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Spacelike self-similar shrinking solutions of the

mean curvature flow in pseudo-Euclidean spaces

Márcio Rostirolla Adames

I classify spacelike self-similar shrinking solutions of the mean cur-
vature flow in pseudo-Euclidean space in arbitrary codimension, if
the mean curvature vector is not a null vector and the principal
normal vector is parallel in the normal bundle. Moreover, I exclude
the existence of such self-shrinkers in several cases. The classifica-
tion is analogous to the existing classification in the Euclidean
case [20, 27].

1. Introduction

The mean curvature flow (MCF) of an immersion F : M → N of a smooth
manifold M into a Riemannian manifold (N, h) is a natural way to deform
this immersion into something “rounder” or “more regular.” It is a smooth
family of isometric immersions Ft : M → N , t ∈ [0, T ) that satisfies

dFt

dt
= �H, F0(x) = F (x).

The MCF has been studied by many. It not always regularizes the initial
surface but also produces singularities. Suppose now that the target manifold
N is the Euclidean space E

n. In an important work on the MCF of convex
compact hypersurfaces [18] Huisken showed, among other results, that the
supremum of the norm of the second fundamental form supM ‖A‖2 explodes
as t → T (the maximal existence time) if there is a finite time (T < ∞)
singularity. However, this can be done not only for hypersurfaces, but also
for a broader class of manifolds and in any codimension (see [26] Proposition
3.11 and Remark 3.12 or [12]).

In a subsequent work [19], Huisken showed, with his famous monotonic-
ity formula, that hypersurfaces satisfying a natural growth in the norm of
the second fundamental form, deform asymptotically near a singularity to
self-similar solutions of the MCF after some blow up process (rescaling the
surface and changing the time variable). Later Ilmanen [22] and White [30]
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proved that the all finite time singularities in the generalized sense of the
Brakke flow [7] are self-similar solutions of the MCF.

These self-similar solutions of the MCF are also called self-shrinkers to
avoid confusion with other types of solutions that preserve the “form” of the
surface, like self-expanders and translating solutions. They are homotheties
that shrink the initial manifold and are characterized by the equation

�H = −F⊥.

Because of the relation between singularities of the MCF and self-
shrinkers, there is interest in classifying and giving examples of these in
special cases. Abresch and Langer [1] gave the complete classification of
the closed plane curves that shrink homothetically, they are the circles and
the so called Abresch & Langer curves. Huisken proved in [20] that the
self-shrinking hypersurfaces with non-negative mean curvature (compact or
non-compact) are spheres, cylinders and the product of an Abresch & Langer
curve with an affine space. The result of Huisken was later generalized by
Smoczyk [27] for higher codimensional immersions, with the assumption
that the principal normal is parallel in the normal bundle and ‖ �H‖E �= 0.
A related result was found by Cao and Li [8] in any codimension: the self-
shrinkers with ‖A‖2 ≤ 1 are spheres, planes or cylinders. There are also
Bernstein type results for self-shrinkers in higher codimension of Ding and
Wang [13], who generalize works of Wang [28] and Ecker and Huisken [15].
Recently, Baker [5] proved that high codimensional self-shrinkers under cer-
tain conditions for the second fundamental tensor and mean curvature vector
are spheres or cylinders.

For hypersurfaces in R
3, there are examples of a shrinking doughnut

of Angenent [4] and many numerical examples of Chopp [9] and Ilmanen
[21], like “punctured saddles” made of many handles crushing at the same
time, which are highly unstable, depending on the surface having many
symmetries. Colding and Minicozzi [11] showed that the only stable self-
shrinkers of the MCF for initial smooth closed embedded surfaces in R

3 are
cylinders and spheres. For the Lagrangian MCF, Joyce et al. [23], Anciaux [3]
and Wang [29] have examples. There are other results in different contexts.

The main purpose of this work is to study self-shrinkers of the MCF in
higher codimension in the pseudo-Euclidean case. By that, we mean that the
target manifold N is a pseudo-Euclidean space, so that the most interesting
new case is the Minkowski space R

1,n. The MCF of spacelike hypersurfaces
in the Minkowski space was studied for example by Ecker [14] and a related
flow was considered by Ecker and Huisken [16]. Gerhardt [17] also studies
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curvature flows in semi-Riemannian manifolds, specially the inverse MCF.
Beyond this, Bergner and Schäfer [6] considered the MCF in the three-
dimensional Minkowski space. Furthermore Li and Salavessa [24] have some
results for the MCF of spacelike graphs in product manifolds.

The present paper is organized in the following fashion: in Section 2
are given some fundamental equations in order to fix the notation and in
Section 3, we consider homotheties of the MCF that lie in hyperquadrics, and
find, similarly to Smoczyk’s result in [27] for spheres in the Euclidean space
E

n, that the homotheties of the MCF with initial immersion contained in
a hyperquadric ({X ∈ R

p,n|‖X‖2 = k}) are exactly the minimally immersed
submanifolds of the hyperquadric if k > 0 or k < 0, as Theorems 3.5 and 3.6
state. Moreover, given the initial minimal immersion, the flow can be explic-
itly calculated. If k = 0 (the light cone), a homothety with non-degenerate
first fundamental form would immediately leave the light cone and thence
could not be a homothety starting at t = 0 because the light cone is star
shaped, as stated in Theorem 3.7. But, as Ecker noted in [14], the upper light
cone would immediately change to a hyperquadric and flow homothetically
after t = 0.

There is a relevant difference between the flow of minimal surfaces of the
hyperquadrics with k > 0 and the ones with k < 0 (which do not exist in
Euclidean case); if k > 0, they shrink to a point (at least the compact ones)
in finite time, but if k < 0, they expand and never produce singularities.
Beyond this, they are given by different equations. The following results
are for the shrinking1 case, which are the isometric immersions F : M →
(Rn, 〈·, ·〉) satisfying

�H = −F⊥.

If one considers the self-shrinkers and self-expanders that are contained
in the hyperquadrics as submanifolds in the pseudo-Euclidean space (Rn,
〈·, ·〉), then one observes that ∇⊥ �H ≡ 0 and ∇⊥ν ≡ 0, where ν := �H/‖ �H‖ is
the principal normal. A natural question is whether these conditions are also
sufficient to guarantee that a spacelike2 self-shrinker lies in a hyperquadric.
The condition ∇⊥ �H = 0 implies this immediately if M is compact, because
‖ �H‖2 is then constant and the maximum principle implies, with equation

(1.1) �‖F‖2 = 2m− 2‖ �H‖2

1The expanding case satisfies �H = F⊥.
2We use elliptic methods to obtain our results (maximum principles, that do not

hold for hyperbolic equations).
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that ‖F‖2 is constant. So, in this work, are examined self-shrinkers of the
MCF with ‖ �H‖2 �= 0 and ∇⊥ν = 0. The condition ∇⊥ν = 0 is natural since
it holds for hypersurfaces.

Section 4 deals with fundamental equations for self-shrinkers with the
principal normal parallel in the normal bundle and the compact case. If
‖ �H‖2 > 0 one finds, just as Smoczyk in [27] for the Euclidean case, that if
M is compact and dim(M) ≥ 2, the only spacelike self-shrinkers of the MCF
with ‖ �H‖2(p) �= 0, ∀p ∈ M and ∇⊥ν ≡ 0 are the minimal3 submanifolds of
hyperquadrics, as stated in Theorem 4.1. This dimensional restriction is in
fact optimal because in dimension one there are the Abresch & Langer curves
which are self-shrinkers and do not lie in spheres. The result is proved con-
trolling the quantity ‖P‖2/‖ �H‖4, which is scaling invariant, thence likely
to be constant in an homothety. This quantity is related to the quantity
‖A‖2/‖ �H‖2 considered by Huisken, which is hard to control in high codi-
mension. The problem (arising from the pseudo-Euclidean background) of
not being able to tell the sign of ‖A‖2 and ‖ �H‖2 is avoided because equations
(and not inequalities) are found for the most important quantities.

