional conditions on Pt are satisfied, see the following as well as Remarks
2.18 and 3.18 in [20].
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We shall consider solitons of gradient type, that is, we take X = grad u
for a function u. Equation (1.1) then becomes

(2.1) Ric(ḡ) + Hess(u) +
ε

2
ḡ = 0.

We will further suppose, in line with the cohomogeneity one formalism, that
u is a function of t only, and treat it as both a smooth function on the
manifold and a function of the single variable t.

We let rt denote the Ricci tensor of gt, viewed as an endomorphism via
gt. Then we can define Lt, the shape operator of the hypersurfaces, by the
equation ġt = 2gtLt. We assume that the scalar curvature St = tr(rt) and
the mean curvature tr(Lt) (with respect to the normal ν = ∂

∂t) are constant
on each hypersurface. We shall often in the future suppress the t-dependence
in the above tensors.

In this setting, the above equation becomes the system (cf §1 of [20])

−tr(L̇)− tr(L2) + ü+
ε

2
= 0,(2.2)

r − (trL)L− L̇+ u̇L+
ε

2
I = 0,(2.3)

d(trL) + δ∇L = 0.(2.4)

The first two equations represent the components of the equation in the ∂
∂t

direction and in the directions tangent to P , respectively. Also, δ∇L denotes
the codifferential for TP -valued 1-forms, and the third equation represents
the equation in mixed directions.

The above assumptions are satisfied, for example, if M is of cohomo-
geneity one with respect to an isometric Lie group action. They are satisfied
also when M is a multiple warped product over an interval, which is the
situation we focus on in this paper.

In the warped product case the final equation involving the codifferential
automatically holds. This is also true for cohomogeneity one metrics that
are monotypic, i.e. when there are no repeated irreducible summands in the
isotropy representation of the principal orbits (cf [2], Prop. 3.18).

We have a conservation law

(2.5) ü+ (−u̇+ trL)u̇− εu = C

for some constant C. Using the equations this may be rewritten as

(2.6) tr(rt) + tr(L2)− (u̇− trL)2 − εu+
1

2
(n− 1)ε = C.



i
i

“5-wang” — 2015/1/5 — 16:43 — page 615 — #5 i
i

i
i

i
i

A family of steady Ricci solitons and Ricci-flat metrics 615

The term tr(rt) is the scalar curvature S of the principal orbits. Recall
that if R̄ denotes the scalar curvature of the ambient metric, from now on
written as ḡ = dt2 + gt, then

R̄ = −2tr(L̇)− tr(L2)− (trL)2 + S.

We can deduce the equality

(2.7) R̄+ u̇2 + εu = −C − ε

2
(n+ 1),

which is just the cohomogeneity one version of Hamilton’s identity R̄+
|∇u|2 + εu = constant.

We now specialise to the case of steady solitons, that is, ε = 0. The
conservation law is now

(2.8) tr(rt) + tr(L2)− (u̇− trL)2 = C.

In [21] the following result was proved.

Proposition 2.1. The function (u̇− trL)−2 is a Lyapunov function, that
is, it is monotonic on each interval on which it is defined.

The expression −u̇+ trL is the soliton version of the hypersurface mean
curvature. It occurs so frequently in our analysis that we shall introduce some
special notation for it

ξ := −u̇+ trL.

Remark 2.2. The conservation law (2.8) shows that our Lyapunov func-
tion is a constant multiple of

tr(rt) + tr(L2)

(u̇− tr L)2
− 1.

It is convenient to define a function L = C
ξ2 and we refer to this as the

Lyapunov.
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It is often useful to define a new independent variable s by

(2.9)
d

ds
:=

1

ξ

d

dt
=

√
L
C

d

dt

and use a prime to denote d
ds . We shall see presently that ξ is always positive

in the case of a complete steady soliton. Another useful quantity is

H =
trL

ξ
= 1 +

u̇

ξ
= 1 + u′,

which was introduced in [22], [19].
In the steady case the locus {L = 0,H = 1} is invariant under the flow,

and trajectories in this region of phase space correspond to trivial solitons,
i.e., ones where u is constant and g is an Einstein metric. Analogous state-
ments hold in the expanding and shrinking cases if we modify L appropri-
ately. We refer the reader to [22] and [19] for further discussion.

We now describe some general results about complete cohomogeneity
one steady solitons of gradient type. Some of these results can be deduced
from theorems about general solitons found in e.g., [28], [36], [43], [42]. How-
ever, in the cohomogeneity one situation, the statements sometimes take on
a stronger or more precise form, which will be useful for checking asymp-
totic behaviour in numerical studies. We have also included their proofs
here. Besides being more elementary, they involve ideas which are useful for
analysing existence questions in the cohomogeneity one case.

We shall be looking at complete noncompact steady solitons with one
special orbit, in which case we may assume, without loss of generality, that
t ∈ [0,∞) and the special orbit occurs at t = 0. We let k denote the dimen-
sion of the collapsing sphere at t = 0.

The Equation (2.7) becomes

(2.10) R̄+ (u̇)2 = −C

for complete steady solitons. We recall the result of B. L. Chen [15] that
R̄ ≥ 0 for complete steady solitons, with equality iff ḡ is Ricci-flat. Hence
we deduce the important inequality

C < 0

for non-trivial steady solitons. Note that this is a global consequence of
completeness which does not follow from examining local existence in some
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neighbourhood of a singular orbit (cf. [12]). The specific value of C is unim-
portant as it can be changed by a positive multiple via a homothety of the
soliton metric.

