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Derived deformations of Artin stacks
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We generalise the techniques of [16] to describe derived deforma-
tions in simplicial categories. This allows us to consider deforma-
tion problems with higher automorphisms, such as chain complexes
(which have homotopies) and stacks (which have 2-automorphisms).
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1. Introduction

This paper is motivated by the wish to describe derived deformations of an
algebraic stack. In [11] and [1], it was shown that deforming an algebraic
stack can be regarded as a special case of deforming a simplicial algebraic
space. The category of simplicial spaces has a natural simplicial structure
(meaning that the Hom-sets can be enriched to give simplicial sets), and the
2-groupoid of deformations of an algebraic stack can be recovered from this
simplicial structure.

After reviewing background material from [15] in §2, we introduce derived
deformation complexes (DDCs) In Section 3; these extend the SDCs of [13]
to simplicial categories. We then adapt the various constructions of [15],
showing how to associate derived deformation functors to DDCs, and how
to compare them with derived deformation functors coming from SDCs.

Section 4 adapts the ideas of [13], showing how to associate DDCs to
bialgebraic deformation problems in simplicial categories. In §4.3, we show
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how deformations of morphisms and diagrams can be used to compare defor-
mations of weakly equivalent objects.

Several simple examples of such problems are considered in Section 5:
chain complexes (with more interesting variants in Remarks 5.7), simplicial
complexes and simplicial algebras.

The motivating example of algebraic stacks is finally considered in Sec-
tion 6. We first describe derived deformations of simplicial affine schemes
(§6.1), then show in §6.2 how to adapt this to describe derived deforma-
tions of an algebraic stack X, with an indication in Remark 6.28 of how
this approach also works for Artin n-stacks. The idea is to consider derived
deformations of a suitable hypercovering X• of X. To see that this does,
indeed, extend the 2-groupoid of deformations of X, we establish compar-
isons with Olsson’s Ext-groups of the cotangent complex (§6.2.1) and Aoki’s
description of the deformation 2-groupoid (§6.2.2).

2. Derived deformation functors

With the exception of §2.4, the definitions and results in this section can
all be found in [15]. Fix a complete local Noetherian ring Λ, with maximal
ideal µ and residue field k.

2.1. Simplicial Artinian rings

Definition 2.1. Let CΛ denote the category of local Artinian Λ-algebras
with residue field k. We define sCΛ to be the category of Artinian simplicial
local Λ-algebras, with residue field k.

Definition 2.2. Given a simplicial complex V•, recall that the normalised
chain complexN s(V )• is given byN s(V )n :=

⋂
i>0 ker(∂i : Vn → Vn−1), with

differential ∂0. The simplicial Dold-Kan correspondence says that N s gives
an equivalence of categories between simplicial complexes and non-negatively
graded chain complexes in any abelian category. Where no ambiguity results,
we will denote N s by N .

Lemma 2.3. A simplicial complex A• of local Λ-algebras with residue field
k and maximal ideal m(A)• is Artinian if and only if:

1) the normalisation N(cotA) of the cotangent space cotA := m(A)/
(m(A)2 + µm(A)) is finite-dimensional (i.e. concentrated in finitely
many degrees, and finite-dimensional in each degree).
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2) For some n > 0, m(A)n = 0.

Proof. [15] Lemma 1.16 �

As in [5], we say that a functor is left exact if it preserves all finite limits.
This is equivalent to saying that it preserves final objects and fibre products.

Definition 2.4. Define Sp to be the category of left-exact functors from
CΛ to Set. Define cSp to be the category of left-exact functors from sCΛ to
Set.

Definition 2.5. Given a functor F : CΛ → Set, we write F : sCΛ → Set to
mean A 7→ F (A0) (corresponding to the inclusion Sp ↪→ cSp).

2.2. Properties of morphisms

Definition 2.6. As in [9], we say that a functor F : CΛ → Set is smooth if
for all surjections A→ B in CΛ, the map F (A)→ F (B) is surjective.

Definition 2.7. We say that a map f : A→ B in sĈΛ is acyclic if πi(f) :
πi(A)→ πi(B) is an isomorphism of pro-Artinian Λ-modules for all i. f is
said to be surjective if each fn : An → Bn is surjective.

Note that for any simplicial abelian group A, the homotopy groups can
be calculated by πiA ∼= Hi(NA), the homology groups of the normalised
chain complex. These in turn are isomorphic to the homology groups of the
unnormalised chain complex associated to A.

Definition 2.8. We define a small extension e : I → A→ B in sCΛ to con-
sist of a surjection A→ B in sCΛ with kernel I, such that m(A) · I = 0. Note
that this implies that I is a simplicial complex of k-vector spaces.

Lemma 2.9. Every surjection in sCΛ can be factorised as a composition
of small extensions. Every acyclic surjection in sCΛ can be factorised as a
composition of acyclic small extensions.

Proof. [15] Lemma 1.23. �

Definition 2.10. We say that a morphism α : F → G in cSp is smooth if
for all small extensions A� B in sCΛ, the map F (A)→ F (B)×G(B) G(A)
is surjective.

Similarly, we call α quasi-smooth if for all acyclic small extensions A→
B in sCΛ, the map F (A)→ F (B)×G(B) G(A) is surjective.
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Lemma 2.11. A morphism α : F → G in Sp is smooth if and only if the
induced morphism between the objects F,G ∈ cSp is quasi-smooth, if and
only if it is smooth.

Proof. [15] Lemma 1.31. �

2.3. Derived deformation functors

Definition 2.12. Define the scSp to be the category of left-exact func-
tors from sCΛ to the category S of simplicial sets. This is equivalent to the
category of simplicial cosimplicial objects in Sp.

Define sSp to be the category of left-exact functors from CΛ to S.

Definition 2.13. A morphism α : F → G in scSp is said to be smooth if

(S1) for every acyclic surjectionA→ B in sCΛ, the map F (A)→ F (B)×G(B)

G(A) is a trivial fibration in S;

(S2) for every surjection A→ B in sCΛ, the map F (A)→ F (B)×G(B) G(A)
is a surjective fibration in S.

A morphism α : F → G in scSp is said to be quasi-smooth if it satisfies
(S1) and

(Q2) for every surjection A→ B in sCΛ, the map F (A)→ F (B)×G(B) G(A)
is a fibration in S.

Definition 2.14. Given A ∈ sCΛ and a finite simplicial set K, define AK ∈
CΛ by

(AK)i := HomS(K ×∆i, A)×HomSet(π0K,k) k.

Definition 2.15. Given F ∈ scSp, define F : sCΛ → S by

F (A)n := Fn(A∆n

).

For F ∈ cSp, we may regard F as an object of scSp (with the constant
simplicial structure), and then define F as above.

Lemma 2.16. A map α : F → G in cSp is smooth (resp. quasi-smooth) if
and only if the induced map of functors α : F → G is smooth (resp. quasi-
smooth) in scSp.

Proof. [15] Lemma 1.36. �
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The following Lemma will provide many examples of functors which are
quasi-smooth but not smooth.

Lemma 2.17. If F → G is a quasi-smooth map of functors F,G : sCΛ → S,
and K → L is a cofibration in S, then

FL → FK ×GK GL

is quasi-smooth.

Proof. This is an immediate consequence of the fact that S is a simplicial
model category, following from axiom SM7, as given in [3] §II.3. �

The following lemma is a consequence of standard properties of fibrations
and trivial fibrations in S.

Lemma 2.18. If F → G is a quasi-smooth map of functors F,G : sCΛ → S,
and H → G is any map of functors, then F ×G H → H is quasi-smooth.

Definition 2.19. A map α : F → G of functors F,G : CΛ → S is said to
be smooth (resp. quasi-smooth, resp. trivially smooth) if for all surjections
A� B in CΛ, the maps

F (A)→ F (B)×G(B) G(A)

are surjective fibrations (resp. fibrations, resp. trivial fibrations).

Proposition 2.20. A map α : F → G of left-exact functors F,G : CΛ → S
is smooth if and only if the maps Fn

αn−→ Gn of functors Fn, Gn : CΛ → Set
are all smooth.

Proof. [15] Proposition 1.39. �

Proposition 2.21. If a morphism F
α−→ G of left-exact functors F,G :

sCΛ → S is such that the maps

θ : F (A)→ F (B)×G(B) G(A)

are surjective fibrations for all acyclic small extensions A→ B, then α :
F → G is quasi-smooth (resp. smooth) if and only if θ is a fibration (resp.
surjective fibration) for all small extensions A→ B.
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Proof. [15] Proposition 1.63. �

Definition 2.22. We will say that a morphism α : F → G of quasi-smooth
objects of scSp is a weak equivalence if, for all A ∈ sCΛ, the maps πiF (A)→
πiG(A) are isomorphisms for all i.

2.4. Quotient spaces

Definition 2.23. Given functorsX : sCΛ → S andG : sCΛ → sGp, together
with a right action of G on X, define the quotient space by

[X/G]n = (X ×GWG)n = Xn ×Gn−1 ×Gn−2 × · · ·G0,

with operations as standard for universal bundles (see [3] Ch. V). Explicitly:

∂i(x, gn−1, gn−2, . . . , g0)

=


(∂0x ∗ gn−1, gn−2, . . . , g0) i = 0;
(∂ix, ∂i−1gn−1, . . . , (∂0gn−i)gn−i−1, gn−i−2, . . . , g0) 0 < i < n;
(∂nx, ∂n−1gn−1, . . . , ∂1g1) i = n;

σi(x, gn−1, gn−2, . . . , g0)

= (σix, σi−1gn−1, . . . , σ0gn−i, e, gn−i−1, gn−i−2, . . . , g0).

The space [•/G] is also denoted W̄G, and is a model for the classifying space
BG of G.

Lemma 2.24. If G : sCΛ → sGp is smooth, then W̄G is smooth.

Proof. For any surjection A→ B, we have G(A)→ G(B) fibrant and surjec-
tive on π0, which by [3] Corollary V.6.9 implies that W̄G(A)→ W̄G(B) is
a fibration. If A→ B is also acyclic, then everything is trivial by properties
of W̄ and G. �

Remark 2.25. Observe that this is our first example of a quasi-smooth
functor which is not a right Quillen functor for the simplicial model struc-
ture. The definitions of smoothness and quasi-smoothness were designed
with W̄G in mind.

Lemma 2.26. If X is quasi-smooth, then so is [X/G]→ W̄G.
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Proof. This follows from the observation that for any fibration (resp. trivial
fibration) Z → Y of G-spaces, [Z/G]→ [Y/G] is a fibration (resp. trivial
fibration). �

Corollary 2.27. If X is quasi-smooth and G smooth, then [X/G] is quasi-
smooth.

Proof. Consider the fibration X → [X/G]→ W̄G. �

2.5. Cohomology and obstructions

Given a quasi-smooth morphism α : F → G in scSp, there exist k-vector
spaces Hi(F/G) for all i ∈ Z.

By [15] Corollary 1.46, these have the property that for any simplicial
k-vector space V with finite-dimensional normalisation,

πm(F (k ⊕ V )×G(k⊕V ) {0}) ∼= H−m(F/G⊗ V ),

where V 2 = 0 and

H i(F/G⊗ V ) :=
⊕
n≥0

Hi+n(F/G)⊗ πn(V ).

If G = • (the one-point set), we write Hj(F ) := Hj(F/•).
We now have the following characterisation of obstruction theory:

Theorem 2.28. If α : F → G in scSp is quasi-smooth, then for any small

extension e : I → A
f−→ B in sCΛ, there is a sequence of sets

π0(FA)
f∗−→ π0(FB ×GB GA)

oe−→ H1(F/G⊗ I)

exact in the sense that the fibre of oe over 0 is the image of f∗. Moreover,
there is a group action of H0(F/G⊗ I) on π0(FA) whose orbits are precisely
the fibres of f∗.

For any y ∈ F0A, with x = f∗y, the fibre of FA→ FB ×GB GA over x
is isomorphic to ker(α : FI → GI), and the sequence above extends to a long
exact sequence

· · · f∗ // πn(FB ×GB GA, x)
oe // H1−n(F/G⊗ I)

∂e // πn−1(FA, y)
f∗ //

· · · f∗ // π1(FB ×GB GA, x)
oe // H0(F/G⊗ I)

−∗y // π0(FA).
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Proof. [15] Theorem 1.45. �

Corollary 2.29. A map α : F → G of quasi-smooth F,G ∈ scSp is a weak
equivalence if and only if the maps Hj(α) : Hj(F )→ Hj(G) are all isomor-
phisms.

Corollary 2.30. If α : F → G is quasi-smooth in scSp, then α is smooth
if and only if Hi(F/G) = 0 for all i > 0.

Proposition 2.31. Let X,Y, Z : sCΛ → S be left-exact functors, with X
α−→

Y and Y
β−→ Z quasi-smooth. There is then a long exact sequence

· · · ∂−→ Hj(X/Y )→ Hj(X/Z)→ Hj(Y/Z)

∂−→ Hj+1(X/Y )→ Hj+1(X/Z)→ · · ·

Proof. [15] Proposition 1.61. �

2.6. Model structures

Theorem 2.32. There is a simplicial model structure on scSp, for which
the fibrations are quasi-smooth morphisms, and weak equivalences between
quasi-smooth objects are those given in Definition 2.22.

Proof. This is [15] Theorem 2.14. �

Thus the homotopy category Ho(scSp) is equivalent to the category of
quasi-smooth objects in scSp, localised at the weak equivalences of Defini-
tion 2.22.

Definition 2.33. Given any morphism f : X → Z, we define Hn(X/Z) :=

Hn(X̂/Z), for X
i−→ X̂

p−→ Z a factorisation of f with i a geometric trivial
cofibration, and p a geometric fibration.

