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Derived deformations of Artin stacks

J. P. PRIDHAM

We generalise the techniques of [16] to describe derived deforma-
tions in simplicial categories. This allows us to consider deforma-
tion problems with higher automorphisms, such as chain complexes
(which have homotopies) and stacks (which have 2-automorphisms).
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1. Introduction

This paper is motivated by the wish to describe derived deformations of an
algebraic stack. In [11] and [I], it was shown that deforming an algebraic
stack can be regarded as a special case of deforming a simplicial algebraic
space. The category of simplicial spaces has a natural simplicial structure
(meaning that the Hom-sets can be enriched to give simplicial sets), and the
2-groupoid of deformations of an algebraic stack can be recovered from this
simplicial structure.

After reviewing background material from [15] in §2| we introduce derived
deformation complexes (DDCs) In Section [3; these extend the SDCs of [13]
to simplicial categories. We then adapt the various constructions of [I5],
showing how to associate derived deformation functors to DDCs, and how
to compare them with derived deformation functors coming from SDCs.

Section 4] adapts the ideas of [13], showing how to associate DDCs to
bialgebraic deformation problems in simplicial categories. In we show
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how deformations of morphisms and diagrams can be used to compare defor-
mations of weakly equivalent objects.

Several simple examples of such problems are considered in Section
chain complexes (with more interesting variants in Remarks , simplicial
complexes and simplicial algebras.

The motivating example of algebraic stacks is finally considered in Sec-
tion [6] We first describe derived deformations of simplicial affine schemes
(, then show in how to adapt this to describe derived deforma-
tions of an algebraic stack X, with an indication in Remark of how
this approach also works for Artin n-stacks. The idea is to consider derived
deformations of a suitable hypercovering X, of X. To see that this does,
indeed, extend the 2-groupoid of deformations of X, we establish compar-
isons with Olsson’s Ext-groups of the cotangent complex (§6.2.1]) and Aoki’s
description of the deformation 2-groupoid (§6.2.2)).

2. Derived deformation functors

With the exception of the definitions and results in this section can
all be found in [I5]. Fix a complete local Noetherian ring A, with maximal
ideal p and residue field k.

2.1. Simplicial Artinian rings

Definition 2.1. Let Cp denote the category of local Artinian A-algebras
with residue field k. We define sCp to be the category of Artinian simplicial
local A-algebras, with residue field k.

Definition 2.2. Given a simplicial complex V4, recall that the normalised
chain complex N*(V'), is given by N*(V),, := ;5 ker(0; : V;, = V1), with
differential dy. The simplicial Dold-Kan correspondence says that N° gives
an equivalence of categories between simplicial complexes and non-negatively
graded chain complexes in any abelian category. Where no ambiguity results,
we will denote N® by N.

Lemma 2.3. A simplicial complex As of local A-algebras with residue field
k and mazimal ideal m(A)q is Artinian if and only if:

1) the normalisation N(cot A) of the cotangent space cot A :=m(A)/
(m(A)2 + pum(A)) is finite-dimensional (i.e. concentrated in finitely
many degrees, and finite-dimensional in each degree).
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2) For somen >0, m(A)" = 0.

Proof. [15] Lemma 1.16 O

As in [5], we say that a functor is left exact if it preserves all finite limits.
This is equivalent to saying that it preserves final objects and fibre products.

Definition 2.4. Define Sp to be the category of left-exact functors from
Ca to Set. Define ¢Sp to be the category of left-exact functors from sCy to
Set.

Definition 2.5. Given a functor F': Cp — Set, we write I’ : sCy — Set to
mean A — F(Ap) (corresponding to the inclusion Sp < ¢Sp).

2.2. Properties of morphisms

Definition 2.6. As in [9], we say that a functor F': CA — Set is smooth if
for all surjections A — B in Cy, the map F(A) — F(B) is surjective.

Definition 2.7. We say that a map f: A — B in sCy is acyclic if m;(f) :
mi(A) — m;(B) is an isomorphism of pro-Artinian A-modules for all 7. f is
said to be surjective if each f, : A, — B, is surjective.

Note that for any simplicial abelian group A, the homotopy groups can
be calculated by m;A = H;(NA), the homology groups of the normalised
chain complex. These in turn are isomorphic to the homology groups of the
unnormalised chain complex associated to A.

Definition 2.8. We define a small extension e : I —+ A — B in sCy to con-
sist of a surjection A — B in sCj with kernel I, such that m(A) - I = 0. Note
that this implies that I is a simplicial complex of k-vector spaces.

Lemma 2.9. FEvery surjection in sCp can be factorised as a composition
of small extensions. Every acyclic surjection in sCx can be factorised as a
composition of acyclic small extensions.

Proof. [15] Lemma 1.23. O

Definition 2.10. We say that a morphism « : ' — G in ¢Sp is smooth if
for all small extensions A — B in sCy, the map F(A) — F(B) x¢gp) G(A)
is surjective.

Similarly, we call a quasi-smooth if for all acyclic small extensions A —
B in sCy, the map F(A) — F(B) xg) G(A) is surjective.
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Lemma 2.11. A morphism o : F — G in Sp is smooth if and only if the
induced morphism between the objects F,G € cSp is quasi-smooth, if and
only if it is smooth.

Proof. [15] Lemma 1.31. O
2.3. Derived deformation functors

Definition 2.12. Define the scSp to be the category of left-exact func-
tors from sCp to the category S of simplicial sets. This is equivalent to the
category of simplicial cosimplicial objects in Sp.

Define sSp to be the category of left-exact functors from Cp to S.

Definition 2.13. A morphism « : F' — G in scSp is said to be smooth if

(S1) for every acyclic surjection A — B in sCy, the map F(A) — F(B) X (B
G(A) is a trivial fibration in S;

(S2) for every surjection A — B in sCy, the map F(A) — F(B) xgy G(A)
is a surjective fibration in S.

A morphism « : F' — G in scSp is said to be quasi-smooth if it satisfies
(S1) and

(Q2) for every surjection A — B in sCy, the map F(A) — F(B) x¢g) G(A)
is a fibration in S.

Definition 2.14. Given A € sCj and a finite simplicial set K, define AX €
Ca by
(AK)Z = HOHIg(K X Ai, A) XHomSet(ﬂ'oK,k) k.

Definition 2.15. Given F' € scSp, define F' : sCy — S by
F(A), := F,(A*").

For F' € ¢Sp, we may regard F' as an object of scSp (with the constant
simplicial structure), and then define F as above.

Lemma 2.16. A map a: F — G in cSp is smooth (resp. quasi-smooth) if
and only if the induced map of functors a: F — G is smooth (resp. quasi-
smooth) in scSp.

Proof. [15] Lemma 1.36. O
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The following Lemma will provide many examples of functors which are
quasi-smooth but not smooth.

Lemma 2.17. IfF — G is a quasi-smooth map of functors F,G : sCy — S,
and K — L is a cofibration in S, then

FL — FK XGK GL
18 quasi-smooth.

Proof. This is an immediate consequence of the fact that S is a simplicial
model category, following from axiom SM7, as given in [3] §II.3. O

The following lemma is a consequence of standard properties of fibrations
and trivial fibrations in S.

Lemma 2.18. IfF — G is a quasi-smooth map of functors F,G : sCy — S,
and H — G is any map of functors, then F xg H — H is quasi-smooth.

Definition 2.19. A map «a: F — G of functors F,G : Cy — S is said to
be smooth (resp. quasi-smooth, resp. trivially smooth) if for all surjections
A — B in Cp, the maps

are surjective fibrations (resp. fibrations, resp. trivial fibrations).

Proposition 2.20. A map o : F — G of left-exact functors F,G : Cx — S
is smooth if and only if the maps F, == Gy, of functors F,, Gy : Ca — Set
are all smooth.

Proof. [15] Proposition 1.39. O

Proposition 2.21. If a morphism F = G of left-exzact functors F,G :
sCn — S is such that the maps

0: F(A) = F(B) xgn) G(A)
are surjective fibrations for all acyclic small extensions A — B, then « :

F — G is quasi-smooth (resp. smooth) if and only if 0 is a fibration (resp.
surjective fibration) for all small extensions A — B.
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Proof. [15] Proposition 1.63. O
Definition 2.22. We will say that a morphism « : ' — G of quasi-smooth
objects of scSp is a weak equivalence if, for all A € sCp, the maps m; F(A) —
miG(A) are isomorphisms for all 7.

2.4. Quotient spaces

Definition 2.23. Given functors X : sCy — Sand G : sCx — sGp, together
with a right action of G on X, define the quotient space by

[X/Glp = (X xCWG)p =X,y X Gp_1 X Gp_o x --- Gy,
with operations as standard for universal bundles (see [3] Ch. V). Explicitly:

ai(xagn—hgn—Qa e 790)

(0o * gn—1,9Gn-2,--->90) i=0;
=4 (97, 0i-19n-1,-- -, (009n—i)gn—i—1, gn—i—2,---,9o) 0 <i < n;
(a’nx7an—1gn—17"'7algl) 1= n;

oi(T,9n—1,9n-2,-- -, 90)
— (Gi$7 0i—19n—15---,009n—i, €, 9n—i—1,9n—i—2, - - - 790)'

The space [8/G] is also denoted W@, and is a model for the classifying space
BG of G.

Lemma 2.24. If G : sCyn — sGp is smooth, then WG is smooth.

Proof. For any surjection A — B, we have G(A) — G(B) fibrant and surjec-
tive on mp, which by [3] Corollary V.6.9 implies that WG (A) — WG(B) is
a fibration. If A — B is also acyclic, then everything is trivial by properties
of W and G. ]

Remark 2.25. Observe that this is our first example of a quasi-smooth
functor which is not a right Quillen functor for the simplicial model struc-
ture. The definitions of smoothness and quasi-smoothness were designed
with WG in mind.

Lemma 2.26. If X is quasi-smooth, then so is [X/G] — WG.
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Proof. This follows from the observation that for any fibration (resp. trivial
fibration) Z — Y of G-spaces, [Z/G]| — [Y/G] is a fibration (resp. trivial
fibration). O

Corollary 2.27. If X is quasi-smooth and G smooth, then [X/G] is quasi-
smooth.

Proof. Consider the fibration X — [X/G] — WG. O
2.5. Cohomology and obstructions

Given a quasi-smooth morphism « : F' — G in scSp, there exist k-vector
spaces H (F/Q) for all i € Z.

By [15] Corollary 1.46, these have the property that for any simplicial
k-vector space V with finite-dimensional normalisation,

Tm(F (k@& V) Xgrav) {0}) EH(F/GV),
where V2 = 0 and

HY(F/GeV):=@H"F/G) @ (V).

n>0

If G = o (the one-point set), we write H/(F) := H/(F/e).
We now have the following characterisation of obstruction theory:

Theorem 2.28. Ifa: F — G in scSp is quasi-smooth, then for any small
extension e: [ — A 5 Bin sCa, there is a sequence of sets

mo(FA) L% 1o (FB xgp GA) 25 HN(F/G ® I)

exact in the sense that the fibre of o. over 0 is the image of f.. Moreover,
there is a group action of HY(F/G ® I) on mo(F A) whose orbits are precisely
the fibres of fs.

For any y € FoA, with x = fyy, the fibre of FA — FB xqgp GA over x
is isomorphic to ker(a : FI — GI), and the sequence above extends to a long
exact sequence

o (FB xap GA,2) —2 = HY " (F/G ® 1) ey (FA,y) L
!

ool 1 (FB xgp GA,2) —= > HY(F/G ® I) ——2—> my(F A).
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Proof. [15] Theorem 1.45. O

Corollary 2.29. A map o : F — G of quasi-smooth F,G € scSp is a weak
equivalence if and only if the maps H/ (o) : HY(F) — H7(GQ) are all isomor-
phisms.

Corollary 2.30. If a: F — G is quasi-smooth in scSp, then « is smooth
if and only if H'(F/G) = 0 for all i > 0.

Proposition 2.31. Let X,Y,Z : sCy — S be left-exact functors, with X =
Y and Y ﬁ) Z quasi-smooth. There is then a long exact sequence

L W(X)Y) - W(X/Z) - B (Y/Z)

5 WH(X/)Y) - B (X/Z) — -
Proof. [15] Proposition 1.61. O

2.6. Model structures

Theorem 2.32. There is a simplicial model structure on scSp, for which
the fibrations are quasi-smooth morphisms, and weak equivalences between
quasi-smooth objects are those given in Definition [2.29

Proof. This is [I5] Theorem 2.14. O

Thus the homotopy category Ho(scSp) is equivalent to the category of
quasi-smooth objects in scSp, localised at the weak equivalences of Defini-
tion [2.22)

Definition 2.33. Given any morphism f: X — Z, we define H"(X/Z) :=
H"(X/Z), for X & X & Z a factorisation of f with i a geometric trivial
cofibration, and p a geometric fibration.

