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Exceptional Dehn surgery on the minimally twisted

five-chain link

Bruno Martelli, Carlo Petronio and Fionntan Roukema

We consider in this paper the minimally twisted chain link with
five components in the 3-sphere, and we analyze the Dehn surgeries
on it, namely the Dehn fillings on its exterior M5. The 3-manifold
M5 is a nicely symmetric hyperbolic one, filling which one gets a
wealth of hyperbolic 3-manifolds having 4 or fewer (including 0)
cusps. In view of Thurston’s hyperbolic Dehn filling theorem it is
then natural to face the problem of classifying all the exceptional
fillings on M5, namely those yielding non-hyperbolic 3-manifolds.
Here we completely solve this problem, also showing that, thanks to
the symmetries of M5 and of some hyperbolic manifolds resulting
from fillings of M5, the set of exceptional fillings on M5 is described
by a very small amount of information.

0. Introduction

In this paper we establish the following main result. The terminology, the
context, the relevance and a conceptual outline of the methods underlying
the proof are explained in the next few pages:

Theorem 0.1. Consider the link shown in figure 1, fix a cyclic ordering on
its components and employ the meridian–longitude homology bases to param-
eterize the Dehn surgeries on the link. Then a Dehn surgery is exceptional
if and only if up to a composition of the following maps:

(α1, α2, α3, α4, α5) �−→ (α5, α1, α2, α3, α4),
(α1, α2, α3, α4, α5) �−→ (α5, α4, α3, α2, α1),

(α1, α2, α3, α4, α5) �−→
(

1
α2

,
1
α1

, 1− α3,
α4

α4 − 1
, 1− α5

)
,
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Figure 1: The minimally twisted chain link with five components L10n113.

(−1, α2, α3, α4, α5) �−→ (−1, α3 − 1, α4, α5 + 1, α2) ,

(−1,−2,−2,−2, α) �−→ (−1,−2,−2,−2,−α− 6) ,

it contains one of the next two or it is one of the subsequent five:

∞ (−1,−2,−2,−1)
(
−2,−1

2
, 3, 3,−1

2

)
(−1,−2,−2,−3,−5)

(−1,−2,−3,−2,−4) (−1,−3,−2,−2,−3) (−2,−2,−2,−2,−2).

Moreover, no two of these seven fillings are related to each other by any
composition of the above five maps.

0.1. Dehn surgery and Dehn filling

The operation of Dehn surgery on a link in the 3-sphere, and its nat-
ural generalization, termed Dehn filling, are fundamental ones in three-
dimensional geometric topology. The input of an operation of Dehn filling is
given by

• a compact 3-manifold M (that we will always tacitly assume to be
orientable and connected) with boundary ∂M consisting of tori and

• a slope (namely, the isotopy class of a non-trivial simple closed unori-
ented curve) on each component of ∂M .

The result of the operation is the manifold obtained by attaching to M a
copy of the solid torus D2 × S1 along each component of ∂M , with a solid
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torus attached to a component T of ∂M so that the meridian (∂D2)× {∗}
is matched to the slope α contained in T . To allow T to be left unfilled,
one also allows α to be the empty slope. A Dehn surgery on a link L in the
3-sphere is a Dehn filling on its exterior (the complement of an open regular
neighborhood). To highlight the importance of this operation we recall for
instance the celebrated theorem of Lickorish [28], according to which every
closed (orientable) 3-manifold is the result of a Dehn surgery on some link
in S3. In the rest of this paper, when a manifold M bounded by tori is given,
by a (Dehn) filling on M we will mostly refer to the set of slopes along which
the filling has to be performed. Occasionally, we will also use the same term
to refer to the manifold resulting from the operation of filling along the given
slopes, but when there is any risk of confusion we will distinguish between
the filling (viewed as an instruction) and its result.

0.2. Hyperbolic manifolds and exceptional fillings

We say that M is hyperbolic [4] if its interior admits a complete hyperbolic
metric with finite volume, in which case the components of ∂M correspond
to the cusps of the interior of M . The famous hyperbolic Dehn filling theorem
of Thurston [29] states that if M is hyperbolic then “most” Dehn fillings on
M give manifolds that are also hyperbolic. A Dehn filling not producing
a hyperbolic manifold is called exceptional. We continue here the program
initiated in [24] of classifying the exceptional fillings on hyperbolic manifolds
with an increasing number of boundary components. Namely, we provide a
complete classification of all the exceptional fillings on the exterior M5 of the
minimally twisted chain link with five components in the 3-sphere, shown
in figure 1 and denoted by L10n113 in Thistlewaite’s tables.

