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Simple Hamiltonian manifolds
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A simple Hamiltonian manifold is a compact connected sym-
plectic manifold equipped with a Hamiltonian action of a torus
T with moment map ® : M — t*, such that M7 has exactly two
connected components, denoted My and M;. We study the differ-
ential and symplectic geometry of simple Hamiltonian manifolds,
including a large number of examples.
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Let M be a compact connected symplectic manifold equipped with a Hamil-
tonian action of a torus 7' = (S')", and let ® : M — t* denote the moment
map. The celebrated Atiyah Guillemin—Sternberg convexity theorem states
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that the image of the moment map @ is the convex hull of the image of the
fixed points, ®(M7). This polytope is a single point, that is, the moment
map is constant, if and only if the action is trivial. So long as the action is
non-trivial, this polytope ®(M) must have at least two extreme points. In
this paper, we consider the simplest non-trivial case, when M7 has exactly
two components, and so ®(M) is a 1-dimensional polytope.

Definition 1.1. A simple Hamiltonian manifold is a compact con-
nected symplectic manifold equipped with a Hamiltonian action of a torus
T with moment map ® : M — t*, such that M7 has exactly two connected
components, denoted My and M;.

As noted above, a simple manifold has the minimum possible number
of fixed components. We describe a simple Hamiltonian manifold by the
triple (M, My, M;), and let 2m; and 2m be the dimensions of M; and M,
respectively, and set 2r; = codim M; = 2m — 2m;. As a consequence of some
basic results in equivariant symplectic geometry, the torus action on a simple
manifold necessarily factors into a trivial action and a residual effective
circle action (Lemma 2.2). Thus, our results hold for torus actions, but
generally require verification only for the residual circle action.

In what follows, we explore the geometry associated to simple Hamil-
tonian manifolds. We establish the basic topology of a simple Hamiltonian
manifold, using the moment map as the key tool, in Section 2. This is where
we discuss the residual circle action (Lemma 2.2). Then we turn to cohomol-
ogy constraints on simple Hamiltonian manifolds in Section 3. The residual
moment map is a Morse-Bott function on M, and so the cohomology of M
is determined from My and M; (Proposition 3.1 and its Corollaries). This
allows us to deduce relations among m, mg, my, rg and r;. This section also
includes comments about how our work relates to several recent papers on
this topic.

In Section 4, we study bundles over the M; and the gauge groups of
these bundles, and prove our first main theorem giving necessary condi-
tions for two simple Hamiltonian manifolds to be T-equivariantly diffeo-
morphic, Theorem 4.4. Next, in Section 5, we turn to the special case when
M; has codimension 2 in M, and characterize M in terms of My (Theo-
rem 5.4). In this special case, we must have that M; is diffeomorphic to M;
(Corollary 5.5). In Section 6, we turn to the classification M up to T-
equivariant symplectomorphism, with a complete answer in the same special
case 1 = 1 (Theorems 6.2 and 6.3). In particular, when 79 = 1 = 1, then M)
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and M; must be T-equivariantly symplectomorphic (Corollary 6.4). Finally,
the last section of the paper is devoted to examples of polygon spaces.

There has been a flurry of recent work on Hamiltonian S'-manifolds that
are in some sense minimal. Tolman introduces Betti number constraints in
[14], and shows that only a finite number of cohomology rings can occur.
These constraints are explored further in [11] when the fixed set has exactly
two components, that is the manifold is a simple Hamiltonian manifold.
The differential geometry of simple Hamiltonian manifolds with minimal
Betti numbers is discussed in [12]; this work may be related to our results
in Section 4. Another natural hypothesis is that the circle action be semi-
free, as is the case for weight simple Hamiltonian manifolds discussed below
in Section 2. The implications of this hypothesis are developed further in
[5, 15].

We now conclude this Introduction with a handful of examples of simple
Hamiltonian manifolds.

Example 1.2. Let M = CP" with a circle action given by

g-lzo - izn) =920 g2k Zhg1 ot Zn),
for g € S'. This is a simple Hamiltonian manifold (CP",CP*,CP"k~1).

Example 1.3. A simple Hamiltonian manifold M with M7 discrete is
diffeomorphic to S2. In this case, the moment map is a Morse function with
exactly two critical points, which implies that M is homeomorphic to a
sphere S™. As M is symplectic, it must be diffeomorphic to S2.

Example 1.4. The symplectic cut of a weight bundle. We may use Lerman’s
symplectic cuts [10] to produce a simple Hamiltonian manifold from a sym-
plectic manifold equipped with a complex vector bundle. Let My be a com-
pact symplectic manifold and let v5: V' — My be a complex vector bundle of
rank k. Viewing S' C C as the unit complex numbers, there is a natural S'-
action on this bundle, namely fiberwise complex multiplication. We assume
that the total space V is equipped with a symplectic form so that this S'-
action is Hamiltonian. The moment map ¢: V' — R has only 0 as a critical
value. Let M be the symplectic cut of V at a regular value £ > 0 of ¢. This
gives a simple Hamiltonian manifold (M, My, M;) with M; the symplectic
reduction of V at £. The bundle projection descends to a map M — My with
fiber CP*. Thus, M = ]@’(Vo), the total space of the CP*-bundle associated
to vp and M; = P(1y), the total space of the CP*1-bundle associated to 1.
The case k =1 is described in [13, Example 5.10].
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Example 1.5. Let M = G;(C") be the Grassmannian manifold of com-
plex k-planes in C", endowed with a U(r)-invariant symplectic form. As a
homogeneous space, M = U(r)/(U(k) x U(r — k)). We may endow M with
a symplectic form by identifying it with the U(r) coadjoint orbit of Hermi-
tian r X 7 matrices with eigenvalues consisting of k ones and (r — k) zeros.
The maximal torus T of diagonal matrices in U(r) acts in a Hamiltonian
fashion on M, and we consider the last coordinate circle of this torus. Under
the identifications we have made, this action has moment map

o (A) = Qpr,

where A is a symmetric matrix and a,, its bottom right entry. Then M is
a simple Hamiltonian manifold with moment map image the interval [0, 1].
We identify

where B is a symmetric (r — 1) x (r — 1) matrix with eigenvalues consisting
of k ones and (r — k — 1) zeros. Thus, My = G},_1(C"~1). The second fixed
component is

M1: B .
0

where B is a symmetric (r — 1) x (r — 1) matrix with eigenvalues consisting
of (k—1) ones and (r — k) zeros; so M; = G(C"~!). The real locus (for
complex conjugation) of this simple Hamiltonian manifold is discussed in [6,
Example 5].

Example 1.6. If M is a simple Hamiltonian manifold and N is a con-
nected compact symplectic manifold, then M x N is a simple Hamiltonian
manifold, where g - (x,y) = (gz,y) for g € T and (z,y) € M x N.

