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Geometrically formal 4-manifolds with

nonnegative sectional curvature

Christian Bär

A Riemannian manifold is called geometrically formal if the wedge
product of any two harmonic forms is again harmonic. We classify
geometrically formal compact 4-manifolds with nonnegative sec-
tional curvature. If the sectional curvature is strictly positive, the
manifold must be homeomorphic to S4 or diffeomorphic to CP2.

This conclusion stills holds true if the sectional curvature is
strictly positive and we relax the condition of geometric formality
to the requirement that the length of harmonic 2-forms is not too
nonconstant. In particular, the Hopf conjecture on S2 × S2 holds
in this class of manifolds.

1. Introduction

Compact Riemannian manifolds with positive sectional curvature are still
poorly understood in the sense that, on the one hand, one knows relatively
few examples and, on the other hand, most known topological obstructions
against existence of a metric of positive curvature are in fact obstructions
against weaker curvature conditions. The only known connected orientable
compact positively curved 4-manifolds are S4 and CP2 and it has been con-
jectured that no further example exist [31, p. 4]. At the moment, a proof
of this conjecture seems out of reach. It would imply in particular that
S2 × S2 does not carry a positively curved metric, a conjecture attributed
to H. Hopf. Even the Hopf conjecture turned out to be notoriously diffi-
cult and is open to date. Most currently available classification results for
positively or nonnegatively curved manifolds require additional assumptions
like a sufficiently high degree of symmetry. We refer to the beautiful surveys
[29, 31] for more on this. In the present article we will consider nonnega-
tively curved 4-manifolds which are geometrically formal. In Theorem B the
condition of geometric formality will be relaxed. In Theorem C we consider
positively curved 4-manifolds which are not too nonsymmetric in the sense
that the covariant derivative of their curvature tensor satisfies a suitable
estimate.
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A Riemannian manifold M is called geometrically formal if the wedge
product of any two harmonic forms M is again harmonic. One motivation for
studying such manifolds comes from the fact that geometrically formal man-
ifolds are formal in the sense of Sullivan [28, p. 43]. For a nice introduction
to geometrically formal manifolds see [16].

Let M be a connected oriented geometrically formal n-manifold. Given
harmonic k-forms α and β on M , the n-form α ∧ ∗β = 〈α, β〉vol is again har-
monic. Hence the pointwise scalar product 〈α, β〉 is constant. In particular,
harmonic forms have constant length and cannot have zeros unless they are
identically zero.

From this one easily deduces that the (real) Betti numbers are bounded
by bk(M) ≤ bk(Tn) and, if n is divisible by 4, b±n/2(M) ≤ b±n/2(Tn). Here

Tn = Rn/Zn denotes the n-torus. Moreover, b1(M) 6= n− 1 so that b1(M) ∈
{0, 1, 2, . . . , n− 2, n}, see [16] for details.

The purpose of this paper is to classify geometrically formal 4-manifolds
with nonnegative sectional curvature. In 3 dimensions one has a good under-
standing of nonnegatively curved manifolds. R. Hamilton proved that any
connected compact oriented 3-dimensional Riemannian manifold with Ric ≥
0 is diffeomorphic to a quotient of S3 or S2 × R or R3 by a group of fixed
point free isometries in the standard metrics ([13, Thm. 1.2]). We will need
a more precise formulation of this result:

Theorem (Hamilton). Let M be a connected compact oriented 3-
dimensional Riemannian manifold. Suppose that the Ricci curvature of M
satisfies Ric ≥ 0. Then one of the following holds:

(1) M is diffeomorphic to a spherical spaceform or to RP3]RP3;

(2) M is isometric to a twisted product S2×̃ρS1 where S2 carries a metric
of nonnegative curvature;

(3) M is flat.

By a spherical spaceform we mean a manifold of the form M = Γ\Sn
where Γ ⊂ O(n+ 1) is a finite subgroup acting freely on Sn. Spherical space-
forms and flat manifolds in 3 dimensions are classified, see [30, Thm. 3.5.5
and p. 224] for the lists. Twisted products will be explained in the next
section. The difference to Hamilton’s formulation is that in Cases (2) and
(3) we not only have information about the diffeomorphism type but also
about the metric. In Section 3 we will show how to derive this version of
Hamilton’s theorem from the one given in [13]. We give the proof because
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it introduces methods which will be crucial for treating the 4-dimensional
case.

In 4 dimensions we show:

Theorem A. Let M be a connected compact oriented 4-dimensional Rie-
mannian manifold. Suppose that M is geometrically formal and the sectional
curvature satisfies K ≥ 0. Then one of the following holds:

(1) M is a rational homology 4-sphere with finite fundamental group;

(2) M is diffeomorphic to CP2;

(3) M is flat;

(4) M is isometric to a twisted product S2×̃ρT 2 where T 2 carries a flat
metric and S2 carries a metric of nonnegative curvature;

(5) M is isometric to a twisted product Σ3×̃ρS1, where Σ3 is isometric to
a spherical spaceform or to RP3]RP3 with a metric satisfying K ≥ 0;

(6) M is isometric to S2 × S2 with product metric where both factors carry
metrics with nonnegative curvature.