Equation (1.1) already shows that there are no compact self-shrinkers
with ‖ �H‖2 < 0. In this paper, the inexistence of self-shrinkers with ‖ �H‖2 < 0
is proven, also in the non-compact case under certain hypothesis, as stated
in Theorem 7.4.

As a consequence, the Minkowski space does not (in all of our treated
cases) have spacelike self-shrinking hypersurfaces, which can be surprising
and is related Ecker’s longtime existence result for spacelike hypersurfaces
in Minkowski space [14].

Sections 5 to 7 are about the non-compact case. Again following Smoczyk
in the non-compact case, one finds that the self-shrinkers with ‖ �H‖2 > 0
are products of affine spaces with minimal submanifolds of hyperquadrics
or with homothetic solutions of the curve shortening flow4 as stated in
Theorem 1.1.

Theorem 1.1. Let M be a smooth manifold and F : M → R
q,n be a mainly

positive, spacelike, shrinking self-similar solution of the MCF with bounded
geometry such that F (M) is unbounded. Beyond that, let F satisfy the con-
ditions: ‖ �H‖2(p) �= 0 for all p ∈ M and the principal normal is parallel in

3By minimal we mean the ones satisfying �H = 0. We use this name because
the condition �H = 0 is then mnemonic, although this condition does not imply
minimality of the volume functional in pseudo-Euclidean spaces, so they are just
critical points of the volume functional.

4The curve shortening flow is the MCF for plane curves.
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the normal bundle (∇⊥ν ≡ 0). Then one of the two holds

F (M) = Hr × R
m−r or

F (M) = Γ× R
m−1,

where Hr is an r-dimensional minimal surface of the hyperquadric Hn−1(r)
(in addition ‖ �H‖2 = r > 0) and Γ is a rescaling of an Abresch & Langer
curve in a spacelike plane. By Rm−r, we mean an m− r dimensional space-
like affine space in R

q,n.

The proof of this theorem is long and internally divided in lemmas to
make its several steps easier to recognize. It was necessary to divide it in
two cases (Theorems 6.1 and 7.1). In both of them, we split TM into two
involutive distributions. Then we use the Theorem of Frobenius to get foli-
ations on M whose leaves are totally geodesic immersed in M . After this,
we calculate a formula that relates the second fundamental tensor of F with
these distributions. In particular, the second fundamental tensor of F is zero
when restricted to one of these distributions, so that the leaves of this dis-
tribution are totally geodesic in (Rq,n, 〈·, ·〉) and then, considering parallel
transports inside these leaves, one finds that they are parallel affine sub-
spaces of R

q,n. The other distribution delivers the Hr and Γ parts in the last
theorem. We get this considering the second fundamental tensor and mean
curvature vectors of the inclusion of the leaves related to this distribution,
with some extra effort to prove that Γ lies on a plane (based on an idea
of [20]). In the last step, we construct an explicit map from these second
leaves times R

m−r onto F (M).

2. Geometric background

2.1. Inner product spaces

Let (Rn, 〈·, ·〉) be an inner product space. This means that 〈·, ·〉 is a sym-
metric bilinear form which is non-degenerate.

A reference the subject is [25] by O‘Neill.
The index η of an inner product 〈·, ·〉 over V is the maximum of the

dimensions of subspaces W ⊂ V on which 〈·, ·〉|W is negative definite.

Definition 2.1. Let U ⊂ V be a vector subspace of V . The normal subspace
U⊥ is the set

U⊥ := {v ∈ V : 〈v, u〉 = 0∀u ∈ U}.
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It is not always possible to decompose V into U ⊕ U⊥, but the following
holds:

Lemma 2.2. A subspace U of V is non-degenerate if, and only if, V =
U ⊕ U⊥.

And U is non-degenerate if, and only if, U⊥ is non-degenerate.
There are three kinds of vectors in inner product spaces:

Definition 2.3. Let v ∈ V be a vector. v is said to be

spacelike if 〈v, v〉 > 0 or v = 0,
null if 〈v, v〉 = 0 and v �= 0,

timelike if 〈v, v〉 < 0.

We say that a vector subspace W of V is spacelike if all w ∈W are spacelike.

Definition 2.4. Let V be a n-dimensional inner product space. A unit
vector v ∈ V is a vector such that ‖v‖2 = ±1. A set of k mutually orthogonal
unit vectors is said to be orthonormal.

Lemma 2.5. An inner product space V �= 0 has an orthonormal basis.

Vectors can be written in this orthonormal basis in a unique way: if
{e1, . . . , en} is an orthonormal basis for V with εi := 〈ei, ei〉. Then, for v ∈ V ,
it holds

v =
n∑

i=1

εi〈v, ei〉ei.

It is possible to generalize the notion of inner product space to differen-
tiable manifolds.

Definition 2.6. Let M be a differentiable manifold and 〈·, ·〉 ∈ Γ(T ∗M ⊗
T ∗M) be a smooth section such that 〈·, ·〉(x) is an inner product for each
x ∈ M . Then 〈·, ·〉 is called a semi-Riemannian metric over M and the pair
(M, 〈·, ·〉) is called a semi-Riemannian manifold.

Let N be a differentiable manifold, F : N → M be an immersion and
g := F ∗〈·, ·〉 the first fundamental form of N . If g is non-degenerate N is also
a semi-Riemannian manifold. N is said to be spacelike if g is a Riemannian
metric on N .
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Definition 2.7. For n ∈ {2, 3, . . .}, we call the set

Hn−1(k) := {x ∈ R
n : ‖x‖2 = k}.

Hyperquadric of dimension n− 1 and parameter k, k ∈ R fixed.

If k �= 0 then Hn−1(k) is a smooth manifold and Hn−1(0) \ {0} is a
smooth manifold.

2.2. Differential geometry

Let F : M → (Rn, 〈·, ·〉) an immersion. The identification of TpR
n with R

n

induces a semi-Riemannian metric (denoted also by 〈·, ·〉) on TpR
n and

the immersion F induces a semi-Riemannian metric g := F ∗〈·, ·〉 over M ,
if it is non-degenerate. We assume that g is non-degenerate. Let ∇g be the
Levi–Civita connection induced by g. Then

dF (∇g
XY ) = (DdF (X)dF (Y ))�.

Remark 2.8. We write A and �H (sometimes AF or �HF ) for the
second fundamental tensor and the mean curvature vector of an isometric
immersion F .

We use Latin letters for indices of tensors on M and Greek letters for
indices of tensors on (Rn, 〈·, ·〉). We also use the Einstein’s convention for
sums

Aij =
∂2Fα

∂xi∂xj

∂

∂yα
− ∂Fα

∂xk
Γk

ij

∂

∂yα
= ∇i∇jF

considering F ∈ Γ(F ∗TR
n).

The (rough) Laplacian � is used on sections of several bundles and
written � := gij∇i∇j and �⊥ := gij∇⊥i ∇⊥j . It follows that �H = �F .

The following convention for the Riemannian curvature is adopted:

Rl
kij

∂

∂xl
= R

(
∂

∂xi
,

∂

∂xj

)
∂

∂xk
and Rskij = R

(
∂

∂xs
,

∂

∂xk
,

∂

∂xi
,

∂

∂xj

)
= Rl

kijgls.

The Codazzi equation in local coordinates is written as

(2.1) ∇lAij −∇iAlj = Rk
jliF

α
k
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and considering A as a section in the normal bundle, ∇⊥l Aij −∇⊥i Alj =
[Rk

jliF
α
k ]
⊥ = 0.

We make use of Gauß equation

(2.2) Rklij = 〈Aik, Ajl〉 − 〈Ajk, Ail〉

and the Ricci equation

(2.3) R⊥(X, Y )η = tr(〈η, A (Y, ·)〉A (X, ·))− tr(〈η, A (X, ·)〉A (Y, ·)).

The Riemannian curvature tensor of the normal bundle R⊥ij can be seen
as the section 〈R⊥ (

∂
∂xi ,

∂
∂xj

) ·, ·〉 ∈ Γ(T ∗M⊥ ⊗ T ∗M⊥). The Ricci equation
is then written

(2.4) R⊥ij = Ajk ⊗Ak
i −Aik ⊗Ak

j =: Ajk ∧Ak
i .

