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Asymptotic Hodge theory of
vector bundles

BENOIT CHARBONNEAU AND MARK STERN

We introduce several families of filtrations on the space of vec-
tor bundles over a smooth projective variety. These filtrations are
defined using the large k asymptotics of the kernel of the Dolbeault
Dirac operator on a bundle twisted by the kth power of an ample
line bundle. The filtrations measure the failure of the bundle to
admit a holomorphic structure. We study compatibility under the
Chern isomorphism of these filtrations with the Hodge filtration
on cohomology.

1. Introduction

Let M be a compact complex manifold of complex dimension m. Let Vect(M)
denote the isomorphism classes of complex vector bundles over M, and let
Vect(M, r) denote the subset of isomorphism classes of bundles of rank 7.
Given E € Vect(M) equipped with a connection A with curvature Fjy, the
Chern character is defined to be

ch(F) := [tr exp <Z§’:>] € H*(M,Q).
The Chern character extends to a surjective map
ch: Vect(M) ® Q - H"(M, Q).
When M is Kéahler, the Hodge decomposition,
HY(M,C) = Op+g=a P (M)
and the Hodge filtration,

SpH? = @2 H " (M),
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are powerful tools in complex geometry. In this note, we introduce and ana-
lyze for projective varieties, M, a natural filtration S}, on Vect(M), which is
analogous to the Hodge filtration on H?(M, C). Heuristically, the filtration
measures degree of failure to admit a holomorphic structure. In fact, S?/
comprises bundles admitting holomorphic structures.

Let L be an ample holomorphic line bundle over a smooth projective
variety M of complex dimension m. Then L admits a metric, h, whose
induced Chern connection has curvature F which satisfies F'*(v, ) > 0, for
all nonzero holomorphic tangent vectors v. We call such a metric admissible.
An admissible metric on an ample line bundle determines a Kéhler form for
M, by defining the Kéhler form w to be w = iF'. We call a choice of Kéhler
structure on M induced by an ample line bundle with an admissible metric
a polarization of M. We call (L, h), (or L when h is understood) a polarizing
line bundle.

Let E be a complex vector bundle of rank r, with connection A. We do
not assume that E is holomorphic. The connection A on E and the Chern
connection on a polarizing L induce connections A(k) on E ® L¥. Let 0 Ak)
denote the associated 0-operator. Define

Dy = V2(0ag) + Tiy)-

For k sufficiently large, the dimension of the kernel of D, is the index
of DZ"&%, the restriction of Dy to E® L* valued even forms. Let s €
ker(D 4(r))- Let s/ denotes the (0, j) component of s, and write

S:SO+S2+”-+82L%J,

where |z] denotes the integer part of z. When E' is holomorphic, the same
estimates which imply that ker(D%‘%%)) =0 for k large imply that s = s°.
Generically, for F nonholomorphic, one does not expect to find any s €
ker(D 4(x)) satisfying s = s". This leads us to the first definition of our fil-

tration.

Definition 1.1. Let (L,h) be a polarization of M. We say FE €
Sy pVect(M) if E admits a connection A so that for all & sufficiently
large, s € ker(D 4()) implies 5% =0,Vj > q. We call A an S{J/’L,h—compatible
connection, or simply an Sg,—compatible connection if we do not wish to
specify the polarization data. We say E € Sy, Vect(M) if E' € Sy, |, Vect(M)
for some choice of polarization (L,h). We say E is of Hodge type q if
E € 8%Vect(M) \ S& ' Vect(M). We say E € IS%Vect(M) if E admits a
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connection A which is Sg/ 1., compatible for every choice of polarization

(L, h).

For all ¢ it is easy to construct examples of bundles of Hodge type
q < % on complex m manifolds. A bundle is of Hodge type 0 if and only
if it admlts a holomorphic structure. For 0 < ¢ < %, simply consider two
projective varieties My and Ms equipped with bundles Ey and E5. Assume
F; is holomorphic. Then the Hodge type of E1 x FEjs is the Hodge type of Fo,
by a separation of variables computation. If dim ¢ Ms = 2¢, and H*29(M>) #
0 then there exists Fo of type g on Mo, thus yielding bundles of type ¢ on
My x M>. In general, the conditions defining S§, appear to be very difficult
to establish, and may be too rigid for many applications. Consequently,
we introduce quantized versions, Sy, , and ISy, ,, of the filtrations, which
are easier to treat in many applications. The quantlzed filtrations satisfy
Sy C SV,j+1 C SVJ, J=1,2,..., and similarly for .5y, . In order to motivate
these new filtrations, we need two preliminary results.

Let IT denote the unitary projection onto ker(D 4(;y). Let P; denote the
projection onto F ® L* valued (0, j)-forms. Then (see [I6, Theorem 4.1.1]
or Proposition below)

m

2magm

(1.1) Trll = Vol(M)rk(E) + O(k™™1),

and (see Proposition and Proposition
km—2j

(F329, + O(km571).
Definition 1.2. We say E € SV .nVect(M) if E admits a connection A
satisfying TrPagyoll = O(K™~ 20-37} P), for all k sufficiently large. We call A
an SV Lk -compatible connection, or simply SY p—compatlble if we do not
spemfy the polarization. We say E € Sq if £ e SV Lh for some choice of
polarization (L,h). We say E € I Sq 1f E admits a connection A which is
SV Lk compatible for every ch01ce Of polarization (L, h). We call such a
connection ISy, , compatible. We say £ € M S|, if E € S, |, Vect(M) for
every choice of polarization (L,h) (but with A possibly dependlng on the
polarization).

For q = 0, the filtrations all agree. This is an immediate consequence
of , which shows that an SV1 compatible connection satlsﬁes F22 =0,
and thus defines a holomorphic structure on E. For ¢ > 0, also implies
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S{I/I = ISVI, in fact an S{I/l compatible connection is also ISVl compatible.
In general an S compatlble connection need not be 1 S compatlble for
p>1.

Question 1.3. Do these filtrations eventually stabilize? In other words, is
there some N (q) so that for p1,ps > N(q), Svp1 SVp2

For g = 0, the filtrations all stabilize at N(0) = 1 on holomorphic bun-
dles. The stabilization question may therefore be thought of as an extended
integrability condition.

In order to support our claim that Sj, and its quantum extensions are
analogous to the Hodge filtration on cohomology, we consider the compati-
bility of these filtrations under the Chern isomorphism. For line bundles, it
follows from that the Chern character is compatible with the filtrations.

Theorem 1.4.
h, (SE Vect(M, 1)) C (S9N Sk H? (M, Q).
We conjecture that this theorem extends to arbitrary rank.
Conjecture 1.5.
chy, (SY Vect(M)) C (S9N S H? (M, Q).
The conjecture is true for IS}, for restricted p.
Theorem 1.6 (See Proposition . Forp <7,
chy, (IS Vect(M)) < (S5 0 SETYHP (M, Q).
For ¢ > 1, we have filtration compatibility for p in a restricted range.
Theorem 1.7 (See Corollary |4.6)).
chy, (S Vect(M)) C (S5 9N Sk HH?(M,Q), Vp < q+ 3.

It is generally easier to prove results about the quantized versions of
our filtration than for Sj, directly. In fact, the preceding results follow from
computations of the 1mphcat10ns of inclusion in S, ; g and [ SV ,7=1,2and
3. It is also easier to establish functorial properties of the quantlzed filtra-
tions. For example, we have the following theorem, which is an immediate

consequence of Equation (|1.2)).
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Theorem 1.8. If M and N are two smooth projective varieties, and f: M
— N is holomorphic, then E € S{, | Vect(N) implies f*E € S{,, Vect(M).

We have required M to be projective in this discussion because the
definitions of our filtrations required an ample holomorphic line bundle L.
This is analogous to defining operations on cohomology only through the
intermediary of harmonic forms. A metric free definition is essential for
applications. Perhaps we should view the role of the polarization as providing
‘enough’ global solutions to D 4x)s = 0. More generally, we might define a
filtration by requiring there to be ’enough’ local solutions to (04 + 9% )s = 0,
with degree s < 2¢, but this still requires a metric and seems unnatural. A
completely metric free condition similar to E € IS, is the following : there
exists a local frame {s,}, for E so that 5iq+lsa =0 for all a.

Question 1.9. If E € IS{ Vect(M), does there exist a local frame {s,}q
for E so that éiq+lsa =0 for all a?

For ¢ = 0, the answer is, of course, yes.

The study of the large k asymptotics of ker(D 4(;)) and of the Bergman
kernel for E ® L* has been very fruitful when E is holomorphic (for exam-
ple, Berman [2], Berman-Berndtsson-Sjostrand [3], Bismut [4], Bouche [5],
Catlin [6], Dai-Liu-Ma [7], Demailly [8, O], Donaldson [10], Getzler [11],
Keller [13], Liu-Lu [14], Ma—Marinescu [16], Tian [I§], L. Wang [19], X. Wang
[20], Zelditch [21] and many others. See [16] for an extensive bibliography.)
The nonholomorphic case has also been treated by many authors in many
contexts, for example, see Ma—Marinescu [15] and [16]. Rather than special-
izing the extensive general results of [16] to our situation, we instead quickly
rederive the asymptotic expansion of the Bergman kernel, using familiar con-
structions from index theory.

We were led to the structures examined here when investigating whether
a similar analysis for nonholomorphic bundles might be used to improve our
understanding of which bundles fail to admit a holomorphic structure. When
we drop the assumption that E is holomorphic, the natural analog of the
Bergman kernel is the Ly projection II. See [16] for an extensive treatment
of the Bergman kernel in both the holomorphic and nonholomorphic cases.
In the holomorphic case, I is an endomorphism of sections of E ® L¥; in
the nonholomorphic case, I is an endomorphism of E ® L¥ valued forms. In
particular, it defines maps II{ from sections to F ® LF valued (0,2q) forms.
For ¢ > 0, these maps lie deeper in the asymptotics of the Bergman kernel
than have previously been computed, but are actually quite computable.
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The above theorems all follow from computations of these asymptotics. It
seems likely that Conjecture [1.5 can be proved to hold in a wider range
by an extension of the computation of asymptotics which we have thus far
undertaken.

