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Bridge spectra of iterated torus knots

Alexander Zupan

We define the bridge spectrum b(K) of a knot K in S3 to be
b(K) = (b0(K), b1(K), . . . ), where bg(K) is the bridge number of
K with respect to a genus g Heegaard surface for S3. A well-
known construction shows that when bg−1(K) is positive, bg(K) ≤
bg−1(K)− 1; hence, we say that b(K) has a gap at index g if this
inequality is strict. An open question of Yo’av Rieck asks whether
there are knots in S3 whose bridge spectra have more than one gap.
We determine the bridge spectra of many iterated torus knots,
answering Rieck’s question by showing that for every n, there
are infinitely many iterated torus knots K, such that b(K) has
precisely n gaps. In addition, we prove a structural lemma about
the decomposition of a strongly irreducible bridge surface induced
by cutting along a collection of essential surfaces.

1. Introduction

Given a knot K in a compact, orientable 3-manifold M , a bridge splitting
of (M, K) often characterizes topological and geometric aspects of K in M .
Defined by Doll [3] and Morimoto and Sakuma [14], bridge surfaces can be
seen as analogs to Heegaard surfaces in 3-manifold theory: a bridge surface
cuts the pair (M, K) into two simple topological pieces, reducing the essence
of (M, K) to a gluing map.

Every knot has infinitely many bridge surfaces, but we may narrow our
search for structure by looking for irreducible bridge surfaces, which are not
the result of a generic modification to another surface. Although there is a
significant body of research concerning the set of irreducible Heegaard split-
tings of a 3-manifold, there are few examples of knots K ⊂ S3 with many
irreducible bridge surfaces. Several classes of knots are known to have unique
irreducible bridge spheres, up to isotopy as unoriented surfaces. Knots whose
nonminimal bridge spheres are reducible are called destabilizable, a defini-
tion due to Ozawa and Takao [17], and classes of knots known to have this

931



932 Alexander Zupan

property include

• the unknot [15],
• 2-bridge knots [15],
• torus knots [16],
• iterated torus knots and iterated cables of 2-bridge knots [28], and
• more generally, cables of an mp-small destabilizable knot [28].

In contrast, Ozawa and Takao have recently produced the first example
of a knot K ⊂ S3, such that K has two irreducible bridge spheres with
different bridge numbers [17], and Jang has exhibited 3-bridge links with
infinitely many distinct 3-bridge spheres [8]. In terms of higher genus bridge
surfaces, we are aware of only one result: Scharlemann and Tomova have
shown that 2-bridge knots have unique irreducible bridge surfaces up to
unoriented isotopy [21].

Following Doll [3], we define the genus g bridge number bg(K) of a knot
K ⊂ S3

bg(K) = min{b : K admits a (g, b)-splitting},
and we introduce the bridge spectrum b(K),

b(K) = (b0(K), b1(K), . . . ).

A construction called meridional stabilization (see Section 2) transforms
a (g, b)-surface into a (g + 1, b− 1)-surface; hence, the bridge spectrum is
bounded above by the sequence (b0(K), b0(K)− 1, . . . , 1, 0), with respect to
the lexicographical order. In view of this property, we say that b(K) has a
gap at index g if bg(K) < bg−1(K)− 1, and it is a simple verification that if
b(K) has such a gap, the corresponding (g, b)-surface is irreducible.

It is well known that the bridge spectra of torus knots have a single
gap. In the present work, we set out to answer the following question, first
proposed to us by Yo’av Rieck.

Question 1. Are there examples of knots in S3 whose bridge spectra have
more than one gap?

A theorem of Tomova completely characterizes the bridge spectra of high
distance knots.

Theorem 1.1 ([26]). Suppose K is a knot in S3 with a (0, b)-bridge sphere
Σ of sufficiently high distance (with respect to b). Then any (g′, b′)-bridge
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surface Σ′ satisfying b′ = bg′(K) is the result of meridional stabilizations
performed on Σ. Thus,

b(K) = (b, b− 1, b− 2, . . . , 0).

It follows that the bridge spectrum of a “generic” knot K is rather
uninteresting. We will show that, in contrast to high-distance knots, the
bridge spectra of iterated torus knots exhibit different behavior. The main
theorem is as follows.

Theorem 1.2. Suppose that Kn = ((p0, q0), . . . , (pn, qn)) is an iterated
torus knot, whose cabling parameters satisfy |pi − pi−1qi−1qi| > 1 for any
i. Then,

bg(Kn) =

⎧⎪⎨
⎪⎩

qn · bg(Kn−1) if g < n,
min{|pn − pn−1qn−1qn|, qn} if g = n,
0 otherwise.

In other words,

b(Kn) = qn · b(Kn−1) + min{|pn − pn−1qn−1qn|, qn} · en.

It follows that the bridge spectrum of Kn has a gap at every index from
1 to n+ 1, providing a positive answer to Question 1 above and yielding for
any n the first examples of a knot Kn in S3 having more than n irreducible
bridge surfaces. In the course of proving the main theorem, we establish
Theorem 4.2, previously unknown for n > 1: the tunnel number of such Kn

is n+ 1. This proof uses a result of Schultens (Theorem 4.1) concerning
Heegaard splittings of graph manifolds [24].

The main theorem is related to a classical result of Schubert [22], with
a modern proof given by Schultens [23].

Theorem 1.3 ([22, 23]). Let K be a satellite knot with companion J and
pattern of index n. Then

b0(K) ≥ n · b0(J).

A (g, b)-bridge surface for a knot K is minimal if b = bg(K). Schultens’
proof of the theorem reveals that after isotopy, a minimal bridge sphere Σ
for K can be made to intersect the companion torus in meridian disks, so
that each bridge of J contributes at least n bridges to K. The proof of
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Theorem 1.2 yields that whenever g < n, a minimal genus g bridge surface
for Kn can be made to intersect the companion torus corresponding to Kn−1

in meridian disks. However, there are knots Kn, such that a minimal genus n
bridge surface meets the companion torus in an annulus; hence, we cannot,
in general, hope for an extension of Theorem 1.3 to surfaces of higher genus.

The proof of Theorem 1.2 requires a lemma regarding strongly irre-
ducible bridge surfaces, which may be of independent interest. Roughly, this
lemma says that a strongly irreducible bridge surface cut along properly
embedded essential surfaces will decompose into at most one exceptional
component which is strongly irreducible, along with some number of incom-
pressible components. In the notation appearing below, η(·) is an open reg-
ular neighborhood, N(·) is a closed regular neighborhood, ΣJ = Σ \ η(J),
and M(J) = M \ η(J). The terms Q-essential, Q-strongly irreducible, and
almost transverse are defined in Section 5.

Lemma 1.1. Let M be a compact, orientable, irreducible 3-manifold, J ⊂
M a properly embedded 1-manifold, and Q = ∂N(J) ⊂ ∂M(J). Suppose Σ is
a strongly irreducible bridge splitting surface for (M, J), and let S ⊂ M(J)
be a collection of properly embedded essential surfaces, such that for each
component c of ∂S, either c ⊂ Q or c ⊂ ∂M . Then one of the following
must hold:

1. After isotopy, ΣJ is transverse to S and each component of ΣJ \ η(S)
is Q-essential in M(J) \ η(S).

2. After isotopy, ΣJ is transverse to S, one component of ΣJ \ η(S)
is Q-strongly irreducible and all other components are Q-essential in
M(J) \ η(S).

3. After isotopy, ΣJ is almost transverse to S, and each component of
ΣJ \ η(S) is Q-essential in M(J) \ η(S).

Combined with results on strongly irreducible bridge surfaces by Hayashi
and Shimokawa [7], the above lemma can easily be seen to provide alternate
proofs of the theorems in [16, 28].

Corollary 1.1. If K is a torus knot or a cable of a nontrivial destabilizable
knot, then K is destabilizable.

The paper is organized as follows: in Section 2, we introduce relevant def-
initions and background material. Section 3 discusses topological properties
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of iterated torus knots, while Section 4 contains a complete analysis of the
tunnel number of such knots. Section 5 presents the above lemma about
strongly irreducible bridge surfaces, setting up the proof of the main the-
orem in Section 6. Section 7 includes a worked example with figures, and
finally Section 8 poses some open problems that may be of interest.

2. Preliminaries

Throughout, all 3-manifolds and surfaces will be orientable. We will let η(·)
and N(·) denote open and closed regular neighborhoods, respectively, in an
ambient manifold that should be clear from context. Let S be a properly
embedded surface in a 3-manifold M . A compressing disk D for S is an
embedded disk such that D ∩ S = ∂C but ∂D does not bound a disk D′ ⊂ S.
A ∂-compressing disk Δ for S is an embedded disk, such that ∂Δ is the
endpoint union of arcs γ1 and γ2 such that Δ ∩ S = γ1, γ1 is essential in
S, and Δ ∩ ∂M = γ2. The surface S is said to be incompressible if there
does not exist a compressing disk D for S and ∂-incompressible if there
does not exist a ∂-compressing disk Δ for S. Further, S is essential if S is
incompressible, ∂-incompressible, and not parallel into ∂M .