2.6.1. Homotopy representability.

Definition 2.34. Define the category S to consist of functors F': sCy — S
satisfying the following conditions:

(AO) F(k) is contractible.

(A1) For all small extensions A — B in sCy, and maps C' — B in sCy, the
map F(A xp C) — F(A) x%(B) F(O) is a weak equivalence, where x”"
denotes homotopy fibre product.
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(A2) For all acyclic small extensions A — B in sCy, the map F(A) — F(B)
is a weak equivalence.

Say that a natural transformation n: F' — G between such functors is
a weak equivalence if the maps F(A) — G(A) are weak equivalences for all
A € sCp, and let Ho(S) be the category obtained by formally inverting all
weak equivalences in S.

Theorem 2.35. There is a canonical equivalence between the geometric
homotopy category Ho(scSp) and the category Ho(S).

Proof. This is [15] Theorem 2.30. O

2.6.2. Equivalent formulations. If £k is a field of characteristic 0, then
we may work with dg algebras rather than simplicial algebras.

Definition 2.36. Define dgCp to be the category of Artinian local differ-
ential Ng-graded graded-commutative A-algebras with residue field k.

Definition 2.37. Define a map A — B in dgCx to be a small extension if
it is surjective and the kernel I satisfies I - m(A) = 0.

Definition 2.38. Define sDGSp to be the category of left exact functors
from dgCy to S.

Definition 2.39. Say a map X — Y in sDGSp is quasi-smooth if for all
small extensions f: A — B in dgCy, the morphism

X(A) = Y(A) xy() X(B)
is a fibration in S, which is moreover a trivial fibration if f is acyclic.
Definition 2.40. We will say that a morphism « : F — G of quasi-smooth
objects of sDGSp is a weak equivalence if, for all A € sCy, the maps m; F'(A) —
m;G(A) are isomorphisms for all 7.
Proposition 2.41. There is a model structure on sDGSp, for which the
fibrations are quasi-smooth morphisms, and weak equivalences between quasi-

smooth objects are those given in Definition [2.40.

Proof. This is [15] Proposition 4.12. O
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Most of the constructions from sCp carry over to dgCp. However, there
is no straightforward analogue of Definition

Definition 2.42. Define the normalisation functor IV : sCy — dgCx by map-
ping A to its associated normalised complex N A, equipped with the Eilenberg-
Zilber shuffle product (as in [1§]).

Definition 2.43. Define Spf N* : sDGSp — scSp by mapping X : dgCy —
S to the composition X o N : sCx — S. Note that this is well-defined, since
N is left exact.

Theorem 2.44. Spf N* : sDGSp — scSp is a right Quillen equivalence.

Proof. This is [15] Theorem 4.18. O

In particular, this means that Spf N* maps quasi-smooth morphisms to
quasi-smooth morphisms, and induces an equivalence RSpf N* : Ho(sDGSp)
— Ho(scSp).

3. Derived deformation complexes
3.1. Definitions

Definition 3.1. Define a pre-SDC to consist of homogeneous functors E™ :
Cpa — Set, for n € Ny, together with maps

O E" —» Ertl 1<i<n
o' E" - E"l 0<i<n,

an associative product * : E™ x E™ — E™" with identity 1 : @ — EY, such
that:

1) 079' =907 1 i< j.

2) oot = glodtt i<
dioi=l i<y

3) 090t ={ id i=4,i=j+1
0ol i>j+1

4) O'(e) * f = O (ex f).

5) ex 0'(f) = 0™ (ex* f), for e € E™.

6) oi(e)  f = ai(ex* f).
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7) exa'(f) = o™ (e x f), for e € E™.

Remark 3.2. Note that a pre-SDC is an SDC (in the sense of [13]) if and
only if the spaces E™ are smooth for all n.

Definition 3.3. Define a pre-derived deformation complex (pre-DDC) E
to be a simplicial complex F, of pre-SDCs.
Given K € S, observe that £} := Homg(K, E") is a pre-SDC.

Remark 3.4. If each F,, is an SDC, then Lemma implies that for all
n, E™:Cpn — S is smooth. For K € S contractible, this implies that Fx is
an SDC.

Definition 3.5. Given a left-exact functor F' : C, — Set, define the tangent
space tan F' by tan F := F(k[e]/(€?)). Since k[e]/(€?) is an abelian group
object in Cy, tF is an abelian group. The endomorphisms € + Ae of k[e]/(€?)
make tan F' into a vector space over k.

Given a morphism « : F' — G of such functors, define the relative tan-
gent space tan(F/G) := ker(tan F' — tan G).

Definition 3.6. Given a morphism f : E — F of pre-SDCs for which each
f": E™ — F™ is smooth, we may define cohomology groups H*(E/F) as
cohomology of the cosimplicial complex C*(E/F) given by C*(E/F) :=
tan(F/F'), with cosimplicial structure defined as in [13] §1.

Definition 3.7. Given a morphism E — F of pre-DDCs, levelwise smooth
in the sense that each f! : B! — F! is smooth, observe that the cohomology
groups H'(E/F) are simplicial vector spaces, and denote the corresponding
normalised chain complexes by NH'(E/F).

Definition 3.8. A morphism f: E — F of pre-DDCs is said to be quasi-
smooth if:

Q1. for all n,i >0, B — EgA" X Fian F! is smooth, and
Q2. for alli > 0, H(E/F) is a constant simplicial complex, or equivalently
Q2. for alln > 0,i > 0, N,H'(E/F) = 0.

Say that a pre-DDC FE is a DDC if it is quasi-smooth, i.e. if & — e is
quasi-smooth.

Definition 3.9. Given a levelwise smooth morphism f: E — F of pre-
DDCs, define the tangent chain cochain complex by NC3(E/F).
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Definition 3.10. Say that a simplicial cosimplicial complex V' € scVecty, is
quasi-smooth if H,(NV?) = 0 for all n,i > 0 and H/(NV),, = 0 for all i > 0
and n > 0.

Definition 3.11. Given V € scVect, quasi-smooth, define a cochain com-
plex JV by:
Vi n>0
n._ 0 Z
(V)™= {HO(N_nV) n <0,
with differential d. in non-negative degrees, and d° in negative degrees.
Given a levelwise smooth morphism f: E — F of pre-DDCs, define
the cohomology groups H*(LE/F') := H*(LC®*(E/F)), noting that these are
given by
; HY(C3(E/F)) >0
) ~ 0
HOB/F) = {H_iHO(NC:(E/F)) i <0.

Lemma 3.12. IfV € scVecty is quasi-smooth, then the inclusion map
4V = Tot NV
is a quasi-isomorphism, and
H;(NZ"V) = H"(LV)
for alli,n > 0.
Proof. Combine the proofs of [15] Lemma 1.56 and [I5] Proposition 1.59. O

Lemma 3.13. A levelwise smooth morphism f: E — F of pre-DDCs is
quasi-smooth if and only if C3(E/F) is quasi-smooth (in the sense of Defi-

nition .

Proof. Since f is levelwise smooth, we know by Proposition that each
E' — F'is a smooth map of functors Cy — S. For a small extension A — B
in Cp with kernel I, we thus deduce that E'(A) = F'(A) xpip) E'(B) is a
fibration, with fibre C,(E/F) ® I.

Hence H,CL(E/F) = 0 for all i if and only if we have E* — F' trivially
smooth for all 4, i.e. if Definition 3.8/ (Q1) holds. The result now follows from
the characterisation of Definition B.10l 0

Definition 3.14. A morphism f: E — F of DDCs is said to be a quasi-
isomorphism if H*(Lf) : H*(LE) — H*(LF) is an isomorphism.
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Definition 3.15. Recall from [I6] Definition 4.1 that for any pre-SDC E,
we define the Maurer-Cartan functor MCg : sCy — Set by

MCg(4) c [T B (A7),

n>0
consisting of those w satisfying;:
wm(Sl,..., )*Wn(tl, '7tn):wm+n+1(817'")Smuoutl)"'atn);
(tlu o 7tn) - Wn—i—l(tla ce. 7ti—17 17tia LIRS 7tn)7
(o Wn(tl, e 7tn) - Wn—l(tlu ... 7ti—17min{ti7ti+1}7ti+2u R 7tn)>
Own(t1, .. ty) = w1 (ta, .. tn);
wn(tla 7tn) :Wn—l(tlw--vtn—l)a
aowo =1,

where T := Al

Definition 3.16. Given a pre-DDC FE, define the derived Maurer-Cartan
functor ME(E) : sCp — S by Homg (K, ME(E)) := MC(Ek).

Proposition 3.17. If f : E — F is a quasi-smooth morphism of pre-DDCs,
then

ME(f) : ME(E) — ME(F)

18 quasi-smooth, with cohomology groups
H! (IME(E)/ME(F)) = H Y (LE/F).
In particular, if E is a DDC, then ME(E) is quasi-smooth.
Proof. By construction, the simplicial matching maps are given by
MC(Ep) — MC(Fy,) Xnmc(Fyan) MC(Eoan) = MC(Egar X pypn Fn)-
Condition (Q1) from Definition for f implies that
E, — Eoan Xp, .0 Fy

is a levelwise smooth map of SDCs, so [16] Proposition 4.3 implies that
OME(f) satisfies condition (S1) from Definition [2.13]
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We now need to check that the quasi-smooth partial matching maps

are smooth. To do this, we verify the criterion of Corollary
Taking the relative version of [16] Proposition 4.7, we see that H*(«) is
cohomology of the cochain complex

ker(Ne(En/Fp)[1] = Ne(Eap /Fay);
this is isomorphic to N3N .(E/F)[1], which gives isomorphisms
H(a) = N, Z'C(E/F), H'(a)= N,HTYE/F) fori> 0.
Since N,H'(E/F) =0 all i > 0 by condition (Q2’), we see that H(a) = 0
for all 4 > 0. This implies quasi-smoothness of IME(f).

Now for ¢ > 0, the calculations above combine with Lemma to give

H' (MC(E)/ME(F)) = H' (MC(Eo) /MC(Fp))
=H"Y(FEy/Fy) = AT Y (LE/F).

For ¢ <0,

H(ME(E)/ME(F)) = H_H(C(E/F)[1])
=H_;ZYC(E/F)) =H" (LE/F),

since C(E/F) is quasi-smooth (in the sense of Definition [3.10) O

Corollary 3.18. If f: E — F is a quasi-isomorphism of DDCs, then
ME(f) : ME(E) — ME(F) is a weak equivalence.

Definition 3.19. Given a pre-DDC E, note that E? acts on MME(E) by
conjugation. Define the derived deformation functor Def(E) : sCyx — S by

Def(E) = [ME(B)/EY),
the homotopy quotient (as in Definition [2.23]).
Lemma 3.20. Given a simplicial group G, and a fibration X — Y of sim-

plicial G-sets, if each X, and Y, is a free Gy-set, then X/G — Y/G is a
fibration in S.
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Proof. Combine [3] Corollary V.2.7 and [3] Lemma V.3.7. O

Corollary 3.21. If f: E — F is a quasi-smooth morphism of pre-DDCs,
then

(f,) : Def(E) — Def(F) gy po WE,

is quasi-smooth, where WG := G\WG is a model for the classifying space
BG of G (as in [3] §V.4).
Thus

Def(f) : Def(E) — Def(F)

18 quasi-smooth, and
ME(E) — Def(E) Xpesry ME(F)

1s a weak equivalence.
In particular, if E is a DDC, then ME(E) — Def(E) is a weak equiva-
lence.

Proof. First observe that E0 — FU is trivially smooth, so M&(E) x WE°? —
IME(F) x WE? is quasi-smooth.
Given a surjection A — B in sCy, apply Lemma taking

X = WE'(A) x ME(E)(A),
Y = WE%(A) x ME(E)(B) Xame(r)5) ME(F)(A),

and G = E°(A). This shows that (f,q) satisfies condition (S1) from Defini-
tion Condition (Q2) follows similarly, so (f,q) is quasi-smooth.

That Def(F) is quasi-smooth follows from the observation that W E°? —
W FY is trivially smooth.

For the final statements, note that ME(E) = Def(E) Xy po 1, and

Y = Def(E) Xpes(r) ME(F) = Def(E) Xy po 1

If Z := WE° xyj o 1, then Z is trivially fibrant, so 1 — Z is a weak equiv-
alence. The map ME(E) — Y is then just the pullback of 1 — Z along
Y = Z. O
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3.2. Comparison with SDCs

Definition 3.22. Given a pre-DDC E, define a pre-DDC DE by (DE),, :=
(En)A", in the notation of [I6] Definition 3.11, i.e.