Proposition 2.3. The soliton potential is strictly decreasing and strictly
concave on (0,∞).

Proof. Let t0 be a critical point of u in (0,∞). The conservation law (2.5)
with ε = 0, together with the negativity of C, show that u is strictly con-
cave in a neighbourhood of t0. So the critical points of u are isolated and
nondegenerate.

Next let t0 < t1 be two consecutive critical points. The concavity state-
ment means there must be a critical point between t0 and t1, a contradiction.
So if a critical point exists it is unique.

The smoothness conditions at the special orbit imply u̇(0) = 0 and ξ =
k
t +O(t) near t = 0. Substituting into (2.5) yields (k + 1)ü(0) = C < 0 so in
fact we have concavity at t = 0 also. Hence the above argument shows there
are in fact no critical points of u in (0,∞) and u is hence strictly decreasing.

Now set y = u̇ and differentiate (2.5); using (2.2) we obtain

ÿ + ξẏ − tr(L2)y = 0.

We know y ≤ 0 on [0,∞) with equality only at 0. Also ẏ(0) < 0 and y2 < −C.
If t0 > 0 is a critical point of y, then ÿ(t0) ≤ 0 with equality only if L(t0) = 0.
But this implies, by (2.5), that −u̇(t0)

2 = C, which contradicts positivity of
R̄. Hence y is strictly concave at its critical points. Looking at the first
critical point and using the above information on y now shows no critical
points can exist. So ü = ẏ is negative for all t > 0. �

Proposition 2.4. The mean curvature tr L is strictly decreasing and sat-
isfies 0 < tr L ≤ n

t . The generalised mean curvature ξ is strictly decreasing
and tends to

√
−C as t tends to ∞.

Proof. The preceding proposition shows that d
dt(tr L) = −tr(L2) + ü is neg-

ative. By Cauchy-Schwartz, we have d
dt(tr L) < − 1

n(tr L)2.
Suppose tr L vanishes at t0. Then tr L < 0 on (t0,∞). Integrating the

inequality d
dt(tr L) ≤ ü from t0 + δ to t, where δ > 0, yields

v̇

v
= (tr L)(t) ≤ (tr L)(t0 + δ) + u̇(t)− u̇(t0 + δ) < u̇(t)− u̇(t0 + δ)
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where v(t) is the volume of the metric gt relative to a fixed invariant back-
ground metric on the principal orbit. Since u̇ is strictly decreasing, and
bounded by (2.10), it tends to a negative constant −a as t tends to ∞. For
sufficiently large t we may assume that

u̇(t) + a <
1

2
(u̇(t0 + δ) + a) := α

So v̇
v is less than the negative constant −α, which implies the metric has

finite volume, a contradiction to Theorem 1.11 in [36].
It follows that tr L never vanishes and hence is positive everywhere, since

it tends to +∞ at t = 0. Now for 0 < η < T we have∫ t=T

t=η

d(tr L)

(tr L)2
< − 1

n

∫ t=T

t=η
dt.

Therefore
1

(tr L)(η)
− 1

(tr L)(T )
< − 1

n
(T − η)

which, on letting η → 0, gives us our claimed upper bound on tr L.
As u̇ is bounded below and decreasing, limt→∞ u̇ trL = 0. Now the con-

servation law (2.5) implies that limt→∞ ü exists. Since ü < 0, the bound-
edness of u̇ implies that limt→∞ ü = 0. The conservation law then yields
a =
√
−C.

Finally, by Eq. (2.2), ξ̇ = −tr(L2) = −tr((L(0))2)− 1
n(trL)2 < 0 since we

have shown that tr L > 0. The limiting value of ξ is then that of −u̇, i.e.,√
−C, as tr L tends to 0. �

Remark 2.5. We have shown for complete steady gradient Ricci solitons
of cohomogeneity one with a special orbit at one end that u̇ tends to a
negative constant and ü tends to 0 as t tends to ∞. So the soliton potential
u will have asymptotically linear behaviour. In numerical searches it is of
course not possible to generate solutions over an infinite interval, so the
asymptotic behaviour of quantities such as the soliton potential provides a
valuable check that a soliton has in fact been found numerically.

Corollary 2.6. The ambient scalar curvature R̄ is decreasing and tends to
zero as t tends to ∞. Furthermore, we have

0 < −u̇ trL < R̄ < 2
√
−C

(n
t

)
+
n2

t2
.
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Proof. By (2.10), d
dtR̄ = −2u̇ü < 0. The limiting value follows from the above

proposition and (2.10).
Next, using (2.5) followed by (2.10), we obtain d

dtR̄ = 2u̇(R̄+ u̇ trL).
Since d

dtR̄ < 0 and u̇ < 0, we deduce the lower bound. For the upper bound,
note that by the conservation law (2.8) and Proposition 2.4, we have S +
tr(L2) = ξ2 + C > 0. On the other hand, from the trace of Equations (2.3)
and (2.8) we have

S + tr(L2) = −R̄+ (trL)2 − 2u̇ trL.

Therefore, using Proposition 2.4 again, we deduce that

R̄ < (trL)(trL− 2u̇) ≤ n

t

(n
t

+ 2
√
−C
)
.