The relevance of the 5-cusped hyperbolic manifold M5 comes from the
following facts. First, it is conjecturally [2] the 5-cusped manifold with small-
est volume 10.149 . . . and smallest Matveev complexity 10 (it can be trian-
gulated using 10 regular ideal hyperbolic tetrahedra, see below). Second,
by filling M5 one obtains a multitude of interesting manifolds, including
most manifolds from the cusped census [6], and many 1-cusped manifolds
having interesting exceptional fillings, such as various families of Berge [3]
knot exteriors, all Eudave-Muñoz [12, 13] knot exteriors, and all exceptional
reducible–toroidal pairs at maximal distance [21]. Third, the manifold M5

has a nice and unusually large symmetry group, because it double covers a
very natural and symmetric orbifold, called the pentangle, with underlying
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space S3 viewed as the boundary of the 4-simplex and as singular set the
1-skeleton of the 4-simplex.

The exceptional fillings on M5 are classified by Theorem 0.1. Our proof of
this result was computer-assisted but rigorous, namely immune from draw-
backs coming from numerical approximation. We used a python code named
find exceptional fillings.py, written by the first author and publicly
available from [23]. The code uses the SnapPy libraries [9], takes as an
input any hyperbolic manifold M (with an arbitrary number of cusps), and
gives as an output a list of candidate exceptional fillings on M , includ-
ing all truly exceptional ones. The fact that indeed all truly exceptional
fillings are included follows from the use of the hikmot library [15], that
allows one to make SnapPy’s numerical calculations rigorous. For M5, the
list of candidate exceptional fillings actually turned out to be extremely
small up to the action of some symmetry groups, and the conclusion of
the proof of Theorem 0.1 was then obtained by explicitly recognizing the
manifolds resulting from the candidate exceptional fillings, thus proving
them not to be hyperbolic; this process was carried out both by hand and
using the Matveev–Tarkaev [25] nice Recognizer program. We point out that
the code find exceptional fillings.py can be used on any hyperbolic
manifold. We have tested the code on various manifolds and found that
the output list of candidate exceptional fillings is typically correct (i.e., all
the fillings in the list are indeed exceptional). The proof of Theorem 0.1
contained in Section 3 below may be viewed as a tutorial introduction to
the code.

One of the key features of Theorem 0.1 is in our opinion the unexpected
shortness of its statement. In fact, our results show that very little infor-
mation is needed to list all the exceptional fillings on M5, and also to give
a very precise description of all the corresponding filled manifolds. This is
due to the many symmetries possessed by M5 and by some hyperbolic man-
ifolds obtained as Dehn fillings of M5. In fact, Theorem 0.1 shows that only
seven exceptional fillings on M5 are responsible for all the other ones —
and the geometric meaning of the maps appearing in the statement will be
made more precise soon. In addition, a single exceptional filling on M5 —
the first one listed in Theorem 0.1 — is responsible for the vast majority of
the other ones: the remaining six exceptional fillings can be viewed as being
very sporadic. Since most of the manifolds in the Callahan et al. [6] cusped
census can be obtained as fillings of M5, we can conclude that most of the
exceptional fillings on the manifolds in the census are determined by this
single exceptional filling on M5. For instance, all the 10 exceptional surgeries
on the figure-eight knot are consequences of it.
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Figure 2: The links in S3 whose exteriors are denoted by M1, M2, M3, M4

and M5.

0.3. A notable finite(?) sequence of cusped hyperbolic manifolds

Figure 2 shows five links in the 3-sphere, at least the first three of which are
famous ones: the figure-eight knot K4a1 = 41, the Whitehead link L5a1 = 52

1

and the chain link with three components L6a5 = 63
1; we then have the chain

L8n7 = 84
2 link with four components, and (of course) the minimally twisted

5-chain link L10n113 (for the first four links we are indicating both Thistle-
waite’s and Rolfsen’s names). Let us now denote by Mi the exterior of the
ith link in figure 2 (the notation is consistent for M5). It is well known
that each Mi is an i-cusped hyperbolic manifold, and the finite sequence
(Mi)

5
i=1 has several interesting features. We first note that Mi is a filling of

Mi+1 for all i � 4. We then recall that each Mi is conjectured [2] to have
the smallest volume among i-cusped hyperbolic manifolds; the conjecture
was proved in [7] for i = 1 and in [2] for i = 2, and it is open for i = 3, 4, 5.
But the most remarkable properties of (Mi)

5
i=1 arise when one considers

their exceptional fillings. The manifold M3 was already called the magic
one in [13, 14], because it has many notable exceptional fillings. The excep-
tional fillings on M1 were classified by Thurston [29], those on M2 and M3

were classified by Martelli and Petronio [24] and those on M4 and M5 are
classified here.