Unfortunately, the fact that the ¢ = 0 filtration stabilizes at N(0) =1
limits the immediate application of this approach to discovering new obstruc-
tions to the existence of holomorphic structures. Nonetheless, we hope that
these computations may be useful in other contexts.

Plan of the paper

In Section [2, we show that approximating the projection IT onto ker(D 4())
by e tPam | with t > k~1/2, leads to O(e*ﬂ/z) errors in Hilbert—Schmidt
and trace class norms.

In Section 3| we construct ¢;, an approximation to the Schwartz kernel
of e hm . We first gather elementary results on geodesic coordinates in
Subsection [3.1] examine the interaction between the complex structure and
normal coordinates in Subsection and develop basic results about paral-
lel transport in Subsection [3.3] After these geometric preliminaries, we give
an inductive construction of ¢; in Subsection |3.4l The inductive construc-
tion requires an approximate inverse of an operator L. In Subsection [3.5)
we construct this approximate inverse and then estimate the magnitude of
the summands of ¢;. We then use these estimates to show that for k large,
the operator QQp-1/2 with Schwartz kernel q,-1/2 built after N steps in the
inductive procedure approximates II with error O(lfmféV 71), where m is
the complex dimension. We finish this section by computing TrII to leading
order.

In Section {4} we derive refined asymptotics for the summands I132 of
IT which map E-valued (0,2a)-forms to E-valued (0,2b)-forms. We then
use these asymptotics to translate the filtration conditions S‘q/7 ;J=12to
constraints on the location of chy(F) in the Hodge diamond and on the
curvature of F; for example, we show that these filtration conditions imply
(F§2)1+1 =,

In Section [5, we begin investigating the additional constraints placed
on [ 5’{1/7 » compatible connections by computing the metric variation of the
constraints imposed by S%p. We find new curvature constraints such as

F2’2 A1 ZF%Q = 0 for all vector fields Z, if our connection is I S‘l,,p compati-
ble.
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In Section [0 we derive further asymptotic results by analyzing the fine
structure of an operator H arising in the inductive construction, and deduce
Theorem We then show that [ 5‘1/73 compatibility implies Fg’2 takes
values in a commutative nilpotent subalgebra of ad(E).

In an appendix, we show how to derive pointwise bounds from the
Hilbert—Schmidt bounds obtained in the main part of the paper.

2. Approximating II

We retain the notation from the introduction. Fix a polarization (L, h) for
M. Let w denote the corresponding Kéahler form. We may then write

(2.1) FA(k) = —tkw + Fy.

When we wish to emphasize the bundle rather than the connection, we will
write FE for Fy.

Let J denote the complex structure operator. Let {Z;}""; be a local
frame for the holomorphic tangent bundle, and {w’}.; a dual coframe.
We will be dealing with numerous curvature operators. Let R denote the
curvature 2 form induced by the Levi—Civita connection on the exterior alge-
bra bundle. Set Fy, := Fau(Z;, Z) + R(Z;, Z)), and Fj == Fa(Z;, Z;) +
R(Z;, Z;). It is convenient to let e(w) denote exterior multiplication on the
left by the differential form w, and by e*(w), the adjoint operation. With
this notation, a standard Bochner—-Kodaira—Nakano computation gives

(22)  Dig = (Vo) VO = 2e(w!)e* (@) Fyy + 2e(F?) + 2¢*(Fy?).

Expanding the second term on the right, we have on (0, ¢) forms

(2.3) — 2e(w)e* (@) Fy, = 2kq — 2e(w)e* (@) F,.

From (2.2)) and (2.3)), we see that on forms of odd degree, there exists C'4 > 0
independent of k such that

(2.4) (Diy f> £, = (2k = Ca)| fI-

The nonzero spectrum of D,%l(k) on even forms is the same as the nonzero
spectrum of Di(k) on odd forms. Hence the spectrum of Di(k) on E ® L*-
valued even forms is contained in {0} U [2k — C'4,00). The spectral gap of
the Laplace operator associated with high tensor powers of a line bundle
was observed in [12, Theorem 1].
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The large spectral gap implies that for k large and Tk > 1, e TPaw is
a good approximation to Il in various operator norms, including the Trace,
Hilbert—Schmidt, and supremum normsﬂ For the convenience of the reader,
we recall a few elementary features of the Trace and Hilbert—Schmidt norms,
which we denote || - ||z and || - ||grs respectively. For an operator B with

singular values A;,

|Bllrr = ZM and ||Bllas = | Y_A;
J
If B is given by integrating against a kernel b(z,y), then

(2.5) 1Bl = / trb* (y, 2)b(y, @) dyde.

For bounded operators A and C,

(2.6) [ABC |7 < || Allsupl| Bll7+]|Cll sup
(2.7) |AB|l1r < [[AllaslBllas,
and

(2.8) IABC s < | Allsupl Bllasl|Cllsup-

The spectral gap and Equations (2.6) and (2.7) imply for k large and
Tk > 1 that

1
(29) [T~ e " Pawllr, < 2| Dh e 0 [z, < e FH e DA |,
and
(2.10) |11 — A<k>HHs<f||DA e TDhw || s < e * e 7 Phw || ys.

1Our methods also yield pointwise results for the kernels. Puchol and Zhu have
a derivation [I7] of the asymptotic expansion making these pointwise estimates
explicit. For the convenience of the reader, we include the details of our pointwise
estimates in an appendix, although they are not used in this paper.
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It follows from Corollary and Equation that for i <s<1,3c¢>0
independent of k large such that ||ef$k_1/2DA<k> lgs < ck*, which immedi-
ately implies that ||e_25k71/2D‘2“(’” |7 < k™. Hence, the error in approxi-
mating AIIC' by Ae_k71/2Di<k>C, for A and C bounded is

R1/2
O (HAHSUPHBHsupkme_T)

in the Hilbert—Schmidt, Trace, and supremum norm.

Equations and reduce estimates of the errors introduced by
replacing II by e #*Dit to estimates of heat kernels, and the problem
of approximating II reduces to the familiar problem of approximating heat
kernels. Before embarking on the approximations, we first recall the standard
estimates for the errors associated to heat kernel approximations.

Let k; denote the heat kernel, meaning the Schwartz kernel for e~
and let ¢; denote an approximate kernel. Let ; denote the operator corre-

sponding to the kernel ¢;. Set

tD

A
),

9 e

We write the difference of the two kernels as

t
(211) qt — kt = / kt_SESdS.
0
Then
D? !
(2.12) 1Qe — e "Paw || g S/ llesl| msds,
0

since |le”P A ||sup < 1. In the next section we construct ¢; with €; small.
3. Approximate heat kernel
3.1. Geodesic coordinates
In this subsection and the next, for the convenience of the reader we gather
elementary results on geodesic coordinates on Riemannian and Kahler man-

ifolds. Let x be geodesic normal coordinates centered at y, defined in some
neighborhood B, of y. Let r denote distance from y, and let % denote the
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radial vector field. In addition to the geodesic coordinate frame, it is useful
to Work with an orthonormal frame, {e;}; satisfying V oej = 0, and at y,

ej = . Define the operator
(3.1) o(X):=V rﬁ - X.
‘ Xor
It is easy to expand ® recursively.
Vod V,2V 0
"Vo®(ej) =V, aVero
0 0 0 0
_R<T’ 7‘7 > 8 +V5J a +V[ } 87‘

0

0 0 0

=R (Tf)r’ €j> rm +e;+ P(ej) — Veﬁ@(ej)rg
0 0

=R (Tm, ej> TE — ®(ej) — P(P(ey)).

Hence, using the radially constant frame to define the integrals, we have

(32)  Bey) = i/ﬂ 2R<aa )597@ i/()rfb(@(ej))ds.

In particular,

(3.3) B(X) = 7;R(y) <§T,X> 8‘9 I (v . ) (; X> ;1 OV,

Here we have Taylor expanded R in a radially covariant constant frame. We
write R(y) for the radial parallel translation of R from y.