�

Remark 2.7. Note that from the limiting values of u̇ and ü we also get
limt→∞

d
dtR̄ = 0. The asymptotic behaviour of R̄ for general steady solitons

is given by Theorem 3.4 in [28], from which the asymptotic value of R̄ also
follows. The upper bound for R̄ above is somewhat stronger than what can
be deduced from the general upper bound given in Corollary 1.3 of [43]. The
upper bound shows that for t ≥ 1, R̄ < (2

√
−C + n) nt , which is independent

of the principal orbit. It is unclear whether/when tr L has an asymptotic
lower bound of the form const

t . This is an interesting question, however, in
view of the hypotheses in Brendle’s rigidity result [9].

Finally, we discuss another Lyapunov function, a modification of which
will play an important role in §5. This function, denoted by F0 below, was
first considered by C. Böhm in [4] for the Einstein case and was subsequently
studied in [19] for the soliton case.

Corollary 2.8. Let F0 denote the function v
2

n

(
S + tr((L(0))2)

)
defined on

the velocity phase space of the cohomogeneity one gradient Ricci soliton equa-
tions, where L(0) is the trace-free part of L. Then F0 is non-increasing along
the trajectory of a complete non-trivial steady soliton. Furthermore, the func-
tion F := v

2

n

(
S + tr(L2)

)
is strictly decreasing along such a trajectory.

Proof. By Proposition 2.17 in [19], we have the formula

(2.11) Ḟ0 = −2v
2

n tr((L(0))2)

(
ξ − 1

n
trL

)
.
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However, by Propositions 2.3 and 2.4,

ξ − 1

n
trL = −u̇+

(
1− 1

n

)
trL > 0.

So F0 is strictly decreasing except where L is a multiple of the identity.
As for the second statement, since tr(L2) = tr((L(0))2) + 1

n(trL)2, it suf-
fices to examine

d

dt

(
v

2

n (trL)2
)

=

(
2

n

)
v

2

n (trL)3 + 2v
2

n (trL)(trL)·

= 2v
2

n (trL)

(
1

n
(trL)2 − tr(L2) + ü

)
≤ 2v

2

n (trL) ü,

where we have used (2.2) and the Cauchy-Schwartz inequality. By Proposi-
tions 2.3 and 2.4 the last quantity is negative along the trajectory. �

3. Multiple warped products

We now specialise to multiple warped products, that is metrics of the form

(3.1) dt2 +

r∑
i=1

g2i (t)hi

on I ×M1 × · · · ×Mr where I is an interval in R, r ≥ 2, and (Mi, hi) are
Einstein manifolds with real dimensions di and Einstein constants λi. Note
that n =

∑
i di ≥ 3 once some Mi is non-flat.

The shape operator and Ricci endomorphism are now given by

L = diag

(
ġ1
g1

Id1 , . . . ,
ġr
gr

Idr
)

r = diag

(
λ1
g21

Id1 , . . . ,
λr
g2r

Idr
)

where Im denotes the identity matrix of size m. As in [19], we work with the
variables

Xi =

√
di
ξ

ġi
gi

(3.2)

Yi =

√
di
ξ

1

gi
(3.3)
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for i = 1, . . . , r. Notice that the definition of Yi in [21] and [22] differs from
ours by a scale factor of

√
λi; the new choice is more appropriate to our

current situation where one of the λi may be zero. Now

r∑
j=1

X2
j =

tr(L2)

ξ2
and

r∑
j=1

λjY
2
j =

tr(rt)

ξ2
.

So the Lyapunov function becomes

(3.4) L :=
C

ξ2
=

r∑
i=1

(X2
i + λiY

2
i )− 1

where C is a nonzero constant.
As mentioned above, we introduce the new coordinate s defined by (2.9)

and use a prime ′ to denote differentiation with respect to s.
In our new variables the Ricci soliton system (2.2)-(2.3) with ε = 0

becomes

X ′i = Xi

 r∑
j=1

X2
j − 1

+
λiY

2
i√
di

,(3.5)

Y ′i = Yi

 r∑
j=1

X2
j −

Xi√
di

(3.6)

for i = 1, . . . , r. Note that homothetic solutions of the system (2.2)-(2.4) give
rise to the same solution of the above system.

We shall be concerned exclusively with the multiple warped situation for
the rest of the paper. Recall that in this case Equation (2.4) is automatically
satisfied. Note also that the above equations imply the equation

(3.7) L′ = 2L

(
r∑
i=1

X2
i

)
,

so L = 0 is flow-invariant. We also use the notation G :=
∑r

i=1X
2
i as this

quantity often occurs in our calculations.
The quantity H = trL

ξ becomes
∑r

i=1

√
diXi in our new variables. We

have the equation

(H− 1)′ = (H− 1)(G − 1) + L
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so, as mentioned above, we see that the region {L = 0,H = 1} of phase space
corresponding to Ricci-flat metrics is flow-invariant.

While in [21] all λi were taken to be positive, that is, the Einstein con-
stants on each Mi were positive, we shall now look at the case where the
collapsing factor M1 is S1, so d1 = 1, λ1 = 0, and the remaining λi are pos-
itive. Then the equation for X1 becomes:

X ′1 = X1

 r∑
j=1

X2
j − 1

 .

Note in particular this means the locus X1 = 0 is flow-invariant.
Conversely, if we have a solution of the above system (3.5), (3.6) with

λ1 = 0, in the region L < 0 (so C < 0), we may recover t and the metric
components gi from

(3.8) dt =

√
L
C
ds, gi =

√
di
Yi

√
L
C
.