All cases in Theorem A do actually occur. More precisely, the mani-
folds in Cases (3)–(6) are geometrically formal and satisfy K ≥ 0. Since flat
manifolds and spherical spaceforms are classified, these cases are completely
understood.

The standard sphere S4 and CP2 with the Fubini-Study metric are also
geometrically formal and have strictly positive sectional curvature. In fact,
every metric on S4 is geometrically formal; hence we can replace the stan-
dard metric by any metric with K ≥ 0. Thus Cases (1) and (2) also occur.
In a previous version of the present article, the statements in Cases (1) and
(2) were weaker. D. Kotschick pointed out to the author that a corollary to
the Cheeger-Gromoll splitting theorem implies finiteness of the fundamental
group in Case (1). In Case (2), it was originally only concluded that M has
the homology type of CP2. Here D. Kotschick pointed out that the classifi-
cation of symplectic 4-manifolds with a metric of positive scalar curvature
improves the result to its present form, compare also the proof of Theorem 8
in [17].

Since the manifolds in Cases (3), (4), and (5) in Theorem A are not
simply connected, we obtain:

Corollary. Let M be a simply connected compact oriented 4-dimensional
Riemannian manifold. Suppose that M is geometrically formal and the sec-
tional curvature satisfies K ≥ 0. Then one of the following holds:
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(1) M is homeomorphic to S4;

(2) M is diffeomorphic to CP2;

(3) M is isometric to S2 × S2 with product metric where both factors carry
metrics with nonnegative curvature.

Note that the statement in Case (1) is stronger than the correspond-
ing one in Theorem A; isomorphic rational homology has been improved to
homeomorphism. A justification for this will be given in the proof of Theo-
rem A, see Section 4.4. One might conjecture that even in Theorem A the
conclusion in the first case should be that M is diffeomorphic to S4.

One may compare the corollary to an older result by B. Kleiner where
instead of geometric formality one assumes that there are sufficiently many
isometries. In this case there are two further possible homeomorphism types.
He shows ([15, Thm. 1.0.2] and [27, Thm. 1]) that a simply connected com-
pact oriented 4-dimensional Riemannian manifold with K ≥ 0 which has a
nontrivial isometric U(1)-action must be homeomorphic to S4, to CP2, to

S2 × S2, to CP2]CP2 or to CP2]CP2
. Here CP2

denote the complex projec-
tive plane with the reversed orientation (the one not induced by the complex
structure). Using work of Fintushel [8] one can replace “homeomorphic” by
“diffeomorphic” in this theorem, compare e.g. [10] and the references given
therein.

If the curvature is strictly positive, we can weaken the assumption of
geometric formality quite a bit. Recall that on a geometrically formal man-
ifold all harmonic forms have constant length. It suffices to assume that the
length of harmonic 2-forms is not “too nonconstant”. More precisely, we get

Theorem B. Let M be a connected compact oriented 4-dimensional Rie-
mannian manifold. Suppose that the sectional curvature satisfies K ≥ κ > 0
and all harmonic 2-forms ω satisfy |d|ω|| ≤

√
8κ · |ω| wherever ω does not

vanish.
Then M is homeomorphic to S4 or diffeomorphic to CP2.

In particular, S2 × S2 is ruled out and the Hopf conjecture holds in
this class of manifolds. We recover a result by W. Seaman [25] stating that
M must be homeomorphic to S4 or to CP2 if the harmonic 2-forms have
constant length.

Also in the positively curved case there is an analogous result if one
demands the existence of sufficiently many isometries. Hsiang and Kleiner
[14] showed that a connected compact oriented 4-dimensional Riemannian
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manifold with K > 0 which has a nontrivial isometric U(1)-action must be
homeomorphic to S4 or to CP2. Again, Fintushel’s results can be used to
improve the conclusion from “homeomorphic” to “diffeomorphic”.

Theorems A and B will be proved in Sections 4 and 5, respectively. The
proof of Theorem B shows that the assumptions can be weakened as follows:
The estimate on d|ω| need not be demanded for all harmonic 2-forms but
only for at least one nontrivial selfdual harmonic 2-form if b+2 (M) > 0 and
for at least one nontrivial antiselfdual harmonic 2-form if b−2 (M) > 0.

A prominent class of geometrically formal manifolds is given by symmet-
ric spaces. They have parallel curvature tensor, ∇R = 0. If we demand that
the derivative of the curvature tensor is not too large, then again S2 × S2 is
not possible. In other words, a counterexample to the Hopf conjecture must
be very nonsymmetric. In fact, a bound on the differential of the scalar
curvature and on the selfdual or antiselfdual Weyl curvature suffice.