Furthermore we use the commutation formula, that can be found in [10].

3. Hyperquadric homotheties of the MCF

3.1. Hyperquadric homotheties of the MCF

In this section, we prove that the minimal immersions of the hyperquadrics
deform homothetically under the MCF and that these are the only subman-
ifolds of the hyperquadrics that do so.

Definition 3.1. LetM be a smooth manifold, (N, h) be a semi-Riemannian
manifold and F0 : M → N be an immersion. A smooth a family of isometric
immersions F : M × [0, T )→ N , for some T > 0, such that the metric gt :=
F (·, t)∗h is non-degenerate for all t ∈ [0, T ) is called a solution of the MCF
with initial immersion F0 if it satisfies

(3.1)
dF

dt
(p, t) = �H(p) and F (p, 0) = F0(p) ∀p ∈M, t ∈ [0, T ),

where �H is the mean curvature vector of the immersion F (·, t) : M → (N, h).

Now we consider properties of homotheties generated by the MCF. Let
F : M × [0, T )→ (Rn, 〈·, ·〉) be a solution of the MCF for some initial immer-
sion, such that there is a rescaling function c : [0, T )→ (0,∞), with c(0) = 1,
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so that F̃ := cF satisfies

(3.2)

〈
dF̃

dt
(p, t), ν̃

〉
= 0, ∀ ν̃ ∈ TpM

⊥

which implies

(3.3) �H = − ċ

c
F⊥.

In particular, we look now at the hyperquadric homotheties of the MCF
in (Rn, 〈·, ·〉) and start recalling that if such a homothety starts in a
hyperquadric, it stays in hyperquadrics:

Lemma 3.2. If F (0, x) ⊂ Hn−1(k(0)) for all x ∈ M then F (t, x) ⊂ Hn−1

(k(t)) for all x ∈ M , for some function k : [0, T )→ R.

As the position vector in a hyperquadric is normal to the hyperquadric,
it follows that F is always orthogonal to Hn−1(k(t)). With this, ‖F‖2 can
be calculated:

Lemma 3.3. ‖F (t)‖2 = k(0)− 2mt for t ∈ [0, T ).

We prove now that a hyperquadric homothety of the MCF is a minimal
immersion in the hyperquadric Hn−1(k(0)− 2mt) for all t ∈ [0, T ). We will
need the following rule for the composition of immersions: let F : M → N
and G : N → P be isometric immersions between semi-Riemannian mani-
folds (M, g), (N, h) and (P, l). Denote �HF , �HG and �HG◦F the mean curva-
tures of F , G and G ◦ F , respectively. Then

(3.4) (∇d(G ◦ F ))x = (∇dG)F (x)(dF ·, dF ·) + dGF (x) ◦ ∇dF

and �HG◦F = dG( �HF ) + trM (∇dG) (dF ·, dF ·).

Theorem 3.4. Let F : M × [0, T )→ (Rn, 〈·, ·〉) be a hyperquadric homo-
thety of the MCF, then F (M, t) is a minimal surface of the hyperquadric
Hn−1(‖F (0)‖2 − 2mt) for all t ∈ [0, T ).

Proof. We consider the natural inclusion I(t) of the hyperquadric Hn−1

(k(0)− 2mt) into (Rn, 〈·, ·〉) and the immersion G : M → Hn−1(k) defined
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as G := I−1 ◦ F , as in the diagram

Hn−1(k(0)− 2mt) I �� (Rn, 〈·, ·〉)

M

G

��

F

�����������������

Writing �HF , �HG
�HI for the respective mean curvature vectors, it holds:

• �HF ∈ TM⊥.

• dI( �HG) ∈ (dI(THn−1)).

• gij (∇dI)
(
dG

(
∂

∂xi

)
, dG

(
∂

∂xj

)) ∈ THn−1⊥.

But Equation (3.3) implies that �HF ∈ (THn−1)⊥. Thus, dI( �HG) is the only
term tangential to the hyperquadric in Equation (3.4), thence dI( �HG) = 0
and �HG = 0 (for I is an immersion). �

Further, we can calculate − ċ
c . Let t ∈ [0, T ) be fixed and x ∈M be any

point

− ċ

c
‖F (x, t)‖2 = 〈 �HF , F 〉 = −〈Fi, Fj〉gij = −m⇒ − ċ

c
= − m

‖F (t)‖2

and Lemma 3.3 implies that

(3.5) �HF (t) = − m

‖F (0)‖2 − 2mt
F (t).

3.2. Existence and uniqueness

3.2.1. Immersion in the hyperquadric Hn−1(k) with k > 0. Let
‖F (x, 0)‖2 = k > 0 for all x ∈ M . Then c(t) is given, from Equations (3.3)
and (3.5), by c(t) :=

√
k(k − 2mt)−1/2.

It follows from Equation (3.5), for any (x, t) ∈ M × [0, T ), that
(3.6)
d

dt
F (x, t) = �HF (·,t)(x) = −

m

k − 2mt
F (x, t) = − ċ

c
F (x, t) =⇒ d

dt
(cF (t)) = 0.

Hence cF (x, t) = F (x, 0) and

(3.7) F (x, t) =
1
c
F (x, 0).
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By construction, we proved that if there is a hyperquadric homothety of
the MCF, then it has to be given by Equation (3.7). So the solution is
unique in the class of hyperquadric homothetic solutions. We still have to
deal with the question of existence. As in Theorem 3.4, a hyperquadric
homothety of the MCF has to be a minimal surface of the hyperquadric.
This motivates the following theorem:

Theorem 3.5. Let F : Mm → (Rn, 〈·, ·〉) be an immersion such that g :=
F ∗〈·, ·〉 is non-degenerate and ‖F‖2 = k ∈ R, k > 0, then the solution of
the MCF of this initial immersion is a homothety if, and only if, F : M →
Hn−1(k) is a minimal immersion in the hyperquadric Hn−1(k). The MCF
of F has a solution F : M × [0, T )→ (Rn, 〈·, ·〉) with T = k

2m ; moreover, the
solution is F (x, t) := c−1(t)F (x), with c(t) :=

√
k(k − 2mt)−1/2, ∀(x, t) ∈

M × [0, T ).

Proof. We have to prove that the homothety given by Equation (3.7) is a
solution of the MCF. Let us write F (t) := F (·, t) and I for the inclusion of
Hn−1(k) into (Rn, 〈·, ·〉) and G := I−1 ◦ F . By Equation (3.4) it follows:

�HF (0) = gij(∇dI)
(

dG

(
∂

∂xi

)
, dG

(
∂

∂xj

))

because F (0) is a minimal immersion on the hyperquadric. Moreover, �HF (0)

is orthogonal to Hn−1(‖F (0)‖2), but so is F (0), such that there is a function
ϕ : M → R with �HF (0) = ϕF (0). One can calculate ϕ

ϕ‖F (0)‖2 = 〈 �HF (0), F (0)〉 = −gij〈∇jF (0),∇iF (0)〉 = −m

=⇒ �HF (0) = −
m

‖F (0)‖2 F (0).

Now consider F (t) = c−1(t)F (0) (as in Equation (3.7)). Then gij(t) = c2(t)
gij(0) and

�HF (t) = c(t) �HF (0) = −
m

‖F (0)‖2 c(t)F (0).

On the other hand, for the function c =
√

k(k − 2mt)−1/2

dF (t)
dt

=
d

dt

(
1

c(t)

)
F (0) = − m

‖F (0)‖2 c(t)F (0) = �HF (t).

Therefore this is a solution of the MCF. �
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3.2.2. Immersion in the hyperquadric Hn−1(k) with k < 0.

