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Partial rigidity of CR embeddings of real

hypersurfaces into hyperquadrics with small

signature difference

Peter Ebenfelt and Ravi Shroff

We study the rigidity of holomorphic mappings from a neighbor-
hood of a Levi-nondegenerate CR hypersurface M with signature
l into a hyperquadric QN

l′ ⊆ CP
N+1 of larger dimension and signa-

ture. We show that if the CR complexity of M is not too large then
the image of M under any such mapping is contained in a complex
plane with a dimension depending only on the CR complexity and
the signature difference, but not on N . This result follows from two
theorems, the first demonstrating that for sufficiently degenerate
mappings, the image of M is contained in a plane, and the second
relating the degeneracy of mappings into different quadrics.

1. Introduction

The phenomenon of rigidity of mappings between hypersurfaces embedded
in complex space has been studied for many years, beginning with Poincaré
in the early 20th century [16]. Initially, much work was devoted to mappings
between spheres, and rigidity results were proved given a restriction on the
codimension (see, e.g., [12, 13, 18] and references therein). It was also shown
that rigidity breaks down when this restriction is violated [6, 7, 11]. However,
there are differences between the study of mappings between spheres (strictly
pseudoconvex hypersurfaces) and that of mappings between nondegenerate
hyperquadrics with positive (but equal) signature. Indeed, it was proved by
Baouendi and Huang [4] that in the positive signature case, there is rigidity
regardless of the codimension (super-rigidity). There is also a difference when
the source manifold is not itself a quadric but is Levi-nondegenerate and
assumed to be embeddable into a hyperquadric of the same signature but
larger dimension (see below); the so-called CR complexity is the difference
between the CR dimension of the target hyperquadric and that of the source
manifold (with the CR dimension of the target being assumed to be the
minimal possible).
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By the Lewy extension theorem (see, e.g., [1]), in the case of positive
signature we need only consider restrictions of holomorphic maps. In the
case of low CR complexity (compared to the signature) but no signature
difference, the main result in [2] says that embeddings are unique up to
automorphisms of the target hyperquadric without any restriction on the
codimension (super-rigidity). In the case of zero CR complexity but positive
signature difference, the main result in [3] states that the image of an embed-
ding must be contained in a complex plane with a dimension depending only
on the signature difference and not the codimension (partial rigidity). In this
paper, we allow both nonzero (but low) CR complexity and positive signa-
ture difference, and prove a partial rigidity result. Our proofs make use of
the theory of pseudo-Hermitian and pseudoconformal geometry, particularly
the work of Chern and Moser, and subsequent work of Webster. We use the
recent ideas in [2, 9].

Let M ⊆ C
n+1 be a smooth connected Levi-nondegenerate hypersurface

and L a representative of the Levi form of M . If M is connected (as will
be assumed throughout this paper), then let l ≤ n/2 denote the minimum
of the number of positive and negative eigenvalues of L at any point. This
integer is constant over M and will be referred to as the signature of M . We
let QN

l ⊆ CP
N+1 denote the standard hyperquadric given in homogeneous

coordinates [z0 : z1 : . . . : zN+1] by

−
l∑

j=0

|zj |2 +
N+1∑

k=l+1

|zk|2 = 0.

Notice that QN
l is a connected Levi-nondegenerate CR hypersurface of CR

dimension N and signature l.
We first generalize Theorem 2.2 in [9] which deals with degenerate

smooth CR-immersions of a CR-hypersurface into a sphere. A CR-immersion
is degenerate if the span of the second fundamental form and its covariant
derivatives fail to be the whole normal space of the embedding. This and
other important notions used below will be made precise in Sections 3 and 4
of this paper. For the reader’s convenience, however, we give an elementary
(extrinsic) definition (following Lamel [14]) of the notion of (k, s)-degeneracy
of a CR mapping f : M →M ′ used in Theorem 1.1 below. The equivalence
between the extrinsic definition given here and that in Section 3 is proved
in [9]. Let M ⊂ C

n+1 be a real smooth hypersurface, p ∈M , and L1, . . . , Ln

a local frame for the CR bundle of M near p. Let also M ′ ⊂ C
N+1 be a

smooth real hypersurface defined locally near p′ := f(p) ∈M ′ by ρ′ = 0. For
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a positive integer k, consider the collection of N -vectors

(1.1) LI(ρ′z ◦ f)(p), |I| ≤ l,

where I ∈ Z
n
+ is a multi-index (so that LI = LI1

1 · · ·LIn
n and |I| = I1 + · · ·+

In) and

ρ′z :=
(
∂ρ′

∂z1
, . . . ,

∂ρ′

∂zN+1

)
.

We shall say that f is (k, s)-degenerate at p if: (1) the span of the vectors
in (1.1) for all l ≥ k is equal to that for l = k (i.e., the span stabilizes at k);
and (2) the codimension of the span of (1.1) for l = k is s.

Our first result is the following. The main novel point here is that we
allow degenerate immersions into hyperquadrics where the signature of the
Levi form of the target quadric is allowed to be strictly greater than that of
the source manifold.

Theorem 1.1. Let M ⊂ C
n+1 be a smooth connected Levi-nondegenerate

hypersurface of signature l ≤ n/2 and f : M → QN
l′ a smooth CR mapping

that is CR transversal to QN
l′ at f(p) for p ∈M . Assume that f is constantly

(k, s)-degenerate near p for some k and s. If N − n− s < n, then f(M)
is contained in the intersection of QN

l′ with a complex plane P ⊂ C
N+1 of

codimension s.

The idea of the proof of Theorem 1.1 goes back to the arguments in
Section 9 of [9].

Our main result, Theorem 1.2, now follows from Theorems 1.1 and 6.1,
which relates the dimensions of spaces of covariant derivatives of the second
fundamental form for different embeddings. Before stating the result, we
recall the definition of the CR complexity, μ(M), of a Levi-nondegenerate
hypersurface M ⊂ C

n+1 and signature l:
(1.2)
μ(M) := min{N0 − n : ∃f0 : M → QN0

l with f0 CR transversal to QN0
l }.

In (1.2), we consider of course only smooth CR mappings. As above, we note
that if l > 0, then any f0 in (1.2) extends holomorphically to a neighborhood
of M . If, for a given M , there are no maps f0 as above for any N0, then we
set μ(M) = ∞ (a case which is of no interest in the present context). We
have the following result.
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Theorem 1.2. Let M ⊆ C
n+1 be a smooth connected Levi-nondegenerate

CR hypersurface with signature l ≤ n/2 and CR complexity μ := μ(M). Let
U be an open neighborhood of M in C

n+1, and f : U → CP
N+1 a holomor-

phic mapping with f(M) ⊆ QN
l′ and f CR transversal to QN

l′ along M . Then
the following hold:

(a) If l = n/2 or f is side preserving then l′ ≥ l and N − l′ ≥ n− l. If
either
(i) μ+ (l′ − l) < l or
(ii) μ+ min(l′ − l, (N − l′)− (n− l)) < n and (N − l′)− (n− l) < l,
then f(M) ⊆ QN

l′ ∩ P , where P ⊆ C
N+1 is a complex plane of dimen-

sion (n+ 1) + μ+ min(l′ − l, (N − l′)− (n− l)).
(b) If f is side reversing then N − l′ ≥ l and l′ ≥ n− l. If l′ < n and μ+

(l′ + l − n) < n then f(M) ⊆ QN
l′ ∩ P , where P ⊆ C

N+1 is a complex
plane of dimension (n+ 1) + μ+ (l′ + l − n).

We make several remarks.

Remark 1.3. In the arguably most interesting case where the codimension
N − n is large (say N − n ≥ n), then the theorem simply states that the
image of, say, a side preserving map is contained in a complex plane of
dimension (n+ 1) + μ+ (l′ − l) provided that μ+ (l′ − l) < l. Moreover, if
the signature difference is also so small that l′ − l < n− 2l, then the theorem
(by the first statement in (b)) also implies that any map is necessarily side
preserving. Thus, a corollary of Theorem 1.2 is the following: Let M and
f be as in Theorem 1.2. If N − n ≥ n, l′ − l < n− 2l and μ+ (l′ − l) < l,
then the image of f is contained in a complex plane of dimension (n+ 1) +
μ+ (l′ − l). Here, no distinction needs to be made about the map being side
preserving or reversing.

Remark 1.4. The results in Theorem 1.2 can be combined with Theorem
5.3 in [10] to obtain more precise information about the map f . For exam-
ple, in the setting of Theorem 1.2, assume that l′ = l (which implies that f
is side preserving, unless l = n/2) and μ < l. Theorem 1.2 (a) then implies
that f(M) is contained in QN

l ∩ P , where P is a complex plane of dimen-
sion n+ 1 + μ. Since f is transversal to QN

l , the plane P must intersect QN
l

transversally as well. We may identify P with C
n+1+μ, QN

l ∩ P with a hyper-
quadric Q in C

n+1+μ, and consider f as a mapping sending M transversally
into the hyperquadric Q in C

n+1+μ; let us temporarily use the notation f̃
for the mapping sending M into Q in C

n+1+μ. Since f is transversal to
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Q and l = l′, it follows that Q is a nondegenerate hyperquadric of signa-
ture l as well. In the setting of Theorem 5.3 in [10], let H1 := f0, where f0
denotes the mapping defining the CR complexity μ in (1.2), and H2 := f̃ .
After renormalizing Q as the standard hyperquadric Qn+μ

l in C
n+1+μ, we

are in the situation covered by Theorem 5.3 in [10] with l1 = l2 = l and
k1 = k2 = μ. Since k1 + k2 = 2μ < 2l < n, Theorem 5.3 in [10] now implies
that there is an automorphism T̃ of the target hyperquadric in C

n+1+μ, such
that f̃ = T̃ ◦ f0 (Remark 5.4 following the theorem in [10]). For the original
mapping f (which can be obtained from f̃ by a linear embedding of Q into
QN

l ), we may now deduce that f = T ◦ L ◦ f0, where L is the standard linear
embedding of Qn+μ

l into QN
l and T is an automorphism of QN

l , except possi-
bly in the special case where M = Qn

l , in which case an initial “flip” (see [2])
might be needed. The details in the last step are left to the interested reader.
Thus, combining Theorem 1.2 with Theorem 5.3 in [10] recovers the rigidity
result (Theorem 1.1) in [2]. In a similar manner, Theorem 5.3 in [10] can be
used to recover the main result (Theorem 1.1) in [3] from Theorem 1.2.

