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Curvatures and anisometry of maps

BeENOIT R. KLOECKNER

We prove various inequalities measuring how far from an isometry
a local map from a manifold of high curvature to a manifold of low
curvature must be. We consider the cases of volume-preserving,
conformal and quasiconformal maps. The proofs relate to a con-
jectural isoperimetric inequality for manifolds whose curvature is
bounded above, and to a higher-dimensional generalization of the
Schwarz—Ahlfors lemma.

1. Introduction

One of the basic facts of Riemannian geometry is that curvatures are iso-
metry invariants: this explains, for example, why one cannot design a perfect
map of a region on the earth. In this article, we shall be interested in quan-
tifying this fact: how far from being an isometry a map from a region of a
manifold to another manifold must be, when the source and target manifolds
satisfy incompatible curvature bounds?

When the source manifold is the round 2-sphere and the target manifold
is the Euclidean plane, this question is a cartography problem: a round
sphere is a relatively good approximation of the shape of the Earth. It has
been considered by Milnor [11] who described the best map when the source
region is a spherical cap. Surprisingly, it seems like no other cases of the
general question above have been considered.

1.1. Distortion and anisometry

To fill this gap, one has first to ask how we should measure the isomet-
ric defect of a map ¢ : D C M — N from a domain in a manifold M to
a manifold N, assumed to be a diffeomorphism on its image. Milnor uses
the distortion, defined as follows. Let o1 = 01(¢) and o2 = g2(¢) be the
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Lipschitz constants of ¢, i.e.,

ord(z,y) < d(p(z), p(y)) < o2d(x,y) Va,y €D

and o1, o9 are, respectively, the greatest and least numbers satisfying such
an inequality. Then the distortion of ¢ is the number dist(¢) = log(o2/01).

However, when the target manifold is not Euclidean, the distortion is
ill-suited: it is zero for maps that are not isometries, but mere homotheties.
More disturbing is the case when M is positively curved and N is negatively
curved: to minimize distortion, one is inclined to take ¢ with a very small
image, so that the curvature of N barely matters. To make this case more
interesting, we propose the following definition of anisometry:

aniso(¢) = |logoi| + | log oa|.
This quantity generalizes distortion in the sense that when N = R",

inf aniso(y) = inf dist(¢p),

© ¢
indeed one can in this case rescale the target to ensure o7 < 1 < 09. Note
that another possible measure of the isometric defect would be the
bi-Lipschitz constant max(1/o71, 02).

1.2. Azimuthal maps

To describe our results we will need to introduce a specific family of maps
between model spaces. All considered manifolds will be of the same fixed
dimension n; we set X, for the simply connected manifold of constant cur-
vature £ (thus a sphere, the Euclidean space or a hyperbolic space).

Given a point z € X,;, we have polar coordinates (¢,u) (¢ a positive real,
u a unit tangent vector at x) given by the exponential map:

y = exp,(tu),

where ¢t is less than the conjugate radius and y may be any point but the
antipodal point to = (when s > 0).

Definition. An azimuthal map is a map ¢ : B C X, — X, where B is a
geodesic ball, which reads in polar coordinates centered at = and ¢(x) as

p(t,u) = (R(t), L(u)),
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where L is a linear isometry from T, X, to T, ;) X, and R is a differentiable
function. In other words, we have

pexpy (tu)) = expy () (R(t) L(w)).

The function R is then called the distance function of .

As we consider only model spaces, L is irrelevant and the function R
defines a unique azimuthal map up to isometries. The azimuthal map asso-
ciated to each of the following distance functions bears a special name:

e R(t) =t: equidistant azimuthal map,
e R(t) = ot with o € (0,1): o-contracting azimuthal map.

Moreover, given p and k there exists exactly one family of conformal
azimuthal maps and a unique volume-preserving azimuthal map B C X, —
X (see below for details).

1.3. Description of the results

We shall not state our results in the greatest generality in this introduction,
please see below for details.

Our main results have the following form: we assume M satisfies some
kind of lower curvature bound associated with a parameter p, that N satisfies
some kind of upper curvature bound (or more general geometric assumption)
associated with a parameter k < p, and that ¢ is a map (possibly satisfying
extra assumptions) from a geodesic ball of center x and radius «a in M
to N.

Our methods provide half-local results, and we shall always assume that
« is bounded above by some number. This bound shall be explicit most of
the time and depends only on synthetic geometrical properties of M and N.
In some cases (e.g., when the target is a Hadamard manifold) this bound
will be completely harmless.

We then conclude that there is an azimuthal map ¢ : B,(«) — X,; (where
B,(«) is any geodesic closed ball of radius « in X,) such that

aniso(p) = aniso(p)

with equality if and only if ¢ is conjugated to ¢ by isometries.
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For simplicity, we shall write Ricy; > p to mean that the Ricci tensor
and the metric tensor of M satisfy the usual bound

Ricy(u,u) = p- (n —1)gz(u,u) Ve,u.

Similarly, Ky < x means that the sectional curvature of N is not greater
than x at any tangent 2-plane.

We shall always assume implicitly that M (or more generally By (z, )
and N are complete; recall that they have the same dimension n.

Theorem 1.1 (General maps). Assume Ricys > p, Ky < K where p > kK,
and o < A1 (M, N) where A1(M,N) is an explicit positive constant.
Then any map ¢ : B(x,a) C M — N satisfies

aniso(yp) > aniso(p)

where @ 1s:
o the equidistant azimuthal map B,(o) — X, when k > 0,

e the o-contracting azimuthal map By(o) — X, when k < 0, where o is
such that the boundaries of By(«) and Byi(oa) have equal volume.

Moreover in case of equalities ¢ and @ are conjugated by isometries (in
particular, the source and image of ¢ have constant curvatures p and k).