Theorem 3.6. Let F : Mm → (Rn, 〈·, ·〉) be an immersion such that g :=
F ∗〈·, ·〉 is non-degenerate and ‖F‖2 = k ∈ R, k < 0, then the solution of
the MCF of this initial immersion is a homothety if, and only if, F : M →
Hn−1(k) is a minimal immersion in the hyperquadric Hn−1(k). The MCF
of F has a solution F (t) : M × [0,∞)→ (Rn, 〈·, ·〉); moreover, the solution
is F (x, t) := c−1(t)F (x), with c(t) :=

√−k(−k + 2mt)−1/2, for all (x, t) ∈
M × [0,∞).

Proof. Analogous to the previous subsection. �

3.2.3. Immersion in the hyperquadric Hn−1(0). Let F : M × [0, T )
be a homothety generated by the MCF with ‖F (x, 0)‖2 = 0 for all x ∈M .
From Lemma 3.3, it holds ‖F (x, t)‖2 = −2mt if F ∗〈·, ·〉 is non-degenerate,
so that

(3.8) ‖F (x, t)‖2 < 0

for all (x, t) ∈ M × (0, T ).
On the other hand, c(t)F (x, t) ∈ F (M, 0) because F is a homothety, so

that

0 = ‖c(t)F (x, t)‖2 = c(t)2‖F (x, t)‖2.
But c(t) �= 0 because F (M, t) = {0} for c(t) = 0, which cannot be an
immersion, then ‖F (x, t)‖2 = 0 for all t ∈ [0, T ). Which is a contradiction to
Equation (3.8). So we proved

Theorem 3.7. There are no hyperquadric homotheties of the MCF F :
M × [0, T )→ (Rn, 〈·, ·〉) with non-degenerate metric such that F (M, 0) ⊂
Hn−1(0).

Remark 3.8. One could expect to find at least some stationary solutions in
the light cone, like straight lines, but for such a line the metric is degenerate
and thence this case is not included in Theorem 3.7.

Remark 3.9. But, as Ecker noted in [14], the upper light cone would
immediately change to a hyperquadric and the explicitly solution to the
MCF with the upper light cone as initial condition in R

1,n is given by the
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family of graphs δt : R
n−1 → R

δt(x) =
√
‖x‖2

E
+ 2(n− 1)t

for any t ∈ [0,∞), which is a homothety after t = 0.

Remark 3.10. If k > 0 then F and �H are pointing in opposite directions
and F0(M) shrinks under the MCF.

If k < 0 then F and �H are pointing in the same direction and F0(M)
expands under the MCF.

The principal normal is the vector field

ν :=
�H√
|‖ �H‖2|

.

Remark 3.11. It is clear from Equation (3.5) that �H �= 0 everywhere for
a hyperquadric homothety of the MCF and ∇⊥ �H = ∇⊥ν = 0.

4. Principal normal parallel in the normal bundle

Several calculations are carried out in this section in order to obtain an
equation for �‖P‖2/‖ �H‖4 suitable for the maximum principle.

The two types of homotheties (self-shrinkers and self-expanders) lead,
after rescaling, to different equations �H = −F⊥ or �H = F⊥. We restrict our
attention, in this section, to the self-shrinkers of the MCF that have the
principal normal parallel in the normal bundle.

If one considers a complexification of the tangent and normal bundles,
�H

|‖ �H‖| parallel in the normal bundle is equivalent
5 to the possibly imaginary

vector field ν := �H
‖ �H‖ being parallel in the normal bundle.

We prove in this section that a compact spacelike self-shrinker cannot
satisfy ‖ �H‖2 < m for all x ∈ M . And we generalize Smoczyk’s classification
to the pseudo-Euclidean spaces

Theorem 4.1. Let M be a closed smooth manifold and F : M → (Rn, 〈·, ·〉)
be a smooth immersion, which is a spacelike self-shrinker of the MCF, i.e.,

5Assuming ‖H‖2 �= 0∀x ∈ M .
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F satisfies

(4.1) �H = −F⊥.

Besides, assume m := dim(M) �= 1. Then the mean curvature vector �H
satisfies ‖ �H‖2(p) �= 0 for all p ∈M and the principal normal ν is parallel
in the normal bundle (∇⊥ν ≡ 0) if, and only if, F is a minimal immersion in
the hyperquadric Hn−1(m).

4.1. Fundamental equations

This subsection closely follows Smoczyk’s calculations, which we refer to for
details. We make use of three auxiliary tensors

Pij := 〈 �H, Aij〉, Qij := 〈Ak
i , Akj〉, Sijkl := 〈Aij , Akl〉.

Using Gauß equation (Equation (2.2)), the Ricci curvature is written as

(4.2) Rij = gklRkilj = gkl〈Alk, Aji〉 − gkl〈Ajk, Ali〉 = Pij −Qij .

In this notation, the useful Simons’ equation is written as

(4.3) ∇⊥k∇⊥l �H = �⊥Akl +RkiljA
ij −Ri

kAil +Qi
lAik − SkiljA

ij .

If we fix t ∈ [0, T ) the immersion Ft can be constant rescaled to bring
Equation (3.3) into

�H = −F⊥.

On the other hand, in ([19]) Huisken shows that an isometric immersion
satisfying �H = −F⊥ is (up to a tangential component) the MCF.

We make use of the following one-form θ:

(4.4) θ :=
1
2
d‖F‖2 = 〈Fi, F 〉dxi

such that θjFj = θig
ijFj is equal to F�, with θi = 〈Fi, F 〉. Then

∇iθj = ∇i〈Fj , F 〉 = 〈Aij , F 〉+ gij .

Hence it follows

(4.5) ∇⊥i F⊥ = (∇i(F − θkFk))⊥ = (Fi −∇iθ
kFk − θkAik)⊥ = −θkAik
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and

(4.6) ∇⊥i �H = −∇⊥i F⊥ = θkAik.

So that

∇⊥i ∇⊥j F⊥ == −Aij − 〈Ak
i , F

⊥〉Ajk − θk∇⊥k Aij ,

where we used the Codazzi equation (Theorem 2.1) in the last step. From
this follows that

(4.7) ∇⊥i ∇⊥j �H = −∇⊥i ∇⊥j F⊥ = Aij − P k
i Akj + θk∇⊥i Ajk

and

(4.8) �⊥ �H = gij∇⊥i ∇⊥j �H = �H − P ikAik + θk∇⊥k �H.

Hence

(4.9) �‖ �H‖2 = 2‖ �H‖2 − 2‖P‖2 + 2‖∇⊥ �H‖2 + 〈F�,∇‖ �H‖2〉.

For ‖A‖2, using Simons’ equation (Proposition 4.3), one gets

2〈A, (∇⊥)2 �H〉 = gtkgsl2〈Ats,�⊥Akl +RkiljA
ij −Ri

kAil +Qi
lAik − SkiljA

ij〉
= �‖A‖2 − 2‖∇⊥A‖2 + 2RkiljS

ijkl − 2RijQ
ij + 2‖Q‖2

− 2SikjlS
ijkl.

But, using Equation (2.4) for the Ricci tensor of the normal bundle, it
holds

‖R⊥‖2 =QklQ
kl − SikjlS

kjli − SjkilS
kilj +QklQ

kl = 2‖Q‖2 − 2SikjlS
ijkl.

(4.10)

So that, using these last two equations, we reach

2〈A, (∇⊥)2 �H〉 =�‖A‖2 − 2‖∇⊥A‖2 + 2‖S‖2 − 2〈P, Q〉+ 2‖R⊥‖2.(4.11)

On the other hand, we can calculate an equation for �‖A‖2 using
Simons’ equation (Proposition 4.3) in the following way: first, with Equa-
tions (4.7) and (4.2), we have

�⊥Akl =∇⊥k∇⊥l �H −RkiljA
ij +Ri

kAil −Qi
lAik + SkiljA

ij ,

�⊥Akl =Akl −Qi
kAil −Qi

lAik + θt∇⊥k Alt + (Skilj −Rkilj)Aij(4.12)
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which implies

�‖A‖2 =2‖A‖2 − 2‖R⊥‖2 + 〈F�,∇‖A‖2〉 − 2‖S‖2 + 2‖∇⊥A‖2.(4.13)

Theorem 4.2. Let M be a closed smooth manifold and F : M → (Rn, 〈·, ·〉)
be a spacelike self-shrinker of the MCF. Then it cannot hold ‖ �H‖2 < m :=
dim(M).