2.6.1. Homotopy representability.

Definition 2.34. Define the category S to consist of functors F : sCΛ → S
satisfying the following conditions:

(A0) F (k) is contractible.

(A1) For all small extensions A� B in sCΛ, and maps C → B in sCΛ, the
map F (A×B C)→ F (A)×hF (B) F (C) is a weak equivalence, where ×h
denotes homotopy fibre product.
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(A2) For all acyclic small extensions A� B in sCΛ, the map F (A)→ F (B)
is a weak equivalence.

Say that a natural transformation η : F → G between such functors is
a weak equivalence if the maps F (A)→ G(A) are weak equivalences for all
A ∈ sCΛ, and let Ho(S) be the category obtained by formally inverting all
weak equivalences in S.

Theorem 2.35. There is a canonical equivalence between the geometric
homotopy category Ho(scSp) and the category Ho(S).

Proof. This is [15] Theorem 2.30. �

2.6.2. Equivalent formulations. If k is a field of characteristic 0, then
we may work with dg algebras rather than simplicial algebras.

Definition 2.36. Define dgCΛ to be the category of Artinian local differ-
ential N0-graded graded-commutative Λ-algebras with residue field k.

Definition 2.37. Define a map A→ B in dgCΛ to be a small extension if
it is surjective and the kernel I satisfies I ·m(A) = 0.

Definition 2.38. Define sDGSp to be the category of left exact functors
from dgCΛ to S.

Definition 2.39. Say a map X → Y in sDGSp is quasi-smooth if for all
small extensions f : A→ B in dgCΛ, the morphism

X(A)→ Y (A)×Y (B) X(B)

is a fibration in S, which is moreover a trivial fibration if f is acyclic.

Definition 2.40. We will say that a morphism α : F → G of quasi-smooth
objects of sDGSp is a weak equivalence if, for allA ∈ sCΛ, the maps πiF (A)→
πiG(A) are isomorphisms for all i.

Proposition 2.41. There is a model structure on sDGSp, for which the
fibrations are quasi-smooth morphisms, and weak equivalences between quasi-
smooth objects are those given in Definition 2.40.

Proof. This is [15] Proposition 4.12. �
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Most of the constructions from sCΛ carry over to dgCΛ. However, there
is no straightforward analogue of Definition 2.15.

Definition 2.42. Define the normalisation functorN : sCΛ → dgCΛ by map-
pingA to its associated normalised complexNA, equipped with the Eilenberg-
Zilber shuffle product (as in [18]).

Definition 2.43. Define Spf N∗ : sDGSp→ scSp by mapping X : dgCΛ →
S to the composition X ◦N : sCΛ → S. Note that this is well-defined, since
N is left exact.

Theorem 2.44. Spf N∗ : sDGSp→ scSp is a right Quillen equivalence.

Proof. This is [15] Theorem 4.18. �

In particular, this means that Spf N∗ maps quasi-smooth morphisms to
quasi-smooth morphisms, and induces an equivalence RSpf N∗ : Ho(sDGSp)
→ Ho(scSp).

3. Derived deformation complexes

3.1. Definitions

Definition 3.1. Define a pre-SDC to consist of homogeneous functors En :
CΛ → Set, for n ∈ N0, together with maps

∂i : En → En+1 1 ≤ i ≤ n
σi : En → En−1 0 ≤ i < n,

an associative product ∗ : Em × En → Em+n, with identity 1 : • → E0, such
that:

1) ∂j∂i = ∂i∂j−1 i < j.

2) σjσi = σiσj+1 i ≤ j.

3) σj∂i =


∂iσj−1 i < j
id i = j, i = j + 1
∂i−1σj i > j + 1

.

4) ∂i(e) ∗ f = ∂i(e ∗ f).

5) e ∗ ∂i(f) = ∂i+m(e ∗ f), for e ∈ Em.

6) σi(e) ∗ f = σi(e ∗ f).



i
i

“1-pridham” — 2015/1/5 — 16:42 — page 430 — #12 i
i

i
i

i
i

430 J. P. Pridham

7) e ∗ σi(f) = σi+m(e ∗ f), for e ∈ Em.

Remark 3.2. Note that a pre-SDC is an SDC (in the sense of [13]) if and
only if the spaces En are smooth for all n.

Definition 3.3. Define a pre-derived deformation complex (pre-DDC) E
to be a simplicial complex E• of pre-SDCs.

Given K ∈ S, observe that EnK := HomS(K,En) is a pre-SDC.

Remark 3.4. If each Em is an SDC, then Lemma 2.20 implies that for all
n, En : CΛ → S is smooth. For K ∈ S contractible, this implies that EK is
an SDC.

Definition 3.5. Given a left-exact functor F : CΛ → Set, define the tangent
space tanF by tanF := F (k[ε]/(ε2)). Since k[ε]/(ε2) is an abelian group
object in CΛ, tF is an abelian group. The endomorphisms ε 7→ λε of k[ε]/(ε2)
make tanF into a vector space over k.

Given a morphism α : F → G of such functors, define the relative tan-
gent space tan(F/G) := ker(tanF → tanG).

Definition 3.6. Given a morphism f : E → F of pre-SDCs for which each
fn : En → Fn is smooth, we may define cohomology groups H∗(E/F ) as
cohomology of the cosimplicial complex C•(E/F ) given by Cn(E/F ) :=
tan(E/F ), with cosimplicial structure defined as in [13] §1.

Definition 3.7. Given a morphism E → F of pre-DDCs, levelwise smooth
in the sense that each f in : Ein → F in is smooth, observe that the cohomology
groups Hi(E/F ) are simplicial vector spaces, and denote the corresponding
normalised chain complexes by NHi(E/F ).

Definition 3.8. A morphism f : E → F of pre-DDCs is said to be quasi-
smooth if:

Q1. for all n, i ≥ 0, Ein → Ei∂∆n ×F i∂∆n
F in is smooth, and

Q2. for all i > 0, Hi(E/F ) is a constant simplicial complex, or equivalently

Q2’. for all n > 0, i > 0, NnHi(E/F ) = 0.

Say that a pre-DDC E is a DDC if it is quasi-smooth, i.e. if E → • is
quasi-smooth.

Definition 3.9. Given a levelwise smooth morphism f : E → F of pre-
DDCs, define the tangent chain cochain complex by NC••(E/F ).
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Definition 3.10. Say that a simplicial cosimplicial complex V ∈ scVectk is
quasi-smooth if Hn(NV i) = 0 for all n, i ≥ 0 and Hi(NV )n = 0 for all i > 0
and n > 0.

Definition 3.11. Given V ∈ scVectk quasi-smooth, define a cochain com-
plex yV by:

(yV )n :=

{
V n

0 n ≥ 0
H0(N−nV ) n < 0,

with differential dc in non-negative degrees, and ds in negative degrees.
Given a levelwise smooth morphism f : E → F of pre-DDCs, define

the cohomology groups H∗(yE/F ) := H∗(yC•(E/F )), noting that these are
given by

Hi(yE/F ) ∼=
{

Hi(C•0(E/F )) i > 0
H−iH

0(NC••(E/F )) i ≤ 0.

Lemma 3.12. If V ∈ scVectk is quasi-smooth, then the inclusion map

yV → TotNV

is a quasi-isomorphism, and

Hi(NZ
nV ) ∼= Hn−i(yV )

for all i, n ≥ 0.

Proof. Combine the proofs of [15] Lemma 1.56 and [15] Proposition 1.59. �

Lemma 3.13. A levelwise smooth morphism f : E → F of pre-DDCs is
quasi-smooth if and only if C••(E/F ) is quasi-smooth (in the sense of Defi-
nition 3.10).

Proof. Since f is levelwise smooth, we know by Proposition 2.20 that each
Ei → F i is a smooth map of functors CΛ → S. For a small extension A→ B
in CΛ with kernel I, we thus deduce that Ei(A)→ F i(A)×F i(B) E

i(B) is a
fibration, with fibre Ci

•(E/F )⊗ I.
Hence H∗C

i
•(E/F ) = 0 for all i if and only if we have Ei → F i trivially

smooth for all i, i.e. if Definition 3.8.(Q1) holds. The result now follows from
the characterisation of Definition 3.10. �

Definition 3.14. A morphism f : E → F of DDCs is said to be a quasi-
isomorphism if H∗(yf) : H∗(yE)→ H∗(yF ) is an isomorphism.
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Definition 3.15. Recall from [16] Definition 4.1 that for any pre-SDC E,
we define the Maurer-Cartan functor MCE : sCΛ → Set by

MCE(A) ⊂
∏
n≥0

En+1(AI
n

),

consisting of those ω satisfying:

ωm(s1, . . . , sm) ∗ ωn(t1, . . . , tn) = ωm+n+1(s1, . . . , sm, 0, t1, . . . , tn);

∂iωn(t1, . . . , tn) = ωn+1(t1, . . . , ti−1, 1, ti, . . . , tn);

σiωn(t1, . . . , tn) = ωn−1(t1, . . . , ti−1,min{ti, ti+1}, ti+2, . . . , tn);

σ0ωn(t1, . . . , tn) = ωn−1(t2, . . . , tn);

σn−1ωn(t1, . . . , tn) = ωn−1(t1, . . . , tn−1),

σ0ω0 = 1,

where I := ∆1.

Definition 3.16. Given a pre-DDC E, define the derived Maurer-Cartan
functor MC(E) : sCΛ → S by HomS(K,MC(E)) := MC(EK).

Proposition 3.17. If f : E → F is a quasi-smooth morphism of pre-DDCs,
then

MC(f) : MC(E)→MC(F )

is quasi-smooth, with cohomology groups

Hi(MC(E)/MC(F )) ∼= Hi+1(yE/F ).

In particular, if E is a DDC, then MC(E) is quasi-smooth.

Proof. By construction, the simplicial matching maps are given by

MC(En)→ MC(Fn)×MC(F∂∆n ) MC(E∂∆n) = MC(E∂∆n ×F∂∆n
Fn).

Condition (Q1) from Definition 3.8 for f implies that

En → E∂∆n ×F∂∆n
Fn

is a levelwise smooth map of SDCs, so [16] Proposition 4.3 implies that
MC(f) satisfies condition (S1) from Definition 2.13.
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We now need to check that the quasi-smooth partial matching maps

α : MC(En)→ MC(EΛnk )×MC(FΛn
k

) MC(Fn)

are smooth. To do this, we verify the criterion of Corollary 2.30.
Taking the relative version of [16] Proposition 4.7, we see that H∗(α) is

cohomology of the cochain complex

ker(Nc(En/Fn)[1]→ Nc(EΛnk/FΛnk );

this is isomorphic to N s
nNc(E/F )[1], which gives isomorphisms

H0(α) ∼= NnZ1C(E/F ), Hi(α) ∼= NnHi+1(E/F ) for i > 0.

Since NnHi(E/F ) = 0 all i > 0 by condition (Q2’), we see that Hi(α) = 0
for all i > 0. This implies quasi-smoothness of MC(f).

Now for i > 0, the calculations above combine with Lemma 3.12 to give

Hi(MC(E)/MC(F )) = Hi(MC(E0)/MC(F0))

= Hi+1(E0/F0) = Hi+1(yE/F ).

For i ≤ 0,

Hi(MC(E)/MC(F )) = H−iH
0(C(E/F )[1])

= H−iZ
1(C(E/F )) = Hi+1(yE/F ),

since C(E/F ) is quasi-smooth (in the sense of Definition 3.10) �

Corollary 3.18. If f : E → F is a quasi-isomorphism of DDCs, then
MC(f) : MC(E)→MC(F ) is a weak equivalence.

Definition 3.19. Given a pre-DDC E, note that E0 acts on MC(E) by
conjugation. Define the derived deformation functor Def(E) : sCΛ → S by

Def(E) := [MC(E)/E0],

the homotopy quotient (as in Definition 2.23).

Lemma 3.20. Given a simplicial group G, and a fibration X → Y of sim-
plicial G-sets, if each Xn and Yn is a free Gn-set, then X/G→ Y/G is a
fibration in S.
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Proof. Combine [3] Corollary V.2.7 and [3] Lemma V.3.7. �

Corollary 3.21. If f : E → F is a quasi-smooth morphism of pre-DDCs,
then

(f, q) : Def(E)→ Def(F )×W̄F 0 W̄E0,

is quasi-smooth, where W̄G := G\WG is a model for the classifying space
BG of G (as in [3] §V.4).

Thus

Def(f) : Def(E)→ Def(F )

is quasi-smooth, and

MC(E)→ Def(E)×Def(F ) MC(F )

is a weak equivalence.
In particular, if E is a DDC, then MC(E)→ Def(E) is a weak equiva-

lence.

Proof. First observe that E0 → F 0 is trivially smooth, so MC(E)×WE0 →
MC(F )×WE0 is quasi-smooth.

Given a surjection A→ B in sCΛ, apply Lemma 3.20, taking

X = WE0(A)×MC(E)(A),

Y = WE0(A)×MC(E)(B)×MC(F )(B) MC(F )(A),

and G = E0(A). This shows that (f, q) satisfies condition (S1) from Defini-
tion 2.13. Condition (Q2) follows similarly, so (f, q) is quasi-smooth.

That Def(F ) is quasi-smooth follows from the observation that W̄E0 →
W̄F 0 is trivially smooth.

For the final statements, note that MC(E) = Def(E)×W̄E0 1, and

Y := Def(E)×Def(F ) MC(F ) = Def(E)×W̄F 0 1

If Z := W̄E0 ×W̄F 0 1, then Z is trivially fibrant, so 1→ Z is a weak equiv-
alence. The map MC(E)→ Y is then just the pullback of 1→ Z along
Y → Z. �
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3.2. Comparison with SDCs

Definition 3.22. Given a pre-DDC E, define a pre-DDC DE by (DE)n :=
(En)∆n

, in the notation of [16] Definition 3.11, i.e.