To formulate the result we specify the norm on the relevant tensor spaces:
For any (0, k)-tensor field (e.g., any k-form) B we consider

|B|(k) = sup
|B(X1, . . . , Xk)|
|X1| · · · |Xk|

where the supremum is taken over all nonzero vectors X1, . . . , Xk. Now we
consider the Riemann curvature tensor R and the Weyl curvature W as
(0, 4)-tensors and their covariant derivatives ∇R and ∇W as (0, 5)-tensors.
The selfdual part of W is denoted by W+ and its antiselfdual part by W−.
Now the result is

Theorem C. Let M be a connected compact oriented 4-dimensional Rie-
mannian manifold with sectional curvature K ≥ 1. Suppose that

|∇W+|(5) +
1

12
|dscal|(1) ≤

4

π
.

Then M is homeomorphic to S4 or to CP2] · · · ]CP2︸ ︷︷ ︸
k

with 1 ≤ k ≤ 10238.

Of course, the upper bound on k in this theorem is far from optimal. One
would rather expect that M has to be homeomorphic to S4 or to CP2. By
reversing the orientation of M , one can replace W+ by W− in the assump-
tion. Note that there is no claim in the statement that the homeomorphism
between M and CP2] · · · ]CP2 has to be orientation preserving. Theorem C
may be compared to a result by M. H. Noronha [21, Cor. 1] where it is
assumed that scal and the pointwise norm of W+ are constant.
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The main step for the proof of Theorem C was done in [2]. In Section 6
we will show how to derive the formulation given in Theorem C from the
work in [2].

In [17] D. Kotschick started to investigate low-dimensional geometrically
formal manifolds which admit a (possibly different) metric of nonnegative
scalar curvature and he obtained analogous classification results.

Acknowledgments. It is my pleasure to thank B. Hanke, B. Wilking, and
W. Ziller for helpful discussions. I am grateful to D. Kotschick for pointing
out an error in the first version of this paper and for many very useful hints
and references. Moreover, I thank the Sonderforschungsbereich 647 funded
by Deutsche Forschungsgemeinschaft for financial support.

2. Preliminaries

2.1. Abel-Jacobi map

Let M be a connected compact Riemannian manifold. We assume that all
harmonic 1-forms on M have constant length. This holds, for instance, if M
is geometrically formal or if M has nonnegative Ricci curvature. By polar-
ization, all pointwise scalar products of harmonic 1-forms are also constant.
Let b = b1(M).

Choose a basis {θ1, . . . , θb} of the space of harmonic 1-forms by forms
with integral periods. Then there exist functions Fj : M → R/Z such that
dFj = θj . By [3, Prop. 6.3], the map F = (F1, . . . , Fb) : M → T b is a Rie-
mannian submersion with minimal fibers. Here T b = Rb/Zb carries a flat
Riemannian metric determined by the (constant) scalar products 〈θi, θj〉.
The submersion F is known as the Abel-Jacobi map. If M is compact, Ehres-
mann’s fibration theorem implies that the Abel-Jacobi map F : M → T b is a
fiber bundle map. Moreover, F ∗ : H1(T b,R)→ H1(M,R) is an isomorphism.

2.2. Twisted products

Let Σ be an oriented Riemannian manifold and denote by Iso+(Σ) the
group of orientation-preserving isometries of Σ. Let V be a b-dimensional
Euclidean vector space and let Γ ⊂ V be a lattice. Let ρ : Γ→ Iso+(Σ) be a
homomorphism. Then Γ acts isometrically on Σ× V by ρ on the first factor
and by translations on the second. We denote the quotient (Σ× V )/Γ by
Σ×̃ρT b and call it a twisted product. If b = 1, then Σ×̃ρR/Z is also known
as the mapping torus of the map ρ(1). The projection onto the second fac-
tor Σ× V → V induces a Riemannian submersion Σ×̃ρT b → T b with totally
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geodesic fibers isometric to Σ. The torus T b = V/Γ carries the induced flat
metric. In case ρ is trivial, the twisted product is just the usual Riemannian
product, Σ×̃ρT b = Σ× T b.

The following folklore lemma will be needed as a technical tool.

Lemma 1. Let M be a connected compact oriented Riemannian manifold.
Suppose that all harmonic 1-forms on M are parallel.

Then M is isometric to a twisted product Σ×̃ρT b where Σ is a connected
compact oriented Riemannian manifold and b = b1(M).

Proof. Let {θ1, . . . , θb} be a basis of the space of harmonic 1-forms with inte-
gral periods. Let F : M → Rb/Zb be the induced Abel-Jacobi map. Denote
the fiber of F over [0] ∈ Rb/Zb by Σ̂.