Suppose now that M a 3-manifold containing a properly embedded
1-manifold J , and denote the exterior of J in M by M(J) = M \ η(J) (if
M = S3, we write E(J) = M(J)). Let Σ be a properly embedded surface
transverse to J , with ΣJ denoting Σ \ η(J). A compressing disk D for ΣJ in
(M, J) is an embedded disk D such that D ∩ ΣJ = ∂D, D ∩ J = ∅, and ∂D
does not bound a disk in ΣJ . A bridge disk Δ for ΣJ in (M, J) is an embed-
ded disk, such that ∂Δ is the endpoint union of two arcs γ1 and γ2, where
Δ ∩ Σ = γ1 and Δ ∩ J = γ2. We also think of Δ ∩M(J) as a ∂-compressing
disk for ΣJ in M(J) with Δ ∩ ∂M(J) ⊂ ∂N(J). Finally, a cut disk E for ΣJ

in (M, J) is an embedded disk E, such that E ∩ ΣJ = ∂E, E ∩ J is a single
point, and ∂E does not bound a disk in ΣJ .

Let V be a compression body and α ⊂ V a collection of properly embed-
ded arcs. We say that α is trivial if every arc is either vertical or isotopic
into ∂+V . A bridge splitting of (M, J) with bridge surface Σ is the decompo-
sition of (M, J) as (V, α) ∪Σ (W, β), where each V and W are compression
bodies containing collections α and β of trivial arcs. In the special case that
α and β contain only boundary parallel arcs, we say that Σ is a (g, b)-bridge
splitting surface, where g = g(Σ) and b = |α| = |β|.

Given a bridge splitting (M, J) = (V, α) ∪Σ (W, β), there are several
generic methods to construct new bridge surfaces for (M, J). To increase the
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genus of the splitting, let γ ⊂ V be a ∂+-parallel arc, such that
γ ∩ α = ∅. Defining V ′ = V \ η(γ),W ′ = W ∪N(γ), and Σ′ = ∂+V ′ = ∂+W ′,
we have (M, J) = (V ′, α) ∪Σ′ (W ′, β) is another splitting of (M, J). This
process is called elementary stabilization. Note that the surface Σ′ has
compressing disks in V ′ and W ′ that intersect in a single point. If, in the
reverse direction, there are compressing disks D in (V, α) and E in (W, β)
for ΣJ , such that |D ∩ E| = 1, then ∂N(D ∪ E) is a 2-sphere which bounds
a ball and which intersects Σ in a single curve. Compressing Σ along Σ ∩
∂(N(D ∪ E)) yields a bridge surface Σ′′ of lower genus, and we say that Σ is
stabilized.

We may also increase the number of trivial arcs in the splitting by adding
an extra pair of canceling trivial arcs to α and β near some point of J ∩ Σ.
The resulting surface Σ′ is called an elementary perturbation of Σ. Con-
versely, if there are bridge disks Δ and Δ′ in (V, α) and (W, β) such that
Δ ∩Δ′ is a single point contained in J , we may construct an isotopy which
cancels two arcs of α and β, creating a new surface Σ′′, and we say that Σ is
perturbed. If Σ is a (g, b)-splitting surface and Σ1 is an elementary stabiliza-
tion of Σ, then Σ1 is a (g + 1, b)-surface. If Σ2 is an elementary perturbation
of Σ, then Σ2 is a (g, b+ 1)-surface. Given any two bridge surfaces Σ1 and
Σ2 for (M, J), there is a third bridge surface Σ∗ which can be obtained from
either Σi by elementary perturbations and stabilizations [6, 27].

If there are bridge disks Δ and Δ′ in (V, α) and (W, β) such that Δ ∩Δ′
is two points contained in J , then a component of J is isotopic into Σ and we
say Σ is cancelable. Here we set the convention that a (g, 0)-bridge surface
for a knot K in M is a Heegaard surface Σ for M such that K ⊂ Σ. In some
settings, it is required in addition that K be primitive with respect to one
of the handlebodies, but we do not make that restriction here. Note that a
(g, 0)-surface may be perturbed to a (g, 1)-surface.

A slightly more complicated way to construct a new surface from Σ is
the following: fix a ∂+-parallel component α1 of α. Letting V ′ = V \ η(α1)
and W ′ = W ∪N(α1), we have that Σ′ = ∂V ′ = ∂W ′ is a bridge surface for
(M, J). We call this process meridional stabilization. If Σ is a (g, b)-surface,
the resulting surface Σ′ will be a (g + 1, b− 1)-surface. On the other hand, if
there exists a compressing disk D for ΣJ in (V, α) and a cut disk C for ΣJ in
(W, β) (or vice versa), such that |C ∩D| = 1, we say that Σ is meridionally
stabilized and we may reverse the above process to construct a new splitting
Σ′′ of (M, J).

Recall that the genus g bridge number bg(K) of a knot K ⊂ S3 is defined
as

bg(K) = min{b : K admits a (g, b)-splitting}.
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Observe that b0(K) is the classical bridge number ofK. Further, using merid-
ional stabilization, we have bg+1(K) ≤ bg(K)− 1. It follows that bg(K) = 0
for g ≥ b0(K).

In order to consider all genus g bridge numbers of K simultaneously, we
define the bridge spectrum b(K) of K:

b(K) = (b0(K), b1(K), b2(K), . . . ).

Although b(K) ∈ Z
∞, the above argument implies that b(K) must have

finitely many nonzero entries, and b(K) is bounded above by the sequence
(b0(K), b0(K)− 1, b0(K)− 2, . . . ) with respect to the lexicographical order.

A (g, b)-surface for a knot K is said to be irreducible if it is not stabilized,
perturbed, meridionally stabilized, or cancelable. From the point of view
of the bridge spectrum, if bg(K) < bg−1(K)− 1, a genus (g, b)-surface Σ
satisfying b = bg(K) must be irreducible. For this reason, suppose bg(K) <
bg−1(K)− 1 and let n = bg−1(K)− bg(K). In this case, we say that b(K)
has a gap of order n at index g.

Several results over (g, b)-splittings can be adapted to statements about
bridge spectra. In [11], Minsky et al. prove a theorem which we can stated
as follows.

Theorem 2.1. For every n and m such that n ≥ 2 and m ≥ 1, there exist
knots K such that b(K) has a gap of order at least n at index m.

The knots produced in Theorem 2.1 have the property that bm(K) = 0.
More generally, in [26] Tomova shows that

Theorem 2.2. For every n, m, and l, where n ≥ 2 and m, l ≥ 1, there
exist knots K, such that b(K) has a gap of order at least n at index m and
bm(K) = l. Further, there exist knots K whose bridge spectra have no gaps.

The knots K from Theorem 2.2, whose spectra have gaps at index m,
have the additional property that bg(K) = l +m− g for g ≥ m, and corre-
sponding minimal surfaces are meridional stabilizations of an (m, l)-surface.
We note that the above examples are produced by exhibiting sufficiently
complicated bridge and Heegaard surfaces, where complexity is measured
by examining distance between disks sets in the curve complex of the sur-
face. These methods, however, are not suited to answer Question 1 regarding
knots whose spectra have more than one gap.

In order to classify bridge spectra, we employ generalizations of Heegaard
splittings developed by Scharlemann and Thompson [20] and adapted to
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bridge splittings by Hayashi and Shimokawa [7]. Let M be a 3-manifold
containing a properly embedded 1-manifold J . We will describe the theories
of generalized Heegaard and bridge splittings simultaneously by using the
bridge splitting terminology and noting all results hold in the case that
J = ∅, in which case bridge surfaces become Heegaard surfaces.

Let Σ be a bridge surface for (M, J) which yields the splitting (M, J) =
(V, α) ∪Σ (W, β). We say that Σ is weakly reducible if there exist disjoint
compressing or bridge disks D ⊂ (V, α) and D′ ⊂ (W, β) for ΣJ . If Σ is
not weakly reducible, perturbed, or cancelable, we say Σ is strongly irre-
ducible. By considering bridge disks as embedded in M(J), we can see that
perturbed and cancelable surfaces will be weakly reducible; hence, in M(J),
Σ is strongly irreducible if and only if it is not weakly reducible.

Now, suppose (M, J) contains a collection S = {Σ0, S1,Σ1, . . . , Sd,Σd}
of disjoint surfaces transverse to J and such that (M, J) cut along S is a col-
lection of compression bodies containing trivial arcs {(C0, τ0), (C ′0, τ ′0), . . . ,
(Cd, τd), (C ′d, τ

′
d)}, where

• (Ci, τi) ∪Σi
(C ′i, τ

′
i) is a bridge splitting of some submanifold (Mi, Ji)

for each i,

• ∂−Ci = ∂−C ′i−1 = Si for 1 ≤ i ≤ d,

• ∂M = ∂−C0 ∪ ∂−C ′d, and

• J =
⋃
(τi ∪ τ ′i).

We call this decomposition a multiple bridge splitting and the surfaces Σi

are called thick, whereas the surfaces Sj are called thin. The thick surface Σi

is strongly irreducible if it is strongly irreducible in the manifold (Ci, τi) ∪Σi

(C ′i, τ
′
i). A multiple splitting is called strongly irreducible if each thick surface

is strongly irreducible and no compression body is trivial (homeomorphic to
Σi × I with τi only vertical arcs). The following crucial theorem comes from
Hayashi and Shimokawa [7] (and in the special case that J = ∅, it is proved
by Scharlemann and Thompson [20]). Other proofs of this fact are given
in the contexts of α-sloped Heegaard surfaces [2] and in the more general
setting of embedded graphs [25].

Theorem 2.3. Let M be a 3-manifold containing a properly embedded 1-
manifold J . If (M, J) has a strongly irreducible multiple bridge splitting,
then ∂MJ and every thin surface is incompressible. On the other hand, if
∂MJ is incompressible in M(J) and Σ is a weakly reducible bridge splitting
for (M, J), then (M, J) has a strongly irreducible multiple bridge splitting
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satisfying

(1) g(Σ) =
∑

g(Σi)−
∑

g(Si).

