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Null injectivity estimate under an upper bound on
the curvature

JAMES D.E. GRANT AND PHILIPPE G. LEFLOCH

We establish a uniform estimate for the injectivity radius of the
past null cone of a point in a general Lorentzian manifold foli-
ated by space-like hypersurfaces and satisfying an upper curva-
ture bound. Precisely, our main assumptions are, on one hand,
upper bounds on the null curvature of the spacetime and the lapse
function of the foliation and sup-norm bounds on the deformation
tensors of the foliation. Our proof is inspired by techniques from
Riemannian geometry, and it should be noted that we impose no
restriction on the size of the bound satisfied by the curvature or
deformation tensors, and allow for metrics that are “far” from the
Minkowski one. The relevance of our estimate is illustrated with a
class of plane-symmetric spacetimes which satisfy our assumptions
but admit no uniform lower bound on the curvature not even in
the L? norm. The conditions we put forward, therefore, lead to a
uniform control of the spacetime geometry and should be useful in
the context of general relativity.

1. Introduction

In this paper, we consider time-oriented, Lorentzian manifolds satisfying cer-
tain geometric bounds and, by suitably adapting techniques from
Riemannian geometry, we derive geometric estimates about null cones, that
is, the boundary of the past of a point in the manifold. Our main purpose is
to investigate the role of a one-sided bound on the curvature, as opposed to
two-sided or integral bounds and, specifically, to establish a uniform lower
bound on the injectivity radius of null cones.

In the recent work [15], Klainerman and Rodnianski derived such
an estimate for the null injectivity radius of a four-dimensional (4D)
Ricci-flat Lorentzian manifold in terms of the L? norm of the curvature
tensor on space-like hypersurfaces and additional geometric quantities. Null
cones play a central role in the (harmonic) analysis of non-linear wave equa-
tions and having a good control of null cones allows one, for instance, to
construct parametrices and tackle the initial value problem, as explained
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in [15, 16]. Recall also that Chen and LeFloch [9, 17] covered Lorentzian
manifolds whose Riemann curvature is bounded above and below. On the
other hand, imposing solely an upper curvature bound raises new conceptual
and technical difficulties, overcome in the present paper.

Our aim is thus to identify minimal conditions required to obtain an
injectivity estimate, without a priori imposing the Einstein equations. This
is important if one wants to cover large classes of spacetimes which need not
be vacuum and, even in the vacuum, this investigation should contribute to
identify optimal conditions. Such an investigation should be useful to analyze
convergence and asymptoptic issues, such as those studied in Sormani and
Wenger [21].

We introduce here a new technique of proof that uses only a one-sided
curvature bound and relies entirely on differential geometric arguments. In
particular, we avoid assumptions concerning the existence of coordinate sys-
tems in which the metric would be close to the flat metric. We state the
assumptions required for a null injectivity estimate directly in terms of geo-
metrical data, especially an upper bound on the null curvature and a bound
on deformation tensors and lapse function. In turn, this places our results
more in line with standard injectivity radius estimates in Riemannian geom-
etry, such as those of Cheeger [6], Heintze and Karcher [14] and Cheeger
et al. [8].

The present paper builds on an extensive literature in both the Rieman-
nian and the Lorentzian settings and we especially gained insights from the
papers by Ehrlich and co-authors [3-5, 10]. Recall that sectional curvature
bounds in the context of Lorentzian geometry were studied by Andersson
and Howard [2] and allowed them to derive various comparison and rigid-
ity theorems. More recently, Alexander and Bishop [1] have derived trian-
gle comparison theorems for semi-Riemannian manifolds satisfying sectional
curvature bounds.

Furthermore, the results in the present paper are relevant to, and pro-
vide a set-up for analyzing, the long-time behavior of solutions to Einstein’s
field equations of general relativity. Our presentation is directly applicable
to identify all geometric information required before imposing the Einstein
equations.

This paper is organized as follows. In Section 2, we begin with some ter-
minology and state the main result established in this paper; cf.
Theorem 2.2. In Section 3, we derive a lower bound on the null conjugacy
radius of a point, by analyzing Jacobi fields along null geodesics and using,
first, an affine parameter and, next, the time parameter of the foliation.
Our main estimate about the injectivity radius is proven in Sections 4 and
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5. Finally, in Section 6, we exhibit a class of spacetimes satisfying all the
bounds assumed in our main theorem but no lower curvature bound.

2. Terminology and main result
2.1. Lorentzian manifolds endowed with a foliation

Let (M,g) be a time-oriented, (n + 1)-dimensional Lorentzian manifold
(without boundary). We write (X,Y) = (X,Y), := ¢g(X,Y) for the scalar
product of two vectors X,Y with respect to the metric g. Throughout, we
fix a point p € M and assume the existence of a set M; C M containing
p that is globally hyperbolic and geodesically complete and, therefore, foli-
ated by the level hypersurfaces of a time function ¢: M; — I. The latter is
normalized to be monotonically increasing toward the future and onto an
interval I C R. Moreover, we denote the level sets of this function by H;
(t € I) with 0 € I and p € Hy and, when convenient, we will assume the
normalization I = [—1,0].

From the exterior derivative of the function ¢, we define the lapse
function of the foliation, n: M; — (0, +00) by the relation

(—g(dt,dt)""/?,

n:

where g¢(dt,dt) is the (2,0)-version of the metric acting on the one-form
dt. (Notationally, we do not distinguish here between the (0, 2)- and (2,0)-
versions of the metric, denoting both by g.) We define the future-directed
unit normal vector field T on M; to be the unique vector field on M;j
determined by the relation

g(T,-) := —ndt.

Since M7 is geodesically complete and globally hyperbolic, the hypersur-
faces H; are necessarily diffeomorphic (cf. Geroch [11]) and, more specifically,
we may introduce a diffeomorphism

Ot Ho— Hyy, t<0

whose inverse is determined by transporting any point g € H; along the
integral curve of T through ¢ to its point of intersection with Hy. The
manifold Hy inherits a one-parameter family of Riemannian metrics g; :=
oF (Q|Ht) (with ¢ € I), where g|y, is the induced Riemannian metric on the
hypersurface Hj.
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To state our other geometrical bounds, we require some additional
objects associated with the foliation. First, given p € M and the normal vec-
tor field T associated with the foliation, we define the reference
Riemannian metric on M; by

gr=9+29(T,-) ®g(T,-).

