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Partial rigidity of CR embeddings of real
hypersurfaces into hyperquadrics with small
signature difference

PETER EBENFELT AND RAVI SHROFF

We study the rigidity of holomorphic mappings from a neighbor-
hood of a Levi-nondegenerate CR hypersurface M with signature
[ into a hyperquadric ny C CPV* of larger dimension and signa-
ture. We show that if the CR complexity of M is not too large then
the image of M under any such mapping is contained in a complex
plane with a dimension depending only on the CR complexity and
the signature difference, but not on N. This result follows from two
theorems, the first demonstrating that for sufficiently degenerate
mappings, the image of M is contained in a plane, and the second
relating the degeneracy of mappings into different quadrics.

1. Introduction

The phenomenon of rigidity of mappings between hypersurfaces embedded
in complex space has been studied for many years, beginning with Poincaré
in the early 20th century [16]. Initially, much work was devoted to mappings
between spheres, and rigidity results were proved given a restriction on the
codimension (see, e.g., [12, 13, 18] and references therein). It was also shown
that rigidity breaks down when this restriction is violated [6, 7, 11]. However,
there are differences between the study of mappings between spheres (strictly
pseudoconvex hypersurfaces) and that of mappings between nondegenerate
hyperquadrics with positive (but equal) signature. Indeed, it was proved by
Baouendi and Huang [4] that in the positive signature case, there is rigidity
regardless of the codimension (super-rigidity). There is also a difference when
the source manifold is not itself a quadric but is Levi-nondegenerate and
assumed to be embeddable into a hyperquadric of the same signature but
larger dimension (see below); the so-called CR complexity is the difference
between the CR dimension of the target hyperquadric and that of the source
manifold (with the CR dimension of the target being assumed to be the
minimal possible).
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By the Lewy extension theorem (see, e.g., [1]), in the case of positive
signature we need only consider restrictions of holomorphic maps. In the
case of low CR complexity (compared to the signature) but no signature
difference, the main result in [2] says that embeddings are unique up to
automorphisms of the target hyperquadric without any restriction on the
codimension (super-rigidity). In the case of zero CR complexity but positive
signature difference, the main result in [3] states that the image of an embed-
ding must be contained in a complex plane with a dimension depending only
on the signature difference and not the codimension (partial rigidity). In this
paper, we allow both nonzero (but low) CR complexity and positive signa-
ture difference, and prove a partial rigidity result. Our proofs make use of
the theory of pseudo-Hermitian and pseudoconformal geometry, particularly
the work of Chern and Moser, and subsequent work of Webster. We use the
recent ideas in [2, 9].

Let M C C™*! be a smooth connected Levi-nondegenerate hypersurface
and L a representative of the Levi form of M. If M is connected (as will
be assumed throughout this paper), then let [ < n/2 denote the minimum
of the number of positive and negative eigenvalues of £ at any point. This
integer is constant over M and will be referred to as the signature of M. We
let QlN C CPN*! denote the standard hyperquadric given in homogeneous
coordinates [z : 21 : ... : zn+1] by

N+1

l
> P+ ) sl =0
=0

k=I+1

Notice that Q{V is a connected Levi-nondegenerate CR hypersurface of CR
dimension N and signature [.

We first generalize Theorem 2.2 in [9] which deals with degenerate
smooth CR-immersions of a CR-hypersurface into a sphere. A CR-immersion
is degenerate if the span of the second fundamental form and its covariant
derivatives fail to be the whole normal space of the embedding. This and
other important notions used below will be made precise in Sections 3 and 4
of this paper. For the reader’s convenience, however, we give an elementary
(extrinsic) definition (following Lamel [14]) of the notion of (k, s)-degeneracy
of a CR mapping f: M — M’ used in Theorem 1.1 below. The equivalence
between the extrinsic definition given here and that in Section 3 is proved
in [9]. Let M C C™*! be a real smooth hypersurface, p € M, and L1,..., L,
a local frame for the CR bundle of M near p. Let also M’ c CN*t! be a
smooth real hypersurface defined locally near p’ := f(p) € M’ by p’ = 0. For
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a positive integer k, consider the collection of N-vectors

(1.1) L'(pLo f)p), <1,

where I € Z" is a multi-index (so that L = L. ph
I,,) and

,._ (9 op’
e (22,
We shall say that f is (k, s)-degenerate at p if: (1) the span of the vectors
in (1.1) for all [ > k is equal to that for [ = k (i.e., the span stabilizes at k);
and (2) the codimension of the span of (1.1) for [ =k is s.
Our first result is the following. The main novel point here is that we
allow degenerate immersions into hyperquadrics where the signature of the

Levi form of the target quadric is allowed to be strictly greater than that of
the source manifold.

and [I| =1L+ -+

Theorem 1.1. Let M C C*"! be a smooth connected Levi-nondegenerate
hypersurface of signature | <n/2 and f: M — Q{Y a smooth CR mapping
that is CR transversal to ny at f(p) forp € M. Assume that f is constantly
(k, s)-degenerate near p for some k and s. If N —n —s <mn, then f(M)
1s contained in the intersection of ny with a complex plane P C CNTL of
codimension s.

The idea of the proof of Theorem 1.1 goes back to the arguments in
Section 9 of [9].

Our main result, Theorem 1.2, now follows from Theorems 1.1 and 6.1,
which relates the dimensions of spaces of covariant derivatives of the second
fundamental form for different embeddings. Before stating the result, we
recall the definition of the CR complexity, u(M), of a Levi-nondegenerate
hypersurface M C C"*! and signature I:

(1.2)
(M) :=min{No —n: 3fo: M — va" with fy CR transversal to Q{V‘)}.

In (1.2), we consider of course only smooth CR mappings. As above, we note
that if [ > 0, then any fj in (1.2) extends holomorphically to a neighborhood
of M. If, for a given M, there are no maps fy as above for any Ny, then we
set p(M) = oo (a case which is of no interest in the present context). We
have the following result.
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Theorem 1.2. Let M C C"! be a smooth connected Levi-nondegenerate
CR hypersurface with signature | < n/2 and CR complexity p := pu(M). Let
U be an open neighborhood of M in C"t1, and f : U — CPN*! a holomor-
phic mapping with f(M) C ny and f CR transversal to Q{Y along M. Then
the following hold:

(a) If L=n/2 or [ is side preserving then I' >1 and N —1U' >n—1. If
either
i) p+{"=1) <l or
(ii) g4+ min(l' = ,(N=U)—(n—=10))<nand (N =1U)—(n—1) <,
then f(M) C QY N P, where P C CNT! is a complex plane of dimen-
sion (n+ 1)+ p+min(l" — I, (N =1') — (n —1)).

(b) If f is side reversing then N —U' > 1 and ' >n —1. If ' <n and pu+
(' +1—mn) <n then f(M)C QN NP, where P C CN*! is a complex
plane of dimension (n+ 1)+ p+ (I' +1—n).

We make several remarks.

Remark 1.3. In the arguably most interesting case where the codimension
N —n is large (say N —n > n), then the theorem simply states that the
image of, say, a side preserving map is contained in a complex plane of
dimension (n+ 1) 4+ u+ (I’ — 1) provided that pu+ (I' — 1) < I. Moreover, if
the signature difference is also so small that I’ — [ < n — 2[, then the theorem
(by the first statement in (b)) also implies that any map is necessarily side
preserving. Thus, a corollary of Theorem 1.2 is the following: Let M and
f be as in Theorem 1.2. If N—n>n, ' —1l<n—2 and p+ (I' = 1) <1,
then the image of f is contained in a complex plane of dimension (n + 1) +
w~+ (I" = 1). Here, no distinction needs to be made about the map being side
preserving or reversing.