Although we will not go into details here, the multiple splitting given
by the above theorem is obtained from the weakly reducible surface Σ via
a process known as untelescoping. Conversely, if S yields a multiple bridge
splitting, we may construct a bridge surface Σ satisfying (1) via a process
called amalgamation.

3. Iterated torus knots

We will focus on a class of knots known as iterated torus knots, which
make up a subset of a collection of knots called cable knots. Let V be a
unknotted torus standardly embedded in S3, with T = ∂V . For a curve
c ⊂ T , [c] may be parameterized as (p, q) = p[μ] + q[λ] in H1(T ), where μ
bounds a meridian disk of V and λ is the preferred longitude of V bounding
a disk outside of V . Choosing q ≥ 2, let K̂p,q be a copy of a (p, q)-curve on T
pushed into int(V ). Now, suppose that K is a knot in S3 and let ϕ(V )→ S3

be a knotted embedding of V , such that if C is a core of V , then ϕ(C) is
isotopic to K. In this case, Kp,q = ϕ(K̂p,q) is called a (p, q)-cable of K. In
addition, we stipulate that the cable has the preferred framing, that is, we
have [ϕ(λ)] = 0 in H1(E(K)).

Using the same symbols as above, we follow [4] to define a (p, q)-cable
space Cp,q by

Cp,q = V \ η(K̂p,q).

Observe that E(Kp,q) decomposes as E(K) ∪T Cp,q, where we consider the
torus T as both ∂V and ∂E(K). The space Cp,q is Seifert fibered with base
space an annulus and a single exceptional fiber C (for further discussion,
see [18]). We distinguish between the outer boundary ∂+Cp,q = ∂V and the
inner boundary ∂−Cp,q = ∂N(K̂p,q). Note that H1(∂−Cp,q) inherits a natural
basis by virtue of K̂p,q being a torus knot. See figure 1.

The class of iterated torus knots is defined inductively: define K0 to
be a (p0, q0)-torus knot. Then for any n ≥ 1, define Kn to be a (pn, qn)-
cable of Kn−1. We call the knot Kn an iterated torus knot, denoted by
Kn = ((p0, q0), . . . , (pn, qn)). Here, E(Kn) decomposes as

E(Kn) = E(K0) ∪T1 Cp1,q1 ∪T2 · · · ∪Tn
Cpn,qn

,
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Figure 1: The cable space C3,2.

where Ti = ∂+Ci = ∂−Ci−1 for i ≥ 2 and T1 = ∂+C1 = ∂E(K0). The
longitude-meridian bases of H1(∂+Ci) and H1(∂−Ci−1) coincide; hence, we
specify a preferred basis (μi, λi) for H1(Ti) without ambiguity. For a curve
c ⊂ Ti with [c] = a[μi] + b[λi], we say that c has slope a

b .
By [5], if M is a Seifert fibered space and S is incompressible in M , then

S must either be a union of fibers, called a vertical surface, or transverse
to all fibers, called a horizontal surface. There is a natural projection map
π : M → B, where B is the base orbifold of M , and if S is a horizontal
surface, π|S is an orbifold covering map.

The following lemma, due to Gordon and Litherland [4], provides a
complete classification of incompressible surfaces in cable spaces, viewed
as Seifert fibered spaces. It will be critical for our understanding of such
surfaces in E(Kn). For two curves with slopes a

b and
c
d , we will denote their

intersection number by Δ(a
b , c

d) = |ad− bc|.

Lemma 3.1. Suppose that S ⊂ Cp,q is incompressible and not ∂-parallel.

(1) If S is vertical, then S is an annulus, and any component of S ∩ ∂+Cp,q

has slope p
q , while any component of S ∩ ∂−Cp,q has slope pq.

(2) If S is horizontal, then there are coprime integers m and n (with n ≥ 0)
such that the total boundary slope of S ∩ ∂+Cp,q is n+mp

qm and the total

boundary slope of S ∩ ∂−Cp,q is q(n+mp)
m . In this case, χ(S) = n(1− q).

(3) If S is horizontal and planar, then either
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(a) there are q components of S ∩ ∂+Cp,q, each of slope l
m , and one

component of S ∩ ∂−Cp,q, of slope lq2

m , where l and m satisfy Δ
( l

m , p
q ) = 1; or

(b) there is one component of S ∩ ∂+Cp,q, of slope 1+kpq
kq2 , and q com-

ponents of S ∩ ∂−Cp,q, each of slope 1+kpq
k , where k is an integer.

We may employ Lemma 3.1 in the proof of the statements below. Note
that for any cable knot Kp,q, the companion torus T is essential in E(Kp,q),
hence in the iterated torus knot Kn, each torus Ti is an essential surface.

Lemma 3.2. Suppose S ⊂ Cp,q is incompressible. If each component of
S ∩ ∂+Cp,q has integral slope, then each component of S ∩ ∂−Cp,q also has
integral slope.

Proof. Suppose without loss of generality that S is connected. Since S ∩
∂+Cp,q has integral slope, S is not vertical, and so by Lemma 3.1, the total
slope of S ∩ ∂+Cp,q is n+mp

qm for some coprime integers m and n, that is,
there are r = gcd(n+mp, qm) components of S ∩ ∂+Cp,q, each of slope a

b ,
where a = n+mp

r and b = qm
r . By assumption, b = ±1; thus r = ±qm and m

divides n+mp. It follows that m divides n, hence m = ±1. The total slope
of S ∩ ∂−Cp,q is

q(m+np)
m and as such is also integral. �

A boundary component of a surface is said to be meridional if its bound-
ary slope is 1

0 .

Lemma 3.3. Suppose S ⊂ Cp,q is incompressible. Then S ∩ ∂+Cp,q is
meridional if and only if S ∩ ∂−Cp,q is meridional.

Proof. It is clear that if either set of boundary components is meridional,
then S is horizontal. In this case, by Lemma 3.1, the total outer boundary
slope is n+mp

qm while the total inner boundary slope is q(n+mp)
m . If m = 0, then

both outer and inner boundary components of S are meridional; otherwise
neither is meridional. �

In light of Lemma 3.3, we say that a horizontal surface S in Cp,q is
meridional if any component of ∂S is meridional.

Lemma 3.4. Suppose S ⊂ Cp,q is incompressible. If S ∩ ∂+Cp,q is a single
component of slope 1

n and S is planar, then S is meridional.

Proof. By Lemma 3.1, we have 1
n = 1+kpq

kq2 , hence k = 0. �



942 Alexander Zupan

Let T denote the union of the tori Ti and let Tn+1 denote ∂E(Kn).

Lemma 3.5. Suppose S ⊂ E(Kn) is an essential surface. If S is not iso-
topic to some Ti, then S ∩ ∂E(Kn) is nonempty and has integral slope.

Proof. After isotopy, we may suppose that |S ∩ T | is minimal. First, we
note that each component of S ∩ Ci or S ∩ E(K0) is incompressible in Ci or
E(K0): if D is a compressing disk for S ∩ Ci in Ci, then ∂D bounds a disk
D′ ⊂ S by the incompressibility of S, whereD′ ∩ T 
= ∅. By the irreducibility
of E(Kn), there is an isotopy of S pushing D′ onto D which reduces |S ∩ T |,
a contradiction.

If S ∩ T = ∅, then S ⊂ Ci for some i or S ⊂ E(K0). However, in this case
S must be vertical and closed, and the only such surfaces in Ci or E(K0)
are boundary parallel. It follows that S is isotopic to Ti for some i.

Thus, suppose that S ∩ T 
= ∅. If S ∩ T1 
= ∅, then S ∩ E(K0) is either
a Seifert surface with boundary slope 0 or an essential annulus with slope
p0q0. If S ∩ T1 = ∅, let i be the smallest i such that S ∩ Ti 
= ∅. Lemma 3.1
dictates that S ∩ Ci−1 must be a vertical annulus in Ci−1 which intersects Ti

in a curve with slope piqi (otherwise S ∩ Ti−1 
= ∅). In either case, we have
that S ∩ Ti has integral slope. By a repeated application of Lemma 3.2,
S ∩ Tj has integral slope for all j ≥ i, completing the proof. �

4. The tunnel number of iterated torus knots

The tunnel number t(K) of a knotK ⊂ S3 is defined as t(K) = g(E(K))− 1,
where g(E(K)) is the Heegaard genus of E(K). Our goal in this section is
to determine the minimal genus of a Heegaard splitting of E(Kn) for an
iterated torus knot Kn, and our main tool is the classification of a Heegaard
splittings of graph manifolds by Schultens [24].

A graph manifold is a 3-manifold M containing a nonempty collection
of essential tori T , such that M \ η(T ) is a disjoint union of Seifert fibered
spaces. A connected surface S properly embedded in a Seifert fibered space
M ′ is pseudohorizontal if after isotopy there exists a fiber f of M ′ such that
S ∩ (M ′ \ η(f)) is a horizontal surface in the space M ′ \ η(f), and S ∩N(f)
is an annulus which is a bicollar of f . Note that each boundary component
of a horizontal surface has the same orientation; thus, if a pseudohorizontal
surface S is to be orientable, then the horizontal piece S ∩ (M ′ \ η(f)) must
have two components.