We can choose t = 0 to correspond to s = −∞.
The soliton potential is recovered from integrating

(3.9) u̇ = tr(L)−
√
C

L
=

√
C

L
(H− 1),

and tr(L) is calculated using

(3.10)
ġi
gi

=

√
C

L
Xi√
di
.

The following lemma is a routine calculation.

Lemma 3.1. Let d1 = 1 and di > 1 for i > 1, so that λi = 0 iff i = 1. The
stationary points of (3.5), (3.6) are now:

(i) the origin

(ii) points with Yi = 0 for all i, and
∑r

i=1X
2
i = 1

(iii) points given by

Xi =
√
di ρA : Y 2

i =
di
λi

ρA(1− ρA), i ∈ A



i
i

“5-wang” — 2015/1/5 — 16:43 — page 623 — #13 i
i

i
i

i
i

A family of steady Ricci solitons and Ricci-flat metrics 623

and Xi = Yi = 0 for i /∈ A, where A is any nonempty subset of {2, . . . ,
r}, and ρA =

(∑
j∈A dj

)−1
(iv) the line where Xi = 0 for all i and Yi = 0 for i > 1

(v) the line where X1 = 1 and Xi, Yi = 0 for i > 1.

Note that L equals −1 in case (i) and (iv), and equals 0 in case (ii), (iii)
and (v). Cases (iv) and (v) are special to the case d1 = 1 and mean that in
this situation the origin is a non-isolated critical point.

4. Soliton solutions

As in [21], we shall construct complete non-compact steady soliton metrics
where one factor M1 collapses at one end, corresponding to t = 0. For the
collapse to be smooth we take M1 to be a sphere Sd1 . (Note that d1 is
the same as the dimension k in §2.) The manifold underlying the Ricci
soliton is then the total space of a trivial vector bundle of rank d1 + 1 over
M2 × · · · ×Mr. In our case, of course, d1 = 1. The initial conditions for the
soliton solution to be C2 are the existence of the following limits:

g1(0) = 0 : gi(0) = li 6= 0 (i > 1),(4.1)

ġ1(0) = 1 : ġi(0) = 0 (i > 1),(4.2)

g̈1(0) = 0 : g̈i(0) finite (i > 1),(4.3)

u(0) finite : u̇(0) = 0 : ü(0) finite.(4.4)

In our Xi, Yi variables, this means we consider trajectories in the unsta-
ble manifold of the critical point P0 of (3.5) and (3.6) given by

X1 = 1, Y1 = 1, Xi = Yi = 0 (i > 1).

This critical point lies on the level set L = 0 of the Lyapunov.
The linearisation about this critical point is the system

x′1 = 2x1

y′1 = x1

x′i = 0 (i ≥ 2)

y′i = yi (i ≥ 2)

with eigenvalues 2, 1 (r − 1 times), and 0 (r times).
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In contrast to the situation of [21] we now have a centre manifold.
The results of [12] now show we have an (r − 1)-parameter family of

trajectories γ(s) such that lims→−∞ γ(s) = P0 and pointing into the region
L < 0. As in [21], (3.7) shows that such trajectories stay in L < 0. We can
moreover choose the trajectories to have Yi > 0 for all time (note that the
locus Yi = 0 is always invariant under the flow).

Because d1 = 1 and hence λ1 = 0, the Lyapunov

L =

r∑
i=1

X2
i +

r∑
i=2

λiY
2
i

does not involve Y1, so the region L ≤ 0 is no longer compact, in contrast
to the situation in [21].

However, since λ1 = 0, the variable Y1 only enters into the equations
through the equation for Y ′1 . Hence by omitting (3.6) for i = 1 we obtain
a subsystem of (3.5), (3.6) for Xi (i = 1, . . . , r) and Yi (i = 2, . . . , r) and on
this new space, L ≤ 0 is compact. Moreover, once we have a solution to the
subsystem we can recover Y1 via

Y1(s) = Y1(s0) exp

∫ s

s0

r∑
j=1

X2
j −X1

 .

The critical points for the subsystem are given by cases (i), (ii) and (iii)
of the critical points for the full system. In particular P0 corresponds to
the critical point P̂0 = (1, 0, . . . , 0) in the subsystem, and we have an r − 1
parameter family of solutions emanating from this point and lying in the
region Yi > 0 and L < 0.

Let us now analyse these trajectories in L < 0. For the subsystem, where
this region is precompact, all the variables are bounded by 1 and the flow
exists for all s. Hence this is true for the original flow also.

The arguments of Prop 3.7 of [21] show that the flow in the subsystem
converges to the origin, so L converges to −1. We deduce from (2.9) that as
s tends to ∞, so does t, hence the metric is complete.

The proof of Lemma 4.4 (i) in [21] carries over to show that all Xi are
positive on the trajectory. Using the arguments of Lemma 3.8 in [21] we can
show, using the equation(

Xi

Y 2
i

)′
=

(
Xi

Y 2
i

)(
−1− G +

2Xi√
di

)
+

λi√
di
,

the following result.
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Lemma 4.1. We have lims→∞
Xi

Y 2
i

= λi√
di

for i ≥ 2.

(Recall that the Yi in the current paper differ from those in [21] by a√
λi scale factor.)

Now

1

2

d

dt
(g2i ) = giġi =

di
Y 2
i

L
C

Xi√
di

√
C

L
=

√
diXi

Y 2
i

√
L
C
→ λi√

|C|

as s tends to ∞. Hence we deduce that as t tends to ∞, g2i to leading order
asymptotically behaves like 2λit√

−C for i > 1.