The metric gr can be used to define inner products and norms on tensor
bundles on M, which we denote by (-, )7 and | - |7, respectively. An addi-
tional geometrical object characterizing the foliation is the deformation
tensor, which is an element of the space of all symmetric (0, 2)-tensor fields
on My, defined by & := Zrg where £ is the Lie derivative operator.

While our statements are fully geometric, it will be convenient to give
proofs in local coordinates. Given any local coordinates {z'} on a subset
U C Hp, we may define a transported coordinate system (¢,2%) on the set
I x U C M; by translating points in Hy along the integral curves of the
vector field T'. In terms of these local coordinates, the Lorentzian metric
takes the form

(2.1) g =—n?dt* + g;jdz"dz?
where n is the lapse function. Then, gi(z) := ¢; (g (¢, d¢(2))da'dz?) (z €

Hyp) defines the relevant metric on Hy in local coordinates. In terms of this
transported coordinate system, we have

1
T=-0
n
and the reference Riemannian metric takes the local form
— 242 At dped
gr = ndt* + g;jdx'dz’.
Finally, the deformation tensor, @ has components
1
(2.2) =0, w4 =0mn, wmy= Eatgij
with respect to the transported coordinate system.
2.2. Geometric bounds

We are now in a position to state our assumptions on the foliation (and
the spacetime). On the initial slice, we assume a lower bound ¢y > 0 on the
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initial injectivity radius of the manifold (Hg, go) at the point p
(2.3) Condition (¢) : Inj(p, Ho, go) > to-

Recall that, when the manifold Hj is closed (i.e., compact without bound-
ary), a theorem by Cheeger [6] (see also [14]) provides an estimate for the
injectivity radius of Hp in terms of its diameter and volume and an (upper
and lower) bound on its sectional curvature. When Hy is non-compact, then
Cheeger, Gromov and Taylor’s theorem [8] provides an injectivity radius esti-
mate under an upper bound on the sectional curvature and a lower bound
on the volume of metric balls at p.

Concerning the lapse function, we assume that there exists a positive
constant K, referred to as the upper lapse constant, with the property

(2.4) Condition (K,): n<K, in the set Mj.

Importantly, we do not require a lower bound on the lapse, a fact that may
be of interest in applications. (See, for instance, [19].)

It is convenient to state the remaining assumptions directly in the initial
slice, as we now explain. Considering the past null cone N~ (p) from p and,
for t € I, we introduce the intersection of this cone with the slice H;

éﬁ ﬁ:.Af*(p)rWT{b

Considering the null cone N~ (p) C T,M in the tangent space at p and all
radial null geodesics from p, we denote by

Yy C N (p) CT,M

the set of points whose image (via the exponential map) lies in S, and we
denote their union by

N ()= | =

t<s<0

Observe that, for sufficiently small values of ¢t at least, the sets ¥; define
a foliation of N, (p). Finally, we define the image of the set S; in the slice
Ho by

S = ¢y ' (S) € Ho.
For sufficiently small ¢ < 0 at least, the set S; is topologically a sphere of
dimension (n — 1), and the set

N (p) = U St C Ho

t<s<0
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is (topologically) a closed n-dimensional ball. This set .4, (p) — the main
object of study in our analysis — is thus obtained by projecting on Hy the
null cone .4~ (p) (a subset of the spacetime).

In addition, let F;, (p) be the family of all (restrictions of) ¢-parametrized
radial geodesics 7v: [0,1] — N, (p) that originate at p from a null tangent
vector in N, (p). We also introduce the bundle TF;” (p) of all tangent vectors
to geodesics in F; (p).

Our main assumption is that the curvature operator is bounded above
along null geodesics. Given a causal vector X, we denote by Rm x : {X }l —

{X }J‘ the curvature operator, regarded as the linear map
(Rmx(Y),Y)y := (Rm(X,Y)Y,X),, Y e{x}'

Specifically, we impose that there exists a real constant Kg,,, called the
upper null curvature constant of p, with the property

Condition (Kgy,): (Rmx(Y),Y), < Kpm (Y,Y),,
(2.5) X e TF (p), Y € {X}".

In addition, there exists a constant K, > 0, the first deformation
constant, such that 7 is bounded with respect to the metric gr

(2.6) Condition (K): |7n(V.V)| < Kx(V.,V)p, V eT,M, qec M.

The final bound that we require relates to the properties of the null
geodesics when projected to the manifold Hg and is now stated in terms
of covariant derivative operators. Letting V9 and V be the Levi-Civita
connections of the metrics g, and gg, respectively, our final geometrical
bound is about the second deformation tensor, w, defined as the dif-
ference between these Levi—Civita connections

(2.7) w(X,Y):=VLY - VxY, X,Y vector fields on Hy.

We assume that there exists a constant K, referred to as the second
deformation constant, with the property!

Condition (K,,): |w(V,V)| < K, (V,V)r,
(2.8) V space-like or null, in the set M.

IThis condition compares the connection on the hypersurface and is thus quite
distinct in nature from the previous conditions.
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To conclude this section, we emphasize that there is no assumption that
our constants are small, merely that the geometrical quantities mentioned
above are uniformly bounded. In particular, we have not assumed that our
metric is in any sense close to the (flat) Minkowski metric, or that the curva-
ture of the metric ¢ is small. For instance, if the metric, and its connection,
are changing rapidly along the t-foliation (as in the “bump” example men-
tioned in Example 5.1, below), the values of the constants would be large.

2.3. Null injectivity estimate

As noted above, a given local foliation of the spacetime leads to a foliation
of (a subset of) the null cone, whose geometry is now investigated.

Definition 2.1. Given a point p and a local foliation H;, the past null
injectivity radius of p (with respect to this foliation) is denoted by

Null Inj™ (p)

and is the supremum of all values |t| such that the exponential map exp,, is
a global diffeomorphism from the pointed null cone N; (p) \ {0} in T,M to
its image in the manifold.

Theorem 2.2 (Null injectivity estimate). Fix any positive constants v,
Ky, Kim, Kr and K. Let (M, g,p) be a time-oriented, pointed Lorentzian
manifold such that, along some foliation defined in a subset My containing p,
the conditions (v0), (Kn), (Krm), (Kx) and (K) are satisfied. Then there
exists a real ¢ > 0, depending only on (the dimension n and) the constants
above, with the property that the past null injectivity radius of p is bounded
below by ¢, that s,

Null Inj~ (p) > ¢

In earlier works, injectivity radius estimates were established under an
L? curvature bound (Klainerman and Rodnianski [15]) or under a sup-norm
bound on the curvature (Chen and LeFloch [9]). The above theorem encom-
passes spacetimes not covered in these works and for which no uniform lower
bound on the curvature may not be available.