One can write aniso(@) explicitly, see below. This theorem is proved
using a rather direct generalization of Milnor’s argument, which considers
the constant curvature, two-dimensional case.

Remark. (1) It is interesting to see that the sign of x has such an influ-
ence on the optimal map: when x > 0 the best map is isometric along
rays issued from the center, and increases distances in the orthogonal
directions, while when x < 0 the best map induces an isometry on the
boundaries but contracts the radial rays. Of course, when x = 0 all
o-contracting azimuthal maps are equivalent up to a homothety, and
as long as 01 < 1 < o9 their anisometries are equal.

(2) The hypothesis on N can be relaxed thanks to the generalized Giinther
inequality proved by the author and Kuperberg [8]. In particular,
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Ky < k can be replaced by mixed curvature bounds like
Ky <p and Ricy <(n—1)k—np

see Section 2.3 and Theorem 3.2 for the most general hypothesis and
the above reference for various classical assumptions that imply this
general hypothesis.

(3) The precise expression of A; is given in Section 3. In many cases one
can adapt the result and its proof to larger a but we favored clarity
over exhaustivity. For example, what happens for a close to % is that
the boundary of B,(«) becomes very small, and one can improve the

equidistant azimuthal map by making it dilating along the rays.

We shall then consider maps satisfying special conditions. Two promi-
nent examples are volume-preserving maps and conformal maps. In cartog-
raphy, both make sense: area is obviously a relevant geographic information,
and for many historical uses (e.g., navigation) measurement of angles on the
map have been needed. Moreover, asking a map to be conformal means that
zooming into the map will decrease arbitrarily the distortion of a smaller
and smaller region. We therefore ask whether in general, asking ¢ to be
volume-preserving or conformal increases the anisotropy lower bound by
much.

In the theorems below, we shall make the assumption that N satisfies
the best isoperimetric inequality holding on X, meaning that for all smooth
QCN,

Vol(092) > 1,(Vol(92)),
where I, is the isoperimetric profile of X, defined by

1(V) = inf {Vol(90)| Vol(2) = V}.

This assumption can be replaced by K < k in some cases.

One says that n is a Hadamard manifold if Ky <0 and N is simply
connected; it is conjectured that all Hadamard manifolds satisfy the isoperi-
metric inequality of X,, whenever Ky < k, but this conjecture has only been
proved in a handful of cases: when n = 2 [1, 14], n = 3 [10], (n = 4,k = 0) [3]
and (n =4,k < 0) for small enough domains [9]. Moreover, the similar con-
jecture when x > 0 holds in dimension n = 4 for uniquely geodesic domains
[9]. When n = 4 the curvature assumption can generally be relaxed as for
Theorem 1.1, see Section 2.3 below and [9].
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This means that in most dimensions, our results below hold under a
curvature assumption only conditionally to a strong conjecture; but note
that even in the case when N = X, these results are new.

Theorem 1.2 (Volume-preserving maps). Assume Ricys = p, N sat-
isfies the best isoperimetric inequality holding on X, for some xk < p, and
a < inj(x) for a given x € M.

Then any volume-preserving map ¢ : B(x,a) C M — N satisfies

aniso(y) > aniso(p),

where ¢ is the unique volume-preserving azimuthal map B,(a) — X,..

Assume further that the only domains in N satisfying the equality case in
the isoperimetric inequality are balls isometric to geodesic balls in X,.. Then
whenever aniso(yp) = aniso(p), the domain of ¢ has constant curvature p
and its range is isometric to a constant curvature ball B, (R(«)). However,
there are uncountably many different maps achieving equality.

Remark. Here we have put little restriction on a (we only restrict it below
the injectivity radius at z for simplicity), but in fact stronger restriction
can appear when one wants to apply the result. Indeed, if one is only able
to show that small enough domains of N satisfy the desired isoperimetric
inequality, then one can still use Theorem 1.2 for small enough «: then a
map B(x,a) — N either has a small image, or a large o9.

Theorem 1.3 (Conformal maps). Assume Ricyr = p, N satisfies the
best isoperimetric inequality holding on X, for some k<p, and
a < As(M, N) where As(M, N) is an explicit positive constant.

Then any conformal map ¢ : B(x,a) C M — N satisfies

aniso(y) > aniso(g),
where @ 1is:

e the conformal azimuthal map B,(a) — X,; with R'(0) =1 when k > 0,

e the conformal azimuthal map B,(co) — X, that induces an isometry
on the boundaries when k < 0.

Assume further that the only domains in N satisfying the equality case in
the isoperimetric inequality are balls isometric to geodesic balls in X,,. Then
whenever aniso(yp) = aniso(@), the maps ¢ and ¢ are conjugated by isome-
tries (in particular, the domain and range of ¢ have constant curvatures p
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and k), except that when k = 0 one can compose ¢ with any homothety such
that we still have o1 < 1 < 09, and still get an optimal map.

Remark. We shall see that A3 can, in fact, be chosen independently of N
(but depending on k). Moreover, when k£ < 0 we can take As = inj(z).

Conformal maps are rare in higher dimension, so we also tackle quasicon-
formal maps, whose angular distortion is controlled. Recall that a smooth
map ¢ is said to be @-quasiconformal if at each point x in its domain, we
have dist(D¢,) < @, i.e., its infinitesimal distortion is uniformly bounded;
conformal maps are precisely the 1-quasiconformal maps.

Theorem 1.4. Assume Ricpys = p, N satisfies the best isoperimetric

inequality holding on X, for some k < p, let Q be a number greater than 1

and assume o < Ay(M, N, Q) where Ay(M, N, Q) is some positive constant.
Then any Q-quasiconformal map ¢ : B(x,a) C M — N satisfies

aniso(y) > aniso(@),

where @ is an explicit Q-conformal azimuthal map, which is C* but not C?.