For i = 1, we again use the equation(
X1

Y 2
1

)′
=

(
X1

Y 2
1

)
(−1− G + 2X1) ,

which we may write in the form

(logψ)′ = −1 + φ

where ψ = X1

Y 2
1

and φ tends to 0 as s tends to ∞. Choosing 0 < δ < 1 and s0
such that |φ(s)| < δ for s > s0, we integrate and obtain

−(1 + δ)(s− s0) < log
ψ(s)

ψ(s0)
< (−1 + δ)(s− s0)

for s > s0. Exponentiating gives

e−(1+δ)(s−s0) <
ψ(s)

ψ(s0)
< e−(1−δ)(s−s0)

so ψ = X1

Y 2
1

decays to zero as s→∞. Now, as in the i > 1 case, we have

1

2

d

dt
(g21) dt =

X1

Y 2
1

√
L
C
dt =

X1

Y 2
1

L
C
ds,

and this integrand is positive and dominated by 1
|C|

X1

Y 2
1
. Integrating and

using the exponential bound above shows that the increasing function g21 is
bounded above, hence converges to a positive limit α2.

Remark 4.2. Since g1(t) tends to α and ξ tends to
√
−C as t tends to

infinity, it follows from (3.3) that Y1 tends to a positive constant as s tends to
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infinity. This means that the soliton trajectory in the full Xi, Yi space tends
to one of the stationary points of type (iv) (lying in L < 0) in Lemma 3.1.

We have therefore deduced the following theorem.

Theorem 4.3. The metric corresponding to our trajectory has the form,
to leading order in t as t→ +∞,

dt2 + α2dθ2 + t h∞

where α is a positive constant, θ is the angle coordinate on M1 = S1 and
h∞ is the product Einstein metric on M2 × · · · ×Mr. The volume growth is
asymptotically t

n+1

2 .

Remark 4.4. We thus obtain asymptotic behaviour which is a mixture of
the asymptotically paraboloid geometry of the Bryant solitons on Rn (for
n > 2) and the Hamilton-Witten cigar geometry on R2.

Theorem 4.5. Let M2, . . . ,Mr be compact Einstein manifolds with posi-
tive scalar curvature. There is an r − 1 parameter family of non-homothetic
complete smooth steady Ricci solitons on the trivial rank 2 vector bundle
over M2 × · · · ×Mr, with asymptotics given by Theorem 4.3.

Remark 4.6. As with the metrics of [21], we can show that our soliton
metrics have nonnegative Ricci curvature. The sectional curvatures decay
like 1

t or faster, and the curvatures K(Ui ∧ Uj) where Ui, Uj are tangent to
Mi,Mj respectively with i, j ≥ 2 and i 6= j are negative. The scalar curvature
decays like 1

t , and satisfies c1
t ≤ R̄ ≤

c2
t for certain positive constants c1, c2

and all sufficiently large t. (These constants depend only on n and
√
−C.)

In particular, the asymptotic scalar curvature ratio lim supd→+∞ R̄d
2, where

R̄ is the scalar curvature and d is the distance from a fixed origin in the
manifold, is +∞, as it should be.

5. Complete Ricci-flat metrics

As mentioned in the introduction, a special case of solutions to the soliton
equations is that of trivial solitons, where the metric is Einstein and the
potential is constant. In the steady case, this means the metric is Ricci-flat.

In [4] Böhm constructed an r − 2 parameter family of complete Ricci-
flat metrics using warped products over r Einstein manifolds with positive
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Einstein constants. He assumed in his construction that the collapsing Ein-
stein factor is a sphere of dimension at least 2. In this section we will remove
this dimension restriction, i.e., we produce analogues of these metrics in the
case where M1 = S1 (so d1 = 1). The special case of r = 2 was treated in [2]
(see also p. 271 of [3]), where an explicit solution was found. It includes the
Riemannian Schwarzschild solution, which is the special case when M2 = S2.

We recall from §3 that for trajectories representing Ricci-flat metrics, we
have L = 0 and H = 1. Therefore we need to study trajectories emanating
from the critical point P0 and lying in the locus L = 0 rather than going
into the region L < 0. These form an r − 2 parameter family.

We note that as L = 0 we have to modify our procedure to recover the
metric from solutions to (3.5) and (3.6). We now define t by

(5.1) dt = exp

∫ s

s∗

r∑
j=1

X2
j

 ds

for some fixed s∗. Also, let

gi =

√
di
Yi

exp

∫ s

s∗

r∑
j=1

X2
j


so

ġi
gi

exp

∫ s

s∗

r∑
j=1

X2
j

 = −Y
′
i

Yi
+

r∑
j=1

X2
j =

Xi√
di

and hence

trL =

r∑
i=1

diġi
gi

= H exp

−∫ s

s∗

r∑
j=1

X2
j

 .

As H = 1 for Einstein trajectories, it follows that dt = ds
trL .

Note that we have

(5.2)

√
di

trL

Xi

Y 2
i

= ġigi,

which is consistent with our formula in the soliton case.
As in the soliton case, we can restrict to the subsystem obtained by

omitting the equation for Y1, and deduce that the flow is defined for all
s since L = 0 is compact for the subsystem. We have Xi, Yi > 0 along our
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trajectories as before. As L = 0, we in fact have 0 < Xi < 1 for all i. Note
also that the variety {H = 1,L = 0} is smooth.