Note that (K gry,) is the only condition involving second-order derivatives
of the metric, while the remaining conditions involve zero- or first-order
derivatives. Most importantly, in Theorem 2.2, we do not assume a lower
bound on the curvature nor on the lapse function.
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To establish the above theorem, we must derive an estimate for the
largest value |t|, denoted by |t1], such that for all |¢t| < |¢1], the set N, (p) \
{0} is globally diffeomorphic to its image via the exponential map. It is a
standard matter [5, Theorem 9.15] that the null exponential map, expp} Ny,
(p), breaks down as a global diffeomorphism if and only if one (or both) of
the following possibilities occur:

e There exists a point ¢ € H, that is conjugate to p along a null geodesic
from p to q.

e There exists ¢ € Hy, such that there exist distinct null geodesics from
p that intersect at the point q.

This is quite similar to the situation on a complete Riemannian manifold,
where a result of Whitehead states that a geodesic, v, from a point p ceases
to be minimizing at a point ¢ if and only if either ¢ is conjugate to p along
and/or there exists a distinct geodesic from p to ¢ of the same length as .

Let us recall that in Riemannian geometry, there are therefore two key
ingredients involved in proving injectivity radius estimates (see, for instance,
[6]). First, one derives an estimate that gives a lower bound on the conjugacy
radius, i.e., the distance that one must travel along a radial geodesic from a
point before one encounters a conjugate point. Such an estimate is usually
found by a Rauch comparison argument, and requires an upper bound on
the sectional curvature along the geodesics.

The second ingredient required for an injectivity radius estimate is a
lower bound on the length of the shortest geodesic loop through a point in
the manifold (or the shortest closed geodesic, in the case that the manifold
is compact). Such an estimate generally requires different geometrical con-
ditions. For example, Cheeger’s lower bound on the length of the shortest
closed geodesic on a compact manifold [6] (cf. also [14]) requires a lower
bound on the sectional curvature and volume of the manifold and an upper
bound on the diameter.

We tackle the problem of determining an estimate for the null injec-
tivity radius on a Lorentzian manifold in a similar way. In the next sec-
tion, we consider conjugate points along null geodesics. A lower bound
on the null conjugacy radius for affinely parametrized null geodesics is
obtained under upper bound on the curvature along null geodesics (follow-
ing here [12]). We then translate this result in terms of the t-foliation. It is
at this point that our assumed bounds on the lapse and second fundamental
form of the t-foliation are required. The second issue, that of intersecting
null geodesics, is treated in Sections 4 and 5 in which the strategy of proof is
presented.
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3. Null conjugacy radius
3.1. Estimate based on the foliation parameter
We begin with a definition and our main result in this section.

Definition 3.1. Given a point p and a local foliation H; containing p, the
past null conjugacy radius of p (with respect to this foliation) is denoted
by

Null Conj™ (p)

and is the supremum of all values |t| for which the restriction of the expo-
nential map exp,: N; (p) — M is a local diffeomorphism onto its image.

Proposition 3.2 (Conjugacy radius estimate based on the foliation
parameter). Consider the null cone N~ (p) from a point p and assume
that conditions (K,), (Kgrm) and (Kx) on the lapse, curvature operator and
deformation tensor, respectively (i.e., (2.4), (2.5) and (2.6)) are satisfied. If
KRrm <0, then no null geodesics from p have conjugate points. If Ky, > 0,
then there exists a real v = L(FRm,fn, Kz) > 0 such that no null geodesics
from p have conjugate points for t larger than v and, specifically

v log( /K ) Fp >0,
Null Conj™ (p, Tp) > ¢ := n Kpm+m Ky
Z Ky =0.

To establish this result, we are going to derive, from the assumed curva-
ture bound, a corresponding bound on the curvature along affinely
parametrized geodesics. In Section 3.2, below, we will then follow Harris [12]
and estimate the corresponding conjugacy radius along affinely parametrized
geodesics. Finally, in Section 3.3, we then translate this bound into an esti-
mate for the conjugacy radius with respect to the t-foliation.

3.2. Estimate based on the affine parameter
We begin with the following result.

Proposition 3.3 (Conjugacy radius estimate based on the affine
parameter). Let vy be an affinely parametrized, past-directed null geodesic
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from the point p. Let K be a constant such that, along the geodesic -y, the

curvature operator with respect to v 1= Z—Z 1s bounded above by K, i.e.,

Rm (Y, X,7,X) < K(X,X), Xe{y}".

If K <0, then for all s >0 the point (s) is not conjugate to p along ~.
m_

If K > 0, then the point v(s) is not conjugate to p along ~y for s < N at
least.

In order to prove this proposition, we recall that conjugate points are
determined by the differential of the exponential map. This map is non-
degenerate at V' € T}, M precisely when all non-trivial Jacobi fields, Y, along
the geodesic vy with Y(0) = 0 are non-vanishing at the point exp, V. The
Jacobi equation is essentially a system of second-order differential equations,
and the behavior of its solutions may be controlled by comparison with
solutions of model differential equations.

Let v be a past-oriented, affinely parametrized, null geodesic from p. We
consider an arbitrary Jacobi field Y along ~, satisfying, by definition, the
Jacobi equation

Y"(s) + Rm(Y(s),7'(s))7'(s) =0,
Y(0)=0, Y'(0)#0,

where Y/ := V.Y, etc. It follows directly from the Jacobi equation and the
condition that Y (0) = 0 that

Therefore, if (7/(0),Y’(0)) # 0, then (7/(s),Y(s)) # 0 for s > 0 and hence
Y (s) # 0 for s > 0. Since such a Jacobi field cannot give rise to a conju-
gate point along v and without loss of generality from the point of view of
detecting conjugate points, we restrict our attention to Jacobi fields that are
orthogonal to /.

Since + is a null geodesic, the condition that Y L +/ allows that Y may
have a component parallel to 7. It is well known [3, pp. 562] that a Jacobi
field parallel to v leads to the index form along v having a degeneracy since
IlY,V] =0, for all V€ V| (¢). As such, the link between non-definiteness of
the index form and the existence of conjugate points is lost. There are two
distinct, but essentially equivalent, ways to dealing with this issue:
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(a) Uhlenbeck [22], Beem and Ehrlich [3] and Hawking and Ellis [13] con-
sider equivalence classes of Jacobi fields where Y7 ~ Y5 if Y7 — Y5 is a
multiple of /.