Our next aim is to explain our discovery that the amount of information
required to describe the exceptional fillings on Mi is roughly constant for
i = 1, 2, 3, 4, 5. Considering that the number of cusps and the volume of Mi

increase with i, we believe that this is a rather remarkable fact. However,
to substantiate our statement we need to be a little more specific. In fact,
as soon as a hyperbolic manifold M has more than one cusp, infinitely
many fillings on M are typically exceptional, but finitely many fillings are
responsible for all other ones. To make this explicit, we define an exceptional
filling on M to be isolated if all its proper sub-fillings (namely, those obtained
by replacing at least one non-empty slope with an empty one) are hyperbolic.
A filling having an exceptional proper sub-filling is exceptional unless a very
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Table 1: Number of isolated exceptional fillings on Mi according to the
number of filled cusps.

Number of cusps filled
Manifold 1 2 3 4 5 Total
M1 10 10
M2 12 14 26
M3 15 15 52 82
M4 16 24 96 492 628
M5 15 30 180 780 5232 6237

Table 2: Number of isolated exceptional fillings on Mi according to the
number of filled cusps, after identifying fillings obtained from each other
under the action of the symmetry group of Mi.

Number of cusps filled
Manifold 1 2 3 4 5 Total
M1 6 6
M2 6 8 14
M3 5 3 14 22
M4 2 2 4 22 30
M5 1 1 3 7 52 64

special situation occurs, which is never the case for our Mi’s. We can then
conclude that a filling on Mi is exceptional if and only if it contains an
isolated exceptional filling.

Getting to the actual data we have obtained, we start by listing in table 1
the numbers of isolated exceptional fillings on Mi for i = 1, 2, 3, 4, 5, split
according to the number k of cusps filled. As one sees, these numbers grow
with i and k, and the total number of isolated exceptional fillings of Mi

appears to grow exponentially with i. These numbers already reduce very
considerably if we take into account the action of the symmetry group of
Mi, identifying exceptional fillings equivalent under it, as shown in table 2.

But the dramatic conclusion that the number of “really inequivalent”
exceptional fillings of Mi is roughly constant for i = 1, 2, 3, 4, 5 follows by
taking into account another phenomenon. In fact, it can and does happen
that a hyperbolic manifold N obtained by filling some Mi has symmetries
that are not induced by symmetries of Mi. If this situation, two isolated
exceptional fillings on N that are equivalent under such symmetries of N
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Table 3: Number of isolated exceptional fillings on Mi according to the
number of filled cusps, after identifying fillings obtained from each other
under the action of the symmetry group of Mi or of hyperbolic manifolds
obtained by filling Mi.

Number of cusps filled
Manifold 1 2 3 4 5 Total
M1 6 6
M2 6 2 8
M3 5 1 3 9
M4 2 0 1 3 6
M5 1 0 0 1 5 7

Table 4: Computer time needed to classify the exceptional fillings.

Manifold M2 M3 M4 M5

Computer time 1′′ 24′′ 2′ 10′′ 3′ 48′′

both contribute to the counting in table 2, but after all we can still iden-
tify them, letting also the symmetries of N act. Similarly, there can be an
isolated exceptional filling on N that contributes to table 2 but is, under
symmetries of N , equivalent to a non-isolated filling on Mi, in which case
we can disregard it. By systematically taking into account the symmetries of
the hyperbolic fillings of the Mi’s we then get the figures of table 3 (with the
seven fillings on M5 being precisely those described in Theorem 0.1). This
proves that the minimal number of exceptional fillings needed to generate
(via symmetries) all the exceptional fillings on M1, M2, M3, M4 and M5 is
indeed roughly constant.