Remark 1.4. The results in Theorem 1.2 can be combined with Theorem
5.3 in [10] to obtain more precise information about the map f. For exam-
ple, in the setting of Theorem 1.2, assume that I’ = [ (which implies that f
is side preserving, unless [ = n/2) and p < I. Theorem 1.2 (a) then implies
that f(M) is contained in va N P, where P is a complex plane of dimen-
sion n + 1 4 u. Since f is transversal to QZN , the plane P must intersect Q{V
transversally as well. We may identify P with C**1+#, QN N P with a hyper-
quadric Q in C"*'*#_ and consider f as a mapping sending M transversally
into the hyperquadric @ in C**1*#; let us temporarily use the notation f
for the mapping sending M into @ in C"*'F#. Since f is transversal to
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Q and [ =1, it follows that () is a nondegenerate hyperquadric of signa-
ture [ as well. In the setting of Theorem 5.3 in [10], let H; := fy, where fy
denotes the mapping defining the CR complexity p in (1.2), and Hy := f .
After renormalizing ) as the standard hyperquadric Q;H” in C"HHH | we
are in the situation covered by Theorem 5.3 in [10] with [ =ls =1 and
k1 = ko = p. Since ki + ko = 2u < 21 < n, Theorem 5.3 in [10] now implies
that there is an automorphism T of the target hyperquadric in C**1*# such
that f = T o fo (Remark 5.4 following the theorem in [10]). For the original
mapping f (which can be obtained from f by a linear embedding of () into
va ), we may now deduce that f =T o Lo fy, where L is the standard linear
embedding of Q] into Q¥ and 7T is an automorphism of @, except possi-
bly in the special case where M = Q' in which case an initial “flip” (see [2])
might be needed. The details in the last step are left to the interested reader.
Thus, combining Theorem 1.2 with Theorem 5.3 in [10] recovers the rigidity
result (Theorem 1.1) in [2]. In a similar manner, Theorem 5.3 in [10] can be
used to recover the main result (Theorem 1.1) in [3] from Theorem 1.2.

Remark 1.5. We observe that if I’ = N/2 then the inequalities (N — ') —
(n—1) <l and " < n are equivalent and the conclusions of parts (a) and
(b) of Theorem 1.2 coincide. We also observe that if f is side preserving,
either assumption (i) or (ii) could apply. For instance, if n = 5,1 =1, N =7,
I =3 and Ny = 6, then assumption (i) does not hold, but assumption (ii)
does. However, if N is sufficiently large (i) may hold but not (ii).

Remark 1.6. Note (as alluded to in Remark 1.5 above) that Theorem 1.2
partially generalizes Theorem 1.1 from [2] by allowing a positive signature
difference between the source manifold and target hyperquadric Q;,V . It also
partially generalizes Theorem 1.1 from [3] by allowing the source manifold
to have positive CR complexity.

The proof of Theorem 1.2 is given in Section 6 following the statement
of Theorem 6.1.

2. Two important lemmas

We now state two key lemmas that are ingredients in the proofs of sub-
sequent theorems. The first lemma was proved in [13]. We use the Ein-
stein summation convention in the rest of this paper except where otherwise
indicated.
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Lemma 2.1. Let g1,...,9%, f1,---, fr be holomorphic functions in z € C"
near 0. Assume that g;(0) = f;(0) =0 for all j. Let A(z,Z) be real-analytic
near the origin, such that

k

S 9i(2) fi(2) = Az, 2) (hgp2")

J=1

where H = (h,g) is a constant invertible matriz. If k < n, then A(z,z) = 0.

Although the statement of Lemma 2.1 in [13] is for H = I, the proof for
arbitrary constant invertible H is identical. We shall also need the following.

Lemma 2.2. Let k,l and n be nonnegative integers with k <1 <n/2.
Assume that g1,...,9x, f1... fm are germs at 0 € C" of holomorphic func-
tions and A(z, z) be real-analytic near the origin such that

k m l n
S DNEED DIELEPINE] ) NS N3]
i=1 j=1 i=1

j=l+1

Then A(z,z) = 0.

The proof of Lemma 2.2 can be found in Lemma 4.1 of [4] (with I’ =1
and after an application of Lemma 2.1 of [4]).

3. Preliminaries

We will use the notation of [9]. Let M be a Levi-nondegenerate CR-manifold
of dimension 2n + 1, with rank n CR bundle V and signature I < n/2. Near a
point pg, we let § be a contact form and T its characteristic (or Reeb) vector
field, so T is the unique real vector field satisfying 7'.df = 0 and (0, T) = 1.
We complete 6 to an admissible coframe (0,0, ...,60") for the bundle 7'M
of (1,0)-cotangent vectors (the cotangent vectors that annihilate V. The
coframe is called admissible if (#*,T) =0, for a« =1,...,n. We choose a
frame Ly, ..., Ly for the bundle V such that (T, L1,..., Ly, Li,..., Ly) is a
frame for CTM dual to the coframe (0,0%,...,0™, 6%, ... 0"). We use the
notation that Lz = L,, etc. Relative to this frame, let (9op) denote the
matrix of the Levi form. Although we generally would not explicitly use
this fact, we may assume that g,5 is constant and diagonal, with diagonal
elements +1 corresponding to the signature.
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We denote by V the Tanaka—Webster connection, given relative to the
chosen frame and coframe by

VL, := waﬁ X Lﬁ.

The connection 1-forms waﬁ are completely determined by the conditions

df® =6° Aw modh A 6%,
(3.1) dgaB = We3 T Wia-

Note that we use the Levi form to lower and raise indices as usual, e.g.,
Waj = gy5Wa”. We may rewrite the first condition in (3.1) as

(3.2) d6° =0 Nw P +ONTP, TP = AP 07, AP = APe

for a suitably determined torsion matrix (AB »), where the last symmetry
relation holds automatically (see [17]). We also recall the fact that the
coframe (6,0',...,0") is admissible if and only if df = 190307 N 65,

Now let M be another Levi-nondegenerate CR-manifold of dimension
2n + 1, with rank n CR bundle Y and signature [ < n/2. Let f: M — M be
a smooth CR mapping in a small neighborhood of pgy. Since our arguments
are local in nature, we denote this neighborhood by M also. We use a " to
denote objects associated to M. Capital Latin indices A, B, etc will belong
to the set {1,...,n}, Greek indices «, 3, etc will belong to {1,...,n}, and
small Latin 1ndlces a,b, etc run over the complementary set {n —|— 1 NS
Let (6,0%) and (0, 9‘4) be coframes on M and M, respectively, and recall
that f is a CR mapping if

F5(0) = af, f*(0%) = EA 0% + E40,

where a is a real-valued function and E4,, E4 are complex-valued functions
defined near pg. We shall assume that f is CR transversal to M at po,
which in our context can be expressed by saying a(po) # 0. By applying f*
to the equation db = 1gABGA A 93 +0A ¢, we see that CR transversality of
f implies that g, 5 = 194BE aE . This implies that n < 7 and f is locally
an embedding.

Now suppose (6,0%) is a coframe on M such that the matrix of the
Levi form with respect to this coframe has [ negative and n — [ positive
eigenvalues. Let (é,éA) be a coframe on M such that the matrix of the
Levi form with respect to this coframe has I’ negative and n — I’ positive
eigenvalues. If [ < n/2 and I’ < n/2, we define f to be side preserving if the



166 Peter Ebenfelt and Ravi Shroff

nonvanishing function a such that f*(é) = af is strictly positive, and side
reversing if a is strictly negative. Note that this definition does not depend
on the choice of pseudo-Hermitian structure.