Suppose that S and S′ are connected surfaces properly embedded in
M and γ is an arc with one endpoint in each of S and S′ and interior
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disjoint from S ∪ S′. Then N(S ∪ S′ ∪ γ) has three boundary components,
one isotopic to S, another isotopic to S′, and third we define to be the result
of tubing S to S′ along γ.

We may now state one of Schultens’ main results over the classification
of graph manifolds [24].

Theorem 4.1. Suppose M is a graph manifold containing a strongly irre-
ducible Heegaard surface Σ, and let T be a collection of essential tori splitting
M into Seifert fibered spaces. After an isotopy of Σ, there is a submani-
fold M ′ of T such either M ′ is a component of M \ η(T ) or M = T ′ × I
for a torus T ′ ∈ T , called the active component of M , with the following
properties:

1. Each component of Σ \ (η(T ) ∪ η(M ′)) is incompressible in M \ (η(T )
∪ η(M ′)).

2. If M ′ 
= T ′ × I for some T ′ ∈ T , then Σ ∩M ′ is a pseudohorizontal
surface in M ′.

3. Otherwise, M ′ = T ′ × I, and Σ ∩M ′ is either
(a) the result of tubing an annulus parallel into T ′ × {0} with boundary

slope s0 to an annulus parallel into T ′ × {1} with boundary slope
s1 along a vertical arc in T ′ × I, where Δ(s0, s1) = 1, or

(b) the result of tubing two vertical annuli in T ′ × I along an arc
contained in T × {1

2}.

From this point forward, for an iterated torus knot Kn = ((p0, q0),
(p1, q1), . . . , (pn, qn)), we make the restriction that |pi − pi−1qi−1qi| > 1 for
all i. The motivation for this is as follows: a regular fiber fi−1 of Ci−1 has
slope si−1 = pi−1qi−1 in Ti, whereas a regular fiber fi of Ci has slope si = pi

qi

in Ti. In order for the arguments below to hold, we need that |fi ∩ fi−1| > 1.
In other words, we require

|pi − pi−1qi−1qi| = Δ(si, si−1) > 1.

The goal of this section is to show that for such iterated torus knots
Kn, we have t(Kn) = n+ 1. We will use Theorem 2.3 in conjunction with
Theorem 4.1 to bound the genus of any Heegaard surface for E(Kn) from
below. For this, we must understand pseudohorizontal surfaces in E(K0)
and the cable spaces Ci.

Lemma 4.1. Suppose that S is a pseudohorizontal surface in E(K0). Then
either χ(S) ≤ −4 or ∂S has meridional slope.
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Proof. Without loss of generality, let p0 ≥ 2 and let f be a fiber of E(K0),
such that S′ = S ∩ (E(K0) \ η(f)) is horizontal. First, suppose that f is
a regular fiber, and let B′ be the base space of the Seifert fibered space
E(K0) \ η(f), so that B′ is a topological annulus with two cone points. By
the observation above, S′ has two components S1 and S2, each an orbifold
cover of B′ of degree d ≥ p0q0. Following the discussion in [18], for instance,
we let B∗ denote B′ with a neighborhood of the cone points removed, thus

χ(Si) = dχ(B∗) +
d

p0
+

d

q0

≤ −2p0q0 + p0 + q0

= p0(1− q0) + q0(1− p0) ≤ −7.

It follows that χ(S) = χ(S′) ≤ −14.
In the second case, suppose that f is a critical fiber. Without loss of gen-

erality, we may suppose that E(K0) \ η(f) = Cp0,q0 . After isotopy, S inter-
sects N(f) in an annulus which is a bicollar of f , thus S ∩N(f) has integral
boundary slope on the solid torus N(f). In the coordinates of ∂+Cp0,q0 ,
each component of S ∩ ∂+Cp0,q0 has slope

1
k for some integer k. Further, S′

has two components S1 and S2, each with a single boundary component in
∂+Cp0,q0 . By Lemma 3.4, if each Si is planar, then S has meridional bound-
ary. Otherwise, χ(Si) ≤ −2, and χ(S) = χ(S′) ≤ −4, as desired. �

We carry out a similar analysis of pseudohorizontal surfaces in a cable
space Cp,q.

Lemma 4.2. Suppose that S is a pseudohorizontal surface in the cable
space Cp,q. Then χ(S) ≤ −4. If, in addition, each component of S ∩ ∂+Cp,q

has boundary slope l
1 , where Δ(l, p

q ) > 1, then either χ(S) ≤ −6, the slope
of S ∩ ∂−Cp,q is meridional, or the slope of S ∩ ∂−Cp,q is integral.

Proof. Let f be a fiber of Cp,q, such that S′ = S ∩ (Cp,q \ η(f)) is horizon-
tal. As above, we first suppose that f is a regular fiber, and let B′ be the
base space of Cp,q \ η(f), where B′ is a thrice-punctured sphere with one
exceptional fiber. Again, S′ has two components S1 and S2, each of which
is a degree d ≥ q orbifold cover of B′, so that

χ(Si) = −2d+
d

q
= d

(
−2 + 1

q

)
≤ −2q + 1 ≤ −3,

so χ(S) = χ(S′) ≤ −6.
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Otherwise, suppose f is the unique exceptional fiber of Cp,q, and note
that H1(∂N(f)) inherits the same natural basis as H1(∂+Cp,q). Letting S′ =
S1 ∪ S2, we have that Si ∩ ∂N(f) is a single curve with slope u

1 for some u.
Hence, Si extends to a horizontal surface S∗i in the manifoldM∗ which results
from Dehn filling Cp,q \ η(f) along the slope u

1 . Then, χ(S
∗
i ) = χ(Si) + 1 and

M∗ is another cable space Cr,s. Immediately, we have that χ(S∗i ) ≤ −1, thus
χ(S) = χ(S′) = χ(S1) + χ(S2) ≤ −4.

Suppose further that the slope of each component of S ∩ ∂+Cp,q is l
1 . If

S∗i is not planar, then χ(S∗i ) ≤ −2 and χ(S) ≤ −6 are desired, so suppose
S∗i is planar. Since the curves of S ∩ ∂+Cp,q intersect regular fibers of Cp,q

(which are also regular fibers of Cr,s) more than once, S∗i is not a horizontal
planar surface of type 3(a) given by Lemma 3.1. Note that curves of slope u

1
and 1

0 in ∂+Cp,q will have respective slopes of 1
0 and v

−1 for some integer v
in the Dehn filled manifold Cr,s. The 2× 2 matrix representing this change
of basis is [

v 1− uv
−1 u

]
.

It follows that the slope of each component of S∗i ∩ ∂+Cr,s is
1−v(u−l)

u−l , and
by Lemma 3.1, we have

1− v(u− l)
u− l

=
1 + krs

kr2
.

Thus −vkr2 = −v(u− l) = krs. As r and s are relatively prime, we must
have either krs = 0 or krs = ±1. If krs = 0, then the slope of S∗i ∩ ∂−Cr,s =
S ∩ ∂−Cp,q is meridional by Lemma 3.4 (since Cp,q and Cr,s have the same
regular fibers). On the other hand, if krs = ±1, then kr2 = ±1, so S∗i ∩
∂+Cr,s has integral slope, implying S∗i ∩ ∂−Cr,s has integral slope by
Lemma 3.2. This in turn shows that S ∩ ∂−Cp,q has integral slope,
completing the proof. �

For ease of notation but at the risk of confusion, we will let C0 denote
E(K0) despite the fact that E(K0) is not a cable space, and for 0 ≤ l ≤ m ≤
n, define

Cm
l = Cl ∪ Cl+1 ∪ · · · ∪ Cm.

We prove one final lemma before the main theorem of this section.

Lemma 4.3. Suppose that Σ is a Heegaard surface for Cm
l , such that Σ ∩ Cl

and Σ ∩ Cl+1 are incompressible. Then χ(Σ ∩ (Cl ∪ Cl+1)) ≤ −4.
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Proof. First, suppose that S ∩ Cl is a horizontal surface (this can only occur
in the case l = 0), so each component of Σ ∩ Cl has negative Euler char-
acteristic. As Σ is separating, there are at least two components, hence
χ(Σ ∩ Cl) ≤ −2. In addition, Σ ∩ Tl+1 has integral slope, so Σ ∩ Cl+1 is hor-
izontal and has at least two components, implying χ(Σ ∩ Cl+1) ≤ −2 as well.

On the other hand, suppose that Σ ∩ Cl consists of vertical annuli. By
Lemma 3.1, Σ ∩ Cl+1 cannot be of type 3(a) since the regular fibers of Cl and
Cl+1 intersect more than once, and Σ ∩ Cl+1 cannot be of type 3(b) since the
slope of Σ ∩ Tl+1 is integral. It follows that each component Σi of Σ ∩ Cl+1

satisfies χ(Σi) ≤ −2; thus χ(Σ ∩ (Cl ∪ Cl+1)) = χ(Σ ∩ Cl+1) ≤ −4. �

Theorem 4.2. For the iterated torus knot Kn, with cabling parameters
satisfying Δ(pi

qi
, pi−1qi−1) > 1, we have t(Kn) = n+ 1.

Proof. First, we note that each Ci has a minimal genus 2 Heegaard surface
Σi, and together with the essential tori Ti, the collection {Σi} ∪ {Ti} yields a
generalized Heegaard splitting of E(Kn). Amalgamating this splitting gives
a Heegaard surface with genus

∑
g(Σi)−

∑
g(Ti) = 2(n+ 1)− n = n+ 2.