Remark 1.5. We observe that if l′ = N/2 then the inequalities (N − l′)−
(n− l) < l and l′ < n are equivalent and the conclusions of parts (a) and
(b) of Theorem 1.2 coincide. We also observe that if f is side preserving,
either assumption (i) or (ii) could apply. For instance, if n = 5, l = 1,N = 7,
l′ = 3 and N0 = 6, then assumption (i) does not hold, but assumption (ii)
does. However, if N is sufficiently large (i) may hold but not (ii).

Remark 1.6. Note (as alluded to in Remark 1.5 above) that Theorem 1.2
partially generalizes Theorem 1.1 from [2] by allowing a positive signature
difference between the source manifold and target hyperquadric QN

l′ . It also
partially generalizes Theorem 1.1 from [3] by allowing the source manifold
to have positive CR complexity.

The proof of Theorem 1.2 is given in Section 6 following the statement
of Theorem 6.1.

2. Two important lemmas

We now state two key lemmas that are ingredients in the proofs of sub-
sequent theorems. The first lemma was proved in [13]. We use the Ein-
stein summation convention in the rest of this paper except where otherwise
indicated.
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Lemma 2.1. Let g1, . . . , gk, f1, . . . , fk be holomorphic functions in z ∈ C
n

near 0. Assume that gj(0) = fj(0) = 0 for all j. Let A(z, z̄) be real-analytic
near the origin, such that

k∑
j=1

gj(z)fj(z) = A(z, z̄)(hab̄z
azb̄)

where H = (hab̄) is a constant invertible matrix. If k < n, then A(z, z̄) ≡ 0.

Although the statement of Lemma 2.1 in [13] is for H = I, the proof for
arbitrary constant invertible H is identical. We shall also need the following.

Lemma 2.2. Let k, l and n be nonnegative integers with k < l ≤ n/2.
Assume that g1, . . . , gk, f1 . . . fm are germs at 0 ∈ C

n of holomorphic func-
tions and A(z, z̄) be real-analytic near the origin such that

−
k∑

i=1

|gi(z)|2 +
m∑

j=1

|fj(z)|2 = A(z, z̄)
(
−

l∑
i=1

|zi|2 +
n∑

j=l+1

|zj |2
)
.

Then A(z, z̄) ≡ 0.

The proof of Lemma 2.2 can be found in Lemma 4.1 of [4] (with l′ = l
and after an application of Lemma 2.1 of [4]).

3. Preliminaries

We will use the notation of [9]. Let M be a Levi-nondegenerate CR-manifold
of dimension 2n+ 1, with rank n CR bundle V and signature l ≤ n/2. Near a
point p0, we let θ be a contact form and T its characteristic (or Reeb) vector
field, so T is the unique real vector field satisfying T�dθ = 0 and 〈θ, T 〉 = 1.
We complete θ to an admissible coframe (θ, θ1, . . . , θn) for the bundle T ′M
of (1, 0)-cotangent vectors (the cotangent vectors that annihilate V. The
coframe is called admissible if 〈θα, T 〉 = 0, for α = 1, . . . , n. We choose a
frame L1, . . . , Ln for the bundle V̄ such that (T, L1, . . . , Ln, L1̄, . . . , Ln̄) is a
frame for CTM dual to the coframe (θ, θ1, . . . , θn, θ1̄, . . . , θn̄). We use the
notation that Lᾱ = L̄α, etc. Relative to this frame, let (gαβ̄) denote the
matrix of the Levi form. Although we generally would not explicitly use
this fact, we may assume that gαβ̄ is constant and diagonal, with diagonal
elements ±1 corresponding to the signature.
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We denote by ∇ the Tanaka–Webster connection, given relative to the
chosen frame and coframe by

∇Lα := ω β
α ⊗ Lβ.

The connection 1-forms ω β
α are completely determined by the conditions

dθβ = θα ∧ ω β
α mod θ ∧ θᾱ,

dgαβ̄ = ωαβ̄ + ωβ̄α.(3.1)

Note that we use the Levi form to lower and raise indices as usual, e.g.,
ωαβ̄ := gγβ̄ωα

γ . We may rewrite the first condition in (3.1) as

(3.2) dθβ = θα ∧ ω β
α + θ ∧ τβ , τβ = Aβ

ν̄θ
ν̄ , Aαβ = Aβα

for a suitably determined torsion matrix (Aβ
ν̄), where the last symmetry

relation holds automatically (see [17]). We also recall the fact that the
coframe (θ, θ1, . . . , θn) is admissible if and only if dθ = igαβ̄θ

α ∧ θβ̄ .
Now let M̂ be another Levi-nondegenerate CR-manifold of dimension

2n̂+ 1, with rank n̂ CR bundle V̂ and signature l̂ ≤ n̂/2. Let f : M → M̂ be
a smooth CR mapping in a small neighborhood of p0. Since our arguments
are local in nature, we denote this neighborhood by M also. We use aˆto
denote objects associated to M̂ . Capital Latin indices A,B, etc will belong
to the set {1, . . . , n̂}, Greek indices α, β, etc will belong to {1, . . . , n}, and
small Latin indices a, b, etc run over the complementary set {n+ 1, . . . , n̂}.
Let (θ, θα) and (θ̂, θ̂A) be coframes on M and M̂ , respectively, and recall
that f is a CR mapping if

f∗(θ̂) = aθ, f∗(θ̂A) = EA
αθ

α + EAθ,

where a is a real-valued function and EA
α, E

A are complex-valued functions
defined near p0. We shall assume that f is CR transversal to M̂ at p0,
which in our context can be expressed by saying a(p0) �= 0. By applying f∗

to the equation dθ̂ = igAB̄ θ̂
A ∧ θ̂B̄ + θ̂ ∧ φ, we see that CR transversality of

f implies that gαβ̄ = 1
a ĝAB̄E

A
αE

B̄
β . This implies that n ≤ n̂ and f is locally

an embedding.
Now suppose (θ, θα) is a coframe on M such that the matrix of the

Levi form with respect to this coframe has l negative and n− l positive
eigenvalues. Let (θ̂, θ̂A) be a coframe on M̂ such that the matrix of the
Levi form with respect to this coframe has l′ negative and n̂− l′ positive
eigenvalues. If l < n/2 and l′ < n̂/2, we define f to be side preserving if the
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nonvanishing function a such that f∗(θ̂) = aθ is strictly positive, and side
reversing if a is strictly negative. Note that this definition does not depend
on the choice of pseudo-Hermitian structure.

We state the following result, which is essentially Proposition 3.1 in [2],
although we have been careful to distinguish the side preserving and side
reversing cases.

Proposition 3.1. Let M and M̂ be Levi-nondegenerate CR-manifolds of
dimensions 2n+ 1 and 2n̂+ 1, and signatures l ≤ n/2 and l′ ≤ n̂/2 respec-
tively. Let f : M → M̂ be a CR mapping that is CR transversal to M̂ along
M . If (θ, θα) is any admissible coframe on M , then in a neighborhood of
any point p̂ ∈ f(M) in M̂ there exists an admissible coframe (θ̂, θ̂A) on M̂
with f∗(θ̂, θ̂α, θ̂a) = (θ, θα, 0). If the Levi form of M with respect to (θ, θα) is
constant and diagonal with −1, . . . ,−1 (l times) and 1, . . . , 1 (n− l times)
on the diagonal, then (θ̂, θ̂A) can be chosen such that the Levi form of M̂
relative to this coframe is constant and diagonal and if f is

Side preserving or l = n/2 or l′ = n̂/2: the diagonal elements are
−1, . . . ,−1 (l times), 1, . . . , 1 (n− l times), −1, . . . ,−1 (l′ − l times)
and 1, . . . , 1 (n̂− n− l′ + l times). With this additional property, the
coframe (θ̂, θ̂A) is uniquely determined along M up to unitary trans-
formations in U(n, l)× U(n̂− n, l′ − l).

Side reversing: the diagonal elements are −1, . . . ,−1 (l times), 1, . . . , 1
(n− l times), −1, . . . ,−1 (n̂− l′ − l times) and 1, . . . , 1 (l′ − (n− l)
times). With this additional property, the coframe (θ̂, θ̂A) is uniquely
determined along M up to unitary transformations in U(n, l)× U(n̂−
n, n̂− l′ − l).