(EX)n = (En)Xn .

For x ∈ Xn+1, y ∈ Yn+1, z ∈ Xm+n, 1 ≤ i ≤ n, 0 ≤ j < n, e ∈ (EX)n and
f ∈ (EX)m, we define the operations by

∂i(e)(x) := ∂i(e(∂ix))

σj(e)(y) := σj(e(σiy)),

(f ∗ e)(z) := f((∂m+1)nz) ∗ e((∂0)mz).

Proposition 3.23. If f : E → F is a map of pre-DDCs with

1) f i : Ei → F i smooth for all i, and

2) Hi(E/F ) a constant simplicial complex for all i > 0,

then Df : DE → DF is quasi-smooth.
In particular, DE is a DDC for all SDCs E.

Proof. By smooth base change, we know that Df is levelwise smooth. We
now verify the conditions of Lemma 3.13.

Ci(DE/DF )n = Ci(En/Fn)∆n
i = Ci(En/Fn)⊗ Ci(∆n, k).

Thus

H∗(DE/DF )i = H∗(E
i/F i)⊗H∗(C

i(∆•, k)) = 0,

since the cosimplicial complex k ⊗∆•i is contractible. Moreover,

H∗(DE/DF )n = H∗(En/Fn)⊗H∗(∆n, k) = H∗(En/Fn),

so Hi(DE/DF )n is constant for i > 0. �

Lemma 3.24. If X in scSp is a levelwise quasi-smooth object for which
the simplicial vector spaces Hi(tanX) have constant simplicial structure for
i > 0, then

H∗(X) ∼= H∗(TotN tanX),

as defined in Definitions 2.33 and 3.5 respectively.
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Proof. By [15] Lemma 2.26, there is a weak equivalence X → X to a quasi-
smooth object. Since this is also a levelwise weak equivalence, we find that
TotN tanX → TotN tanX is a quasi-isomorphism. Now Proposition 2.21
implies that X is quasi-smooth, so H∗(X) ∼= H∗(X) ∼= H∗(TotN tanX), the
last isomorphism coming from [15] Theorem 1.59. �

Proposition 3.25. If E is a pre-DDC for which E → • satisfies the con-
ditions of Proposition 3.23, then α : Def(E)→ Def(DE) is a quasi-smooth
replacement for Def(E).

Proof. By Proposition 3.23, we know that Def(DE) is quasi-smooth, so we
just need to show that α is a weak equivalence. Now, for i > 0,

Hi(tanDef(E)) = H i(tanMC(E)) = Hi+1(E),

which has constant simplicial structure, so

Hi(Def(E)) = Hi(TotN tanDef(E)) = Hi+1(TotNC•(E)).

Similarly, Hi(Def(DE)) = Hi+1(TotNC•(DE)) ∼= Hi+1(TotNC•(E)), so
[15] Corollary 2.16 ensures that α is a weak equivalence. �

Corollary 3.26. For an SDC E, the functors DefE (from [16] Defini-
tion 4.4) and Def(DE) (and hence MC(DE)) are weakly equivalent (in
scSp).

Proof. Recall that DefE is [MCE/E
0], which is a quasi-smooth replacement

of [MCE/E
0] by [15] Lemma 2.26, in the sense that there is a weak equiva-

lence [MCE/E
0]→ DefE . If we let E denote the constant pre-DDC En := E,

then [MCE/E
0] = Def(E), and we may apply Proposition 3.25. �

Lemma 3.27. If E is a pre-DDC for which E → • satisfies the condi-
tions of Proposition 3.23, then for all A ∈ CΛ, the map α(A) : Def(E)(A)→
Def(DE)(A) is a weak equivalence in S.

Proof. First observe that Def(E)(A)0 = MCE0
(A) = Def(DE)(A), and write

π0F := F |CΛ . Now, tanπ0Def(E) is the mapping cone of C0(E)
dc−→ Z1(E),

so (Q2) ensures that πn tanπ0Def(E) = H1−n(yE). Observe that πn tanπ0

Def(DE) = H1−n(yE), similarly.
The proofs of Proposition 2.28 and Corollary 2.29 adapt to show that

α(A) is a weak equivalence in S for all A, by taking small extensions A→ B
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with kernel I, and considering the long exact sequences

. . . −−−−→ H1−n(yE)⊗ I −−−−→ πn(Def(E)(A), x) −−−−→ πn(Def(E)(B), x) −−−−→ . . .y y y y y

. . . −−−−→ H1−n(yE)⊗ I −−−−→ πn(Def(DE)(A), x) −−−−→ πn(Def(DE)(B), x) −−−−→ . . . .

associated to the fibrations Def(E)(A)→ Def(E)(B) and Def(DE)(A)→
Def(DE)(B). �

4. Constructing DDCs

4.1. Simplicial monadic adjunctions

A simplicial category C has a class Ob C of objects, and for all A,B ∈ Ob C,
a simplicial set HomC(A,B) of morphisms, with the usual multiplication
and identity properties. For a simplicial category C, we denote by Cn the
category with objects Ob C and morphisms HomCn(A,B) := HomC(A,B)n.

Definition 4.1. Say that a functor F : C → D of simplicial categories is an
equivalence if the functors Fn : Cn → Dn are all equivalences.

Definition 4.2. Given a simplicial category C, set

HomC(A,B) := (HomC)0(A,B).

Definition 4.3. For simplicial categories D, E , and a pair of functors

D
G //E
F
oo ,

recall that an adjunction F a G is a natural isomorphism

HomD(FA,B) ∼= HomE(A,GB).

We say that F is left adjoint to G, or G is right adjoint to F . Let ⊥ = FG,
and > = GF . To give an adjunction is equivalent to giving two natural
transformations, the unit and co-unit

η : idE → >, ε : ⊥ → idD,

satisfying the triangle identities εF ◦ Fη = idF , Gε ◦ ηG = idG.
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Given an adjunction

D
U

>
//E

F
oo

with unit η : id→ UF and co-unit ε : FU → id, we let > = UF , and define
the simplicial category E> of >-algebras to have objects

>E θ−→ E,

for θ ∈ Hom0(>E,E), such that θ ◦ ηE = id and θ ◦ >θ = θ ◦ UεFE . We
define morphisms by setting

HomE>(>E1
θ−→ E1,>E2

φ−→ E2) ⊂ HomE(E1, E2)

to be the equaliser of

HomE(E1, E2)
φ∗◦>//
θ∗
//HomE(>E1, E2).

We define the comparison functor K : D → E> by

B 7→ (UFUB
UεB−−→ UB)

on objects, and K(g) = U(g) on morphisms.

Definition 4.4. An adjunction

D
U

>
//E

F
oo ,

of simplicial categories is said to be monadic ifK : D → E> is an equivalence.

Examples 4.5. Intuitively, monadic adjunctions correspond to algebraic
theories, such as the adjunction

Ring
U

>
//
Set,

Z[−]
oo

between rings and sets, U being the forgetful functor. Other examples are
k-algebras over k-vector spaces, or groups over sets.
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Definition 4.6. Given an adjunction

D
V //E
G

⊥oo ,

let ⊥ = V G, so ⊥opp is a monad on Eopp. Define E⊥ := ((Eopp)⊥
opp

)opp, with
K = Kopp : D → E⊥. The adjunction is said to be comonadic if K : D → E⊥
is an equivalence.

Example 4.7. If X is a topological space (or any site with enough points)
and X ′ is the set of points of X, let u : X ′ → X be the associated morphism.
Then the adjunction u−1 a u∗ on sheaves is comonadic, so the category of
sheaves on X is equivalent u−1u∗-coalgebras in the category of sheaves (or
equivalently presheaves) on X ′

A more prosaic example is that for any ring A, the category of A-
coalgebras is comonadic over the category of A-modules.

4.1.1. Bialgebras. As in [20] §IV, take a category B equipped with both
a monad (>, µ, η) and a comonad (⊥,∆, γ), together with a distributivity
transformation λ : >⊥ =⇒ ⊥> satisfying various additional conditions.

Definition 4.8. Given a distributive monad-comonad pair (>,⊥) on a
simplicial category B, define the category B>⊥ of bialgebras as follows. The

objects of B>⊥ are triples (θ,B, β) with (>B θ−→ B) an object of B> and

B
β−→ ⊥B an object of B⊥, such that the composition (β ◦ θ) : >B → ⊥B

agrees with the composition

>B >β−−→ >⊥B λ−→ ⊥>B ⊥θ−−→ ⊥B.

Morphisms are then given by setting

HomB>⊥(>B θ−→ B
β−→ ⊥B,>B′ θ

′

−→ B′
β′−→ ⊥B′) ⊂ HomB(B,B′)

to be the equaliser of

HomB(B,B′)
(θ′∗◦>,β′∗) //

(θ∗,β∗◦⊥)
//HomB(>B,B′)×HomB(B,⊥B′).

Example 4.9. If X is a topological space (or any site with enough points)
and X ′ is the set of points of X, let D be the category of sheaves of rings on
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X. If B is the category of sheaves (or equivalently presheaves) of sets on X ′,
then the description above characterises D as a category of bialgebras over
B, with the comonad being u−1u∗ for u : X ′ → X, and the monad being the
free polynomial functor.

4.2. The construction

We let sCat denote the category of simplicial categories.

Definition 4.10. Given functorsA f−→ B g←− C of simplicial categories, define
the fibre product A×B C by

Ob (A×B C) = {(A, β,C) : A ∈ ObA, C ∈ ObC, β ∈ IsoB0
(fA, gC)},

with morphisms

HomA×BC((A, β,C), (A′, β′, C ′))

= HomA(A,A′)×β′∗f,HomB(fA,gC′),β∗g HomC(C,C
′).

Definition 4.11. We say that a functor F : CΛ → Set is homogeneous if
for all small extensions A→ B in CΛ,

F (A×B C)→ F (A)×F (B) F (C)

is an isomorphism. Note that this is equivalent to being a disjoint union of
left-exact functors.

Similarly, a functor D : CΛ → sCat is said to be homogeneous if

D(A×B C)→ D(A)×D(B) D(C)

is an equivalence for all small extensions A→ B.

Definition 4.12. We say that a homogeneous functor B : CΛ → sCat has
uniformly trivial deformation theory if

1) for all A ∈ CΛ and all B1, B2 ∈ ObB(A), the functor HomB(B1, B2) :
CA → Set of morphisms from B1 to B2 is trivially smooth (in the sense
of Definition 2.19) and homogeneous;

2) for A′ � A in CΛ, B0(A′)→ B0(A) is essentially surjective.
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Now, assume that we have a diagram

D
U

>
//

V

��

E
F

oo

V

��
A

Ga

OO

U

>
// B,

F
oo

Ga

OO

of adjunctions of homogeneous simplicial category-valued functors on CΛ,
with F a U monadic and G ` V comonadic. Let

>h = UF ⊥h = FU

⊥v = V G >v = GV,

with

η : 1→ >h, γ : ⊥v → 1, ε : ⊥h → 1 and α : 1→ >v.

Assume that these adjunctions satisfy the simplicial analogues of [20] §IV
or [13] §2, in other words that U and V commute with everything (although
G and F need not commute).

FixD ∈ ObD(k), such that we may lift UV D ∈ ObB(k) toB ∈ ObB(Λ),
up to isomorphism (in B0(k)).

Theorem 4.13. There is a natural pre-DDC E associated to this diagram,
given by

En = HomB(>nhB,⊥nvB)UV (αnD◦εnD).

If E is levelwise smooth, satisfying Condition (Q2) of Definition 3.8,
then the classifying space W̄DD,id is canonically weakly equivalent to the
restriction π0Def(E) (from Lemma 3.27) as a functor from CΛ to S. Here
DD,id(A) is the simplicial groupoid given by the fibre product

D(A)×D(k) (D, id),

where (D, id) is the category with one object and one morphism.

Proof. For each m, Em is the SDC defined in [13] §2 associated to the monad
>h and comonad ⊥v over the category Bm.
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Since the adjunctions are monadic or comonadic, the proof of [13] The-
orem 2.2 adapts to give functorial equivalences

K(A) : D(A)→ B>h

⊥v
(A)

between D and the simplicial category of (>h,⊥v)-bialgebras.
Let D′ ∈ ObB>h

⊥v
(k) be the bialgebra over B̄ ∈ ObB(k), with bialgebraic

structure coming from the isomorphism UV D ∼= B̄. Let G be the full sub-
category of B>h

⊥v
(A) on objects

MCE0
(A) = {ω ∈ ObB>h,⊥v(A) : X̄ = D′ ∈ ObB>h,⊥v(k).

Morphisms in G are just

HomG(ω, ω′) = {f ∈ E0 : f ∗ ω = ω′ ∗ f},

from which we deduce that G is a simplicial groupoid. Moreover, observe that
G → (B>h

⊥v
)D′,id is an isomorphism of simplicial categories, so G is equivalent

to DD,id. In particular, this implies that DD,id is a simplicial groupoid. It
therefore suffices to compare G with Def(E).

Lemma 4.14. The functor G : CΛ → sGpd is quasi-smooth, in the sense
that it maps small extensions to fibrations (as defined in [3] §V.7).

Proof of lemma. Smoothness of E0
0 implies that the path-lifting property is

satisfied. Given K ↪→ L ∈ S, and a small extension A→ B with kernel I,
the obstruction to lifting the diagram

K −−−−→ HomG(ω, ω′)(A)y y
L −−−−→ HomG(ω, ω′)(A)

lies in H1(ker(C•(EL)→ C•(EK)))⊗ I. If we write V • = ker(C•(EL)→
C•(EK)), then we have an exact sequence

H0(EL)
α−→ H0(EK)→ H1(V •)→ H1(EL)

β−→ H1(EK).