(b) Harris [12] imposes that Jacobi fields along v are “nowhere tangential”
to 7.

For our purposes, it is more convenient to follow the second approach. Recall
that Harris defines a (perpendicular) Jacobi field Y along a null geodesic v
to be nowhere tangential to v if, for any s such that Y (s) # 0, then Y (s) is
not proportional to 4/(s). He defines a Jacobi field to be purely tangential if
the proportionality condition Y'(s) o< 9/(s) holds for all s. It is then straight-
forward to prove, from the uniqueness theorems for second-order ordinary
differential equations, that up to the first conjugate point along -y, a perpen-
dicular Jacobi field is either purely tangential or nowhere tangential. The
Jacobi equation implies that any purely tangential Jacobi field is of the form
Y (s) = Asy/(s), where A is a constant, and hence will be non-zero for s > 0.
As such, purely tangential Jacobi fields do not give rise to conjugate points
along the geodesic v. We are therefore finally lead to restrict ourselves to
non-tangential, perpendicular Jacobi fields along . Such a Jacobi field may
be written in the form

(3.1) Y(s) = als)y/(s) + X (s),

where X (s) is a space-like vector field along « that is orthogonal to 4/ and
« vanishes whenever X vanishes. We then note that

(Y(5),Y(s5)) = (X(s), X(s5)) = 0

with equality if and only if Y'(s) = 0 (since Y is assumed nowhere tangen-
tial). As such, there is an induced Euclidean inner product induced on the
space of Jacobi fields under consideration and, therefore, we write

Y (s)] := V(Y (s),Y(s))-

Motivated by the study of Jacobi fields on Riemannian manifolds with
constant curvature, it is natural to introduce for each K € R the real-valued
function

|K|~1/2 sinh(|K|'/?t), K <0,

(3.2) Dr(t) = t, K =0,
K12 sin(K'Y?¢), K >0
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which we define for all ¢t >0 if K <0, and for ¢ € [O,WK_I/Q] if K >0.
Observe that ®x thus defined is non-negative (on its domain of definition),
and satisfies

(3.3) P+ Kb =0, Pr(0)=0, $g(0)=1.

The following lemma provides us the desired estimate for the length
of Jacobi fields, and Proposition 3.3 follows immediately from this lemma.
The proof given below is adapted from arguments in Riemannian geometry,
and a (more general) version of this result, together with a different proof,
appeared in Harris [12].

Lemma 3.4 (Jacobi field estimate). Let v be a past-directed, affinely
parametrized, null geodesic satisfying v(0) = p. Let Y be a nowhere tangen-
tial, perpendicular Jacobi field along v with Y (0) =0 (and, in particular,
Y (s) L ~(s)). Then, K € R being the constant defined as in Proposition 3.3,
the Jacobi field Y satisfies

(3.4) Y (s)| > |Y'(0)] @k (s), s> 0.
In particular, if K < 0 then for any s € [0,1] the point y(s) is not conjugate
to p along ~v. If K >0 then ~y(s) is not conjugate to p along v for any

s<7m/VK.

Proof. We first check that
. d /
lim [V ()| = [V/(0)].

s—0 ds

Namely, with ¢(s) := |Y(s)| we can write

where we have used L’Hopital’s rule and Jacobi field’s equation.
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In addition, we have

SV ()P = g(¥(5), Y'(5))

and an application of the Cauchy—Schwarz inequality yields the Kato-type
inequality

d
(35) POl
for all s such that Y'(s) # 0.
We now calculate
1 d? 2 d ,
§@|Y(S)‘ = EQ(Y(SLY (s))

= |Y'(s)|* + g(Y (), Y"(5))
thus )
%%}Y(S)\Q = |[Y'(5)]* = Rm(Y (s),7'(5), Y (5),7(5)).

Therefore, imposing our curvature assumption, we deduce that

1 d?

salY O 2 Y - K |y (s)]”

As above, let ¢(s) := ‘Y(s)}, which has the properties that ¢(0) =0,
¢'(0) = |Y’(0)|, which is non-vanishing (and positive) since Y’(0) # 0.
Applying (3.5), we then deduce that

©"(s)+ K p(s) >0

at all points where (s) # 0. Using the function ® defined in equation (3.2),
we now define the function

U(s) = ¢'(0)Px(s)
which satisfies
P(5) + K b(s) = 0
with initial conditions ¥ (0) = ¢(0) = 0, ¥/(0) = ¢'(0). We then deduce that

& (@ )0ls) ~ () (5)) 20, 50
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so ¢'(8)1(s) — p(s)1'(s) is non-decreasing for s > 0. The initial conditions
therefore imply that ¢'(s)1(s) — p(s)1'(s) > 0 for s > 0. Therefore, we have

£(29) 20

so the ratio ¢(s)/%(s) is non-decreasing. An application of L’Hépital’s rule
implies that the ratio ¢(s)/1(s) tends to 1 at the origin, giving

w(s) > (s), t=>0.

Rewriting this inequality in terms of the Jacobi field Y and the functions
®, we arrive at the required inequality (3.4). In particular, we note that the
first zero of ¢ cannot occur prior to the first zero of . g

3.3. Derivation of the main conjugate radius estimate

To derive the conjugacy radius estimate with respect to the t-foliation, we
require a more detailed analysis of the geodesic equation. Let «: [0,a] — M
be an affinely parametrized, past-directed, null geodesic emanating from
the point p. In terms of the local transported coordinate description (2.1),
writing the components of the geodesic in the form s+ (t(s),z’(s)), the
equations for affinely parametrized geodesics with respect to the metric ¢

take the form
2t ny (dt\%  n; [dt\ [d2 1 da’ dad
3.6 —+ = = — = = (019ij) ——— =0,
(3-6a) iz (ds) n <ds> <ds> * 2n2( :9i5) ds ds
d2z o (dt\? dt\ [ dz* - dad dz®
iy [ 22 ) I, — " =
ds2 "9 (ds> 7 (i) <d ) ( ds > TR s s

(3.6b)

where the coefficients I‘ijk are Christoffel symbols. We wish to consider
such null geodesics parametrized by the foliation parameter ¢. As such, we
view a null geodesic as a map I 3t~ (t,2(t)) € My ~ I X Hy, where (in
the notation of Section 2.1) z(t) := ¢; ' (v(t)) € Hy is the spatial projection
of the geodesic. In terms of the local coordinates above, we now consider
the affine parameter, s, and the components z’ of the geodesic as functions
of t. Re-arranging the above equations, we find that s = s(¢) and x' = 2%(t)
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satisfy the equations