(EX)n — (En)X" ]

For zx € Xp41, y € Ynt1, 2€ Xppgn, 1 <1< n, 0< 7 <n, eG(EX)" and
f € (EX)™, we define the operations by
9'(e)(x) := &' (e(iz))
o!(€)y) = o’ (e(o)).
(f x€)(2) := f((Om41)"2) * (D)™ 2).
Proposition 3.23. If f: E — F is a map of pre-DDCs with
1) fi: E' — F* smooth for all i, and
2) HY(E/F) a constant simplicial complex for all i > 0,

then Df : DE — DF is quasi-smooth.
In particular, DE is a DDC for oall SDCs E.

Proof. By smooth base change, we know that Df is levelwise smooth. We
now verify the conditions of Lemma [3.13

CY(DE/DF), = C(E,/F,)"" = C{(E,/F,) ® C}(A", k).
Thus
H.(DE/DF)" = H,(E'/F") ® H.(C'(A®,k)) = 0,
since the cosimplicial complex k ® A? is contractible. Moreover,
H*(DE/DF), = H*(E,/F,) @ H" (A", k) = H(E,/F,),
so H{(DE/DF), is constant for i > 0. O

Lemma 3.24. If X in scSp is a levelwise quasi-smooth object for which
the simplicial vector spaces H'(tan X)) have constant simplicial structure for
1 >0, then

H*(X) 2 H*(Tot N tan X),
as defined in Definitions [2.33 and[3.5 respectively.
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Proof. By [15] Lemma 2.26, there is a weak equivalence X — X to a quasi-
smooth object. Since this is also a levelwise weak equivalence, we find that
Tot N tan X — Tot N tan X is a quasi-isomorphism. Now Proposition [2.21]
implies that X is quasi-smooth, so H*(X) = H*(X) = H*(Tot N tan X)), the
last isomorphism coming from [I5] Theorem 1.59. O

Proposition 3.25. If E is a pre-DDC for which E — e satisfies the con-
ditions of Proposition then o : Def(E) — Def(DE) is a quasi-smooth
replacement for Def(E).

Proof. By Proposition we know that Def(DFE) is quasi-smooth, so we
just need to show that « is a weak equivalence. Now, for i > 0,

H(tan Def(E)) = H' (tan ME(F)) = HT(E),
which has constant simplicial structure, so
H!(Def(E)) = H (Tot N tan Def(E)) = H ! (Tot NC*(E)).

Similarly, H(Def(DE)) = H*!(Tot NC*(DE)) = Hi*!(Tot NC*(E)), so
[15] Corollary 2.16 ensures that « is a weak equivalence. O

Corollary 3.26. For an SDC E, the functors Defg (from [16] Defini-
tion 4.4) and Def(DE) (and hence ME(DE)) are weakly equivalent (in
seSp).

Proof. Recall that Defg is [MCp/E"], which is a quasi-smooth replacement
of [MCg/E"] by [15] Lemma 2.26, in the sense that there is a weak equiva-
lence [MCg/E"] — Defg. If we let E denote the constant pre-DDC E,, := E,
then [MCg/E°] = Def(E), and we may apply Proposition O

Lemma 3.27. If E is a pre-DDC' for which E — e satisfies the condi-
tions of Proposition[3.23, then for all A € Cy, the map a(A) : Def(E)(A) —
Def(DE)(A) is a weak equivalence in S.

Proof. First observe that Def(E)(A)g = MCg,(A) = Def(DE)(A), and write
7'F := F|¢,. Now, tan 7’Def(FE) is the mapping cone of C°(E) LN 7Z1(E),
so (Q2) ensures that 7, tan 7°Def(E) = HI7"(LE). Observe that 7, tan °
Def(DE) = HI™"(LE), similarly.

The proofs of Proposition and Corollary adapt to show that
a(A) is a weak equivalence in S for all A, by taking small extensions A — B
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with kernel I, and considering the long exact sequences

e —— HTGE) ® T —— mu(Def(E)(A),z) —— ma(Def(E)(B),x) —— ...
. —— H'""UE) @I —— m(Def(DE)(A),2) —— m(Def(DE)(B),2) —— ...

associated to the fibrations Def(E)(A) — Def(E)(B) and Def(DE)(A) —
Def(DE)(B). m

4. Constructing DDCs
4.1. Simplicial monadic adjunctions

A simplicial category C has a class ObC of objects, and for all A, B € ObC(,
a simplicial set Hom,(A, B) of morphisms, with the usual multiplication
and identity properties. For a simplicial category C, we denote by C, the
category with objects ObC and morphisms Hom¢, (A, B) := Hom,(A, B),.

Definition 4.1. Say that a functor F': C — D of simplicial categories is an
equivalence if the functors F), : C,, — D,, are all equivalences.

Definition 4.2. Given a simplicial category C, set
Home¢ (A, B) := (Hom;)o(A, B).

Definition 4.3. For simplicial categories D, £, and a pair of functors

D€,
F

recall that an adjunction F' - G is a natural isomorphism

Hom(FA, B) = Homg (A, GB).
We say that F' is left adjoint to G, or G is right adjoint to F. Let 1 = FG,
and T = GF. To give an adjunction is equivalent to giving two natural
transformations, the unit and co-unit

n:ide = T, e:L —idp,

satisfying the triangle identities e F' o F'n = idp, Ge o nG = idg.
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Given an adjunction

with unit 5 : id — UF and co-unit € : FU — id, we let T = UF, and define
the simplicial category £ of T-algebras to have objects

TEL E,

for § € Homy(TE, E), such that fong =id and 8o T =60 o Ucpg. We
define morphisms by setting

Homer (TE % B, TEy & Ey) € Homg (B, E»)

to be the equaliser of
¢.0T
Homg (B, Eo)—=Homg(T E1, E»).
0*

We define the comparison functor K : D — £ by

B~ (UFUB Y22, UB)

on objects, and K(g) = U(g) on morphisms.

Definition 4.4. An adjunction

v,
D_T1°€,

F
of simplicial categories is said to be monadic if K : D — £ is an equivalence.

Examples 4.5. Intuitively, monadic adjunctions correspond to algebraic
theories, such as the adjunction

U
Ring _ T ~Set,
z[-]

between rings and sets, U being the forgetful functor. Other examples are
k-algebras over k-vector spaces, or groups over sets.
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Definition 4.6. Given an adjunction

14
v,
D_I &,

a

let 1 = VG, so L°PP is a monad on £°PP. Define £, := ((£°PP)+""")°PP with

K = K°P :D — £, . The adjunction is said to be comonadic if K : D — &
is an equivalence.

Example 4.7. If X is a topological space (or any site with enough points)
and X' is the set of points of X, let u : X’ — X be the associated morphism.
Then the adjunction v~! - u, on sheaves is comonadic, so the category of
sheaves on X is equivalent u~'u,-coalgebras in the category of sheaves (or
equivalently presheaves) on X’

A more prosaic example is that for any ring A, the category of A-
coalgebras is comonadic over the category of A-modules.

4.1.1. Bialgebras. Asin [20] §IV, take a category B equipped with both
a monad (T, u,n) and a comonad (L,A,~), together with a distributivity
transformation A : T = 1T satisfying various additional conditions.

Definition 4.8. Given a distributive monad-comonad pair (T,L) on a
simplicial category B, define the category BI of bialgebras as follows. The

objects of B] are triples (6, B,3) with (TB 4, B) an object of BT and

B2 1B an object of B, such that the composition (f06): TB — LB
agrees with the composition

B TS 1B 1B,
Morphisms are then given by setting
Homy (TB % B2 1B, 7B % B' %5 1 B') C Homg(B, B))
to be the equaliser of

(0.0T,5.)

Homg(B, B')
. 0 5oL)

Homgz(T B, B') x Homg(B, LB').

Example 4.9. If X is a topological space (or any site with enough points)
and X’ is the set of points of X, let D be the category of sheaves of rings on
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X. If B is the category of sheaves (or equivalently presheaves) of sets on X',
then the description above characterises D as a category of bialgebras over
B, with the comonad being u~u, for v : X’ — X, and the monad being the
free polynomial functor.

4.2. The construction

We let sCat denote the category of simplicial categories.

Definition 4.10. Given functors .4 i) B <& Cof simplicial categories, define
the fibre product A xz C by

Ob(AxpC)={(A,5,C): AcOb A, C € ObC, B €Isog,(fA,gC)},
with morphisms

MAXBC((Av Ba C)v (A/7 5,7 Cl))
= HOIHA(A, AI) Xﬁif,I‘IC)JB(fA,QC'),,B*Q HOII]C(C, C/)

Definition 4.11. We say that a functor F': Cx — Set is homogeneous if
for all small extensions A — B in Cy,

is an isomorphism. Note that this is equivalent to being a disjoint union of
left-exact functors.
Similarly, a functor D : Cy — sCat is said to be homogeneous if

D(A xp C) = D(A) xp) D(C)
is an equivalence for all small extensions A — B.
Definition 4.12. We say that a homogeneous functor B : Cy — sCat has

uniformly trivial deformation theory if

1) for all A € Cp and all By, Ba € ObB(A), the functor Homg(Bi, Bs) :
C4 — Set of morphisms from By to By is trivially smooth (in the sense
of Definition [2.19)) and homogeneous;

2) for A" — A in Cy, By(A') — Bp(A) is essentially surjective.
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Now, assume that we have a diagram

of adjunctions of homogeneous simplicial category-valued functors on Cj,
with F' 4 U monadic and G - V comonadic. Let

Ty=UF 1, =FU
1,=VG@ T, =GV,

with

n:1—Ty, ~v:1ly—1, e:lp—landa:1— Ty.
Assume that these adjunctions satisfy the simplicial analogues of [20] §IV
or [13] §2, in other words that U and V' commute with everything (although
G and F need not commute).

Fix D € ObD(k), such that we may lift UV D € Ob B(k) to B € Ob B(A),
up to isomorphism (in By(k)).

Theorem 4.13. There is a natural pre-DDC' E associated to this diagram,
given by
E" = 7HOH13(TQB, J—CLB)UV(QEOE%)'

If E is levelwise smooth, satisfying Condition (Q2) of Definition
then the classifying space WDDJd s canonically weakly equivalent to the
restriction T™'Def(E) (from Lemma as a functor from Cp to S. Here
Dpida(A) is the simplicial groupoid given by the fibre product

D(A) xpy (D,id),
where (D,id) is the category with one object and one morphism.

Proof. For each m, E,, is the SDC defined in [13] §2 associated to the monad
Th and comonad L, over the category B,,.
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Since the adjunctions are monadic or comonadic, the proof of [13] The-
orem 2.2 adapts to give functorial equivalences

K(A):D(A) — B[*(A)

between D and the simplicial category of (Ty, Ly )-bialgebras.

Let D' € Ob BI‘V (k) be the bialgebra over B € Ob B(k), with bialgebraic
structure coming from the isomorphism UV D = B. Let G be the full sub-
category of BE(A) on objects

MCpg,(A) = {w e ObBT(4) : X = D' € ObB "1+ (k).
Morphisms in G are just
Homg(w,w') = {f € E° : fxw=uwxf},

from which we deduce that G is a simplicial groupoid. Moreover, observe that
g— (BI‘V) D id is an isomorphism of simplicial categories, so G is equivalent
to Dpiq. In particular, this implies that Dp;q is a simplicial groupoid. It
therefore suffices to compare G with Def(E).

Lemma 4.14. The functor G : Cx — sGpd is quasi-smooth, in the sense
that it maps small extensions to fibrations (as defined in [3] §V.7).

Proof of lemma. Smoothness of Ej implies that the path-lifting property is
satisfied. Given K — L € S, and a small extension A — B with kernel I,
the obstruction to lifting the diagram

K —— Homg(w,w')(A)
L —— Homg(w,w')(A)
lies in H!(ker(C*(EL) — C*(Ek))) ® I. If we write V*® = ker(C*(EL) —
C*(FKk)), then we have an exact sequence
HO(Br) & HO(Ey) — HY(V*) - HY(E,) S 0 (Ex).

If K< L is a trivial cofibration, then Condition (Q2) of Definition
ensures that « is surjective and 5 an isomorphism, so the obstruction is zero

and the lift exists, proving that Homg(w,w’) is quasi-smooth, as required.
a
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Now, the inclusions MCp, < MC(E) and Homg(w,w’) < E° define a
morphism

a: WG — 1"Def(E)

of quasi-smooth functors Cy — Set. Note that WGy = MCpg, = n'Def(E),.

(Q2) also ensures that « is a weak equivalence on tangent spaces, with
1, WG (kle]) = HI=™(LE). As in the proof of Lemma this implies that
a(A) is a weak equivalence in S for all A. O

Remark 4.15. If B has uniformly trivial deformation theory, then note
that D always exists, and that the pre-DDC E of Theorem automati-
cally satisfies Definition [3.8/(Q1).