Assume further that the only domains in N satisfying the equality case in
the isoperimetric inequality are balls isometric to geodesic balls in X,.. Then
whenever aniso(yp) = aniso(p), the maps ¢ and @ are conjugated by isome-
tries (in particular, the domain and range of ¢ have constant curvatures p
and k), except that when k = 0 one can compose ¢ with any homothety such
that we still have o1 < 1 < 03, and still get an optimal map.

Remark. Here the constant Ay is less explicit than in the other result, but
it is still perfectly constructive. Moreover, we shall see that when x < 0, we
can take A4 = inj(x).

It is also interesting to compare what we obtain from the above inequal-
ities when « is small.

Corollary 1.5. IfRicy = p and Ky < k, any map ¢ : B(x,a) C M — N
satisfies

(p— K)a® + o(a?).

| =

aniso(p) >
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If ¢ is conformal, then

1
aniso(y) > 1(’0 — r)a? + o(a?).

If ¢ is volume preserving, then

n

m(p — k)a? 4 o(a?).

aniso(y) >

Remark. (1) In this corollary, one can easily replace the curvature

assumptions by scalar curvature bounds, since only small balls are con-
sidered. Note that the isoperimetric inequality needed in Theorems 1.2
and 1.3 has been proved to be true for small enough domains under
the curvature assumption Ky < k (or even Ky < k in some cases) by
Johnson and Morgan [12] and under Scaly < by Druet [4]. To obtain
a Taylor series, these strict assumptions are sufficient (but then the
remainder term cannot be made explicit).

In all our results, one considers maps from the higher-curvature man-
ifold to the lower-curvature one. These results imply similar estimates
for maps ¢ : B(y,a) C N — M, because either such a map contracts
some distances by much (hence has large anisometry), or its image con-
tains a ball of radius bounded below, allowing us to apply the results
above to ¢~ !. However, the estimates one gets that way are certainly
not sharp, and we do not know whether ¢! is optimal in any of the
situation treated above; it seems that even the case of a map from
a ball in the plane to a round 2-sphere is open. One might want to
perturb the equidistant azimuthal map to enlarge the boundary of its
image, so as to limit the distortion along the boundary. It is not clear
whether this can be achieved without increasing distortion too much
anywhere else.

Organization of the paper. Next section gives notations and some back-
ground. We prove our main results in the following three sections (general
maps, then volume-preserving maps, then conformal and quasiconformal
maps). The technique we use in the conformal and quasiconformal cases
turns out to have been used by Gromov to generalize the Schwarz—Pick—
Ahlfors lemma. In the final Section 5, we shall state and prove a result of
this flavor that seems not to be in the literature (but certainly is in its
topological closure).
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2. Toolbox
2.1. Notations

Let X, be the model space of curvature x and dimension n, i.e. a round
sphere when k > 0, the Euclidean space when x = 0, and a hyperbolic space
when k < 0.

We denote by Bjs(z,t) (respectively Sys(z,t)) the geodesic closed ball
(respectively sphere) of radius ¢ and center x in M. When there is no ambigu-
ity, we let B(t) = Bas(z,t) and S(t) = Sy (x,t). To simplify notation, we set
B, (t) (respectively Si(t)) for any geodesic closed ball (respectively sphere)
of radius t in X,.

The volumes of manifolds, submanifolds and domains shall be denoted
either by Vol(-) or |-|. We let wp—1 = |So(1)| be the (n — 1)-dimensional
volume of the unit sphere in Xg = R".

When there is no ambiguity, o; shall denote o;(¢).

When z is a point in a manifold and u a tangent vector at x, we let
Yu(t) = exp,(tu) be the time ¢ of the geodesic issued from z with velocity u.

We shall denote by T'M the unit tangent bundle of a Riemannian
manifold M, by inj(x) the injectivity radius at x € M and by inj(M) the
injectivity radius of M.

2.2. Geometry of model spaces

The model spaces X,; are well understood, let us recall a few facts about
them.

2.2.1. Trigonometric functions. It will be convenient to use the func-
tions sin, defined by

sin(y/ka)

T lfli>0,

sing(a) =< a if Kk =0,
sinh(yv/—ka)
Nas

if Kk < 0.

We then set
cos(y/ka) if K >0,
cosk(a) :=sin) (a) = ¢ 1 if k=0,
cosh(v/—ka) if K <0
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and
t
tan(vka) o,
. NG
sing(a) )
tang(a) == =<a it k=0,
cosy(a)
tanh(v/—ka) i r<0
\/jﬁ '
We shall also use occasionally
t
arctan(ykz) o

NG

x
arctanh(y/—kx)
V=K
and we have the derivatives tan/, = 1+ xtan? and arctan’,(z) =

A trigonometric formula that will prove useful is

2
1+ ka2’

arctan, () := tan, ' (z) = ifk = 0,

if k<0

_1
1+kz? "

sing (2 arctan, x) =
We shall need the following Taylor series:

2
sing(t) =t — ~3 + 5 4 O(9),

6 24
2
ko K 4 6
t)=1——t —1 t
cosy () 5 +24 +O(t°),
K3 262 ¢ 5
t t)=1t+ -t —1 o(t
ang(t) =t + 2t7 + T+ O(t"),
Koy K 7
arctan,(z) = x — 3% + = +O(x").

2.2.2. Volumes. Let z be a point on X, t be a positive real and u be
a unit tangent vector at x; then setting y = exp,(tu) we can express the
volume measure dy on X by the formula

dy = sinL(t) dt du,

where dt is Lebesgue measure on [0,+00) and du is the volume measure
on the unit tangent sphere T} X, naturally identified with the unit round
sphere S"~1.