5 Uz ng .;
(37&) ; = ; + 2;1’1 + 272 (3t9z;) xzxjv )
(3.7b) B nging + g (Dugge) #F + Digpid i = St

where a dot * denotes % and a dash ’ denotes d%'
We wish to consider geodesics, parametrized by t, that are, in addition,
null. From (2.1), we deduce that such geodesics have the additional property

n(t,z(t))? = gij(tvx(t»dx;t(t dx;t(t)'

Lemma 3.5. Along past-directed geodesics from p, one has

d 1 |ds 1 dy dvy
. Liog (=|8]) = 2n (2,9
(38) dt Og(n dt> 2n7r<dt’dt>

and, using the affine parameter

d dt 1 dvy dvy
(39) ds ( ds) " (ds ds)
Proof. The future-directed, unit normal 7" takes the form 0, whereas the
t-parametrized tangent takes the form 4 = dl =0+ dci 0yi, and so (T ,'y>

—n. If s is the affine parameter along the geodesm ~, and we denote & 75 by
! then

,:d;y d’y ds :j
ds  dt \ dt §

We therefore have V45 = %"y, and

m(3.9) = (Zrg) (7) = 2V5T.4) = 2(V4(T.5) = (T, V+9))

(=T ) (2 ot

For the second result, we simply observe that w(v',v") = 2;5 ( ngz) O

Lemma 3.5 above allows us to translate between the behavior of geodesics
in terms of the affine parameter s and the time parameter t. We will also
require the following observation.
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Lemma 3.6. After a suitable normalization of the affine parameter, one

has
ds
at o = —n(p).

Proof. Given a past-directed, null vector L € T,M such that g(7T', L) = +1,
then s is the affine parameter along the geodesic v,: [0, s;] — M uniquely
determined by the condition that v7,(0) = p, 4(0) = L. Therefore, from the
definition of T', we obtain

dt

7| = (np)dt,L(0)) = ~(T(p), L) = 1.

t=0

n(p)

O

Lemma 3.7. Under the conditions (K,) and (Kz) imposed along past-
directed, null geodesics from p, one has

(3.10) CKuknt o YA Rk
T ndt T

and, in terms of the affine parameter
1ds

The affine parameter and t-parameter along a past-directed null geodesic
satisfy the inequality

(3.12) s(t) < % (1 - eant> .

Proof. From condition (2.6), we find that
dy dy
TN < K
T (dt’ dt)‘ =

dy P _ 2 2
pr T:n + [2()[,, = 2n

since the geodesic v is assumed null and, therefore, from (3.8)

dt & n

d’y2

dt

T

Moreover, we have

ds

dt

>‘ < Ken < KpK,,.
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Integrating this inequality from ¢ to 0 and recalling that ¢t < 0, we find

ds

—K Kt <— log ( yr

><K Kot

and re-arranging gives (3.10). The first inequality in (3.10) then yields

ds e — =
KoKxt 5 g oKkt

Integrating this inequality from ¢ to 0 then gives (3.12).
In order to deduce the inequality (3.11), we note that

2 2
T d7 d7 < Ki :2K.,rn2 ﬂ .
ds’ ds T ds

Therefore, from (3.8), we deduce that
d [ dt dt\?
T )| < Ky (0=
ds (nds>‘ - <nds>
()
ds \ ds

Integrating, with the boundary condition as in Lemma 3.6, gives the inequal-
ities (3.11). O

dy
ds

and, hence

< Kr.

Proof of Proposition 3.2. Let v be a past-directed, null geodesic from the
point p parametrized by the foliation parameter ¢. Our bound (2.5) on the
curvature operator implies that, for all Y L 4, we have

dy |, dvy = 9
Y —Y | <K Y. V).
R<dt d > Rmn< ) >

Changing to affine parametrization of the geodesic v, we therefore find that

dy . dvy _ dt\?
VO v <Kpm (nZ) (v,7).
R(ds ds )- i <”ds> (Y.Y)

From the second inequality in (3.11), we therefore deduce that

R(‘“%‘“J) < B vy,
ds' ds (=14 Krs)
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For the moment, we assume that Kr > 0. Let sy = so(Kr) := Ki, and
assume that 0 < s < s; for fixed s1 < sg. For s € [0, 1], the curvature oper-
ator for the affinely parametrized geodesic v satisfies

Rma, < &2'

ds (*]— + Kﬂ'sl)

If follows, from Proposition 3.3, that for K, < 0, the geodesic v will con-
tain no conjugate points for s < s;. If K, > 0, there will be no conjugate
points for s% < 772/K(f3m, K, 51), where

FRm

K(Kgpm, Kxr,51) : = K,,sl)T
If 72/K(K pm, K, 1) > (s1)?, then no conjugate points occur for s < s.
We may therefore repeat our conjugate point estimate with a larger value
of s1. Alternatively, if 72/K (K grm, Kx,51) < (s1)?, then a conjugate point
occurs for some s < s7. In this case, we should repeat our conjugate point
calculations with a smaller value of s;. The optimal estimate is therefore
achieved if we solve for s such that 72/ K (K gy, K, s1) = (s1)%. This yields
the estimate

—1
m s
V K gm V K gm

Note that s1 < sg since Kr > 0.

As such, our estimates show that a past-directed, affinely parametrized
null geodesic from p will encounter no conjugate points for s < s1, with
s1 := 81(K gpm, Kx) defined as in Equation (3.13). We must now translate
this condition for the geodesic parametrized by the foliation parameter t.
Any conjugate point must occur for a value of s greater than or equal to s;.
It follows from (3.12) that this occurs at a value of ¢, ¢1, such that

1 R
S1 S Ki (1 — CK"K"tl) .

™

Re-arranging this expression yields the estimate stated in the proposition.
Finally, if K =0, then Rm & < K pm. Again, if Kg,, <0, there are

no conjugate points and if K gy, > 0 there are no conjugate points prior to

so = 7/ K gm. Applying the inequality (3.12) in the limiting case Kx — 0
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then yields

h<ot T
18 —=—F=
Kn\/Kpn
which completes the proof of the proposition. Il

4. Geodesic intersections far from the vertex
4.1. Strategy of proof

We now concentrate on the case where past-directed null geodesics from p
reintersect at a point ¢ € Hy, for some ty € I with tg < 0. We assume that
the values of ¢t that we consider are sufficiently small that there are no null
conjugate points, and that the null exponential map is therefore a local
diffeomorphism. The breakdown of the null exponential map as a global
diffeomorphism at ty implies that we have distinct null geodesics from p,
v and 2 (which we take to be parametrized by the parameter ¢) such
that v1(to) = y2(to) =: ¢ € Hy,, and that this phenomenon does not happen
for any t > t9. By construction, the tangent vectors 41(0),42(0) € T,M are
distinct null vectors at p. Following [15], we prove the following result which
we observe to be valid for arbitrary metrics.