However, if F just satisfies all the conditions of Theorem then
Propositions [3.23] and then give a DDC DE, which by Lemma[3.27] also
has WDp iq ~ m'Def(DE).

4.3. Deformations of diagrams and invariance under
weak equivalence

In a similar vein, we may study deformations of a morphism, or even of a
diagram.

Definition 4.16. Define A,, to be the subcategory of the ordinal num-
ber category A containing only those morphisms f:m — n with f(0) =
0, f(m) = n. Given a category C, a functor X : A, — C consists of objects
X" € C, with all of the operations 0%, 0" of a cosimplicial complex except
0, om s X — XL

Definition 4.17. Given a monoidal category C and a set O, recall from
[14] that a C-valued quasi-descent datum X on objects O consists of:

1) objects X (a,b) € C*+ for all a,b € O;

2) morphisms X (a,b)™ ® X (b, ¢)™ = X (a, )™ making the following dia-

gram commute for all a,b,c € O

ANk X Ny ——mm
X(a,b)®X (b,c)

| J
Ay — C.
X(a,c)
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3) morphisms 1 — X (a,a)? for all a € O, acting as the identity for the
multiplication .

Note that a pre-DDC over A is a quasi-descent datum (on one object)
in the monoidal category (sSp, X).

Definition 4.18. Let @Dat(C) be the category of C-valued quasi-descent
data, i.e. of pairs (O,X) for O a set and X a quasi-descent datum on
objects O.

We say that D is an enrichment of a C-enriched category F if Ob F =
ObD and F(z,y) = D%(x,y), compatible with the product and identities.

Proposition 4.19. For a diagram of simplicial category-valued functors
as in the sSp-enriched category B(A) has a natural enrichment in
QDat(sSp). If the simplicial structure on B is constant, then this enrich-
ment is in QDat(Sp).

Proof. This is just [14] Proposition 2.12. The enriched Hom-set #om (B, B’) :
Ca — S+ is given by

Hom"(B,B') := Homgz(T1B, L2B').

If the simplicial structure on B is constant, then Homgz = Homp, so
Som (B, B') lies in Sp. O

Definition 4.20. Given a morphism f : D — D’ in D(k) for which UV D,
UV D' lift to B, B" in B(A), define

E%/B(f) = mn(B7 Bl)UV(aE,ofoe%) € SSp
Write E;)/B(D) = E;‘)/B(idD).

Definition 4.21. Given a morphism f : D — D’ in D(k) for which E;)/B(f)
€ (sSpy )2+ is levelwise smooth, define

p/s(f) = tan Ep 5(f),

and note that that this becomes a cosimplicial complex (of simplicial com-
plexes), by [16] Lemma 3.10. Explicitly,

#/5(f) = tan Hompy (Lp+'D, THD') o

D’ OfO&‘E )
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Define

Bty (1) = H'(Ch () € sVecty
Extp 5(f) := H"(Tot NC} 5(f)) € Vecty.
Definition 4.22. Say that a morphism f: D — D’ in D(k) is Q2 over B if
1) UVD,UV D' lift to B(A),
2) E5 /B< f) is levelwise smooth, and
3) Extl /() is a constant simplicial complex for i > 0.
We say that f is quasi-smooth over B if in addition H*C%/B(f) =0 for

all n.

Remark 4.23. Note that if f is Q2 over B, then we have Ext%/B(f) =

H*(_INC{)/B(f)), by Lemma

Definition 4.24. Given a small category I, and an [-diagram D : I — D(k)
with objects UVID(i) lifting to B(A), define the pre-DDC E. D/B(ID)) by

5(D) = H E"(D(fno facrofo) = [] E"(@(3," =),
’L()—_>21—_> i}’tn xeBH
in I

where Bl is the nerve of I (so Bly = Ob (I), BI; = Mor (I)), and 81_1 = 0y.
The operations are defined as in Definition (3.22

Lemma 4.25. Given an I-diagram D : T — D(k) with all morphisms D(f)
quasi-smooth (resp. Q2) over B, the pre-DDC E 18 quasi-smooth
(resp. is levelwise smooth and satisfies Deﬁmtzon@/(QQ))

Proposition 4.26. Given an I-diagram D : T — D(k) with all morphisms
Q2, the classifying space W (D")psqa and TrOQef(E;)/B(ID))) are canonically
weakly equivalent as functors from Cp to S.

Proof. This is just [14] Lemma 1.36. O

Definition 4.27. Say that a morphism f: D — D' in D(k) is an Extp /-
equivalence if UV D, UV D' lift to B, B" in B(A), with E*(f) levelwise smooth,
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and the maps
7 e * I 7
Extp p(idp) = Extp g(f) «— Extp p(idp)
are isomorphisms.

Proposition 4.28. If a morphism f:D — D' in D(k) is an Extp/g-
equivalence, with the morphisms f,idp,idp. all Q2, then the DDC's DEé/B(D)

and DEé/B(D’) are quasi-isomorphic.

Proof. Let 1:= (e — o) be the category with two objects and one non-
identity morphism, and consider the diagram D : I — D(k) given by D EN
D’. By Lemma and Proposition we know that the pre-DDCs
DEé/B(D) DEé/B( ") and DEB/B(]D)) are all DDCs.

The inclusions of objects into I give morphisms E3, /B(D) «~ Ep 5 z([D) —
E3, /B(D’ ). We just need to describe the cohomology groups H*(LE7, /B(D)
to show that these induce quasi-isomorphisms.

The tangent space C%, /B( ) is the diagonal cosimplicial complex associ-
ated to the bicosimplicial complex

H CD/B am ! ))7
zeBI,,

whose horizontal normalisation is the cochain complex

(fr= ") e

in degrees 0 and 1.
Thus C’D/B(]D)) is the mapping cone of the morphism (f,, —f*). Since f
is an Extp/p-equivalence, we deduce that the maps

are indeed isomorphisms. 0

4.3.1. Constrained deformations. We now consider a generalisation,
by taking a small diagram

D:I1— D(k),
a subcategory J C I, and HS)TJ :J — D(A) lifting D[y. We wish to describe

deformations of D which agree with D|j on J. Note that when I = (0 — 1)
and J = {1}, this is the type of problem considered in [2] and [19].
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Proposition 4.29. Given an I-diagram D : T — D(k) with all morphisms
Q2, and with Dy as above, the simplicial groupoid of deformations of D
fizing D|y is governed by the pre-DDC

Ep (D) X gy

D/B

(D)

where o — E,B/BGD)L]]) is defined by the object of MC(E{)/B(D]J))O corre-
sponding to D|y.

Proof. We need to show that the classifying space
W (D" x2 D|y)p,ia

of the homotopy fibre of simplicial categories is canonically weakly equivalent
to

as a functor from Cp to S.
We know that the functor Def preserves inverse limits, so

TDef(E* (D) X go(p)y) @) = 7 Def(ED 5(D)) X pomei(me (i) ®
By Lemma [3.27] Lemma and Corollary [3.21] we know that
TDef(Ep 5(D))(A) — 7'Def(E*(Dly))(A)
is a fibration in S, so the fibre over any point is the homotopy fibre. Propo-
sition [4.26] now shows that this is equivalent to the homotopy fibre of
W(D(A)Y) — W(D(A)?) over D|y, as required. O
5. Examples

We now show how to apply Theorem [4.13] combining it with Definitions
or to obtain derived deformation functors. This gives many new
examples coming from categories with non-trivial simplicial structure.

5.1. Chain complexes

We will denote chain complexes by V,, and their underlying graded modules
by V..
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Definition 5.1. Define dgFMod(A) to be the category of chain complexes
of flat modules over A. We make this into a simplicial category by defining
the simplicial normalisation N*Hom(U,, V) to be the chain complex

N;Hom (U, Va) := { Hom(Us, V) n=0

[I;50 Hom(Ui, Vign) n>0

with boundary map ady(f) :=do f £ f od. This determines the simplicial
module Hom(Us, Va) := (N*)"! N*Hom(U,, V4 ) by the Dold-Kan correspon-
dence.

Definition 5.2. Define gFMod(A) to be the category of flat Ny-graded
modules over A, with the simplicial structure

Hom(U., Vi) n=20

N Hom(U,, V;) := { Hom(Uy, Vi[n]) x Hom(U,, Vi[n —1]) n >0

where the boundary map is given by d(f,g) := (g,0).

Lemma 5.3. The functor gFMod : Cy — sCat has uniformly trivial defor-
mation theory.

Proof. Since flat A-modules are free, it follows that objects lift. The other
properties from Definition [£.12] now follow by a simple calculation. O

Definition 5.4. Let the forgetful functor dgFMod — gFMod be given by
Ve +— Vi, and defined on simplicial morphisms by mapping f € NSHom(Us,, Vi)
to (f,adq(f)) € NJHom(U,, V).

Lemma 5.5. The forgetful functor dgFMod — gFMod of simplicial cate-
gories has a right adjoint G, and the resulting adjunction is comonadic.

Proof. Define (GVi),, :==V,, ® V,,_1, with d(v,w) = (w,0). The unit o : Uy —
G(U,) of the adjunction is a(u) = (u,du), for any chain complex U,, and
the co-unit v : G(Vi) — Vi is the map (v, w) = v of graded modules. [

Let L =VG and T =GV, for V the forgetful functor.
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Proposition 5.6. For U, € dgFMod(k), the pre-DDC
En(A) = HomgFMOdA(U* X A, J_nﬁ* X A)V(a;})
of Theorem[[.13 is quasi-smooth, with cohomology

H*(_IE) == H*( ° ﬂ HongModk(U*g U* [_n])

244, Homg, vod, (Us, Us[—n — 1]) 222 ..
- EthngVectk (U07 U0)7

for dgzVecty, the category of Z-graded chain complexes over k, and Ext the
hyperext functor of [21)] §10.7.

Proof. Observe that H*(E),) is cohomology of the complex
Hom,, (U,, TU,) — Hom, (U,, T?U,) — - - -

associated to the monad T (as in [2I] §8.7), so for n >0, N;H*(E) =
H*(NZE) is cohomology of the complex

Hom(U,, (TU).[n]) — Hom(U,, (T2U)[n]) — - - -
Now, (TU). = L(Us), and the augmented cosimplicial complex
Uy—L(U)—z 12(Uy)— - -
is canonically contractible (in the sense of [21] 8.4.6), giving

srTi Hom (U, Ui |n 1=20
N”H(E):{o ( " i>0

for n>0, so E is quasi-smooth, and H™"(LE) = Ext; 'y, (Us,Us) for
n > 0.

Since ker(vyy : LU, — Uy) = U,[—1], the cosimplicial normalisation
N™(L*U,) = N=1(L*U,)[~1], so N*(L*U,) = Uy[~n]. Thus N.C*(Ep) is
just

Hom(Us, U) 2% Hom(U,, U,[~1])) 2% Hom(U,, U,[-2])) 2% .- |

so H'(LE) = Ext!

dngectk(Uh Uo) for ¢ > 0. 0
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Remarks 5.7.

1) Dually, we may consider deformations of (non-negatively graded) co-
chain complexes. This simplicial category is monadic over graded mod-
ules.

2) We may incorporate the constructions of this section into more
interesting examples. For instance, deformations of a complex of O'x-
modules on an algebraic space X are given by considering the diagram

dgOxMod(X) __ 1 dgMod(X)
Ox®—

uw ! [H|u.G ! [H|u.G

g(u=tOox)Mod(X") T gMod(X"),
(u=tO0x)®—

of simplicial categories, where u : X’ — X is the map to X from its
set of geometric points. The resulting pre-DDC will be quasi-smooth
whenever Exty, (M;,, M,) =0 for all i >0 and n > m.

5.2. Simplicial complexes

Definition 5.8. Define sFMod(A) to be the category of simplicial flat mod-
ules over A. We make this into a simplicial category by setting

Hom(Us,, Ve)p := Hom(A" @ U,, Va),
where, for a set X and module U, we set U @ X :=@,x U.

Definition 5.9. Define A, to be the subcategory of the ordinal number
category A containing only those morphisms fixing 0. Given a category C,
define the category s;C of almost simplicial complexes (resp.the category
¢+C of almost cosimplicial complexes) in C to consist of functors (A,)°PP — C
(resp. Ay — C). Thus an almost simplicial object X, consists of objects
X, € C, with all of the operations 9;, o; of a simplicial complex except 9y,
satisfying the usual relations. Similarly, an almost cosimplicial complex has
all of the coface and coboundary operations except 0°.

From now on, we will denote simplicial sets by X,, and their underlying
almost simplicial complexes by X,.
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Definition 5.10. Define a simplicial structure on the category sy FMod(A)
by setting
Hom (U, Vi), := Hom(A} ® U,, V).