In this volume formula, one can decompose the density into factors 1
(in the direction of the ray from the pole) and sing(t) (in the n — 1 ortho-
gonal directions). This shows that up to isometry there exists exactly one
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azimuthal, conformal map ¢ from the ball B,(z,«) to X, such that Dy, is
a homothety of ratio o (i.e., R'(0) = o), whose distance function is driven
by the following differential equation:

sing (R(t)) .

() = sin,(t)

Moreover, the (n — 1)-dimensional volume of a geodesic sphere S (t) of
radius ¢ is

Ag(t) := |Sk(t)] = wn_1 sin? (1),

where w,_1 is the volume of S"~!; when x > 0 we only consider ¢ below the
conjugate radius 7/y/k. We also name the volume of geodesic balls of X,:

Vi(t) = [Ba()] = wnr /O sin™(s) ds.

Given p and k, there is exactly one volume-preserving azimuthal map,
defined by the distance function

That R is as above is clearly necessary for an azimuthal map to be volume
preserving, but the local volume formula shows that it is also sufficient.

It is known that in X, the least perimeter volume of given domains is
balls, so that the isoperimetric profile of X, is given by

Note that the lesser is k, the greater is I, and the more stringent is the
corresponding isoperimetric inequality.
Using the above Taylor series, we get:

An(t) = w1t ! <1 _(n=Drp + O(t4)> :

6
Wh— n(n—1)x
Vie(t) = 7;1 Ln <1 — 6((n+2))tg + O(t4)> ,
L (n—1)k n
n=1t L no1 — nondl n+ts
I(0) = 0o = e e 4 O,
Wy 1
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2.3. Candle functions and comparison

To study anisometry of maps under curvature bounds of the domain and
range, we will need some tools of comparison geometry, relating the geometry
of M and N to the geometry of X, and X,. We will notably rely on Bishop
and Gilinther’s inequality, which in their common phrasing compare volume
of balls. It will be useful to discuss their more general form, which is about
comparing Jacobians of exponential maps.

Given a point x € M, a vector u € T1M and a real number ¢, let y =
exp, (tu) and define the candle function j,(tu) as a normalized Jacobian of
the exponential map by

dy = j,(tu) dt du,
where dy denotes the Riemannian volume and du is the spherical measure
on TM.
In the case of X, this function does not depend on z nor on u and is

equal to sin? ().

Definition 2.1. The manifold M is said to satisfy the candle condition
Candle(k, ¢) if for all x, u and all ¢ < ¢ it holds

Ju(tu) = sinﬁ_1 (t).

The manifold M is said to satisfy the logarithmic candle derivative con-
dition LCD(k, ¢) if for all z, v and all ¢ < £ it holds

0 OB

where j(t) := j.(tu) and s(t) := sin?~1(¢).

The name “candle condition” is motivated by the fact that j, describes
the fade of the light of a candle (or of the gravitational fields generated by
a punctual mass) in M.

By integration, Candle(k, ¢) implies that spheres and balls of radius at
most £ have volume at least as large as the volume of the spheres and balls
of equal radius in X,.

The candle condition is an integrated version of the logarithmic candle
derivative condition, which itself follows for ¢ = inj(N) from the sectional
curvature condition K < x: this is known as Giinther’s theorem, see [5]. With
Greg Kuperberg, we proved in [8] that it also follows from a weaker curvature
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bound, involving the “root-Ricci curvature”. In particular, we proved that

manifolds satisfying a relaxed bound on K and a suitably strengthened
bound on Ric still satisfy a LCD condition, and therefore a Candle one.

The strong form of Bishop’s theorem is that the reversed inequality in
(1) holds under the curvature lower bound Ric > & (for £ the conjugate time
of Xx). The corresponding comparison on the volumes of spheres and balls
follows and are also referred to as Bishop’s inequality.

We shall establish Theorem 1.1 using the comparison of spheres; the
assumption Ky < k can therefore be relaxed to Candle(k, ) where ¢ can
be taken to be, e.g., oo when N is a Hadamard manifold or chosen suitably
otherwise, see the proof below.

2.4. Volume of ellipsoids and hyperplanes

A couple of our arguments will rely on a simple and classical lemma, which
we state and prove for the sake of completeness.

Let ¢ be a scalar product in Euclidean space of dimension n, endowed
with the standard inner product (-,-). We shall denote by o1(q) and 02(q)
the largest, respectively, smallest numbers such that

o1(q)(u, u) < q(u,u) < o2(q)(u,u) YueR"

and say that ¢ is at most @Q-distorted if o9/01 < Q. We shall also denote by
lg| the determinant of ¢, that is the ratio of the volume of its unit ball to
the volume of Euclidean unit ball (both volumes computed with respect to
the Lebesgue measure associated with (-, -)).

Lemma 2.2. Let qg be the restriction of q to any hyperplane. Then we have

la| = |qolo1(q)

and

7

gl > L gol7
q —lqo|™ 1.
~Q

There is equality in this second inequality if and only if ¢ has eigenvalues
A and QN, with respective multiplicities 1 and n — 1, and the hyperplane
defining qo is the QX eigenspace of q.

Proof. Let Ay > --- > A\, be the eigenvalues of g and 1 > -+ > u,—1 be the
eigenvalues of ¢qp. In particular, A, = 01(¢). Then Rayleigh quotients show



332 Benoit R. Kloeckner

that p; < A; for all ¢ < n. It follows

lg] = MAz. .. Ay
= [qo| A\ = |qolo1(q)-

But by the distortion bound, we have
Qo1 =2 22N\ 201

so that (Qo1)" ™! > |qo| and

and the desired inequality follows. The equality case is straightforward. [
3. General maps

Assume that Ricys > p and that N satisfies Candle(k, ¢p) for some ¢y (on
which we shall put some restriction later on).