We state the following result, which is essentially Proposition 3.1 in [2],
although we have been careful to distinguish the side preserving and side
reversing cases.

Proposition 3.1. Let M and M be Levi-nondegenerate CR-manifolds of
dimensions 2n + 1 and 20 + 1, and signatures | <n/2 and I’ < 7 /2 respec-
tively. Let f: M — M be a CR mapping that is CR transversal to M along
M. If (0,0%) is any admissible coframe on M, then in a neighborhood of
any point p € f(M) in M there exists an admissible coframe (6,64 on M
with f*(0,0%,6%) = (6,6%,0). If the Levi form of M with respect to (6,0%) is
constant and diagonal with —1,...,—1 (I times) and 1,...,1 (n —1 times)
on the diagonal, then (é,éA) can be chosen such that the Levi form of M
relative to this coframe is constant and diagonal and if f is

Side preserving or [ =n/2 or I’ =n/2: the diagonal elements are
—1,...,—1 (1 times), 1,...,1 (n—1 times), —1,...,—1 (I' =1 times)
and 1,...,1 (h—n =1 +1 times). With this additional property, the
coframe (é, éA) 18 uniquely determined along M wup to unitary trans-
formations in U(n,l) x U(n —n,l' —1).

Side reversing: the diagonal elements are —1,...,—1 (I times), 1,...,1
(n —1 times), — -1 m-1-1 tzmes) and 1,...,1 (U — (n —1)
times). With thzs addztzonal property, the coframe (9 HA) is uniquely
determined along M up to unitary transformations in U(n,l) x U(n —
ni— 1 —1).

Observe that if | = n/2, we may change the sign of 6 so that the Levi
form resembles the side preserving case. If I’ = n/2, the two conclusions
of the proposition coincide. If we fix an admissible coframe (¢,0%) on M
and let (é, éA) be an admissible coframe on M near a point p € f (M), we
shall say (0,04) is adapted to (0,0%) on M (or just to M if the coframe on
M is understood) if it satisfies the conclusions of Proposition 3.1 with the
requirement there for the Levi form. However, we will continue to write the
Levi forms as g,3,d45- We shall also omit the " over frames and coframes if
there is no ambiguity. It will be clear from the context if a form is pulled
back to M or not. Under the above assumptions, we identify M with the
submanifold f(M) and write M C M.



Partial rigidity of CR embeddings 167

Equation (3.2) implies that when (0, 4) is adapted to M, if the pseudo-
conformal connection matrix of (M,6) is @gz?, then that of (M,6) is the
pullback of wg®. The pulled back torsion 7¢ is 7%, so omitting the ~ over
these pullbacks will not cause any ambiguity and we shall do that from now
on. By the normalization of the Levi form, the second equation in (3.1)
reduces to

(3.3) wpitwip =0,

where as before wip =Wy 5.

The matrix of 1-forms (w,’) pulled back to M defines the second fun-
damental form of the embedding f : M — M. Since 8° = 0 on M, Equation
(3.2) implies that on M,

(3.4) w,P A+ TP NG =0,
and this implies that
(3.5) w,b = wabﬁﬁﬂ, wabﬁ = wﬁba, ™ =0.

Following [9], we identify the CR-normal space Tp"°M /Ty M, also
denoted by Np1 ON with CPn by choosing the equivalence classes of L, as
a basis. Therefore for fixed o, 3 =1,...,n, we view the component vector
(w2 B>a:n+1"“7ﬁ as an element of C*~". By also viewing the second funda-
mental form as a section over M of the bundle TV°M © NMOM © TOM,
we may use the pseudo-Hermitian connections on M and M to define the
covariant differential

a _ a a o b a a o
Vwy's =dwy'sg —w, gwy +wy gwy” —wy'wg -

We write w, * gy 1O denote the component in the direction 67 and define
higher order derivatives inductively as

a _ a b "
wal Voiyz Y dw,yl Yoy + Way oy Wb
J
— a w
Zw'h 72;73""yl,lufyl+14..fyjw,n .

=1

We also consider the component vectors of higher order derivatives as ele-
ments of C"™™ and define an increasing sequence of vector spaces

EQ(p)g...gEk(p)g...g(cﬁ*”
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by letting Ex(p) be the span of the vectors

(w,ytll 72;~/3~.~'yj)a:n+l ..... )y V2 < ] < kv Y € {17 s 7”}7

evaluated at p € M. Following Lamel [9, 14|, we say that the mapping f :
M — M is constantly (k, s)-degenerate at p if the vector space Ei(p) has
constant dimension 7 —n — s for ¢ near p, Fri1(q) = Ex(q), and k is the
smallest such integer. We should mention that the definition of the spaces
E;(p) above differs slightly from the one given in [9] (see (7.4), loc. cit.), but
the notion of constant (k, s)-degeneracy is easily seen to be the same using
either definition.

4. The pseudoconformal connection and adapted Q-frames

We will need the pseudoconformal connection and structure equations intro-
duced by Chern and Moser in [5]. Let Y be the bundle of coframes (w,w®,
w® @) on the real ray bundle mg: E — M of all contact forms defining
the same orientation of M, such that dw = ig,zw™ A Wl 4+ w A ¢ where w® €
7y, (T M) and w is the canonical 1-form on E. In [5] it was shown that these
forms can be completed to a full set of invariants on Y given by the coframe
of 1-forms

(w,wa,wd’ ¢7 d)g7 d)a? d)a? w)?

which define the pseudoconformal connection on Y. These forms satisfy the
structure equations, which we will use extensively (see [5] and its appendix):

bap t Pia = 9039
dw = W' Awy +w A ¢,
dw® = W' AN, +wA ¢,
d(ﬁZIWp/\(ZJD-i—ld)p/\wD-i-W/\w,
dog* :gbﬁ“/\qb/f‘—I—iwg/\gzba—igbg/\wa—iéﬁaqb“/\w“
05" o
1
467 = G A 9%+ F NG, — T AW+ D%,
(4.1) dp = A + 2P A by + 0.
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Here the 2-forms g, 0%, give the pseudoconformal curvature of M.
We may decompose ¢ 5 as follows:

D = S5t AW + V% wh Aw+ Voiw AW,

We will also refer to the tensor Sﬂo‘ i 88 the pseudoconformal curvature
of M. We require S5 o 10 satisfy certain trace and symmetry conditions
(see [5]), but for the purposes of this paper, the important point to emphasize
is that for a hyperquadric, the pseudoconformal curvature vanishes.

If we fix a contact form 6 that defines a section M — FE, then any admis-
sible coframe (6, 0%) for M defines a unique section M — Y under which the
pullbacks of (w,w?®) coincide with (0, 0%) and the pullback of ¢ vanishes. As
in [17] we use this section to pull the pseudoconformal connection forms
back to M. Although the pulled back forms on M now depend on the choice
of admissible coframe, we shall use the same notation, and thus we have

f=w, 0%=w% ¢=0

on M. As in [17], we may write the pulled back tangential pseudoconformal
curvature tensor S 5 Lo iDL terms of the tangential pseudo-Hermitian curva-

ture tensor Rg* o by

B Raﬁg,uﬂ =+ R#Bgaﬁ + Raﬁgug + Ruljgag
abpr n 4+ 2
R(9039ur + 9or9,3)
n+1)(n+2) ~’

S

aﬁ/u? = R

where
R.5:= Ru#aﬁ and R:= R }*

are, respectively, the pseudo-Hermitian Ricci and scalar curvature of (M, 6).
This formula expresses the fact that S,3,; is the “traceless component” of
R 5,7 with respect to the decomposition of the space of all tensors with the
symmetry conditions of S, 3,; into the direct sum of the subspace of tensors
with trace zero and the subspace of conformally flat tensors, i.e., tensors of
the form

(4.2) Tan; = Haggw—, + HMBQO”_’ + Ha,ngB + H“gga67

where (H,j3) is any Hermitian matrix. We shall call two tensors as above

conformally equivalent if their difference is of the form of Equation (4.2).
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Note that covariant derivatives of conformally flat tensors are conformally
flat, because Vg,5 = 0.