Remark 5.11. Recall that the Dold-Kan correspondence gives an equiva-
lence N : sMod — dgMod of categories, by the formula N(V'),, = (i, ker(; :
Vi — V1), with d := dy. Observe that this extends to an equivalence N :
s+Mod — gMod of categories, given by the same formula. This is only a
weak equivalence of simplicial categories, not an equivalence.

Lemma 5.12. The forgetful functor skMod — sy FMod of simplicial cat-
egories has a right adjoint Gg, and the resulting adjunction is comonadic.

Proof. Let (GyVi)n :=V, @ V1 @ - - @ Vp, with operations

a’i(vny ceey UO) = (aivna aiflvnfla s 7alv’nfi+17 Un—i—1,---,V1, UO)

O’i('U'm e ’UO) = (O’ﬂ)n, Oi—1Un—15+++,00Un—4,Un—jy...,V1, UO)-
The unit o : Us — (GoU.)e of the adjunction is
a(u) = (u, Oou, Oy, . . ., 8y u),

for any simplicial complex U,, and uw € U,,. The co-unit v : GyVi — Vi is the
map 7y (vp, - ..,v9) = v, of almost simplicial complexes. O

Remark 5.13. The forgetful functor Vy also has a left adjoint, which does
not respect the simplicial structure of the categories. It is given by Lo(Vi)n
= Vp41, with 82-[:9‘/ = 8%_1, Ufav = O'XH, and unit o : Vi = VyLy(Vi) =

Ly(V)s. Note that LyVp is the functor DEC°PP defined on simplicial sets
in [4].

Definition 5.14. Define objects E" € s Set by E = Homa, ([m], [n]), and
let OZ™ be the boundary of =™ (i.e. the union of the images of all maps
En~1 — ="). Note that £(Z") = A" and, for n > 0, L(dZ") = AZ, the Oth
horn.

Lemma 5.15. For X € sy Set, Xg — L(X) is a weak equivalence.
Proof. Any injective map f : Z — X in s4Set is an inductive limit of push-

outs of maps 0= — E™ for n > 0. If fy: Zg — X¢ is an isomorphism, we
may take m > 0 only. Then L(f):L(Z) — L£(X) is an inductive limit of
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pushouts of maps Aj — A", so is a trivial cofibration. Taking Z = X gives
the required result. O

Let L =V3Gy and T = GyVjy, for Vy: sFMod(A) — sy FMod(A) the
forgetful functor.

Proposition 5.16. s.FMod has uniformly trivial deformation theory, so
given U, € sFMod(k), we may lift U, € syFMod(k) to U, € syFMod(A).
The conditions of Theorem[{.13 are satisfied, and the pre-DDC

E™(A) := Hom, pnjod(ay (U L"Us)v(ar)
is then a DDC, with cohomology H*(LE) given by the complex

: ad—d> I—IOIngZMod;c (NU*, NU*[—TL])

ad—d> HongModk(NU*, NU*[—n — 1]) ﬂ) e
i.e. Bxty, vecr, (NUe, NU).

Proof. This is similar to Proposition [5.6] The only difficulty lies in estab-
lishing Definition (Q2):

NnC’L(E) = NnmSFMod(k)(U07 TiJron)
= Homgpnioa(r) (Us ® (A"/AG), THIUL).

Now, since k ® Aj — k ® A" is a weak equivalence admitting a retrac-
tion, P := U, ® (A"/A{) is trivially cofibrant, so is a projective object in
the category sFMod(k). The cosimplicial complex U*® in sFMod(k) given by
Ut .= Ty, is a resolution of U := U, (since the augmented cosimplicial
complex VyU — VpU® is contractible). Thus

= Hompnoder) (P U)-
We have therefore shown that for n > 0,

NpHom pyioq(r) (Uss Us) i =0

N,H(E) = ,
(E) {0 i > 0.
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5.3. Simplicial algebras

Although the results in this section are expressed for commutative algebras,
they will hold for any category equipped with a suitable forgetful functor to
flat modules, and in particular algebras over any operad.

Definition 5.17. Let FAlg(A) be the category of flat (commutative) A-

algebras, with sFAlg(A) := FAlg(A)2™" and s,FAlg(A) := FAlg(A)2>" .

Recall that, for K € S and R € sFAlg(A), we define R ® K € sFAlg(A) by
[

Define ® K : sy FAlg — s, FAlg by the same formula.
Now, we make sFAlg(A), s4 FAlg(A) into simplicial categories by setting

msFAlg(ROa So)n = HomsFAlg(An @ R, So),
HO7H15+FA1,53;(R*7 S*)n = HomerFAlg(AZ ® R*, S*)

We now consider the commutative diagram

U
sFAlg T sFMod
Symm
Va — Ga Va - G8
_Uu .
s+ FAlg T  s+FMod
Symm

of adjunctions of homogeneous simplicial category-valued functors on Cyp.

Definition 5.18. Given an almost simplicial A-algebra R,, define the cat-
egory syMod(R,) to consist of almost simplicial A-modules M, equipped
with an associative multiplication R, ® M, — M,, respecting the almost
simplicial structures. This has a simplicial model structure (by applying [6]
Theorem 11.3.2 to the forgetful functor sy Mod(R.) — s1Mod(A)).

All objects of sy Mod(R,) are fibrant. Since A ® (0A™). — A® (A"),
has a retraction in s; Mod(A), we see that for all cofibrant C € s;Mod(Ry),

HO7mS+Mod(R*) (Ci, M)

is trivially fibrant.
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Proposition 5.19. Fiz R, € sFAlg(k), set M, := UVyRe, and choose a lift
M, € s, FMod(A).
Theorem gwes a pre-DDC

E" := Hom,  prjoq((USymm)" M., (VaG)" Ra)uv, (apoep)-

Moreover, if Re € sFAlg(k) is cofibrant, then the pre-DDC E of Theo-
rem is a DDC. The almost simplicial k-algebra R, then lifts to R, €
s+ FAlg(A), and E is quasi-isomorphic to the DDC' defined by

(E')n = Hom, parg(Rs, (VoGo)" Re)vy(ap)

Vo
coming from the comonadic adjunction sFAlg_ 1~ s FAlg.
Go

Proof. 1t is straightforward to verify [13] equations 1-4, since all our con-
structions commute with forgetful functors, so F is a pre-DDC. Since
s+ FMod is uniformly of trivial deformation theory, Definition (Ql) is
satisfied by F.

To establish quasi-smoothness, we must compute cohomology groups.
Given a k-algebra S, recall that the cotangent complex is given by L,,(S/k) =
Jn/(Jn)?, where J, is the kernel of the diagonal map (SymmU)"™1(S) @
S — S. The cosimplicial complex C*(E,,) is then given by

Cm(En) = HomerMod(R*)(Lm(R/k)* R A", GgIR*)
Thus H*(E,,) is the total cohomology of the double complex

CY = Homy, vroa(r.) (Li(R/E). ® A", GJR.)
= Hom,, poa(r. ) (Li(R/k)s, (GR)A™).

Now, if R, is cofibrant, the augmented complex L4(R,) — Q(R./k) is a
levelwise cofibrant resolution in s;Mod(R,). Since all maps in sy Mod(Ry)
are weak equivalences, cofibrant modules are projective, so the complex is
contractible.

Define André-Quillen cohomology on s;Mod(R.) by DY(R./k, M,) :=
H%Homy  od(r,)(Lie(R/k)«, My). Given a small extension A — B with ker-
nel I, and a flat almost simplicial B-algebra S, note that the obstruc-
tion to lifting S, to a flat A-algebra lies in D?(S,/B, S, ®p I) = D*((S. ®p
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k)/k,S. ®@p I), applying [I3] Theorem 2.2 to the adjunction

s+FAlg_ 17~ s+ FMod.

Symm

This ensures that R, lifts to some R, € s+FAlg(A), so E' can be defined.

Similarly to [13] §3.2.2, we see that E’ is a levelwise smooth DDC, and
that H*(£},) is cohomology of the complex (C')™ = Homy, noa(r, ) (U R/k)x
®@ A", GG Ry).

Now, the canonical map E' — E gives quasi-isomorphisms E], — FE,, for
all n. We know that E automatically satisfies (Q1l). Since Q(R./k) is a
cofibrant R,-module, the tangent space C(£')" = Hom, vioq(g.)(2(R/k),
G%R,) is trivially fibrant, so E also satisfies (Q1).

It only remains to show that E’ satisfies (Q2’); the proof of Proposi-
tion [5.16| adapts. O

Remark 5.20. We may weaken the condition that R, be cofibrant to
requiring that the cotangent complex diaglLe(Re/k) of R, is equivalent in
Ho(sMod(R.)) to ©(Re/k), and that the latter is cofibrant. If a k-algebra
R (with constant simplicial structure) is smooth, [7] Proposition I11.3.1.2
implies that this holds.

Definition 5.21. Given a simplicial k-algebra R,, and a simplicial R,-
module M,, define the simplicial vector space Der(R, M) of derived deriva-
tions by

Der(Re, My),, := Der(Re @ A", M,),

the set of simplicial k-algebra morphisms f : Ry ® A™ — Re @& M€ extend-
ing the canonical map Re ® A" — R,, where €2 = 0.

Remark 5.22. For R, € sAlg(k) cofibrant, and F as in Proposition
H"(E) = m_pDergp,(Re, Re) for n < 0. For n > 0, H"(E) is the nth coho-
mology of the cosimplicial complex

associated to the comonad Ly of Definition [5.13

Proposition 5.23. If Re — R is a cofibrant resolution of a k-algebra R,
then the DDC E of Proposition |5.14 is quasi-isomorphic to DF', for F the
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SDC

F" = HomMOd(Symm"M, M)
from [12] §1.2.1, and M € FMod(A) lifting the k-module M underlying R.
Proof. By Proposition [{.28] we may assume that R, is the standard resolu-

tion R, = L™t R, with R,, = Symm"*!(M).
Then we have E quasi-isomorphic to the DDC E’ given by

(E')% = Homg, p1g(Kys ® Ry, GAR,) = Homg, o (Ky ® Symm* R, GG R.).
The augmentation ¢ : R, — R in s;Mod(A) gives us a map

X : (B")% — Homyg, Mod (K. ® Symm* R, G5 R)
= Homs, Moa (L™ (K ® Symm*R), R)
= Homyjoq (K, ® Symm"R, R).

But this is just (DF)’, and it is straightforward to check that x : E' — DF
respects all the SDC operations.
Since R, — R is a resolution, we get a weak equivalence

Z"C*(E) = Z"Derg1y(Re, G** Ry) — Z"Der,p 4 (Re, G R)
Now by Lemma [5.15

Der z1g(Re, G" ' R)py = Derag (Woﬁn+1(Am ® R,), R)
= Derag(Rn, )
= Derpjg(Symm™R, R)A+
= C"(DF)pm

Since C*(E) is quasi-smooth, H*"*(LF) = m;Z"C*(E), so
H*(LE) = H* (LDF) = H*(F),

which is just André-Quillen cohomology D (R, R), and so x is a quasi-
isomorphism. (|

Remark 5.24. Propositions [5.19] and [5.23] together imply that derived
deformations of a k-algebra R are equivalent to derived deformations of
the operation Jp on any cofibrant resolution R, — R.
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6. Deformations of Artin stacks and simplicial schemes

The problem we now wish consider is that of deforming of an algebraic stack
X. We may take a smooth simplicial hypercovering X, — X, with each X,
a disjoint union of affine schemes (similarly to the proof of [I0] Theorem
11.1), and our first step will be to consider derived deformations of X,.

6.1. Cosimplicial algebras

Let X, be a simplicial affine scheme. Equivalently, we may consider the
cosimplicial algebra [n] — ['(X,, Ox,).

Definition 6.1. The categories cFMod(A), cFAlg(A), c¢;FMod(A), and
c+FAlg(A) (as given in Definition can be made into simplicial cate-
gories (i.e. enriched in simplicial sets) by setting (S%)" := (S")&» for K €
S, with structure maps (S)(f) = S(f)5» o K(f)* : (S™)&m — (8™)K», for
morphisms f in A. We then define the simplicial Hom functor by

Hom(R, S),, := Hom(R, S2").

There is the following diagram of monadic adjunctions of functors Cy —

sCat:
Ualg
cFAlg(A) T cFMod(A)

-~
Symm

Us || Fa Us |F| Fa

Ualg
ct+FAlg(A) _— T ~ ¢4 FMod(A),

Symm

where Fy : c;FMod(A) — cFMod(A) is left adjoint to the forgetful functor
Uy, given by

(FsV " =Vra Vi lg...qV0,

with operations dual to those in Lemma Similarly, Fy : c;FAlg(A) —
cFAlg(A) is the left adjoint given by

(FhR)"=R"®@R"'®---@ R".
The diagram satisfies the following commutativity conditions:

UpUalg = UaigUs SymmFy = FySymm, UspSymm = SymmUy.
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These adjunctions combine to give a monadic adjunction

UBUalg
cFAlg(A)_ T " c¢;FMod(A).