If K ↪→ L is a trivial cofibration, then Condition (Q2) of Definition 3.8
ensures that α is surjective and β an isomorphism, so the obstruction is zero
and the lift exists, proving that HomG(ω, ω′) is quasi-smooth, as required.

�
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Now, the inclusions MCE0
↪→ MC(E) and HomG(ω, ω′) ↪→ E0 define a

morphism

α : W̄G → π0Def(E)

of quasi-smooth functors CΛ → Set. Note that W̄G0 = MCE0
= π0Def(E)0.

(Q2) also ensures that α is a weak equivalence on tangent spaces, with
πnW̄G(k[ε]) = H1−n(yE). As in the proof of Lemma 3.27, this implies that
α(A) is a weak equivalence in S for all A. �

Remark 4.15. If B has uniformly trivial deformation theory, then note
that D̃ always exists, and that the pre-DDC E of Theorem 4.13 automati-
cally satisfies Definition 3.8.(Q1).

However, if E just satisfies all the conditions of Theorem 4.13, then
Propositions 3.23 and 3.25 then give a DDC DE, which by Lemma 3.27 also
has W̄DD,id ∼ π0Def(DE).

4.3. Deformations of diagrams and invariance under
weak equivalence

In a similar vein, we may study deformations of a morphism, or even of a
diagram.

Definition 4.16. Define ∆∗∗ to be the subcategory of the ordinal num-
ber category ∆ containing only those morphisms f : m→ n with f(0) =
0, f(m) = n. Given a category C, a functor X : ∆∗∗ → C consists of objects
Xn ∈ C, with all of the operations ∂i, σi of a cosimplicial complex except
∂0, ∂n+1 : Xn → Xn+1.

Definition 4.17. Given a monoidal category C and a set O, recall from
[14] that a C-valued quasi-descent datum X on objects O consists of:

1) objects X(a, b) ∈ C∆∗∗ for all a, b ∈ O;

2) morphismsX(a, b)m ⊗X(b, c)n
∗−→ X(a, c)m+n making the following dia-

gram commute for all a, b, c ∈ O

∆∗∗ ×∆∗∗ −−−−−−−−−→
X(a,b)⊗X(b,c)

C

×
y y∗

∆∗∗ −−−−→
X(a,c)

C.
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3) morphisms 1→ X(a, a)0 for all a ∈ O, acting as the identity for the
multiplication ∗.

Note that a pre-DDC over Λ is a quasi-descent datum (on one object)
in the monoidal category (sSp,×).

Definition 4.18. Let QDat(C) be the category of C-valued quasi-descent
data, i.e. of pairs (O, X) for O a set and X a quasi-descent datum on
objects O.

We say that D is an enrichment of a C-enriched category F if ObF ∼=
ObD and F(x, y) ∼= D0(x, y), compatible with the product and identities.

Proposition 4.19. For a diagram of simplicial category-valued functors
as in §4.2, the sSp-enriched category B(Λ) has a natural enrichment in
QDat(sSp). If the simplicial structure on B is constant, then this enrich-
ment is in QDat(Sp).

Proof. This is just [14] Proposition 2.12. The enriched Hom-set Hom(B,B′) :
CΛ → S∆∗∗ is given by

Homn(B,B′) := HomB(>nhB,⊥nvB′).

If the simplicial structure on B is constant, then HomB = HomB, so
Hom(B,B′) lies in Sp. �

Definition 4.20. Given a morphism f : D → D′ in D(k) for which UV D,
UV D′ lift to B,B′ in B(Λ), define

EnD/B(f) := Homn(B,B′)UV (αn
D′◦f◦ε

n
D) ∈ sSp

Write E∗D/B(D) := E∗D/B(idD).

Definition 4.21. Given a morphism f : D → D′ inD(k) for which E∗D/B(f)

∈ (sSpk)
∆∗∗ is levelwise smooth, define

C•D/B(f) := tanE∗D/B(f),

and note that that this becomes a cosimplicial complex (of simplicial com-
plexes), by [16] Lemma 3.10. Explicitly,

Cn
D/B(f) = tan HomD|Ck (⊥n+1

h D,>n+1
h D′)αn+1

D′ ◦f◦ε
n
D
.
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Define

ExtnD/B(f) := Hn(C•D/B(f)) ∈ sVectk

ExtnD/B(f) := Hn(TotNC•D/B(f)) ∈ Vectk.

Definition 4.22. Say that a morphism f : D → D′ in D(k) is Q2 over B if

1) UV D,UV D′ lift to B(Λ),

2) E∗D/B(f) is levelwise smooth, and

3) ExtiD/B(f) is a constant simplicial complex for i > 0.

We say that f is quasi-smooth over B if in addition H∗C
n
D/B(f) = 0 for

all n.

Remark 4.23. Note that if f is Q2 over B, then we have Ext∗D/B(f) =
H∗(yNC•D/B(f)), by Lemma 3.12.

Definition 4.24. Given a small category I, and an I-diagram D : I→ D(k)
with objects UV D(i) lifting to B(Λ), define the pre-DDC E•D/B(D) by

EnD/B(D) =
∏

i0
f1−→i1

f2−→··· fn−→in
in I

En(D(fn ◦ fn−1 ◦ · · · f0)) =
∏
x∈BIn

En(D(∂ n−1
1 x)),

where BI is the nerve of I (so BI0 = Ob (I), BI1 = Mor (I)), and ∂ −1
1 := σ0.

The operations are defined as in Definition 3.22.

Lemma 4.25. Given an I-diagram D : I→ D(k) with all morphisms D(f)
quasi-smooth (resp. Q2) over B, the pre-DDC E•D/B(D) is quasi-smooth

(resp. is levelwise smooth and satisfies Definition 3.8.(Q2)).

Proposition 4.26. Given an I-diagram D : I→ D(k) with all morphisms
Q2, the classifying space W̄ (DI)D,id and π0Def(E•D/B(D)) are canonically
weakly equivalent as functors from CΛ to S.

Proof. This is just [14] Lemma 1.36. �

Definition 4.27. Say that a morphism f : D → D′ in D(k) is an ExtD/B-
equivalence if UV D,UV D′ lift toB,B′ in B(Λ), with E∗(f) levelwise smooth,
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and the maps

Ext∗D/B(idD)
f∗−→ Ext∗D/B(f)

f∗←− Ext∗D/B(idD′)

are isomorphisms.

Proposition 4.28. If a morphism f : D → D′ in D(k) is an ExtD/B-
equivalence, with the morphisms f, idD, idD′ all Q2, then the DDCs DE•D/B(D)

and DE•D/B(D′) are quasi-isomorphic.

Proof. Let I := (• → •) be the category with two objects and one non-

identity morphism, and consider the diagram D : I→ D(k) given by D
f−→

D′. By Lemma 4.25 and Proposition 3.23, we know that the pre-DDCs
DE•D/B(D), DE•D/B(D′) and DE•D/B(D) are all DDCs.

The inclusions of objects into I give morphisms E•D/B(D)← E•D/B(D)→
E•D/B(D′). We just need to describe the cohomology groups H∗(yE•D/B(D))
to show that these induce quasi-isomorphisms.

The tangent space C•D/B(D) is the diagonal cosimplicial complex associ-
ated to the bicosimplicial complex∏

x∈BIm

Cn
D/B(D(∂ m−1

1 x)),

whose horizontal normalisation is the cochain complex

C•D/B(idD)× C•D/B(idD′)
(f∗,−f∗)−−−−−→ C•D/B(f)

in degrees 0 and 1.
Thus C•D/B(D) is the mapping cone of the morphism (f∗,−f∗). Since f

is an ExtD/B-equivalence, we deduce that the maps

Ext∗D/B(idD)← H∗(yE•D/B(D))→ Ext∗D/B(idD′)

are indeed isomorphisms. �

4.3.1. Constrained deformations. We now consider a generalisation,
by taking a small diagram

D : I→ D(k),

a subcategory J ⊂ I, and D̃|J : J→ D(Λ) lifting D|J. We wish to describe

deformations of D which agree with D̃|J on J. Note that when I = (0→ 1)
and J = {1}, this is the type of problem considered in [2] and [19].
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Proposition 4.29. Given an I-diagram D : I→ D(k) with all morphisms

Q2, and with D̃|J as above, the simplicial groupoid of deformations of D
fixing D̃|J is governed by the pre-DDC

E•D/B(D)×E•D/B(D|J) •,

where • → E•D/B(D|J) is defined by the object of MC(E•D/B(D|J))0 corre-

sponding to D̃|J.

Proof. We need to show that the classifying space

W̄ (DI ×hDJ D̃|J)D,id

of the homotopy fibre of simplicial categories is canonically weakly equivalent
to

π0Def(E•D/B(D)×E•D/B(D|J) •)

as a functor from CΛ to S.
We know that the functor Def preserves inverse limits, so

π0Def(E•(D)×E•(D|J) •) = π0Def(E•D/B(D))×π0Def(E•(D|J)) •

By Lemma 3.27, Lemma 4.25 and Corollary 3.21, we know that

π0Def(E•D/B(D))(A)→ π0Def(E•(D|J))(A)

is a fibration in S, so the fibre over any point is the homotopy fibre. Propo-
sition 4.26 now shows that this is equivalent to the homotopy fibre of

W̄ (D(A)I)→ W̄ (D(A)J) over D̃|J, as required. �

5. Examples

We now show how to apply Theorem 4.13, combining it with Definitions
3.16 or 3.19 to obtain derived deformation functors. This gives many new
examples coming from categories with non-trivial simplicial structure.

5.1. Chain complexes

We will denote chain complexes by V•, and their underlying graded modules
by V∗.
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Definition 5.1. Define dgFMod(A) to be the category of chain complexes
of flat modules over A. We make this into a simplicial category by defining
the simplicial normalisation N sHom(U•, V•) to be the chain complex

N s
nHom(U•, V•) :=

{
Hom(U•, V•) n = 0∏
i≥0 Hom(Ui, Vi+n) n > 0

with boundary map add(f) := d ◦ f ± f ◦ d. This determines the simplicial
module Hom(U•, V•) := (N s)−1N sHom(U•, V•) by the Dold-Kan correspon-
dence.

Definition 5.2. Define gFMod(A) to be the category of flat N0-graded
modules over A, with the simplicial structure

N s
nHom(U∗, V∗) :=

{
Hom(U∗, V∗) n = 0
Hom(U∗, V∗[n])×Hom(U∗, V∗[n− 1]) n > 0

where the boundary map is given by d(f, g) := (g, 0).

Lemma 5.3. The functor gFMod : CΛ → sCat has uniformly trivial defor-
mation theory.

Proof. Since flat A-modules are free, it follows that objects lift. The other
properties from Definition 4.12 now follow by a simple calculation. �

Definition 5.4. Let the forgetful functor dgFMod→ gFMod be given by
V• 7→ V∗, and defined on simplicial morphisms by mapping f ∈ N s

nHom(U•, V•)
to (f, add(f)) ∈ N s

nHom(U∗, V∗).

Lemma 5.5. The forgetful functor dgFMod→ gFMod of simplicial cate-
gories has a right adjoint G, and the resulting adjunction is comonadic.

Proof. Define (GV∗)n := Vn ⊕ Vn−1, with d(v, w) = (w, 0). The unit α : U• →
G(U∗) of the adjunction is α(u) = (u, du), for any chain complex U•, and
the co-unit γ : G(V∗)→ V∗ is the map γ(v, w) = v of graded modules. �

Let ⊥ = V G and > = GV , for V the forgetful functor.
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Proposition 5.6. For U• ∈ dgFMod(k), the pre-DDC

En(A) := HomgFModA(Ũ∗ ⊗A,⊥nŨ∗ ⊗A)V (αnU )

of Theorem 4.13 is quasi-smooth, with cohomology

H∗(yE) = H∗(· · · add−−→ HomgZModk(U∗, U∗[−n])

add−−→ HomgZModk(U∗, U∗[−n− 1])
add−−→ · · · )

= Ext∗dgZVectk(U•, U•),

for dgZVectk the category of Z-graded chain complexes over k, and Ext the
hyperext functor of [21] §10.7.

Proof. Observe that H∗(En) is cohomology of the complex

Homn(U•,>U•)→ Homn(U•,>2U•)→ · · ·

associated to the monad > (as in [21] §8.7), so for n > 0, N s
nH∗(E) =

H∗(N s
nE) is cohomology of the complex

Hom(U∗, (>U)∗[n])→ Hom(U∗, (>2U)∗[n])→ · · · .

Now, (>U)∗ = ⊥(U∗), and the augmented cosimplicial complex

U∗ //⊥(U∗)
// //⊥2(U∗) // · · ·

is canonically contractible (in the sense of [21] 8.4.6), giving

N s
nHi(E) =

{
Hom(U∗, U∗[n]) i = 0
0 i > 0,

for n > 0, so E is quasi-smooth, and H−n(yE) = Ext−ndgZVectk
(U•, U•) for

n ≥ 0.
Since ker(γU : ⊥U∗ → U∗) = U∗[−1], the cosimplicial normalisation

Nn
c (⊥•U∗) = Nn−1

c (⊥•U∗)[−1], so Nn
c (⊥•U∗) = U∗[−n]. Thus NcC

•(E0) is
just

Hom(U∗, U∗)
add−−→ Hom(U∗, U∗[−1]))

add−−→ Hom(U∗, U∗[−2]))
add−−→ · · · ,

so Hi(yE) = ExtidgZVectk
(U•, U•) for i > 0. �
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Remarks 5.7.

1) Dually, we may consider deformations of (non-negatively graded) co-
chain complexes. This simplicial category is monadic over graded mod-
ules.