The following result relates the pseudoconformal and pseudo-Hermitian
connection forms. It is alluded to in [17] and a proof may be found in [9],
where the result appears as Proposition 3.1. Note that although the Propo-
sition in [9] is stated only for M strictly pseudoconvex, the result is valid in
the Levi-nondegenerate situation.

Proposition 4.1. Let M be a smooth Levi-nondegenerate CR-manifold of
hypersurface type with CR dimension n, and with respect to an admissible
coframe (0,0%), let the pseudoconformal and pseudo-Hermitian connection
forms be pulled back to M as above. Then we have the following relations:

O =w + DO, ¢ =7+ D204 + B9, o =iE,0" —iE6” + B,

where
iR,3 iRg,3
DOZB - - 9
n+2 2(n+1)(n+2)
2i >
EY .— A — DV
2n + 1( H ),
1 _ _
Bi= Lmn, 4 B, - 247y, 207D,
n ’ ’

Another notion that will prove useful is that of an adapted Q-frame. We
embed C*! in CP"*! as the set {¢Y # 0} in the homogeneous coordinates
[€0:¢Y ... ¢"1, and following Section 1 of [5], realize a hyperquadric Q
with signature [ in CP"+! by the equation (¢, () = 0, where the Hermitian
scalar product (-,-) is defined by

(43) (67) = gapC T8 + S0 — i),

In the above, (§,5) is a Hermitian matrix with [ negative eigenvalues and
A+ 1 — [ positive eigenvalues. A Q-frame (see e.g., [5]) is a unimodular basis
(Zo, ..., Ziy1) of C"2 such that Zp and Zj, 1, as points in CP*"*!, are on Q,
the vectors (Z4) form an orthonormal basis (relative to the inner product
(4.3) for the complex tangent space to the quadric at Zp and Z;,1, and
(Zii1, Zo) = i/2. We will denote the corresponding points in CP* ! also by

Zop and Zj;.1; it should be clear from the context whether the point is in
C™2 or CP* |
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On the space B of all -frames there is a natural free transitive action
of the group SU(l + 1,7 — [ 4+ 1) of unimodular (7 4+ 2) X (7 + 2) matrices
that preserve the inner product (4.3). Hence, any fixed Q-frame defines an
isomorphism between % and SU([+ 1,a—1+ 1). On the space B, there
are Maurer—Cartan forms 7I'AQ, where capital Greek indices run from 0 to

n + 1, defined by
(4.4) dZy =\ Zq

and satisfying dm AQ =7 AF A 7TFQ. Here the natural C"*2 valued 1-forms dZ,
on B are defined as differentials of the map (Zy, ..., Zp+1) — ZA.

Recall from [5, 19] that a smoothly varying Q-frame (Z5) = (Za(p)) for
p € Q is said to be adapted to Q if Zy(p) = p as points of CP?* . It is shown
in Section 5 of [5] that if we use an adapted Q-frame to pull back the 1-forms
TI'AQ from B to @ and set

1 . _
(4.5) 6 := §7T0n+1, 04 = myd, &= -0 +m,°,

we obtain a coframe (6,04) on @Q and a form ¢ satisfying the structure
equation

df = ig 50" NOP +ONE.
In particular, it follows from (4.5) that the coframe (64,20) is dual to the
frame defined by (Z4, Z;+1) on @ and hence depends only on the values of

(Za) at the same points. Then the pulled back forms (¢ 5 ¢, 1) are given
by (5.8b) from [5]:

(4.6) o5t =gt = 0ptm 0, ¢t = 214, b= —4m, 9.

As in (5.30) from [5], the pulled back forms 7, can be uniquely solved from
(4.5 and 4.6):

(h+2)m° = —¢” =& mpt =04, mo " =20,
WAoz—i(iA, WABzéAB—i—(SABﬂOO, ﬂAﬁ+1:2i9A,
(4.7)
A9, = —1p, 2m, 4 = o4, (N + 2)7%_??1 = quD +¢.

ThAus, t}}e p}lllback of w AQ is completely determined by the pullbacks (6, 04,
& 05, ¢4,v). Following Section 8 of [9], we note that for any choice of an
admissible coframe (6, 4) on @ (in particular, those given by Proposition 3.1
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with M = Q), there exists an adapted Q-frame (Z,) such that (4.7) holds
with £ = 0.

5. Proof of Theorem 1.1

The following lemma will be a key ingredient in the proof of Theorem 1.1.

Lemma 5.1. Let g be a diagonal matriz in C¢ with either positive or neg-
ative 1 in each diagonal entry and denote by e; = (0,...,1,...,0)T the H
standard basis vector in C?. Let E be the span of r independent vectors in
C%, with r + s = d. Without loss of generality, suppose E is a graph over

. . ‘ oh
{€s+1y...,€q}, that is, there exists a d X r matriz of the form ( 7 ) where

CT is s x r, whose columns span E. Then there exists an invertible matriz
A in C¢ such that if N = A™Y, then for v € E, NTv € span{eqy1,...,eq}
and if g = A*gA, then Gpqg =0 whenp € {s+1,...,d} and g€ {1,...,s}.

Proof. Define I7 and I, to be the s x s and r X r upper left and lower right
blocks of g, respectively. Choose a matrix norm such that ||;|| <1 for j =
1,2 and nonzero constant A such that |A|? > max{||C*LC||, ||[[,CC*L3||}.
M —3LC*I
C I

is s X s and the lower right block is r x r satisfies the desired requirements.
Note that by construction, AT carries the span of {esi1,...,e4} to E, so
NT takes E to the span of {esi1,...,eq}.

We compute A*gA :

. A A c*\ (L 0\ (M —3LC*I
AgA = <—§12011 I> (0 12> (c I
_ A C*\ (AL —3C*Iy
T \—3LChL I ) \LL,C L

P+ #C*IQC) 0
- 0 I+ #120110*12 :

We now show that A := , where the upper left block

This shows that A*gA is block diagonal. To see that A is invertible, it suffices
to show each block of A*gA is invertible. Up to a constant, each block is
of the form I + L, where L has norm less than 1 by our choice of A. This
implies that I + I;L is invertible (with the appropriate dimensions of I in
each block), so there is a matrix D such that (I + I;L)D = I. Hence by
multiplying both sides on the left and right by I; ,we have (I; + L)DI; = I,
so I; + L is invertible, as desired. O
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Proof of Theorem 1.1. We choose an admissible coframe (6,64) on @ near
f(p) adapted to an admissible coframe (¢, §) on M and denote by (w,’s) the
second fundamental form of f relative to this coframe. Since the mapping f is
(k, s)-degenerate near p, we have that the dimension of span{wvf gy 2 S
t <k} isr = d — s near p. We introduce some notation; the indices *, # run
over the set n+1,...,n+ r (possibly empty) and the indices 4,j run over
theset n+r+1,...,N.