Lemma 5.1. The Ricci-flat metrics corresponding to our trajectories are
complete.

Proof. We have

dt = exp

(∫ s

s∗
G
)
ds

where G =
∑

iX
2
i ≥ 1

nH
2 by Cauchy-Schwartz. Since H = 1 along Einstein

trajectories, it follows that t tends to∞ as s does, proving completeness. �

In order to examine the long time behaviour of the Ricci-flat trajecto-
ries, we need to use a modified form of the Lyapunov function F0 for the
flow discussed in Corollary 2.8. Writing F0 in terms of the variables Xi, Yi
(cf (3.2) and (3.3)) we get

F0 =

(
r∑
i=1

X2
i +

r∑
i=1

λiY
2
i −
H2

n

)
r∏
i=1

(√
di
Yi

1

ξ

)− 2di
n

.

Taking into account the conditions L = 0,H = 1 and the fact that X1 plays
a special role in the subsystem, we consider the following modified Lya-
punov function with domain D := {L = 0,H = 1} ∩ {Yi > 0 (i > 1), |X1 −
1| <

√
2}:

(5.3) F̂ :=
1− 1

n−1(1−X1)
2∏r

i=2

(√
λiYi

) 2di
n−1

=

∑r
i=1X

2
i +

∑r
i=2 λiY

2
i − 1

n−1 (H−X1)
2∏r

i=2

(√
λiYi

) 2di
n−1

.

Note that F̂ is positive along our trajectories as 0 < X1 < 1.

Lemma 5.2. F̂ is non-increasing along the trajectories of the flow lying
in D.

Proof. After some algebra we find

1

2

F̂′

F̂
=
X1(1−X1)(G − 1) + (n− 2 + 2X1 −X2

1 )(1−X1

n−1 − G)

n− 2 + 2X1 −X2
1
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where G =
∑r

i=1X
2
i as usual. For our trajectories the denominator is posi-

tive. The numerator may be rewritten as

1−X1

n− 1
(n− 2− (n− 3)X1 −X2

1 ) + G(−X1 + 2− n),

in which the term multiplying G is negative. Now, using Cauchy-Schwartz
and H = 1, we have the inequality

G ≥ X2
1 +

1

n− 1

(
r∑
i=2

√
diXi

)2

= X2
1 +

(1−X1)
2

n− 1
.

Substituting into the above expression for the numerator, we find after sim-
plification that the numerator is ≤ X2

1 (2− n−X1) which is ≤ 0. �

Remark 5.3. We have F̂′ = 0 iff X1 = 0 and we have equality in Cauchy-

Schwartz, that is, when Xi =
√
di

n−1 for i ≥ 2.

Lemma 5.4. The function F̂ has a unique critical point in D which is the
global minimum point.

Proof. We use the second expression of F̂ in (5.3). By Cauchy-Schwartz and
X1 ≥ 0 the numerator is at least

∑r
i=2 λiY

2
i . Next, using similar calculations

to those in Prop 4.10 of [19] we find that F̂ ≥ (n− 1)
∏r
i=2 d

− di
n−1

i in D.
Equality holds exactly at the point E whose coordinates are given by

X1 = 0, Xi =

√
di

n− 1
, Yi =

√
n− 2

λi
Xi : (i = 2, . . . r);

in fact it is easy to check that E is the unique critical point of F̂ in D. �

We can now use F̂ to analyse the long-time behaviour of the flow.

Theorem 5.5. The r − 2 parameter family of Ricci-flat trajectories all con-
verge to E as s tends to infinity.

Proof. As usual we work with the subsystem omitting Y1. As {L = 0,H = 1}
is now compact, for each trajectory γ we have an ω-limit set Ω lying in the
level set F̂ = µ where µ is the infimum of F̂ along the trajectory. Notice
that µ > 0 by Lemma 5.4, and from the expression of F̂ none of the Yi
coordinates of a point in Ω can be zero. Hence Ω lies in D. As Ω is flow-

invariant, Remark 5.3 shows that on Ω we have X1 = 0 and Xi =
√
di

n−1 for



i
i

“5-wang” — 2015/1/5 — 16:43 — page 630 — #20 i
i

i
i

i
i

630 M. Buzano, A. S. Dancer and M. Wang

i ≥ 2. In particular, Y ′i must vanish. Again by flow-invariance, we also need
X ′i to vanish, and this now forces Ω to be {E}, as all other stationary points
in L = 0 do not lie in D.

So µ = F̂(E), the global minimum of F̂ in D. Now let ε > 0 be sufficiently
small so that the ε-ball around E in L = 0,H = 1 is contained in the region
where all Yi > 0. Recall that L = 0,H = 1 is smooth at E. From Lemma 5.4
we know E is the unique point where µ is attained. Therefore the minimum
of F̂ on the ε-sphere around E is µ+ δ for some δ > 0. As E is the ω-limit
set, there exists a time s∗ where the trajectory lies in the open ε-ball and
F̂(γ(s∗)) < µ+ (δ/2). Now by monotonicity of F̂ the trajectory can never
pass back through the ε-sphere, so is trapped for all later time in the ε-ball.
Hence the trajectory converges to E. �

Remark 5.6. One can give an alternative proof of Böhm’s existence result
for complete Ricci-flat metrics on multiply warped products with d1 > 1
along the above lines by using instead the Lyapunov function

F =

r∏
j=1

Y
− 2dj

n

j .