Example 1.7. Grassmannian manifold G (R™12) of oriented 2-planes in
Rm“; See figure 1 and its legend, describing moment polytopes for Ga(R?)
and G2(R"). These simple manifolds play an important role in [11, 12, 14].
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5 ¥

A
Figure 1: In subfigure (a) there is the 7%-moment polytope for Ga(R®),
together with a projection for an S'-moment map for which this manifold is a
simple Hamiltonian manifold. Both My and M3 in this case are diffeomorphic
to P'. Subfigure (b) shows the T3-moment polytope for G'Suby(R7) and
a projection for an S'-moment map for which this manifold is a simple
Hamiltonian manifold. Both My and M; in this case are diffeomorphic to P?.

2. Preliminaries

Standard properties of moment maps, which may be found in [1], immedi-
ately imply the following:

Lemma 2.1. Let (M, My, M1) be a simple Hamiltonian manifold with
moment map ® : M — t*. Then

(i) the moment polytope A = ®(M) is a line segment.

(ii) @ is a Morse—Bott function onto A with exactly two critical values,
namely the endpoints of A.

We think of the circle S as the complex numbers of norm 1. The Lie
algebra Lie(S') may then be identified as i R, with basis vector 2mi. We may
use the dual basis to identify Lie(S!)* with R. The group of characters of T
is T = Hom(T, S'), the set of smooth homomorphisms. This is isomorphic
to the linear maps from R = Lie(S!)* to t* that send Z to the weight lattice.
Taking the image of 1 identifies T with the weight lattice inside t*.
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Lemma 2.2. Let (M, My, M1) be a simple Hamiltonian T-manifold with
moment map ® : M — t*. Then there is a unique character x € T such that

(i) the T-action o: T — Diff (M) is of the form o = ao, where a: S' —
Diff (M) is an effective action making (M, My, M) a simple Hamilto-
nian S'-manifold. We call & the residual action.

(i) The residual action & admits a moment map ®: M — R such that

®(Mp) = 0 and ®(M;) > 0.

Moreover, the above character x, seen as an element of the weight lattice, is
a positive multiple of ®(My) — ®(Mp).

Remark 2.3. The character y of Part (ii) of Lemma 2.2 is the associated
character to the simple Hamiltonian manifold (M, My, M1). The moment
map ®: M — R is called the residual moment map. This lemma reduces
the classification of simple Hamiltonian T-manifolds to the case of simple
Hamiltonian S'-manifolds, for effective circle actions.

Proof. As the moment polytope is 1-dimensional, T =T/kera is a
1-dimensional torus (see e.g. [1, Section II1.2.b]). Choosing an identification
of T with S' gives a character x and a residual action @ with moment map
®: M — R (with ®(Mp) = 0). We denote by 2m; and 2m the dimensions of
M; and M and we set 2r; = codim M;. As av = @o, this implies that yo® is
a moment map for «, proving the last statement. The uniqueness statement
(ii) follows from the fact that the two identifications of T with S! differ by
the sign of ®. O

Let (M, My, M7) be a simple Hamiltonian T-manifold. Recall that M
always admits a T-invariant almost complex structure J that is
w-compatible: J is an isometry for w and w(v,Jv) > 0 for all non-zero
tangent vectors v to M (see, for example, [13, Section 2.5] or [2, Part V]).
Then (v, w) = w(v, Jw) defines a Riemannian metric on M and (,) + iw(,)
is a T-invariant Hermitian metric. The space of T-invariant w-compatible
almost complex structures on M is denoted by J(M,w) and is contractible
(see [13, Proposition 4.1 and 2.49] or [2, Proposition 13.1]). Therefore, choos-
ing J € J(M,w) endows the tangent bundle TM with a U(r)-structure
whose isomorphism class is well-defined. As the M; are symplectic subman-
ifolds, the normal bundles v; = T' M|y, /TM; are also Hermitian bundles,
with structure group U(r;), and these structures are well-defined up to iso-
morphism. Observe that v; is isomorphic to the orthogonal complement to
TM; in T M|y, with respect to the Riemannian metric associated to J.
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The U(r;) structure on v; is T-invariant, so the bundle v; decomposes
into a Whitney sum of T-weight bundles. It follows from Lemmas 2.1 and 2.2
that the weights which occur are multiples of y.

Definition 2.4. If 1 (or, equivalently, v1) is itself a weight bundle, we call
M a weight simple Hamiltonian manifold.

For instance, M is a weight simple Hamiltonian manifold when codim
My = 2 or codim M; = 2. The Grassmannian manifold Go(R”2) of Exam-
ple 1.1.6 is not a weight simple manifold. Observe that M is a weight sim-
ple Hamiltonian manifold if and only if the residual action is semi-free.
By [11, Proposition 8.1], a simple Hamiltonian manifold (M, My, M) with
m=mg+m;+1 is a weight simple Hamiltonian manifold unless
dimMO = dlli

Remark 2.5. In the above discussion, the Hermitian bundle v; is the under-
lying bundle of a Hermitian bundle ©; endowed with a T-action. We do not
distinguish these two notions because in the case of interest for us, where
(M, My, M) is a weight simple manifold, ; is determined by v;. Indeed, T'
acts on 1 via the character x: T'— S composed with complex multiplica-

tion on the fibers. The same holds for vy, replacing x by x~!.

Let (M, My, M;) be a simple Hamiltonian 7T-manifold with residual
moment map ®: M — R. Let £ > 0 defined by {¢} = ®(M;). Define

(2.1) Vo=®"1[0,£/2]) and Vi =& 1([¢/2,]).

Lemma 2.6. For i =0 and 1, the subspace V; of (2.1) is a T-invariant
(closed) tubular neighborhood of M; in M.

Proof. We prove this for the case ¢ = 0, and mention the necessary adapta-
tions to complete the case i = 1. The proof introduces techniques which are
useful in subsequent sections (see Remark 2.7 for the idea of a more direct
argument). Passing to the residual action, we suppose that T' = S*.

Choose an S'-invariant almost complex structure J on M. This makes
vp an Sl-equivariant Hermitian bundle with structure group U(rg). We
denote by E(1v) its total space and by p: E(vy) — My the bundle projec-
tion. Denote by S(vy) C E(vp) the associated unit sphere bundle. For € > 0,
let D.(v9) C E(vp) the disk bundle formed by the elements of E(1y) of norm
< e. An element of D.(1p) may be written under the form rz, with z € S(1p)
and r € [0,¢], with the identification 0z = p(z).
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As 1y is a Hermitian bundle, each fiber of E(1y) carries a symplectic form,
isomorphic to the standard form on C™ via a trivialization. The orthogonal
sum with the symplectic form on My provides a symplectic form w® on
E(vp). The same construction works for the almost complex structure and
the Riemannian metric, so there is a compatible triple (w°, J°, (,)?) over
E(v), extending the given one over M.

Let b: D.(vg) — M be the S'-equivariant tubular neighborhood embed-
ding given by the exponential with respect to the Riemannian metric (),
for € > 0 small enough. The two symplectic forms w® and b*w coincide
on Mj. By [13, Lemma 3.14], there is a tubular neighborhood embedding
h: D (vg) — D.(1p) such that h*b*w = w°. Based on Moser’s argument, the
construction of h can be made S'-invariant (see, e.g. [I, Remark I1.1.13]).
Thus, replacing b with boh and e with &’ if necessary, we may assume that
b*w = w°. Pushing the triple (w°, JY, (,)?) down to M via b, we get a com-
patible triple (w, JY, (,)?) near Mj.