SymmFy
Lemma 6.2. c¢;FMod(A) has uniformly trivial deformation theory.
Proof. This is essentially the same as Proposition [5.16 O

Proposition 6.3. In the scenario above, Theorem [{.13 gives a pre-DDC

—_~—

E" = Hom, pyrjod(T"UgUag R, UgUaig R),
satisfying Definition . (Q1), where T = UpUy g SymmFy.

We now seek conditions under which the pre-DDC E (or similarly a
pre-DDC E(D) associated to a diagram as in §4.3) is quasi-smooth.

Definition 6.4. Given a cosimplicial (resp. almost cosimplicial) A-algebra
R, define the category ¢cMod(R) (resp. cyMod(R)) to consist of cosimplicial
(resp. almost cosimplicial) A-modules M equipped with an associative mul-
tiplication R ® M — M, respecting the cosimplicial (resp. almost cosimpli-
cial) structures. These categories have simplicial structures, with (M%)" :=
(M™% for K €S, the R-module structure on M* coming from the map
R — RX. As usual, denote the left adjoint to M +— MX by N +— N ® K.

Given M € cMod(R) and an injective map K < Lin S, set M ® (L/K)
:= coker (M ® K — M ® L) and MK .= ker(M" — M¥).

Definition 6.5. Let L., = SymmU,s, Lo = FyUy and L = SymmFyUsUs1e
= LgLlag. Given R € cAlg(k), define L;5(R) € cMod(R) by the property
that
Hometoa(r) (ILiy (R), M*) = Der (LR, M*)
functorial in M*® € cMod(R). Here, Dery(S®, M*) is the set of morphisms
f:8° = S*® M* in cAlg, extending the identity, where €2 = 0.
Define L,,(R) € cMod(R) by

Homepoa(r) (Ln(R), M®) & Dery,(L5E R, M*).

Observe that LLe(R) and L& (R) both form simplicial complexes in cMod(R).



Derived deformations of Artin stacks 459

Definition 6.6. Given an object R of cFAlg(A) (resp. c1FAlg(A)), we
may extend R uniquely to a cocontinuous functor R :S — FAlg(A) (resp.
R : sySet — FAlg(A)) extending the functor R : A — FAlg(A) (resp. R:
A4 — FAlg(A)) given by R(A™) = R" (resp. R(E") = R", for E as in Defi-
nition |5.14)).

Lemma 6.7. For all m, the simplicial complex Lf(R)m is a model for the
cotangent complex of R™.

Proof. Write 1, R := L""!R; these form a simplicial complex LR in cAlg(k).
We need to show that (LeR)™ is a cofibrant resolution of R™ in sAlg(k). If
we apply the forgetful functor UsUy)g to the augmented simplicial complex
1eR — R, we see that it becomes contractible. In particular, this implies
that 1 4R — R is contractible as an augmented complex of k-vector spaces,
so it is a resolution. O

Lemma 6.8. L} (R) is a projective object of cMod(R), and UsL,(R),
UsL-(R) are both projective objects of cy Mod(R*).

Proof. By adjointness,
Dery, (L™ R, M*) = Hom,, Mod, (UsUalg L™ R, M*),

so Dery( L™ R, —) defines a right exact functor, hence ;- (R) is projective.
The other results follow similarly. O

Lemma 6.9. There is a natural transformation FoUque — UagFy, giving
transformations Lyl ae — LagLls.

Proof. The transformation is given on level n by

n n
ReR'e - &R'3> rn—) 10 @1larele---1
=0 =0

ceRPQR'® --®@ R".
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Definition 6.10. A morphism f : X, — Y, of simplicial schemes over A is
said to be quasi-smooth (resp. trivially smooth) if the morphism

Homg(L, X,) — Homg(K, X,) X Homs (K,Y2) Homg(L,Ys)

of affine schemes is smooth for all trivial cofibrations (resp. all cofibrations)
K — L of finite simplicial sets. The map f is said to be smooth if it is
quasi-smooth and fy : Xg — Yp is smooth.

We say that a morphism R®* — S°® in cAlg(A) is quasi-smooth (resp.
trivially smooth, resp. smooth) if Spec S® — Spec R*® is so.

Lemma 6.11. In Definition we may replace cofibrations (resp. trivial
cofibrations) K — L by generating cofibrations OA™ — A™ (resp. generating
trivial cofibrations A} — A™).

Proof. This follows because every cofibration (resp. trivial cofibration) is a
composition of pushouts of generating cofibrations (resp. generating trivial
cofibrations), and the fact that smooth morphisms are closed under pullback
and finite composition. U

Lemma 6.12. A morphism f: Xe — Ye of simplicial schemes is quasi-
smooth (resp. trivially smooth, resp. smooth) if and only if the following
conditions hold:

1) for all square-zero extensions A — B of k-algebras, the map Xo(A) —
Xo(B) xv,(B) Ye(A) is a fibration (resp. a trivial fibration, resp. a sur-
jective fibration) in S.

2) for all all vertices v € AY the maps v* : X, — Xo (resp. the schemes
X, resp. the schemes X,,) are locally of finite presentation.

Proof. This follows from the fact that a morphism is smooth if and only if it
is quasi-smooth and locally of finite presentation, and that U — V is locally
of finite presentation if and only if the map U(A,) — U(hﬂ Aa) Xy (lim A)
th(Aa) is an isomorphism. We also use the result that if g o f is locally
of finite presentation, then f must also be so. O

Corollary 6.13. For all cofibrations i : K — L of finite simplicial sets, and
f: X =Y a quasi-smooth morphism of simplicial affine schemes, the map

g: XF = XK xyx YT

s quasi-smooth. Moreover, if either i or f is trivial, then so is g.
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Lemma 6.14. If R — S is a trivially smooth map in cAlg, then Q(S/R)
is projective in cMod(S).

Proof. By definition, we know that R(L) ®px) S(K) — S(L) is smooth for
all cofibrations K < L of finite simplicial sets.

Given M* € cMod(S) and K € S, define M (K) € Mod(S(K)) by S(K) &
M(K)e = (S @ Me)(K). Note that Q(S/R)(K) = Q(S(K)/R(K)).

Take a surjection L®* — N*® in cMod(S) and a morphism f : Q(S/R) —
N*. We will construct a lifting f of f inductively. Assume that we have R™-
linear maps f™ Q(S/R)™ — L™ lifting f compatibly with the cosimplicial
operations, for all m < n. If M™L denotes the mth matching object (as in
[3] Lemma VIL.4.9), then extending f compatibly to Q(S/R)™ amounts to
finding a lift

—

Q(S/R)(0A™) ®g@an) S" —z L

—~
-~
//
— «@
-
—
—~
—

Q(S/R)n N™ X pn-1pn ML,

Now, T':= R" ®@p(ganr) S(OA") — S™ is smooth, as is R(K) — S(K) for
all K. Thus the sequence

0 = Q(S(IA™)/R(OA™)) @g(pan S™ — QS /R™) = Q(S"/T) = 0

is exact, with all terms projective. Since « is surjective, projectivity of
Q(S™/T) gives the required lift. O

Lemma 6.15. If R is quasi-smooth, then for all trivial cofibrations K — L
of finite simplicial sets, Q(R) ® (L/K) is projective in cMod(R).

Proof. By Corollary R® K — R ® L is trivially smooth. Since Q(R) ®
X =Q(R®X) ®rgx R, projectivity follows from Lemma O

Definition 6.16. Let £V : ¢, Mod — cMod be right adjoint to Uy.

Lemma 6.17. For R € cAlg(k) and an injective map f : Z — X in s4Set,
there is an isomorphism

H'Hom,, yod(r-) (Le(RY), N @ kX/7)
= Extlyoar) (e (R) ® (LX/LZ), LYN)

for all N € c;Mod(R*).
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Proof. By Lemma LL:-(R) is projective, so L:-(R) ® (£LX/L£Z) must also
be projective, as M — M sends surjections to surjections. Thus

Extinoacr) (La (R) @ (LX/LZ),LYN)
=H" HomcMod(R (Li_(R) (‘CX/[’Z) ‘C\/N)
= H"Homaoq(r) (La (R), LYN & LYEX/7)
= H*Hom,, \toa(r-)(UpLs (R), N ® k*/%)
= Bxt} \joaca)(Uola (R), N @ kX/7).

Now, Lemma @ gives compatible transformations J_gHJ_ZI‘g Y(R) —

1NFIR. The unit of the adjunction Fy - Uy gives compatible transforma-
tions Uy — Uy L2, so there is a map L¢(R*) = UpgLe(R*) — UsLE(R),
which is an equivalence in the derived category by Lemma Hence

Ext? vod(r-)(Usla (R), N kX172
2 Bxt? ypoa(r-) (Le(RY), N ® K¥/7)
= H*Homc+Mod(R*) (L0<R*), N & ]CX/Z>.

O
Lemma 6.18. For R € cAlg(k) quasi-smooth, there is an exact sequence
0 — Lo(R") ®po R* — Lo(R*) = Q(R*/R%) = 0

in the derived category of projective complexes in cyMod(R*), where the
morphism R® — R* is given in level n by (0')".

Proof. There is an exact sequence
0 — Lo(R%) @po R* — Lo(R*) — L(R*/R") — 0

in the derived category. Since R® is quasi-smooth, the maps (9')" : R® — R"
are all smooth, giving L(R*/R") ~ Q(R*/R") O

Proposition 6.19. If R is a quasi-smooth object of cAlg(k), then every
morphism p: R — S in cAlg is quasi-smooth over cyMod, in the sense of



Derived deformations of Artin stacks 463

Definition [{.29. The Ext-groups are then given by

Extiyjoqm (e’ S) i>0

Ext! =
X cAlg/C+Mod(p) { W—iHomcMod(R) (Q(R(X)A‘)/k Rpreae R, S) 1 <0,

where Homnvoa(r) (Q(roas)/k @RoAs R, S) is the simplicial complex given
in level n by Homerod(r)(Q(roar)/k @roan R, S).

Proof. First observe that since c¢yMod has uniformly trivial deformation
theory, p is quasi-smooth over ¢y Mod whenever it is Q2 over ¢y Mod. Now,

C;Alg/c+Mod(p) = Hom \10q(R) (L.L(R)a S),

so for K € S,

m:Alg/c_'.Mod(p) = H*mcMod(R) (Li_(R)a S),
Extalg/c, Mod(P) ik = H*Homaoa(r) (Le(R) ® K, S),
> Ext ppoq(r)(Le (R) ® K, 5),

the latter isomorphism following since ;- (R) ® K is projective.

Now, consider the monad Ty := £LYUs on cMod(R), and observe that
the augmented cosimplicial complex TBHM given in level n by TgHM is a
resolution in cMod(R), since it becomes contractible on applying Uy. Thus

Extoalg/e,Moa (P)K = Extonioq(r) (Ly(R) @ K, T5™S).

Given f:Z — X in s;Set with fy an isomorphism, by Lemmas
and we have

Extiysoa(m) (L (R) ® (LX/LZ), LY N)
= H'Hom,, pjoa(s-)(Le(R’) @0 R*, N ® k*X/%)

for all ¢ > 0. However,

Homc+M0d(R*)(Lo(R0) & Ro R*, N® kX/Z)
= Homyjoq(roy (Le (RY), (N @ k*/%)") =0,

since (kX/%)0 = 0.
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Hence Ext’y, A(R) (LE(R) ® (LX/LZ),LYN) = 0foralli > 0, so the spec-
tral sequence associated to T'+1 gives

Extonod(r) (Ly (R) ® (LX/LZ), M)
~ H*Homaoa(r) (UR) ® (LX/LZ), THTM).

Since Q(R) ® (LX/LZ) is projective (by Lemma [6.14)), this is just

Extonoa(r) ((R) ® (LX/LZ), T5HM)
- EXthod (Q(R) ® (‘CX/[’Z)7 M)
:HomcMod( )(Q(R@EX/R@EZ) RRRLX R,M).

Taking Z = 0=", X = E", we have LZ = A, LX = A", and
Nn@ZAlg/@Mod(p) = HomcMod(R)(Q(R ® A"/R® Ay) ®prear R, S),

SO @iAlg/c+Mod(p) is constant for ¢ > 0.