Denote the metrically dual vector field to θj by vj and let Φj : R→
Diff(M) be its flow. Since vj is parallel, it is a Killing vector field, hence
Φj acts by orientation preserving isometries, Φj : R→ Iso+(M). Define Φ :
Rb → Iso+(M) by Φ(t1, . . . , tb) := Φ1(t1) ◦ · · · ◦ Φb(tb). Since the vector fields
vj are parallel they commute. Hence the flows commute so that the order of
the flow maps in the definition of Φ is irrelevant. In particular, Φ is a group
homomorphism.

The vector fields vj descend to parallel vector fields F∗vj on Rb/Zb and

hence induce an action of Rb on Rb/Zb by translations. Let Γ̂ ⊂ Rb be the
kernel of this action. This Rb-action is compatible with the Rb-action on
M given by Φ. Thus Φ maps fibers of the Abel-Jacobi map to fibers. In
particular, we obtain a homomorphism ρ̂ := Φ|Γ̂ : Γ̂→ Iso+(Σ̂).

Now Σ̂ is compact and oriented but need not be connected. Since M
is connected the action of Γ̂ on the set of connected components of Σ̂ is
transitive. In particular, all connected components of Σ̂ are isometric. Denote
one of the connected components of Σ̂ by Σ. Let Γ ⊂ Γ̂ be the subgroup of
elements mapping Σ to Σ under Φ. Then Γ is a subgroup of Γ̂ of finite index
and hence again a lattice in Rb. Put ρ := Φ|Γ : Γ→ Iso+(Σ). Equip Rb with
the metric which has the constant coefficients 〈∂/∂ti, ∂/∂tj〉 = 〈vi, vj〉. Then
the map Σ× Rb →M , (σ, t) 7→ Φ(t)(σ), is a local isometry and induces an
isometry Σ×̃ρ(Rb/Γ)→M . �

2.3. Examples of geometrically formal manifolds

Now we briefly discuss examples of geometrically formal manifolds. The
more cohomology a manifold carries, the more restrictive is the assumption
of geometric formality. If M is diffeomorphic to Sn (or, more generally, to
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a rational homology sphere), then M is geometrically formal with any Rie-
mannian metric. If M is diffeomorphic to Tn, then M is geometrically formal
if and only if M is flat [16, Thm. 7]. All Riemannian symmetric spaces are
geometrically formal. Further examples of homogeneous but nonsymmetric
spaces which are geometrically formal can be found in [18]. If M is a closed
oriented surface of genus ≥ 2, then M does not admit a Riemannian metric
making it geometrically formal because every 1-form must have zeros and
therefore cannot have constant length.

If M1 and M2 are geometrically formal, then so is the Riemannian prod-
uct M1 ×M2. If Σ is a rational homology sphere, then constant functions
and constant multiples of the volume form are the only harmonic forms.
In particular, all harmonic forms on Σ are parallel. Similarly, all harmonic
forms on a flat torus T b are parallel. These forms induce parallel forms on
Σ× Rb which are invariant under the Zb-action induced by a homomor-
phism ρ : Zb → Iso+(Σ). Thus they descend to parallel forms on the twisted
product M := Σ×̃ρT b. By the Leray-Hirsch theorem [5, Thm. 5.11] applied
to the fibering Σ ↪→M → T b there are no further harmonic forms on M .
Hence all harmonic forms on the twisted product M are parallel and so M
is geometrically formal.

3. The 3-dimensional case

To warm up we consider the 3-dimensional case and prove the corollary
to Hamilton’s theorem. So let M be a connected compact oriented 3-
dimensional Riemannian manifold with nonnegative Ricci curvature, Ric ≥
0. The Bochner formula for 1-forms tells us that every harmonic 1-form θ
satisfies

0 = (∆θ, θ) = ‖∇θ‖2 + (Ricθ, θ) ≥ ‖∇θ‖2.

Here (·, ·) denotes the L2-scalar product and ‖ · ‖ the L2-norm. Hence every
harmonic 1-form is parallel. In particular, b1(M) ≤ 3. If there are two lin-
early independent harmonic (hence parallel) 1-forms θ1 and θ2, then ∗(θ1 ∧
θ2) is also parallel, hence harmonic and we have three linearly independent
harmonic 1-forms. Therefore, the first Betti number can take the values
b = b1(M) ∈ {0, 1, 3} only.

If b1(M) = 3, then the Abel-Jacobi map yields a covering M → T 3. Thus
M is itself diffeomorphic to a torus. By [12, Cor. A on p. 94], M must be flat
and we are in Case (3). Alternatively, one may argue that the tangent bundle
of M is trivialized by parallel vector fields. Since they satisfy (Ricθ, θ) = 0
this shows Ric ≡ 0, hence M is flat.
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Let b1(M) = 1. By Lemma 1, M is isometric to a twisted product Σ×̃ρS1

where Σ is a connected compact oriented surface. Since Σ is a totally geodesic
submanifold of M it must have curvature ≥ 0. If Σ is a torus, then Σ is flat.
Hence M is flat and we are again in Case (3). If Σ is a sphere, then we are
in Case (2).