2) We may incorporate the constructions of this section into more
interesting examples. For instance, deformations of a complex of OX -
modules on an algebraic space X are given by considering the diagram

dgOXMod(X) >
//

u−1

��

dgMod(X)
OX⊗−
oo

u−1

��
g(u−1OX)Mod(X ′)

u∗Ga

OO

>
//
gMod(X ′),

(u−1OX)⊗−
oo

u∗Ga

OO

of simplicial categories, where u : X ′ → X is the map to X from its
set of geometric points. The resulting pre-DDC will be quasi-smooth
whenever ExtiOX (Mm,Mn) = 0 for all i > 0 and n > m.

5.2. Simplicial complexes

Definition 5.8. Define sFMod(A) to be the category of simplicial flat mod-
ules over A. We make this into a simplicial category by setting

Hom(U•, V•)n := Hom(∆n ⊗ U•, V•),

where, for a set X and module U , we set U ⊗X :=
⊕

x∈X U .

Definition 5.9. Define ∆∗ to be the subcategory of the ordinal number
category ∆ containing only those morphisms fixing 0. Given a category C,
define the category s+C of almost simplicial complexes (resp.the category
c+C of almost cosimplicial complexes) in C to consist of functors (∆∗)

opp → C
(resp. ∆∗ → C). Thus an almost simplicial object X∗ consists of objects
Xn ∈ C, with all of the operations ∂i, σi of a simplicial complex except ∂0,
satisfying the usual relations. Similarly, an almost cosimplicial complex has
all of the coface and coboundary operations except ∂0.

From now on, we will denote simplicial sets by X•, and their underlying
almost simplicial complexes by X∗.
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Definition 5.10. Define a simplicial structure on the category s+FMod(A)
by setting

Hom(U∗, V∗)n := Hom(∆n
∗ ⊗ U∗, V∗).

Remark 5.11. Recall that the Dold-Kan correspondence gives an equiva-
lenceN : sMod→ dgMod of categories, by the formulaN(V )n =

⋂n
i=1 ker(∂i :

Vn → Vn−1), with d := ∂0. Observe that this extends to an equivalence N :
s+Mod→ gMod of categories, given by the same formula. This is only a
weak equivalence of simplicial categories, not an equivalence.

Lemma 5.12. The forgetful functor sFMod→ s+FMod of simplicial cat-
egories has a right adjoint G∂, and the resulting adjunction is comonadic.

Proof. Let (G∂V∗)n := Vn ⊕ Vn−1 ⊕ · · · ⊕ V0, with operations

∂i(vn, . . . , v0) = (∂ivn, ∂i−1vn−1, . . . , ∂1vn−i+1, vn−i−1, . . . , v1, v0)

σi(vn, . . . , v0) = (σivn, σi−1vn−1, . . . , σ0vn−i, vn−i, . . . , v1, v0).

The unit α : U• → (G∂U∗)• of the adjunction is

α(u) = (u, ∂0u, ∂
2

0 u, . . . , ∂ n
0 u),

for any simplicial complex U•, and u ∈ Un. The co-unit γ : G∂V∗ → V∗ is the
map γ(vn, . . . , v0) = vn of almost simplicial complexes. �

Remark 5.13. The forgetful functor V∂ also has a left adjoint, which does
not respect the simplicial structure of the categories. It is given by L∂(V∗)n
= Vn+1, with ∂L∂Vi = ∂Vi+1, σL∂Vi = σVi+1, and unit σ0 : V∗ → V∂L∂(V∗) =
L∂(V )∗. Note that L∂V∂ is the functor DECopp defined on simplicial sets
in [4].

Definition 5.14. Define objects Ξn ∈ s+Set by Ξnm = Hom∆∗([m], [n]), and
let ∂Ξn be the boundary of Ξn (i.e. the union of the images of all maps
Ξn−1 → Ξn). Note that L(Ξn) = ∆n and, for n > 0, L(∂Ξn) = Λn0 , the 0th
horn.

Lemma 5.15. For X ∈ s+Set, X0 → L(X) is a weak equivalence.

Proof. Any injective map f : Z → X in s+Set is an inductive limit of push-
outs of maps ∂Ξn → Ξn for n ≥ 0. If f0 : Z0 → X0 is an isomorphism, we
may take n > 0 only. Then L(f) : L(Z)→ L(X) is an inductive limit of
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pushouts of maps Λn0 → ∆n, so is a trivial cofibration. Taking Z = X0 gives
the required result. �

Let ⊥ = V∂G∂ and > = G∂V∂ , for V∂ : sFMod(A)→ s+FMod(A) the
forgetful functor.

Proposition 5.16. s∗FMod has uniformly trivial deformation theory, so
given U• ∈ sFMod(k), we may lift U∗ ∈ s+FMod(k) to Ũ∗ ∈ s+FMod(Λ).
The conditions of Theorem 4.13 are satisfied, and the pre-DDC

En(A) := Homs+FMod(A)(Ũ∗,⊥nŨ∗)V (αnU )

is then a DDC, with cohomology H∗(yE) given by the complex

· · · add−−→ HomgZModk(NU∗, NU∗[−n])

add−−→ HomgZModk(NU∗, NU∗[−n− 1])
add−−→ · · · ,

i.e. Ext∗dgZVectk
(NU•, NU•).

Proof. This is similar to Proposition 5.6. The only difficulty lies in estab-
lishing Definition 3.8.(Q2’):

NnCi(E) = NnHomsFMod(k)(U•,>i+1U•)

= HomsFMod(k)(U• ⊗ (∆n/Λn0 ),>i+1U•).

Now, since k ⊗ Λn0 → k ⊗∆n is a weak equivalence admitting a retrac-
tion, P := U• ⊗ (∆n/Λn0 ) is trivially cofibrant, so is a projective object in
the category sFMod(k). The cosimplicial complex U• in sFMod(k) given by
U i := >i+1U• is a resolution of U := U• (since the augmented cosimplicial
complex V∂U → V∂U

• is contractible). Thus

H∗NnC•(E) = Ext∗sFMod(k)(P,U
•) = Ext∗sFMod(k)(P,U)

= HomsFMod(k)(P,U).

We have therefore shown that for n > 0,

NnHi(E) =

{
NnHomsFMod(k)(U•, U•) i = 0

0 i > 0.

�
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5.3. Simplicial algebras

Although the results in this section are expressed for commutative algebras,
they will hold for any category equipped with a suitable forgetful functor to
flat modules, and in particular algebras over any operad.

Definition 5.17. Let FAlg(A) be the category of flat (commutative) A-
algebras, with sFAlg(A) := FAlg(A)∆opp

and s+FAlg(A) := FAlg(A)∆opp
∗ .

Recall that, for K ∈ S and R ∈ sFAlg(A), we define R⊗K ∈ sFAlg(A) by

(R⊗K)n := R⊗Knn =

|Kn|︷ ︸︸ ︷
Rn ⊗Rn ⊗ · · · ⊗Rn .

Define ⊗K : s+FAlg→ s+FAlg by the same formula.
Now, we make sFAlg(A), s+FAlg(A) into simplicial categories by setting

HomsFAlg(R•, S•)n := HomsFAlg(∆n ⊗R•, S•),
Homs+FAlg(R∗, S∗)n := Homs+FAlg(∆n

∗ ⊗R∗, S∗).

We now consider the commutative diagram

sFAlg >
U //

V∂

��

sFMod
Symm

oo

V∂

��
s+FAlg

G∂a

OO

>
U //

s+FMod
Symm
oo

G∂a

OO

of adjunctions of homogeneous simplicial category-valued functors on CΛ.

Definition 5.18. Given an almost simplicial A-algebra R∗, define the cat-
egory s+Mod(R∗) to consist of almost simplicial A-modules M∗ equipped
with an associative multiplication R∗ ⊗M∗ →M∗, respecting the almost
simplicial structures. This has a simplicial model structure (by applying [6]
Theorem 11.3.2 to the forgetful functor s+Mod(R∗)→ s+Mod(A)).

All objects of s+Mod(R∗) are fibrant. Since A⊗ (∂∆n)∗ → A⊗ (∆n)∗
has a retraction in s+Mod(A), we see that for all cofibrant C∗ ∈ s+Mod(R∗),

Homs+Mod(R∗)(C∗,M∗)

is trivially fibrant.
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Proposition 5.19. Fix R• ∈ sFAlg(k), set M∗ := UV∂R•, and choose a lift
M̃∗ ∈ s+FMod(Λ).

Theorem 4.13 gives a pre-DDC

En := Homs+FMod((USymm)nM̃∗, (V∂G∂)nR̃∗)UV∂(αnR◦εnR).

Moreover, if R• ∈ sFAlg(k) is cofibrant, then the pre-DDC E of Theo-
rem 4.13 is a DDC. The almost simplicial k-algebra R∗ then lifts to R̃∗ ∈
s+FAlg(Λ), and E is quasi-isomorphic to the DDC defined by

(E′)n = Homs+FAlg(R̃∗, (V∂G∂)nR̃∗)V∂(αnR)

coming from the comonadic adjunction sFAlg ⊥
V∂ //

s+FAlg
G∂
oo .

Proof. It is straightforward to verify [13] equations 1–4, since all our con-
structions commute with forgetful functors, so E is a pre-DDC. Since
s+FMod is uniformly of trivial deformation theory, Definition 3.8.(Q1) is
satisfied by E.

To establish quasi-smoothness, we must compute cohomology groups.
Given a k-algebra S, recall that the cotangent complex is given by Ln(S/k) =
Jn/(Jn)2, where Jn is the kernel of the diagonal map (SymmU)n+1(S)⊗k
S → S. The cosimplicial complex C•(En) is then given by

Cm(En) = Homs+Mod(R∗)(Lm(R/k)∗ ⊗∆n, Gm∂ R∗).

Thus H∗(En) is the total cohomology of the double complex

Cij = Homs+Mod(R∗)(Li(R/k)∗ ⊗∆n, Gj∂R∗)

= Homs+Mod(R∗)(Li(R/k)∗, (G
j
∂R∗)

∆n

).

Now, if R• is cofibrant, the augmented complex L•(R∗)→ Ω(R∗/k) is a
levelwise cofibrant resolution in s+Mod(R∗). Since all maps in s+Mod(R∗)
are weak equivalences, cofibrant modules are projective, so the complex is
contractible.

Define André-Quillen cohomology on s+Mod(R∗) by Dq(R∗/k,M∗) :=
HqHoms+Mod(R∗)(L•(R/k)∗,M∗). Given a small extension A→ B with ker-
nel I, and a flat almost simplicial B-algebra S∗, note that the obstruc-
tion to lifting S∗ to a flat A-algebra lies in D2(S∗/B, S∗ ⊗B I) = D2((S∗ ⊗B
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k)/k, S∗ ⊗B I), applying [13] Theorem 2.2 to the adjunction

s+FAlg >
//
s+FMod

Symm
oo .

This ensures that R∗ lifts to some R̃∗ ∈ s+FAlg(Λ), so E′ can be defined.
Similarly to [13] §3.2.2, we see that E′ is a levelwise smooth DDC, and

that H∗(E′n) is cohomology of the complex (C′)m = Homs+Mod(R∗)(Ω(R/k)∗
⊗∆n, Gm∂ R∗).

Now, the canonical map E′ → E gives quasi-isomorphisms E′n → En for
all n. We know that E automatically satisfies (Q1). Since Ω(R∗/k) is a
cofibrant R∗-module, the tangent space C(E′)n = Homs+Mod(R∗)(Ω(R∗/k),
Gn∂R∗) is trivially fibrant, so E′ also satisfies (Q1).

It only remains to show that E′ satisfies (Q2’); the proof of Proposi-
tion 5.16 adapts. �

Remark 5.20. We may weaken the condition that R• be cofibrant to
requiring that the cotangent complex diagL•(R•/k) of R• is equivalent in
Ho(sMod(R•)) to Ω(R•/k), and that the latter is cofibrant. If a k-algebra
R (with constant simplicial structure) is smooth, [7] Proposition III.3.1.2
implies that this holds.

Definition 5.21. Given a simplicial k-algebra R•, and a simplicial R•-
module M•, define the simplicial vector space Der(R,M) of derived deriva-
tions by

Der(R•,M•)n := Der(R• ⊗∆n,M•),

the set of simplicial k-algebra morphisms f : R• ⊗∆n → R• ⊕M•ε extend-
ing the canonical map R• ⊗∆n → R•, where ε2 = 0.

Remark 5.22. For R• ∈ sAlg(k) cofibrant, and E as in Proposition 5.19,
Hn(E) = π−nDersAlg(R•, R•) for n ≤ 0. For n > 0, Hn(E) is the nth coho-
mology of the cosimplicial complex

Cn := DersAlg(Ln+1
∂ R•, R•)

associated to the comonad L∂ of Definition 5.13.

Proposition 5.23. If R• → R is a cofibrant resolution of a k-algebra R,
then the DDC E of Proposition 5.19 is quasi-isomorphic to DF , for F the
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SDC

Fn = HomMod(SymmnM̃, M̃)

from [12] §1.2.1, and M̃ ∈ FMod(Λ) lifting the k-module M underlying R.

Proof. By Proposition 4.28, we may assume that R• is the standard resolu-
tion Rn = ⊥n+1R, with R̃n = Symmn+1(M̃).

Then we have E quasi-isomorphic to the DDC E′ given by

(E′)nK = Homs+Alg(K∗ ⊗ R̃∗, Gn∂R̃∗) = Homs+Mod(K∗ ⊗ Symm∗R̃,Gn∂R̃∗).

The augmentation ε : R̃∗ → R̃ in s+Mod(Λ) gives us a map

χ : (E′)nK → Homs+Mod(K∗ ⊗ Symm∗R̃,Gn∂R̃)

= Homs+Mod(Ln(K∗ ⊗ Symm∗R̃), R̃)

= HomMod(Kn ⊗ SymmnR̃, R̃).