We may now compare our coordinate frame to the radially constant
frame. (See for example [I, Prop 1.28]). Compute

0 0
ra—(ejxp) =ejrP + [rﬁr’ej] P = —P(ej)a?

r
r2 0 0
- |:3R(y) <8r76j7 87“7€m>



Asymptotic Hodge theory of vector bundles 569

Hence
el =0t %R(y) <T§r &), €p, Tai)
55 (9 ) (rienenry) + 00
and
5.4 ej = 8895]' + éR(y) <raar’ E)?cj’ %,ri) 822’

1 o 0 & o\ 0 \
+E(VT%R) (Tar,ax],axp,rar>+0( V)

OxP
We write O(r*V) above, instead of O(r?), to denote a vector field of mag-
nitude O(r*). Inverting gives

0 1 0 0
87 =6 = 7R(y) <T8¢ej1€p77“8r) €p
0 0 4
13 <V R) < o ,ej,ep,rar> ep +O(r*V).
The expansion for the metric in geodesic coordinates follows immediately
9ij (%) = 0 —

from Equation (3.5)) :
L (2000 0
(3.6) 3 Oz’ or’ Or’ Oxd

1 o 9 8 o
_6(V§R><axa "or o o >+O( )

(3.5)

R(y

1 o 9 8 9\ 1 9 9 9 9

K — Z L e
Fle) = 3R0) (39&“ ar’ 0ah’ D a> 3 <axi’axu”"ar’ax1>
1 9 9 9 9\ 1 o 9 9 o
(Ve ) (Tar’&r# o 87“) 12 Ve R)< or’ Ozk’ 9ad’ ar>

1 g 9 9 0 1 g o0 9 0
+E<V8%R> <T(97“’(3x] o 8r>+(v R) <8:rl‘ ErAr I 87“)
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From these expansions, we also compute
Ar? = d*dZ(a:j —y)? = —226*(dmi)v%((xj —y))dz?)
= —QZ (da?)da? — 22 2! — y)e* (daz')V o (dx?)

dx?
7]

= —2Zgﬂ +2Z gy,

o 0
= —4m + gRic (r&,rm> +0(r3).
In particular,
(3.9) 4m + Ar? = O(r?).
3.2. Complex structure in normal coordinates

Let J denote the complex structure operator. It is also convenient to define
Jo € C*(By, End(TM)), with JZ = —1, as follows. Choose the geodesic coor-
dinates to satisfy at y, Jaij for 1 < j < m. Define Jj to extend this
relation to all of By:

Oxitm

0 0

JO@:W’ fOI'].SjSm

We introduce Jo-complex coordinates, 2/ = 2/ — ¢/ + i(2x/t™ —¢iTm) 1 <
7 < m. Then

o~ C 9 7 ol
Let {fo := 3(eq — i€atm)}T be a radially covariant constant frame of the
holomorphic tangent bundle, with dual coframe {n®} ;. Let fz = f,, and
n® = % Then from Equation we have

o0 lp (0 0 0 0Y 0
@ g T3\ "9 920 920 "o ) 920
1 o o0 0 0 0
+3h0) (aaaa) 9
1 o a0 0 0 0
+6 (vraiR) < or’ 020" 0zp’ 8r> azp

1 o9 9 9 9\ o )
% (V%R) ( or’ 9za’ 82P’T81") g TOUTV),

(3.10)
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and
0 1 o 0 9 0
gee ~ Ja = 3RW) (a aaa) Ir
1 g 90 0 0
s —3fW) (a pE aa) fp
' —1<V R) o 0 0 I
6 o 31” D207 9zP’ 81" P
1 o & 9 0 A
5 (V2B) < o 9z0 oz’ 87“) Jp + O(V).

It is convenient to express 0 in a mixture of coordinate and radially
covariant constant frames. We have

1 o o0 0 0
o T gi) (aaaa) Vit
o o0 0 8)

k@) (aa o "ar ) Ve

(3.12)

_l’_

o 9 o 0 A
(Vr%R) <aa oz 8r> V] +OV).

From (3.11)) and its conjugate, we can compute the difference between
J and Jy. We find

0 24 o o0 0 0 15)
(T = D)5 = 3 BW) (aama) PET

i 8 9 o 9\ 0 .
+3(Vo2R) (aaapa) gz TOUTV):

Hence

020’ 9z’ " 9z¢’
=280 (# 2 g ) g+

24 o 0 0 0
J=Jo+ *R(y) <Zb —, 22— > o

0z 9z 9zc’ ) ozm
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with
B 3 y 00 0 0
5J_3<VT§TR>< 8“62*‘ 82‘3’)8
3 b 9 9
3 (vT%R) < ozt azu azc’ ) Dzt

As a useful special case, we note that

(3.14)

(3.15)
_%R(y) (;bjzb,aiuzz(le’zcazc) %
B % <v’“iR) < 3219’& z aaZl’ C;) %—FO( 5V).

We summarize these computations with the following lemma relating J
and Jy.

Lemma 3.1. There exists Ay € C®(By,Hom(T%!,T1)) and By €
C>®(By, Hom (T, T%Y)) for which

J = Jo + 222 Ay + 22 By + O ().
We will also need the following elementary lemma.
Lemma 3.2. For all vector fields X,
Ric(X,JX) =0, and
Ric <raa ,T 68 ) = 2277 Ric (88,21’ aa_]) +O(rh).

Proof. Write X = X50 + X% with JX'0 =iX10 and JXO! = —iX01,
Then since Ric is symmetric,

Ric(X,JX) = iRic(X"0 + X1 x10 _ x01) =0,
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For the second claim, we write
8
(9 8 9zt

0 , 0
ch<z sz 52 b> =
b8

T ) 4 _
= —iRic (z 82‘1’ azb>+0(r ) = O(r%).

Similarly Ric(z* aza , Zb%) = O(r*), and the claim follows upon expanding

o) o) za O
T@r_zaza+z 0ze " O

3.3. Parallel transport

Before we construct an approximate heat kernel, it is useful to make a
few observations about parallel translation. Let S := A0V @ F @ L*, and
mj: M x M — M, j =1 or 2, denote the projection onto the first or second
factor. Let the j-lift of X be the unique element of (drm;)~*(X) Nker(dmj11).
When no confusion will result, we will use the same symbol to denote a vec-
tor and its lift. A Schwartz kernel, ¢, for an approximate heat kernel is a
section of the bundle

V := Hom(m3S, 71S).

Thus ¢(z,y) € Hom(S,, S;). In describing such kernels it is useful to identify
Sy and S, via parallel translation along distance minimizing geodesics. The
kernel we construct will be supported in a small neighborhood of the diagonal
in M x M, making such an identification unique. Let 7, ,: [0, d(z,y)] —
M be the minimal unit speed geodesic from y to z. Let ¢(z,y) denote
parallel translation ¢: S, — S, along 7,,. Let ar and 3 in T, (M x M)
denote the canonical 1- and 2- lifts to M x M of 717y(d(x Y)) and ~Vey(0)
respectively. By definition,

e ¢(z,x) = identity, and
e Voth=0, j=1,2.
orj

It is convenient to factor ¥ as ¥ = Yo Q@ Yg Y, =: 1& ® 11, where
Yrc, Vi, and ¥, denote parallel translation of sections of A%¢Ve", E, and
L respectively. The local geometry is largely encoded in 1; hence we record
some of its properties before constructing approximate kernels.

Let (z°) be geodesic local coordinates on M with center y. We will not
dlstlngulsh between T and its canonical 1-lift to M x M. We will also set

gr . For a vector field X on M x M, we let 1),x denote Vx1). For
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coordinate vector fields %, we abbreviate this covariant derivative to v.;
(and similarly interpret ¢, etc.).

Lemma 3.3. For derivatives of ¥, we have

310 wtnen) = ~Ga (9o o)+ o

with

azb
1 B2 o o0 0 0
Vi 0V = —k =5 R(y) <8xi’r8r’aza’8zb

kz2zb g 9 9 0
20 <VT%R) (83:“ o’ 927 9z b> + Okr?).

For derivatives of 1, we have

(3.17)

1 = LBy (r2 2 4 L 9 9\ s,
(318) ¢ w;l - 2F (y) (rarv afo) + 2R(y) <T8r’ 8.’L'Z> + w 5’(/};27
with

(3.19) P8, € O(r?).

Proof. Let FV = 7fF¥ — 15 denote the curvature of V induced by the
connection on S. Let {ej} 1 be the 1-lift of a local tangent frame covariant
constant along radial geodesms centered at y, with e; = Q The assumption
that V?w(m y) = 0 allows us to write

0
FV <T87" 6]) (x7y)/lzz)($)y) = VT%VEJQb + V[ejﬂﬂ%]w
= V%Tvejﬂb + v(b(ej)wv

(3.20)

Note because r% and e; are 1-lifts, we have

FY (rgr,fz]) (z,y) = F* <T§T,€j> ()

if we use the same symbol to denote a vector and its lift. Write Vx¢ =

YT’V (X). With this notation, we rewrite (3.20) as

B2 0 wa)F (rge) @le) = 5 (TV(e) + TV (0(c)
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This translates the equation into an ordinary differential equation on a trivial
bundle on M x {y}, and we can solve recursively by integrating.

(3.22) Fv(ej) = 1/{; <¢_1FS(861,€]‘)¢ — Fv(q)(ej))>d5'

r

Using the recursion relation (3.22)), we expand (3.22]) as:
1 T
Ve = [ 0P (sere)vds
T
10 T 1 S
(3.23) - / (®(ej), €¢>S/ (i,b_lFS(sQel, ei)y — Fv(q)(ei)))dSst.
0 0

r

Note that the integral L [ (®(e;), ;)L [TV (®(e;))dsads is O(kr), giv-
ing for X € ker(dmg),

(3.24) 4 r
o r? 0 0
_FS = —~Z X)=
(rgpe 5 A0 X057 )
+ O(kr?)

If we now let {e]} 1 be the 2-lift of a local tangent frame covariant
constant along radial geodesms centered at x, with e; = 8 , We may repeat
the preceding analysis exchanging x and y and ‘3; and z7- to get for Y €
ker(dmy),

i) o) = —5 @) (g ¥ ) = 5 (V0 F) (@) (iy)
0

(3.25) - T (viZF ) ( )

0 7“2 0
S = _
+F <r8r2 24 <8r2 > 87‘2)

+ O(kr?).

The preceding discussion did not employ any properties of S beyond the
structure of a bundle with connection. Hence we may replace S with any
of its factors in order to compute the derivatives of ¥ or . In the case
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of ¢, the error term improves from O(kr?) to O(r*). Letting V (L*) denote
Hom (7} L*, 75 L*), we note that FV(X") = —ikrtw 4 ikmjw is covariant con-
stant. Hence for X € ker(dms),

‘ —ik )
Ve (x) = Tlg <J7“8T,X>

(3.26) 24

(3.27)

kz¢z¢ g 9 0 0
+ 15 (Vg B) (aaaab)]

+ O(kr® + ).

Proposition 3.4.