Choose a smooth function dy: [0, ¢] — [0, 1] which is equal to 0 near 0 and
so that the support of (1 — dp)o® is contained in the interior of b(D.(vp)).
Recall that the space J(b(D.(14)),w) of Sl-invariant w-compatible almost
complex structures on b(D. (1)) is contractible. The standard proof of this,
for example in [13, Propositions 4.1 and 2.49], actually provides a path J*
(s €10,1]) from J° to J! = J. The formula

J = Joo®@) ¢ Auty T,M

makes sense for all © € M and provides a w-compatible almost complex
structure on M. We say that J’ is obtained by straightening J around My,
using the straightening function ég. The almost complex structure J’ deter-
mines a Riemannian metric (,)’ on M, and hence we have an S'-invariant
compatible triple (w, J’, (,)") on M.

Let us consider the gradient vector field Grad ® for the metric (,).
This vector field depends only on J’, since grad ® = J’X, where X is the
fundamental vector field of the Hamiltonian residual circle action. A J'-
gradient line is the closure of a trajectory of Grad ®.

Suppose that M is a weight simple manifold. We claim that for each
vector z € S(1p), there is a unique J'-gradient line I', that is tangent to z
and that hits My at a point p(z). This process parameterizes the gradient
lines by S(vp). To see this, we transport ourselves into D.(1g) via b. If M is
a weight manifold, the restriction of the moment map ®ob on each fiber is
just the norm square, whose level surfaces of ®ob are round spheres and the
J'-gradient lines are the radial lines to the zero sections. Checking this also
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makes it clear that the equation

Or?

(2.2) Bo(rz) =T, N ! <2>

defines a map By: D1(v9) — M which is an S'-equivariant smooth embed-
ding with image Vj. This completes the proof of Lemma 2.6 for ¢ = 0 when
M is a weight simple manifold. The case ¢ = 1 is analogous. We reverse the
orientation of the gradient lines, and for rz € [0, v//] x Dy, we define (1 (rz)
to be the point y € I', such that ®(y) = %.

Finally, when M is not a weight manifold, the level surfaces of ®ob are
ellipsoids and the above process does not work: it requires that the Hessian
of ®ob be proportional to the metric (,)°. To get around this difficulty, we
precompose b with an automorphism of vy which transforms the ellipsoids
into round spheres. We use this new tubular neighborhood b”: D.» — M
to transport the metric (,)° on a neighborhood of My in M, providing a
Riemannian metric (,)” on this neighborhood. This metric may be mixed
with (,) using a function like § to obtain an S!-invariant Riemannian metric
(,)” on M. Then Equation (2.2) together with the metric (,)~ provides an
Sl-invariant smooth tubular neighborhood embedding with image V;. Note
that the metric (,)~ is no longer compatible with the symplectic form, but
this is not necessary for the proof of Lemma 2.6. g

Remark 2.7. The above proof of Lemma 2.6 was designated to introduce
techniques useful in subsequent sections. For a more direct proof, recall that
the Morse Lemma provides an embedding ¢: Di(1v9) — M with image a
tubular neighborhood D of My, such that each gradient line of ® intersects
the boundary of D transversally in one point. This enables us to construct
a diffeomorphism £y: D1(vp) — Vp as in (2.2). Thus, Vj is a tubular neigh-
borhood of My (note that Vg is T'-invariant by definition).

3. Cohomology constraints

In this paper, H*(-) denotes the cohomology ring of a space with rational
coefficients. Recall that, for (M, My, M;) a simple Hamiltonian manifold,
2m; and 2m are the dimensions of M; and M, respectively, and that 2r; =
codim M;.
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Proposition 3.1. Let (M, My, M) be a simple Hamiltonian manifold.
Then fori,j € {0,1} and i # j, there are short exact sequences

(3.1) 0 — H* 2" (M;) — H*(M) — H*(M;) — 0
and
(3.2) 0 — Hom—+(M;) — H*(M) — H*(M;) — 0,

where the right hand homomorphisms are induced by inclusion.

Remark 3.2. This is related to the results in [8, Section 3]. Here we do not
need to assume that the cohomology of My and Mj is concentrated in even
degrees because the moment map provides a perfect Morse-Bott function
that allows us to deduce the result.

Proof. Let V; be the tubular neighborhood near M; given by Lemma 2.6 that
satisfies V; = M — int V;. We first note that the cohomology exact sequence
of the pair (M, V;) splits into short exact sequences

(3.3) 0— H*(M,V;) — H*(M) — H*(V;) — 0.

This is related to the fact that the residual moment map is a perfect Morse—
Bott function. A proof of (3.3) for the T-equivariant cohomology is given in
[15, Proposition 2.1]. Exactness of (3.3) then follows because M; is T-fixed,
so the map H}.(M;) — H*(M;) is onto. By excision of int V; and the Thom
isomorphism,

(3.4) H*(M,V;) ~ H*(V;,0V;) ~ H* 2" (M;).

Then (3.3) and (3.4) give exactness of Sequence (3.1).
Next, Poincaré duality for V; implies that

(35)  H*(M,V;) ~ H*(V},0V;) = Hopm_+(Vj) & Hopm_.(M;).

Thus (3.3) and (3.5) imply exactness of Sequence (3.2). O
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Let P, P; € Z[t] be the Poincaré polynomials of M and M;.

Corollary 3.3. The Poincaré polynomial Py together with ro and r deter-
mine both P, and P by the following equations:

{(1 — 21} = (1 — 270 P,

3.6
( ) (1 o tQTl)P — (1 o t2(r0+r1))P0

Proof. Sequences (3.1) for i =0 and i = 1 immediately give the following
equations:

9

(3.7) P=P+t"P
' P =t¥Py+ P

from which we may deduce the equations of Corollary 3.3. Note that Equa-
tions (3.7) are just the Morse—Bott equalities for the residual moment map
and its opposite. O

Corollary 3.4. Let (M, My, My) be a simple Hamiltonian manifold with
r1 = 2. Then there are additive isomorphisms

H*(My) ~pqq H*(Mp) ® H*(CP™™Y) and
H*(M) ~pqq H* (M) ® H*(CP™).

Proof. Suppose that M is obtained by a symplectic cut of the trivial bundle
My x C". Then My = My x CP™~ ' and M = My x CP™, which proves the
lemma in this case. The general case follows from Corollary 3.3. O

Remark 3.5. It is not true that Py together with r; determines the coho-
mology ring H*(M). For instance, for the symplectic cut of a weight bundle
vy over My given in Example 1.4, the ring structure on H*(M) depends on
the bundle vg. For My = S? and r9 = 1, M is diffeomorphic to S? x S? if
c1(v) is even and to CP%(CTQ if ¢1(vp) is odd.

The first equation in (3.6) immediately implies the following corollary.

Corollary 3.6. If ro =11, the Poincaré polynomials of My and My are
identical: Py = P;.

The following proposition appears as a special case of the first centered
equation in [11]. In the case of a simple Hamiltonian manifold, their inequal-
ity is precisely this one.
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Proposition 3.7. Let (M, My, M) be a simple Hamiltonian manifold.
Then

m < mg+mq + 1.