Let ¢: By(z,a) = N be a diffeomorphism on its image, where
a < inj(x), the injectivity radius of M at z.

In what follows, we shall assume bounds involving 1/4/k: our convention
is that this number is +o0o whenever x < 0.

Lemma 3.1. Ifos(p)a <y < ﬁ, we have

sing (o1 (p)a)
72(¢) > sing(a)

The proof is a mere generalization of Milnor’s argument in [11].

Proof. Denote by S(«) the geodesic sphere of center x and radius «. Bishop’s

inequality ensures that |S(a)| > wp—1 singf1 (). On the other hand, ¢(S(«))

encloses the ball of N of radius o« centered at y = ¢(x). Given a unit vector

u € TyN, let £(u) be the first time at which v, hits ¢(S(«)), and B(u) be

the angle between 4,(¢(u)) and the outward normal to ¢(S(«)). We have

¢(u) > o1 and obviously cos(3(u)) < 1. Moreover when x > 0, we have
l(u) < o9 < T

NG

1

so that the comparison candle function sin]~" is increasing on [0, £(u)].
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Then, letting j be the candle function of N at y and du be the usual
measure on the unit Riemannian sphere, we get

e(s@)l > | Julllw) 4

1 v cos B(u)

Y
> / sin” 1t (0(u)) du
LN
> w1 sin o).

There is at least one point on S(«) at which the Jacobian of the restric-
tion of ¢ to S(«a) is at least

[p(S())| _ sing™!(o1(p)a)
Sl 7 sing~Ha)

and the lemma follows. O

Let us now define the a-bound A;.

Definition. Let A; = A;(M, N) be the greatest number such that for all
a < Ay we have a < inj(M), if k > 0:

sin, () A T
2 LASMANS N), ——
( ) asin,{(a) min (ln.]( )72\/E)
and if kK <0
2
(3) .,10[—. < inj(N).
sin,; ' osin, ()

Remark. (1) A; depends on M and N only through their curvature/
candle bounds p and x and their injectivity radii;

(2) if we do not insist on a uniform bound over possible centers, we can
replace inj(M) by inj(x);

(3) if N is a Hadamard manifold, then A; = inj(M) (or inj(x));

(4) if inj(M) and inj(V) are large enough, when x > 0 we have A; > QL\/E
and A1 — % when k — 0;

(5) in some cases (e.g., when one can apply Klingenberg’s Theorems, see
[2] Theorems 5.9 and 5.10), the curvature bound on N is sufficient to
get an estimate on inj(/N), and therefore to get a bound A} that does
not depend on the injectivity radius of the range.
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Theorem 3.2. Assume Ricyr > p, N satisfies Candle(k, inj(N)) for some
k<p(eg, Kn <k)and a < Ai(M,N) defined above. Let v : By(x, ) —
N be any smooth map.

If kK 2 0 then
sing (@)

aniso(y) > log sin, (@)
and there is equality if and only if ¢ is conjugated via isometries to the
equidistant azimuthal map from By(«) to Bi(a) (in particular, By(z, o)
and its image must have constant curvatures p and k).

If k <0 then letting o9 = oo(k, p, ) be the number in (0,1) such that
sin, (ogar) = siny (), we have

1
aniso(p) > log —
00
and there is equality if and only if ¢ is the og-contracting azimuthal map
from By(a) to Be(ooa) (in particular, By(x, o) and its image must have
constant curvatures p and k).

Notice that o is the dilation coeflicient that makes the volumes of the
spheres S, (opar) and S,(«) coincide; it makes the og-contracting azimuthal
map a non-dilating map, i.e., 02(¢) = 1 when x < 0.

Proof. We can assume o2« is small enough to apply Lemma 3.1, otherwise
the way we designed A; ensures that oy is so large that aniso(yp) is a least
the claimed lower bound.

Let us start with the x > 0 case. From Lemma 3.1 we have

(4) aniso(y) > |log 01| + logsing(o1a) — log sin,(«v).

The derivative of the right-hand side with respect to oy is

1 o
——Ft — <0
o1 tang(oija)

when 01 < 1 and

1 o}
—t— >0
o1 tang(oia)

when o7 > 1. This shows that the right-hand side of (4) achieves its mini-
mum when o1 = 1, so that

aniso(y) > logsing (o) — logsin,(a).
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In case of equality, one must have o1 =1 and oy = sin,(«a)/sin,(a),
therefore there is equality in Lemma 3.1. This forces Bjs(x, ) and its image
to have constant curvatures p and x and S(a) must be mapped to the
geodesic sphere of radius a and center ¢(z) in N. Since o1 = 1, ¢ must then
map S(a) to Sk(a) for all a. Each ray from ¢(z) to Sk(«) must be mapped
by ¢~! to a curve of length at most « that connects = to S(a), therefore
unit rays are mapped to unit rays. The whole map ¢ then depends only
on its derivative at x, which must preserve the norms. It follows that ¢ is
azimuthal equidistant, up to isometries.

In the k < 0 case, (4) also holds but is not optimal anymore. Indeed,
the derivative of its right-hand side is positive both when o; > 1 and when
o1 < 1 since tang(z) < x. But when o1 < 0g, the lower bound on o9 given
by Lemma 3.1 is less than 1. It follows

1
aniso(y) = log —,

00
which is achieved by ¢. The case of equality is treated as above. O
Corollary 3.3. In the above setting,
aniso(p) > PoBa2 g O(a),

6

where the implied constant in the remainder term only depends on the cur-
vature bounds.