Proof. If ‖ �H‖2 < m for all x ∈M , then

(4.14) �‖F‖2 = 2gij〈Fi, Fj〉+ 2〈�F, F 〉 = 2m− 2‖ �H‖2 > 0.

But at a maximum p of ‖F‖2 it holds �‖F‖2 ≤ 0. Which is a contradiction.
�

Remark 4.3. In particular, there are no spacelike self-shrinkers with
‖ �H‖2 < 0 and no spacelike self-shrinkers if the index of (Rn, 〈·, ·〉) is n−m.

4.2. The compact case

Let us now consider the self-shrinkers of the MCF that satisfy the following
conditions:

• The mean curvature vector ‖ �H(x)‖2 �= 0, for all x ∈ M.

• The principal normal ν := 1
‖ �H‖

�H is parallel in the normal bundle

∇⊥ν ≡ 0,

where we write ‖ �H‖ to the complex function
√
‖ �H‖2 : M → C.

Although Theorem 4.2 implies that ‖ �H‖2 ≥ 0 in the compact case,
we also consider ‖ �H‖2 ≤ 0 as a possibility for the calculations bellow
for they are of use in the non-compact case.

The complex function ‖ �H‖ is a pure real or a pure imaginary all over
M . So ν may not to be a real vector, but a vector field in the complexifica-
tion of the pullback over M of TR

n. Over this bundle we extend the inner
product and the connection linearly. Additionally for X ∈ Γ(F ∗TR

n), we
use (iX)⊥ := i(X⊥).

Remark 4.4. The equations considered bellow are real or pure imaginary.
Thence there will be not explicit mentions of the complexifications in the
calculations.
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A parallel principal normal (in the normal bundle) can simplify some of
the previously calculated equations because of its properties

(4.15) ∇⊥k �H = ∇⊥k (‖ �H‖ν) = ∇k‖ �H‖ν

and

(4.16) �⊥ �H = gij∇⊥i ∇⊥j (‖ �H‖ν) = gij∇i∇j‖ �H‖ν = �‖ �H‖ν.

From this, using Equation (4.8), we calculate

(4.17) P ijAij = �H + θk∇⊥k �H −�⊥ �H = (‖ �H‖+ θk∇k‖ �H‖ −�‖ �H‖)ν

which means that P ijAij is in the same direction as ν (or iν, if ν is imagi-
nary).

Lemma 4.5. Let F : M → (Rn, 〈·, ·〉) be an immersion such that the prin-
cipal normal is parallel in normal bundle, then

(1) P ijAij =
‖P‖2
‖ �H‖ ν, (2) SijklP

ijP kl = ‖P‖4
‖ �H‖2 ,

(3) P k
i Akj = P k

j Aki, (4) SikjlP
ijP kl = QilP

i
kP

kl.

Lemma 4.6. Let F : M → (Rn, 〈·, ·〉) be a self-shrinker of the MCF such
that the principal normal is parallel in normal bundle, then
(4.18)
4

‖ �H‖4
〈
∇⊥ �H,∇⊥Aij

〉
P ij =

2

‖ �H‖

〈
∇‖ �H‖,∇

(
‖P‖2
‖ �H‖4

)〉
+ 4

‖P‖2
‖ �H‖6 ‖∇‖

�H‖‖2.

Lemma 4.7. Let F : M × [0, T )→ (Rn, 〈·, ·〉) be a self-shrinker of the MCF
such that ‖ �H‖2 �= 0 for all x ∈M and the principal normal is parallel in the
normal bundle. Then

�
(
‖P‖2
‖ �H‖4

)
=

2

‖ �H‖4

∥∥∥∥∥∇i‖ �H‖ Pjk

‖ �H‖ − ‖
�H‖∇i

(
Pjk

‖ �H‖

)∥∥∥∥∥
2

(4.19)

+

〈
F�,∇

(
‖P‖2
‖ �H‖4

)〉
− 2

‖ �H‖

〈
∇‖ �H‖,∇

(
‖P‖2
‖ �H‖4

)〉
.

Proposition 4.8. Let M be a closed smooth manifold and F : M →
(Rn, 〈·, ·〉) be a smooth immersion, which is a spacelike self-shrinker of the
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MCF. Besides, assume that the mean curvature vector �H satisfies ‖ �H‖2 �= 0
and the principal normal ν satisfies ∇⊥ν = 0. Then

(4.20)

∥∥∥∥∥∇i‖ �H‖ Pjk

‖ �H‖ − ‖
�H‖∇i

(
Pjk

‖ �H‖

)∥∥∥∥∥
2

= 0.

Proof. Although the function ‖ �H‖ may be imaginary, the 3-tensor in Equa-
tion (4.20) is real. Thus the strong elliptic maximum principle implies that
‖P‖2/‖ �H‖4 is constant. Hence theorem 4.7 implies that

∥∥∥∥∥∇i‖ �H‖ Pjk

‖ �H‖ − ‖
�H‖∇i

(
Pjk

‖ �H‖

)∥∥∥∥∥
2

= 0.

�

The equality we just proved can be written as

‖∇‖ �H‖‖2‖P‖2 − ‖∇i‖ �H‖P i
k‖2 =0.(4.21)

The rest of the proof is important also in the non-compact case. We follow
in detail.
What remains to prove of Theorem 4.1. Let M be a closed smooth
manifold and F : M → (Rn, 〈·, ·〉) be an immersion, which is a spacelike self-
shrinker of the MCF. Besides, assume that the mean curvature vector �H
satisfies ‖ �H‖2 �= 0 and the principal normal ν satisfies ∇⊥ν = 0. If m :=
dim(M) �= 1, then

‖F (x)‖2 = m, ∀x ∈ M.

Proof. We now calculate at a point p ∈ M fixed. As the 2-tensor P is sym-
metric, it is also diagonalizable and has only real eigenvalues λ1, . . . , λm.
Let V1, . . . , Vm be an orthonormal basis of eigenvectors associated with
λ1, . . . , λm. Then we write ∇‖ �H‖ = ∑

i αiVi, αi ∈ C so that by
Equation (4.21)

(4.22) 0 = ‖P‖2‖∇‖ �H‖‖2 − ‖P (∇‖ �H‖)‖2 =
∑

i

λ2
i (‖∇‖ �H‖‖2 − α2

i )

but λ2
i ≥ 0, because λi ∈ R, beyond this

‖∇‖ �H‖‖2 − α2
i =

∑
j �=i

α2
j
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is non-negative for all i ∈ {1, . . . , m} if ‖ �H‖ is real or non-positive if ‖ �H‖ is
imaginary. This implies, with Equation (4.22), that

λ2
i (‖∇‖ �H‖‖2 − α2

i ) = 0 ∀i ∈ {1, . . . , m}.

As tr(P ) = Pijg
ij = ‖ �H‖2 �= 0, it follows that P �= 0 and there is at least

one j ∈ {1, . . . , n} such that λj �= 0 and the last equation shows that

0 = ‖∇‖ �H‖‖2 − α2
j =

∑
i

α2
i − α2

j =
∑
i�=j

α2
i =⇒ αi = 0 ∀i �= j

because the αi’s are all real or all imaginary. From this follows that ∇‖ �H‖ =
αjVj .

Assume that there is an x ∈M such that ∇‖ �H‖(x) �= 0.
Then αj �= 0 and for all i �= j

0 = λ2
i (‖∇‖ �H‖‖2 − α2

i ) = λ2
i α

2
j =⇒ λi = 0

so Pij has only one non-zero eigenvalue and the associated eigenvector is
∇‖ �H‖/‖∇‖ �H‖‖.