. ik o a 0
VIV = @(VCJ.R) <6j,7“8r,7‘8r,<]rar>

1ol 0\ 1. )
—gdAF <T87‘> - g VLCR <Tar>

+ O(r2 + k:r4).

Proof. Let {e;}; be an orthonormal V » constant tangent frame, with Ve; =
ar
0 at r = 0. In this frame we have
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— Vv
= (v (wilveﬂ/)) - ¢71Vvejej¢)

—ik 0 ik 0 0
= (Jvejra ) — ﬂR(y) (ej, e ey,J'ra )
0

ik o 0 ik 0 0
_ ﬂR(y) (ej’r&"’T@T"Jej) - E(VejR) (ej,rr,rar JT@)

0 ’ r
ikr 0 0 ikr g 0
0 (V%R) <ej,7"8r,ej,Jfrar> 20 (V R) (ej,rm,rm,J€j>
1 0 1 0
—FF et i | +=(Ve, FF —.e;
+2 (y) <v Jra,r’e.]) +3(v J )(y) <T8T7e.7

+ S R() <vejrai, ej> FL(VR)) <7«§r, ej>

3.4. The inductive construction

We now construct the Schwartz kernel, g; of our approximation Q; to e *? Am

We construct ¢; explicitly only in a small neighborhood of the diagonal in
M x M. Because ¢; is rapidly decreasing away from the diagonal, we will
suppress in our discussion the cutoff functions which are needed to extend
¢+ to the complement of a neighborhood of the diagonal. Fix geodesic nor-
mal coordinates, x, centered at y, and defined in some neighborhood of y,
B,. We construct the approximation inductively. Let r denote the geodesic
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distance from y to x, and let

kr?
U = 67 4 tanh(tk)

— kt(m— 4q
u: <47rsmhtk> UZ@

we write
N
Qt(l', y) = Z/l?,ZJ(ZL', y) Z UI(l', y)
=0

with the u;’s to be determined and N large.

The w(x,y)’s are sections of End(S,) ~ End(A% YT M @ Ey) and are
constructed inductively so that Qo = I and so that ¢ : ( a5 D 2)qt is suf-
ficiently small. Write

(3.28) D2 = V'V 4 F + 2e(F*2) + 2¢*(F?),

where, in a local frame {Z;}, for TYOM and coframe {w’ }] 1

7. ~

F o= —[e(w?), e* ()] Fy, = kgjle(w?), e (wh)] — [e(w?), e* (w!)] Fy;.
On (0, q) forms this becomes
F =k(2¢ —m)+ F,

where

We now compute

0
‘= <at +DA>

9 N
- <at + VIV + F + 2e(Fy%) + 26*(F2’2)> <U¢(w, y) lz; w(z, y)) :

It is convenient to conjugate by Ut. Note that because e(F??) raises
degree,

e(FOUYp = U (e~ Le(FO?)y),
and

6*(F0’2)u¢ — uw (674“1/1716*(}70’2)1#) .
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Conjugating and recalling that in local coordinates

V*V = —¢"V,;V; + g"T}, v,

we recast € as

B 0 kr k%2 k(4m + A(r?))
€ = (@, y) <0t FVIV A ) VS T 1T dtanh(h)

wrl]w wlw 1fw+2e4’% < Fi

+92 —4kt¢—1 * F02 ) Zul T y

We use the triviality of the bundle M x End(Sy) to replace covariant
derivatives by partial derivatives. Expanding 1~ 14, as (—%g(rJar, 83:,) +
wgléwm + w_lw;l) as per Equation 1} then gives

dr ' tanh(tk) Or 4 tanh(tk)

9 o) kr 9 k(4m 4+ A2
et = Y(z,y)U (8t+A+zer Lo (4m + A(r?))

— 20 (0 b M)+ TV
— g (W S+ U wﬂ)(mlém;j + P hy)
+ ik(q/’fl&h;wg + wilw;u%) +~ F

N

2e4kt¢7le(F2’2)¢ + 2~ Hhty,~ Lo (Fg’z)i/)> Z w(z,y).

=0

We now make several strongly coordinate dependent choices in our anal-
ysis of €. Set Ap = — sz | B 8357) With this notation, we define

kr

0 0
fann(y oy krdogy +Ap-

L:=0;+

This operator will dominate our analysis of ¢;. Define H by

N
e =¢UL+H)Y
=0
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We begin the inductive construction by setting ug = I. Observe that L anni-
hilates ug. In the next section, we define an operator L~! that approximately
inverts L. We then define w;, [ > 0, inductively by setting

(3.29) w1 = —L ' Hu.

We now introduce a filtration on operators which greatly simplifies our later
analysis of the magnitude of the Schwartz kernels produced by this algo-
rithm. Define the filtration W, on partial differential operators defined in
a neighborhood B, of y as follows. We say that an operator Z ¢ W?f’ if in
geodesic normal coordinates centered at y, Z can be expressed as a finite
sum

9
(3.30) Z= Y, K-y ¢ arspale,yth)5 o,

2p+|1|—|J|<b d>0

with ar jpq = ijo Pyjioqar jpq when d > 0, and ag, jp (2, y, tk) smooth,
and bounded for ¢ < 1. In particular, differentiation by a coordinate vector
field has weight +1, multiplication by (27 — »7) has weight —1, multiplication
by k£ has weight 2, multiplication by ¢ has weight —2, multiplication by
e4kt1/1_1e(F2’2)zp has weight 0, and W' o W7 C WitJ, Set

Hh — H — (2e4ktw—1e(F0,2)w + 26_4kt¢_16*(F2’2)¢).

Proposition 3.5.
HeW,).

Proof. This claim is an immediate consequence of Lemma and Equa-

tions (B8, B0, (9, G-I, E13), and G19). O
3.5. L1

In this subsection, we construct an approximate inverse to L. First compute,
for J, K multi-indices,

L(ask(th)z"2%) = (0, + A + (|J] + \Ky)mk(tk)
(3.31) +E(K| = |J))asr(tk)z’ 25
= 7L (th) (8 + Ap) <uJK(tk:)aJK(tk)z‘] ZK),
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where
i (th) = Sinh(tk)(\JHIKl)e(lKl—\J\)tk‘

On sections which are polynomial in z and Zz, the inverse operator is

_lz—yl?

o gk (sk) g
L~ (szKa // ¢ a sk)dyds
JK(t o 47T t—s MJK(tk)y y"asx(sk)dy
4
k

/tk /RW —alyl? :jg((t;) S _S)y+Z>J

K
4
. < ;(tk—s)gj—FZ) ajk(s)dyds

Observe that L~! lowers weight by 2 and increases by 1 the order of
vanishing of ajx (tk) at 0.

Proposition 3.6. ;(z,y) € Wy_ZZ.

Proof. This proposition follows immediately from Equation (3.29)) and Propo-
sition O

We extend L' from polynomials to smooth functions A(z,z,tk) by
setting

LilA = LilPZN;
where poy is the degree 2N Taylor polynomial for A. Then

-1 —2N
(3.32) LL™ T ew; V.

Proposition 3.7. For some constants Cy, ¢;, By depending on the geometry
of M,

kr?
/ | Poguy(z, y)szIQkae m_nh(tk) e%t;: " zdy
MxM (47 sinh(tk))
Cjkm—2, forl>b+q, t >kt
<Ok 2e=8kt  forl <b+4q, t > k7!
ct?=m, forl>lqg—0b|, t <k

and
quUl($,y)P2b:0, vl < |q_b‘
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Moreover

k S —
tr P, m=4a)q
/M v Pagui(z, ) <47rsinh(tk‘)> ‘ v

ekt

m
< Blkmqu (m) s fOT tk > 1,
Bt for tk < 1.

Proof. Since u; is a zero order partial differential operator, u;(z,y) € W, 2
implies that

PyuPy= Y > k(x—y) e a; pq(x,y,tk),
op—|J|<—21 d<q

with a; 7, ¢ smooth and bounded.
When tk > 1, there exist constants ¢ jp 4, Cjq so that we estimate

k 2m 2
P P 2 _— 2 tanh(tk) 2kt(m74q)d d
/MXM ’ 2q/lu(ll,y) 2b‘ <47T Slnh(tk)) © c ey

k; 2m
< k2P 21|
< o, 2 S (s

p—|J|<—20 d<q

kr?
. e_ 2 tanh(tk) ert(m74q+4d) dxdy

< Z Cra 2l 8kt(—q+d).
d<q

The only way for u; to acquire a factor of e*?* is for L_12€4tk€(F2’2) to occur

at least ¢ times in its construction. (We note that (L~12e~4ke* (Fg’Q))jI is
not exponentially decreasing in general.) This raises degree by 2¢. If b > 0,
then L~12e 4kex (FX’Q) must also occur at least b times. This requires [ >
b+ ¢. Hence, when [ < b+ ¢, eSkt(—atd) < =8kt

When tk < 1, we use the fact that L~! increases the order of vanishing
in tk by 1 to write

argpd(z,y,tk) = (tk) a1 pa(z, y, tk),
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with a;, 7 p 4 smooth. Hence, there exist constants ¢ j,, ¢, ¢ so that

k 2m kr?
/ | Paguy (2, y) Pap|? () e Frannem) 2RHM=49) g gy,
MxM (tk)

47 sinh
2 2
< / Z (tk)mcl,J,kapTZ'J‘ <4khtk> me_“am(tk)dmdy
MxM o T o) 7 sinh(tk)
tk)™
< B t2l7m ( < t2lfm.
=4 sinh(tk)™ — “

The vanishing of Pyyu;(x,y) Py for I <|g—0b| follows from the observa-
tion that the only terms that raise or lower degree in our construction
are 2e4ktw_1e(F2’2)@Z} and 26_4“@[1_16*(172’2)11). To raise or lower degree
by 2q — 2b requires at least |¢ — b| applications of 264kt¢_le(Fg’2)¢ or
26_4“1/)_1@*(15’2’2)1/1 and therefore |¢ — b| applications of H. That many
applications of H do not occur in the construction of u; until [ > |q — b|.
The trace estimate is similar to the Hilbert—Schmidt estimate, with one
added complication — the only terms in Py,u; P>, large enough to cancel
the e %4 in the integrand are those with L‘12e4kt¢_le(Fg’2)1/J entering ¢
times. These must also then have L*1264ktw*16*(Fg’2)1/1 entering ¢ times to
map (0,2q) forms back to (0,2¢q) forms. Hence, when tk is large, the trace
is exponentially decreasing in tk unless [ > 2gq. O

Specializing to t = sk™1/2, for say s € [%, 1], (this range merely needs to be
k-independent) gives

Corollary 3.8. For some a > 0, and for all s € [%, 1],
Qs l7rs < a?k™.