But this is just (DF )nK , and it is straightforward to check that χ : E′ → DF
respects all the SDC operations.

Since R• → R is a resolution, we get a weak equivalence

ZnC∗(E) = ZnDersAlg(R•, G
∗+1R•)→ ZnDersAlg(R•, G

∗+1R)

Now by Lemma 5.15,

DersAlg(R•, G
n+1R)m = DerAlg(π0Ln+1(∆m ⊗R•), R)

= DerAlg(Rn, R)∆m
n

= DerAlg(SymmnR,R)∆m
n

= Cn(DF )m.

Since C•(E) is quasi-smooth, Hn−i(yE) = πiZ
nC∗(E), so

H∗(yE) ∼= H∗(yDF ) = H∗(F ),

which is just André-Quillen cohomology D∗k(R,R), and so χ is a quasi-
isomorphism. �

Remark 5.24. Propositions 5.19 and 5.23 together imply that derived
deformations of a k-algebra R are equivalent to derived deformations of
the operation ∂0 on any cofibrant resolution R• → R.
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6. Deformations of Artin stacks and simplicial schemes

The problem we now wish consider is that of deforming of an algebraic stack
X. We may take a smooth simplicial hypercovering X• → X, with each Xn

a disjoint union of affine schemes (similarly to the proof of [10] Theorem
11.1), and our first step will be to consider derived deformations of X•.

6.1. Cosimplicial algebras

Let X• be a simplicial affine scheme. Equivalently, we may consider the
cosimplicial algebra [n] 7→ Γ(Xn,OXn).

Definition 6.1. The categories cFMod(A), cFAlg(A), c+FMod(A), and
c+FAlg(A) (as given in Definition 5.9) can be made into simplicial cate-
gories (i.e. enriched in simplicial sets) by setting (SK)n := (Sn)Kn for K ∈
S, with structure maps (SK)(f) = S(f)Kn ◦K(f)∗ : (Sm)Km → (Sn)Kn , for
morphisms f in ∆. We then define the simplicial Hom functor by

Hom(R,S)n := Hom(R,S∆n

).

There is the following diagram of monadic adjunctions of functors CΛ →
sCat:

cFAlg(A)
Ualg

>
//

U∂ `

��

cFMod(A)
Symm

oo

U∂ `

��
c+FAlg(A)

F∂

OO

Ualg

>
//
c+FMod(A),

Symm
oo

F∂

OO

where F∂ : c+FMod(A)→ cFMod(A) is left adjoint to the forgetful functor
U∂ , given by

(F∂V
∗)n = V n ⊕ V n−1 ⊕ · · · ⊕ V 0,

with operations dual to those in Lemma 5.12. Similarly, F∂ : c+FAlg(A)→
cFAlg(A) is the left adjoint given by

(F∂R
∗)n = Rn ⊗Rn−1 ⊗ · · · ⊗R0.

The diagram satisfies the following commutativity conditions:

U∂Ualg = UalgU∂ SymmF∂ = F∂Symm, U∂Symm = SymmU∂ .
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These adjunctions combine to give a monadic adjunction

cFAlg(A)
U∂Ualg

>
//
c+FMod(A)

SymmF∂
oo .

Lemma 6.2. c+FMod(A) has uniformly trivial deformation theory.

Proof. This is essentially the same as Proposition 5.16. �

Proposition 6.3. In the scenario above, Theorem 4.13 gives a pre-DDC

En := Homc+FMod(>n ˜U∂UalgR, ˜U∂UalgR),

satisfying Definition 3.8.(Q1), where > = U∂UalgSymmF∂.

We now seek conditions under which the pre-DDC E (or similarly a
pre-DDC E(D) associated to a diagram as in §4.3) is quasi-smooth.

Definition 6.4. Given a cosimplicial (resp. almost cosimplicial) A-algebra
R, define the category cMod(R) (resp. c+Mod(R)) to consist of cosimplicial
(resp. almost cosimplicial) A-modules M equipped with an associative mul-
tiplication R⊗M →M , respecting the cosimplicial (resp. almost cosimpli-
cial) structures. These categories have simplicial structures, with (MK)n :=
(Mn)Kn , for K ∈ S, the R-module structure on MK coming from the map
R→ RK . As usual, denote the left adjoint to M 7→MK by N 7→ N ⊗K.

Given M ∈ cMod(R) and an injective map K ↪→ L in S, set M ⊗ (L/K)
:= coker (M ⊗K →M ⊗ L) and ML/K := ker(ML →MK).

Definition 6.5. Let⊥alg = SymmUalg,⊥∂ = F∂U∂ and⊥ = SymmF∂U∂Ualg

= ⊥∂⊥alg. Given R ∈ cAlg(k), define L⊥n (R) ∈ cMod(R) by the property
that

HomcMod(R)(L⊥n (R),M•) ∼= Derk(⊥n+1R,M•)

functorial in M• ∈ cMod(R). Here, Derk(S
•,M•) is the set of morphisms

f : S• → S• ⊕M•ε in cAlgk extending the identity, where ε2 = 0.
Define Ln(R) ∈ cMod(R) by

HomcMod(R)(Ln(R),M•) ∼= Derk(⊥n+1
alg R,M•).

Observe that L•(R) and L⊥• (R) both form simplicial complexes in cMod(R).
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Definition 6.6. Given an object R of cFAlg(A) (resp. c+FAlg(A)), we
may extend R uniquely to a cocontinuous functor R : S→ FAlg(A) (resp.
R : s+Set→ FAlg(A)) extending the functor R : ∆→ FAlg(A) (resp. R :
∆+ → FAlg(A)) given by R(∆n) = Rn (resp. R(Ξn) = Rn, for Ξ as in Defi-
nition 5.14).

Lemma 6.7. For all m, the simplicial complex L⊥• (R)m is a model for the
cotangent complex of Rm.

Proof. Write⊥nR := ⊥n+1R; these form a simplicial complex⊥•R in cAlg(k).
We need to show that (⊥•R)m is a cofibrant resolution of Rm in sAlg(k). If
we apply the forgetful functor U∂Ualg to the augmented simplicial complex
⊥•R→ R, we see that it becomes contractible. In particular, this implies
that ⊥•R→ R is contractible as an augmented complex of k-vector spaces,
so it is a resolution. �

Lemma 6.8. L⊥n (R) is a projective object of cMod(R), and U∂Ln(R),
U∂L⊥n (R) are both projective objects of c+Mod(R∗).

Proof. By adjointness,

Derk(⊥n+1R,M•) ∼= Homc+Modk(U∂Ualg⊥nR,M∗),

so Derk(⊥n+1R,−) defines a right exact functor, hence L⊥n (R) is projective.
The other results follow similarly. �

Lemma 6.9. There is a natural transformation F∂Ualg → UalgF∂, giving
transformations ⊥∂⊥alg → ⊥alg⊥∂.

Proof. The transformation is given on level n by

R0 ⊕R1 ⊕ · · · ⊕Rn 3
n∑
i=0

ri 7→
n∑
i=0

1⊗ · · · ⊗ 1⊗ ri ⊗ 1⊗ · · · 1

∈ R0 ⊗R1 ⊗ · · · ⊗Rn.

�
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Definition 6.10. A morphism f : X• → Y• of simplicial schemes over A is
said to be quasi-smooth (resp. trivially smooth) if the morphism

HomS(L,X•)→ HomS(K,X•)×HomS(K,Y•) HomS(L, Y•)

of affine schemes is smooth for all trivial cofibrations (resp. all cofibrations)
K → L of finite simplicial sets. The map f is said to be smooth if it is
quasi-smooth and f0 : X0 → Y0 is smooth.

We say that a morphism R• → S• in cAlg(A) is quasi-smooth (resp.
trivially smooth, resp. smooth) if SpecS• → SpecR• is so.

Lemma 6.11. In Definition 6.10, we may replace cofibrations (resp. trivial
cofibrations) K → L by generating cofibrations ∂∆n → ∆n (resp. generating
trivial cofibrations Λnk → ∆n).

Proof. This follows because every cofibration (resp. trivial cofibration) is a
composition of pushouts of generating cofibrations (resp. generating trivial
cofibrations), and the fact that smooth morphisms are closed under pullback
and finite composition. �

Lemma 6.12. A morphism f : X• → Y• of simplicial schemes is quasi-
smooth (resp. trivially smooth, resp. smooth) if and only if the following
conditions hold:

1) for all square-zero extensions A� B of k-algebras, the map X•(A)→
X•(B)×Y•(B) Y•(A) is a fibration (resp. a trivial fibration, resp. a sur-
jective fibration) in S.

2) for all all vertices v ∈ ∆n
0 the maps v∗ : Xn → X0 (resp. the schemes

Xn, resp. the schemes Xn) are locally of finite presentation.

Proof. This follows from the fact that a morphism is smooth if and only if it
is quasi-smooth and locally of finite presentation, and that U → V is locally
of finite presentation if and only if the map U(Aα)→ U(lim−→Aα)×V (lim−→Aα)

lim−→V (Aα) is an isomorphism. We also use the result that if g ◦ f is locally
of finite presentation, then f must also be so. �

Corollary 6.13. For all cofibrations i : K → L of finite simplicial sets, and
f : X → Y a quasi-smooth morphism of simplicial affine schemes, the map

g : XL → XK ×Y K Y L

is quasi-smooth. Moreover, if either i or f is trivial, then so is g.
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Lemma 6.14. If R→ S is a trivially smooth map in cAlg, then Ω(S/R)
is projective in cMod(S).

Proof. By definition, we know that R(L)⊗R(K) S(K)→ S(L) is smooth for
all cofibrations K ↪→ L of finite simplicial sets.

GivenM• ∈ cMod(S) andK ∈ S, defineM(K) ∈ Mod(S(K)) by S(K)⊕
M(K)ε = (S ⊕Mε)(K). Note that Ω(S/R)(K) = Ω(S(K)/R(K)).

Take a surjection L• → N• in cMod(S) and a morphism f : Ω(S/R)→
N•. We will construct a lifting f̃ of f inductively. Assume that we have Rm-
linear maps f̃m : Ω(S/R)m → Lm lifting f compatibly with the cosimplicial
operations, for all m < n. If MnL denotes the mth matching object (as in
[3] Lemma VII.4.9), then extending f̃ compatibly to Ω(S/R)n amounts to
finding a lift

Ω(S/R)(∂∆n)⊗S(∂∆n) S
n //

��

Ln

α
��

Ω(S/R)n //

44

Nn ×Mn−1N Mn−1L.

Now, T := Rn ⊗R(∂∆n) S(∂∆n)→ Sn is smooth, as is R(K)→ S(K) for
all K. Thus the sequence

0→ Ω(S(∂∆n)/R(∂∆n))⊗S(∂∆n) S
n → Ω(Sn/Rn)→ Ω(Sn/T )→ 0

is exact, with all terms projective. Since α is surjective, projectivity of
Ω(Sn/T ) gives the required lift. �

Lemma 6.15. If R is quasi-smooth, then for all trivial cofibrations K → L
of finite simplicial sets, Ω(R)⊗ (L/K) is projective in cMod(R).

Proof. By Corollary 6.13, R⊗K → R⊗ L is trivially smooth. Since Ω(R)⊗
X = Ω(R⊗X)⊗R⊗X R, projectivity follows from Lemma 6.14. �

Definition 6.16. Let L∨ : c+Mod→ cMod be right adjoint to U∂ .

Lemma 6.17. For R ∈ cAlg(k) and an injective map f : Z → X in s+Set,
there is an isomorphism

HiHomc+Mod(R∗)(L•(R∗), N ⊗ kX/Z)

∼= ExticMod(R)(L
⊥
• (R)⊗ (LX/LZ),L∨N)

for all N ∈ c+Mod(R∗).



i
i

“1-pridham” — 2015/1/5 — 16:42 — page 462 — #44 i
i

i
i

i
i

462 J. P. Pridham

Proof. By Lemma 6.8, L⊥n (R) is projective, so L⊥n (R)⊗ (LX/LZ) must also
be projective, as M 7→MK sends surjections to surjections. Thus

Ext∗cMod(R)(L
⊥
• (R)⊗ (LX/LZ),L∨N)

= H∗HomcMod(R)(L⊥• (R)⊗ (LX/LZ),L∨N)

= H∗HomcMod(R)(L⊥• (R),L∨N ⊗ L∨kX/Z)

= H∗Homc+Mod(R∗)(U∂L⊥• (R), N ⊗ kX/Z)

= Ext∗c+Mod(R∗)(U∂L
⊥
• (R), N ⊗ kX/Z).

Now, Lemma 6.9 gives compatible transformations ⊥n+1
∂ ⊥n+1

alg (R)→
⊥N+1R. The unit of the adjunction F∂ a U∂ gives compatible transforma-
tions U∂ → U∂⊥n+1

∂ , so there is a map L•(R∗) = U∂L•(R•)→ U∂L⊥• (R),
which is an equivalence in the derived category by Lemma 6.7. Hence

Ext∗c+Mod(R∗)(U∂L
⊥
• (R), N ⊗ kX/Z)

∼= Ext∗c+Mod(R∗)(L•(R
∗), N ⊗ kX/Z)

= H∗Homc+Mod(R∗)(L•(R∗), N ⊗ kX/Z).

�

Lemma 6.18. For R ∈ cAlg(k) quasi-smooth, there is an exact sequence

0→ L•(R0)⊗R0 R∗ → L•(R∗)→ Ω(R∗/R0)→ 0

in the derived category of projective complexes in c+Mod(R∗), where the
morphism R0 → R∗ is given in level n by (∂1)n.