At this point, we have

‖P‖2 = λ2
j = (trP )2 = ‖ �H‖4 =⇒ ‖P‖2

‖ �H‖4 = 1

but ‖P‖2/‖ �H‖4 is constant, thence equal 1 everywhere in M .
Then, using ‖P‖2 = ‖ �H‖4, with Equation (4.9) we calculate

2‖ �H‖�‖ �H‖ =2‖ �H‖2 − 2‖ �H‖4 + 2‖ �H‖〈F�,∇‖ �H‖〉

and it follows

(4.23) �‖ �H‖ = ‖ �H‖ − ‖ �H‖3 + 〈F�,∇‖ �H‖〉.

We integrate both sides of this equation to get

0 =
∫

M
�‖ �H‖ =

∫
M
‖ �H‖ − ‖ �H‖3 + 〈F⊥,∇| �H|〉 = (1−m)

∫
M
‖ �H‖

which is impossible for m �= 1.
From this contradiction, we know that ∇‖ �H‖ = 0 everywhere in M . It

follows that ∇⊥ �H = ∇‖ �H‖ν = 0 and that the norm of �H is constant.
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On the other hand
(4.24)
�‖F‖2 = 2〈Fi, Fj〉gij + 2〈�F, F 〉 = 2gijg

ij + 2〈 �H, F 〉 = 2m− 2‖H‖2.

By the maximum principle ‖F‖2 is constant. This norm can be cal-
culated seeing that 〈Fi, F 〉 = 0, which implies that F ∈ Γ(TM⊥), so that
�H = −F and replacing ‖F‖2 = ‖ �H‖2 and �‖F‖2 = 0 in Equation (4.24) we
get ‖F‖2 = ‖ �H‖2 = m. �

Note that the condition dim(M) �= 1 is optimal, because the result does not
hold for the curve shortening flow, then the Abresch & Langer curves are
not contained in a circle.

5. The non-compact case

Now non-compact self-shrinkers are considered. We need to establish Equa-
tion (4.20) also in this case, for that we use some integrals over the whole
M with respect to some heat kernel. This section starts with the lemmas
and definitions needed to guarantee the convergence of these integrals. In
particular, F (M) has to stay away from the light cone in the sense of Defi-
nition 5.4, which, of course, does not come for in the Euclidean case. Then
we follow as in the compact case up to Equation (4.23).

Remark 5.1. In the pseudo-Euclidean case, there are minimal submani-
folds of the hyperquadrics, which are non-compact and are homotheties of
the MCF with principal normal parallel in the normal bundle. These hyper-
quadrics are asymptotic to the light cone and, in particular, have the norm
‖F‖2 bounded, thence they do not satisfy the conditions needed to integrate
and do not appear in our results.

In similar fashion to the compact case it holds:

Theorem 5.2. The mean curvature vector of a stochastic complete, space-
like, self-shrinker of the MCF F : M → (Rn, 〈·, ·〉) cannot satisfy, for all
p ∈ M

‖ �H‖2 < m− ε

for some ε > 0 if supM ‖F‖2 < +∞.
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Proof. If there is an ε > 0 such that ‖ �H‖2 < m− ε for all x ∈ M , then

�‖F‖2 = 2gij〈Fi, Fj〉+ 2〈�F, F 〉 = 2m− 2‖ �H‖2 > 2ε

which leads to a contradiction by the weak Omori–Yau maximum principle.
�

Remark 5.3. In particular, there are no stochastic complete, spacelike
self-shrinkers of the MCF with supM ‖F‖2 < +∞ and ‖ �H‖2 ≤ 0.

Let (Rn, 〈·, ·〉) be an inner product space and {e1, . . . , en} an orthonormal
basis such that 〈eα, eα〉 = −1 for α ∈ {1, . . . , q} and 〈eα, eα〉 = 1 for α ∈ {q +
1, . . . , n}, which we denote R

q,n. We write (X−) and (X+) for the projections
of X on span{e1, . . . , eq} and span{eq+1, . . . , en}, respectively.

Definition 5.4. Let M be a smooth manifold and F : M → R
q,n be an

immersion with F (M) unbounded. We say that F (or F (M)) is mainly
positive if there is an ε > 0 and k ∈ R, such that ∀x ∈ M

‖F (x)‖2E ≥ k =⇒ −‖F (x)−‖
2

‖F (x)+‖2 ≤ 1− ε.

And we say that F (or F (M)) is mainly negative if there is an ε > 0 and
k ∈ R, such that ∀x ∈M : ‖F (x)‖2

E
≥ k =⇒ − ‖F (x)+‖2

‖F (x)−‖2 ≤ 1− ε.

This definition is illustrated bellow for a plane curve:

Mainly positive means that there is an (Euclidean) angle θ with tan(
π
4 − θ

)
< 1− ε between F (x) and the light cone for any x ∈M such that

F (x) lies outside some big Euclidean sphere (or tan
(

π
4 − θ

)
> 1 + ε in the

mainly negative case).
In both of the cases ‖F‖2 is unbounded. Thence follows:
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Remark 5.5. If F is a spacelike self-shrinker such that F (M) is mainly
negative and unbounded, then for x ∈M with ‖F (x)‖2

E
> k, for k as in

Definition 5.4, it holds that

0 > ‖F (x)‖2 = ‖F⊥(x)‖2 + ‖F�(x)‖2 ≥ ‖ �H(x)‖2

but if M is stochastic complete, then Theorem 5.2 implies that F cannot be
a self-shrinker of the MCF with ‖ �H‖2(p) �= 0 for all p ∈ M .

In order to integrate, we need further assumptions on F :

Definition 5.6. Let F : M → R
q,n be a spacelike isometric immersion. We

say that F has bounded geometry if:

(1) There are ck, dk ∈ R, k ∈ N, such that ‖(∇)kA+‖2 ≤ ck and
−‖(∇)kA−‖2 ≤ dk.

(2) The function 1
‖ �H‖ grows polynomially with respect to ‖F‖

2.

(3) The growth of volume of geodesic balls and their boundaries is polyno-
mial with respect to the radius.

(4) F is inverse Lipschitz with respect to the Euclidean norm in R
n.

Then the bounded geometry assumption excludes the mainly nega-
tive case for spacelike self-shrinkers, because −d0 ≤ ‖ �H‖2 ≤ c0 and, in this
case, ‖F‖2 has no lower bound, but ‖F‖2 = ‖F�‖2 + ‖F⊥‖2 and ‖F�‖2 ≥ 0,
which implies that ‖F⊥‖2 is not bounded below. This contradicts ‖F⊥‖2 =
‖ �H‖2. So that:

Theorem 5.7. There are no unbounded mainly negative spacelike self-
shrinkers of the MCF with bounded geometry.

We will integrate over the whole manifold with respect to the following
heat kernel : ρ : M → R defined as

ρ(x) := exp
(
−‖F‖

2

2

)
.

Lemma 5.8. Let F : M → R
q,n be a spacelike, mainly positive, immersion

with bounded geometry and F (M) unbounded, beyond this let f : M → R be
some polynomial (of inner products) of �H, A, their covariant derivatives,
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F , F� and the function 1
‖ �H‖ . Then

∣∣∣∣
∫

M
fρdμ

∣∣∣∣ <∞

beyond this, one can use partial integration∫
M

ρ div(∇f(x))dμ = −
∫

M
〈∇ρ,∇f(x)〉dμ.

By this, all integrals in the next lemma are finite.

Lemma 5.9. Let F : M → R
q,n be a spacelike, mainly positive, self-shrinker

of the MCF with bounded geometry such that F (M) is unbounded. Beyond
this, let F satisfy ‖ �H‖2 �= 0 and ∇⊥ν = 0. Then

∇i‖ �H‖ Pjk

‖ �H‖ − ‖
�H‖∇i

(
Pjk

‖ �H‖

)
= 0.