We now fix «, 3 and identify (waaﬁ(p)) as a vector in CN™". We apply
Lemma 5.1 with g,; as the matrix g and after the above identification, we
let £ = span{w.” 2SS k}. This produces a smooth matrix-valued

Y1oY23Y3
function A. We change basis (only on the normal space) via

gnt1 §n+1
. = A .
oN N
then we have
(5.1) ~ .
span{w% gy Ly 2 < < k} = span{Ly}, and wv}] gy =0y 1> 2,

We now relabel and omit the tilde notation. Note that our Levi form on the
normal space is no longer necessarily constant, but does satisfy at each point
the conclusion of Lemma 5.1, so gu; = 0. Also, we still have the relations
f(0%) =0 and g,53 = g,5- Note that the inverse of a block diagonal matrix
is block diagonal, so gP has the same form as g4 5.

Because w #] is a 1-form on M, we have

(5.2) ol =af 0t +0] 07 +a] 0
for suitable coefficients.

Now by the definition of covariant derivative, we have

J _ J i A J # ~ g
Vw% Y2yYs e dw'h Y233 Ve —l—w% Yoiyzye Wi +w’yl 'yz;'va~-~'ytw#
t

—_— J L M
§ : Y e vas e v
g=1

so by (5.1) we have

J L # ~J
Vw% Yarvsre Py vaivaeye W
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This implies that

J _ L # ~J
Wl yaryseyen = Ymi yeiva e YE

and because the left side is zero we have

# ~ 7
(5:3) Yy masyse Y o T 0.

Now if j,u are fixed and w #f " =% ( for some # then pick r independent

vectors with r components (w , make a matrix B with these as the

’Yf ’72;’}’3"'%)
rows and let v be the vector (@ #] u) as # varies. Then Bv = 0 contradicting

independence of the rows of B. This implies that
(5.4) @], =0

Now applying Proposition 4.1, and noting that, by Equations (3.5) and
(5.1) we have &y’ =0 and 7* = 0, we find

(5.5) ¢4 =DJ0, ¢ =DJo"+ Eio,
and
(5.6) 0. = o, + D0, oF =D For+ E#9.

Next, we differentiate qgaj and compute mod 6 to obtain
do) = bajg“pé“ A" mod 6

On the other hand, we may compute dd;aj mod 6 using the structure Equa-
tions (4.1). We have

dgf)ajEgbaA/\qu]—f-i@a/\gﬁj—iqba/\ej—i(;ajgf)A/\eA—%l/J/\e—l-(I)aj
E({Sf/\({&j%—i@oé/\(ﬁj mod 6.

We note that in the structure equation above the third term is zero because
the pullback of #7 vanishes, the fourth and fifth terms are zero because of
the indices of the kronecker delta, and the last term is zero because of the
vanishing pseudoconformal curvature of the target hyperquadric.
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We expand the above to obtain

Ao = 0 NG + o NdJ + b N +i00 A
—$#A¢#+ﬂ A
#H“Acf)j iqgj/\gaAGA mod 6.

In the second equivalence, we used Equation (5.5) and computed mod 6,
and in the last equivalence, we used both Equations (5.5) and (3.5).
Now we may put these equations together and group terms to obtain

5.7 &7 0" N b ] =i(garD,) + gus D)0 A 07 mod 0.
# 122

ap

By Proposition 4.1 and Equation (5.2), we compute b #Z and identify the
coefficients of 0¥ A 67 to obtain

d}a#“d}#j 1 = Z(Q&DDHJ + gMDDaJ)

This holds in a neighborhood of p, so we now work at a point ¢ close to p.
Let

v
_zY,
14

o,

fu(z) =0 7 29" and gu(z) =w
4 o 4

~J o~ J oop o~ J
where Wi =wg #170 +w Wz 6. Then we have that

= i(gar D,/ + guo D)) 2" 22"
= (z, z>g(iﬁujz" +iDJ2%).

Therefore by Lemma 2.1, since # runs over an index set of size r and by
assumption r = N —n — s < n, we have

(5.8) o, @i, =0

This implies that gm—,f)“j + g#,yf?aj = 0. Let a = p and choose v such that
Jai 7 0, which exists since no row is completely zero. This implies D, = 0,
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o)
(5.9) b =0, ¢ =E.
Combining the structure equation for dqgaj with the above result yields
0= NGJ +i00 AP —ida A6,

We only consider those terms containing a * A 6 and discover, using Propo-
sition 4.1 and Equation (5.2), that

0=, N}
= (wo 0" + DFOY A (@] 0"+ 0] 07+ (@] o+ DJ)0).

(5.10) 0=w, (@] o+ DJ)

Now we would like to show that gZ;#Z = 0, so since gb# = w# 07+ (A#j ot
D #])0 by Proposition 4.1 and Equation (5.4), it suffices to show

# ~ g J WA
(5‘11) Wyl yapyam@# 5 = Yy yayse ( Wi o D#) =0, t=2

by the same reason Equation (5.3) implied (5.4).
Before proving (5.11), we first wish to show that @ # 7y 18 @ sUm of mul-

tiples of the Levi form. We differentiate the expression for ¢> i in Proposition
4.1, set it equal to the corresponding structure equation, and compute mod
0 to obtain

b4 NGJ =dw + DJgus0" N7

We use Equation (5.9) and Proposition 4.1 to simplify the left side and
Equations (5.2) and (5.4) to simplify the right side mod 6. This yields

G NOJ =dw [, NO"+ 0] Ld0” + (@& ggus + D.Jgun)0" N 07
We now only consider terms involving 0* A #”. Hence we now have

(Ggf 075 — G @4 5)0" N 07 = dw
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After using the structure equation from (4.1) for df”, Proposition 4.1, and
simplifying, we note that do® = —w,° /\ 6v mod 0, so the coefficient of 6* A

6” in the expression @ 4 adGO‘ is —w # awpY,. Hence we are left with the
equality
(Ao )= 05504t o+ 04f 5207, = @ 95 = =@ 09w + D f guo).

However, the left-hand side equals @ #] sy SO w #f py 18 @ sum of multiples

of the Levi form. We now covariantly differentiate Equation (5.8) and recall
that Vg, = 0 to obtain that wwfﬁ%m”md)# 5 is a sum of multiples of the
Levi form, so by using Lemma 2.1 as in the derivation of (5.8), we conclude
Wat iy @ #Z - = 0. This proves that the first expression in (5.11) vanishes.

Now We examine the same identity but this time look at coefficients

of 0" A6 so we work modulo 8 A 6% and 6% A 6°. Since d>#—w +D]c9

we have dgb ) = dw# +dD J A§. On the other hand, we use the structure
Equation (4.1) and simplify, yielding the identity

¢>#/\¢a = d(wy 0+DJ) NG,

so we rewrite the left-hand side using Proposition 4.1, simplify, and collect
coefficients of 6 A §. This gives

8#(@#]0+D#])+wa]u(w#a0+D#) w# ,u( a0+D]) 07

which implies that (@ #] o+ D #Z );u is zero. (Here, the operator 0, is defined as
follows: 0,,h denotes the coefficient in front of 6 in dh, i.e., O, h := (dh, L,).)
Therefore all higher order covariant derivatives in the directions 6%, 67 are
zero, so by Lemma 2.1, this implies that the second expression in Equation
(5.11) vanishes. Hence we now have that gb I =0.

Since an = 0, we examine d¢a and use the structure equation and our
previous results to obtain

0= NG +ifa N
=i, A (E70).

This implies that 7 = 0, so ¢J = 0 also.

So far, we have shown that (% = d) # ¢J = 0. We choose an adapted
Q-frame (Zp) on @ near f(p). We can choose (Z)) corresponding to our
coframe (6, #), such that the following relations are satisfied (see the second
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row of Equation (4.7)).
M) =—iga, L =08 +6510° T =2i0,.
First, note that
I, = 2i0; = 2i01g,4; = 0

because 6% = 0 on M and ga; = 0.
Next, we see that

0= —ig; = —idAgx; = —i0%ga; — 10" gg; — id'gy;.