Lemma 4.1 (Projection of intersecting null geodesics). The spa-
tial projections with respect to the t-foliation of the null tangent vectors
F1(to), Y2(to) € TyM are opposite.

Proof. We outline the arguments since a full proof was already presented
in [15, Lemma 3.1]. We first translate this information into our picture on the
manifold Hg. The intersection of null geodesics from p on the hypersurface
H:, implies that the sphere S;, has a self-intersection at the point ¢y :=
by, Yy (to)) = by, Y(49(t0)). The definition of to implies that the spheres Sy,
for tg < t < 0 have no self-intersection. We consider the projections

x1 = ¢p Lot [to, 0] — Ho, a2 := ¢ ' oa: [to, 0] — Ho.

We wish to prove that #1(tg) o< —Z2(tp), where the constant of proportion-
ality is positive. Since we have no conjugate points and the spheres S; do
not self-intersect for ¢y < ¢, the S; are embedded spheres in Hy while Sy, is
immersed but not embedded. As is geometrically clear (and technically fol-
lows from a transversality argument [15]) the self-intersection of the sphere
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St, must be tangential. Since the normal vectors (with respect to the met-
ric g+ on Hp) to Sy, at the point of intersection are the tangent vectors
t1(to), Z2(to), it follows that these vectors must be proportional. The con-
stant of proportionality cannot be positive, since uniqueness of solutions
of the geodesic equations would then imply that ;3 = 5. Moreover, since
x1,xo are projections of null geodesics, it follows that &1 and 2 must be
non-vanishing. Hence the constant of proportionality cannot be zero, and
therefore must be negative. O

We wish to study the minimal value of ¢, denoted by tg, for which the
sphere S; self-intersects. Recall that inj(go, Ho, p) =: ro denotes the injectiv-
ity radius at the point p € Hy with respect to the metric gg. Then there are
two possibilities:

e Geodesic intersections far from p. A point in S; leaves the ball
By, (p,ro) at or before time t, i.e., there exists a null geodesic from p
with the property that its projection I' = I'(¢) satisfies dg, (p, I'(t)) > ro
for some t < t.

e Geodesic intersections near p. S; self-intersects before any point
in S} reaches distance r¢ from p.

We will study the first possibility in the next subsection and, in this case,
Proposition 4.2, below, gives a lower bound on tg. The second possibility is
more involved, and is the subject of Section 5.

4.2. Geodesic intersections far from p
We first note that we may recover the second fundamental form, k;, of the
hypersurface H; from the spatial projection of the deformation tensor 7. In
particular, if X is a vector field on H; (and, therefore, X L T'), then we have
(4.1) (X, X) = (ZLrg) (X, X) =2(VxT, X) =: 2k(X, X).

It therefore follows that if the deformation tensor satisfies condition (K ),
then we have a corresponding bound on the second fundamental form

1 1 1
(4.2) |k (X, X)| = §|7r(X, X)| < iK,rgT(X,X) =3 ~9:(X, X).

The following is the main result of this subsection.
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Proposition 4.2. Suppose that the foliation satisfy the conditions (i),
(K,) and (Kz). If St does not intersect the cut locus of p € Ho, that is,
St N Cutg, (p) = 0 then one has

1] > {KfKﬂ log (14 1Knic), Kn #0,

?na Kﬂ':O

Hence, Proposition 4.2 provides us with a lower bound on the value of

t for which the sphere S; leaves By, (p, to). To establish this proposition, we
require some estimates for length of the spatial projection of a null geodesic.

Lemma 4.3. For -1 <s<t<0, one has
(4.3) g < eK”K"(t_S)gS.

Proof. We first note that, in the transported coordinate system, we have

1
k; .= —0q;.
t omn tgt

If X is a smooth vector field on Hy (independent of ¢), then we have

O (ge(X, X)) = 2n(t)k(X, X)
< n(t) Krgi(X, X) < KnKrgi(X, X).

Integrating from s to t, we therefore have
g(X, X) < f B9 (X, X).
This inequality holds for all X, so we deduce the inequality (4.3). O

Given a null geodesics v: [—1,0] — M, we wish to consider the length
of its spatial projection I' with respect to the metric go.

Lemma 4.4. For —1 <t <0 one has

2 1K K.t
N N
(4.4) Lo[ o) < £"< ‘ -
PR, K =0,
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Proof. We first treat the case K > 0. We then have

0 0 _
Lgy[Tljo,z] :/t [%(u)]g, du < /t e 2 i x(u)|, du
t _ 0 _
:/ e_;K"K"“n(u,x(u))dugKn/ e 2 KnBau gy
0 t

2 177
-2 (4 fEKnK,,t>
i, ( +e

as required. The result for K follows from taking the limit as K — 0 of
this inequality. O
Corollary 4.5. Given any null geodesic and its projection

~v:[=1,0] = My, T :[-1,0] = Hp
then, for —1 <t <0, one has

Kt Ky =0,

(4.5) dg, (p, (1)) < {sz (_1 n e*%?nK«t) , Kn#0.

Remark 4.6. It follows from the above results that, if v1,72: [to, 0] — M7
are null geodesics that intersect at p and again in the surface H;, for some ¢y,
then the lengths of their spatial projections I'1, I's: [0, 9] — Ho satisfy (4.4).
The closed loop at p defined by concatenating these curves, which we denote
by I, therefore satisfies the inequality

4 1K, Kxt
Ly, [ < K. (—1+€ 20 )

Proof of Proposition 4.2. If Sy N Cutg,(p) =0 then there exists a null
geodesic v such that its projection, I, satisfies

dg, (p,T'(t)) = ro > io
for some t. The result then follows from Corollary 4.5. g

5. Geodesic intersections near the vertex
5.1. Tangent space calculations

We now consider the case where there exists ty < 0 such that the spheres S;
have no self-intersections for ¢g < t < 0, the sphere S, has self-intersections,
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and the spheres S;,0 <t <ty are contained in the ball of center p and
radius ¢g.