Thus, t(Kn) ≤ n+ 1.
Fix j such that 1 ≤ j ≤ n and suppose by way of induction that g(Cm′

l′ ) =
m′ − l′ + 2, whenever m′ − l′ < j. The above argument covers the base case
m′ − l′ = 0. Let Σ be a Heegaard surface for some Cm

l , such that m− l = j
and suppose first that Σ is weakly reducible. By Theorem 2.3, untelescoping
Σ yields a generalized Heegaard splitting with at least one essential thin sur-
face S, and by Lemma 3.5, we have we have that S = Ti for some i, where
l + 1 ≤ i ≤ m. It follows that

g(Σ) ≥ g(Ci−1
l ) + g(Cm

i )− g(Ti) = (i− 1− l + 2) + (m− i+ 2)
− 1 = m− l + 2,

completing the proof.
Hence, suppose that Σ is strongly irreducible. By Theorem 4.1, there is

a submanifold M ′ = Ci or Ti × I of Cm
l , such that

1. Each component of Σ \ (η(T ) ∪ η(M ′)) is incompressible in M \ (η(T )
∪ η(M ′)).

2. If M ′ = Ci for some i, then Σ ∩M ′ is a pseudohorizontal surface in
M ′.

3. Otherwise, M ′ = Ti × I, and Σ ∩M ′ is either
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(a) the result of tubing an annulus parallel into Ti × {0} with boundary
slope s0 to an annulus parallel into Ti × {1} with boundary slope
s1 along a vertical arc in Ti × I, where Δ(s0, s1) = 1, or

(b) the result of tubing two vertical annuli in Ti × I along an arc con-
tained in Ti × {1

2}.

Case 1: M ′ = Ci for some i.
By the above, Σ ∩ Ci is pseudohorizontal and Σ ∩ Cj is incompressible

for j 
= i. Observe that i 
= m, and if i = l, then l = 0, as a pseudohorizontal
surface intersects all boundary components of Ci. Hence Σ ∩ Cm is a vertical
annulus and χ(Σ ∩ Cm) = 0.

We will show that χ(Σ) ≤ −2(m− l)− 2. If Σ ∩ Cj is a vertical annulus
where i < j < m, then Σ ∩ ∂+Cj+1 has integral slope. By Lemma 3.2, Σ ∩
∂−Cm 
= ∅, contradicting that Σ is a Heegaard surface for Cm

l . If i 
= l, then
Σ ∩ Cl is either a vertical annulus or a Seifert surface for K0 (if l = 0), so by
Lemma 3.2, Σ ∩ Tj has integral slope for 1 ≤ j ≤ i; thus Σ ∩ Cj is horizontal.
Thus, we may suppose that Σ ∩ Cj is horizontal whenever j 
= i, l, m. As Σ
is separating, Σ ∩ Cj has at least two components, so χ(Σ ∩ Cj) ≤ −2.

Suppose first that i = 0. By Lemma 4.1, we have

χ(Σ) = χ(Σ ∩ C0) + χ(Σ ∩ C1) + · · ·+ χ(Σ ∩ Cm−1) + χ(Σ ∩ Cm)
≤ −4− 2− · · · − 2− 0
≤ −2(m− l)− 2.

Next, suppose i = l + 1. By the remark above, Σ ∩ Cl is incompress-
ible. If each component of Σ ∩ Cl is horizontal, then χ(Σ ∩ Cl) ≤ −2 and by
Lemma 4.2, χ(Σ ∩ Cl+1) ≤ −4. If Σ ∩ Cl is vertical annuli, then Lemma 4.2
provides that χ(Σ ∩ Cl+1) ≤ −6 (or else Σ ∩ ∂−Cm 
= ∅ by Lemmas 3.2
and 3.3, a contradiction). In either case, we have

χ(Σ) = χ(Σ ∩ (Cl ∪ Cl+1)) +
m−1∑

j=l+2

χ(Σ ∩ Cj) ≤ −6− 2(m− l − 2)

= −2(m− l)− 2.

Finally, suppose that i > l + 1. Then Σ ∩ Cl and Σ ∩ Cl+1 are incom-
pressible, so by Lemma 4.3, χ(Σ ∩ (Cl ∪ Cl+1)) ≤ −4. In addition, by
Lemma 4.2, χ(Σ ∩ Ci) ≤ −4. Otherwise, for j 
= l, l + 1, i, m, components
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of Σ ∩ Cj are horizontal and Σ ∩ Cj contributes at most −2 to χ(Σ). Thus

χ(Σ) ≤ χ(Σ ∩ (Cl ∪ Cl+1)) +
m−1∑
i=l+2

χ(Σ ∩ Cj)

≤ −4− 2(m− l − 2)− 2
= −2(m− l)− 2.

Case 2: M ′ = Ti × I for some i.
Suppose that Ti × I ⊂ Ci, so that Ti = Ti × {0} and let T ′i = Ti × {1}.

In addition, set C ′i = Ci \ η(Ti × I) and for j 
= i, set C ′j = Cj , so that

Cm
l = C ′l ∪Tl+1 · · · ∪Ti−1 C ′i−1 ∪Ti

(Ti × I) ∪T ′i C ′i ∪Ti+1 · · · ∪Tm
C ′m.

By Theorem 4.1, we have that χ(Σ ∩ (Ti × I)) = −2, Δ((Σ ∩ Ti), (Σ ∩ T ′i ))
is either 0 or 1, and Σ ∩ C ′j is incompressible for all j. By the argument
above, each Σ ∩ C ′j must be a horizontal surface for l ≤ j < m, with the
possible exception of Σ ∩ C ′l .

Suppose first that i = l + 1. If Σ ∩ C ′l is horizontal, then we have χ(Σ ∩
C ′j) ≤ −2 for all j, hence

χ(Σ) ≤ χ(Σ ∩ (Tl+1 × I)) +
m−1∑
j=l

χ(Σ ∩ C ′j) ≤ −2− 2(m− l).

On the other hand, suppose that Σ ∩ C ′l is vertical, so that the slope of
Σ ∩ Tl+1 is plql. If the slope of Σ ∩ T ′l+1 is also plql, then by Lemma 2,
Σ ∩ ∂−Cm 
= ∅, a contradiction. It follows that the slope of Σ ∩ T ′l+1 is r

s ,
where r − plqls = ±1.

Observe that Σ ∩ C ′l+1 has at least two components, and if these are
not planar, χ(Σ ∩ C ′l+1) ≤ −4, and again we have χ(Σ) ≤ −2− 2(m− l).
If Σ ∩ C ′l+1 is planar, it must consist of two components each having one
boundary component on T ′l+1. By Lemma 3.1, it follows that

r
s =

1+kpl+1ql+1

kq2
l+1

.
Thus, 1 + kpl+1ql+1 − kplqlq

2
l+1 = ±1 and rearranging yields

kql+1(pl+1 − plqlql+1) = ±1− 1.

By assumption ql+1 ≥ 2 and |pl+1 − plqlql+1| > 1, and so we must have k =
0. Therefore Σ ∩ C ′i is meridional, and by Lemma 3.3, Σ ∩ ∂−Cm 
= ∅, a
contradiction.
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Finally, suppose i > l + 1. Then Σ ∩ (Cl ∪ Cl+1) = Σ ∩ (C ′l ∪ C ′l+1) and
by Lemma 4.3, χ(Σ ∩ (C ′l ∪ C ′l+1)) ≤ −4. Hence

χ(Σ) ≤ χ(Σ ∩ (C ′l ∪ C ′l+1)) + χ(Σ ∩ (Ti × I)) +
m−1∑

j=l+2

χ(Σ ∩ C ′j)

≤ −4− 2− 2(m− l − 2)
= −2(m− l)− 2,

as desired. �

5. Strongly irreducible bridge surfaces

One valuable feature of strongly irreducible Heegaard surfaces for 3-
manifolds is a “no-nesting” property, demonstrated by Scharlemann in [19].
We adapt the proof of this important lemma to show a version of no-nesting
for bridge surfaces below.

Lemma 5.1. Suppose Σ is a strongly irreducible bridge surface in (M, J),
where (M, J) = (V, α) ∪Σ (W, β).

1. If c is an essential curve in ΣJ such that c bounds a disk D ⊂ M(J),
where a collar of c in D is disjoint from ΣJ , then c bounds a
compressing disk D′ in (V, α) or (W, β).

2. If γ is an essential arc in ΣJ such that γ cobounds a disk Δ ⊂ M(J)
with an essential arc μ ⊂ ∂N(J), where a collar of γ in Δ is disjoint
from ΣJ , then γ cobounds a bridge disk in (V, α) or (W, β).

Proof. 1. Choose a disk D with ∂D = c and such that |D ∩ ΣJ | is mini-
mal. If int(D) ∩ ΣJ = ∅, we are done. If not, D intersects ΣJ in some
number of simple closed curves. Any curves which are inessential in
ΣJ may be removed by isotopy; hence we may suppose that each curve
of D ∩ ΣJ which is innermost curve in D bounds a compressing disk
for ΣJ .
Pick an innermost nested pair of curves δ and ε, so that ε is inner-

most in D and δ cobounds a component P of D \ η(ΣJ) with ε and
possibly some other curves ε1, . . . , εn, each of which is innermost in D
and thus bounds a compressing disk for ΣJ . Suppose without loss of
generality all of these disks lie in (W, β). Compressing Σ along this
collection of disks yields a surface Σ′ and a bridge splitting (M ′, J ′) =
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(V, α) ∪Σ (C, β′), where Σ′ = ∂−C, and C is chosen so that D ∩ C con-
tains a vertical annulus A cobounded by δ and a curve δ′ ⊂ D ∩ Σ′ (or
in the case that δ = c, the disk D can be extended to Σ′ via such a
vertical annulus A).
Clearly, δ′ bounds a disk in M ′(J ′). If δ′ is essential in Σ′J ′ , then by

Theorem 2.3, Σ cannot be strongly irreducible, a contradiction. Thus,
δ′ bounds a disk D′ ⊂ Σ′J ′ , and in (M, J) we may perform surgery
on D by gluing D′ along δ′. However, this reduces the number of
intersections of int(D) with ΣJ , another contradiction. We conclude
that int(D) ∩ ΣJ = ∅, completing the first part of the proof.