The first term in the above sum is zero because of the indices of the Levi
form. The second term is zero again because of the indices of the Levi form,
due to our change of basis at the beginning of the proof. The third term is
zero because qb’ = 0.

Now we analyze II,%, noting that 5]-0‘ = 0 and using the symmetry rela-

tion ggjg = —qﬁﬁj We have
= 0, = b;50" = —03;0" = —5"94,9" =0

because g5; = 0 unless A is in the range of j, and then qgaj =0.
We perform a similar analysis of Hj#.

#_g#_ 3B, A _
;7" =} =—d4 959" =0,

because gp; = 0 unless B is in the range of j, gA# =0 unless A is in the
range of #, and if both of these cases occur, then ng i=0.

This shows that II, ® =0unlessQ € {n+r+1,..., N} Therefore, since
the Maurer—Cartan forms are defined by dZy =11, ZQ, we have

(5.12) dz; =11, Z;,

expressing that the derivatives of the vectors Z; are linear combinations of
Z; at each point. The proof now concludes exactly as in [9], Section 9. [

6. Dimensions of FE, for embeddings

We now state a theorem which relates the dimensions of the Ej for two
embeddings. To simplify notation, we write w? where a € {1,..., N —n}
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rather than w%"™ for the second fundamental forms of the mappings. The
proof is given in Section 7.

Theorem 6.1. Let M C C™*! be a smooth Levi-nondegenerate hypersur-
face of signature | <n/2 and p € M. Let fo: M — QlNO and f: M — Q{Y
be smooth CR mappings that are CR transversal to vao at fo(p) and Q;,V at
f(p), respectively, and No < N. Fix an admissible coframe (6,0%) on M and
choose corresponding coframes (é,@oA)A:LM,NO and (é,éA)A:Lm’N on va"
and Q{Y adapted to fo(M) and f(M), respectively. Let (d’},y‘f 72),1:1,”.71\70,”
and (w,y‘f 72)a=1,‘..,N7n denote the second fundamental forms of fo and f,
respectively, relative to these coframes. Let k > 2 be an integer and assume
that the spaces Ej(q) and E;(q) for2 < j <k, are of constant dimension for
q near p. Then for each k,

(a) If L=n/2 orl' = N/2 or f is side preserving, and if either (Ngy —on) +
"= <l or (N=0U)—(n—-1)<l, we have dim(E}) < dim(E}) +
min(l’ — I, (N =1U") = (n = 1)).

(b) If f is side reversing and if ' < n, we have dim(Ej) < dim(E‘k) +1 -
(n—1).

We may now prove Theorem 1.2 (assuming Theorem 6.1). We use the
notation of Theorem 6.1.

Proof of Theorem 1.2. Recall that u(M) denotes the CR complexity of M
as defined in (1.2). Let No =n+ pu(M) and fo: M — QfVU a CR transver-
sal CR map (whose existence is guaranteed by the definition of pu(M)). If
l=mn/2, or f is side preserving, we notice that I’ >l and N —1' > n —1[ by
Proposition 3.1. Next, we apply Theorem 6.1. Since dimFy < (Ng —n) +
min(l’ — I, (N —n) — (I' = 1)) for all k, the degeneracy of f is at least (N —
n) — (No —n) —min(l’ = I, (N —n) — (I' = 1)), so if s denotes the degener-
acy of f at a generic point on M where f is constantly (k,s)-degenerate
for some k, we have s> (N — Ny) — min(l’ — I, (N —n) — (' = 1)). Since
(N —n)—s<(Nog—n)+ (I'=1) < n, we may apply Theorem 1.1 to obtain
the desired conclusion in Theorem 1.2 (near a generic point). We note here
that it suffices to prove that the image of f is contained in the complex plane
P in the neighborhood of some point on M to obtain the full conclusion.
If f is side reversing, we notice that N — 1’ > [ and I’ > n — [ by Propo-
sition 3.1. We apply Theorem 6.1 again to see that the degeneracy of f is
at least (N —n) — (No —n) — (I' = (n —1)). Denoting the degeneracy by s
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again, we have s > (N —1' — 1) + (n — Np). Since (N —n) — s < (No —n) +
! — (n—1) < n, we may apply Theorem 1.1 to obtain the desired conclusion
as above. ([

A key ingredient in the proof of Theorem 6.1 is the Gauss equation for
the second fundamental form of the embedding. A more general and precise
version is stated and proved in [9] where it appears as Theorem 2.3. The
statement here is the same as Lemma 4.3 in [2].

Lemma 6.2. Let M C C"*! be a smooth Levi-nondegenerate hypersurface
of signature | < 5, f : M — Q{Y c CN*1 g smooth CR mapping that is CR
transversal to QZJY along M, 1 <1, and waaﬁ its second fundamental form.

Then,
b
0= SaB/u? + gal;waauwﬁ 17 + aBui»

where S, 5, is the Chern—Moser pseudoconformal curvature of M and T3,
is a conformally flat tensor.

We shall need the following lemma regarding conformal flatness of cer-
tain covariant derivatives of the second fundamental form. This lemma
appears with proof as Lemma 4.1 in [2].

Lemma 6.3. Let M, f, and wa‘lﬁ be as in Lemma 6.2. Then the covariant
derivative tensor w," 5.~ is conformally flat.

It will also be necessary to know how covariant derivatives of the second
fundamental form commute. Given a CR embedding f: M — M, we now
recall some facts about the pseudoconformal connection on M pulled back
to M. Suppose (6,604) is an adapted coframe for the pair (M, M) We use
the same notation as in the Preliminaries section. We denote with a ~ the
pseudoconformal connection forms on M pulled back to M, where the indices
run from 1 to n. Recall that (w,w®, w%) = (&, 0%, &%) = (0,0%,60%) and & =
0 on M. We do not expect (¢ﬁ“,¢a,¢) and (ggﬁa’ésa’@[,) to be equal, but
since wg® = wg® and 7% = 7%, Proposition 4.1 implies

éﬂa _ ¢6a +Cﬁa9, éa _ (ba _i_Cuaeu +Fo¢9,
(6.1) ) = +iF,0" —iF,07 + A6,

C3*=Dyg*—Dg* F*:=E*-E° A:=B-B
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and ﬁﬁa,Ea,E are the analogs for M of the functions from Proposition
4.1 restricted to M. We also record the following expression for C, 3 which
appears as Equation (6.8) in [9].

C o (Sa aﬁ + w MaB) i(S’aa‘u‘u —i—wu‘lyw”ay)gag
af = n+2 2n+1)(n+2)

(6.2)

The following is a more specific version of Lemma 4.2 in [2], where we
give an explicit formula for the part which is not conformally flat.