Observe that if l = n/2, we may change the sign of θ so that the Levi
form resembles the side preserving case. If l′ = n̂/2, the two conclusions
of the proposition coincide. If we fix an admissible coframe (θ, θα) on M
and let (θ̂, θ̂A) be an admissible coframe on M̂ near a point p̂ ∈ f(M), we
shall say (θ̂, θ̂A) is adapted to (θ, θα) on M (or just to M if the coframe on
M is understood) if it satisfies the conclusions of Proposition 3.1 with the
requirement there for the Levi form. However, we will continue to write the
Levi forms as gαβ̄ , ĝAB̄. We shall also omit theˆover frames and coframes if
there is no ambiguity. It will be clear from the context if a form is pulled
back to M or not. Under the above assumptions, we identify M with the
submanifold f(M) and write M ⊂ M̂ .
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Equation (3.2) implies that when (θ, θA) is adapted to M , if the pseudo-
conformal connection matrix of (M̂, θ̂) is ω̂ A

B , then that of (M, θ) is the
pullback of ω̂ α

β . The pulled back torsion τ̂α is τα, so omitting the ˆ over
these pullbacks will not cause any ambiguity and we shall do that from now
on. By the normalization of the Levi form, the second equation in (3.1)
reduces to

(3.3) ωBĀ + ωĀB = 0,

where as before ωĀB = ωAB̄.
The matrix of 1-forms (ω b

α ) pulled back to M defines the second fun-
damental form of the embedding f : M → M̂ . Since θb = 0 on M , Equation
(3.2) implies that on M ,

(3.4) ω b
α ∧ θα + τ b ∧ θ = 0,

and this implies that

(3.5) ω b
α = ω b

α βθ
β , ω b

α β = ω b
β α, τ b = 0.

Following [9], we identify the CR-normal space T 1,0p M̂/T 1,0p M , also
denoted by N1,0

p M̂ with C
n̂−n by choosing the equivalence classes of La as

a basis. Therefore for fixed α, β = 1, . . . , n, we view the component vector
(ω a

α β)a=n+1,...,n̂ as an element of C
n̂−n. By also viewing the second funda-

mental form as a section over M of the bundle T 1,0M ⊗N1,0M̂ ⊗ T 1,0M ,
we may use the pseudo-Hermitian connections on M and M̂ to define the
covariant differential

∇ω a
α β = dω a

α β − ω a
μ βω

μ
α + ω b

α βω
a

b − ω a
α μω

μ
β .

We write ω a
α β;γ to denote the component in the direction θγ and define

higher order derivatives inductively as

∇ω a
γ1 γ2;γ3···γj

= dω a
γ1 γ2;γ3···γj

+ ω b
γ1 γ2;γ3···γj

ω a
b

−
j∑

l=1

ω a
γ1 γ2;γ3···γl−1μγl+1···γj

ω μ
γl
.

We also consider the component vectors of higher order derivatives as ele-
ments of C

n̂−n and define an increasing sequence of vector spaces

E2(p) ⊆ · · · ⊆ Ek(p) ⊆ · · · ⊆ C
n̂−n
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by letting Ek(p) be the span of the vectors

(ω a
γ1 γ2;γ3···γj

)a=n+1,...,n̂, ∀2 ≤ j ≤ k, γj ∈ {1, . . . , n},

evaluated at p ∈M . Following Lamel [9, 14], we say that the mapping f :
M → M̂ is constantly (k, s)-degenerate at p if the vector space Ek(p) has
constant dimension n̂− n− s for q near p, Ek+1(q) = Ek(q), and k is the
smallest such integer. We should mention that the definition of the spaces
Ej(p) above differs slightly from the one given in [9] (see (7.4), loc. cit.), but
the notion of constant (k, s)-degeneracy is easily seen to be the same using
either definition.

4. The pseudoconformal connection and adapted Q-frames

We will need the pseudoconformal connection and structure equations intro-
duced by Chern and Moser in [5]. Let Y be the bundle of coframes (ω, ωα,
ωᾱ, φ) on the real ray bundle πE : E →M of all contact forms defining
the same orientation of M , such that dω = igαβ̄ω

α ∧ ωβ̄ + ω ∧ φ where ωα ∈
π∗E(T ′M) and ω is the canonical 1-form on E. In [5] it was shown that these
forms can be completed to a full set of invariants on Y given by the coframe
of 1-forms

(ω, ωα, ωᾱ, φ, φα
β , φ

α, φᾱ, ψ),

which define the pseudoconformal connection on Y . These forms satisfy the
structure equations, which we will use extensively (see [5] and its appendix):

φαβ̄ + φβ̄α = gαβ̄φ,

dω = iωμ ∧ ωμ + ω ∧ φ,
dωα = ωμ ∧ φ α

μ + ω ∧ φα,

dφ = iων̄ ∧ φν̄ + iφν̄ ∧ ων̄ + ω ∧ ψ,
dφ α

β = φ μ
β ∧ φ α

μ + iωβ ∧ φα − iφβ ∧ ωα − iδ α
β φμ ∧ ωμ

− δ α
β

2
ψ ∧ ω + Φ α

β ,

dφα = φ ∧ φα + φμ ∧ φ α
μ − 1

2
ψ ∧ ωα + Φα,

dψ = φ ∧ ψ + 2iφμ ∧ φμ + Ψ.(4.1)
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Here the 2-forms Φ α
β ,Φα,Ψ give the pseudoconformal curvature of M .

We may decompose Φ α
β as follows:

Φ α
β = S α

β μν̄ω
μ ∧ ων̄ + V α

β μω
μ ∧ ω + V α

βν̄ω ∧ ων̄ .

We will also refer to the tensor S α
β μν̄ as the pseudoconformal curvature

of M . We require S α
β μν̄ to satisfy certain trace and symmetry conditions

(see [5]), but for the purposes of this paper, the important point to emphasize
is that for a hyperquadric, the pseudoconformal curvature vanishes.

If we fix a contact form θ that defines a section M → E, then any admis-
sible coframe (θ, θα) for M defines a unique section M → Y under which the
pullbacks of (ω, ωα) coincide with (θ, θα) and the pullback of φ vanishes. As
in [17] we use this section to pull the pseudoconformal connection forms
back to M . Although the pulled back forms on M now depend on the choice
of admissible coframe, we shall use the same notation, and thus we have

θ = ω, θα = ωα, φ = 0

on M . As in [17], we may write the pulled back tangential pseudoconformal
curvature tensor S α

β μν̄ in terms of the tangential pseudo-Hermitian curva-
ture tensor R α

β μν̄ by

Sαβ̄μν̄ = Rαβ̄μν̄ −
Rαβ̄gμν̄ +Rμβ̄gαν̄ +Rαν̄gμβ̄ +Rμν̄gαβ̄

n+ 2

+
R(gαβ̄gμν̄ + gαν̄gμβ̄)

(n+ 1)(n+ 2)
,

where

Rαβ̄ := R μ

μ αβ̄
and R := R μ

μ

are, respectively, the pseudo-Hermitian Ricci and scalar curvature of (M, θ).
This formula expresses the fact that Sαβ̄μν̄ is the “traceless component” of
Rαβ̄μν̄ with respect to the decomposition of the space of all tensors with the
symmetry conditions of Sαβ̄μν̄ into the direct sum of the subspace of tensors
with trace zero and the subspace of conformally flat tensors, i.e., tensors of
the form

(4.2) Tαβ̄μν̄ = Hαβ̄gμν̄ +Hμβ̄gαν̄ +Hαν̄gμβ̄ +Hμν̄gαβ̄ ,

where (Hαβ̄) is any Hermitian matrix. We shall call two tensors as above
conformally equivalent if their difference is of the form of Equation (4.2).



170 Peter Ebenfelt and Ravi Shroff

Note that covariant derivatives of conformally flat tensors are conformally
flat, because ∇gαβ̄ = 0.

The following result relates the pseudoconformal and pseudo-Hermitian
connection forms. It is alluded to in [17] and a proof may be found in [9],
where the result appears as Proposition 3.1. Note that although the Propo-
sition in [9] is stated only for M strictly pseudoconvex, the result is valid in
the Levi-nondegenerate situation.

Proposition 4.1. Let M be a smooth Levi-nondegenerate CR-manifold of
hypersurface type with CR dimension n, and with respect to an admissible
coframe (θ, θα), let the pseudoconformal and pseudo-Hermitian connection
forms be pulled back to M as above. Then we have the following relations:

φ α
β = ω α

β +D α
β θ, φα = τα +D α

μ θμ + Eαθ, ψ = iEμθ
μ − iEν̄θ

ν̄ +Bθ,

where

Dαβ̄ :=
iRαβ̄

n+ 2
− iRgαβ̄

2(n+ 1)(n+ 2)
,

Eα :=
2i

2n+ 1
(Aαμ

;μ −Dν̄α
;ν̄),

B :=
1
n

(Eμ
;μ + E ν̄

;ν̄ − 2AβμAβμ + 2Dν̄αDν̄α).

Another notion that will prove useful is that of an adapted Q-frame. We
embed C

n̂+1 in CP
n̂+1 as the set {ζ0 �= 0} in the homogeneous coordinates

[ζ0 : ζ1 : . . . : ζ n̂+1], and following Section 1 of [5], realize a hyperquadric Q
with signature l̂ in CP

n̂+1 by the equation (ζ, ζ) = 0, where the Hermitian
scalar product (·, ·) is defined by

(4.3) (ζ, τ) := ĝAB̄ζ
AτB +

i
2
(ζ n̂+1τ0 − iζ0τ n̂+1).