Proof. There is an exact sequence

0→ L•(R0)⊗R0 R∗ → L•(R∗)→ L(R∗/R0)→ 0

in the derived category. Since R• is quasi-smooth, the maps (∂1)n : R0 → Rn

are all smooth, giving L(R∗/R0) ∼ Ω(R∗/R0) �

Proposition 6.19. If R is a quasi-smooth object of cAlg(k), then every
morphism ρ : R→ S in cAlg is quasi-smooth over c+Mod, in the sense of
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Definition 4.22. The Ext-groups are then given by

ExticAlg/c+Mod(ρ) :=

{
ExticMod(R)(L

R/k
• , S) i > 0

π−iHomcMod(R)(Ω(R⊗∆•)/k ⊗R⊗∆• R,S) i ≤ 0,

where HomcMod(R)(Ω(R⊗∆•)/k ⊗R⊗∆• R,S) is the simplicial complex given
in level n by HomcMod(R)(Ω(R⊗∆n)/k ⊗R⊗∆n R,S).

Proof. First observe that since c+Mod has uniformly trivial deformation
theory, ρ is quasi-smooth over c+Mod whenever it is Q2 over c+Mod. Now,

C•cAlg/c+Mod(ρ) = HomcMod(R)(L⊥• (R), S),

so for K ∈ S,

Ext∗cAlg/c+Mod(ρ) = H∗HomcMod(R)(L⊥• (R), S),

Ext∗cAlg/c+Mod(ρ)K = H∗HomcMod(R)(L⊥• (R)⊗K,S),

∼= Ext∗cMod(R)(L
⊥
• (R)⊗K,S),

the latter isomorphism following since L⊥n (R)⊗K is projective.
Now, consider the monad >∂ := L∨U∂ on cMod(R), and observe that

the augmented cosimplicial complex >•+1
∂ M given in level n by >n+1

∂ M is a
resolution in cMod(R), since it becomes contractible on applying U∂ . Thus

Ext∗cAlg/c+Mod(ρ)K ∼= Ext∗cMod(R)(L
⊥
• (R)⊗K,>•+1

∂ S).

Given f : Z → X in s+Set with f0 an isomorphism, by Lemmas 6.17
and 6.18, we have

ExticMod(R)(L
⊥
• (R)⊗ (LX/LZ),L∨N)

= HiHomc+Mod(R∗)(L•(R0)⊗R0 R∗, N ⊗ kX/Z)

for all i > 0. However,

Homc+Mod(R∗)(L•(R0)⊗R0 R∗, N ⊗ kX/Z)

= HomMod(R0)(L•(R0), (N ⊗ kX/Z)0) = 0,

since (kX/Z)0 = 0.
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Hence ExticMod(R)(L
⊥
• (R)⊗ (LX/LZ),L∨N) = 0 for all i > 0, so the spec-

tral sequence associated to >•+1
∂ gives

Ext∗cMod(R)(L
⊥
• (R)⊗ (LX/LZ),M)

∼= H∗HomcMod(R)(Ω(R)⊗ (LX/LZ),>•+1
∂ M).

Since Ω(R)⊗ (LX/LZ) is projective (by Lemma 6.14), this is just

Ext∗cMod(R)(Ω(R)⊗ (LX/LZ),>•+1
∂ M)

∼= Ext∗cMod(R)(Ω(R)⊗ (LX/LZ),M)

= HomcMod(R)(Ω(R⊗ LX/R⊗ LZ)⊗R⊗LX R,M).

Taking Z = ∂Ξn, X = Ξn, we have LZ = Λn0 ,LX = ∆n, and

NnExt∗cAlg/c+Mod(ρ) = HomcMod(R)(Ω(R⊗∆n/R⊗ Λn0 )⊗R⊗∆n R,S),

so ExticAlg/c+Mod(ρ) is constant for i > 0.
Thus ρ is Q2 over c+Mod, as required. The description of positive Ext-

groups follows from Lemma 6.17, while that of non-positive Ext-groups fol-
lows from the definition of π−iH

0C•cAlg/c+Mod(ρ). �

Corollary 6.20. For any diagram in cAlg with quasi-smooth objects, the
associated pre-DDC given by Definition 4.24 and Proposition 4.19 applied
to the adjunction

cFAlg(A)
U∂Ualg

>
//
c+FMod(A)

SymmF∂
oo

is a DDC by Lemma 4.25, and governs deformations in the simplicial cate-
gory cAlg (by Proposition 4.26).

6.1.1. Comparison with deformations of schemes. In [13] §3.2.1, an
SDC was constructed to describe deformations of a separated scheme X,
and we now wish to compare it with the DDC above.

Take an open affine cover (Xα)α∈I of X, and set X̌ :=
∐
α∈I Xα. Define

the simplicial scheme Z• by Z = cosk0(X̌/X), i.e.

Zn =

n+1︷ ︸︸ ︷
X̌ ×X X̌ ×X · · · ×X X̌,

with rn : Zn → X, and sn : Zn → X̌ given by projection onto the first factor.
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The map v : X̌ → X gives adjoint functors v−1 a v∗ on sheaves. This
yields the following diagram of Cat-valued functors:

FAlgA(X) >
//

v−1

��

FModA(X)
SymmA

oo

v−1

��
FAlgA(X̌)

v∗a

OO

>
//
FModA(X̌),

SymmA

oo

v∗a

OO

where FModA(Y ) and FAlgA(Y ) denote sheaves of flat A-modules and of
flat A-algebras on Y .

Definition 6.21. The SDC Ě• of [13] §3.2.1 was then given by

Ěn(A) = HomFModA(X̌)((SymmA)nN ⊗A, (v−1v∗)
nN ⊗A)v−1(αn◦εn),

for N a flat µ-adic Λ-module on X̌ lifting v−1OX , with αn : OX →
(v∗v

−1)nOX coming from the unit of the adjunction, and similarly εn :
(Symmk)

nOX → OX .

Definition 6.22. Define functors Č• : FModA(X)→ cFMod(A), Č∗ :
FModA(X̌)→ c+FMod(A) by

Čn(F ) := Γ(Zn, rn
−1F ), Čn(G ) := Γ(Zn, sn

−1G ),

with the standard cosimplicial operations.

Lemma 6.23. There are canonical isomorphisms

C∗(v−1F ) = U∂C•(F ) C•(v∗G ) ∼= L∨C∗(G ).

Lemma 6.24. There is a canonical natural transformation Symm ◦ Č• →
Č• ◦ Symm.

Proposition 6.25. The SDC Ě is quasi-isomorphic to the DDC E of
Proposition 6.3, in the sense that Def(Ě) and Def(E) are weakly equiva-
lent (equivalently, DĚ and E are quasi-isomorphic DDCs).
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Proof. We have maps

HomMod(X̌)(>
n
algM , (v−1v∗)

nM )

→ Homc+Mod(Č∗(>nalgM ), Č∗(v−1v∗)
nM )

= Homc+Mod(Č∗(>nalgM ), (L∨)nČ∗M )

= Homc+Mod(>n∂Č∗(>nalgM ), Č∗M )

→ Homc+Mod(>nalg>n∂Č∗(M ), Č∗M )

→ Homc+Mod(>nČ∗(M ), Č∗M ).

These are compatible with the SDC operations, giving a morphism Ě →
E0 of SDCs. Now, as in Proposition 6.19,

H∗(E0) = Ext∗OZ• (L
Z/k
• ,OZ).

However, since the maps rn : Zn → X are all open, and hence étale, LZ/k• is
quasi-isomorphic to r∗LX• . Thus

Ext∗Z•(L
Z/k
• ,OZ) = Ext∗OX (LX/k• , r∗OZ•) = Ext∗OX (LX/k• ,OX),

since r∗OZ• = r∗r
−1OX is a resolution of OX . This means that Ě → E0 is a

quasi-isomorphism of SDCs.
Finally, to see that Def(E0)→ Def(E) is a quasi-isomorphism, apply

Lemma 3.24, noting that the strictly positive cohomology groups automat-
ically agree. For n ≤ 0,

HnE = H−nHomOZ (i∗ΩZ∆• ,OZ),

for i : Z → Z∆n

. However, Z is quasi-étale (the analogous notion to quasi-
smooth), so the vertex maps a : Z∆n → Z are trivially étale, and thus ΩZ∆n

∼= a∗ΩZ , so i∗ΩZ∆• = ΩZ . Therefore H0E = H0E0 = HomOX (ΩX ,OX), and
HnE = 0 for n < 0. �

6.2. Quasi-compact, quasi-separated stacks

Let X be a quasi-compact, quasi-separated stack, with presentation P :
X0 → X, for X0 affine, giving a simplicial algebraic space coskX

0 (X0) (as con-
sidered in [1] §3). We may then take an étale hypercoveringX• → coskX

0 (X0),
for X• a simplicial affine scheme, and denote the composition by P• : X•
→ X.
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Lemma 6.26. Every smooth simplicial hypercovering is trivially smooth.

Proof. For a map U• → V• to be a smooth hypercovering says that the
matching maps Un → Vn ×MnV MnU are all smooth surjections. �

Lemma 6.27. The simplicial affine scheme X• is quasi-smooth.

Proof. Write Z• := coskX
0 (X0). Since Z• = BG, for G the groupoid space

X0 ×X X0
// //X0 , all higher partial matching maps of Z• are isomorphisms.

In other words, for any trivial cofibration i : K → L in S with i0 : K0 → L0

an isomorphism, the map

i∗ : ML(Z)→MK(Z)

is an isomorphism.
By [1] Theorem 2.1.5, G has SQCS structure so the maps X1 →

HomS(Λ1
k, X•) are smooth surjections for both k. Thus Z• is quasi-smooth,

by Lemma 6.11. Since X• → Z• is trivially smooth, the result follows. �

Remark 6.28. Similarly, every strongly quasi-compact n-geometric Artin
stack X gives rise to a quasi-smooth simplicial affine scheme X•, by [17]
Theorem 4.7. The statement of Proposition 6.29 will then carry over to this
generality, taking LX to be the cotangent complex of [17] §7.1.

6.2.1. Cohomology and the cotangent complex. Given any mor-
phism f : Y→ X of quasi-compact, quasi-separated stacks, lifting to a mor-
phism f : Y• → X• of simplicial affine resolutions, in this section we will
describe the Ext-groups

Ext∗cAlg/c+Mod(f ])

of Proposition 6.19 in terms of the cotangent complex of [10] §8. Ext-groups
of the cotangent complex are defined in [11] §2.11.

Let X, X• be as above, and let J be a quasi-coherent sheaf on X. Since
the cotangent complex LX is in degrees ≥ −1, we have Exti(LX,J ) = 0 for
all i < −1. Since r : X• → coskX

0 (X0) is a hypercovering, the maps

H∗(coskX
0 (X0),F )→ H∗(X•, r

∗F )

on cohomology are isomorphisms for all quasi-coherent sheaves F .
By [1] Proposition 3.4.2,

1) Exti(LX,J ) ∼= Exti(LX• , P ∗•J ) for i > 0.
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2) Exti(LX,J ) = Hi(Hom(ΩX0/X, P
∗J )[1]→ Hom(ΩX• , P

∗
•J )), for i ≤

0.

Proposition 6.29.

ExticAlg/c+Mod(f ]) ∼= Exti(LX, f∗OY)

for all i ∈ Z.

Proof. For i > 0, this is just the observation that

Exti(LX• , P ∗•J ) = ExticAlg/c+Mod(f ])

when J = f∗OY.
Accordingly, we need to describe the non-positive Ext groups

H−iHomX(c∗ΩX∆• ,J )

in terms of X, X0, where c : X → XK is the constant map.
Let U• denote the simplicial complex HomX(c∗ΩX∆• ,J ), and write

Z• := coskX
0 (X0), with V• : HomZ(c∗ΩZ∆• ,J ). Since X → Z is trivially

smooth, observe that the canonical map U → V is a trivial fibration, so
H∗(U) ∼= H∗(V ).

In general, if K is contractible, then

MKZ =

K0︷ ︸︸ ︷
X0 ×X X0 ×X · · · ×X X0,

so

Ω(MKZ/X) =
⊕
v∈K0

v∗Ω(X0/X).

We therefore conclude that for a trivial cofibration K ↪→ L,

Ω(MLZ/MKZ) =
⊕

v∈L0−K0

v∗Ω(X0/X),

so for 0 : • → I,

Ω(ZI/Z)n = Ω(MI×∆nZ/M∆nZ) =
⊕
v∈∆n

0

(v × 1)∗Ω(X0/X),
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so

i∗Ω(ZI/Z)n =
⊕
v∈∆n

0

v∗Ω(X0/X),

and

HomO(X)(i
∗Ω(XI/X),F ) = HomO(X0)(Ω(X0/X),F 0),

giving

N1V = HomO(X)(i
∗Ω(XI/X), f∗O(Y )) = HomO(X0)(Ω(X0/X), f∗O(Y0)).

Moreover, for n ≥ 2, Λn0 → ∆n
0 is an isomorphism, so NnV = 0.

Thus

NV = (Hom(ΩX0/X, P
∗J )[−1]→ Hom(ΩX• , P

∗
•J )),

as required. �

6.2.2. Comparing deformation groupoids.

Definition 6.30. Given a small 2-category C, define a simplicial category
B1C by setting Ob (B1C) = Ob (C), and HomB1C(x, y) = BHomC(x, y),
where HomC(x, y) is the 1-category of homomorphisms from x to y, and B
is the nerve functor.

Lemma 6.31. Given x, y ∈ Ob C with HomC(x, y) a groupoid, π0HomB1C
(x, y) is the set of isomorphism classes in HomC(x, y), with π1(HomB1C(x,
y), f) the set of 2-automorphisms of f , and πi(HomB1C(x, y), f) = 0 for
i > 1.