Lemma 6.4. Let M, f and w,’; be as in Lemma 6.2, and p € M. Then
for any s > 2, we have

a o a - _ W a
Y paiyseveaB T Yo paiysevaBa T § :docﬂ(w% )w% Y2iY3 Vi — 1YY
j=1

(6.3) B Caaﬁc ’Yf V253 Ys?

where equivalence is modulo a conformally flat tensor, d, (wvu) is the coef-
ficient of 0% A 08 in dwy', and C° e is given by

Caaﬂc = wl)aa pcﬁ + 15 D,Ba

Proof. We use the pseudoconformal connections introduced in Section 4. We
observe that the left-hand side of (6.3) is a tensor, hence it is enough to show
(6.3) at each fixed p € M with respect to any choice of adapted coframe near
p. By making a unitary change of coframe 6% — uﬂaﬁﬁ and 0% — u, 6% in
the tangential and normal directions, we may choose an adapted coframe
near p such that wa’ (p) = w,’(p) = 0 (Lemma 2.1 in [15]). In this coframe,
the left-hand side at p is equivalent, modulo a conformally flat tensor, to
the coefficient in front of 8% A #° in the expression

u,,a e 2 a
Zdw%‘ w'Yl V258 Vi1 Y410 s w’Yl ’Y%’Ys“'%dgbc :
Jj=1

Hence we would like to show that the coefficient in front of 8 A 67 in do,”
has the form of the C’a . given in the statement of the Lemma.
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Note that we may work mod 6 because we are only looking for the
coefficient in front of % A 5. The structure Equations (4.1) give

dp," = @ N G, — 16, A OH.
Now using Proposition 4.1, and Equation (3.3), wgj +wip = 0, we have

_ A
wcp = wcAgp

Qgcp

_ A
=-wjz.9°
= —w, " gpeg™?

_qspdgﬁugcli'

Hence the coefficient of 6% A 6 from ¢.” A gZ;pa is wﬁaawpcg.
We next examine i9,%¢, A 0% and work mod 6. We notice that

10,8, A OF = 16,90 A (9,10™) = 18,°0" A (909,

due to the form of the matrix (g). We substitute for ¢” using Equation (6.1)
and use Proposition 4.1 to obtain

18,20 A (gus (67 + C,707 + F70)) = i6,°0" A (g5 (1° + (D7 + C,7)07).

We notice that by Equation (3.2), 77 will be a combination of only forms like
07, so we may ignore it when searching for coefficients of 6% A 68. We also
note that D B‘i =C BE‘ +D B‘S‘ by (6.1), so after lowering an index, we find the
coefficient of iécag?)u A 0" in front of 6% A 67 is exactly (wﬁaaprB + iégﬁga),
as desired. 0

The following linear algebra Lemma will be useful

Lemma 6.5. Let {wi,...,wy,} and {vi,..., vy} be vectors in C", such
that (w;, wj)" = (vi,v;). Here, (x,y) denotes the standard inner product on
C™ and (z,y) = y*Irx, where Ij is the n x n diagonal matriz with first
k entries equal to —1 and remaining n — k entries equal to 1. Let W =
span{wi, ..., wy} and V =span{vi,...,vn}, then dim(W) < dim(V)+
min(k,n — k).

Proof. Let wj,,...,w; be a basis for W and define a linear map ¢ from
W to V by ¢(w;,) = v;,. Suppose = = Zle a,w;, is in the kernel of ¢, so
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Zf’le a,;v;, = 0. If we let a denote the coordinate vector of x, we have

(@, 2)" = a" ((wi,, wi,)")a = a" ((vi,,vi,)) a = ($(x), $(x)) = 0.

This shows that the kernel of ¢ is an isotropic subspace of C™ with respect to
(+,+)', which implies that the dimension of the kernel is at most min(k,n — k).
The result follows by standard linear algebra. O

7. Proof of Theorem 6.1

We first prove by induction that for all j, k > 2, we have

o a b _ o o a
(71) 9ab¥ys yaiysy;Wan Gosasae —  JabWyr vaivs;

&
where equivalence here and in the rest of the proof means that the sides
of the equation differ by a conformally flat tensor. We then show that such
conformal equivalence is in fact equality and apply Lemma 6.5. We induct
on the sum of the indices. By subtracting the Gauss equation for w. %  from

Y1 Y2
the corresponding one for w.®. , we obtain
Y1 Y2

(72) gagw’yla'ygwd?&z = éal;&'yla'yg&j&f&w

since the pseudoconformal curvature tensor S, a,~,a, is computed using the
same coframe (6,60%). This establishes the base step of the induction. We
now assume Equation (7.1) with j + k£ < p and we wish to show the same,
where j + k = p+ 1. We will demonstrate the case where k increases by 1.
The case where j increases is similar and left to the reader. We differentiate
both sides of (7.1) in the #7= direction, note that covariant derivatives of
conformally flat tensors are conformally flat, and obtain

., a b . a b
GabW, ’72;73--"Yj54k+1w541 Qo303 QA + 9abWn, 72;73"'7_1w541 Qa3 Qg Qg 41
o B o B

__ o o a o o g
- gabw% 72%"/3"'%56k+1w541 Qo3+ Qp + gabw'71 72?’73"'%'&)561 Q203 O Q1 ”

The next lemma shows the equivalence of the first terms on each side of the
above equation. We then subtract to finish the induction and demonstrate
Equation (7.1) for all j, k > 2.

Lemma 7.1. With the same setup as above, we have

_,a b _ o o oa o b
Jab¥, voyys ;@1 Yan @ziasar —  9abWyn vaiyseoyy Qg Ya dosas-a,
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Proof. We induct on s, the position of the index aj41. When s = 3, we need

b

Qy Q2303 Qy

b

4 — e _oa o
JabWn, 72;54k+1“/3"'%w541 Aziazay — YabWy, 72;ak+1'73"'7jw

This follows immediately from Lemma 6.3, which implies that both sides
are conformally flat.
We assume that the desired equivalence holds for s = r, where r < j,
that is,
_ ., a b
Jab Wy iy e -1 Gy Yl i di

. o a o b
gabw’h V253 Vr— 1 Qe 1YY wEh Q2503+ Qi)

(7.3)

and we would like to show the same when s = r + 1:

., a b
Jab%ry, 'Y2§73""Yr54k+177‘+1""Yjwal Q2303 Q
=80 @ o b
= Yab%rys vaivs e Y@y 1Yesr oy Yan Gojaseed

(7.4)

By Lemma 6.4, we have

a

Wy yaiyse Y G
r—1
— a § : B I a
= Wy yaiys@rraye + d%‘akﬂ (w’Yq )w'Yl V2573 Vg =1 Yq 41 Yr—1
g=1
(0P, ., Q d c T2 a
(7‘5) (g 9ed¥o +,Wp &k+1)w'Yl V253 Yr—1 I(Dak+17r)w'yl Y2573 Yr—1
We take covariant derivatives of both sides of (7.5) in the §7+, ... 0%

directions successively, multiply by gaéwafaz;a3~~-akv and analyze each term
on the right-hand side of the resulting equation. We will show that by (7.3),
and Equation (7.1) with j + k < p (the induction hypotheses in the proof
of Lemma 7.1 and the proof of Theorem 6.1 respectively), each such term
must be conformally equivalent to the corresponding term with the ring
superscript. This will demonstrate (7.4) and hence conclude the proof of
Lemma 7.1. This is because we may also apply Lemma 6.4 to w.." .\ .y 5.,
take covariant derivatives in the 67+!, ... 07 directions, and multiply by
éa?;d)dl QoA
After taking covariant derivatives and multiplying by ¢,;w
the_ first term on the right-hand side of (7.5) will be gagw%“%%_,,Wr_ldwwr_,,,yj
af Gn:as--ay,» Which is conformally equivalent to the same term with the ring
superscript by (7.3). We also notice that after taking covariant derivatives

and multiplying by gagwfb the second term on the right-hand side

Oy Q2303+ Ol

_b J _
Q] Qg Qg Q)
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of Equation (7.5) yields many terms, each of which is a product of covariant

. . B n
derivatives of dy,a,.,, (wy, ), covariant derivatives of w % .\ . . .,
b

and g,;Wa, a,:a5--a,- e notice that expressions of the form d,, 4, L (wy)
are intrinsic to the manifold M and thus all covariant derivatives will be
the same as those with the ring superscript Also, covariant derivatives
Of W\ spressn o MLtiDlied by g5ws0 5, 5. 4, Will be the same as
those with the ring superscript by (7.1), since r + k < j+ k < p.