Proof. The expression

∫
M

ρ
‖P‖2
‖ �H‖2�

(
‖P‖2
‖ �H‖4

)
dμ

can be calculated using partial integration or Lemma 4.7. Equaling these
two one finds

∫
M
2ρ
‖P‖2
‖ �H‖6

∥∥∥∥∥∇i‖ �H‖ Pjk

‖ �H‖ − ‖
�H‖∇i

(
Pjk

‖ �H‖

)∥∥∥∥∥
2

+ ρ‖ �H‖2
∥∥∥∥∥∇

(
‖P‖2
‖ �H‖4

)∥∥∥∥∥
2

dμ = 0(5.1)

but the two summands inside the integral have the same sign everywhere.
This implies in particular, using ‖P‖2 �= 0 (because P = 0 would imply
‖ �H‖ = 0), that

∇i‖ �H‖ Pjk

‖ �H‖ − ‖
�H‖∇i

(
Pjk

‖ �H‖

)
= 0.

�
And we have the same result as Equation 4.20 in the compact case. Then

we follow exactly as in the previous section (the compact case) to get:
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Lemma 5.10. Let M be a smooth manifold and F : M → R
q,n be mainly

positive, spacelike, self-shrinker of the MCF with bounded geometry such that
F (M) is unbounded, beyond that let F satisfy the conditions: ‖ �H‖2(p) �= 0
for all p ∈ M and the principal normal is parallel in the normal bundle
(∇⊥ν ≡ 0). Then one of the two holds

(1) ∇‖ �H‖ = 0 everywhere on M.

(2) There is a point p ∈M with ∇‖ �H‖(p) �= 0, at which ∇‖ �H‖
‖∇‖ �H‖‖ is the only

eigenvector associated with a non-zero eigenvalue of P .

We have to treat these two cases separately.

6. The first case

For the strategy of this section, see the last paragraph of the introduction.

Theorem 6.1. Let M be a smooth manifold and F : M → R
q,n be a mainly

positive, spacelike, shrinking self-similar solution of the MCF with bounded
geometry such that F (M) is unbounded. Beyond that, let F satisfy the con-
ditions: ‖ �H‖2(p) �= 0, ∀p ∈M , and the principal normal is parallel in the
normal bundle (∇⊥ν ≡ 0). If ∇‖ �H‖(p) = 0 for all p ∈M , then

(6.1) F (M) = Hr × R
m−r,

where Hr is an r-dimensional minimal surface of the hyperquadric Hn−1(r)
with ‖ �H‖2 = r > 0 and Rm−r is an m− r dimensional spacelike affine space
in R

q,n.

Proof. First we see that ∇‖ �H‖ = 0 implies ∇⊥ �H = ∇‖ �H‖ν = 0 and, with
Equation (4.6)

(6.2) θiAij = 0.

On the other hand, ∇‖ �H‖ = 0 implies that ‖ �H‖2 is constant, so that, with
Lemma 5.9, it holds ∇P = 0 and then Equation (4.7) implies

〈∇⊥i ∇⊥j �H, �H〉 = 〈Aij − P k
i Akj + θk∇⊥i Ajk, �H〉,

0 = Pij − P k
i Pkj(6.3)

so that P = P 2, i.e., P is a projection and can only have 1 and 0 as eigen-
values.
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Because of ∇kPij = 0 we get ∇k‖P‖2(p) = 0, but ‖P‖2(p) is equal to
the number of eigenvalues 1, thus their number is constant and

(6.4) ‖ �H‖2 = trP = r > 0.

We consider the eigenspaces associated with these two eigenvalues, they
define the distributions EM and FM given, at any point p ∈M , by
(6.5)
EMp := {V ∈ TpM : P j

i V i = V j}, FMp := {V ∈ TpM : P j
i V i = 0}.

And TpM = EMp ⊕FMp. From Equation (6.2) we have, for all V ∈ EpM ,
that

(6.6) θ(V ) = θjV
j = θjP

j
i V i = 0.

Lemma 6.2. Under the hypothesis of Theorem 6.1, the distributions EM
and FM are involutive.

Proof. For e1, e2 ∈ Γ(EM) and f1, f2 ∈ Γ(FM), from ∇P = 0, we get

P (∇e1e2) =∇e1P (e2) = ∇e1e2,(6.7)
P (∇f1f2) =∇f1P (f2) = ∇f10 = 0(6.8)

i.e., ∇e1e2 ∈ Γ(EM) and ∇f1f2 ∈ Γ(FM). As the Levi–Civita connection is
torsion free we have that EM and FM are involutive. �

By the Theorem of Frobenius, these distributions define two foliations,
such that, at each p ∈ M , there are two leaves Ep and Fp that intersect
orthogonally at p. We want to understand what they are. The inclusions iEp

and iFp
of these leaves are immersions

We need the symmetric (by Lemma 4.5) tensor

(P ∗A)ij := P k
i Akj .
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Lemma 6.3. Under the hypothesis of Theorem 6.1, the following equations
hold:

θk∇⊥k Aij = 0,(6.9)

Aij = P k
i Akj .(6.10)

Proof. First, from (4.7) (with ∇ �H = 0) and (6.3), we get

(6.11) θk∇⊥k (P l
i Alj) = P l

i Alj − P l
i Alj = 0.

To prove (6.10), it is enough to show

‖A±‖2 = ‖P ∗A±‖2.

One sees this using Equation (6.3) to calculate ‖A± − P ∗A±‖2 = ‖A±‖2 −
‖P ∗A±‖2.

Let us then prove that ‖A±‖2 = ‖P ∗A±‖2. First of all, using Equa-
tion (4.7) (with ∇i

�H = 0), Equation (6.3) and θk∇⊥k (P l
i Alj) = 0, it holds

that

(6.12) θk∇k(‖A±‖2 − ‖P ∗A±‖2) = −2(‖A±‖2 − ‖P ∗A±‖2).

If θ = 0 at some point p ∈ M , then this equation implies ‖A±‖2 = ‖P ∗A±‖2
and Aij = P l

i Alj at this point. So, without loss of generality, we can consider
only the points q ∈ M with θ(q) �= 0. Fix one of these and consider the
integral curve γ : (−a, b)→ M of θ with γ(0) = q, for some a, b > 0. Along
this curve, we define the function

f(s) := ‖θ‖2(γ(s))

and get
d

ds
f = ∇γ̇‖θ‖2 = θk∇k‖θ‖2 = 2θkθl∇kθl

but, from �H = −F⊥

∇iθj = ∇i〈F, Fj〉 = gij − 〈 �H, Aij〉

and θi∇iθj = θj because of Equation (6.2), so that

(6.13)
d

ds
f = 2f.
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This has a unique solution with f(0) = ‖θ‖2(q)

‖θ‖2(γ(s)) = ‖θ‖2(q)e2s > 0

in particular ‖θ‖2(γ(s)) �= 0 for all s ∈ (a, b), then these integral curves do
not cross any singular point and the maximal integral curve is defined for all
R and it is not closed (because of injectivity of e2s). Over this same curve,
we define functions f̃± : R → R

f̃±(s) := (‖A±‖2 − ‖P ∗A±‖2)(γ(s))

and, using Equation (6.12), get df̃±
ds = −2f̃±. This has a unique solution with

f̃±(0) = (‖A±‖2 − ‖P ∗A±‖2)(q)

(‖A±‖2 − ‖P ∗A±‖2)(γ(s)) = (‖A±‖2 − ‖P ∗A±‖2)(q) e−2t.

If (‖A±‖2 − ‖P ∗A±‖2)(q) �= 0, then (‖A±‖2 − ‖P ∗A±‖2)(γ(s))→ ±∞ as
s→ −∞ and this contradicts the boundedness of ‖A±‖2. So A = P ∗A and
(6.11) implies (6.9). �

Let us now examine the leaves of the distribution EM .

Lemma 6.4. Under the hypothesis of Theorem 6.1, it holds that Ep is
immersed into Hn−1(‖F‖2(p)) through F ◦ iEp

. Beyond this, Ep is geodesi-
cally complete and there is q ∈ M so that F ◦ iEq

is a minimal immersion
into Hn−1(‖F‖2(q)).

Proof. Ep is an r-dimensional manifold immersed in M under the natural
inclusion iE . Let AF◦iE and AiE denote the second fundamental tensors of
F ◦ iE and iE .