Proposition 3.9. For some ¢ > 0, depending on the geometry of M, we
have

(3.33) letl3rg < eV 4 km2N),

Proof. By construction,

N-1
e = YU (HUN + z (I— LL—l)Hul> ,

=0
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and Huyn + Zl]\igl(f — LL™')Hw € W, 2N, Moreover, (I — LL™')Hu; van-
ishes to order 2N. Hence

ku Nz_l(.r — LL’l)HulHZS

<cy >

s>2N 2p<s—2N Y MxM
<c' Y gy M mtanhS(tk)
T 5y sinh(kt)

C"Em=2N itk > 1

CMPN-m o if th < 1.

k kt m _ klz—y|?
< ; tk)) e 2tanh(tk) /{?21)’1‘ _ y’2sd33dy
sin

Because H has weight 0, the estimate for |[yUHuy||%g is the same as the
first estimate of Proposition giving

CEm2N if th > 1,
loedHunllirs < {ét2Nm if th < 1.
Combining these estimates gives the result. O
Proposition 3.10. For some a > 0, independent of k large,
L

This estimate is also true pointwise for the kernel. Since this point-
wise estimate is not necessary for our analysis, we relegate its proof to the
appendix.

Proof. We have
ITT = Qp-vro s < T — €™ *Paco | g + | ™ Pacr — Qpral|s.

By (2.10), we can estimate this quantity by

1/2 —1/2
(3.34) e*k 2 ”e*k 2 *Di(mHHS + ”e*k Y *Digy _ Qk 1/2HHS

Using (2.12)) and (3.9), we have, for s < 1, the estimate

m—N-—1

sk—1/2
— 1/2 3
(3.35)  [le™F " Pac — st1/2||HS§/ €]l rsdt < Ck™ =
0
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Using Corollary (3.8]), we get the estimate

1/2 —1/2 1/2 ,.1/2 _ —
e |le” = Phw|gs < e ||Qurelms + e T CRT

K1/2

< 20e” 2 k2

for the first summand in (3.34)). The desired estimate follows by adding the
estimates for the two summands. O

Proposition 3.11. (See [16, Theorem 4.1.1].)

m

(3.36) Trll = Vol(M)rk(E) + O(k™™1).

2magm

Proof. Because II is a projection, TrIl = ||II||3,4. By the preceding propo-
sition, it suffices to compute the Hilbert—Schmidt norm of Q;-1,2. Because
we are computing only the leading term, we may ignore all u; for j > 0. In
particular,

ket \T" s e
HQk*IQH%IS = /J\/[ u <47‘[‘ su’lh(tk)) e 2tanh(tk) I‘k(E)dydﬂf + O(k 1)
X

_ AT Vol(M)rk(E) 4+ O(k™™1).

- omgm

4. The asymptotics
4.1. Projections
Let E € S}, p» and let A be an ST ,-compatible connection. Write
5]
M= > I,
a,b=0

where 122 = Py TP, and |5 | denotes the integer part of . Because II is
self adjoint,

155 = (113;)".
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Because II is a projection, we have

5]
2b 2b 7121
2a — Z HQ,LLH2(1
=0

In particular,

Mg = T ()" + Y TI30,(T135)"
u>0

Proposition 4.1. Fora > 0,
Tell3; = |17 (|35 + O(k™2472).
Proof. We know that

= I3 [13s + > I3 s
u>0

By Proposition and Proposition

—1

(4.1) |T03% | s = || P2aQp-1/2Poulls + O(k™ 2 ) = O(k= ~*"#),Va > 0.

O

Corollary 4.2. E € S}, wzth A an Sq compatible connection if and only
2g+2
if Y en I ls = O(/fm 2a2p).

We henceforth focus our attention on the analysis of ng+2. Proposi-
tion allows us to consider instead PoqQy-1/2 P at the cost of introducing
errors with O(k"kév 71) Hilbert—Schmidt norm. We therefore assume in the
following calculations that t = k~1/2,

Proposition 4.3. Fora >0,

—2a

4.9 H2a 2 _ pm-—2a
( ) || 0 HHS k (27r)m(a')2H

(FR2)2)3: + O(m=21),
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Proof. Since Pyuj (x,y) Poqu(z,y) Py € Wy_%_zl, we have

47 sinh

k; 2m © 2
< / <) e N Gy kP ldyde < ORI
My \Amsinh(tk) o 1 212

k 2m
‘/ ((tk:)) U262kt(m—4a)trPouZ(x, Y) Poqui(z,y) Podydz
MxM

Now we estimate

m—N-—1

I3 %5 = [ PoaQp-1r2 Pollfys + O(k™ =)

2m
— / k U262kt(mf4a)
MxM 4 Slnh(tk)

N N
-trPOZu;‘(x,y)PgaZul(x,y)Podyd:U+O(k 2 )

b=a l=a

k 2m
— / U262kt(mf4a)
MxM 4 Slnh(tk)

- trPoug (,y) Paatta(z, y) Podydz + O(K™ 271,

as long as N > 2a. (We always, of course, choose N sufficiently large.) Our
computation showing that

k 2 2 2kt(m—2a)
_— m=20)¢r Pyust Py, ,y) Pydyd
/MXM <4Trsinh(tk:)> U<e rPyuy (z,y) Paguy(z, y) Pydydx

< Ckm_l_b

extends immediately to show that any term in Pyu}(z,y)Paqua(z,y)Po of
weight less than —2a contributes at most O(k™~2¢71) to the integral.
Degree considerations show that

(43)  PauaPy = (=L 72" (2, )e(FL (@) b(w, ) 1.
Observe that
Y @, y)e(Fy P (@) (@,y) = e(Fy?(y) + Oz — y),

and the O(z —y) term is weight —1. Hence we may replace Py,uqPy by
(—L_1264kt6(F2’2(y)))aI in the computation of the Hilbert—Schmidt norm,
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introducing at most an O(k™~2¢71) error. Referring to Lemma [4.4| below for
a computation of (—L‘12e4kte(F2’2(y)))aI, we see that

L 2m
m2e)2, . — U2 2kt(m—4a)
H 0 HHS /MXM <47T'Slnh(tk)> €

272a68atk . 0.2 " 0.2 u
trpome (Fa () e(F " (y)" Podydz
+ O(kmeafl)
m—2a 1 m 2—2a * 0,2 a 0,2 a

=k M(g) trPOwe (FA () e(FA (y))* Pody

+ O(kmeafl)7
proving the asserted equality.
Recall double-factorial notation:
1, if j is odd,

j”_{j.(j_g)...

j-(j—2)---2, if jis even.

Lemma 4.4. Supposet <1, k> 1 and tk > 1. For p > 0, we have

a 4atk a
(*L_1264kt6(Fg’2(y))) I = (71)11 2ikaa! e(Fg:Q (y)) + O(e(4a—1)ik)7

et JK |J|+|K| (4p—1)tk
—_—2"Z + O T (& p=
2k(2p + |K]) (

[~ 1Apkt J K _

min{|J|,| K|}

K otk 3 1

T e —

T r2iki )’
j=0

agipkt . K _ (=1)*(2p + [K|)!! A(a+p)th T 5K
ka(2p 1+ | K| + 2a)!

Lo <T|J|+|K|e(4<a+p>1>tk

(_L712e4kt)

min{|J|,| K|} 1
[J|+K| 4ptk
D S ]
7=0
Proof. We compute
Aftk _ 1
L12e ™ a(y) = “———a(y).

2fk
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Hence
e40u‘,k

(_L—12e4’fte(F2’2(y)))“f = (_1)(1%

e(FY? ()" + O(ela=Vtk),

The proof of the second equality is similarly a direct application of the
definition of L~!. O

Corollary 4.5. FE € S}, with A an S}, compatible connection if and only
if
(PR =0,

Corollary 4.6. IfE € S{I/,l, then chy(E) € (ST 90 SY HYH?P(M,Q), Vp <
q+3.