Let b1(M) = 0. It is only in this case that we use Hamilton’s theorem.
If M is diffeomorphic to a flat manifold, then again by [12, Cor. A], M
must be flat and we are in Case (3). If M is diffeomorphic to a quotient of
S2 × R, thenM must be diffeomorphic to S2 × S1 or to RP3]RP3 [23, p. 457].
Now M cannot be diffeomorphic to S2 × S1 because b1(S2 × S1) = 1. If M
is diffeomorphic to RP3]RP3 or to a spherical spaceform, then we are in
Case (1). This concludes the proof of the corollary.

Remark. Hamilton’s theorem is based on Ricci flow and is a highly non-
trivial result. Without referring to Hamilton’s theorem and Ricci flow, the
above proof still yields a weaker result. Namely, it shows that for any
connected compact oriented 3-dimensional Riemannian manifold M with
Ric ≥ 0 one of the following holds:

(1) M is a rational homology 3-sphere;

(2) M is isometric to a twisted product S2×̃ρS1 where S2 carries a metric
of nonnegative curvature;

(3) M is flat.

The point of Hamilton’s theorem is that the rational homology spheres
occurring in Case (1) must be spherical spaceforms or RP3]RP3. Of course,
there are further rational homology 3-spheres such as one of the six diffeo-
morphism types of flat 3-manifolds.

4. Proof of Theorem A

Let M be a geometrically formal connected compact oriented 4-dimensional
Riemannian manifold with nonnegative sectional curvature, K ≥ 0. The first
Betti number can take the values b = b1(M) ∈ {0, 1, 2, 4}. We consider the
possibilities separately.

4.1. Case b =4

Since M satisfies Ric ≥ 0, the 4 linearly independent harmonic 1-forms are
parallel, hence M is flat. We are in Case (3) of Theorem A.
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4.2. Case b =2

Arguing as in the proof of the corollary to Hamilton’s theorem we conclude
that M is isometric to Σ×̃ρT 2 where Σ is a connected compact oriented
surface with curvature ≥ 0. If Σ is a torus, we are in Case (3) of Theorem A,
if Σ is a sphere we are in Case (4) of Theorem A.

4.3. Case b =1

Again as in the proof of the corollary we get that M is isometric to Σ×̃ρS1

where now Σ is a connected compact oriented 3-manifold with K ≥ 0. By
the corollary, Σ can be flat or a spherical spaceform or RP3]RP3 or be
isometric to S2×̃ρ̃S1. If Σ is flat, then M is flat and we are in Case (3)
of Theorem A. If Σ is a spherical spaceform or RP3]RP3, then we are in
Case (5) of Theorem A.

We show that Σ = S2×̃ρ̃S1 is not possible. Assume that Σ is isometric
to S2×̃ρ̃S1 where S2 carries a metric with curvature ≥ 0. Now M fibers over
S1 with totally geodesic fibers S2×̃ρ̃S1 and the fibers fiber over S1 with
totally geodesic fibers S2. Thus M carries a totally geodesic foliation with
leaves diffeomorphic to S2. Since M is locally isometric to S2 × R× R we
get a second 2-dimensional totally geodesic foliation on M , perpendicular
to the first one, with flat leaves.

Since M has a harmonic 1-form without zeros, the Euler number of M
vanishes, χ(M) = 0. From b0(M) = b1(M) = b3(M) = b4(M) = 1 we con-
clude b2(M) = 0.

On the other hand, the area 2-form α of the first foliation (with leaves
S2) is parallel since both foliations are totally geodesic. Hence α is harmonic
and represents a nontrivial cohomology class in H2(M,R). This contradicts
b2(M) = 0 showing that the subcase Σ = S2×̃ρ̃S1 cannot occur.

4.4. Case b =0

A priori, b±2 (M) could take the values 0, 1, 2, and 3 but Kotschick has shown
[16, p. 527] that only 0 and 1 can occur for geometrically formal 4-manifolds
with b1(M) = 0. We have to consider the various possibilities.

Subcase b+2 (M) = b−2 (M) = 0: In this case M is a rational homology
sphere and we are in Case (1) of Theorem A. Since the Euler number of M
is χ(M) = 2 6= 0, [6, Cor. 9.4] implies that π1(M) is finite. If M is simply
connected, Freedman’s theorem [9] implies that M is homeomorphic to S4.
Thus we are in Case (1) of the corollary to Theorem A.
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Subcase b+2 (M) = 1 and b−2 (M) = 0: In this case M is a rational homol-
ogy CP2. Moreover, M is a symplectic manifold, the symplectic form being
given by the harmonic selfdual 2-form (which has no zeros, by geometric for-
mality). Furthermore, M cannot be flat because it has positive Euler number
3. Thus the scalar curvature is nonnegative and not identically zero, hence
M admits a metric with positive scalar curvature. Now the classification of
symplectic 4-manifolds carrying a metric with positive scalar curvature ([20,
Thm. C] or [22, Thm. 1.1]) implies that M is diffeomorphic to a blow-up
of CP2 or of a ruled surface. Among those manifolds only CP2 itself is a
rational homology CP2. Hence M is diffeomorphic to CP2. (We learned this
symplectic argument from the proof of Theorem 8 in [17].)