We underline now that not only is the number of exceptional fillings on
Mi for i = 1, 2, 3, 4, 5 responsible for all other exceptional fillings extremely
small, but also that, once the investigation is properly organized, the com-
puter time needed to detect them is very limited as well, see table 4. Encour-
aged by these facts, we believe that it should be possible to carry out a
similar analysis for manifolds having six or more cusps, and we put forward
two questions. To state them, we define a sequence (Mi)

+∞
i=1 to be universal

if every compact 3-manifold with (possibly empty) boundary consisting of
tori can be obtained by Dehn filling on some Mi. We then have the following
(slightly vague):
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Question 0.2. Is there a universal sequence (Mi)
+∞
i=1 with Mi an i-cusped

hyperbolic 3-manifold such that the exceptional fillings on each Mi can be
described using a small amount of data?

A much more ambitious question is the following:

Question 0.3. Is there a universal sequence (Mi)
+∞
i=1 with Mi an i-cusped

hyperbolic 3-manifold such that the exceptional fillings on all the Mi’s can
be simultaneously described using a finite amount of data?

0.4. On the computer assisted-proof

In the original 2011 version of this paper, to rigorously verify the numerical
computations made by SnapPy, we used an algorithm constructed in [26, 27]
and implemented in Pari [8]. It was then pointed out to us that this algorithm
might not be 100% immune from round-off errors. Motivated by another
project [17], Hoffman et al. [15] wrote in 2013 a different algorithm that has
at least three advantages: it uses interval arithmetic (and is hence immune
from round-off errors), it is very fast, and it is written directly in python
(so we were able to incorporate it directly in our previous code). The 2013
versions of our paper and codes use this new algorithm.

1. Main results

We describe here in greater detail the hyperbolic manifold M5, namely the
exterior of the minimally twisted chain link with five components L10n113
shown in figure 1. In particular, we list its symmetries and we analyze some
of its notable exceptional and hyperbolic fillings. We then state Theorem 1.2,
that classifies all the exceptional fillings on M5.

1.1. Hyperbolic structure

The reflection (or rotation of angle π) across the dotted circle in figure 3
(left) leaves the link invariant and thus gives an involution ι on M5. The
quotient of M5 under ι is an orbifold whose singular set consists of 10 order-
2 edges, bounded by 5 spheres with 4 order-2 cone points, each of which
is the quotient of a toric component of ∂M5 under the elliptic involution.
Collapsing these spheres to points we get an orbifold with total space S3

and singular set the pentangle graph shown in figure 3 (right). This implies
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Figure 3: Left: a circle the reflection across which leaves the link invari-
ant. Center: the corresponding quotient graph. Right: the pentangle graph,
obtained from the quotient graph by contracting each solid arc to a vertex.

that the interior of M5 is the double branched cover of S3 minus the vertices
of the pentangle, branched along the edges of the pentangle.

We will now construct the hyperbolic structure on (the interior of) M5

as the double cover of the hyperbolic structure on the pentangle orbifold
(minus the vertices), as described in [10]. To this end, consider S3 to be the
boundary of the four-dimensional simplex and the pentangle graph to be the
1-skeleton of this 4-simplex. Next, realize each of the 5 codimension 1-faces
of the 4-simplex as a regular ideal hyperbolic tetrahedron in H3, and glue the
faces of these ideal tetrahedra using isometries. Each ideal tetrahedron has
dihedral angle π

3 along each of its edges, and every edge of the pentangle
graph is adjacent to three ideal tetrahedra, so the cone angle along each
edge of the pentangle graph is 3× π

3 = π. The link of each vertex of the
pentangle consists of four Euclidean equilateral triangles that glue nicely to
give a Euclidean structure with four cone points of angle π on the 2-sphere,
so we get an orbifold hyperbolic structure on the pentangle graph. Pulling
back this structure to M5 we see that its hyperbolic structure is obtained
by gluing together 10 regular ideal hyperbolic tetrahedra. In particular, the
volume of M5 is equal to 10× v3 = 10.149 416 . . . .

1.2. Symmetries and slopes

Every permutation of the vertices of the pentangle graph is realized by a
unique isometry of the pentangle orbifold, whose symmetry group is there-
fore S5. Every isometry of the quotient lifts to M5, whose symmetry group
is seen to be isomorphic to S5 × Z/2, with the factor Z/2 generated by the
involution ι and S5 permuting the cusps, as one can check using SnapPy [9].
Note that the symmetry group of M5 is larger than the symmetry group of
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L10n113: the latter group is isomorphic to D5 × Z/2, with Z/2 again gener-
ated by ι and D5 being the order-10 dihedral group, generated by a rotation
of angle 2π

5 around an axis orthogonal to the projection plane in figure 1,
and by the reflection across a suitable plane containing this axis.