Proof. Let A be an S, v.1 compatible connection on A. We will treat the case
p = q + 2. The other cases follow from similar, albeit simpler, considerations.
By Hodge theory, it suffices to show that tr Fﬁ is a sum of (s p — s) forms
with 2 < s < p — 2. Expanding tr Fp = tr(F2 0y F;xl + FA %)P as the sum of
the trace of a word in the letters F> i Fj‘ 1, nd FO '\, we see that it suffices to
show that the letter F* A occurs at most p — 2 times in any word with nonzero
trace (and symmetrically F occurs at most p — 2 times in any word
with nonzero trace). Clearly, tr(F %2yv = 0 by Corollary . By the cyclic
invariance of the trace, we also have tr(FO (s F1 Ly tFy )(FO F)atl-a —
tr(F0 Hyatl(s F1 Ty tF2 0) =0, as desired. O

Corollary 4.7. Let E € S}, with S{,; compatible connection A. Then
2g+2/2 —2¢—3-2
[TL577)1° = O(k™—217275#).
Proof. Using Proposition [3.7] and our approximation Q-1/2 for II, we have

)

E—N-1

et 2qu2|| = || Pag+2Qp-1/2Poy| + O(k
< ) P2yl Py
1>2q+2p+-2

kE—N
+ ) [PagratUuPoy| +O(k 2
1<2q+2p+-2

-1

)

Prop[37] = exp. decay
= HP2q+2¢UUQq+2M+2P2uH + O(kjm_2q_2“—3)’
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given N sufficiently large. The leading order term of the highest weight term
in ugq42,+2 arises from

(_L712e4kt€(F/01,2(y))) a+1 <_L—12674kt€*(F2,2(y))>”’

which vanishes by Corollary The remaining terms have weight less than
or equal to —2g — 3 — 2u. O

Proposition 4.8. For E € S{,| with S{,, compatible connection A, we have

T2
2
B Em—2q—3 4q 2b+1(2q — 2%+ 1)!!(FI(L)lQ)b(vO,ngvQ)(ngQ)qu
~ 92q+2— (g —10)!
22q+2=m(4r)m — (2¢+3)!'(g — b)! L
+ Ok,

Proof. We have seen in the proof of Proposition that for t = k~1/2, we
have

k 2m
2e)2, . — / U2 2kt(m—4a)
|| 0 ||HS MxM <4W81nh(tk)> €

N N
Py Y up (@, y)Paa Y wi(z,y)Podydx + O(k™ = )

b=a l=a
k 2m ( :
— - U2 2kt(m—4a t P < * N )
/MxM (47T Sinh(tk)> € Py (ug(w,y) + upyq(z,9)

- Pag (ua(m, Y) + Uas1(z, y))Podydx
+ O(km—Qa—2).
Setting a = ¢ + 1, Corollary implies the vanishing of e(Fg’Z(y))a. Con-

sequently, from the discussion in the proof of Proposition we see that
uq(x,y) € W, 2~ This implies

Lk 2m
e, . — U2 2kt(m—4a)
(4.4) IHe"lls /M><M <47T5inh(tk)) ‘

-t Pouls (2, y) Poqa(z, y) Podydz + O (K™ 2472).
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We Taylor expand in the radial direction:

O (@, y)e(Fy* (@) (e, y) = e(Fy*(y) + 2e(V 2 Fi*(y))
+2e(V o Fi*(y) + O(lz — yP).

With the vanishing of e(F2’2(y))a, the leading order term in Po,uq Py, as per
Equation (4.3)), becomes

|
—_

a

(—1)° <L712e4kte(Fg’2(y)))b

b=0
: (L_12e4]’“t [z“e(V%Fg’Q(y)) —l—E“e(V?aHFJZQ(y))D
. ([/—12641%6(172,2(y)))C‘*b*1
a—1
= (_1)(1 (L—12€4k‘te(Fg,2(y)))bL—l
b=0
264(a—b)ktzﬂe(v%Fgﬂ(y))e(FgQ(y))afbfl
' 2a-b=Tga=b=T(q —p — 1)!
L2 M (Fy ()2 e(V o P (y))e(Fy (9)* "
T k;2aa'
b=0 :
mod I/Vy_h_2
a—1

. 26+1(2g — 2b — 1)!!
B ke(2a + 1)112¢(a — b — 1)!

e H(FR W) eV g PR W)e (W)

(B W) 2 e(V g F @) (P W)

ka2aq)
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The coefficient of z* is a multiple of the W covariant derivative of 0 =
(Fg 2)a_ and therefore vanishes. (The vanishing of the z-linear term in the
Taylor expansion of 0 = e(ng( ))* can also be used to modify the coeffi-

cients of z#.) Hence
1 22— 26— 1)

PoquaPy = (—1)°
2attaFy = (1) — k(20 + 1)12*(a —b - 1)!

dakt 0,2 b_pu 0,2 0,2 a—b—1
et Me(Fy™(y)) e(V o Fy™(y))e(Fy™(v))
mod Wy_2“_2.

Inserting this equality into Equation (4.4) gives

33 = LA
0 IIHS MM An

a2 26 (20 — 2b — 1) e (FS2(y)) 2#
Z k*(2a + 1)!12%(a — b — 1)!

b=0
2
(Vo FS2()e(FS2w) " Py|  dyda
HS
+ O(km 2a— 2)
fm—2a-1 / — 2b+1( a—2b— 1)le(Fy%(y))?
T 2Za-m(4q)m (4m)™ Jar b (2a+ 1)!(a—b—1)!
2
ce(V_o FY()e(Fy* ()" Ro|  dy
HS
+ O(km—2a—2)
To complete the proof, we set a = ¢ + 1. O

Corollary 4.9. FE € S{’/Q with A an 5{1,72 compatible connection if and only
if
(4.5) 0= (Fy*)* and
9 ob+1 0,2\ (v70,1 10,2 0,2\g—b
_ 22 (29 —2b+ DIN(FL7) (VI F7) (Fy7)*

(4.6) 24 +3)1(q—D)!
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5. Metric variation

In this section we begin investigating the additional constraints placed on an
S{’/,p compatible connection A by [ 5{’/,10 compatibility. These new constraints
arise by computing the metric variation of the constraints imposed by S‘q/’p
compatibility.

Let g(t) be a smooth 1 parameter family of Kahler metrics. Suppose that
g(0) = n, for some hermitian 2 tensor 7. Then at t = 0,

(51) FZB = géenl_)e;ﬁﬂ
Suppose henceforth that

~ 0°H
fae = 5 apze

This is the form of the metric variation when we vary the line bundle metric
h in the polarizing data (L, h). At the origin of a Kéhler normal coordinate
system we now have

,abc*

Proposition 5.1. Let A be an IS%,,2 compatible connection and dimcM >
3. Then for every vector field Z,

FO? NigF%? =0.
Proof. Corollary [£.5] specialized to ¢ = 1 gives
FO2 A F02 _

The derivative of this equality combined with the second equation of Corol-

lary [4.9] gives,
(5.3) 0=F3* AVOLEY?,

for A an 5‘1/2 compatible connection. Equation 1' couples the connection
to the metric via the Levi-Civita action of V. As A is [ 5‘1,2 compatible,
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the equation holds for all polarizations, and we may differentiate it to obtain
=b 0,2 0,2 72 _
(5.4) — H g dz" NFO? N F Pzl =0,

The 1-form —H ﬁgcdib can take any (0, 1) value at a point. Hence, we deduce
that for every vector field Z,

(5.5) FO2 N iyFO2 = 0.
O

Proposition 5.2. IfF € 15‘1/72 with compatible connection A and dimcM >

3, then Fg’z is a 2-form taking values in a commutative subalgebra of ad(F).
Proof. Let A be an [ 5‘1/’2 compatible connection. Proposition H gives
(5.6) dz° NFOP ANFY? =0, Va.

Expanding this equation in coordinates gives

0,2 20,2 0,2 10,2 0,2 40,2 _
(5.7) 32 Fgf + F ng + Faf Fy= =0, Va,b,c,f.
When a = f this reduces to

(5.8) [F%2 FY

ab '’ a

2] =0, Va,b,ec.
A change of coordinates (replacing a by a + f) then implies

0,2 10,2 0,2 40,2
(59) [Faj,)Féf_]:[FﬁvF&E]? Va,b,c,f.
The left hand side of this equality is invariant under the simultaneous
exchanges a <> b and ¢ < f, but the right hand side is multiplied by —1.
Hence

(5.10) [FO:2 ngf] =0, Va,bec,f.

ab ’
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6. Further asymptotics

Although we will not do so here, we note that probing the restrictions on

compatible connections is sometimes simplified by using the identity
HHS 12,4 = I13%||% ¢ to shift our computations to I3, where certain simpli-
fications arise. To see these simplifications, first con51der the model compu-
tation

[,~1,7 5K —4ptk

E1eth(|J)-K]) ik
_ / e8I ginh () (171K D) (K| -1 ~4p)

N sinh(tk)(/I+IE])
1 J
( kﬂ(tk—s)y+z>

K
4
( ]:(tk:—s) +Z> dyds.

—A4ptk

In particular, for p > 0, L7127 zKe is exponentially decreasing if | K| #

0. Hence, in estimating

109, 1137 = |1 PoQr-1/2 Paa|Frg + O( )

k n
_ U2 2kt(m—4a)
/MXM <47TSlnh(tk)> €

N N
ctrPya Y up(,y)Po > wi(x,y) Pradydz + O(k

b:a l:a

m—N—1

),

we may discard terms in uy = ( —L~'H)/T arising from exponentially decreas-
ing terms in H(—L~'H)/~'I with 25 factors, |K| > 0. Because L™! has
terms lowering the degree of a polynomial, we cannot simply remove any
term with a z° factor. Nonetheless, this suggests we analyze the polynomials
arising in H.

6.1. The fine structure of H
It is convenient to say a monomial differential operator z4z% g;‘g‘;‘ is of
type (|A| — ||, |B| — |8]) and to define the charge of a monomial differential
operator of type (p, q) to be p — q. We identify the terms in H which raise or
lower homogeneity in z. First we determine the O(r?) terms arising in Ar? +
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dm — ch( Tges T 87“) Let {e;}}_; be an orthonormal tangent frame parallel

along radlal geodesics emanating from y, with (Ve;)(y) = 0. We choose the

frame so that e; — % = O(r?V), and therefore e;r? = 2(2? — y7) + O(r3).
Then

rﬁ (4m + Ar2)

or

2 9 2
=2Ar° — "5 €€ — V€|
— 2Ar2 + ((ej + <I>(€j))€j +€; (6’]' + (I)(ej))

+ Vraivejej Ve, €5 — e‘)>7a2

= (CID(eJ)eJ +e;® < > Vao(e,)€ — (I)(Vejej)> r?
4 o 0 r o 0 4
= ngc(y) (T&r’r@r> 3 (V 0 ch) < ar,rar) + O(r®).