2. The second statement follows easily by viewing Δ as a disk in M with
a boundary arc contained in J and by observing that N(Δ) ⊂M is a
3-ball, where c = ∂(N(γ) ∩ Σ) bounds a compressing disk D ⊂ ∂N(Δ)
satisfying (1). Thus, c bounds a diskD′ in (V, α) or (W, β). It must then
be true that the arc μ ⊂ ∂N(J) intersects ΣJ only in its endpoints,
hence D′ is the frontier in V or W of a regular neighborhood of a
bridge disk Δ′, where γ ⊂ ∂Δ′. �

Next, we adapt a lemma from the theory of Heegaard surfaces in the
context of bridge surfaces [1, 10]. The lemma asserts that strongly irreducible
surfaces behave much like incompressible surfaces; namely, cutting a strongly
irreducible surface A along a collection of incompressible surfaces splits A
into a number of pieces, all of which are incompressible with the exception
of at most one strongly irreducible component. We make this statement
rigorous in the next lemma, whose proof is modeled on the proof of Lemma
3.7 in [10]. We need several definitions before proceeding.

First, we weaken the definition of an essential surface. Let M be a
3-manifold with boundary, P ⊂ ∂M a subsurface, and A ⊂ M a properly
embedded surface. A P -∂-compressing disk for A is a ∂-compressing disk Δ
for A such that Δ ∩ ∂M ⊂ P . We say that A is P -essential if A is incom-
pressible and there does not exist a P -∂-compressing for A in M . On the
other hand, if A is separating and admits compressing or P -∂-compressing
disks on either side but admits no pair of disjoint disks on opposite sides, we
say that A is P -strongly irreducible. As an example, a strongly irreducible
bridge surface for a knot K in M is ∂N(K)-strongly irreducible in M(K).
Finally, we say that two surfaces A and B are almost transverse if A is
transverse to B except for a single saddle tangency.

The lemma below is stated in the greater generality than is needed
here; however, we include it in its entirety for anticipated use in future
work.
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Lemma 5.2. Let M be a compact 3-manifold and J a properly embedded
1-manifold, with Q = ∂N(J) in M(J). Suppose Σ is a strongly irreducible
bridge splitting surface for (M, J), and let S ⊂ M(J) be a collection of prop-
erly embedded essential surfaces, such that for each component c of ∂S, either
c ⊂ Q or c ⊂ ∂M . Then one of the following must hold:

(1) After isotopy, ΣJ is transverse to S and each component of ΣJ \ η(S)
is Q-essential in M(J) \ η(S).

(2) After isotopy, ΣJ is transverse to S, one component of ΣJ \ η(S)
is Q-strongly irreducible and all other components are Q-essential in
M(J) \ η(S),

(3) After isotopy, ΣJ is almost transverse to S and each component of
ΣJ \ η(S) is Q-essential in M(J) \ η(S).

Proof. Let (M, J) = (V, α) ∪Σ (W, β) be a bridge splitting with strongly irre-
ducible bridge surface Σ, and let GV and GW denote cores of V and W ,
respectively. If V = Σ× I, define GV to be a small arc with one endpoint
on ∂−V and one endpoint in int(V ) (similarly with W and GW ). After
isotopy, we may assume that GV and GW miss each arc in α and β. Let
bα be the number of ∂-parallel arcs in (V, α), and define ΓV to be the
union of GV , (∂−V )J , bα meridional curves contained in ∂N(α) ⊂ V (α),
and bα unknotted arcs connecting the meridional curves to GV , so that
V (α) \ ΓV

∼= ΣJ × (0, 1]. We may define ΓW ⊂ W (β) similarly.
Then M(J) \ (ΓV ∪ ΓW ) ∼= ΣJ × (0, 1). This induces a sweepout f :

M(J)→ I, such that f−1(0) = ΓV , f−1(1) = ΓW , and for every t ∈ (0, 1),
Σt = f−1(t) is isotopic to ΣJ . We let (M, J) = (Vt, αt) ∪Σt

(Wt, βt) denote
the bridge splitting induced by Σt. Assume that S is transverse to ΓV ∪ ΓW .
Choosing ε small enough, we then have that both S ∩ ((Vε, αε) ∪ (W1−ε,
β1−ε)) is a collection of compressing and bridge disks.

After a small perturbation, the function h = f |S is Morse on (−1, 1),
where all critical points of h occur at different levels, each meridional com-
ponent of ∂S is contained in a unique level away from critical values of
h (these levels will also be considered critical values, viewed as truncated
extrema), and for any other component γ of ∂S, h|γ is monotone on (−1, 1),
so that for any two components c1 ⊂ ∂Σt and c2 ⊂ ∂S, we have |c1 ∩ c2| is
minimal up to isotopy.

We assign to each t ∈ (−1, 1) some subset of the labels {ν, ω} by the
following method: if Σt \ η(S) contains a curve which bounds a compressing
disk in (Vt, αt) or an arc which cobounds a bridge disk in (Vt, αt), we assign
t the label ν. The label ω is defined analogously with (Wt, βt). Note that
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t may have either, both, or no labels. In addition, we observe that ε has
the label ν and 1− ε has the label ω, which follows from the fact that S is
transverse to ΓV and ΓW , and both cores are nonempty.

Next, we claim that if some regular value t of h has no label, then (1)
holds. Suppose t has no label. We assert that each curve and arc of S ∩ Σt is
essential in both S and Σt or inessential in S and Σt. By the incompressibility
and ∂-incompressibility of S, no curve or arc is essential in S but inessential
in Σt. Suppose that S ∩ Σt contains a curve or arc c which is essential in
Σt but inessential in S. By Lemma 5.1 and the strong irreducibility of Σt,
this implies that c bounds a compressing disk or cobounds a bridge disk in
either (Vt, αt) or (Wt, βt), contradicting the assumption that Σt has no label.
Thus, curves and arcs in S ∩ Σt are either essential or inessential in both.

If S ∩ Σt contains an arc γ which is inessential in both Σt and S, then
both endpoints of γ are contained in single component c1 of ∂Σt and c2 of
∂S. However, this implies that ∂γ ⊂ c1 ∩ c2 contains two points of opposite
algebraic intersection number, contradicting that |c1 ∩ c2| is minimal. Thus,
arcs of S ∩ Σt are essential in both surfaces.

Let c be a curve in S ∩ Σt which is innermost among inessential curves
in S. Then c bounds a disk Δ ⊂ S which misses Σt, and performing surgery
on Σt along c gives a surface isotopic to Σt with fewer intersections with S.
Finitely many iterations of this operation yields a bridge surface Σ′t isotopic
to Σt and such that each curve and arc in Σ′t ∩ S is essential in both surfaces.
Moreover, Σ′t ∩ S ⊂ Σt ∩ S.

Suppose now that some component of Σ′t \ η(S) is Q-compressible. Then
there is a curve or arc c ⊂ Σ′t \ η(S) such that c bounds a disk or cobounds
a bridge disk in (Vt, αt) or (Wt, βt). Since each curve of Σ′t ∩ S is essential
in Σ′t, it follows that c is essential in Σ′t. We may isotope c so that c ⊂ Σt,
but this means that t is labeled ν or ω, a contradiction. We conclude that
each component of Σ′t \ η(S) is Q-essential in its respective
submanifold.

Our second major claim is that if a regular value t is labeled ν and ω,
then (2) holds. As above, we assert that S ∩ Σt contains curves and arcs
that are either essential in both S and Σt or inessential in both S and Σt.
The incompressibility and ∂-incompressibility of S rules out curves and arcs
essential in S but inessential in Σt. Suppose c is a curve or arc in S ∩ Σt

which is essential in Σt but inessential in S. Then c bounds or cobounds a
disk in M(J), and by Lemma 5.1, c bounds or cobounds a disk in (Vt, αt) or
(Wt, βt). However, since t is labeled ν and ω, there exist curves or arcs cV

and cW disjoint from S (and thus from c) which bound or cobound disks in
(Vt, αt) and (Wt, βt), respectively. This contradicts the strong irreducibility
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Figure 2: Possible components of S corresponding to a saddle.

of Σt. Hence, curves and arcs in S ∩ Σt are either essential or inessential in
both surfaces.

As above, S ∩ Σt cannot contain arcs inessential in both surfaces, and we
may construct a surface Σ′t such that S ∩ Σ′t contains only curves and arcs
which are essential in both S and Σ′t. Let Σ′ be the component of Σ′t \ η(S)
which contains cV . By the strong irreducibility of Σ′t, cV ∩ cW 
= ∅ and thus
cW ⊂ Σ′ and, more generally, Σ′ must be Q-strongly irreducible. Let Σ′′

be any other component of Σ′t \ η(S). If an essential curve or arc c bounds
or cobounds a disk for (Vt, αt) or (Wt, βt), this gives rise to a compressing
or bridge disk for Σt disjoint from cV and cW , another contradiction. We
conclude that Σ′′ is Q-essential in M(J) \ η(S).