Subcase b+2 (M) = 0 and b−2 (M) = 1: After reversing the orientation of
M , this subcase reduces to the previous subcase.

Subcase b+2 (M) = b−2 (M) = 1: First we observe that die Euler number is
given by

χ(M) = b0(M)− b1(M) + b+2 (M) + b−2 (M)− b3(M) + b4(M)

= 1− 0 + 1 + 1− 0 + 1 = 4.

Now let ω+ be a harmonic selfdual 2-form and ω− a harmonic antiselfdual
2-form. Since harmonic forms have constant length, we may assume |ω±| ≡ 1.
Now η := ω+ + ω− satisfies

η ∧ η = ω+ ∧ ω+ + ω− ∧ ω− =
(
〈ω+, ∗ω+〉+ 〈ω−, ∗ω−〉

)
vol

=
(
|ω+|2 − |ω−|2

)
vol = 0.

This implies that η is decomposable at each point of M .
Denote the curvature endomorphism in the Bochner formula for 2-forms

by K, i.e.,

∆ = ∇∗∇+K

on Ω2(M). For decomposable 2-forms K has a nice expression. If we write,
at a given point p ∈M , η =

√
2 · e1 ∧ e2 where e1, e2, e3, e4 is a suitable

orthonormal basis of T ∗pM , then formula (3) in [24, p. 354] for K easily
implies

〈η,Kη〉 = 2 (K13 +K14 +K23 +K24) .

Here Kij denotes the sectional curvature of the plane spanned by ei and ej .
Hence

0 = (∆η, η) ≥ ‖∇η‖2.
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Thus η is parallel. The same reasoning shows that η′ := ω+ − ω− is parallel,
hence we have two perpendicular parallel decomposable 2-forms. This cor-
responds to an orthogonal splitting TM = E1 ⊕ E2 of the tangent bundle
into parallel oriented plane bundles. Parallelity implies involutivity, hence
the distributions E1 and E2 are integrable. Parallelity of E1 and E2 also
implies that the second fundamental form of the leaves vanishes, i.e., the
corresponding foliations F1 and F2 of M are totally geodesic. Moreover, the
universal covering M̃ of M is isometric to F1 × F2 equipped with the prod-
uct metric where Fi are simply connected complete surfaces with curvature
≥ 0. Under the projection M̃ →M , the factors of M̃ = F1 × F2 are mapped
onto the leaves of the foliations F1 and F2, respectively.

If F1 and F2 are diffeomorphic to S2, then either M = F1 × F2 and we
are in Case (6) of Theorem A or M is a proper quotient of S2 × S2. Since
S2 × S2 has Euler number 4, the Euler number of M would have to be 2 or
1 if M were a proper quotient. Since χ(M) = 4, this cannot be the case.

It remains to see what happens if F1 or F2 (or both) is diffeomorphic to
R2. We show that this cannot occur. Namely, if one of the factors is diffeo-
morphic to R2, then M̃ is diffeomorphic to R4 or to S2 × R2. In either case,
π1(M) is infinite and the Cheeger-Gromoll splitting theorem [6, Cor. 9.4]
implies χ(M) = 0. This contradicts χ(M) = 4 and concludes the proof of
Theorem A.

5. Proof of Theorem B

We start by observing that the assumption |d|ω|| ≤
√

8κ · |ω| implies that
ω vanishes nowhere (unless it is identically zero). Namely, pick p ∈M with
ω(p) 6= 0 and assume that the zero locus of ω is nonempty. Let q be a closest
point to p where ω vanishes. Join p and q by a shortest geodesic c : [0, L]→
M , parametrized by arc-length. Here c(0) = p, c(L) = q, and L is the Rie-
mannian distance of p and q. Now consider the function f : [0, L)→ R+

given by f(t) = 1/|ω(c(t))|. We compute

f ′ =
−〈ċ, d|ω|〉
|ω|2

≤ |ċ| · |d|ω||
|ω|2

≤
√

8κ

|ω|
=
√

8κ · f.

The Gronwall lemma implies f(t) ≤ f(0) · exp(
√

8κt), in other words,
|ω(c(t))| ≥ |ω(p)| · exp(−

√
8κt). This contradicts |ω(c(t))| → 0 as t→ L.