Thus p is Q2 over C+M0d, as required. The description of positive Ext-
groups follows from Lemma while that of non-positive Ext-groups fol-
lows from the definition of 7_; H Cou (p). O

g/ci+Mod

Corollary 6.20. For any diagram in cAlg with quasi-smooth objects, the
associated pre-DDC' given by Definition and Proposition applied
to the adjunction
UsUaig
cFAlg(A)Ic.;.FMod(A)

SymmFjy
is a DDC by Lemmal[{.25, and governs deformations in the simplicial cate-
gory cAlg (by Proposition .

6.1.1. Comparison with deformations of schemes. In [I3] §3.2.1, an
SDC was constructed to describe deformations of a separated scheme X,
and we now wish to compare it with the DDC above.

Take an open affine cover (X,)aes of X, and set X : =[]
the simplicial scheme Z, by Z = cosko(X/X), i.e

acl Xa- Define

n+1

Zn:}v(XXXVXX-”><XXV7

withr, : Z, = X,and s, : Z,, — X given by projection onto the first factor.
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The map v: X — X gives adjoint functors v~ 4 v, on sheaves. This
yields the following diagram of Cat-valued functors:

FAlg 4(X) T FMod4(X)

B

Symm ,
UIJ(_|1’L)* vlt_ﬂv*

FAlg,(X) 7 ~ FModu(X),

Symm ,

where FMod 4(Y) and FAlg4(Y) denote sheaves of flat A-modules and of
flat A-algebras on Y.

Definition 6.21. The SDC E*® of [I3] §3.2.1 was then given by

En(A) = HomFModA(X)((SymmA)"JV & A, (Uﬁlv*)nﬂ ® A)v—l(anosn),
for .4 a flat p-adic A-module on X lifting v~'0x, with o™ : Ox —
(vsv~1)"Ox coming from the unit of the adjunction, and similarly " :

(Symmk)”ﬁx — ﬁx.

Definition 6.22.  Define functors C®: FModa(X) — cFMod(A), C*:

FModa(X) — ¢y FMod(A) by
CYF) =T(Zp,r L.F), CUD) :=T(Zn, 50 '9),
with the standard cosimplicial operations.
Lemma 6.23. There are canonical isomorphisms
C*(v ™ 7)) = UpC*(F) C*(v.9) = LYCHY).

Lemma 6.24. There is a canonical natural transformation Symm o C'® —

C*® o Symm.

Proposition 6.25. The SDC E is quasi-isomorphic to the DDC E of
Proposition in the sense that Def(E) and Def(E) are weakly equiva-
lent (equivalently, DE and E are quasi-isomorphic DDCSs).
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Proof. We have maps

HomMod(X)(TZIg%) (Uﬁlv*)n%)
— Hom,, Moa(C*( g ), C* (v ) ")
= Hom,, pod (C*( Zlg///),(ﬁv)”(] M)

tg ), P )

alngC ('//)7 C*'//)
— HomC+M0d(T"C*(//), C*.//)

—HomC+M0d(TaC ( al

— Hom,, Mod(

These are compatible with the SDC operations, giving a morphism £ —
Ey of SDCs. Now, as in Proposition [6.19

H*(Eo) = Ext}y, (L",07).

However, since the maps r,, : Z,, — X are all open, and hence étale, IL.Z/ Fis
quasi-isomorphic to 7*L. Thus

L.2/k .X/k

Exty, (L2, 67) = Bxtly (LY* r.07,) = Bxtly (LYF, 0x),
since 1.0z, = r«r 10y is a resolution of &x. This means that £ — Fj is a
quasi-isomorphism of SDCs.

Finally, to see that Def(FEy) — Def(F) is a quasi-isomorphism, apply
Lemma noting that the strictly positive cohomology groups automat-

ically agree. For n <0,
H"E = H_,Homg, (*"Qzas, Oz),

for i : Z — Z~". However, Z is quasi-étale (the analogous notion to quasi-
smooth), so the vertex maps a : Z>" — Z are trivially étale, and thus Qzan
=~ a*Qy, 50 i*Qyae = Qy. Therefore H'E = HYEy = Homg, (2x, Ox), and
H"E =0 for n < 0. OJ

2. Quasi-compact, quasi-separated stacks

Let X be a quasi-compact, quasi-separated stack, with presentation P :
Xo — X, for X affine, giving a simplicial algebraic space coskg (Xp) (as con-
sidered in [1] §3). We may then take an étale hypercovering Xo — cosky (Xp),
for X, a simplicial affine scheme, and denote the composition by P, : X,
— X.
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Lemma 6.26. FEvery smooth simplicial hypercovering is trivially smooth.

Proof. For a map U, — V, to be a smooth hypercovering says that the
matching maps U, = V, X, v MyU are all smooth surjections. O

Lemma 6.27. The simplicial affine scheme X, is quasi-smooth.

Proof. Write Z, := cosk (X). Since Z, = B®, for & the groupoid space
Xo xx Xo—= Xy, all higher partial matching maps of Z, are isomorphisms.
In other words, for any trivial cofibration i : K — L in S with ig : Ky — Lyg
an isomorphism, the map

1" ML(Z) — MK(Z)

is an isomorphism.

By [I] Theorem 2.1.5, & has SQCS structure so the maps X; —
Homg(A}C, X,) are smooth surjections for both k. Thus Z, is quasi-smooth,
by Lemma Since X, — Z, is trivially smooth, the result follows. [

Remark 6.28. Similarly, every strongly quasi-compact n-geometric Artin
stack X gives rise to a quasi-smooth simplicial affine scheme X,, by [17]
Theorem 4.7. The statement of Proposition [6.29 will then carry over to this
generality, taking Ly to be the cotangent complex of [I7] §7.1.

6.2.1. Cohomology and the cotangent complex. Given any mor-
phism f : Q) — X of quasi-compact, quasi-separated stacks, lifting to a mor-
phism f:Y, — X, of simplicial affine resolutions, in this section we will
describe the Ext-groups

EthAlg/c+Mod(f ﬁ)

of Proposition in terms of the cotangent complex of [10] §8. Ext-groups
of the cotangent complex are defined in [IT] §2.11.

Let X, X, be as above, and let _# be a quasi-coherent sheaf on X. Since
the cotangent complex Ly is in degrees > —1, we have Ext?(Lx, ) =0 for
all i < —1. Since 7 : X, — coskj (Xp) is a hypercovering, the maps

H*(cosky (Xo),.Z) — H*(X,,r*.F)

on cohomology are isomorphisms for all quasi-coherent sheaves .7 .
By [1] Proposition 3.4.2,

1) Ext'(Lx, #) = Ext(Ly,, P} _#) for i > 0.
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2) Ext’(Lx, #) = H{(Hom(Qy, /%, P* _#)[1] = Hom(Qx,, Py 7)), fori <
0.

Proposition 6.29.

EXtiAlg/chMod(fﬁ) = EXti(L57 f*ﬁﬁj)
for alli e Z.

Proof. For i > 0, this is just the observation that
EXti(LXnPO*/) = EXtiAlg/c_'.Mod(fﬁ)

when 7 = f.0y.
Accordingly, we need to describe the non-positive Ext groups

H,iHomx(C*QxA° s /)

in terms of X, Xy, where ¢: X — XX is the constant map.

Let U, denote the simplicial complex Homx (c*Qxae, #), and write
Z¢ := cosk} (Xp), with Vi : Homy(c*Qzas, #). Since X — Z is trivially
smooth, observe that the canonical map U — V is a trivial fibration, so
H.(U) = H. (V).

In general, if K is contractible, then

Ky
Mk Z = Xog xx Xo Xz -+ Xz Xo,

SO

UMk Z/%) = ) v Q(Xo/%).
veEKy

We therefore conclude that for a trivial cofibration K <— L,

UMLZ/MkZ) = @ v QXo/X),

veELy—Ky

soforO0:e— 1,

2"/ Z)" = QMpanZ/ManZ) = €D (v x 1)*Q(X0/%),
vEAY
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SO
U272 = P vUXo/%),
vEAY
and
Hom(x) (i* QX! /X), F) = Homg(x,) (2 Xo/%), F°),
giving

N1V = Homgx) ("X "/ X), £.0(Y)) = Homgx,) (AXo/X), f0 (D).

Moreover, for n > 2, A — Ay is an isomorphism, so N,V = 0.
Thus

NV = (Hom(Qx,/x, P* 7 )[-1] — Hom(Qx,, Py 7)),
as required. O
6.2.2. Comparing deformation groupoids.

Definition 6.30. Given a small 2-category C, define a simplicial category
BC by setting Ob(B!C) = O0b(C), and Homp:(x,y) = Bs#ome(z,vy),
where S#ome(x,y) is the 1-category of homomorphisms from z to y, and B
is the nerve functor.

Lemma 6.31. Given x,y € ObC with #omc(z,y) a groupoid, moHomp: e
(x,y) is the set of isomorphism classes in Fome(x,y), with 71 (Hom g (z,
y), f) the set of 2-automorphisms of f, and m;(Hompg:c(z,y), f) =0 for
1> 1.

Definition 6.32. Define a 2-category structure on the category AlgGpdSp
of algebraic groupoid spaces (as in [I]) by defining a 2-morphism 7 between
morphisms f, f/ : G — H by analogy with natural transformations. Explic-
itly, let Ob G be the space of objects of G, with MorG — (ObG x ObQG)
the space of isomorphisms, and similarly for H. We must have n: ObG —
Mor H, with son = f,ton = f’, and the following diagram commuting

Mor (G) ot MOTD, Nox (HY) 5.0 ¢ Mor (H)

(f’,HOS)l lm

m

Mor (H) Xs,0b H,t Mor (H) E— Mor (H)
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Definition 6.33. Given a 2-groupoid G, define I1yG to be the groupoid with
objects Ob @G, and morphisms Hompy,g(X,Y) = mp-#omg(X,Y). Similarly,
for a simplicial groupoid G,, define IIgG, to be the groupoid with objects
Ob G, and morphisms Homyy, ¢, (X,Y) = mpHom(X,Y).

Lemma 6.34. Given G € AlgGpdSp associated to an algebraic stack over
k, the nerve functor B : AlgGpdSp — sAlgSp to the category of simplicial
algebraic spaces gives an isomorphism

B'"®efuapasp(G) = Def | (BG),

= 1sAlgSp

between the 2-groupoid of deformations in AlgGpdSp, and the simplicial
groupoid of deformations in sAlgSp.

Proof. By [1] Corollary 3.1.5, we know that

Mo DefA 1gapasp(G) = MoDef

= “TsAlgSp (BG)’

so we just need to show that, for algebraic groupoid spaces H, G,
Homp,g,(BH, BG) = B omaigGpasp(H, G).
Now,

msAlgSp(X7 BG);, = Homsalesp (X x A", BG)
= HomAlngdsp(ﬂ'fX X WfAn, G),

where we define the fundamental groupoid 7 : sAlgSp — AlgGpdSp to be
left adjoint to B, noting that 7yBH = H. However, myA" is the groupoid
with n 4+ 1 objects, and unique isomorphisms between them. Thus

Hompjggpasp (7 X x A", G) = B iompigcpasp (75X, G),
as required. O
Lemma 6.35. The functor C' defined in [1] §3.2 gives an equivalence be-
tween @eszlngdSp(G) and Def>(CQ), the 2-groupoid of deformations of the
algebraic stack CG.

Proof. First observe that C' maps the 2-isomorphisms of Definition to
2-isomorphisms of stacks, so C' is well-defined.
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By [1] Proposition 3.2.5, we know that C' induces a bijection on isomor-
phism classes of objects. We need to show that for G € ’DefQAlngdsp(G)(A),

C: Homp e300 (@)(A)(9,9) = Homa e caya)(CF, CF)

is an equivalence of groupoids. By [ibid.] Proposition 3.3.2, it is essentially
surjective.
Given f € Ob Homo.p . . (c)4)(F,G), we thus need to show that

0 : Am%efilgepdsp(g)(“‘)(f) - Aut%efz(cg)(A)(Cf)

is an isomorphism of 2-automorphism groups. Multiplication by f~! allows
us to assume that f =idg.
By [ibid.] Proposition 3.3.2, we have an exact sequence

0— Aut%efQ(Cg) (ideg) — Aut(Xo/CG)p £> AUtgeszlngdSp(G) (G).

Since Aut(Xy/CG)p is smooth, the homogeneous functor Aut%efg(cg) (ideg)
has tangent space ker(tan A) and obstruction space coker (tan A). By [ibid.]
Proposition 3.4.2, these are Ext_l(]Lx,ﬁfX) and ExtO(Lx,ﬁfX), respec-
tively. Thus Lemma [6.31] and Theorem [2.28] imply that 6 gives iso-
morphisms on tangent and obstruction spaces, so must be an isomorphism
of homogeneous functors by the standard smoothness criterion. O

Taking G = Xy xx Xo—= X, we have therefore shown that the defor-
mation 2-groupoid of X is equivalent to the simplicial deformation groupoid
of cosky (X). We still need to compare this with the simplicial affine scheme
X, defined at the beginning of the section.