Proof. Suppose that 2r; > 2mg + 2. The first equation of (3.7) then implies
that H?™+2(M) = 0, which is impossible as M is a compact symplectic
manifold of dimension > 2mg + 2. Hence, 2r; < 2mg + 2, which implies that
2m < 2mg + 2my + 2. U

Lemma 3.8. Let (M, My, M1) be a simple Hamiltonian manifold. Then
HY (M) ~ H' (M) ~ H* (M),
these isomorphisms being induced by the inclusions M; C M.

Proof. As m; > 1, the abstract isomorphisms come from Equations (3.7).
By Proposition 3.1, inclusions M; C M induce surjective homomorphisms,
which are then isomorphisms. O

Proposition 3.9. For a simple Hamiltonian manifold (M, My, M), the
following conditions are equivalent.

(a) HOd(My) = 0.
(b) HOd(My) =0.
(c) H°(M) = 0.

Proof. By the first equation of (3.6), Conditions (a) and (b) are equivalent.
By Equation (3.7), (c) is equivalent to (a) and (b) together. O

Example 3.10. Suppose that M has the cohomology of CP™. Then M
and M; have the cohomology ring of a complex projective space. Indeed,
their cohomology groups vanish in odd degree by Proposition 3.9. Also,
their Betti numbers are <1 by Proposition 3.1 and they are symplectic
manifolds. The first equation of (3.7) implies that mg + m; + 1 = m, as in
Example 1.2 (For M; = pt, this is a result of [6, Theorem 1]).

Remark 3.11. The extreme case in Proposition 3.7, i.e., m = mg + m1 +
1, is studied in [11, 12, 14]. Much stronger restrictions than what we prove in
this section hold in that special case. In that context, the ring H*(M; Z) must
be isomorphic either to H*(CP™) or to H*(Go(R™*2)), and M is necessarily
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simply connected. Moreover, M7 and My each have the homotopy type of a
complex projective space.

4. Diffeomorphism invariants

Let M§ and M} be fixed compact smooth manifolds (the exponent a stands
for abstract). We also fix two Hermitian vector bundles v{: E; — M? of
complex rank 7;. The isomorphism class ['] of the abstract normal bun-
dle may be considered as an element of [M?, BU(r;)]; we write

(] = ([v5), [¥1]) € [Mg, BU (ro)] x [M{', BU(r1)].

Definition 4.1. A [v%]-simple Hamiltonian T-manifold consists of a
weight simple Hamiltonian T-manifold (M, My, M;) together with diffeo-
morphisms a;: M® —— M; for i = 0,1, such that af[y;] = [v?]. Here, v; =
T M|, /TM; is called the concrete normal bundle to M; in M. It can be
endowed with a U(r;)-structure group via the choice of an almost complex
structure J € J(M,w).

The isomorphism class [v;] is well-defined (see the Discussion before
Remark 2.5). Two such objects ((M, My, M1), ;) and ((M', M}, M]),as)
are considered equivalent if there is a T-equivariant symplectomorphism
h: M — M’ such that hoc; = o. The set of equivalence classes of [v?]-
simple Hamiltonian T-manifolds is denoted H([v?]).

The first invariant associated to a class M € H([v?]) is the character
x(M) € T defined in Lemma 2.2. Note that, since M # MT, the map y :
T — S' is surjective. As we are dealing with weight manifolds, the residual
action is semi-free, with residual moment map: ®: M — [0,/], that sends
My to 0. The number ¢ = ¢(M) > 0 is another invariant of the class M €
H([v?]), called the T-size of M.

Note that v{* and the character x determine unique 7T-equivariant weight
bundles, as discussed in Remark 2.5. Thus, v is T-equivariantly isomorphic
to the concrete normal bundle v; of a representative of H([v?]). Associated
to the abstract normal Hermitian bundle v{', we have the following.

Definition 4.2. For the bundle v}, denote the total space E; with its
bundle projection p;: E; — M. This has associated bundles and structure
groups:
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4.2.1 the abstract sphere bundle S; — M? (fiber 5?":~1), where

Si:{ZGEi’ ‘Z‘:l}.

4.2.2 The abstract disk bundle D; — M (fiber the unit disk in C™),

where D; = {z € E; | |2| < 1}. We also consider the disk bundle I; .
{z €E;| |z2| <e}.

4.2.3 The abstract projective bundle P; — Mg (fiber CP?"~1), where

P, =S;/ S1. The projection n;: S; — P; is a principal S1-bundle with
Euler class e(n;) € H2(P;; Z).

4.2.4 The extended gauge group G (v{), defined by pairs of isomorphisms

that fit into commutative diagrams

E, —— E;

ool

a 9 a
M} —— M;

where g is smooth and its restriction to each fiber is an isometry. Those
isomorphisms with g = id form the usual gauge group G(v{). There
is thus an exact sequence

(4.1) 1—G(v) —>QA(1/Q) — Diff (M7, [v]]) — 1,

K3 3

where Diff (M, [1;]*) denotes the group of diffeomorphisms h: M —
M¢ that satisfy h*[v¢] = [v?]. The group G(v{) acts naturally on each
of the above-associated bundles.

4.2.5 The extended gauge group G (ni), defined by pairs of isomorphisms

that fit into commutative diagrams

such that ¢ is smooth and S'-equivariant. Those isomorphisms with
g = id form the usual gauge group G(7;).

The T-action on v{' induces a T-action on all the abstract sphere and

disk bundles which commutes with the actions of the extended gauge groups.
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Let ((M, My, My), ;) represent an element of H([v?]). Choose a compat-
ible almost complex structure J on M, and consider its associated Rieman-
nian metric. As discussed above, this endows the concrete normal bundle
v; = TM|p, /TM; with a T-invariant Hermitian structure, making it iso-
metric to the orthogonal complement of T'M; in T'M. Choose Hermitian
vector bundle isomorphisms 7;: E; — E(v;) covering «;. These induce iso-
morphisms on the associated bundles: 7;: S; — S(v;) and so forth. We also
get a tubular neighborhood embedding b: D; . — M of M; in M. We now
proceed as in the proof of Lemma 2.6. We may use the embedding b to
straighten the Riemannian metric around M;, using straightening functions
0;: [0,€] — [0, 1]. The gradient lines for the moment map ® and the straight-
ened metric provide a T-equivariant smooth embedding Gy: Dy — M by

_ [l
Bo(rz) =Ty NP7 <2> :

where I, . is the unique gradient line starting from po(2) in the direction of
~0(2). The T-equivariant embedding (1 : D1 — M is defined symmetrically.
The image of Gy and (1 are the T-invariant tubular neighborhoods Vy =
¢~1([0,£/2]) and Vi = ¢~ ([¢/2,1]).

The map

(4.2) P =6y oB1:S1 — So

is a diffeomorphism which anti-commutes with the S'-action. Let £(v) be
the space of such diffeomorphisms 1: S; — Sp. Observe that 1 descends to a
diffeomorphism v : P; — Py. By pre-composition, the extended gauge group
G(v§) acts on the right on £(v*) and, by post-composition, G(1$) acts on
the left on £(v). These two actions commute and descend to the isotopy

classes, giving actions of m(G(v{)) and mo(G(v§)) on me(E(r*)). We can
restrict these actions to the usual gauge groups. Define the set £([v?]) by

(4.3) E([v"]) = mo(G(v))\mo(E(W")) /mo(G(11)).