Since we remain within the injectivity radius (with respect to the metric
go) at p, we may use the exponential map (with respect to gp) to define
spheres

= (expg“)_1 (St) C TyHo.

Since exp,, is a global diffeomorphism from B(0,:) to B(p, ), a sphere S
has self-intersections if and only if the sphere ¥; has self-intersections.

In their approach to the null injectivity radius problem [15], where the
metric g is shown to be e-close to the Minkowski metric in a particular local
coordinate system, Klainerman and Rodnianski argue that the intersection
of null geodesics that we are considering cannot occur within the local coor-
dinate chart. Intuitively, it seems clear that, in order for the light cone to
become so distorted that it self-intersects in the required fashion, we would
require a significant amount of curvature in our manifold, and hence the
metric cannot be assumed globally close to the Minkowski metric. The fol-
lowing example shows, however, the phenomenon that we are considering
cannot be ruled out, in general.

Example 5.1 (Growing bump metric). Let H = R?, with go the (flat)
Euclidean metric. Therefore the injectivity radius of the initial slice is +oo,
so any intersections of the S; that happen will occur before they intersect
the cut locus of p with respect to gg. We evolve the metric for ¢ > 0 so that
it gains a bump, of height ¢ say, with g; being the induced metric from flat
R3. If we pick a point away from the bump, then the geodesic balls will start
out round but, once they hit the bump (which is growing with ¢), they will
bend around the bump. The geodesic balls will then intersect at the back
of the bump for sufficiently large t. If we project to the surface Hg, then
the arrangement of the spheres S; is a family of nested spheres developing
a self-intersection.

Note that, although we have assumed Hg to be R?, it is clear that this
argument may be suitably localized in order to make Hy compact, and to
any dimension greater than or equal to 2.

One of the notable features of this example is that the metric g; is
evolving with ¢, so the spatial geometry is undergoing significant change.

Having established that a self-intersection of a sphere S; can occur, the
main result of this section is that we can find an explicit lower bound on the
corresponding value of t. We first must find a condition that is necessary
for the intersection of null geodesics, for which we can then develop an
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estimate. Although the criterion that we will use is not optimal, it does
fulfil this requirement.

Let 7: [0,a] — M be a past-directed null geodesic with v(0) = p, with
v(s) = (t(s),z(s)), where z(s) € Hy (for s € [0,a]) is its projection. The
equations that ¢ and x must satisfy in an arbitrary transported local coor-
dinate system are given in Equation (3.6).

Generically, for sufficiently negative values of ¢, there may exist values of
t for which distinct null geodesics from p intersect on the hypersurface H;.
Let ¢, < 0 denote the largest (i.e., least negative) value of ¢ for which there
exist distinct null geodesics from p, v; and 79, such that v;(t.) = y2(ts) €
‘H:,. We denote this point of intersection by g. Lemma 4.1 shows that the
spatial projection with respect to the t-foliation of the tangent vectors 1 ()
and 4o(ts) at g are opposite. Denoting the projections of these geodesics to
Ho by x1 and x2, we therefore deduce that @ (t.) o< —i2(ts), where the
constant of proportionality is positive.

We define the radial function r(z) := dg, (p, ) with respect to the metric
go on the hypersurface Hy. Recall (see, e.g., [20]) that r thus defined is
a smooth distance function on the set Hy \ ({p} U Cut(p)). Following [20],
we denote by 9, = Vr the corresponding unit radial vector field, which is
smooth on the ball By, (p,ip) away from the point p.

We then have the following preliminary result.

Lemma 5.2. One of the inner products (i1(ts), 0r)g,, (T2(tx), Op)g, s non-
negative.
Proof. From the fact that &;(¢.) o< —Z2(t«), we have
(@1(t+), Or)go X —(Z2(t), Or)go,
where the constant of proportionality is positive. O

We may therefore derive an upper bound on the possible value of ¢, by
finding an upper bound on the value of ¢ for which the spatial projection of
null geodesics satisfies (&(t),0r)g, > 0. For calculational simplicity, we will
work with affinely parametrized geodesics. Since % < 0 for past-directed
null geodesics, what we will derive is a lower bound for the first value of s,
S, for which the tangent vector Z—;’ satisfies

(5.1) <j‘j(s>,&>% <0,
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We will then turn this estimate into an estimate for the corresponding value
of ¢ using the same method as we used for the conjugate point estimate.

Therefore, let x: [0,a] — Ho be the projection to Hp of an affinely
parametrized null geodesic, with affine parameter s. Therefore z(0) = p € Hp
and, by assumption, x(s) remains within the ball of center p and radius
i := 19, i.e., 2(s) € By, (p,io) for s € [0,a]. As such, there exists a unique,
affinely parametrized, radial geodesic (with respect to go) vs: [0, 1] — Ho,
from p to z(s). This geodesic has the property that

dys(u) dys(u)
dgo(pvw() go ’78 / \/ du ) d'l(i >du

Let V be the Levi- Civita connection associated with the metric go and,
as before, let ’ denote . We then have the following result.

Lemma 5.3. One has

and also

Proof. The first equality follows directly from the first variation of arc-length
formula. Given a geodesic v in a manifold and an orthogonal vector field,
W, along +, then the index form is given by (see, e.g., [7])

1
I[W] :—/0 (VW2 = (¢, R(W,7/\W)) ds

Recall that the index form along a geodesic is positive-definite prior to the
first conjugate point along the geodesic. We define the variation through
geodesics a: [0,1] x [0,a] — Ho with (u,s) — vs(u), and the tangent vectors
T := a,(0y),V := a,(0s). The second variation of arc-length formula then
states that

d2 u=1 N
T 0.2) = [T V)] v
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where V1 denotes the part of the vector field V' along ~ that is orthogonal
(with respect to go) to T

We now apply this formula to our situation. Since 75(0) = p, for each
s, we deduce that V(u=0)=0. V! is therefore a vector field along s
that vanishes at p, and is equal to 2/(s) at the point z(s). A standard
index argument (cf. again [7]) implies that I[V*] > I[J], where J is the
Jacobi vector field along 7 such that J(p) =0 and J(z(s)) = V' (x(s)).
By assumption, there are no points conjugate to p along the geodesics s
(since we are working within By, (p,i0)). Therefore the index form is positive-
definite along the geodesic 7, so I[J] > 0. We therefore have

d2

@dgo (p> :B(S)) > <a7“7 vx’(s)x/(8)>

go

as required.