The crucial point in the proof of Theorem B is to show that b+2 (M) and
b−2 (M) cannot be both positive. Let us assume the contrary so that we can
find a nontrivial selfdual 2-form ω+ and a nontrivial antiselfdual 2-form ω−.
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We consider the form bundles ΛkT ∗M ⊗ Λ−T ∗M twisted with the bun-
dle of antiselfdual 2-forms together with its natural connection induced
by the Levi-Civita connection. Let d∇− be the exterior differential on this
twisted form bundle. Let D− := d∇− + (d∇−)∗ be the associated generalized

Dirac operator acting on sections of Λ∗T ∗M ⊗ Λ−T ∗M =
⊕4

k=0 ΛkT ∗M ⊗
Λ−T ∗M . We apply D− to ω+ ⊗ ω− and we get, using that ω+ is harmonic,

|D−(ω+ ⊗ ω−)|2 =
∣∣(d+ d∗)ω+ ⊗ ω− +

4∑
k=1

ek · ω+ ⊗∇kω−
∣∣2(1)

=

4∑
k,`=1

〈ek · ω+, e` · ω+〉〈∇kω−,∇`ω−〉

= |ω+|2 ·
4∑

k=1

|∇kω−|2

= |ω+|2 · |∇ω−|2.

Here e1, . . . , e4 denotes a local orthonormal tangent frame and ek · ω =
e∗k ∧ ω − ekyω is the Clifford multiplication. Since the local frame can be cho-
sen such that, up to a multiple, ω+ = e1 ∧ e2 + e3 ∧ e4, we see that ek · ω+

and e` · ω+ are perpendicular unless k = `.
For the covariant derivative of ω+ ⊗ ω− we obtain

|∇(ω+ ⊗ ω−)|2(2)

=

4∑
k=1

|∇kω+ ⊗ ω− + ω+ ⊗∇kω−|2

= |∇ω+|2 · |ω−|2 + |ω+|2 · |∇ω−|2 + 2

4∑
k=1

〈∇kω+, ω+〉〈ω−,∇kω−〉

= |∇ω+|2 · |ω−|2 + |ω+|2 · |∇ω−|2 +
1

2

4∑
k=1

∂k|ω+|2 · ∂k|ω−|2

= |∇ω+|2 · |ω−|2 + |ω+|2 · |∇ω−|2 +
1

2
〈d|ω+|2, d|ω−|2〉

= |∇ω+|2 · |ω−|2 + |ω+|2 · |∇ω−|2 + 2〈d|ω+|, d|ω−|〉|ω+| · |ω−|
≥ |∇ω+|2 · |ω−|2 + |ω+|2 · |∇ω−|2 − 2|d|ω+|| · |d|ω−|| · |ω+| · |ω−|.

By the refined Kato inequality for harmonic 2-forms in 4 dimensions [26,
Thm. 1] we have
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|d|ω±|| ≤
√

2

3
· |∇ω±|.

This yields the estimate

|d|ω+|| · |d|ω−|| · |ω+| · |ω−| ≤ 2

3
· |∇ω+| · |∇ω−| · |ω+| · |ω−|(3)

≤ 1

3

(
|∇ω+|2 · |ω−|2 + |ω+|2 · |∇ω−|2

)
.

By the assumption in Theorem B we also have the estimate

(4) |d|ω+|| · |d|ω−|| · |ω+| · |ω−| ≤ 8κ · |ω+|2 · |ω−|2.

We use estimate (3) for 3
2 |d|ω

+|| · |d|ω−|| · |ω+| · |ω−| and (4) for 1
2 |d|ω

+|| ·
|d|ω−|| · |ω+| · |ω−| in (2) and we obtain

|∇(ω+ ⊗ ω−)|2(5)

≥ 1

2

(
|∇ω+|2 · |ω−|2 + |ω+|2 · |∇ω−|2

)
− 4κ|ω+|2 · |ω−|2.

Let K be the curvature endomorphism in the Bochner formula for the Hodge-
Laplacian on forms. Then the Weitzenböck formula for D− says (see [19,
Thm. 8.17] and its proof)

(6) (D−)2 = ∇∗∇+K ⊗ idΛ− +
∑
i<j

ei · ej ⊗RΛ−
(ei, ej).

Here ei · ej acts by Clifford multiplication on the first tensor factor. Now we
observe for each summand in the last term applied to ω+ ⊗ ω−:

〈ei · ej · ω+ ⊗R(ei, ej)ω
−, ω+ ⊗ ω−〉 = 〈ei · ej · ω+, ω+〉〈R(ei, ej)ω

−, ω−〉
= −〈ej · ω+, ei · ω+〉〈R(ei, ej)ω

−, ω−〉
= 0.

Thus (6) yields

(7) ‖D−(ω+ ⊗ ω−)‖2 = ‖∇(ω+ ⊗ ω−)‖2 +

∫
M
〈Kω+, ω+〉|ω−|2 dvol.
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Inserting (1) and (5) into (7) we find

1

2

∫
M
|ω+|2 · |∇ω−|2 dvol ≥ 1

2

∫
M
|∇ω+|2 · |ω−|2 dvol(8)

− 4κ

∫
M
|ω+|2 · |ω−|2 dvol

+

∫
M
〈Kω+, ω+〉|ω−|2 dvol.