From Equation (3.4), it holds that

(6.14) AF◦iE = AF + dF (AiE ).

On the other hand one can write, for local vector fields e1, e2 ∈ Γ(TEp)

(6.15) AiE (e1, e2) = ∇e1e2 −∇′e1
e2,

where ∇′ is the Levi–Civita connection of Ep (with respect to the induced
metric). But ∇e1e2 ∈ Γ(EM) by Equation (6.7) and diE(∇′e1

e2) ∈ Γ(EM),
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yet AiE (e1, e2) ∈ Γ(TE⊥), so

(6.16) AiE = 0.

Then, in particular, the geodesics of Ep are also geodesics of M and, as M
is geodesically complete, so is Ep.

From Equation (6.6) we get, for any q ∈ Ep and all V ∈ EMiE(q), V =
V i ∂

∂xi

0 = θjV
j = 〈F, Fj〉V j = 〈F, dF (V )〉

which means that F (iE(q)) ∈ TqE⊥p (the normal space of F ◦ iE at q) and

(6.17) V ‖F‖2 = 2V j〈Fj , F 〉 = 2〈dF (V ), F 〉 = 0

so that ‖F‖2 is constant on the leaf Ep (but it depends on p), and Ep is
immersed, through F ◦ iE , in the hyperquadric Hn−1(‖F‖2(p)).

Let us now take a look at a special leaf of the distribution EM . There
is a point q ∈M , with ‖F (q)‖2 = minx∈M ‖F (x)‖2 (because of the mainly
positive assumption). Let us consider the leaf Eq, which should be a minimal
surface.

The norm of F must be constant over this leaf by Equation (6.17), so that
all the points of the leaf minimize the norm of F . But then, 2〈dF (X), F 〉 =
X‖F‖2 = 0 for any X ∈ Tq′M , q′ ∈ iE(Eq), this means that F (q′) is orthog-
onal to Tq′M , i.e.

(6.18) F⊥(q′) = F (q′).

We claim that F ◦ iE(Eq) is a minimal surface of the hyperquadric Hn−1

(‖F‖2(q)). First, the Levi–Civita connection on the hyperquadric is given
by the projection (PrHn−1) of the Levi–Civita connection of R

q,n, which
we denote D, over the tangent bundle of the hyperquadric. Then, using
Equation (6.14) with AiE = 0, it holds

AHn−1(X, Y ) = Pr
Hn−1

(DXY )−∇′XY = Pr
Hn−1

(AF◦iE (X, Y ))

= Pr
Hn−1

(AF (X, Y )).(6.19)

On the other hand, take a vector V ∈ Tq′M
⊥, q′ ∈ Eq, then, using that

P ijAij is in the same direction as �H (Equation (4.17)), one gets 〈P ijAij ,
V 〉 = 0.
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Take an orthonormal basis {e1, . . . , er, f1, . . . , fm−r} of Tq′M such that
{e1, . . . , er} is a basis of EMq′ and {f1, . . . , fm−r} is a basis of FMq′ , then

trE〈A, V 〉 =
r∑

i=1

〈V, A(P (ei), ei) +
m−r∑
i=1

〈V, A(P (fi), fi)〉 = trM 〈V, P ∗A〉 = 0,

where we used that P (ei) = ei and P (fi) = 0. This holds for any q′ ∈ iE(Eq)
and means that trEA = a(x) �H for some continuous function a : Eq → R. By
Equations (6.18) and (6.19) and denoting �HHn−1 the mean curvature vector
of the immersion of Eq into Hn−1(‖F‖2(q)), we get at q′

�HHn−1 = Pr
Hn−1

(trEA) = Pr
Hn−1

(a �H) = Pr
Hn−1

(−aF⊥) = Pr
Hn−1

(−a(x)F ) = 0

because the position vector is orthogonal to the hyperquadric. Then Eq is a
minimal surface of the hyperquadricHn−1(r), because ‖F‖2(q) = ‖ �H‖2(q) =
r by Equation (6.4). �

We will now analyze the leaves of the distribution FM .

Lemma 6.5. Under the hypothesis of Theorem 6.1, it holds that F ◦ iF (Fp)
is an affine space in R

q,n for any p ∈ M . Beyond that, if q ∈ iE(Ep), then
F ◦ iF (Fp) and F ◦ iF (Fq) are parallel.

For a proof, see [26].
All that is left of Theorem 6.1 is showing that F (M) is the product

F (Eq)× F (Fq), where q ∈M minimizes ‖F‖2. This can be done considering
the map h defined as.

Let q ∈M be a minimal point of ‖F‖2 and {f1, . . . , fm−r} be an
orthonormal basis of FMq. We define a function h : Eq × R

m−r → F (M),
given by

h(p, X) = F (iE(p)) +XidF (fi)∀X = (X1, . . . , Xm−r) ∈ R
m−r, p ∈ Eq.

As all the leaves Fq′ , q′ ∈ Eq, are parallel, the image of h is indeed con-
tained in F (M). Then F (M) is the product of an affine space with a minimal
surface of the hyperquadric Hn−1(r) with ‖ �H‖2 = r. �

Remark 6.6. The induced (from R
q,n) inner product on the affine space

has to be positive definite, because F is spacelike.
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7. The second case

Theorem 7.1. Let M be a smooth manifold and F : M → R
q,n be a mainly

positive, spacelike, shrinking self-similar solution of the MCF with bounded
geometry such that F (M) is unbounded. Beyond that, let F satisfy the con-
ditions: ‖ �H‖2(p) �= 0 for all p ∈ M and the principal normal is parallel in
the normal bundle (∇⊥ν ≡ 0). If ∇‖ �H‖(p) �= 0 for some p ∈ M , then

(7.1) F (M) = Γ× R
m−1,

where Γ is a rescaling of an Abresch & Langer curve in a spacelike plane
and Rm−1 is an m− 1 dimensional spacelike affine space in R

q,n.

The proof of this theorem follows the same ideas of the first case (section
6) but with different equations. Now there are regions where ∇‖ �H‖(p) �= 0
and in these regions the tensor Pij has only a non-zero eigenvalue, so the
distribution EM̊ is spanned by a vector field, which can be extended over
the whole M and the leaves of this distribution lie in planes. One of the
leaves can be proven to be a solution to the curve shortening flow, thence a
curve of Abresch and Langer. Some extra details can be found in [20, 27].

Remark 7.2. In particular, M is contained in the product of an affine
space and a plane, both spacelike, so that ‖ �H‖2 > 0.

Remark 7.3. We found that there are no spacelike self-shrinkers of the
MCF with timelike mean curvature in any of the treated cases, so that
Theorems 4.2, 5.2, 5.7, 6.1 and Remark 7.2 sum up to:

Theorem 7.4. There are no spacelike self-shrinkers F : M → (Rn, 〈·, ·〉) of
the MCF that satisfy

• F (M) unbounded and F is mainly negative and has bounded geometry
or

• ‖ �H‖2 < 0 and one of the following:
(1) M is compact.
(2) F (M) is unbounded, M is stochastic complete and

supM ‖F‖2 ≤ ∞.
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(3) F (M) is unbounded, F is mainly positive, has bounded geometry
and the principal normal parallel in the normal bundle.
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[6] M. Bergner and L. Schäfer, Time-like surfaces of prescribed anisotropic
mean curvature in Minkowski space, (Dresden, 2010), Proc. 8th AIMS
Conf., Discrete and Continous Dynamical Systems, 1, AIMS Press,
Springfield, MO, 2011, 155–162.

[7] K.A. Brakke. The motion of a surface by its mean curvature,
Mathematical Notes, 20, Princeton University Press, Princeton, NJ,
1978.

[8] H.-D. Cao and H. Li, A gap theorem for self-shrinkers of the mean
curvature flow in arbitrary codimension, Calc. Var. Partial Differential
Equations, 46(3–4) (2013), 879–889.

[9] D.L. Chopp, Computation of self-similar solutions for mean curvature
flow, Experiment. Math., 3(1) (1994), 1–15.
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