Definition 6.32. Define a 2-category structure on the category AlgGpdSp
of algebraic groupoid spaces (as in [1]) by defining a 2-morphism η between
morphisms f, f ′ : G→ H by analogy with natural transformations. Explic-
itly, let ObG be the space of objects of G, with MorG→ (ObG×ObG)
the space of isomorphisms, and similarly for H. We must have η : ObG→
MorH, with s ◦ η = f, t ◦ η = f ′, and the following diagram commuting

Mor (G)
(η◦t,Mor f)−−−−−−−→ Mor (H)×s,ObH,t Mor (H)

(f ′,η◦s)
y ym

Mor (H)×s,ObH,t Mor (H)
m−−−−→ Mor (H).
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Definition 6.33. Given a 2-groupoid G, define Π0G to be the groupoid with
objects ObG, and morphisms HomΠ0G(X,Y ) = π0HomG(X,Y ). Similarly,
for a simplicial groupoid G•, define Π0G• to be the groupoid with objects
ObG, and morphisms HomΠ0G•(X,Y ) = π0HomG(X,Y ).

Lemma 6.34. Given G ∈ AlgGpdSp associated to an algebraic stack over
k, the nerve functor B : AlgGpdSp→ sAlgSp to the category of simplicial
algebraic spaces gives an isomorphism

B1Def2AlgGpdSp(G) ∼= Def
sAlgSp

(BG),

between the 2-groupoid of deformations in AlgGpdSp, and the simplicial
groupoid of deformations in sAlgSp.

Proof. By [1] Corollary 3.1.5, we know that

Π0Def2AlgGpdSp(G) ∼= Π0Def
sAlgSp

(BG),

so we just need to show that, for algebraic groupoid spaces H,G,

HomsAlgSp(BH,BG) = BHomAlgGpdSp(H,G).

Now,

HomsAlgSp(X,BG)n = HomsAlgSp(X ×∆n, BG)

= HomAlgGpdSp(πfX × πf∆n, G),

where we define the fundamental groupoid πf : sAlgSp→ AlgGpdSp to be
left adjoint to B, noting that πfBH = H. However, πf∆n is the groupoid
with n+ 1 objects, and unique isomorphisms between them. Thus

HomAlgGpdSp(πfX × πf∆n, G) = BnHomAlgGpdSp(πfX,G),

as required. �

Lemma 6.35. The functor C defined in [1] §3.2 gives an equivalence be-
tween Def2AlgGpdSp(G) and Def2(CG), the 2-groupoid of deformations of the
algebraic stack CG.

Proof. First observe that C maps the 2-isomorphisms of Definition 6.32 to
2-isomorphisms of stacks, so C is well-defined.
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By [1] Proposition 3.2.5, we know that C induces a bijection on isomor-
phism classes of objects. We need to show that for G ∈ Def2AlgGpdSp(G)(A),

C : HomDef2AlgGpdSp(G)(A)(G,G)→HomDef2(CG)(A)(CG, CG)

is an equivalence of groupoids. By [ibid.] Proposition 3.3.2, it is essentially
surjective.

Given f ∈ Ob HomDef2AlgGpdSp(G)(A)(G,G), we thus need to show that

θ : Aut2
Def2AlgGpdSp(G)(A)(f)→ Aut2

Def2(CG)(A)(Cf)

is an isomorphism of 2-automorphism groups. Multiplication by f−1 allows
us to assume that f = idG .

By [ibid.] Proposition 3.3.2, we have an exact sequence

0→ Aut2
Def2(CG)(idCG)→ Aut(X0/CG)P

A−→ AutDef2AlgGpdSp(G)(G).

Since Aut(X0/CG)P is smooth, the homogeneous functor Aut2
Def2(CG)(idCG)

has tangent space ker(tanA) and obstruction space coker (tanA). By [ibid.]
Proposition 3.4.2, these are Ext−1(LX,OfX) and Ext0(LX,OfX), respec-
tively. Thus §6.2.1, Lemma 6.31 and Theorem 2.28 imply that θ gives iso-
morphisms on tangent and obstruction spaces, so must be an isomorphism
of homogeneous functors by the standard smoothness criterion. �

Taking G = X0 ×X X0
// //X0 , we have therefore shown that the defor-

mation 2-groupoid of X is equivalent to the simplicial deformation groupoid
of coskX

0 (X0). We still need to compare this with the simplicial affine scheme
X• defined at the beginning of the section.

Proposition 6.36. The simplicial deformation groupoids of coskX
0 (X0) and

X• are equivalent.

Proof. Let Z• := coskX
0 (X0). As in §4.3, we will consider three simplicial

deformation problems FX , FZ , Fr: deformations of X•, deformations of Z•,
and deformations of the diagram r : X• → Z•. Note that these all define

quasi-smooth functors F : CΛ → sGpd
W̄−→ S, so we just need to compare

tangent and obstruction spaces.
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The calculations of Proposition 6.29 show that the loop spaces ΩFX ,ΩFZ
have tangent spaces

HomOX (ΩX ,OX), HomOZ (ΩZ ,OZ).

Similarly, there is a fibration Fr → FX × FZ , whose fibre has tangent space

HomOZ (ΩZ , r∗OX).

Since the maps

HomOX (ΩX ,OX)
r∗−→ HomOZ (ΩZ , r∗OX)

r∗←− HomOZ (ΩZ ,OZ)

are isomorphisms, we deduce that the maps FZ ← Fr → FX induce isomor-
phisms on tangent spaces of positive homotopy groups.

It only remains to show that the deformation functors π0FX , π0FZ , π0Fr
have isomorphic tangent and obstruction spaces. By adapting [13] §1.3.1, we
may deduce that these are (respectively)

ExtiOX (LX ,OX), ExtiOZ (LZ ,OZ),

and the groups T i fitting into the long exact sequence

· · · → T 1 → Ext1
OX (LX ,OX)× Ext1

OZ (LZ ,OZ)

→ Ext1
OZ (LZ , r∗OX)→ T 2 → · · · .

Now, since the maps

ExtiOX (LX ,OX)
r∗−→ ExtiOZ (LZ , r∗OX)

r∗←− Ext1
OZ (LZ ,OZ)

are isomorphisms for i ≥ 1, with r∗ surjective for i = 0, we see that the
functors Fr, FX , FZ are all equivalent. �

6.3. Arbitrary algebraic stacks

We now wish to describe derived deformations of a simplicial scheme X•
over k, with each Xn a disjoint union of affine schemes.

Definition 6.37. For any scheme Y , let π(Y ) be the set of connected com-
ponents of Y , and π : Y → π(Y ) the map of associated topological spaces.
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Now, deformations of Xn are equivalent to deformations of the algebra
π∗OXn over π(Xn).

Definition 6.38. Recall that the ordinal number categories ∆,∆∗ can be
regarded as subcategories of S, by identifying [n] with ∆n.

Given a category C and K ∈ S, define cCK (resp. c+CK) to be the cat-
egory of functors from ∆↓K (resp. ∆∗ ↓K) to C. Thus an object C ∈ cCK
consists of objects Ca for all n ∈ N0, a ∈ Kn, together with compatible maps
∂i : M∂ia →Ma, σ

i : Mσia →Ma, and similarly for c+CK .

Now, observe that π∗OX defines an object of cAlg(k)π(X), with

(π∗OX)a = Γ(π−1(a),OXn),

for a ∈ π(Xn). Since any deformation of X• will not change π(X), deforma-
tions of X• are equivalent to deformations of π∗OX .

The categories cFAlgπ(X), c+FAlgπ(X), cFModπ(X), c+FModπ(X) can all
be given simplicial structures as in Definition 6.1, setting (CK)a = (Ca)

Kn

for a ∈ π(Xn).

Remark 6.39. Observe that for any category C and any map f : K → L in
S, there are maps f−1 : cCL → cCK , f−1 : c+CL → c+CK given by (f−1C)a =
Cf(a). If C contains products, then f−1 has a right adjoint f∗, given by
(f∗C)b =

∏
a∈f−1(b)Ca. For f : K × L→ L, CK = f∗f

−1C.

If f : π(X)→ • denotes the constant map, then we write Γ := f∗, with
the constant functor f−1 denoted by Γ∗.

We then have a diagram of adjunctions of functors CΛ → sCat:

cFAlg(A)π(X)
U∂Ualg

>
//

Γ `

��

c+FMod(A)π(X)

SymmF∂
oo

Γ `

��
cFAlg(A)

Γ∗

OO

U∂Ualg

>
//
c+FMod(A),

SymmF∂
oo

Γ∗

OO

where F∂ : c+Cπ(X) → cCπ(X) is left adjoint to the forgetful functor U∂ , given
by

(F∂C
∗)a = Ca t C∂0a t · · · t C(∂0)na,

for a ∈ π(Xn), with operations dual to those in Lemma 5.12.
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We must check that Γ∗ a Γ is monadic. For this, we verify Beck’s Theo-
rem (e.g. [8] Ch. VI.7 Ex. 6), observing that Γ commutes with coequalisers
— this is effectively the observation that taking arbitrary products is an
exact functor.

Writing U := U∂Ualg and F := SymmF∂ , we also have the following com-
mutativity conditions:

ΓU = UΓ Γ∗F = FΓ∗, Γ∗U = UΓ∗,

and a natural transformation

FΓ→ ΓF.

These adjunctions combine to give a monadic adjunction

cFAlg(A)π(X)
ΓU∂Ualg

>
//
c+FMod(A)

Γ∗SymmF∂
oo .

Definition 6.40. Given a simplicial scheme X•, with each Xn a disjoint
union of affine schemes, define cMod(X) to be the category of π∗(OX)-
modules over cModπ(X).

Lemma 6.41. If X → Y is a trivially smooth map of simplicial schemes,
with each Xn, Yn a disjoint union of affine schemes, then π∗Ω(X/Y ) is pro-
jective in cMod(X).

Proof. This is similar to Lemma 6.14. We may define matching objects of
L ∈ cMod(X) by letting MnL on π(Xn+1) be the equaliser

MnL //
∏n
i=0 σi∗L

n
a //
b
//
∏

0≤i<j≤n σi∗σj∗L
n−1 ,

where prij ◦ a = σi ◦ prj , prij ◦ b = σj−1 ◦ pri. Note that Γ(MnL) = Mn(ΓL).
Since Γ reflects isomorphisms, this means that for all surjections L� N , the
relative matching map Ln →Mn−1L×Mn−1N Nn is surjective.

In order to construct latching maps, note that any cocontinuous func-
tor S : (∆↓π(X))→ Alg extends to a cocontinuous functor S : (S↓π(X))→
Alg. Given M• ∈ cMod(X) and a : K → π(X) in S, define M(a) ∈
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Mod(π∗(OX)(a)) by

π∗(OX)(a)⊕M(a)ε = (π∗(OX)⊕Mε)(a).

Note that if we set X(a) := HomS↓π(X)(K,X), then

Ω(X/Y )(a) = Ω(X(a)/Y (π(f)∗a)).

The latching object of Ω(a), for a ∈ π(X)n, is Ω(∂a), for ∂ : ∂∆n →
∆n. It therefore suffices to show that (X∂)∗Ω(∂a)→ Ω(a) is projective in
Mod(X(a)) for all such a. By adapting the proof of Lemma 6.14, it suffices
to show that

X(a)→ Y (π(f)∗a)×Y (π(f)∗∂a) X(∂a)

is smooth.
Set Y ′ := X ×π(X) π(Y ), and observe that Lemma 6.12 implies that

X → Y ′ is trivially smooth. Thus the matching map Xn →MnX ×MnY ′ Y
′
n

is smooth. The required result is then obtained by taking the fibre over
a ∈ π(X)n. �

Lemma 6.42. If we set ⊥′ = Γ∗FUΓ, and

L⊥′• (X) := Ω((⊥′)n+1π∗(OX))⊗(⊥′)n+1π∗(OX) π∗(OX),

then for all m, the simplicial complex L⊥′• (X)m is a model for the cotangent
complex of Xm.

Proof. This is essentially the same as Lemma 6.7, making use of the obser-
vation that Γ is exact and reflects isomorphisms, so it suffices to prove that
UΓ(⊥′)•+1π∗(OX)→ UΓπ∗(OX) is a resolution. �

Definition 6.43. Define D to be the simplicial category of pairs (K,R),
for K ∈ S, R ∈ (cFAlgK)opp, with a morphism f ∈ HomD((K,R), (L, S))n
consisting of f : K → L in S, together with f ] ∈ HomcFAlgK (f−1S,R)n.

Define B := S× (c+Mod)opp, with simplicial structure coming from
(c+Mod)opp.

Now, observe that we have a forgetful functor V : D → B, given by
(K,R) 7→ (K,ΓU∂UalgR), with right adjoint G : B → D given by (K,M) 7→
(K,Γ∗SymmF∂M). We have already seen that this adjunction is comonadic
(by fixing K).



i
i

“1-pridham” — 2015/1/5 — 16:42 — page 476 — #58 i
i

i
i

i
i

476 J. P. Pridham

Proposition 6.44. If X,Y are simplicial schemes over k, with each Xn, Yn
a disjoint union of affine schemes, and X quasi-smooth, then every mor-
phism ρ : Y → X is quasi-smooth over B, in the sense of Definition 4.22.

Proof. The proof of Proposition 6.19 carries over, using Lemmas 6.41 and
6.42 instead of Lemmas 6.14 and 6.7. �

Corollary 6.45. For any diagram in D(k) with quasi-smooth objects, the
associated pre-DDC given by Definition 4.24 and Proposition 4.19 applied to
the adjunction G ` V is a DDC by Lemma 4.25, and governs deformations
in the simplicial category D (by Proposition 4.26).
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