Hence

2y _ 2p; 9,9\, ) (r 2,2
(6.1)  (4m+ Ar?) = 3ch(y) "5 "By + 5 <V%ch> "5 5y
+0(rh).

We now examine H. We have

H = Hy, + 2%~ e(FO)y + 2¢=ty=1e*(FO?), and
0 k(4m + A(r%)

Hyp =A—Ag+ikr(J— JO)E ~ 4tanh(tk)

20 s+ ) o + VT

=97 (0L 00 97 1%)(%15%;3' +Py)
k(U g 0T ) H 0T T

A relatively straightforward but lengthy computation involving numerous
identities given so far allows one to get
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Q
)

y 0 0
z¢ 2, — S—
0207 02977 9207 0z7 | 021027
4 (., 0 0 0 4 . . 0 0 0
+ - Ric (z ) = + 5 Ric <z 5, (%j.) 927
2k ( y 0 0 ;0 se 0 ) 0

Dzt

+%R(y) <gb9 9 a0 Zc‘9> 9

k220220 %¢ o o0 o0 0 1
o ) <azc’aze’aza’azb) YTy
kz%2b Ric(y) (£a, %)
— 3 tanh(tk) + 0Hp, with
ok L0 0 ,0 0\ 0
3t = =3 (V4 7) ( PR ET A 8zc> Dt
k L9 0 L8 0\ 0
+3 (Ve B) < FERF T e azc) PEn
kzzb 0
+ - . -y
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2k22° o o0 0 1, g O
~ap Vel <War’azaw>3dAF (a)

a> ket (v ch>( o 2

1
— Zdbe il
glvecht (Tar 12 tanh(tk)

e (9.0 ()« (72 (:52))
2 a,czbze
R (51 ) (g e g )

kr#
2 32 2 4 5
+O(r<V +r°V )+O<r + kr® 4+ kr v+tanh(tk)>'

This decomposition reflects the fact that 6H, € W, L. Except for the
term —2FF(y)(z aa(za» 8‘21)% which is of type (—-1,1) (and thus of charge
—2), and the term —2FF(y)(z “aga, 821)87 which is of type (1,—1) (and
thus of charge 2), the rest of H (modulo terms of weight —1) consists of
terms of charge 0 and has no terms of type (p,q) with p < 0 or ¢ < 0.

Proposition 6.1. IfE € ISV3 with A an ISV3 compatible connection and
dimeM > 3, then for all vector fields Z,

(6.2) 0=Fy2 NigFO?,
and
(6.3) 0=FyY ARy AR

Proof. The assumption that A is 5‘1/73 compatible implies that Py ), u; Py
vanishes modulo weight —7. If 1 and r9 are two polynomials of charge ¢;
and g2 respectively, then

r1 L rgin L2(67|Z‘2/2), Yq1 # qo.
Hence, the terms of Py ) ,w Py and Py) ; w Py of charge ¢; each vanish

modulo weight —7, for ¢; € {—2,—1,0,1,2}. The assumption that A is 5‘1/72
compatible implies that

(6.4) e(F$*)? = e(F})e(VOLFY?) = 0.
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The only remaining terms of charge 0 in Pyus Py, modulo weight —7 are,
modulo O(e™),

-1 0,2\ 4k 1 b 0,2 4k
L™ 2e(Fy)e™ L1207 e(FA;aB+Ea)€ t

6Skt 0.2\ ab 0.2 3768kt 0.2 0.2
- 30k2e(FA )Z z e(FA;aB+Ea) + 900k3 e(FA )e(FA;anraa)
oSkt 09 02 oSkt 0oe 05
= 15]{:26(‘FA7 )Z z e(FA ba) SOkze(FA’ )Zazb(FI—JE—i—RBa)e(FA’ )
37e8 0o 0,2 378 0o 0.2
150i3 e(Fy)e(Fag,) + We(FA )(Fie, + Raa)e(Fy™),
0,2 _ 0,2
L~ 1zazbe(FA,QB_MQ)e‘ugtL L2e(F)?)ett
ekt 0,2 0,2 ekt 0,2 0,2
- 20k2z z e(}TA ab+ba)€(FA )+ 50k3€(FA;a&+&a)e(FA )
_ eBht ash, (02 Fo2 8kt azbo( R FO2) o FO2
- 10k22 z 6( A;[_] ) ( ) 20]{722 z 6( ba™ A )e( A )
eBHt azh, 02\ pE o 02 8kt 02 02
— o7 e(F ) Fy e(Fy7) + 25k3e( Am)e( W)
68kt 02 0,2 ekt 0,2\ 1E 0,2

“16. a 0,2\ 4kt —10=b 0,2\ 4kt
L7 722%(Fyy, )e™ L™ 22"e(F ) 7)e
egkt 2 8kt

_ F02 F02

;@
Lfl22be(Fg’%)e4ktL*12zae(F2’;2a)e4kt

oSkt S
(Fyia)e(Fag)-

_ 0,2 0,2
= (F )z e(Fy )+25k3

102~

The only remaining term of charge 0 in Pyju3Py, modulo weight —7 is,
modulo O(e™),

— L7 2e(F?)e™ LY (F(y) + k22" [FE + R3] )L™ 2e(F 7)™

o8kt R 8kt .
= oo (FA ) FWe(FL®) — coge(Fy " k"2 [F ) + Rygle(Fy”)
3768kt

~ Teoor ¢ (Fa ™) Fuz + Raale(F4?).
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Differentiating (|6 , we get that Fg ing F0’2F0’2 nd FO’2F0’2 =

—Foi FBQ These equations allow us to cancel some of the contrlbutlons
above. The total leading order contribution from charge zero is then

€8kt

8kt
0,2 b\ _*/ 1=a 0,2 € 0,2 0,2
@e(FA Je(dz")e* (dz )(F£+R5a)e(FA )+ @@(FA Je(Fyaa)
oSkt

+ 24k3

vy =

e(FO*)VFEe(F?) + = e(F) Raae(FY7).

24k3

The assumption that A is S V3 compatible implies vy = 0. Note that
[Rab,Fg % = 29° RyyidZ A i 2 FO2. When A is ISVQ—compatlble then the
identities in Proposition force FY 2[Rab, FY 2] =0.

Therefore, under the assumptlon that A is I S v.o-compatible, vy reduces
to

Skt 0o 02y €09 B 02
Uy = — 18k36(FA§a)€(FA’;a) — 24k3e(FA’ VEae(Fy7)

eSkt 0.2 ~ s 0.2

+ e cFa)e (dz°)e* (dz*)FEe(Fy°).

Finally, we exploit the full assumption that A is I S‘l,, s-compatible. Thus
we assume iy vanishes for all polarizations. First we rewrite 0 = —144k3e 8%
with metric terms explicit rather than hidden in orthonormal coordinate sys-
tems:

0= 8™ e(Fy2)e(Fy3) + 6e(Fy?) g Fle(F5?)
0,2 _ 7 . 0,2
— 9e(F, )e(dzb)g““FEEaza%e(FA ).

Writing %2 in an anti-holomorphic frame, we see that F%Q is indepen-
dent of the metric. Varying the metric gives

0= 8§ P2 P2 + 329" Fyh H o d2h A Fopdzf + 6P 25 FE L

—OFY* NG P EE Ni s FP.

At a fixed point, we may simultaneously choose ¢ =0 and éHJ-,C an
arbitrary (0,1) form. For such a choice,

0=0Hp AFyy ANFoPdz.
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Hence when m > 3, for all vector fields Z,
0=Fy2 NigFy®”.

Now choose ¢ arbitrary at a fixed point, and the remaining terms in the
variation of Iy give
0,2 0,2 0,2 E 10,2 0,2 E 3= 0,2 7
0=8F,, A FA;B +O6F " N Fy Fy™ = 9F % A Fradz! A Fi dz°.
Wedging with dz® A dz’ and summing over a and b yields Equation (6.3).
O

Proposition 6.2. IfFE € 5‘1/71, then
chy(B) € (S5 5 n st B h g (L), for all p.
If E € 15‘1/73, then

chy(E) € (8% 0 SV H?P (M, Q) for all p < 7.

Proof. Let S¢,CP(M,C) denote the p—forms which can be written as a
sum of (s,p —s) forms, s > a. Let S4CP(M,C) denote the conjugate fil-
tration. To show that ch,(E) € (S} “ N Sy “)H? (M, Q), it suffices to show
that tr(F3° + F)' 4+ F3?)? is cohomologous to an element of (% * N S~
CP(M,C). Expand this trace as the sum of traces of words in the letters
Fj’o, Fjl’l, and Fg’z. Let A be an 5‘1/7 , compatible connection. Then Corol-
lary implies that FX’Q A FE{Q = 0. Hence, after any cyclic rearrangement
of a monomial with nonzero trace, there must be an Fj’o or Ffl"l fac-
tor between any two FE’Z factors. Consequently, at most |Z] Fg’2 factors
may appear inp any monomial of degree p with nonzero trace. This proves
chy(E) € SZfLEJH 2(M, Q) for all p. The conjugate inclusion follows simi-
larly, proving the first assertion.