In the above, (ĝAB̄) is a Hermitian matrix with l̂ negative eigenvalues and
n̂+ 1− l̂ positive eigenvalues. A Q-frame (see e.g., [5]) is a unimodular basis
(Z0, . . . , Zn̂+1) of C

n̂+2, such that Z0 and Zn̂+1, as points in CP
n̂+1, are onQ,

the vectors (ZA) form an orthonormal basis (relative to the inner product
(4.3) for the complex tangent space to the quadric at Z0 and Zn̂+1, and
(Zn̂+1, Z0) = i/2. We will denote the corresponding points in CP

n̂+1 also by
Z0 and Zn̂+1; it should be clear from the context whether the point is in
C

n̂+2 or CP
n̂+1 .
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On the space B of all Q-frames there is a natural free transitive action
of the group SU(l̂ + 1, n̂− l̂ + 1) of unimodular (n̂+ 2)× (n̂+ 2) matrices
that preserve the inner product (4.3). Hence, any fixed Q-frame defines an
isomorphism between B and SU(l̂ + 1, n̂− l̂ + 1). On the space B, there
are Maurer–Cartan forms π Ω

Λ , where capital Greek indices run from 0 to
n̂+ 1, defined by

(4.4) dZΛ = π Ω
Λ ZΩ

and satisfying dπ Ω
Λ = π Γ

Λ ∧ π Ω
Γ . Here the natural C

n̂+2 valued 1-forms dZΛ
on B are defined as differentials of the map (Z0, . . . , Zn̂+1) → ZΛ.

Recall from [5, 19] that a smoothly varying Q-frame (ZΛ) = (ZΛ(p)) for
p ∈ Q is said to be adapted to Q if Z0(p) = p as points of CP

n̂+1. It is shown
in Section 5 of [5] that if we use an adapted Q-frame to pull back the 1-forms
π Ω
Λ from B to Q and set

(4.5) θ :=
1
2
π n̂+1
0 , θA := π A

0 , ξ := −π 0
0 + π 0

0 ,

we obtain a coframe (θ, θA) on Q and a form ξ satisfying the structure
equation

dθ = iĝAB̄θ
A ∧ θB̄ + θ ∧ ξ.

In particular, it follows from (4.5) that the coframe (θA, 2θ) is dual to the
frame defined by (ZA, Zn̂+1) on Q and hence depends only on the values of
(ZΛ) at the same points. Then the pulled back forms (φ̂ A

B , φ̂A, ψ̂) are given
by (5.8b) from [5]:

(4.6) φ̂ A
B = π A

B − δ A
B π 0

0 , φ̂A = 2π A
n̂+1, ψ̂ = −4π 0

n̂+1.

As in (5.30) from [5], the pulled back forms π Ω
Λ can be uniquely solved from

(4.5 and 4.6):

(n̂+ 2)π 0
0 = −φ̂ C

C − ξ, π A
0 = θA, π n̂+1

0 = 2θ,

π 0
A = −iφ̂A, π B

A = φ̂ B
A + δ B

A π 0
0 , π n̂+1

A = 2iθA,

4π 0
n̂+1 = −ψ̂, 2π A

n̂+1 = φ̂A, (n̂+ 2)π n̂+1
n̂+1 = φ̂ D̄

D̄ + ξ.

(4.7)

Thus, the pullback of π Ω
Λ is completely determined by the pullbacks (θ, θA,

ξ, φ̂ A
B , φ̂A, ψ̂). Following Section 8 of [9], we note that for any choice of an

admissible coframe (θ, θA) onQ (in particular, those given by Proposition 3.1
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with M̂ = Q), there exists an adapted Q-frame (ZΛ) such that (4.7) holds
with ξ = 0.

5. Proof of Theorem 1.1

The following lemma will be a key ingredient in the proof of Theorem 1.1.

Lemma 5.1. Let g be a diagonal matrix in C
d with either positive or neg-

ative 1 in each diagonal entry and denote by ej = (0, . . . , 1, . . . , 0)T the H
standard basis vector in C

d. Let E be the span of r independent vectors in
C

d, with r + s = d. Without loss of generality, suppose E is a graph over

{es+1, . . . , ed}, that is, there exists a d× r matrix of the form
(
CT

I

)
where

CT is s× r, whose columns span E. Then there exists an invertible matrix
A in C

d such that if N = A−1, then for v ∈ E, NT v ∈ span{es+1, . . . , ed}
and if g̃ := A∗gA, then g̃pq = 0 when p ∈ {s+ 1, . . . , d} and q ∈ {1, . . . , s}.
Proof. Define I1 and I2 to be the s× s and r × r upper left and lower right
blocks of g, respectively. Choose a matrix norm such that ||Ij || ≤ 1 for j =
1, 2 and nonzero constant λ such that |λ|2 > max{||C∗I2C||, ||I2CI1C∗I2||}.

We now show that A :=
(
λI − 1

λ̄
I1C

∗I2
C I

)
, where the upper left block

is s× s and the lower right block is r × r satisfies the desired requirements.
Note that by construction, AT carries the span of {es+1, . . . , ed} to E, so
NT takes E to the span of {es+1, . . . , ed}.

We compute A∗gA :

A∗gA =
(

λ̄I C∗

− 1
λI2CI1 I

)(
I1 0
0 I2

)(
λI − 1

λ̄
I1C

∗I2
C I

)

=
(

λ̄I C∗

− 1
λI2CI1 I

)(
λI1 − 1

λ̄
C∗I2

I2C I2

)

=

(
|λ|2(I1 + 1

|λ|2C
∗I2C) 0

0 I2 + 1
|λ|2 I2CI1C

∗I2

)
.

This shows that A∗gA is block diagonal. To see that A is invertible, it suffices
to show each block of A∗gA is invertible. Up to a constant, each block is
of the form Ij + L, where L has norm less than 1 by our choice of λ. This
implies that I + IjL is invertible (with the appropriate dimensions of I in
each block), so there is a matrix D such that (I + IjL)D = I. Hence by
multiplying both sides on the left and right by Ij ,we have (Ij + L)DIj = I,
so Ij + L is invertible, as desired. �



Partial rigidity of CR embeddings 173

Proof of Theorem 1.1. We choose an admissible coframe (θ, θA) on Q near
f(p) adapted to an admissible coframe (θ, θα) onM and denote by (ω a

α β) the
second fundamental form of f relative to this coframe. Since the mapping f is
(k, s)-degenerate near p, we have that the dimension of span{ω a

γ1 γ2;γ3···γt
, 2 ≤

t ≤ k} is r = d− s near p. We introduce some notation; the indices ∗,# run
over the set n+ 1, . . . , n+ r (possibly empty) and the indices i, j run over
the set n+ r + 1, . . . , N .

We now fix α, β and identify (ω a
α β(p)) as a vector in C

N−n. We apply
Lemma 5.1 with gab̄ as the matrix g and after the above identification, we
let E = span{ω a

γ1 γ2;γ3···γt
, 2 ≤ t ≤ k}. This produces a smooth matrix-valued

function A. We change basis (only on the normal space) via

⎛
⎜⎝
θn+1

...
θN

⎞
⎟⎠ =

⎛
⎝ A

⎞
⎠
⎛
⎜⎝
θ̃n+1

...
θ̃N

⎞
⎟⎠

then we have
(5.1)
span{ω #

γ1 γ2;γ3···γt
L#, 2 ≤ t ≤ k} = span{L̃#}, and ω j

γ1 γ2;γ3···γt
≡ 0, t ≥ 2.

We now relabel and omit the tilde notation. Note that our Levi form on the
normal space is no longer necessarily constant, but does satisfy at each point
the conclusion of Lemma 5.1, so g#j̄ = 0. Also, we still have the relations
f∗(θa) = 0 and ĝαβ̄ = gαβ̄ . Note that the inverse of a block diagonal matrix
is block diagonal, so gAB̄ has the same form as gAB̄.

Because ω̂ j
# is a 1-form on M , we have

(5.2) ω̂ j
# = ω̂ j

# μθ
μ + ω̂ j

# ν̄θ
ν̄ + ω̂ j

# 0θ

for suitable coefficients.
Now by the definition of covariant derivative, we have

∇ω j
γ1 γ2;γ3···γt

= dω j
γ1 γ2;γ3···γt

+ ω i
γ1 γ2;γ3···γt

ω̂ j
i + ω #

γ1 γ2;γ3···γt
ω̂ j
#

−
t∑

q=1

ω j
γ1 γ2;γ3···γq−1μγq+1···γt

ω̂ μ
γq

so by (5.1) we have

∇ω j
γ1 γ2;γ3···γt

= ω #
γ1 γ2;γ3···γt

ω̂ j
# .
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This implies that

ω j
γ1 γ2;γ3···γtμ

= ω #
γ1 γ2;γ3···γt

ω̂ j
# μ

and because the left side is zero we have

(5.3) ω #
γ1 γ2;γ3···γt

ω̂ j
# μ = 0.

Now if j, μ are fixed and ω̂ j
# μ �= 0 for some # then pick r independent

vectors with r components (ω ∗
γ1 γ2;γ3···γt

), make a matrix B with these as the
rows and let v be the vector (ω̂ j

# μ) as # varies. Then Bv = 0 contradicting
independence of the rows of B. This implies that

(5.4) ω̂ j
# μ = 0.