F is again positive and non-increasing along the trajectories of the flow on
the locus where H = 1,L = 0, Xi, Yi > 0 (i = 1, ..., r). In this set, F has a
unique critical point, which is a global minimum, whose coordinates are

Xi =
√
di
n , Yi =

√
n−1
λi
Xi. This point corresponds geometrically to the Ricci

flat cone on the product Einstein metric of Sd1 ×M2 × · · · ×Mr. An account
of this alternative proof can be found in the McMaster M. Sc. thesis of Cong
Zhou.

We now consider the asymptotics of the complete Ricci-flat metrics we
have constructed. Note that G =

∑r
i=1X

2
i equals 1

n−1 at E. So we can choose

a sufficiently small positive δ and s1 > s∗ such that |G − 1
n−1 | < δ for all

s ≥ s1. Equation (5.1) then gives us estimates

ρ0(n− 1)

1− δ(n− 1)

(
e(

1

n−1
−δ)(s−s1) − 1

)
< t− t1

<
ρ0(n− 1)

1 + δ(n− 1)

(
e(

1

n−1
+δ)(s−s1) − 1

)
where ρ0 is the constant exp(

∫ s1
s∗ G), and t1 corresponds to s1 via (5.1).
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Lemma 5.7. The function g1(t)
2 is increasing and bounded from above and

hence converges to a positive constant as t tends to infinity.

Proof. That g1(t)
2 is increasing follows from the formula (5.2). Integrating

this we obtain

1

2
(g1(t)

2 − g1(t1)2) =

∫ s

s1

X1

Y 2
1

exp

2

∫ σ

s∗

∑
j

X2
j

 dσ.

We shall estimate the integral by estimating X1, 1/Y
2
1 and the exponential

separately.

The equation for X1 implies that X ′1 ≤ X1

(
−n−2
n−1 + δ

)
, which yields

upon integration

X1(s) ≤ X1(s1) exp

(
−
(
n− 2

n− 1
− δ
)

(s− s1)
)
.

The equation for Y1 gives

(log Y1)
′ =

r∑
j=2

X2
j +X2

1 −X1 ≥
(1−X1)

2

n− 1
+X2

1 −X1

=
1

n− 1
−
(
n+ 1

n− 1

)
X1 +

n

n− 1
X2

1 ,

where we have used the Cauchy-Schwartz inequality and H = 1. Since X1

tends to 0 as s tends to infinity, we may assume that s1 has been also chosen
so that the absolute value of the terms involving X1 in the above is less than
δ. Integration of the inequality then gives

1

Y1(s)2
<

1

Y1(s1)2
exp

(
−2(s− s1)

(
1

n− 1
− δ
))

.

Finally,

exp

∫ σ

s∗

∑
j

X2
j =

(
exp

∫ s1

s∗
G
)(

exp

∫ σ

s1

G
)

≤ ρ0 exp

(
(σ − s1)

(
1

n− 1
+ δ

))
,

where ρ0 = exp(
∫ s1
s∗ G) (which depends in particular on the choice of δ).
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Now combining the three inequalities we get

1

2
(g1(t)

2 − g1(t1)2) < ρ20

(
X1(s1)

Y1(s1)2

)∫ s

s1

exp

((
−n− 2

n− 1
+ 5δ

)
(σ − s1)

)
dσ.

As δ can be chosen arbitrarily small, it follows that g1(t)
2 is bounded above

for all t. �

Similarly, arguing as in the soliton case, and using the fact that

lim
s→∞

Xi

Y 2
i

=
Xi

Y 2
i

(E) =
n− 1

n− 2

λi√
di

for i ≥ 2, we obtain estimates for g2i (t)− g2i (t1) for all t > t1. These imply
that asymptotically

(5.4) c1t
2−ε0 < gi(t)

2 < c2t
2+ε0

for arbitrarily small ε0 > 0 and positive constants c1, c2 depending on ε0
and δ.

Remark 5.8. The asymptotics obtained above are an analogue of those
of the Riemannian Schwarzschild metric, which is the case where r = 2 and
M2 = S2 (with the constant curvature 1 metric).

We note also that Y1 tends to infinity (exponentially fast in s). So in
the full phase space, the trajectories of the Ricci-flat metrics are indeed
unbounded.

We have therefore proved

Theorem 5.9. Let M2, . . . ,Mr be closed Einstein manifolds with positive
scalar curvature. There is an r − 2 parameter family of non-homothetic com-
plete smooth Ricci flat metrics of form (3.1) on the trivial rank 2 vector bun-
dle over M2 × · · · ×Mr. Asymptotically, g1(t) tends to a positive constant
and gi(t)

2, i > 1 are approximately quadratic in the sense of (5.4).

Remark 5.10. The cohomogeneity one Einstein equations can be viewed
as the flow on the zero energy hypersurface of a certain Hamiltonian H
constructed in [23], §1. Recall that a superpotential Φ of H is a C2 function
on the full momentum phase space such that the equation H(q, dΦq) = 0
holds. It is shown in [24] that a superpotential automatically gives rise to a
first order subsystem of the cohomogeneity one Einstein equations. In the
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Ricci-flat case, physicists have frequently been able to show that solutions
to the first order subsystem represented metrics with special holonomy (see,
e.g., [17] and [18]).