The notation £([v*]) makes sense because the above double coset depends

only on [v*]. More precisely, let v/ = (1, v]) and v = (v, }) be two rep-

resentatives of [v%]. Choosing principal bundle isomorphisms x;: E(v)) —

7
E(v]") produces a bijection x between the double quotient (4.3) for v/ and
v". Since we have divided out by the action of the gauge groups, the bijection

k does not depend on the choice of the «;’s.
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Lemma 4.3. The above construction provides a well-defined map
U H([v]) — E([vY]) -

Proof. Let (M, My, M), a;) represent a class M € H([v%]). The definition
of the diffeomorphism v of (4.2) involves three choices:

(a) The compatible almost complex structure J on M;
(b) The U(r;)-isomorphism ~; : E; — E(v;); and
(c) The straightening functions d;: [0,¢] — [0, 1].

Once the choices (a) and (b) have been made, the straightening functions
0o and 01 belong to convex spaces, so their choice does not change 1 in
mo(E(v)). If we choose instead 7;: E; — E(v;) for (b), then 4; = g;oy; with
gi € G(v;). Hence, ¥ = goothogi, proving that 1) and v represent the same
class in &([v]). Finally, the choice of (a) does not change the class since
compatible almost complex structures on M form a contractible space.

Now, let ((M, My, M), &;) be another representative of M. Let h: M —
M be a T-equivariant symplectomorphism realizing the equivalence. Choose
a compatible almost complex structure J on M. Then J = Th™'oJoTh is
a compatible almost complex structure on M, which may be used, together
with the above Hermitian bundle isomorphisms ~; to get a representative ¢
of U(M). The construction is transported via h to M, using J, setting ¥; =
Tho~;, and using the same straightening function. We thus get embeddings
Bi = hof;: D; — M’ which can be used to define 1: S; — Sp, which then
satisfies

=By B =By oh T oho By = 1.

Let us consider the following quotients of the set £([v¢]):

(4.4) ENW) = mo(GWE))\mo(E(W™)) /mo(G (V1))
and
(4.5) EM (W) = mo(G(WE)\mo(E(v*)) /70(G

The compositions of the map ¥: H(v*]) — £([v*]) with the projections onto
EY([v?]) and E°Y([v?]) are denoted by W' and WO
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Theorem 4.4. Let (M, My, M), «;) and ((M', M}, M]),al) represent
classes M and M’ in H([v?]), with x(M) = x(M'). Denote the reduced
moment maps by ®: M — [0,£] and ®': M — [0,¢'], where £ and ¢' are the

T-sizes of M and M'.

(a) If we have U(M) = U (M), then there is a T-equivariant diffeomor-
phism h: M — M’ satisfying

/
(4.6) ®'oh = % )

and such that hoa; = o for i =0,1.

(b) If we have WL(M) = UL(M'), then there is a T-equivariant diffeomor-
phism h: M — M’ satisfying (4.6) and such that hoay = ).

(c) If WY M) = WO (M), then there is a T-equivariant diffeomorphism
h: M — M’ satisfying (4.6).

Equation (4.6) means that ® ch = oo ®, where o is an affine isomorphism
of t* of ratio ¢'/¢.

Proof. For Part (a), choose (J,v;) and (J',v}) as above, getting T-equivariant
embeddings (; and (! and 9,9’ € E(v). The condition ¥(M) = T(M')
implies an equation in mo(E(v)) of the form [¢'] = g1[¢]go with g¢; € G;.
Changing ; into v;0g; ', we get that [¢)] = [¢'] in mo(E(r)). Now, the embed-
dings f; produce a T-equivariant diffeomorphism Ny = Dg Uy Dy LM
extending oo and aq. In the same way, the embeddings 3 produce a
T-equivariant diffeomorphism

Ny =Dy Uy Dy -L5 M’
extending o) and o). As [¢] = [¢'], there is a smooth T-equivariant isotopy
b: S() X [1/2, 1] — SO X [1/2, 1],

preserving the projection onto [1/2, 1], such that b(z,t) = (z,t) for ¢t near 1/2,
and b(z,t) = (1'o1p~1(2),t) for t near 1. This isotopy extends, by the identity
near the null-section, to a T-equivariant diffeomorphism b: Dy — Dgy. Now,
b together with the identity on I gives a T-equivariant diffeomorphism
B: N =, Ng . Finally, observe that the level sets of the maps Uog and
Uoq' are the manifolds |z| = constant in I;. These level sets are preserved
by the diffeomorphism B. By the definition of the embeddings 3; and (3,
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this proves Equation (4.6) and completes the proof of (a). Parts (b) and (c)
are proven in the same way, but the elements g; that occur in the above
argument are now in G; instead of G;. O

In order to get applications of Theorem 4.4, we now provide a different
description of £([v]) and its quotients. Choose an element h € £([v?]), if
E([?]) is non-empty. Then any h e &E([v")) is of the form h = ho(h™1oh)
and h~loh € Q(m) Hence, the map g — hog provides a bijection from
G(m) onto E([v]). Now, there is an injection G(1p) — &£([v]) given by 7 —
~oh. Composed with the above bijection G(1;) — £([%]) gives an injective
homomorphism

G(v) — G(m)

defined by 7 +— hoyoh™'. We have proven the following proposition.

Proposition 4.5. If E([v]*) is not empty, the choice of h € E(v*) provides
bijections

(V")) = mo(G (1) \7T0 1))/mo(G(v1))
EX([V)*) = mo(G(5)) \mo(G(m)) /mo(G(v1))

and
£ ([]%) AN WO(Q (v8)) \71'0 (m)) /7T0 V1)),

where the inclusion G(vg) — G(n%) is given by v — h™'oyoh.
5. The case 7 =1
The results of this section follow from the following proposition.
Proposition 5.1. Let M be compact smooth manifolds for i =0,1. Let
[v*] = (], V1)) € [Mg, BU(ro)] x [M{', BU(r1)].

Suppose that r1 = 1. Then EY([v?]) is either empty or contains a single
element.
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Proof. If £([¥%]) is not empty, then it is, by Proposition 4.5, in bijection
with

mo(G(15) \mo(G(m)) /70 (G (1))

As r =1, v isAisomorphic to the complex line bundle associated to 7.
Hence, G(v¢) = G(n1) which implies that £'([v]) consists of a single element.
O

We now provide a criterion to determine, in Proposition 5.1, whether
EL([v?]) is non-empty. Let n; : S; — P; be the S'-principal bundle associated
to . Let I; — IP; be the Hermitian line bundle associated to ;. Let L, —
IP; be the conjugate line bundle, and denote its isomorphism class by [r; ].

Proposition 5.2. Let M? and [v] as in Proposition 5.1. The set E1([v4])
is non-empty if and only if there exists a diffeomorphism k: M{ — Py such
that 1" [y ) = (7).