Now applying Proposition 4.1, and noting that, by Equations (3.5) and
(5.1) we have ω̂ j

α = 0 and τa = 0, we find

(5.5) φ̂ j
α = D̂ j

α θ, φ̂j = D̂ j
μ θ

μ + Êjθ,

and

(5.6) φ̂ #
α = ω̂ #

α + D̂ #
α θ, φ̂# = D̂ #

μ θμ + Ê#θ.

Next, we differentiate φ̂ j
α and compute mod θ to obtain

dφ̂ j
α ≡ D̂ j

α gμν̄θ
μ ∧ θν̄ mod θ

On the other hand, we may compute dφ̂ j
α mod θ using the structure Equa-

tions (4.1). We have

dφ̂ j
α ≡ φ̂ A

α ∧ φ̂ j
A + iθα ∧ φ̂j − iφα ∧ θj − iδ j

α φA ∧ θA − δ j
α

2
ψ ∧ θ + Φ j

α

≡ φ̂ A
α ∧ φ̂ j

A + iθα ∧ φ̂j mod θ.

We note that in the structure equation above the third term is zero because
the pullback of θj vanishes, the fourth and fifth terms are zero because of
the indices of the kronecker delta, and the last term is zero because of the
vanishing pseudoconformal curvature of the target hyperquadric.
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We expand the above to obtain

dφ̂ j
α ≡ φ̂ β

α ∧ φ̂ j
β + φ̂ #

α ∧ φ̂ j
# + φ̂ i

α ∧ φ̂ j
i + iθα ∧ φ̂j

≡ φ̂ #
α ∧ φ̂ j

# + iθα ∧ φ̂j

≡ ω̂ #
α μθ

μ ∧ φ̂ j
# − iφ̂j ∧ gαĀθ

Ā mod θ.

In the second equivalence, we used Equation (5.5) and computed mod θ,
and in the last equivalence, we used both Equations (5.5) and (3.5).

Now we may put these equations together and group terms to obtain

(5.7) ω̂ #
α μθ

μ ∧ φ̂ j
# ≡ i(gαν̄D̂

j
μ + gμν̄D̂

j
α )θμ ∧ θν̄ mod θ.

By Proposition 4.1 and Equation (5.2), we compute φ̂ j
# and identify the

coefficients of θμ ∧ θν̄ to obtain

ω̂ #
α μω̂

j
# ν̄ = i(gαν̄D̂

j
μ + gμν̄D̂

j
α ).

This holds in a neighborhood of p, so we now work at a point q close to p.
Let

f#(z) = ω̂ #
α μz

αzμ and g#(z) = ω̂ j̄

#̄ ν̄
zν ,

where ω̂ j̄

#̄
= ω̂ j̄

#̄ μ
θμ + ω̂ j̄

#̄ ν̄
θν̄ + ω̂ j̄

#̄ 0
θ. Then we have that

∑
#

f#(z)g#(z) = ω̂ #
α μω̂

j
# ν̄z

αzμzν̄

= i(gαν̄D̂
j

μ + gμν̄D̂
j

α )zαzμzν̄

= 〈z, z〉g(iD̂ j
μ z

μ + iD̂ j
α z

α).

Therefore by Lemma 2.1, since # runs over an index set of size r and by
assumption r = N − n− s < n, we have

(5.8) ω̂ #
α μω̂

j
# ν̄ = 0.

This implies that gαν̄D̂
j

μ + gμν̄D̂
j

α = 0. Let α = μ and choose ν̄ such that
gαν̄ �= 0, which exists since no row is completely zero. This implies D̂ j

α = 0,
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so

(5.9) φ̂ j
α = 0, φ̂j = Êjθ.

Combining the structure equation for dφ̂ j
α with the above result yields

0 = φ̂ A
α ∧ φ̂ j

A + iθα ∧ φ̂j − iφ̂α ∧ θ̂j .

We only consider those terms containing a θμ ∧ θ and discover, using Propo-
sition 4.1 and Equation (5.2), that

0 = φ̂ #
α ∧ φ̂ j

#

= (ω #
α μθ

μ + D̂ #
α θ) ∧ (ω̂ j

# μθ
μ + ω̂ j

# ν̄θ
ν̄ + (ω̂ j

# 0 + D̂ j
# )θ).

Keeping the θμ ∧ θ terms and using Equation (5.4), we obtain

(5.10) 0 = ω #
α μ(ω̂ j

# 0 + D̂ j
# ).

Now we would like to show that φ̂ j
# = 0, so since φ̂ j

# = ω̂ j
# ν̄θ

ν̄ + (ω̂ j
# 0 +

D̂ j
# )θ by Proposition 4.1 and Equation (5.4), it suffices to show

(5.11) ω #
γ1 γ2;γ3···γt

ω̂ j
# ν̄ = ω #

γ1 γ2;γ3···γt
(ω̂ j

# 0 + D̂ j
# ) = 0, t ≥ 2

by the same reason Equation (5.3) implied (5.4).
Before proving (5.11), we first wish to show that ω̂ j

# ν̄;μ is a sum of mul-
tiples of the Levi form. We differentiate the expression for φ̂ j

# in Proposition
4.1, set it equal to the corresponding structure equation, and compute mod
θ to obtain

φ̂ A
# ∧ φ̂ j

A = dω j
# +D j

# gμν̄θ
μ ∧ θν̄ .

We use Equation (5.9) and Proposition 4.1 to simplify the left side and
Equations (5.2) and (5.4) to simplify the right side mod θ. This yields

ω̂ a
# ∧ ω̂ j

a = dω j
# ν̄ ∧ θν̄ + ω̂ j

# ν̄dθ
ν̄ + (ω̂ j

# 0gμν̄ +D j
# gμν̄)θμ ∧ θν̄ .

We now only consider terms involving θμ ∧ θν̄ . Hence we now have

(ω̂ a
# μω̂

j
a ν̄ − ω̂ j

a μω̂
a
# ν̄)θ

μ ∧ θν̄ = dω j
# ν̄ ∧ θν̄ + ω̂ j

# ν̄dθ
ν̄

+ (ω̂ j
# 0gμν̄ +D j

# gμν̄)θμ ∧ θν̄ .
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After using the structure equation from (4.1) for dθν̄ , Proposition 4.1, and
simplifying, we note that dθᾱ ≡ −ω ᾱ

ν̄ ∧ θν̄ mod θ, so the coefficient of θμ ∧
θν̄ in the expression ω̂ j

# ᾱdθ
ᾱ is −ω̂ j

# ᾱω̂
ᾱ

ν̄ μ. Hence we are left with the
equality

(dω j
# ν̄)μ − ω̂ j

a ν̄ω̂
a
# μ + ω̂ a

# ν̄ ω̂
j

a μ − ω̂ j
# ᾱω̂

ᾱ
ν̄ μ = −(ω̂ j

# 0gμν̄ +D j
# gμν̄).

However, the left-hand side equals ω̂ j
# ν̄;μ, so ω̂ j

# ν̄;μ is a sum of multiples
of the Levi form. We now covariantly differentiate Equation (5.8) and recall
that ∇gμν̄ = 0 to obtain that ω #

γ1 γ2;γ3···γl
ω̂ j
# ν̄ is a sum of multiples of the

Levi form, so by using Lemma 2.1 as in the derivation of (5.8), we conclude
ω #

γ1 γ2;γ3···γl
ω̂ j
# ν̄ = 0. This proves that the first expression in (5.11) vanishes.

Now we examine the same identity but this time look at coefficients
of θμ ∧ θ so we work modulo θ ∧ θβ̄ and θα ∧ θβ̄. Since φ̂ j

# = ω j
# +D j

# θ,
we have dφ̂ j

# ≡ dω j
# + dD j

# ∧ θ. On the other hand, we use the structure
Equation (4.1) and simplify, yielding the identity

φ̂ a
# ∧ φ̂ j

a ≡ d(ω̂ j
# 0 +D j

# ) ∧ θ,

so we rewrite the left-hand side using Proposition 4.1, simplify, and collect
coefficients of θμ ∧ θ. This gives

∂μ(ω̂ j
# 0 +D j

# ) + ω j
a μ(ω̂ a

# 0 +D a
# )− ω a

# μ(ω̂ j
a 0 +D j

a ) = 0,

which implies that (ω̂ j
# 0 +D j

# );μ is zero. (Here, the operator ∂μ is defined as
follows: ∂μh denotes the coefficient in front of θμ in dh, i.e., ∂μh := 〈dh, Lμ〉.)
Therefore all higher order covariant derivatives in the directions θα, θβ̄ are
zero, so by Lemma 2.1, this implies that the second expression in Equation
(5.11) vanishes. Hence we now have that φ̂ j

# = 0.
Since φ j

α = 0, we examine dφ j
α and use the structure equation and our

previous results to obtain

0 = φ A
α ∧ φ j

A + iθα ∧ φj

= iθα ∧ (Êjθ).

This implies that Êj = 0, so φ̂j = 0 also.
So far, we have shown that φ̂ j

α = φ̂ j
# = φ̂j = 0. We choose an adapted

Q-frame (ZΛ) on Q near f(p). We can choose (ZΛ) corresponding to our
coframe (θ, θA), such that the following relations are satisfied (see the second
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row of Equation (4.7)).

Π 0
A = −iφ̂A, Π B

A = φ̂ B
A + δB

AΠ 0
0 , Π n̂+1

A = 2iθA.