Finally, note that 2/(0) is an outward-directed, radial vector at the point
p. Therefore, as s — 0, the inner product (9, %(8)>g0 converges to ‘%(0) ‘go.
We then have

-1

drl | ) fde| | pasT
ds - ds|,_g | dt ali—o dt —0
by Lemma 3.6. U

We now impose, for some constant K
ation condition:

acc.» the following radial acceler-

(5.2) Condition(K,_ . ) : <8T7V$/(S)$/(S)>g0 > K

——acc. —acc.

along the projections, z, of null geodesics.

Lemma 5.4. Under the assumed conditions, any pair of past-directed, null
geodesics from p will not intersect for 0 < s < s,, where

Sy = 8 (K ) = _Kicc.’ Kacc. < O’
* *\==acc.
400, K. .. >0.

Proof. From Lemma 5.3 we deduce that

%dgo(p,ﬂf(s)) 2 1 +Kacc.8'

Therefore, %dgg (p,x(s)) > 0 for s < sy, where s, is as stated in the lemma.

Lemma 5.2 and the following discussion then complete the proof. U
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We are in a position to establish the main result of this section.

Proposition 5.5. Under the conditions (K,), (Kx), (K,..), any pair of
past-directed, null geodesics from p do not intersect for to <t < 0, where

_ 1 K
to = to(Kn, Kn, Koo ) = = log <1 + —= ) )

n Ky Kacc.

Proof of Proposition 5.5. 1t is now sufficient to apply the same technique as
employed in the proof of Proposition 3.2 to translate the affine parameter
estimate in Lemma 5.4 to an estimate for the corresponding value of t. [J

5.2. The radial acceleration condition

We now discuss the nature of the condition (5.2), where we have assumed
a lower bound on the radial acceleration. In the transported coordinate
system, the Vx,(s)a:'(s) term takes the form

(vf(s)l‘/(s))i

d? i dx? dz*
; ; da? da* dt ;. dt da®
— (T, — T, b ey I (i il
(1 0,0(9) = T (e(9)a(6D) S =g (e 4 7y )

where we have used the fact that z(s) is the projection of a null geodesic
in the manifold M. Recall, from Section 2.2, that we have defined the (1, 2)
tensor field w on H as the difference between the Levi-Civita connections
of the metrics g; and gg. It then follows that

0r Vo O, = —a(0) (5.5
where
(5.3)
a(t) (V.V)

= <6T,ngradgt n)go (Vlt)2 + QTLVt(@,«,k(VJ‘))g0 + <8T,w(VJ‘, Vl)>go.

Our radial acceleration condition is therefore equivalent to a bound of
the form

_a(t) (7/7 7/) Z Kacc.
along the null geodesics ~. It is clear, from the explicit form of « given
in (5.3), that such a bound follows from our assumptions (K) and (Ky,).
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The tensor w itself may be estimated by calculating the difference
between the Christoffel symbols of the metric g; and gg

t
w'ip(t,x(t)) =Tt x(t) — I"%(0,2(t)) = /0 (81F’jk) (u, z(t)) du.
The derivative in the integrand may be written in the form
i i 1 i 1 i i
O jk = Ryj's + 5V (nm's) + 5 (o’ — i)

As such, the w term could be bounded by assuming additional bounds on
the Ry} parts of the curvature, on the spatial derivative of the nm;; (ie.,
the spatial derivative of J;g;;) and additional bounds on the deformation
tensor.

It is clear that the radial acceleration condition, or a condition of a
similar type, is required here. The crux of our argument is that the projection
of the null geodesics in M to the hypersurface Hy are not geodesics on Hj.
In order to estimate the deformation of the spheres, S;, we need to control
how much these projections deviate from geodesics with respect to gg. The
radial acceleration (or equivalently, the form «) is the most direct way of
measuring this deviation.

6. A class of spacetimes with curvature bounded above

The conditions assumed in our main theorem in this paper are satisfied by
a large class of spacetimes.

Proposition 6.1 (Family of spacetimes with curvature unbounded
below). Fiz some positive constants i, K., Kpm, Kr and K,,. There
exists a family of spacetimes satisfying all of the assumptions in Theo-
rem 2.2, but whose curvature operator is not uniformly bounded below in
terms of the given constants, even in the L? norm.

Proof. We search for the desired spacetimes in the class of plane wave solu-
tions. The standard 4D plane wave metric takes the form

g = —2dudv + 2H (u, x, y)du® + dz? + dy?,
where u, v, z,y are local coordinates. With respect to the null coframe

et =du, e?=dv—H(u,z,y)du, € =dzx, e'=dy
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in terms of which
g:—61®e2—62®61+e3®e3+e4®64
we find that the non-vanishing components of the curvature tensor are
(6.1) Ri313 = —Hyz, Rizia = —Hgy, Rigua= —Hyy.

If we wish to consider the curvature operator, then we must consider the
curvature quantity R(X,Y, X,Y), where X is a null vector and Y is orthog-
onal to X. Letting ¥¥ := X?YJ — XJY"? then, from the explicit formula for
the curvature components above, we find that

(62)  R(X,Y,X,Y)=—H, (5*)° - 2H,, 235" - H,, (1)°.

In particular, if we impose that the Hessian (in the variables x,y) of the
function H is positive semi-definite

(63) Ha;a: > 07 Hac;tHyy - Hgy > 0
then we deduce that the curvature operator Rmx is non-positive
RmX S 0.

The additional geometrical conditions required for our theorems require only
the first derivatives of the metric. As such, these conditions can be satisfied
by choosing H to have bounded first derivatives.

It is clear, however, from (6.2) that we can make the curvature arbitrarily
negative by letting (for example) Hy, and H,, become arbitrarily large and
positive.

A special case of this construction occurs if we take the function H to be
of the special form H (z,y,u) = a(x,u) + b(y, u). The Hessian condition (6.3)
is satisfied if a;, > 0 and by, > 0, i.e., the functions a and b are convex in
x and y, respectively. We may choose a and b to have small first derivatives
(in order to satisfy the conditions of Theorem 2.2), but such that there
exist points at which a,, and by, are large and positive. In particular, we
may consider a sequence of such metrics where the limiting functions a,b
are convex but not C? so that the curvature of the spacetime approaches
a distribution containing a Dirac-mass singularity, say on the hypersurface
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x = x¢ for some x. Solutions with distributional curvature [18] could be used
here to handle the spacetimes with low regularity obtained in the limit. U
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