4. Area-preserving maps
Let us now prove Theorem 1.2 in the following form.

Theorem 4.1. Assume Ricpyr > p, N satisfies the best isoperimetric
inequality holding on X, and o < inj(z). Then any volume-preserving map
¢ : B(z,a) C M — N satisfies

n I, o V(o)

. > 1
aniso(y) — log A ()

and equality is achieved by the unique volume-preserving azimuthal map
@ : By(a) — X.

Assume further that the only domains in N satisfying the equality case in
the isoperimetric inequality are balls isometric to geodesic balls in X,. Then
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whenever aniso(yp) = aniso(@), the domain of ¢ has constant curvature p
and its range is isometric to a constant curvature ball B, (R(«)). However,
there are uncountably many different maps achieving equality.

Proof. The key point is the following lemma, which is a direct adaptation
of Theorem 3.5 in [12].

Lemma 4.2. Under the assumptions Ricys = p and k < p, we have

L(B@)]) Lo Vy(a)
S@I 7 Aa)

If there is equality, then B(«) is isometric to By().

Proof of Lemma. Setting dg := f((cg)\’ the strong form of Bishop’s inequality

yields for all ¢t < «

1S()]
At

dp <

~—

By integration, it becomes

L(|B(a)]) = dols(Vp(@)) = [S(a)]

In case of equality, we must have §y = 41, which implies dg = §; = 1. The
equality case in Bishop’s inequality then implies that B(«) is isometric to

By(a). ]

Now, since ¢ is volume preserving and N satisfies the isoperimetric
inequality, we have

V()

p(S(@)] = Ls(|B(@)]) = |S(e) A(a)

Then, there must be a point x on S(a) such that the Jacobian of ¢|g(,) is
at least %”(@)‘)) so that

NE
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but also, since jac ¢, = 1, Lemma 2.2 shows that a direction transverse to
the boundary must be contracted by ¢ and

e (22

These two bounds combined imply the desired inequality on aniso(y).

It is straightforward to see that the unique volume-preserving azimuthal
map ¢ : By(a) — X,; realizes equality. Moreover, if there is equality then
there must be equality in the lemma, so that B(«) is isometric to B,(«),
and there must be equality in the isoperimetric inequality on N.

However, ¢ is far from being the only optimal map: both ¢ and o9 are
realized on the boundary, and for all ¢t < «,

o1(PB,«)) > o1(p) and  03(@|B, 1) < 02(P).

If we compose ¢ with any diffeomorphism of B,(a) close to identity and
supported on some B,(t), we get another optimal map. O

5. Conformal and quasiconformal maps

The following result is the heart of our results for quasiconformal maps; its
formulation has been chosen to avoid repetition of arguments while keeping
as much flexibility as we shall need, and it is therefore rather technical.

Theorem 5.1 (Main quasiconformal inequality). Assume ¢ is a
Q-quasiconformal maps from Bps(z, ) to N, where Ricyr > p and N satis-
fies the isoperimetric inequality of X,.

Let Gy, be the function defined by

2

Gg(z) = sing (2 arctan,(z)) = T
KT

If k > 0, assume further that the volume of the image of ¢ is not greater

than the volume %]XH\ of an hemisphere of curvature k.
Then for all B < o we have
)) a
)

Gy (tann(T(f)) ' (tanp(

o [

tan, (

N [@)|

o2() > sin, ()
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where r(3) is the radius of a ball in X, that has the same volume as the
image of By(x, 3).

The proof of this inequality follows a simple idea: at each time ¢, the
isoperimetric inequality forces the image of the sphere of radius ¢ to have
large volume, and the quasiconformality then translates this into a large
increase in the volume of the image of the ball. These two effects therefore
amplify one another. At ¢t = o, we get a lower bound on V(«), and using
the isoperimetric inequality again we bound from below the perimeter of
the image of the a-ball. Comparing with the perimeter of the ball, we get a
lower bound on o9.

Proof of the main quasiconformal inequality. For convenience, for all ¢ &
(0, ) set V(t) = |@(B(t))|. In particular, r(t) = V.71 (V(t)).
Using Holder’s inequality we get

Vi(t) = /S il dy

_ (s l1acel ™ S >dy)ﬁ
g 1S (8|7

where jac p(y) is the Jacobian of ¢ at y. Let ¢p be the restriction of ¢ along
S(t): using Lemma 2.2, Bishop’s inequality and the isoperimetric inequality
on N it follows that

n

& (Js ine ol y)"

S(0)17
_ LS~
~ Qs

) Vi > LUOT

QwE sin, ()

V'(t) >

Let F' = F}, g be defined by

FoVi(t) = Qlogtan,(t/2)
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and let us compute F’:

i(Fo Vi(x)) = %(Qlogtanﬁ(x/Q)),

dx
Vi) Vila) = 2,
Q
Ay () sing(x)

1
Qui

F'(Vig(x)) =

(6) Fr= el

From (5) and (6) it becomes

1
sin,(t)

F(V(E)V'(t) >

As above, log(tan,(t/2)) defines an antiderivative of 1/sin,(t) and
integrating we conclude

tan,(o/2)

7) F(V(e) ~ F(V () > log B

since I’ is a positive function, F' is increasing and invertible, so that the
above inequality gives a lower bound on V' («); using |p(S(«))| = I.(V («))
and proceeding as in the proof of Theorem 3.2, we get

o) > (W} o

(10 F1)77 (P(V(3) + log(22elef2)

= 1

wy~y sinp(@)

(beware that exponent ﬁ is a multiplicative power while exponent —1

stands for inverse function).
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Now

(Ino F~1)77 = (I 0 Vi o (Fo V) }) 7
=(Aso (Fo Vﬁ)_l)ﬁ

= w, "} sing o(F o V)™t

and the desired inequality follows from the identity

2

sing (2 arctan, x) = T
KT

Remark. In the above proof, two small difficulties are hidden.