In the final remaining case, suppose that h has a critical value t ∈ (ε, 1−
ε) such that t− δ is labeled ν and t+ δ is labeled ω, with curves or arcs cV

and cW contained in Σt±δ\η(S) bounding or cobounding disks in (Vt−δ, αt−δ)
and (Wt+δ, βt+δ), respectively. If c corresponds to minimum, maximum, or
a level component of ∂S, then there exists an isotopy pushing cV to c′V ∈
Σt+δ or cW to c′W in Σt−δ bounding disks in (Vt+δ, αt+δ) or (Wt−δ, βt−δ),
respectively, contradicting either the assumption that t+ δ is labeled ω or
the assumption that t− δ is labeled ν. We conclude that t corresponds to a
saddle.

We may regard a small closed regular neighborhood N(S) of in M(J) as
S × I. Then Σt ∩ (S × I) contains components of the form γ × I, where γ is
curve or arc in Σt ∩ S, in addition to one exceptional component E contain-
ing the saddle point. The surface E must be a pair of pants, an annulus or
a disk, depending on whether S ∩ Σt is a figure eight curve, a curve wedged
with an arc, or the wedge of two arcs. figure 2 depicts the possible configu-
rations corresponding to the saddle point along with potential singular sets
S ∩ Σt. Note while the figure depicts subsets of S on which h is a Morse
function, each of these pieces is isotopic to the corresponding exceptional
component E ⊂ Σt.

We assert that if a curve or arc γ ⊂ Σt \ η(S) is essential in Σt, then
γ does not bound or cobound a disk in M . Otherwise, by the no-nesting
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Lemma γ bounds or cobounds a disk in (Vt, αt) or (Wt, βt), implying that
Σt−δ and Σt+δ have the a common label, since for small δ, Σt±δ \ η(S) is
parallel to Σt \ η(S).

Next, we claim that curves and arcs in Σt ∩ ∂N(S) are either essential
or inessential in both ∂N(S) and Σt. Since ∂N(S) is essential, no curve or
arc γ ∈ ∂N(S) ∩ Σt is essential in ∂N(S) and inessential in Σt. Addition-
ally, by the assertion above, no such γ is essential in Σt and inessential in
∂N(S). As above, there cannot be arcs in ∂N(S) ∩ Σt which are inessential
in both surfaces. If there exists a curve of intersection which is inessential
in both surfaces, cutting and pasting along a curve which is innermost in
∂N(S) yields a surface isotopic to Σt with fewer intersections with ∂N(S),
and finitely many repetitions produces a surface Σ′t isotopic to Σt and such
that ∂N(S) ∩ Σ′t contains only curves and arcs which are essential in both
surfaces.

Here we show that every component of Σ′t \ η(S) is Q-essential. If γ is
a curve or arc which is essential in Σ′t \ η(S), then γ must be essential in
Σ′t as all components of Σ′t ∩ ∂N(S) are essential curves or arcs. Thus, γ
cannot bound or cobound a disk in M . Otherwise, after isotopy we may
assume γ ⊂ Σt and by the no nesting Lemma, γ bounds or cobounds a disk
in (Vt, αt) or (Wt, βt), contradicting our assertion above.

To finish the proof, we must show that Σ′t is either tangent or almost
tangent to S. In process of capping off disks to get Σ′t from Σt, we may have
altered the exceptional component E if some curve in ∂E was inessential in
∂N(S). Let E′ = E ∩ Σ′t (that is, E′ is the essential subsurface of Σ′t resulting
from capping off inessential curves and arcs of E). There are several cases
to consider: if E′ = ∅, then (1) holds. If E′ = E then (3) holds.

If E′ 
= ∅ and E′ 
= E, then the above process must have capped off
exactly one curve component of ∂E, and ∂E′ has two components, c0 and
c1. If c0 and c1 are contained in different components of ∂N(S), then E′ can
be expressed as c0 × I in N(S), and (1) holds. Otherwise, c0 and c1 are in
the same component, call it S0, of ∂N(S). We may replace S with S0 (since
the two surfaces are isotopic), noting that Σ′t is transverse to S0 and each
component of Σ′t \ η(S0) is Q-essential in its respective submanifold; that is,
(1) holds, as desired. �

We note that if the exceptional component E of Σt in the final part of
the above proof is contained in an essential torus T or annulus A in S, then
(3) cannot occur, as at least one of the curves in ∂E must be inessential in
S. Thus, if S is a collection of tori and annuli, we have that either statement
(1) or statement (2) holds.
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Figure 3: Replacing K ⊂ Σ with its cable.

6. Analyzing the bridge spectra of Kn

In Section 4, we utilized Theorem 4.1 to understand minimal genus
Heegaard surfaces for E(Kn). In a similar vein, in this section we will employ
Lemma 5.2 to characterize minimal bridge surfaces for Kn, although the
analysis here is significantly less complicated than that of Section 4. We
begin with a lemma concerning embeddings of cables on Heegaard surfaces.

Lemma 6.1. Let K be a knot in a 3-manifold M and Kp,q a (p, q)-cable of
K. If Σ ⊂ M is a Heegaard surface, such that K ⊂ Σ and D is a compressing
disk for Σ such that |D ∩K| = 1, then there exists an embedding of Kp,q in
M such that Kp,q ⊂ Σ.

Proof. Suppose M = V ∪Σ W , with D ⊂ V , and let D × I be a collar neigh-
borhood of D in V , noting that K ∩ (∂D × I) is a single essential arc. In
addition, let X = N(K) ∩ V . Then both X and X ′ = X ∪ (D × I) are solid
tori whose cores are isotopic to K. Now X ′ ∩ S = ∂X ′ ∩ S is a
once-punctured torus. Since every torus knot can be embedded on a once
punctured torus, every (p, q)-cable of K can be embedded on X ′ ∩ S. See
figure 3. �

As a consequence of Lemma 6.1, we may demonstrate that bg(Kn) = 0
whenever g > n: By Theorem 4.2, t(Kn−1) = n, which implies that E(Kn−1)
has a genus n+ 1 Heegaard splitting. In this case, the∞-sloped Dehn filling
of Kn−1 yields a genus n+ 1 Heegaard surface Σ of S3 in which Kn−1 is
contained in a core of one of the handlebodies cut out by Σ. It follows
that Kn−1 is isotopic into Σ, and there is a compressing disk D such that
|D ∩Kn−1| = 1. By Lemma 6.1, there is an embedding of Kn such that
Kn ⊂ Σ. Hence bn+1(Kn) = 0, and using stabilization, bg(Kn) = 0 for all
g > n.

Conversely, if Kn is isotopic into a genus g Heegaard surface Σ′, then a
perturbation followed by a meridional stabilization of Σ′ yields a genus g + 1
surface Σ′′ such that there is a compressing disk D′ for Σ′′ with |D′ ∩Kn| =
1. In this case, Kn is isotopic into the core of a handlebody cut out by
Σ′′, implying that g(E(Kn)) ≤ g + 1. This implies that t(Kn) ≥ g; thus by
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Theorem 4, n+ 1 must be the smallest g for which bg(Kn) = 0, and Σ is not
cancelable for g ≤ n.

For any knot K ⊂ S3, the smallest g for which bg(K) = 0 is called the
h-genus h(K) of K, following Morimoto [12]. In this work, Morimoto parti-
tions the set of all knots into sets An, Bn, and Cn related to tunnel number,
h-genus, and another invariant known as 1-bridge genus. He conjectures that
each of these sets is nonempty, and the above argument verifies that for all
Kn, we have h(Kn) = t(Kn) = n+ 1 and Kn ⊂ An+1.

Before we arrive at the proof of the main theorem, recall that E(Kn)
decomposes as

E(Kn) = C0 ∪T1 ∪ · · · ∪Tn
Cn,

and that T denotes the collection {T1, . . . , Tn}. Note also that Cn contains
an essential vertical annulus A such that ∂A ⊂ ∂E(Kn), where Cn \ η(A) is
the union of Tn × I and a solid torus X. Thus, if we set T ′ = T ∪ {A}, then
E(Kn) cut along T ′ is the union of C0, the cable spaces C1, . . . , Cn−1, the
product region Tn × I, and the solid torus X.

Define V0 = S3, and for every l with 1 ≤ l ≤ n, let Vl denotes the solid
torus in S3 bounded by Tl, so that Vl \ η(Kn) = Cn

l (using the terminology
of Section 4).

Lemma 6.2. Suppose that Σ is a strongly irreducible (g, b)-bridge surface
for (Vl, Kn) with 0 ≤ l ≤ n− 1 and b ≥ 1. Then one of the following holds:

(1) Σ is a (g, b′)-bridge surface for (Vl, Kn−1), where b ≥ qn · b′ and b′ ≥ 1,

(2) g > n− l, or

(3) l = n− 1, g = 1, and b ≥ |pn − pn−1qn−1qn|.

Proof. Let Q = ∂N(Kn). By Lemma 5.2, there is an isotopy of Σ after at
most one of Σ ∩ Cl, . . . ,Σ ∩ Cn−1,Σ ∩ (Tn × I),Σ ∩ V is Q-strongly
irreducible, while the remaining surfaces are Q-essential in their respective
submanifolds. Suppose first that Σ ∩X is Q-essential. Since Σ ∩Kn 
= ∅, we
have that Σ ∩X cannot be a ∂-parallel annulus or disk, as these surfaces
are either disjoint from Kn or are Q-∂-compressible. Thus each component
of Σ ∩X is a meridian disk, which intersects Kn at least qn times. This
implies that Σ is a (g, b′)-bridge surface for a core Kn−1 of X intersecting Σ
transversely, implying b ≥ qn · b′ and b′ ≥ 1.