Proof. The diffeomorphism s would be covered by a diffeomorphism &: S; —
Sp which anti-commutes with the S'-action. Such a & defines a class in
EX([ve]).

Conversely, a class in £'([v?]) is represented by a diffeomorphism A :
S; — S which anti-commutes with the S'-action. This descends to h: P; —

Py satisfying h*[ng ] = [m]. Asry = 1, thereis a bundle isomorphism between
E; and L(m) (over the identity of M{"). Hence, k = h is the desired diffeo-
morphism. ]

We now describe in details a basic example.

Example 5.3. Let N be a compact symplectic manifold. Let £: B — N
be a Hermitian vector bundle of complex rank r. Each fiber of £ is equipped
with a symplectic form coming from the standard symplectic form on C" via
a trivialization. Then the symplectic form on N as well as those on the fibers
of ¢ are the restriction of a unique symplectic form w on E. The action of S!
by complex multiplication is Hamiltonian, with moment map ®(z) = 3|z
Any ¢ > 0 is a regular value, so we may take the symplectic cut Zf’g(f )of E
at £. We thus get a simple S'-Hamiltonian manifold (Py(€), N, Py(€)), where
Py(&) is the symplectic reduction of E at ¢. Using a non-trivial charac-
ter x: T — S, we thus get a weight simple T-Hamiltonian manifold with
residual moment map ¢. We denote this simple Hamiltonian manifold by
Cy(N,&,0).
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Let us define abstract manifolds and normal bundles for C, (N, &, ¢). We
can take M§ = N, ag = id and v§ = &. Then there is a canonical diffeomor-
phism a1 : Py =, Py(&) obtained by following the real vector lines in Eg = E.
Hence, together with o and a1, C, (N, &, £) is a (N, Pg)-simple Hamiltonian
T-manifold. As seen in Proposition 5.2, [11] = [ ].

The T-embedding 3y is induced by the embedding Fy: Dy — Eq defined
by Bo(rz) = rv/? z. Using the identification S; = Sy ; the elements of D may
be written under the form rz with r € [0,1] and z € Sy, with the identi-
fication 02z = 02’ = p(z) = p(2’) when the projection of z and 2’ onto Py
coincide. The T-embedding f3; is then induced by the T-map By Dy — Eo
defined by B (rz) = r(v/¢ — v/20) z. Hence,

¥ (P) = [id]

(the identity from Sp to Sy’ = Sy anti-commuting with the S'-multiplication,
as expected).

Theorem 5.4. Let (M, My, My) be a simple Hamiltonian T-manifold with
T-size £, and associated character x. Suppose that ri = 1. Then there exits
a T-equivariant diffeomorphism

F: Cy (Mo, v, £) = M
commuting with the residual moment maps and such that F|yg, = id.

Proof. As r1 =1, we know M is a weight simple Hamiltonian manifold.
Define M§ = My and set op = id. Fix an almost complex structure on M
compatible with the symplectic form and let v§ be the orthogonal com-
plement of TMy in TM for the associated metric. By Proposition 5.2,
there exists a diffeomorphism aq: Py — M; such that of[v{] = [n,]. Hence,
((M, My, M), a;) represents a class in H([v]) for [v] = ([1)§],[ny])- So does
the simple Hamiltonian manifold C, (Mo, vy, ¢) of Example 5.3, with its own
«;’s. By Theorem 4.4 and Proposition 5.1, this completes the proof of The-
orem 5.4. ([

Theorem 5.4 implies that M; is diffeomorphic to Py. If, in addition r¢ =
1, then Py is diffeomorphic to My and we have the following corollary, also
found in [4, Lemma 3.2].

Corollary 5.5. Let (M, My, M) be a simple Hamiltonian manifold with
ro =11 = 1. Then My is diffeomorphic to M.
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6. Classification up to T-equivariant symplectomorphism

The philosophy of this section is slightly different from that in Section 4. We
fix a single compact smooth manifold M{§ and a Hermitian vector bundle
v§: Eg — MG of complex rank rp, whose isomorphism class is denoted by
[1§] € [M§, BU(r9)]. The associated bundles Sp — My and so forth, as well
as 1, are defined as in Section 4.

Definition 6.1. A [v§]-simple Hamiltonian T-manifold consists of a
weight simple Hamiltonian T-manifold (M, My, M;) together with a dif-
feomorphism «ag: M§ — My such that afvo] = [1]].

Here, vy is the concrete normal bundle to My in M, represented by
the orthogonal complement of 7'My in T'M for the Riemannian metric asso-
ciated to a T-invariant almost complex structure on M compatible with
the symplectic form. In particular, w®* = ojwp is a symplectic form on M.
Two such objects ((M, My, M1), o) and ((M', M, M7), o)) are considered
as equivalent if there is a T-equivariant symplectomorphism h: M — M’
such that hoap = o). The following are invariants of an equivalence class:

e The associated character x and the residual action, which is semi-free,
since we are in the case of weight simple Hamiltonian manifolds;
e The T-size £ > 0;

e The symplectic form w§ on M§; and

e The codimensions rg and r;.

Fixing [1§], wf, £ and 71, we get a set of equivalence classes denoted by
SO([Vg]v w87 71, E)

We are especially interested in the case r; = 1. By Theorem 5.4, elements
of 8%[vp],wd, 1,¢) are in bijection with classes of symplectic forms on
Cy (Mg, v§, £) coinciding with w on M§ and for which the T-action is Hamil-
tonian. Two such forms w and ' are equivalent if there is a self-
diffeomorphism F' of C, (Mg, 1p,¢), commuting with the reduced moment
maps, such that F*w = ' and F|pe = id.
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Let Q%™ (Mg) be the space of symplectic forms on M, with the topology
induced by the C*-topology in Q?(Mg). Define

DM, ). [/, ) = {w: 0,6 — Q™ (M)

w(0) = wf and [w(N)] = [uf] + Ae(no>} ,

where the last equation holds in de Rham cohomology H7,(Mg).
Theorem 6.2. Suppose that r1 = 1. Then there exists a bijection
O: SO([Vg]vw(C)Lv 176) i) 7"-()('D((]w(()lﬂW(U)L)v [V(C]L]’g)) .

Proof. Let M = Cy (Mg, o, £). As noted above, a class of a € S°([v§], w8, 1,¢)
is represented by a symplectic form w on M. Observe that there is a dif-
feomorphism from M/S! to [0,€] x M§. The first component is given by
the residual moment map and the second one is induced by the projection
Ey — M§. Each slice {A} x My is then endowed with a symplectic form
w(A) given by the symplectic reduction of Ey at A. This provides a map
w: [0,4] — Q¥™(M§) with w(0) = w§. The equation [w(X)] = [w§] + Ae(no)
holds in H?(Mg§) by the Duistermaat—Heckman theorem. Hence, w() defines
a class in D((M§,wg), V], £) which we define to be O(a).