First, note that

Π n̂+1
j = 2iθj = 2iθĀgĀj = 0

because θā = 0 on M and gᾱj = 0.
Next, we see that

Π 0
j = −iφ̂j = −iφ̂ĀgĀj = −iφ̂ᾱgᾱj − iφ̂#̄g#̄j − iφ̂īgīj .

The first term in the above sum is zero because of the indices of the Levi
form. The second term is zero again because of the indices of the Levi form,
due to our change of basis at the beginning of the proof. The third term is
zero because φ̂ī = 0.

Now we analyze Π α
j , noting that δ α

j = 0 and using the symmetry rela-
tion φ̂jβ̄ = −φ̂β̄j . We have

Π α
j = φ̂ α

j = φ̂jβ̄g
β̄α = −φ̂β̄jg

β̄α = −φ̂ Ā
β̄ gĀjg

β̄α = 0

because gĀj = 0 unless A is in the range of j, and then φ̂ j̄
ᾱ = 0.

We perform a similar analysis of Π #
j .

Π #
j = φ̂#j = −φ̂ B̄

Ā gB̄jg
Ā# = 0,

because gB̄j = 0 unless B is in the range of j, gĀ# = 0 unless A is in the
range of #, and if both of these cases occur, then φ̂ j̄

#̄
= 0.

This shows that Π Ω
j = 0 unless Ω ∈ {n+ r + 1, . . . , N}. Therefore, since

the Maurer–Cartan forms are defined by dZΛ = Π Ω
Λ ZΩ, we have

(5.12) dZi = Π j
i Zj ,

expressing that the derivatives of the vectors Zi are linear combinations of
Zj at each point. The proof now concludes exactly as in [9], Section 9. �

6. Dimensions of Ek for embeddings

We now state a theorem which relates the dimensions of the Ek for two
embeddings. To simplify notation, we write ωa

α where a ∈ {1, . . . , N − n}
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rather than ωa+n
α for the second fundamental forms of the mappings. The

proof is given in Section 7.

Theorem 6.1. Let M ⊆ C
n+1 be a smooth Levi-nondegenerate hypersur-

face of signature l ≤ n/2 and p ∈M . Let f0 : M → QN0
l and f : M → QN

l′

be smooth CR mappings that are CR transversal to QN0
l at f0(p) and QN

l′ at
f(p), respectively, and N0 ≤ N . Fix an admissible coframe (θ, θα) on M and
choose corresponding coframes (θ̊, θ̊A)A=1,...,N0 and (θ̂, θ̂A)A=1,...,N on QN0

l
and QN

l′ adapted to f0(M) and f(M), respectively. Let (ω̊ a
γ1 γ2

)a=1,...,N0−n

and (ω a
γ1 γ2

)a=1,...,N−n denote the second fundamental forms of f0 and f ,
respectively, relative to these coframes. Let k ≥ 2 be an integer and assume
that the spaces E̊j(q) and Ej(q) for 2 ≤ j ≤ k, are of constant dimension for
q near p. Then for each k,

(a) If l = n/2 or l′ = N/2 or f is side preserving, and if either (N0 − n) +
(l′ − l) < l or (N − l′)− (n− l) < l, we have dim(Ek) ≤ dim(E̊k) +
min(l′ − l, (N − l′)− (n− l)).

(b) If f is side reversing and if l′ < n, we have dim(Ek) ≤ dim(E̊k) + l′ −
(n− l).

We may now prove Theorem 1.2 (assuming Theorem 6.1). We use the
notation of Theorem 6.1.

Proof of Theorem 1.2. Recall that μ(M) denotes the CR complexity of M
as defined in (1.2). Let N0 = n+ μ(M) and f0 : M → QN0

l a CR transver-
sal CR map (whose existence is guaranteed by the definition of μ(M)). If
l = n/2, or f is side preserving, we notice that l′ ≥ l and N − l′ ≥ n− l by
Proposition 3.1. Next, we apply Theorem 6.1. Since dimEk ≤ (N0 − n) +
min(l′ − l, (N − n)− (l′ − l)) for all k, the degeneracy of f is at least (N −
n)− (N0 − n)−min(l′ − l, (N − n)− (l′ − l)), so if s denotes the degener-
acy of f at a generic point on M where f is constantly (k, s)-degenerate
for some k, we have s ≥ (N −N0)−min(l′ − l, (N − n)− (l′ − l)). Since
(N − n)− s ≤ (N0 − n) + (l′ − l) < n, we may apply Theorem 1.1 to obtain
the desired conclusion in Theorem 1.2 (near a generic point). We note here
that it suffices to prove that the image of f is contained in the complex plane
P in the neighborhood of some point on M to obtain the full conclusion.

If f is side reversing, we notice that N − l′ ≥ l and l′ ≥ n− l by Propo-
sition 3.1. We apply Theorem 6.1 again to see that the degeneracy of f is
at least (N − n)− (N0 − n)− (l′ − (n− l)). Denoting the degeneracy by s
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again, we have s ≥ (N − l′ − l) + (n−N0). Since (N − n)− s ≤ (N0 − n) +
l′ − (n− l) < n, we may apply Theorem 1.1 to obtain the desired conclusion
as above. �

A key ingredient in the proof of Theorem 6.1 is the Gauss equation for
the second fundamental form of the embedding. A more general and precise
version is stated and proved in [9] where it appears as Theorem 2.3. The
statement here is the same as Lemma 4.3 in [2].

Lemma 6.2. Let M ⊂ C
n+1 be a smooth Levi-nondegenerate hypersurface

of signature l ≤ n
2 , f : M −→ QN

l′ ⊂ C
N+1 a smooth CR mapping that is CR

transversal to QN
l′ along M , l ≤ l′, and ω a

α β its second fundamental form.
Then,

0 = Sαβ̄μν̄ + gab̄ω
a

α μω
b̄

β̄ ν̄ + Tαβ̄μν̄ ,

where Sαβ̄μν̄ is the Chern–Moser pseudoconformal curvature of M and Tαβ̄μν̄

is a conformally flat tensor.

We shall need the following lemma regarding conformal flatness of cer-
tain covariant derivatives of the second fundamental form. This lemma
appears with proof as Lemma 4.1 in [2].

Lemma 6.3. Let M , f , and ω a
α β be as in Lemma 6.2. Then the covariant

derivative tensor ω a
α β;γ̄ is conformally flat.

It will also be necessary to know how covariant derivatives of the second
fundamental form commute. Given a CR embedding f : M → M̂ , we now
recall some facts about the pseudoconformal connection on M̂ pulled back
to M . Suppose (θ, θA) is an adapted coframe for the pair (M, M̂). We use
the same notation as in the Preliminaries section. We denote with a ˆ the
pseudoconformal connection forms on M̂ pulled back toM , where the indices
run from 1 to n̂. Recall that (ω, ωα, ωᾱ) = (ω̂, ω̂α, ω̂ᾱ) = (θ, θα, θᾱ) and ω̂a =
0 on M . We do not expect (φ α

β , φα, ψ) and (φ̂ α
β , φ̂α, ψ̂) to be equal, but

since ω̂ α
β = ω α

β and τ̂α = τα, Proposition 4.1 implies

φ̂ α
β = φ α

β + C α
β θ, φ̂α = φα + C α

μ θμ + Fαθ,

ψ̂ = ψ + iFμθ
μ − iFν̄θ

ν̄ +Aθ,(6.1)

where

C α
β := D̂ α

β −D α
β , Fα := Êα − Eα, A := B̂ −B
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and D̂ α
β , Êα, B̂ are the analogs for M̂ of the functions from Proposition

4.1 restricted to M . We also record the following expression for Cαβ̄ which
appears as Equation (6.8) in [9].

(6.2) Cαβ̄ =
i(Ŝ a

a αβ̄
+ ω a

μ αω
μ

aβ̄
)

n+ 2
− i(Ŝ a μ

a μ + ω a
μ νω

μ ν
a )gαβ̄

2(n+ 1)(n+ 2)
.

The following is a more specific version of Lemma 4.2 in [2], where we
give an explicit formula for the part which is not conformally flat.

Lemma 6.4. Let M , f and ω a
α β be as in Lemma 6.2, and p ∈M . Then

for any s ≥ 2, we have

ω a
γ1 γ2;γ3···γsαβ̄ − ω a

γ1 γ2;γ3···γsβ̄α ≡
s∑

j=1

dαβ̄(ω μ
γj

)ω a
γ1 γ2;γ3···γj−1μγj+1···γs

− Ca
αβ̄cω

c
γ1 γ2;γ3···γs

,(6.3)

where equivalence is modulo a conformally flat tensor, dαβ̄(ω μ
γj ) is the coef-

ficient of θα ∧ θβ̄ in dω μ
γj , and Ca

αβ̄c
is given by

Ca
αβ̄c ≡ ωρ̄a

αωρ̄cβ̄ + iδa
c D̂β̄α.

Proof. We use the pseudoconformal connections introduced in Section 4. We
observe that the left-hand side of (6.3) is a tensor, hence it is enough to show
(6.3) at each fixed p ∈M with respect to any choice of adapted coframe near
p. By making a unitary change of coframe θα → u α

β θβ and θa → u a
b θ

b in
the tangential and normal directions, we may choose an adapted coframe
near p such that ω β

α (p) = ω b
a (p) = 0 (Lemma 2.1 in [15]). In this coframe,

the left-hand side at p is equivalent, modulo a conformally flat tensor, to
the coefficient in front of θα ∧ θβ̄ in the expression

s∑
j=1

dω μ
γj
ω a

γ1 γ2;γ3···γj−1μγj+1···γs
− ω c

γ1 γ2;γ3···γs
dφ̂ a

c .