On the other hand, suppose that Σ ∩X is Q-strongly irreducible. Then
Σ ∩ (Tn × I) is incompressible, and thus must be a collection of vertical
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annuli. This implies that Σ ∩ Tn is essential simple closed curves and param-
eterizing ∂X as Tn, slopes of Σ ∩ ∂X and Σ ∩ Tn are equal. In addition,
each Σ ∩ Cj is essential. It follows that Σ ∩ Cl must be a collection of
vertical annuli or Seifert surfaces for K0 (if l = 0); thus by Lemma 3.2,
Σ ∩ Tj has integral slope for all j. Thus, Σ ∩X has no disk components and
χ(Σ ∩X) ≤ 0. If l ≤ n− 2, then by Lemma 4.3 χ(Σ ∩ (Cl ∪ Cl+1)) ≤ −4 and
χ(Σ ∩ Cj) ≤ −2 whenever l + 1 < j < n. Therefore

χ(Σ) = χ(Σ ∩ (Cl ∪ Cl+1)) +
n−1∑

j=l+2

χ(Σ ∩ Cj) ≤ −4− 2(n− l − 2),

g(Σ) ≥ n− l + 1, and (2) holds.
Thus, if l ≤ n− 2, then (1) or (2) holds. Now suppose l = n− 1, so if

(2) does not hold, then Σ is a (1, b)-surface. As above, if Σ ∩X is meridian
disks, (1) holds. Otherwise, Σ ∩ Cn−1 is a vertical annulus, as is Σ ∩ (Tn × I).
Viewing Kn as a regular fiber of Cn, we see that each component of Σ ∩ Tn

must contribute |pn − pn−1qn−1qn| intersections with Kn, and since there
are at least two such components, we have b ≥ |pn − pn−1qn−1qn|. �

Note that by [22, 23], the bridge spectrum of the (p0, q0)-torus knot K0

is b(K0) = (min{p0, q0}, 0). We describe the spectrum of Kn inductively.

Theorem 6.1. Suppose that Kn is an iterated torus knot, whose cabling
parameters satisfy |pi − pi−1qi−1qi| > 1. Then

bg(Kn) =

⎧⎪⎨
⎪⎩

qn · bg(Kn−1) if g < n,
min{|pn − pn−1qn−1qn|, qn} if g = n,
0 otherwise.

In other words,

b(Kn) = qn · b(Kn−1) + min{|pn − pn−1qn−1qn|, qn} · en.

Proof. By Theorem 1.3, b0(Kn) = qn · b0(Kn−1), and by the above
arguments bg(Kn) = 0 if and only if g > n. First, we exhibit bridge surfaces
satisfying the above equalities. Any (g, b)-bridge surface Σ for Kn−1 can also
be seen as a (g, qn · b)-surface for Kn by replacing each trivial arc of Kn−1

with qn trivial arcs of its cable Kn. If follows that bg(Kn) ≤ qn · bg(Kn−1)
for g < n, and since bn(Kn−1) = 0, perturbing this surface yields an (n, 1)-
surface for Kn−1, implying bn(Kn) ≤ qn.
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Let p∗n = |pn − pn−1qn−1qn|. Following the proof of Lemma 6.2, we can
see that (Vn−1, Kn) has a (1, p∗n)-surface Σ′ constructed by taking the union
of a vertical annulus in Cn−1, a vertical annulus in Tn × I, and a ∂-parallel
annulus in X. If n = 1, this is a (1, p∗n)-surface for (S3, K1); otherwise,
by Theorem 4.2, E(Kn−2) has a genus n Heegaard surface Σ′′, and thus
{Σ′, Tn−1,Σ′′} is a generalized bridge splitting for (S3, Kn) whose amalga-
mation Σ∗ is an (n, p∗n)-bridge surface. It follows that bn(Kn) ≤ p∗n.

Now, let (S3, Kn) = (V, α) ∪Σ (W, β) be a (g, b)-bridge splitting with
g ≤ n, so that b ≥ 1 by above arguments. If Σ is strongly irreducible, then
by Lemma 6.2, either b ≥ qn · bg(Kn−1), or g = n = 1 and b ≥ min{p∗n, qn}.
Otherwise, Σ is weakly reducible and may be untelescoped to yield a gen-
eralized bridge splitting {Σ0, S1, . . . , Sd,Σd}, where each Σi is strongly irre-
ducible and each Si is essential. By Theorem 6.6 of [28], E(Kn) contains no
essential meridional surfaces, so Si ∩Kn = ∅ for all i and thus by Lemma 3.5,
each Si must be isotopic to some Tj .

As Kn lies on the same side of Tj for all j, either Σ0 ∩Kn 
= ∅ or Σd ∩
Kn 
= ∅. Assume Σd ∩Kn 
= ∅ and consider let Tl = Sd. Then Σd is a strongly
irreducible bridge surface for some Vl, Σd has the same bridge number as Σ,
and {Σ0, S1, . . . , Sd−1,Σd−1} is a generalized Heegaard splitting for E(Kl−2).
By Theorem 4.2, we have

d−1∑
i=0

g(Σi)−
d−1∑
i=1

g(Si) ≥ g(E(Kl−2)) = l + 1.

Consider the three possibilities afforded to Σd by Lemma 6.2: in the first
case, b ≥ max{qn · bg(Kn−1), qn}. If g(Σd) > n− l, then we have

g(Σ) = g(Σd)− g(Tl) +
d−1∑
i=0

g(Σi)−
d−1∑
i=1

g(Si) > (n− l)− 1 + (l + 1) = n,

a contradiction.
In the final case, l = n− 1, g(Σd) = 1, and b ≥ p∗n. This implies

g(Σ) = g(Σd)− g(Tn−1) +
d−1∑
i=0

g(Σi)−
d−1∑
i=1

g(Si) ≥ 1− 1 + n = n,

hence g(Σ) = n and bn(Kn) ≥ p∗n, completing the proof of the theorem. �



Bridge spectra of iterated torus knots 959

Figure 4: A (0, 8)-surface Σ0 for K1, with curves in Σ0 depicting Tn ∩ Σ0.

Figure 5: A (1, 4)-surface Σ1 for K1, with curves in Σ1 depicting Tn ∩ Σ1.

7. An example

Here we apply Theorem 6.1 to produce the bridge spectrum of K1 = ((3, 2),
(21, 4)), with illustrations. Note that K1 is a (21, 4)-cable of the trefoil K0 =
((3, 2)), so by Theorem 1.3, we have b0(K1) = 8. An illustration of a minimal
(0, 8)-surface Σ0 appears in figure 4, where X ∩ Σ0 is a collection of meridian
disks, each intersecting K1 four times.

Turning to the genus one case, taking an obvious cabling of (1, 1)-surface
for K0 yields a (1, 4)-surface Σ1 for K1, where X ∩ Σ1 is a collection of
meridian disks, each of which hits K1 four times. See figure 5.

However, the surface is not minimal; by Theorem 6.1,

b1(K1) = min{|21− 3 · 2 · 4|, 4} = 3.
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Figure 6: A (1, 3)-surface Σ′1 for K1, with curves in Σ′1 depicting Tn ∩ Σ′1.

Thus, there is a (1, 3)-surface Σ′1 for K1, shown in figure 6, where X ∩ Σ′1
is a boundary parallel annulus. It is not difficult to observe that Σ1 is a
perturbation of Σ′1.

Finally, K1 is isotopic into a genus g Heegaard surface for S3 whenever
g ≥ 2, and we have

b(K1) = (8, 3, 0);

hence, the bridge spectrum of K1 has two gaps.

8. Questions

We conclude with several open questions that may be of interest.

Question 2. What other spectra can be realized by knots in S3? Specifically,
for any decreasing sequence v of positive integers, is there a knot K such
that b(K) = v?

Question 3. What other families of knots have interesting bridge spectra?
For instance, what is the bridge spectrum of a twisted torus knot?

While it is relatively straightforward to exhibit candidate bridge sur-
faces for twisted torus knots, showing these positions to be minimal is a
more complicated task. In general, Lemma 5.2 does not apply to hyperbolic
twisted torus knots, and so a new strategy would likely be required.

The next question is posited in [3] by Doll.
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Question 4. For knots K1 and K2 in S3, is there a relationship between
b(K1), b(K2), and b(K1#K2)?

A simple construction shows that

bg(K1#K2) ≤ min{bg1(K1) + bg2(K2)− 1 : g1 + g2 = g}.

However, for any n, there are knots K1 and K2 such that t(K1#K2) <
t(K1) + t(K2)− n (see [9, 13]); hence, these knots have the property that for
some g the inequality above is strict. It may be possible that the inequalities
above become equalities when we restrict to the class of meridionally small
knots, and Lemma 5.2 may be of use here.

We can also examine the overall bridge structure of iterated torus knots.

Question 5. Is there an iterated torus knot Kn with an irreducible (g, b)-
bridge surface Σ such that b > bg(Kn)?

In [21], it is shown that every bridge surface for a 2-bridge knot is the
result of stabilization, perturbation, and meridional stabilization performed
on a (0, 2)-surface. Is it possible that all bridge surfaces for iterated torus
knots are derived in this way from the bridge surfaces exhibited here, or are
there any unexpected surfaces?
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