Interchanging the roles of ω+ and ω− we obtain

1

2

∫
M
|∇ω+|2 · |ω−|2 dvol ≥ 1

2

∫
M
|ω+|2 · |∇ω−|2 dvol(9)

− 4κ

∫
M
|ω+|2 · |ω−|2 dvol

+

∫
M
|ω+|2〈Kω−, ω−〉 dvol.

Adding (8) and (9) we get

8κ

∫
M
|ω+|2 · |ω−|2 dvol(10)

≥
∫
M

(
〈Kω+, ω+〉|ω−|2 + |ω+|2〈Kω−, ω−〉

)
dvol.

As in the previous section we see that η = |ω−| · ω+ + |ω+| · ω− is a decom-
posable 2-form and we obtain again

〈η,Kη〉 ≥ 4κ|η|2 = 8κ|ω+|2|ω−|2.

Now 〈η,Kη〉 is precisely the integrand on the RHS of (10) and we obtain
the opposite inequality∫

M

(
〈Kω+, ω+〉|ω−|2 + |ω+|2〈Kω−, ω−〉

)
dvol ≥ 8κ

∫
M
|ω+|2 · |ω−|2 dvol.

Thus we have equality in (10) and therefore we must have equality in all
estimates which we used to derive (10). In particular, we have |d|ω+|| ≡√

8κ|ω+|. On the other hand, |ω±| must achieve its maximum at some point,
a contradiction.

We have shown b+2 (M) = 0 or b−2 (M) = 0. In other words, the intersec-
tion form of M is positive or negative definite. If b+2 (M) = b−2 (M) = 0, then
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M is a simply-connected homology 4-sphere, hence homeomorphic to S4 [9].
Upon reversing the orientation if necessary, we may assume b+2 (M) ≥ 1 and
b−2 (M) = 0. Any nontrivial selfdual harmonic 2-form is a symplectic form
because it has no zeros. By the classification of symplectic manifolds carry-
ing a metric with positive scalar curvature ([20, Thm. C] or [22, Thm. 1.1])
M is diffeomorphic to a blow-up of CP2 or of a ruled surface. Among those
complex surfaces, CP2 is the only simply-connected one with definite inter-
section form. Hence M must be diffeomorphic to CP2. As mentioned in Sec-
tion 4, this symplectic argument was already used in the proof of Theorem 8
in [17]. This concludes the proof of Theorem B.

6. Proof of Theorem C

We define the (0, 4)-tensor field T := W − scal
12 · g ? g where W is the Weyl

curvature, g is the Riemannian metric, and ? denotes the Kulkarni-Nomizu
product, see [4, Def. 1.110]. For any selfdual 2-form ω it was shown in the
proof of Prop. 3 in [2] that

|〈(∇XK)ω, ω〉|
|ω|2

= |(∇XT )(e1, e2, e1, e2) + 2(∇XT )(e1, e2, e3, e4)

+ (∇XT )(e3, e4, e3, e4)|

where X is any tangent vector and e1, . . . , e4 a suitable orthonormal tangent
basis. If X has unit length we conclude

|〈(∇XK)ω, ω〉|
|ω|2

≤ |(∇XW+)(e1, e2, e1, e2) + 2(∇XW+)(e1, e2, e3, e4)

+ (∇XW+)(e3, e4, e3, e4)|

+

∣∣∣∣∂Xscal

12

∣∣∣∣ · |(g ? g)(e1, e2, e1, e2)

+ 2(g ? g)(e1, e2, e3, e4) + (g ? g)(e3, e4, e3, e4)|

≤ 4|∇W+|(5) +
1

12
|dscal|(1) · (2 + 2 · 0 + 2)

= 4|∇W+|(5) +
1

3
|dscal|(1)

≤ 16

π
.

It is shown in [2] that this estimate together with K ≥ 1 implies that the
intersection form of M is definite. By Donaldson’s theorem [7], the intersec-
tion form must be diagonalizable over Z. Freedman’s theorem implies thatM



i
i

“2-bar” — 2015/1/5 — 16:43 — page 495 — #17 i
i

i
i

i
i

Geometrically formal 4-manifolds with nonnegative curvature 495

is homeomorphic to a k-fold connected sum of CP2’s with k ∈ {0, 1, 2, . . .}.
In particular, the total Betti number of M is

∑4
m=0 bm(M) = 2 + k. By a

result of Gromov [11], the total Betti number of a nonnegatively curved n-
manifold is bounded by a constant C(n) only depending on the dimension
of M . Abresch [1, p. 477] showed that the constant C(n) = exp(6n3 + 9n2 +
4n+ 4) does the job. In 4 dimensions this yields

∑4
m=0 bm(M) ≤ 10238 and

concludes the proof of Theorem C.
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