To see that O is well-defined, suppose that w’ is a symplectic form on
M equivalent to w. Let F' be a self-diffeomorphism of M realizing the equiv-
alence, so F*w() = «w'(). The map F descends to a self-diffeomorphism F
of [0,€] x M§ commuting with the projection onto [0, £]. Hence, F' is of the
form F(\ z) = (\, F\(z)) where F) is a self-diffeomorphism of M§ such
that Fyw()\) = w/(A\) and Fy =id. For t € [0,1], let w;: [0,€] — QY™ (M§)
be defined by wi(\) = Fjyw. The map ¢ — wy() is a path in QY™ (M) from
w() to w'(). This shows that the two forms are cohomologuous and so © is
well-defined.

Let us now prove that © is surjective. Let w() represent a class in
D((M§,wg), [1§],0)). Let S§ — M§ be the S'-bundle associated to v§. Using
the normal form for reduced spaces [2, Section 30.3], we can extend the map
w() to a smooth map w: [—¢,1+¢] — Q¥™(M{). For such map there is
a symplectic form @ on S x [—¢,1 + ¢] such that the S'-action is Hamil-
tonian with moment map the projection onto [—¢&,1+ €], as shown in [13,
Proposition 5.8]. Performing symplectic cuts at 0 and 1 provides a simple
Hamiltonian manifolds (N; Mg, N7) defining a class a € S°([v§],wg, 1,¢) and
using a = id so that ©(a) = [w()].
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To prove the injectivity of ©, suppose a,da’ € S°([v§],wd, 1,£) are repre-
sented by symplectic forms @ and @’ on M = C, (M, vp, £). These give rise to
w() and w'() in D((M§,wf), [v§], £) representing O(a) and O(a). If O(a) =
O(a’), there exists a path w() € D((M§,w§),[v§],£) joining w() to '().
Because of the cohomology constraint in the definition of D((M§, w§), /5], ¢),
the cohomology class of wi(A) is independent of ¢. By Moser’s theorem [2,
Theorem 7.3], there exists an isotopy p;: Mg x [0,¢] — M§ x [0,¢], with
po = id, such that w;() = pjw(). This isotopy may be covered by an iso-
topy pr: M — M with pg = id. Let &y = pj@. By [13, Proposition 5.8|, we
may deduce that @; = &’. This proves that a = @/, completing the proof. [

Theorem 6.2 reduces the identification of SO([v§],w§, 1, ¢) to computing
o (D((M§,w§), [v§],€)). We only have results when the latter is reduced to
one element.

Theorem 6.3. Suppose that r1 = 1. Then m (D((Mg,wg), [1/8],6)) =x if
(wa] and e(vg) are linearly dependent in the vector space H3 (M) of de
Rham cohomology.

The linear dependence condition is automatically fulfilled when H2 (M)
~ R, as when M¢ is a complex Grassmannian or Go(R™*?) of Example 1.1.6.

Proof. Let w: [0, €] — Q%™ (M) represent an element of D((M§,w§), [v§], ¢).
As [w§] # 0, our hypothesis of linear dependence implies that there is a
unique s € R such that e(v§) = s [w§]. Hence,

[wN)] = [wg] + Ae(vg) = (1 + As)[wi] -

As [w()\)] # 0, we know that (1 + As) > 0. The symplectic form (1 + As)~*
w(A) thus satisfies [(1 + As)"tw(A\)] = [wd]. By Moser’s theorem [2, Theo-
rem 7.3|, there exists an isotopy

pa: Mg — Mg
with pg = id, such that w()\) = piw§. Hence, the formula
wi(A) = (L4 As)ppwy (€ [0,1])

defines a path in D((M§,wq), [V§],¢) joining w to (1 + As)wg. This shows
that mo(D((M§,w§), [¥§],¢)) has only one element. O

Using Theorem 6.2, Theorem 6.3 and its proof have the following
corollary.
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Corollary 6.4. Let (M, My, M) be a [v§]-simple Hamiltonian T-manifold
with T'-size ¢ and associated character x. Suppose that ro =11 =1 and that
e(v§) = slwg] for some s € R. Then there exits a T-equivariant symplecto-
morphism a: Cy (Mg, vg, L) = M such that oy, = . Moreover (My,w;)
is symplectomorphic to (Mg, (1 + sl) w§).

As a corollary below, we may reproduce Delzant’s result [3, Theorem 1.2]
in a slightly more precise way, with essentially the same proof rephrased in
our framework. For the diagonal action of S' on C™*!, with moment map
B(z) = 1|2|?, denote by (CP™), the symplectic reduction at ¢:

(cpm™y,=cmtt jJ st
0

—

We also consider the symplectic cut (CP™), of C™ "1 at ¢, equipped with the
induced S'-action and induced moment map ¢: (@ ¢ — [0,£]. Observe
that (@ , is symplectomorphic to (CP™*1),. Indeed, as the symplectic
forms vary linearly in ¢, it is enough to prove this for £ = 1. But (@1
and (CP™*1); are both toric manifolds admitting as moment polytope an
(m + 1)-simplex intersecting the weight lattice at its vertices.

Corollary 6.5. Let (M?™ My, M) be a simple Hamiltonian S'-manifold
of St-size £, with My a single point. Then

(1) M is S'-equivariantly symplectomorphic to (CP™),, endowed with a
standard S'-action (multiplication on a single coordinate).

(2) My is symplectomorphic to (CP™~1),.
Proof. Let (W, Wy, W1) = (CP™),,pt, (CP™),) and, for A CR, let X4 =
{z€C||z| € A}. Let 0 < e < &’ < {. Performing a symplectic cut to W at
e gives rise to two simple manifolds, the “lower” one (W_,pt, V,) and the
“upper” one (W, V., W1), together with symplectic S'- equivariant embed-
dings h—: X9 — W- and hy: X, o — W, From these, one can recover
W. The quotient map p: Xjg 4 induces to an S L. equivariant symplectomor-
phism

(6.1) W (Wo = Vo) Up. Xoen Un, Wy —V0).

In the same way, performing a symplectic cut of M at € gives rise to two sim-
ple manifolds (M_, pt, N.) and (M4, N, My). If &: M — [0,¢] denotes the
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moment map, we get S'-symplectomorphisms a_: ®~1([0,¢)) — M_ — N
and ay: ®71((g,4]) - M + —N.. By the local forms around a fixed point,
there is an S'- equivariant symplectomorphism ¢: U — U’ between neigh-
borhoods U and U’ of Wy and My, respectively. Choose &’ small enough so
that p(X(g)) C U. We thus get two symplectic S L. equivariant embeddings

g— = a_oqop: X(geo) = W- and g4 = aqoqop: Xeo — W,
and an S'- equivariant symplectomorphism
(6.2) M~ (M- —N.) Uy X(goyUg, (My —N;).

The symplectomorphism ¢ induces an S!- equivariant symplectomorphism
q—: W_ — M_ such that q_oh_ =g¢g_, and also a symplectomorphism
ge: Ve — Ne.

In order to get an S'- equivariant symplectomorphism from W to M
it is then enough, given (6.1) and (6.2), to construct an S!- equivariant
symplectomorphism ¢y : W, — M, such that ¢y ohy = g4.