Hence we would like to show that the coefficient in front of θα ∧ θβ̄ in dφ̂ a
c

has the form of the Ca
αβ̄c

given in the statement of the Lemma.
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Note that we may work mod θ because we are only looking for the
coefficient in front of θα ∧ θβ̄ . The structure Equations (4.1) give

dφ̂ a
c ≡ φ̂ ρ

c ∧ φ̂ a
ρ − iδ a

c φ̂μ ∧ θμ.

Now using Proposition 4.1, and Equation (3.3), ωBĀ + ωĀB = 0, we have

φ̂ ρ
c ≡ ω ρ

c ≡ ωcĀg
ρĀ

≡ −ωĀcg
ρĀ

≡ −ω B
A gBc̄gAρ̄

≡ −φ̂ d
ρ g

ρ̄μgcd̄.

Hence the coefficient of θα ∧ θβ̄ from φ̂ ρ
c ∧ φ̂ a

ρ is ωρ̄a
αωρ̄cβ̄.

We next examine iδ a
c φ̂μ ∧ θμ and work mod θ. We notice that

iδ a
c φ̂μ ∧ θμ = iδ a

c θμ ∧ (gμĀφ̂
Ā) = iδ a

c θμ ∧ (gμσ̄φ̂
σ̄),

due to the form of the matrix (g). We substitute for φ̂σ̄ using Equation (6.1)
and use Proposition 4.1 to obtain

iδ a
c θμ ∧ (gμσ̄(φσ̄ + C σ̄

ρ̄ θρ̄ + F σ̄θ)) ≡ iδ a
c θμ ∧ (gμσ̄(τ σ̄ + (D σ̄

ρ̄ + C σ̄
ρ̄ )θρ̄).

We notice that by Equation (3.2), τ σ̄ will be a combination of only forms like
θγ , so we may ignore it when searching for coefficients of θα ∧ θβ̄ . We also
note that D̂ ᾱ

β̄
= C ᾱ

β̄
+D ᾱ

β̄
by (6.1), so after lowering an index, we find the

coefficient of iδ a
c φ̂μ ∧ θμ in front of θα ∧ θβ̄ is exactly (ωρ̄a

αωρ̄cβ̄ + iδa
c D̂β̄α),

as desired. �

The following linear algebra Lemma will be useful

Lemma 6.5. Let {w1, . . . , wm} and {v1, . . . , vm} be vectors in C
n, such

that 〈wi, wj〉′ = 〈vi, vj〉. Here, 〈x, y〉 denotes the standard inner product on
C

n and 〈x, y〉′ = y∗Ikx, where Ik is the n× n diagonal matrix with first
k entries equal to −1 and remaining n− k entries equal to 1. Let W =
span{w1, . . . , wm} and V = span{v1, . . . , vm}, then dim(W ) ≤ dim(V ) +
min(k, n− k).
Proof. Let wi1 , . . . , wik

be a basis for W and define a linear map φ from
W to V by φ(wij

) = vij
. Suppose x =

∑k
r=1 arwir

is in the kernel of φ, so
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∑k
r=1 arvir

= 0. If we let a denote the coordinate vector of x, we have

〈x, x〉′ = a∗
(〈wir

, wis
〉′)a = a∗

(〈vir
, vis

〉)a = 〈φ(x), φ(x)〉 = 0.

This shows that the kernel of φ is an isotropic subspace of C
n with respect to

〈·, ·〉′, which implies that the dimension of the kernel is at most min(k, n− k).
The result follows by standard linear algebra. �

7. Proof of Theorem 6.1

We first prove by induction that for all j, k ≥ 2, we have

(7.1) gab̄ω
a

γ1 γ2;γ3···γj
ω b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
≡ g̊ab̄ω̊

a
γ1 γ2;γ3···γj

ω̊ b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

,

where equivalence here and in the rest of the proof means that the sides
of the equation differ by a conformally flat tensor. We then show that such
conformal equivalence is in fact equality and apply Lemma 6.5. We induct
on the sum of the indices. By subtracting the Gauss equation for ω a

γ1 γ2
from

the corresponding one for ω̊ a
γ1 γ2

, we obtain

(7.2) gab̄ω
a

γ1 γ2
ω b̄

ᾱ1 ᾱ2
≡ g̊ab̄ω̊

a
γ1 γ2

ω̊ b̄
ᾱ1 ᾱ2

,

since the pseudoconformal curvature tensor Sγ1ᾱ1γ2ᾱ2 is computed using the
same coframe (θ, θα). This establishes the base step of the induction. We
now assume Equation (7.1) with j + k ≤ p and we wish to show the same,
where j + k = p+ 1. We will demonstrate the case where k increases by 1.
The case where j increases is similar and left to the reader. We differentiate
both sides of (7.1) in the θγ̄k+1 direction, note that covariant derivatives of
conformally flat tensors are conformally flat, and obtain

gab̄ω
a

γ1 γ2;γ3···γjᾱk+1
ω b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
+ gab̄ω

a
γ1 γ2;γ3···γj

ω b̄
ᾱ1 ᾱ2;ᾱ3···ᾱkᾱk+1

≡ g̊ab̄ω̊
a

γ1 γ2;γ3···γjᾱk+1
ω̊ b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
+ g̊ab̄ω̊

a
γ1 γ2;γ3···γj

ω̊ b̄
ᾱ1 ᾱ2;ᾱ3···ᾱkᾱk+1

.

The next lemma shows the equivalence of the first terms on each side of the
above equation. We then subtract to finish the induction and demonstrate
Equation (7.1) for all j, k ≥ 2.

Lemma 7.1. With the same setup as above, we have

gab̄ω
a

γ1 γ2;γ3···γjᾱk+1
ω b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
≡ g̊ab̄ω̊

a
γ1 γ2;γ3···γjᾱk+1

ω̊ b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk
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Proof. We induct on s, the position of the index ᾱk+1. When s = 3, we need

gab̄ω
a

γ1 γ2;ᾱk+1γ3···γj
ω b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
≡ g̊ab̄ω̊

a
γ1 γ2;ᾱk+1γ3···γj

ω̊ b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

.

This follows immediately from Lemma 6.3, which implies that both sides
are conformally flat.

We assume that the desired equivalence holds for s = r, where r ≤ j,
that is,

gab̄ω
a

γ1 γ2;γ3···γr−1ᾱk+1γr···γj
ω b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk

≡ g̊ab̄ω̊
a

γ1 γ2;γ3···γr−1ᾱk+1γr···γj
ω̊ b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
,(7.3)

and we would like to show the same when s = r + 1:

gab̄ω
a

γ1 γ2;γ3···γrᾱk+1γr+1···γj
ω b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk

≡ g̊ab̄ω̊
a

γ1 γ2;γ3···γrᾱk+1γr+1···γj
ω̊ b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
.(7.4)

By Lemma 6.4, we have

ω a
γ1 γ2;γ3···γrᾱk+1

≡ ω a
γ1 γ2;γ3···ᾱk+1γr

+
r−1∑
q=1

dγrᾱk+1(ω
μ

γq
)ω a

γ1 γ2;γ3···γq−1μγq+1···γr−1

− (gσρ̄gcd̄ω
a

σ γr
ω d̄

ρ̄ ᾱk+1
)ω c

γ1 γ2;γ3···γr−1
− i(D̂ᾱk+1γr

)ω a
γ1 γ2;γ3···γr−1

(7.5)

We take covariant derivatives of both sides of (7.5) in the θγr+1 , . . . , θγj

directions successively, multiply by gab̄ω
b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
, and analyze each term

on the right-hand side of the resulting equation. We will show that by (7.3),
and Equation (7.1) with j + k ≤ p (the induction hypotheses in the proof
of Lemma 7.1 and the proof of Theorem 6.1 respectively), each such term
must be conformally equivalent to the corresponding term with the ring
superscript. This will demonstrate (7.4) and hence conclude the proof of
Lemma 7.1. This is because we may also apply Lemma 6.4 to ω̊ a

γ1 γ2;γ3···γrᾱk+1
,

take covariant derivatives in the θγr+1 , . . . , θγj directions, and multiply by
g̊ab̄ω̊

b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

.
After taking covariant derivatives and multiplying by gab̄ω

b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

,
the first term on the right-hand side of (7.5) will be gab̄ω

a
γ1 γ2;γ3···γr−1ᾱk+1γr···γj

ω b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

, which is conformally equivalent to the same term with the ring
superscript by (7.3). We also notice that after taking covariant derivatives
and multiplying by gab̄ω

b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

, the second term on the right-hand side
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of Equation (7.5) yields many terms, each of which is a product of covariant
derivatives of dγrᾱk+1(ω

μ
γq ), covariant derivatives of ω a

γ1 γ2;γ3···γq−1μγq+1···γr−1
,

and gab̄ω
b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
. We notice that expressions of the form dγrᾱk+1(ω

μ
γq )

are intrinsic to the manifold M and thus all covariant derivatives will be
the same as those with the ring superscript. Also, covariant derivatives
of ω a

γ1 γ2;γ3···γq−1μγq+1···γr−1
multiplied by gab̄ω

b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

will be the same as
those with the ring superscript by (7.1), since r + k ≤ j + k ≤ p.