Now assume that A is an [ S‘l/’3 compatible connection. To prove the
second assertion, we consider the case p = 6, as the case p < 6 follows from
similar but simpler arguments. We have seen that the trace of any nonzero
monomial of degree 6 in the curvature components must have at most 3
F%? factors, and (for every cyclic rearrangement) there must be an FZ’D or
F A’l factor between any two such factors. If there are at least 2 Fj’o factors,
then the trace of the monomial lies in S3C*?(M,C). By Proposition
Fz,z A Fj{l A Fg’Q =0for [ S‘l,, 5 compatible A . Hence between any two F’
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factors there must be an Ff{o factor or an (Fjl’l)2 factor. The case of 3 Fg’z
factors, 1 or 2 Fj"l factors and 2 or 1 (respectively) Fi’o is therefore excluded.
Thus the only monomials with nonzero trace and 3 Fg’2 factors are cyclic
rearrangements of (Fg’2 A Fj’o)?’ . These terms yield (6, 6) forms. Terms with
at most 1 FE’Q factor lie in S C12(M,C), as do terms with 1 FZ’O factor
and 2 Fg’2 factors. Hence we are left to consider terms with exactly 2 Fg’Q
factors and 4 Fj"l factors. The only monomials of this form with nonzero
trace are cyclic rearrangements of (Fjl’l)2 A Fg’z A (Fjl’l)2 A F2’2. We need
now to show that the trace of this term is cohomologous to an element of
S2,C12(M, C). We can use Proposition m to set Fg’2 A 8AF2’2 = 0 and the
Bianchi identity to replace 5AF141"1 by —8AF2’2. We thus have

tr(FYND2AFY2 A (Fp)2 A FY?
= tr(Fy )2 A FY? A FYE A Oa0aFY?
= te(FYN)2 A GA[FY2 A FY A O4FS]
—tr(Fy)2AFY A GaFy A OAFS?
= trda[(Fy)2AFY2 A FYE A OAFS?]
—trOaFy  AFYT A FYE AR AO4FS?
— Py NOAF A FYEAFYT A OAFY?
Ftr(FyN2 A FY2 A OaFY? A OaFS?
= dtr(FYN)2 AFY? AFY ANOAFS?
= dtr(Fy)2 AFYP AFY A 9AFY? mod S3CY2(M,C).

The result follows. O

Having exploited the terms in Py ), u; Py of charge 0, we now turn to
those of charge —2.

Proposition 6.3. Let £ € 5‘1/73 with compatible connection A. Then for all
a’ b}

(6.5) Fyo NFG+ FUgAFys =0
For E € IS‘1/73 with compatible connection A, for all a, c,
(6.6) io Fy* ANFy; =0, and

(6.7) (io Fy®) A (i_s Fiy®) = 0.
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Proof. The terms of charge —2 in Pyus Py, modulo weight —7 and O(e™)
are

8kt
L_l22“64“6(ng§)L_12Ebe4kte(Fgﬂ%) = 1€8k2 Zae(ngé)Ebe(ng%),

8kt
L2etMe(FR?) L etk z020e(F)2 ) = :8k2e(F22)2“2be(F 02, and

8kt
Ltethtzazbe(FY2 VL 2t e (%) = ;W 22 e(FY2 Ve(Fy?)

The assumption that F € 8‘1/72 implies that
0,2 0,2
0=e(Fyz)e(Fy).

Using these equalities, we write the charge —2 contribution (modulo weight
—7 and O(e™")) as

eBktzazb 1 49 02y 1 09 0.2 1 02 0,2
—e7 | geFan)e(Fyy) + ge(Fa)e(Fay) + Je(Fyr)e(Fy”)
=~ e(FA’;a)e(FA’;I—)).

This term must vanish for F € 8‘1,’3. Hence
0,2 0,2 0,2 0,2 _
(6.8) FA;a A FA;B + FA;B A FA;& =0.

Suppose now that A is I S‘l,’3 compatible. Then we may take the first
variation of the preceding equation with b = a to obtain (no a-sum)

= . 0,2 0,2 02 . . 0,2
C

Hence for all (a,c),
(6.9) (i o F4*) AN Fia + Fia Ai s Fy® =0,

Since by Proposition FE’Q is a form taking values in a commutative
subalgebra of ad(F), this equation implies Equation . In turn, taking
the first variation of Equation , we find

(6.10) (i o Fe*) A (i_o Fy®) = 0.
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Corollary 6.4. Let FE € 15‘1/73 with compatible connection A. Then Fg’z
takes values in a commutative nilpotent subalgebra of End(E) whose ele-
ments all square to zero.

Appendix: From Hilbert—Schmidt to pointwise

In this appendix, we show how to derive pointwise bounds from Hilbert—
Schmidt bounds. See [I7] for an alternate derivation. For simplicity, the
constant c is allowed to change value from line to line.

Let b(T, x, y) denote the Schwartz kernel for the operator By := e~ TPk —
II. On page we claim that

(6.11) sup |b(k~V2 z,y)| = O(k™e "2 ).
z,yeM

We also claim on page that the estimate of Proposition [3.10]is also valid
for the kernel of IT — Q},-1/2. Given ([6.11]), this claim follows from

(6.12) sup |qe-1/2 (2, ) — ky-1/2(2,y)| = O(k™ 2 ).
z,yeM

Note that Equation (6.11) is an estimate about [[b(k~Y2, - )|sup =
|6(k=1/2, -, )| ~, not about HB,C 12 |lsup = || Bg-1/2]|op- Indeed, the last one
is easy to estimate: suppose A? is the first non-zero eigenvalue of D? Ak) then
[Brllsup < € -

We now prove Equation (6.11). Since B2 = By, we have

2

T T
b(T,x,y):/ b<2,x,z)b<2 zy> dz,
M

and therefore

6(T, z,y)| < Sup/ ‘ —.p,2)| dz = sup trb(T,p,p)
(6.13) peM peM
= sup lim Tr#BT,

peM =0 Vol(Be(p))
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where xy denotes the characteristic function of Y. Now we estimate using ([2.7)

and (2.8):
(6.14)
~LD% _ XBp)

X T
Vol(Bc(p))

Vel (Bp) H \/1/017 2
- DA(k)
\/Vol

e~ 5 D4

e

HS

I

sup

XB(p)
Vol(Bc(p))

Vol(Be(p))

HS

Tk
2

IN
o

HS

XB-(p)
Vol(Bc(p))

T 2
e~z Pam

HS

For t = k;/z ort= %m, we are left to estimate
(6.15)
o—tDi___XB.(p)

Vol(Be(p))

XB.(p)
Vol(Be(p)) || 11

t
/ e~ (=D ¢ ds XB(p)
0 Vol(Be(p))

< HQt

HS

+

HS

For the first term, we start with a pointwise equivalent to Proposition
Suppose that tk > 1. Then

PopU P kme_#:(tk)ekt(m—@)
ug| < | Pogy(,
| PoqUuy| < |Paqui(z,y)| (4 simb (k)™

< Z ka|13 _y||J‘€4dtk|aI,J,p,d(x7yvtk)‘
2p—|J|<-21 d<q
k™Me 4krl~i h?f‘k) ekt(m 4‘1)
(4m smh(tk:))

/
<e 3wt g,

2p—|J|<=2l
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where the sum is over the finite number of indices for which |ar s q(z, y, tk)|

#0.
‘We then have

2
XB(p)
P U — e
VolBD)| ¢
< oy Poglhw(, y)|"dzdy
Vol(Be(p)) M x B.(p) [F2q |
/
c kle—y|?
< 557 Z kaHp/ e = |z —y|?Vldzdy
Vol(Be(p)) , = R2m % B, (p)
/
<ec Z k2m+2p/ ef%lx‘mﬂdx
2p—|J|<—21 Rem
S Ckm—Ql_
Thus for both ¢t = k;ﬂ ort= %W, we have
XB‘(p) m
(6.16) HQt < ck%.
Vol(Be) | ¢

Similarly modifying the computations of the proof of Prop. we find
that

XB:(p)

“ /Vol(B.(p))

Since He_(t_s)Di(’ﬂ lsup < 1 for all s <t, we have that

</t XB.(p)
~Jo ||V Vol(Bep)) || 44
< c(k%‘N‘l + k2Nt - k—l))

m

ck=.

ck>72 ifsk>1

< m
esN=5  if sk < 1.
HS

Vol(Be(p))

t
/ e (=95 e, XB.(p)
0

—r s
v/ Vol(Be(p))

HS

(6.17) s

€s

IN



Asymptotic Hodge theory of vector bundles 607

Setting 7' = k~1/2 and combining (6.13), (6.14), (6.15), (6.16), and (6.17),

we get (6.11]), as desired.
We now proceed to prove Equation (6.12). Observe that the derivation

of the pointwise estimate of |b(T), x, y)| can be applied to obtain an estimate
for |kr(z,y)|. The only difference is that we do not have an exponentially
decaying bound for |e~ %2 “llsups merely the bound He‘gDQHSup < 1. Hence
we only obtain the bound kb (z,y)| < c=Ee " (In the |b(T, z,y)| estimate

smh(Tk)
we absorbed the m factor into our constant since we were considering
the case Tk large.)

Recall that q(z,y) — ki(z,y) = fg fs(t,x,y)ds, where

fs(t,x,y) = /M ki—s(z, 2)es(z,y)dz.

By a slight modification of the proof of Prop [3.9] we find

lea(m,y)| < esN™™m  when s <
es(x
s HYN= ck‘m_N, when s >

el e

Hence
k—1/2
err2(2,9) — hiva )| = | /0 Fo kY2, 2, y)ds

k—t/2 LM eskm
< B — (z)|d
<[ e s le s

k-1
k™ N— 2m—-N-1
< d k< 2
- /0 csinh(sk)m § st

1
S ck,?m—N—l +Ck'2m_N_5

< ckrm—N—3
for N big enough. The proof of estimate (6.12)) is now complete.
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