Proposition 6.36. The simplicial deformation groupoids ofcoskox(Xo) and
Xe are equivalent.

Proof. Let Z, := cosky (Xo). As in we will consider three simplicial
deformation problems Fx, Fiz, F).: deformations of X,, deformations of Z,,
and deformations of the diagram r: X, — Z,. Note that these all define
quasi-smooth functors F : Cx — sGpd w, S, so we just need to compare
tangent and obstruction spaces.
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The calculations of Proposition[6.29)show that the loop spaces QFx, QFy
have tangent spaces

Hom, (Qx,0x), Homg, (Qz,07z).
Similarly, there is a fibration F,, — F'x x Fz, whose fibre has tangent space
Hom,, (Qz,7.0x).
Since the maps
Hom,, (Qx, Ox) = Homy, (Qz,7.0x) <~ Hom,, (27, O7)
are isomorphisms, we deduce that the maps Fz + F, — Fx induce isomor-
phisms on tangent spaces of positive homotopy groups.

It only remains to show that the deformation functors moF'x, moFz, mo F)
have isomorphic tangent and obstruction spaces. By adapting [13] §1.3.1, we
may deduce that these are (respectively)

EXt%X(Lx,ﬁx), EXti(]vzﬂLz,ﬁz),

and the groups T" fitting into the long exact sequence

TS Ethﬁx (Lx, ﬁx) X Ethﬁz(LZ’ ﬁz)
— Exty, (Lz,7.0x) = T? — -+

Now, since the maps
EXt%X (LX, ﬁx) T—*) EXtiﬁZ (Lz,r*ﬁx) (i Ethﬁz (Lz, ﬁz)

are isomorphisms for ¢ > 1, with r, surjective for ¢ = 0, we see that the
functors F)., F'x, F'z are all equivalent. O

6.3. Arbitrary algebraic stacks

We now wish to describe derived deformations of a simplicial scheme X,
over k, with each X,, a disjoint union of affine schemes.

Definition 6.37. For any scheme Y, let 7(Y") be the set of connected com-
ponents of Y, and 7 : Y — 7(Y) the map of associated topological spaces.
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Now, deformations of X,, are equivalent to deformations of the algebra
T Ox, over m(Xp).

Definition 6.38. Recall that the ordinal number categories A, A* can be
regarded as subcategories of S, by identifying [n] with A”.

Given a category C and K € S, define cC* (resp. c;C¥) to be the cat-
egory of functors from A} K (resp. A, K) to C. Thus an object C € cCK
consists of objects C, for all n € Ny, a € K,,, together with compatible maps
o - Mpy,q — My, ot My.q — Mg, and similarly for C+CK.

Now, observe that m,&x defines an object of cAlg(k)™ ), with
(1.0x)a =T(r Ya), Ox,),

for a € m(X,,). Since any deformation of X, will not change 7(X), deforma-
tions of X, are equivalent to deformations of 7, 0.

The categories cFAlg™ ), ¢, FAlg™X) cFMod™ ™), ¢, FMod™ ) can all
be given simplicial structures as in Definition setting (CK), = (C,)K»
for a € 7(X,,).

Remark 6.39. Observe that for any category C and any map f : K — L in
S, there are maps f~1 : cCt — cCK | f=1: c,Ct — ¢, CK given by (f71C), =
Ct(a)- If C contains products, then f~! has a right adjoint f,, given by
(f+C) = ucs-1(p) Ca- For f: K x L — L, ck =f.f1c.

If f:7(X) — e denotes the constant map, then we write I' := f,, with
the constant functor f~! denoted by I'*.
We then have a diagram of adjunctions of functors Cy — sCat:

UgU.g
cFAlg(A)™X) —"7 7 ¢, FMod(A)™™X)
SymmFy
'™ I
UpUsiz
cFAlg(A) T c+FMod(A),
SymmFj

where Fy : ¢;.C™X) — €™X) is left adjoint to the forgetful functor Uy, given
by
(FaC™)a = Co U Cgyq U -+ - U Cigyynas

for a € w(X,,), with operations dual to those in Lemma
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We must check that I'* 4 T' is monadic. For this, we verify Beck’s Theo-
rem (e.g. [§] Ch. VI.7 Ex. 6), observing that I" commutes with coequalisers
— this is effectively the observation that taking arbitrary products is an
exact functor.

Writing U := UpU,g and F' := SymmFy, we also have the following com-
mutativity conditions:

v =uUr I'"F=FT* TI"U=UTI",
and a natural transformation
FT' = T'F.

These adjunctions combine to give a monadic adjunction

FUBUalg
cFAlg(A)™X) 77 ¢, FMod(A).
I'*SymmFy

Definition 6.40. Given a simplicial scheme X,, with each X,, a disjoint
union of affine schemes, define cMod(X) to be the category of 7.(0x)-
modules over ¢Mod™ %),

Lemma 6.41. If X — Y is a trivially smooth map of simplicial schemes,
with each X,,,Y,, a disjoint union of affine schemes, then m.Q(X/Y) is pro-
jective in cMod(X).

Proof. This is similar to Lemma We may define matching objects of
L € cMod(X) by letting M"™L on 7(X,+1) be the equaliser

n a 1
MnL;)Hi:O Ui*Ln?Hogiqgn 00 L,

where pr;; 0 a = 0’ o pr;, pr;; 0 b = 077! o pr;. Note that '(M™L) = M™(T'L).
Since I reflects isomorphisms, this means that for all surjections L — N, the
relative matching map L™ — M" 'L X -1 N™ is surjective.

In order to construct latching maps, note that any cocontinuous func-
tor S': (Al w(X)) — Alg extends to a cocontinuous functor S : (S| 7 (X)) —
Alg. Given M*® € cMod(X) and a: K —7(X) in S, define M(a) €
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Mod(m.(0x)(a)) by
m.(0x)(a) & M(a)e = (m.(6x) & Me)(a).
Note that if we set X (a) := Homgy(x)(K, X), then
Q(X/Y)(a) = QX (a)/Y (x(f).a).

The latching object of Q(a), for a € m(X),, is Q2(0da), for J: IA™ —
A™. Tt therefore suffices to show that (X)*Q(da) — Q(a) is projective in
Mod(X (a)) for all such a. By adapting the proof of Lemma it suffices
to show that

X(a) = Y(7(f)ea) Xy (x(f).0a) X (0a)

is smooth.

Set Y’ := X X (x)7(Y), and observe that Lemma implies that
X — Y’ is trivially smooth. Thus the matching map X,, = M, X Xp; vy Y,
is smooth. The required result is then obtained by taking the fibre over
a € 7m(X)n. O

Lemma 6.42. [f we set ' =T*FUT, and
Ly (X) = QL)' 1 (0x)) @(1rynsim. (o) T(Ox),

then for all m, the simplicial complex LE (X)™ is a model for the cotangent
complex of X,

Proof. This is essentially the same as Lemma making use of the obser-
vation that I is exact and reflects isomorphisms, so it suffices to prove that
Ur(L"* n,(Ox) — Ul'm(Ox) is a resolution. O

Definition 6.43. Define D to be the simplicial category of pairs (K, R),
for K € S, R € (cFAlgK)°PP  with a morphism f € Homp((K, R), (L, S))n
consisting of f : K — L in S, together with f* € Hom a1 (f 715, R) .

Define B :=S x (c+Mod)°PP, with simplicial structure coming from
(c+Mod)°PP.

Now, observe that we have a forgetful functor V : D — B, given by
(K, R) — (K, T'UsUyeR), with right adjoint G : B — D given by (K, M) —
(K, I'"*SymmFyM). We have already seen that this adjunction is comonadic
(by fixing K).
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Proposition 6.44. If X,Y are simplicial schemes over k, with each X,,, Y,
a disjoint union of affine schemes, and X quasi-smooth, then every mor-
phism p:Y — X is quasi-smooth over B, in the sense of Definition [{.22

Proof. The proof of Proposition carries over, using Lemmas and
[6.42] instead of Lemmas [6.14] and O

Corollary 6.45. For any diagram in D(k) with quasi-smooth objects, the
associated pre-DDC' given by Definition and Proposition[{.19 applied to
the adjunction G+ 'V is a DDC by Lemma[{.25, and governs deformations
in the simplicial category D (by Proposition @

References

[1] Masao Aoki, Deformation theory of algebraic stacks. Compos. Math.,
141(1):19-34, 2005.

[2] D. Fiorenza and M. Manetti, Lo, structures on mapping cones. Algebra
Number Theory, 1(3):301-330, 2007. arXiv:math.QA/0601312.

[3] Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, vol-
ume 174 of Progress in Mathematics. Birkh&user Verlag, Basel, 1999.

[4] Paul G. Glenn, Realization of cohomology classes in arbitrary exact
categories. J. Pure Appl. Algebra, 25(1):33-105, 1982.

[5] Alexander Grothendieck, Technique de descente et théorémes d’exist-
ence en géométrie algébrique. II. Le théoréme d’existence en théorie
formelle des modules. In Séminaire Bourbaki, Vol. 5, pages Exp. No.
195, 369-390. Soc. Math. France, Paris, 1995.

[6] Philip S. Hirschhorn, Model categories and their localizations, volume 99
of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI, 2003.

[7] Luc Hlusie, Complexe cotangent et déformations. I. Springer-Verlag,
Berlin, 1971. Lecture Notes in Mathematics, Vol. 239.

[8] Saunders MacLane, Categories for the working mathematician.
Springer-Verlag, New York, 1971. Graduate Texts in Mathematics,
Vol. 5.

[9] Marco Manetti, Deformation theory via differential graded Lie algebras.
In Algebraic Geometry Seminars, 1998-1999 (Italian) (Pisa), pages 21—
48. Scuola Norm. Sup., Pisa, 1999. arXiv:math.AG/0507284.



Derived deformations of Artin stacks 477

[10] Martin Olsson, Sheaves on Artin stacks. J. Reine Angew. Math.,
603:55-112, 2007.

[11] Martin C. Olsson, Deformation theory of representable morphisms of
algebraic stacks. Math. Z., 253(1):25-62, 2006.

[12] J. P. Pridham, Deforming l-adic representations of the fundamental
group of a smooth variety. J. Algebraic Geom., 15(3):415-442, 2006.

[13] J. P. Pridham, Deformations of schemes and other bialgebraic struc-
tures. Trans. Amer. Math. Soc., 360(3):1601-1629, 2008.

[14] J. P. Pridham, The homotopy theory of strong homotopy algebras and
bialgebras. Homology, Homotopy Appl., 12(2):39-108, 2010. arXiv:
0908.0116v2 [math.AG].

[15] J. P. Pridham, Unifying derived deformation theories. Adv. Math.,
224(3):772-826, 2010. arXiv:0705.0344v5 [math.AG].

[16] J. P. Pridham, Derived deformations of schemes. Comm. Anal. Geom.,
20(3):529-563, 2012. arXiv:0908.1963v1 [math.AG].

[17] J. P. Pridham, Presenting higher stacks as simplicial schemes. Adv.
Math., 238:184-245, 2013. arXiv:0905.4044v3 [math.AG].

[18] Daniel Quillen, Rational homotopy theory. Ann. of Math. (2), 90:205—
295, 1969.

[19] Ziv Ran, Lie atoms and their deformations. Geom. Funct. Anal.,
18(1):184-221, 2008. arXiv:math/0412204v7.

[20] Donovan H. Van Osdol, Bicohomology theory. Trans. Amer. Math. Soc.,
183:449-476, 1973.

[21] Charles A. Weibel, An introduction to homological algebra. Cambridge
University Press, Cambridge, 1994.

SCHOOL OF MATHEMATICS AND MAXWELL INSTITUTE OF MATHEMATICS
UNIVERSITY OF EDINBURGH

JAMES CLERK MAXWELL BUILDING, THE KING’S BUILDINGS

MAYFIELD RoAD, EDINBURGH, EH9 3JZ, U.K.

FE-mail address: J.Pridham@ed.ac.uk

RECEIVED MARCH 14, 2013






	Introduction
	Derived deformation functors
	Simplicial Artinian rings
	Properties of morphisms
	Derived deformation functors
	Quotient spaces
	Cohomology and obstructions
	Model structures

	Derived deformation complexes
	Definitions
	Comparison with SDCs

	Constructing DDCs
	Simplicial monadic adjunctions
	The construction
	Deformations of diagrams and invariance under weak equivalence

	Examples
	Chain complexes
	Simplicial complexes
	Simplicial algebras

	Deformations of Artin stacks and simplicial schemes
	Cosimplicial algebras
	Quasi-compact, quasi-separated stacks
	Arbitrary algebraic stacks

	References