(1) When k > 0, I, is decreasing beyond the volume of an hemisphere;
this is why we assumed an upper bound on V(«).

(2) When < 0, F has bounded image so that F~! is not defined on the
whole positive axis. Our proof shows that any quasiconformal map
must map small balls to domains of relatively small volume (bounded
in terms of «a, k, p and the radius of the considered ball), for otherwise
the differential inequality on V(¢) would blow up in time less than
« and the map would not have compact image. This is the base to
a generalization of the Schwarz—Pick—Ahlfors lemma by Gromov, see
the appendix.

Definition. Let A3 = A3(M, K, p,n) be defined as the greatest real number
such that for all a < Az it holds

e a < inj(M),
o if K >0,

X, \ " tan2(a/2)
<2Vp(a)> Zltlp—n 1+ mtpang(a/2)'

Let us now prove Theorem 1.3 which we restate as follows.

Theorem 5.2. Assume Ricpy = p, N satisfies the best isoperimetric
inequality holding on Xy, and o < Az(M, K, p,n). For the equality case below,
assume further that any domain Q C N such that |0Q| = I;(|Q]) is isometric
to a geodesic ball in X,. Let ¢ : B(z,a) C M — N be a conformal map.
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If Kk > 0, then

an2 (6]
i) = o (1 Tl +t min2/(204)/2)>
p

with equality when o is conjugated by isometries to the conformal azimuthal
map B,(a) — X, with R'(0) = 1.
If Kk =0, then

aniso(y) > log (1 + ptani(a/Z))

with equality when ¢ is conjugated by isometries to a conformal azimuthal
map B,(a) — Xo =R" with R'(0) <1 and 02 > 1 (e.g., R'(0) =1).
If Kk <0, then

—2K sini(%)

V1—ksin,a—1

with equality when o is conjugated by isometries to the conformal azimuthal
map B,(a) — X, that induces an isometry on the boundaries (or, equiva-
lently, that preserves volumes along the boundary).

aniso(y) > log

Remark. In the case x =0 it is easy to compare the bound for general
maps and conformal ones. When o — 0, this will be done more generally
below; when a — 7, both lower bounds go to infinity, but in the conformal
case it does so twice as fast (after taking logs!) in the sense that

aniso(@e) 9
aniso(p) ’

where ¢ and @, denote the optimal azimuthal maps for radius « in the
general and conformal cases, respectively. Conformality thus appears to have
a significant effect on anisometry.

Proof. The bound Ajz has been designed so that either B(«) is mapped to
a domain so large that at some point y, Dy, itself must have anisometry at
least equal to the claimed bound, or the volume of ¢(B(«)) is at most 3| Xy|
and we can use the main quasiconformal inequality with ) =1 and § — 0.
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Since () = 018 + o(8), when 3 — 0 we have

tanH(T(Zﬁ)
R 2 1
tan,(3/2) = 01 T o)
and we obtain
B Gy (o tany(a/2))
o2(p) 2 02 := - .
() sin, ()

We would like to optimize in oy the corresponding bound
f(o1) := [log o1 + [log 52(1)]

on aniso(¢p).

For this, we observe that for all positive o, the number f(o) is the
anisometry of a conformal map with co-Lipschitz coefficient equal to o. For
this, let

Oy, 0 Bya) — X,

be the unique conformal azimuthal map such that o1(®, ) = o (i.e., its dis-
tance function satisfies Ry, ,(0) = o). Then following the proof of the main
quasiconformal inequality with () = 1, we see that all inequalities are equal-
ities so that indeed f(o) = aniso(®Py ).

Moreover, if aniso(¢) = f(o1) (recall that oy stands for o1(y)) then we
must have equality in all inequalities in the proof of the main quasiconformal
inequality, and this implies that ¢ and ®,, ,, are conjugated by isometries.

Observe that aniso(®, ) is decreasing with x, and increasing with o
whenever

(8) 0 <1< 02(Po).

It is clear that the minimum of f(o) occurs in this range. Observe further
that

aniso(®,) = aniso(Py/ r24)

whenever o and o/ both are in the range (8), since ®, /) 2, is the compo-
sition of ®, , with a homothety of ratio A.
When « > 0, if 0 < 1 is in the above range then we get

aniso(®,, ) = aniso(Pq ,2,) > aniso(Pq )

so that f(o1) > f(1) with equality if and only if o = 1.
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When k£ < 0, if 1 < 62(0) = 02(Ps ), then
aniso(®y x) = aniso(®y, /5, 52,) > aniso(Py, /5, )

so that f(o) reaches its unique minimum for the value of o such that
02(Py ) = 1.

When k = 0, f is constant on the range (8).

Note that we could also have proceeded via calculus: setting
x = oy tan, (o/2) we then have

d 1
% flon) — & / _
dale 0% (xGH(x) G,{(x))
- —4kz3

~ o2(1 + ka?)?

Therefore if £ > 0 then f has its only minimum when o; = 1, and if K < 0
then f has its only maximum when g2(01) = 1. When k = 0, any value of
o1 between this two cases yields the same result.

We only have left to compute min f. When s > 0, we get

Gﬂ(tanp(%)).

i > 1 :
aniso(y) > log sin (@)

Then, using
_ 2tan,(§)
1+ ptan3(5)
we easily get the claimed inequality.
When £ < 0, the minimum of f is attained when 69 = 1 and, therefore o
is such that G(oqtan,(§)) = sin,(a). Since at this point we have f(o1) =
—log(o1), we only have to invert G, to get the desired inequality. O

sin, ()

Corollary 5.3. If ¢ is conformal, then

p—K
4

aniso(p) > o? + o(a?),

where the remainder depends on the curvature bounds and N.