The problem may be reformulated as follows. Let Y be the upper man-
ifold of the symplectic cut of X, at €. The embedding h extends to a
symplectic S'- equivariant embedding fur: Y — W, onto a tubular neigh-
borhood of V. in Wy; hy and hy determine each other. In the same way,
g+ extends to a symplectic S'- equivariant embedding ¢, : Y — M, onto a
tubular neighborhood of N in M, ; g+ and g4 determine each other. We
are then looking for an S'- equivariant symplectomorphism ¢y : W, — M,
such that q+oi1+ = g+. As g4 coincides with g. on V;, it actually suffices to
construct an S'- equivariant symplectomorphism ¢, : W, — M, extending
¢-. Indeed, by the uniqueness of S'-invariant tubular neighborhood of N,
up to symplectomorphism, it will be possible, taking & smaller if necessary,
to modify g4 by an isotopy so that the condition q+ofz+ = g4 remains true.

By construction, W is identified with (Ciq((CP™ )., n,¢ — ¢)), where
is the Hopf bundle. The simple manifold (M, N, M;) has S'-size £ — ¢ and
the existence of the diffeomorphism ¢ implies that g} (v(N;)) = n. By Corol-
lary 6.4, g. extends to an S'-equivariant symplectomorphism ¢, : Wy — M,
as required. O

7. Examples of polygon spaces
This section provides examples using polygon spaces. We recall below some

minimal theory to state the results. For more developments, classification
and references; see e.g. [7, 8.
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Let a = (a1,...,0p) € R”, where R” := {(ai,...,a,) ER" |0 < a; <
-+ < ap}. Let S2. denote the sphere in R?® with radius «;. We identify R?
with so(3)* so that the Lie-Kirillov-Kostant-Souriau symplectic structure

gives Sgi the symplectic volume 2.

Definition 7.1. The polygon space N, is the symplectic reduction at 0

(i)

for the the diagonal co-adjoint action of SO(3).

The moment map for the co-adjoint action on the product of spheres
maps p — . pi, SO we get
(7.1)

Ny = {p = (p1,---,pm) € (R®)™ | Vi, |pi| = oy and Zpi = 0}/503

i=1

as the moduli space of spatial configurations of a polygon with length-side
vector a. Note that N, is denoted by Pol («) in [8] and by N («) in [7]).
The origin is a regular value for the moment map if and only if there is no
aligned configuration, that is the equation

n

Zeiai =0

=1

has no solution with ¢; = £1. Such length vectors « are called generic.

When «; # a; for some 1,7, then ®;;(p) = |p; + p;j| defines a smooth
function ®; j: N, — R. This is the moment map of a Hamiltonian S Laction
on N,, a particular case of a bending flow [9]. It acts on p by rotating p; and
p; at constant speed around the axis p; + p;. The critical points for ®; ; are
those configurations p for which {py | k # i,j} generate a one-dimensional
space.

If a € R", satisfies the inequalities

n—1
(7.2) an<2ai and an+a1>2ai,

i<n =2

then A, is known to be diffeomorphic to CP" 3, as shown in [7, Exam-
ple 2.6]. Using Corollary 6.5, we get a precise symplectic description.
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Proposition 7.2. Leta=(ay,...,0a,) € R (n > 4) satisfying (7.2). Then
N, is symplectomorphic to (CP"3), for £ = aj + -+ ap_1 — Q.

Proof. Since n > 4, the second equation in (7.2) implies that

(7.3) Qp —Qp_1>ao+ -+ ayo—a; >0.

Hence, the bending flow ® = ®,, ,_1 is defined, with image
I=[an—an_1,01+ -+ ap_2,

an interval of length /=a;+- -+ ap_1 —a,. The fact that a € R"
together with the second inequality of (7.3) imply that there are no critical
points for @ in the interior of I. Hence, ® makes N, a simple Hamiltonian
manifold with S'-size equal to £. The manifold ®~!(ay + - - - + a,_2) is equal
to a point. Proposition 7.2 then follows from Corollary 6.5 (exchanging the
role of My and Mj). O

We now study the operation of adding a tiny edge to a polygon. Let
a=(ai,...,a,) € R™ be generic. If € >0 is small enough, then, for all
integer j € {1,...,n}, the n-tuple

a(j, 5) = (041, cey Q1 O + 4, Qjgly .- ,an)

belongs to R” and is generic when || < €. We say that ¢ is a-tiny. The man-
ifolds N, ;s are then canonically diffeomorphic to N, see [7, Lemma 1.2
and its proof].

We shall now describe the symplectic manifold NV,- where

(7.4) of =(g,a1,...,ay) € R"/'H

and e is a-tiny. For convenience, we will now index the coordinates by 0 to
n. We check that the bending flow

<I>j’0: Nye — Ij = [Oéj —&,04 —I—E]

is well-defined and makes NV,- a simple Hamiltonian S'-manifold of S'-size
equal to 2¢, with Mo = Ny —oy and My = Ny o).

For i =0,...,n, consider the space F; of configurations p as in (7.1)
such that p; = (0,0, ;). This is the total space of a principal S'-bundle &
over Ng-, or over Na@,s) if 1 <14 <n. We also denote by &; its associated
complex line bundle.
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Proposition 7.3. Let a € R", and let € > 0 be tiny for a. Then for each
1 < j <mn, the bending flow ®;o makes the manifold Nye S1-equivariantly
symplectomorphic to Ciq(Ny(j,—e), &, 2€)-

For two descriptions of N,: as a smooth manifold, see [7, Proposition 2.2].

Proof. Choose an S'-invariant almost complex structure on N, compatible
with the symplectic form and let v be the normal bundle to Noa(j,—a) in
Nye.As rg =1, = 1, Corollary 6.4 implies that there is an S'-equivariant
symplectomorphism from Ciq(Ny(j,—), ¥, 2€) to Nae. We have to identify v
with ;.

The symplectic reduction of Nu- at A € I is Ny(j \)- Identifying the lat-
ter with V, gives a symplectic form wy € Q%(N,,) which, by the Duistermaat—
Heckman theorem satisfies the equation

j,—E)

[wN)] = [wg] + Ae(v)

in H3 (No). Hence,

(7.5) o) = Swn).

But, by [8, Remark 7.5.d],
(7.6) w(0)] =) cve(s).
i=1

By (7.5) and (7.5), we deduce that v is isomorphic to &;. O

Proposition 7.4. Let a = (ag,...,ap) € Rﬁ“ satisfying

n—1

(7.7) an+a0<Zai andan+a1>2ai,

<n =2
let { =ag+ -+ ap_1— a,. Then Ny, is symplectomorphic to a symplectic
cut of (CP™2), so that the symplectic slice has size { — 20y.

In particular, AV, is diffeomorphic to CP™24CP 2 For a generaliza-
tion of this fact, see [7, Example 2.12].

Proof. We note that o = * in the sense of (7.4), where § = (aq,...,an)
satisfies (7.2). We use Proposition 7.3 and its notations, with the bend-
ing flow @, . Hence, N, is symplectomorphic to Cia(Na(n,—ao)s &n» 200)-
Using (7.5) and [8, Proposition 7.3], we deduce that e(¢,) = —1.
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Thus, ®,, o makes N, a simple Hamiltonian manifold (N, My, M) with
My = (CP"3);, and M; = (CP _S)g,an, using Proposition 7.2 to identify
M. O
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