Let us now number from 1 to 5 the components of L10n113, in such a way
that the ith component is linked with the (i + 1)th (there is a D5 ambiguity
for doing this, that we will soon view to be immaterial). Correspondingly,
we have a numbering from 1 to 5 of the components of ∂M5. We also fix a
meridian–longitude oriented homology basis (μi, λi) on the ith component of
∂M5, viewed as the boundary of the exterior of a (trivial) knot in S3. This
basis is defined up to simultaneous sign reversal, so if a slope represents
±(piμi + qiλi) in homology we have an element pi/qi of Q ∪ {∞} uniquely
defined by the slope, and conversely. This shows that a filling on one bound-
ary component is described by an element of Φ = Q ∪ {∞, ∅}. Note that ∞
is the meridian and 0 is the longitude. Using the numbering we then see
that a filling on M5 is described by a 5-tuple (α1, α2, α3, α4, α5) ∈ Φ5. The
corresponding filled manifold will be denoted by M5(α1, α2, α3, α4, α5).

Every symmetry of M5 sends a slope on a component of ∂M5 to some
(other) slope on some (other) component of ∂M5, so we have an action of
S5 on Φ5 (one easily sees that ι acts trivially on all slopes, so we dismiss
it). To describe this action we start with the easy part coming from the
(dihedral) symmetries of the link: each such symmetry send meridians to
meridians and longitudes to longitudes, therefore the action of D5 on Φ5 is
generated by the maps

(α1, α2, α3, α4, α5) �−→ (α5, α1, α2, α3, α4),(1.1)
(α1, α2, α3, α4, α5) �−→ (α5, α4, α3, α2, α1).(1.2)

This implies in particular that the above-chosen ordering of the components
of ∂M is irrelevant. To generate the full action of S5 on Φ5 it is now sufficient
to add the action on slopes of a symmetry that switches two boundary
components leaving the other three invariant. Using SnapPy one sees that
one such map is as follows:

(1.3) (α1, α2, α3, α4, α5) �−→
(

1
α2

,
1
α1

, 1− α3,
α4

α4 − 1
, 1− α5

)
.

This is an orientation-reversing isometry. Note that the action on slopes on
the invariant components is a non-trivial one; moreover, any of the slopes
in the argument of the map is allowed to be ∅, in which case there is a
corresponding ∅ slope in the value.
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1.3. Notation for some graph manifolds

Let Σ be an oriented surface, possibly with boundary. Given k ∈ N and
coprime pairs of integers (pi, qi) for i = 1, . . . , k with pi 	= 0 for all i, we
denote by (

Σ, (p1, q1), . . . , (pk, qk)
)

the Dehn filled manifold (Σ′ × S1)(p1μ1 + q1λ1, . . . , pkμk + qkλk), where Σ′

is Σ with k open discs removed with the induced orientation, μi is the
oriented component of ∂Σ′ corresponding to the ith disc removed, and λi

is the oriented S1 on the same torus. The result is a Seifert manifold with
an exceptional fiber for each i such that |pi| � 2. As an example of this
construction we note that the Poincaré homology sphere can be described as

(
S2, (2,−1), (3, 1), (5, 1)

)
.

If we allow one pi to be 0, say p1 = 0 and q1 = 1, then (Σ, (p1, q1),. . . , (pk, qk))
turns out to be the connected sum of the lens spaces L(p2, q2), . . . , L(pk, qk)
and of 2g copies of S2 × S1 if the genus of Σ is g, with h unlinked unknots
removed if ∂Σ has h components.

Our notation to encode (some) Seifert manifolds can now be promoted to
encode (some) graph manifolds. In fact, note that the boundary of

(
Σ,(p1, q1),

. . . , (pk, qk)
)

is given by (∂Σ)× S1, so it consists of tori, and that on each
of them there is a preferred homology basis given by an oriented component
of ∂Σ and the oriented S1. Moreover, any two boundary components are
mapped to each other by a homeomorphism of the manifold that matches
the homology bases. Given two such manifolds M and M ′ and a matrix X ∈
GL(2, Z) we can therefore define without ambiguity the gluing M

⋃
X M ′,

along a homeomorphism from a boundary component of M to one of M ′

whose action on homology is expressed by X with respect to the given
bases. Note that M and M ′ are oriented, so M