As mentioned above, we can even relax the assumption on M and N to
be Scalpy; > p and Scaly < &: the infinitesimal Bishop inequality holds true
under a scalar curvature bound, and so does the isoperimetric inequality as
proved by Druet [4].
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Theorem 5.4. Assume Ricys > p and N satisfies the best isoperimetric
inequality holding on X. For the equality case below, assume further that
any domain Q@ C N such that |0Q] = I.(|Q2]) is isometric to a geodesic ball
in Xx. Let ¢ : B(x,a) C M — N be a Q-conformal map.

If k>0, let ¢ : By(a) — X, be the azimuthal map whose distance func-
tion satisfies

_ sy Sink(R(1))
R(t) =t whent < 3, R(t)= Qsin, (1) when t > 3,
where B > 0 is such that
sing () _
Q Sinp(ﬁ) ‘

There is a positive number Ay = Ay(M, N, Q) such that if « < Ay then
aniso(y) > aniso(p)

and there is equality if and only if ¢ and ¢ are conjugated by isometries
(except in the case k = 0 where the conjugating map on the range can be a
homothety).

If k <0, let ¢ : By(a) — X, be the azimuthal map whose distance func-
tion satisfies

_ sy _ Sing(R(1))
R(t) = ot whent < 3, R(t)= Qpr(t) when t > 3,
where B > 0 is such that
sin (0/3)
QSinp(ﬂ) B

and o is such that o2(@) =1 (in particular, ¢ induces an isometry on the
boundary). Then whenever o < inj(z) we have

aniso(y) > aniso(p)
and there is equality if and only if ¢ and @ are conjugated by isometries.

Proof. The proof follows exactly the same lines as the proof of Theorem 5.2,
using the quasiconformal inequality with the chosen 8 and Q). Fixing p and
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a, for all given ¢ and k we construct a comparison map
o Bpla) = X

as in the conclusion of the theorem. We remark that, restricted to B,(/3),
@ is both the least anisometrical map and Q-conformal. Then for larger
radii, A4 is designed so that either the anisometry bound is true or the main
quasiconformal inequality shows that ¢, ()~ has lesser anisometry than .

To get the desired conclusion, we only have left to optimize the anisom-
etry of these comparison maps in ¢. This does not differ from the conformal
case.

We do not give explicit values for the lower anisometry bounds, but they
can be obtained explicitly from the above computations (though probably
not in closed form). O

Remark 5.5. It can be checked that in Theorem 5.4 the optimal azimuthal
map is C! but not C? when Q > 1.

Appendix A. The generalized Schwarz—Pick—Ahlfors lemma

The method used to prove the main quasiconformal inequality was already
used by Gromov [6, 7] and Pansu [13] in relation with generalizations of
Ahlfors lemma.

The classical Schwarz lemma says that a holomorphic map f: A — A
from the unit disc to itself, such that f(0) = 0 must satisfy |f/(0)| < 1 and,
in case of equality, f must be a rotation. Pick reinterpreted this result by
endowing the disc with its hyperbolic metric: the lemma then amounts to
say that any conformal map from H? to H? must be non-dilating in the
hyperbolic metric, and if at any point its Jacobian has modulus 1 then the
map must be a hyperbolic isometry. Then, Ahlfors extended this result to
conformal maps from a surface with curvature bounded below by —1 to a
surface with curvature bounded above by —1. This had a lasting impact
on several fields of mathematics. Among possible generalization to higher
dimensions, one that fits particularly well with the content of the present
article is the following.

Theorem A.1. Let M and N be complete manifolds of the same dimension
(at least 2) with Ricpr > —1 and Ky < —1, and let ¢ : M — N be a smooth
conformal map. If the Cartan—Hadamard conjecture holds, then | jac o(x)| <
1 for all x € M, and if there is equality at any one point, then o lifts to an
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isometry of the universal coverings @ : M — N (in particular, M and N
have constant curvature —1).

The current knowledge gives us the conclusion unconditionally when N
is the real hyperbolic space, and when the dimension is 2 or 3.

The above result can hardly be considered new, but we could not find a
written proof; we therefore provide one.

Proof. Let ¢ : M — N be the lift to N of the composition of the universal
covering map 7 : M — M with . Then ¢ is a smooth conformal map with
the same local behavior as .

We apply to @ inequality (7) from the proof of the main quasiconformal
inequality. As in the beginning of the proof of Theorem 5.2, with @ = 1 and
B — 0 we get for all 2 € M and all o > 0:

tanh (7"(20‘)) > g tanh (%)

where r(«) is the radius of a ball in hyperbolic space whose volume equals
|@(B;(x,«))|, and og is the conformal dilation factor at z (ie., of =
| jac &(x)]).

If we had o9 > 1, then for large enough « the above inequality would
yield r(a) > oo, a contradiction. Therefore oy < 1 independently of z.
Together with the conformality of ¢, this implies that ¢ is distance
non-increasing.

If o9 =1 (for one given z), then we have from the above inequality
r(a) > «a for all a, so that ¢ maps balls of volume at most V_;(r) to balls
of volume at least V_;(r), while not increasing distances. This implies that
we have equalities in the Bishop and Giinther inequalities, so that M and
N both have constant curvature —1 and @ is an isometry. O

Remark. (1) The above result may seem weak in the sense that it asks
for a conformal map, which may not exist for given M and N. However,
the hypothesis cannot be weakened to quasiconformal as there are
local @Q-quasiconformal diffeomorphisms of arbitrarily high supremum
of the Jacobian. Using the above method one can only get bounds on
averaged Jacobians, i.e., volume of balls.

(2) Theorem A.1 can be interpreted as follows: given a manifold M, if
one can find in the same conformal class two complete metrics g and
og such that Ric, > —1 and K,y < —1, then ¢ is uniformly bounded
above by 1, and if there is a point at which o(z) =1 then o = 1.
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