The third term on the right-hand side of Equation (7.5) can be written

as
d
(go—pwU Yr ) (gc(iw’ylc"/g;'y;;”"‘{r_lwﬁ C_Yk+1 ) °

We observe that (gcngf,m,yg._%ilwﬁ‘Z&Hl) is conformally equivalent to the
same with the ring superscript by (7.1), and hence covariant derivatives

will be also. Also, takmg covariant derivatives of the term ¢7”w, % . and

multiplying by gabwa1 aq:as-a, Will yield terms conformally equivalent to
those with the ring superscript, again by (7.1) and because ¢?? is intrinsic
to M.

In the last term on the right-hand side of Equation (7.5), we first show
that ﬁ@k 17, 1s conformally equivalent to the same with the ring superscript.
Observe that by Equation (6.2), we have

i _
Cop = —— [u)a oo JeBa w”’ay].

B on+ 1) rY

Here we have used the vanishing of the pseudoconformal curvature of the
target hyperquadric. We may write this as

C == i nv _,,a E aBg,UfngB _,,a b
af — n+2 g (gabw Wy B) 2<n + 1) (gabwu vWs B) .
Equation ) implies conformal equivalence of both terms of the form

(7.2
(gabwu o '71)5) with the corresponding terms with superscripts. Since DB& =
5" +D & (see (6.1)), and the term Dﬁd is intrinsic to M, we have

that a1y, 1S conformally equivalent to its counterpart with the ring
superscript.

Now we observe that after taking covariant derivatives and multiplying
DY GaiWa' agias-a, i1 the last term on the right-hand side of Equation (7.5),
every resulting term will be a product of derivatives of ﬁ@k +17,.» derivatives of
Wey, ' iygeeeyep » a0 gabwaf Gg:as--ay- Lhe derivatives of Da, 117 Will be confor-
mally equlvalent to the same with the ring superscript, as explained above,
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and the remaining terms will be conformally equivalent to their counterparts
with the ring superscript by (7.1). This concludes the proof of Lemma 7.1 [

We now return to the proof of Theorem 6.1. We have shown that

b —

o a _ o o a
GabWr, 72;’73”'%'(")071 Qgiozay — YabWy, Y233

where the equivalence is modulo a conformally flat tensor. Our next step is
to show that this equivalence is in fact equality. We will demonstrate this
equality in the case where [ =n/2 or f is side-preserving. To do this, we
make use of Lemmas 2.1 and 2.2. We first show equality in the case where
j = k using Lemma 2.2. At the end of the proof we mention the side-reversing
case.

First, suppose (Ng —n) 4+ (I’ = 1) < 1 and consider the following expres-
sion

., a b e _oa o b —
JabWy, yaivs e Wan Gzidsan — Jab%yi vaivs v Wan Goidsan = 0.

(7.6)

Let ¢ := (¢!, ..., ¢"), multiply Equation (7.6) by ¢71¢% ...¢" (% and sum.
Since the right-hand side of (7.6) is conformally flat, we have

-l No—n N-n
D WHOP = D> WO+ D wWHQP
a=1 b=1 a=l'—1+1
l n
4O - XK+ X 1),
i=1 Jj=l+1

where  w*(¢) = w, %,y (o O, () =@y, 0, and
A(¢, ) is a polynomial is ¢ and ¢. Since we have (Ng —n)+ (I' —1) </,
Lemma 2.2 implies that A((,() is identically zero, so we have the desired
equality, which we may rewrite as

N—-n I'—1 No—n
o b
(7.7) D WO =l OF + D IO
a=l"—1+1 a=1 b=1
Now suppose that (N — 1) — (n — 1) < I. We consider the expression
T o b . a b =0
9abWyi yoiys W Gnsds -  JabWyi vy Wan Goiasan = O

By noticing that (N —1') — (n—1) = (N —n) — (' = 1) and performing a
similar argument we use Lemma 2.2 to obtain the desired equality. The
details are left to the reader.
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Now we will show that the conformal equivalence is actually an equality
in the expression

o ; _ b
(78) JabWy1 yaiysy; Yan Goiasan — gabw’}’l Yaiysy; Yo

where without loss of generality, we assume that j > k. We first assume that
(No —n)+ (I'’ = 1) < and rewrite Equation (7.8) as

=l —

b
_E :w% Y23Y3+ 'ijal Q03+ QA E : 'yl Yoiysey; P azag-ay
a=1 b=1
N—n
c c —
(79) + z : w'Yl ’72;’73""Yjwd1 Qo303 Q. 0.
c=l'—1+1

We apply a lemma of D’Angelo (see [8], Chapter 5) to Equation (7.7) to
obtain the existence of a unitary matrix U, such that

w 1
Q1 20O U—I+1
Q1 Qo203 Qy
=1
Q1 Q2503 Qg
o 1
W, s =
a1 Q03O
o No—n
a 2,3 Qg
w N—n
0 Q1 Q2503 Qg

Note that we are working at a fixed point here. This implies the existence
of constants A,¢ and B¢, with 1 <r <!’ —land 1 < s < Ny — n, such that

=0l

_ AcC D ce. §
= A w Gigids-ap T B, Wa,  agaz--an

7_1
(o731

Ql
9
“

Ql

where I’ =1 +1<c¢< N —n, and we are using the summation convention
for the indices r and s.
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We substitute the above into Equation (7.9) to obtain

-1 No—n

a a o b o
Z Yoy yaiysy; Yo Gnsase o Z Wyt yaiysey; Ve
a=1 b=1

Q2303 O,

N—-n
2 c AC, T R Co°o S
+ w'yl Y253 Y5 (Ar wo’q Q2503+ Qi + Bs w&l 072;5!3'“5%)

=0.
c=l'"—1+1
We regroup the terms in this expression, which yields
-l N—n
c A C r T
Z Z w’h Y257Y3 Y5 AT’ B w'YI Y257Y3 Y5 Wa, Q33O
r=1 \c=l'—1+1
No—n N—n
C R C °o 8 o 5 —
+ z : z : w’}’l ‘/2§73"'“/st B w’Yl Y233 Y5 Wa, Qo303 Q. — 0’
s=1 c=l'—14+1

where we are not using the summation convention for the indices r and
s. Since the number of terms in the sum on the left side in the preceding
equation is strictly less than n, we use Lemma 2.1 in the same way that we
used Lemma 2.2 previously to conclude that the conformal equivalence is in
fact an equality. We then recombine all terms to get the desired equality. In
the case where (N —1') — (n — 1) < I, we apply the lemma of D’Angelo as
above to obtain constants A’ and B?, such that

w T
1

_ Ar, & o 5 _ ps . ¢
a &2;&3~~~dk_Acw6q IINTs PO T and Wa, @2;5&3"'&k_BCw@1 Q3@ A

where 1<r<l'—1, 1<s<Ny—n, ' -1+1<c<N-—n and we are
using the summation convention on the indices » and s. We then substi-
tute into (7.9) as before to obtain the desired result. The details of this are
left to the reader.

We embed the vectors representing the second fundamental form of fj
and its derivatives into CV =" by appending the appropriate number of zeros.
Thus we have shown that all inner products of derivatives of the second
fundamental form of f with respect to g,; are equal to the corresponding
inner products of derivatives of the second fundamental form of fy with
respect to égg. Lemma 6.5 gives the desired inequality relating the dimension
of F, and E.

In the side reversing case, the argument is similar except that we need
only consider the analog of the negative of Equation (7.6). This is because
min(N ="' = ,lI'! = (n —1)) =1I' — (n — ). We leave the details to the reader.
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