On the other hand, there are examples of superpotentials which are
not associated with special holonomy, but nevertheless are related to some
degree of integrability of the Ricci-flat equations. We mention here case (1)
of Theorem 6.3 and Examples 8.2 and 8.3 in [23]. The hypersurfaces in
these examples are respectively the product of one, two, or three Einstein
manifolds with positive scalar curvature. The dimensions of the factors in
the latter two cases are restricted, i.e., up to permutation, they must be
(6, 3), (8, 2), (5, 5) and (3, 3, 3), (4, 4, 2), (6, 3, 2) respectively. With an appro-
priately chosen sphere as one of the Einstein factors, there are explicit solu-
tions of the first order subsystem which are complete smooth Ricci-flat met-
rics, and these must occur among the Böhm metrics since d1 > 1 is satisfied.

It turns out that if we take a product of the above examples with a circle,
we obtain hypersurfaces with superpotentials as well (cf Remark 2.8 of [23],
which applies also to the null case). However, there are two differences.
First, the convex polytopes associated to the scalar curvature function and
superpotentials are no longer of maximal dimension. This explains why these
examples did not occur in the classifications in [25] and [26]. Second, since
the circle can be taken to be the collapsing factor, none of the positive
Einstein factors need to be spheres anymore in order to obtain complete
smooth solutions of the first order subsystem. These Ricci-flat metrics must
occur among those constructed in this section. Case (1) of Theorem 6.3 now
becomes the r = 2 case, which is known to be explicitly integrable (cf [2]).

The topology of the underlying manifolds where we have constructed
steady soliton and Ricci-flat structures is also very interesting. We shall
consider here the r = 2 case briefly.

For the Einstein factor M2 we can take the Kervaire sphere Σ of dimen-
sion q = 4m+ 1 with m 6= 0, 1, 3, 7, 15 and possibly 31, or one of the homo-
topy spheres in dimension 7, 11, 15 which bound a parallelizable manifold.
The solution of the Arf-Kervaire invariant problem by Hill, Hopkins, and
Ravenel [32] implies that in the above dimensions the Kervaire sphere is not
diffeomorphic to the standard sphere. At the same time, the work of Boyer,
Galicki, and Kollár [6], [7] provides continuous families of Sasakian Einstein
metrics on these homotopy spheres. On the other hand, it is known (Theo-
rem 1 in [35]) that for a non-standard homotopy q-sphere Σ that bounds a
parallelizable manifold, R2 × Σ is not diffeomorphic to R2 × Sq. Therefore,
Theorems 5.9 and 4.5 imply
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Corollary 5.11. In dimensions 9, 13, 17 and all dimensions 4m+ 3 with
m 6= 0, 1, 3, 7, 15, 31 there exist pairs of homeomorphic but not diffeomor-
phic manifolds both of which admit a complete Ricci-flat metric. The same
conclusion holds for non-Einstein, complete, steady gradient Ricci soliton
structures.

We are not aware of examples of this type in the literature, although
they presumably occur among Calabi-Yau manifolds. The soliton case is
somewhat surprising in view of the comparatively greater rigidity of the
soliton equations.

We also remark that by [35] the manifolds R3 × Σ and R3 × Sq are dif-
feomorphic, so the above Corollary cannot be deduced from [4] or [21].

6. Concluding remarks

In using the cohomogeneity one type ansatz to construct non-Kähler gra-
dient Ricci solitons, so far the hypersurfaces chosen consist of product Rie-
mannian manifolds, so that the corresponding scalar curvature functions
are always bounded from below by 0. While helpful, this is a very atypical
geometric situation. It is therefore of great importance to study the soli-
ton equation in cases where the hypersurfaces have more complicated scalar
curvature behaviour. One natural class of examples are hypersurfaces which
are the total spaces of Riemannian submersions for which the hypersurface
metric involves two functions, one scaling the base and one the fibre of the
submersion. If the fibre is a circle this leads us back to ansätze familiar
in the Einstein case from the work of Calabi and Bérard Bergery. In the
soliton case, Kähler examples are known (see the references in the Introduc-
tion), although the general soliton equation is still not well-understood. For
higher-dimensional fibres the equations are more complicated. In the Ein-
stein case Böhm obtained existence results for compact examples in some
low dimensions [5] and for noncompact examples in high dimensions [4].

Together with M. Gallaugher, we have made a numerical study of the
steady soliton equation for some of these more complicated principal orbit
types (cf §5, [13]). For example, viewing the quaternionic projective space as
a quaternionic Kähler manifold, we take its twistor bundle (resp. canonical
Sp(1) bundle) as the principal orbits in the associated R3 (resp. R4) bundle
over HPm,m ≥ 1. We have produced numerical evidence of complete steady
gradient Ricci soliton structures on these bundles. Note that the existence
of complete Ricci-flat metrics on these bundles, including ones with special
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holonomy, was considered by [11], [29] and [4]. In the soliton case, however,
we did not detect any difference between low and high dimensional cases.

Based on this numerical study, we make the conjecture that on the
vector bundles G×H Rd1+1, where (G,H,K) is either (Sp(m+ 1),Sp(m)×
Sp(1), Sp(m)×U(1)) with d1 = 2 or (Sp(m+ 1)× Sp(1),Sp(m)× Sp(1)×
Sp(1), Sp(m)×∆Sp(1)) with d1 = 3, there is a 1-parameter family of non-
homothetic complete steady gradient Ricci solitons.
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[4] C. Böhm, Non-compact cohomogeneity one Einstein manifolds, Bull.
Soc. Math. France, 122, (1999), 135–177.
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