The third term on the right-hand side of Equation (7.5) can be written
as

−(gσρ̄ω a
σ γr

)(gcd̄ω
c

γ1 γ2;γ3···γr−1
ω d̄

ρ̄ ᾱk+1
).

We observe that (gcd̄ω
c

γ1 γ2;γ3···γr−1
ω d̄

ρ̄ ᾱk+1
) is conformally equivalent to the

same with the ring superscript by (7.1), and hence covariant derivatives
will be also. Also, taking covariant derivatives of the term gσρ̄ω a

σ γr
and

multiplying by gab̄ω
b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
will yield terms conformally equivalent to

those with the ring superscript, again by (7.1) and because gσρ̄ is intrinsic
to M .

In the last term on the right-hand side of Equation (7.5), we first show
that D̂ᾱk+1γr

is conformally equivalent to the same with the ring superscript.
Observe that by Equation (6.2), we have

Cαβ̄ =
i

n+ 2

[
ω a

μ αω
μ

aβ̄
− gαβ̄

2(n+ 1)
ω a

μ νω
μ ν
a

]
.

Here we have used the vanishing of the pseudoconformal curvature of the
target hyperquadric. We may write this as

Cαβ̄ =
i

n+ 2

[
gμν̄(gab̄ω

a
μ αω

b̄
ν̄ β̄)− gαβ̄g

μσ̄gνβ̄

2(n+ 1)
(gab̄ω

a
μ νω

b̄
σ̄ β̄)

]
.

Equation (7.2) implies conformal equivalence of both terms of the form
(gab̄ω

a
μ αω

b̄
ν̄ β̄

) with the corresponding terms with superscripts. Since D̂ ᾱ
β̄

=
C ᾱ

β̄
+D ᾱ

β̄
(see (6.1)), and the term D ᾱ

β̄
is intrinsic to M , we have

that D̂ᾱk+1γr
is conformally equivalent to its counterpart with the ring

superscript.
Now we observe that after taking covariant derivatives and multiplying

by gab̄ω
b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
in the last term on the right-hand side of Equation (7.5),

every resulting term will be a product of derivatives of D̂ᾱk+1γr
, derivatives of

ω a
γ1 γ2;γ3···γr−1

, and gab̄ω
b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
. The derivatives of D̂ᾱk+1γr

will be confor-
mally equivalent to the same with the ring superscript, as explained above,
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and the remaining terms will be conformally equivalent to their counterparts
with the ring superscript by (7.1). This concludes the proof of Lemma 7.1 �

We now return to the proof of Theorem 6.1. We have shown that

gab̄ω
a

γ1 γ2;γ3···γj
ω b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
≡ g̊ab̄ω̊

a
γ1 γ2;γ3···γj

ω̊ b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

where the equivalence is modulo a conformally flat tensor. Our next step is
to show that this equivalence is in fact equality. We will demonstrate this
equality in the case where l = n/2 or f is side-preserving. To do this, we
make use of Lemmas 2.1 and 2.2. We first show equality in the case where
j = k using Lemma 2.2. At the end of the proof we mention the side-reversing
case.

First, suppose (N0 − n) + (l′ − l) < l and consider the following expres-
sion

(7.6) gab̄ω
a

γ1 γ2;γ3···γk
ω b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
− g̊ab̄ω̊

a
γ1 γ2;γ3···γk

ω̊ b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

≡ 0.

Let ζ := (ζ1, . . . , ζn), multiply Equation (7.6) by ζγ1ζᾱ1 . . . ζγkζᾱk and sum.
Since the right-hand side of (7.6) is conformally flat, we have

−
l′−l∑
a=1

|ωa(ζ)|2 −
N0−n∑
b=1

|̊ωb(ζ)|2 +
N−n∑

a=l′−l+1

|ωa(ζ)|2

= A(ζ, ζ̄)
(
−

l∑
i=1

|ζi|2 +
n∑

j=l+1

|ζj |2
)
,

where ωa(ζ) = ω a
γ1 γ2;γ3···γk

ζγ1 . . . ζγk , ω̊b(ζ) = ω̊ b
γ1 γ2;γ3···γk

ζγ1 . . . ζγk , and
A(ζ, ζ̄) is a polynomial is ζ and ζ̄. Since we have (N0 − n) + (l′ − l) < l,
Lemma 2.2 implies that A(ζ, ζ̄) is identically zero, so we have the desired
equality, which we may rewrite as

(7.7)
N−n∑

a=l′−l+1

|ωa(ζ)|2 =
l′−l∑
a=1

|ωa(ζ)|2 +
N0−n∑
b=1

|̊ωb(ζ)|2.

Now suppose that (N − l′)− (n− l) < l. We consider the expression

g̊ab̄ω̊
a

γ1 γ2;γ3···γk
ω̊ b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
− gab̄ω

a
γ1 γ2;γ3···γk

ω b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

≡ 0.

By noticing that (N − l′)− (n− l) = (N − n)− (l′ − l) and performing a
similar argument we use Lemma 2.2 to obtain the desired equality. The
details are left to the reader.
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Now we will show that the conformal equivalence is actually an equality
in the expression

(7.8) gab̄ω
a

γ1 γ2;γ3···γj
ω b̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
≡ g̊ab̄ω̊

a
γ1 γ2;γ3···γj

ω̊ b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

where without loss of generality, we assume that j > k. We first assume that
(N0 − n) + (l′ − l) < l and rewrite Equation (7.8) as

−
l′−l∑
a=1

ω a
γ1 γ2;γ3···γj

ω ā
ᾱ1 ᾱ2;ᾱ3···ᾱk

−
N0−n∑
b=1

ω̊ b
γ1 γ2;γ3···γj

ω̊ b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

+
N−n∑

c=l′−l+1

ω c
γ1 γ2;γ3···γj

ω c̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

≡ 0.(7.9)

We apply a lemma of D’Angelo (see [8], Chapter 5) to Equation (7.7) to
obtain the existence of a unitary matrix U , such that

U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω 1̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

...

ω l′−l
ᾱ1 ᾱ2;ᾱ3···ᾱk

ω̊ 1̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

...

ω̊ N0−n
ᾱ1 ᾱ2;ᾱ3···ᾱk

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω l′−l+1
ᾱ1 ᾱ2;ᾱ3···ᾱk

...

...

...

...

...

...

ω N−n
ᾱ1 ᾱ2;ᾱ3···ᾱk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that we are working at a fixed point here. This implies the existence
of constants Ā c

r and B̄ c
s , with 1 ≤ r ≤ l′ − l and 1 ≤ s ≤ N0 − n, such that

ω c̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

= Ā c
r ω

r̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

+ B̄ c
s ω̊

s̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

,

where l′ − l + 1 ≤ c ≤ N − n, and we are using the summation convention
for the indices r and s.



188 Peter Ebenfelt and Ravi Shroff

We substitute the above into Equation (7.9) to obtain

−
l′−l∑
a=1

ω a
γ1 γ2;γ3···γj

ω ā
ᾱ1 ᾱ2;ᾱ3···ᾱk

−
N0−n∑
b=1

ω̊ b
γ1 γ2;γ3···γj

ω̊ b̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

+
N−n∑

c=l′−l+1

ω c
γ1 γ2;γ3···γj

(Ā c
r ω

r̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

+ B̄ c
s ω̊

s̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

) ≡ 0.

We regroup the terms in this expression, which yields

l′−l∑
r=1

(
N−n∑

c=l′−l+1

ω c
γ1 γ2;γ3···γj

Ā c
r − ω r

γ1 γ2;γ3···γj

)
ω r̄

ᾱ1 ᾱ2;ᾱ3···ᾱk

+
N0−n∑
s=1

(
N−n∑

c=l′−l+1

ω c
γ1 γ2;γ3···γj

B̄ c
s − ω̊ s

γ1 γ2;γ3···γj

)
ω̊ s̄

ᾱ1 ᾱ2;ᾱ3···ᾱk
≡ 0,

where we are not using the summation convention for the indices r and
s. Since the number of terms in the sum on the left side in the preceding
equation is strictly less than n, we use Lemma 2.1 in the same way that we
used Lemma 2.2 previously to conclude that the conformal equivalence is in
fact an equality. We then recombine all terms to get the desired equality. In
the case where (N − l′)− (n− l) < l, we apply the lemma of D’Angelo as
above to obtain constants ¯̃Ar

c and ¯̃Bs
c , such that

ω r̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

= ¯̃Ar
cω

c̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

, and ω̊ s̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

= ¯̃Bs
cω

c̄
ᾱ1 ᾱ2;ᾱ3···ᾱk

,

where 1 ≤ r ≤ l′ − l, 1 ≤ s ≤ N0 − n, l′ − l + 1 ≤ c ≤ N − n and we are
using the summation convention on the indices r and s. We then substi-
tute into (7.9) as before to obtain the desired result. The details of this are
left to the reader.

We embed the vectors representing the second fundamental form of f0
and its derivatives into C

N−n by appending the appropriate number of zeros.
Thus we have shown that all inner products of derivatives of the second
fundamental form of f with respect to gab̄ are equal to the corresponding
inner products of derivatives of the second fundamental form of f0 with
respect to g̊ab̄. Lemma 6.5 gives the desired inequality relating the dimension
of Ek and E̊k.

In the side reversing case, the argument is similar except that we need
only consider the analog of the negative of Equation (7.6). This is because
min(N − l′ − l, l′ − (n− l)) = l′ − (n− l). We leave the details to the reader.
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