⋃
X M ′ is naturally oriented

if det(X) = −1, while it is merely orientable if det(X) = +1. But we can
always reverse the orientation of M , which corresponds to changing each
(pi, qi) to (pi,−qi), to get det(X) = −1, that we will always do for aesthetic
reasons even if we only care about orientable but unoriented manifolds.
In a similar way one can define a manifold M/X by gluing together along
X ∈ GL(2, Z) two boundary components of the same M , but in this case
one must have det(X) = −1 to get an orientable result. Denoting by D and
A the disc and the annulus, respectively, we can consider for instance the
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Figure 4: An ∞ filling gives the exterior of an open chain with four compo-
nents (the connected sum of three copies of the Hopf link L2a1 = 22

1).

following closed graph manifolds:

(
D, (2, 1), (2,−1)

)⋃(
1 5
1 4

) (
D, (2, 1), (3, 2)

)
,

(
A, (2, 1)

)/(
1 2
1 1

) .

Note that if a gluing of two Seifert manifolds (or a gluing of a Seifert man-
ifold to itself) is performed along X ∈ GL(2, Z), then the absolute value of
the top-right entry in X has an instrinsic meaning, since it represents the
geometric intersection number on the gluing torus between the two Seifert
fibers coming from opposite sides of the torus.

1.4. Some notable exceptional fillings

We describe here some exceptional fillings on M5. Theorem 1.2 will then
assert that these are the only ones up to the maps (1.1) to (1.3) induced
by the symmetries of M5 and up to further maps described below coming
from symmetries of hyperbolic fillings of M5. In the sequel for k < 5 and
α1, . . . , αk ∈ Φ \ {∅} we will interpret (α1, . . . , αk) as the filling (α1, . . . , αk,
∅, . . . , ∅) ∈ Φ5 on M5.

To begin, we note that filling the exterior of a link with a slope ∞ corre-
sponds to canceling the link component corresponding to the filled boundary
component of the exterior. Therefore M5(∞) is the exterior of the open chain
link with four components shown in figure 4; denoting by P the pair-of-pants
one then easily sees that M5(∞) is the graph manifold

F = (P × S1)
⋃(

0 1
1 0

) (P × S1).

Applying the map (1.3) with α1 =∞ and the other αi’s empty, and then
with α4 = ∞ and the other αi’s empty, we see that the slopes 0 and 1 are
equivalent to ∞ up to the symmetries of M5, therefore M5(0) = M5(1) = F .
More exactly we already have three exceptional slopes on each component
of ∂M5, for a total of 15, giving F as a filling, and one easily sees that no
other slope is obtained from them under the maps (1.1) to (1.3).
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Figure 5: The blow-down: a Fenn–Rourke move on surgery diagrams. On the
left, the two strands piercing the spanning disc of the unknot are supposed
to be parts of two distinct components of the link.

Remark 1.1. If α ∈ Φ5 contains some slope 0, 1 or ∞, then M5(α) is
a filling of F , and a considerable variety of different filled manifolds can
already be obtained. The closed ones, for instance, have the form

(
D, (a, b), (c, d)

)⋃(
0 1
1 0

) (
D, (e, f), (g, h)

)

for arbitrary filling coefficients a, . . . , h. If |a|, |c|, |e|, |g| are all at least 2
then this is an irreducible 3-manifold whose Jaco-Shalen-Johannson (JSJ)
decomposition [18, 19] consists of two blocks and is transparent from the
notation. Allowing some of a, c, e, g to be 0 or ±1 we also get all small
Seifert spaces and all reducible manifolds of the form L(p, q)#L(r, s).

As we will see, the single exceptional filling ∞ is responsible for the
vast majority of the exceptional fillings on M5. There are however a few
sporadic cases of an independent nature, that we will now describe, to do
which we will first study some notable hyperbolic fillings of M5, starting
from M5(−1). To understand M5(−1) and its fillings we recall that a filling
of a link exterior can be described diagrammatically by attaching a symbol
in Φ to each link component. Attaching a −1 to a component of L10n113
and applying the Fenn–Rourke move described in figure 5 (and called blow-
down in the sequel) we see that M5(−1) is actually the exterior M4 of the
4-chain link L8n7 shown above in figure 2. Using SnapPy one then sees that
M4 is a hyperbolic manifold obtained by suitably pairing the faces of two
regular ideal octahedra in H3, therefore it has volume 2× 3.66386238 . . . =
7.32772475 . . .. The blow-down of figure 5 also shows that

M5(−1, α2, . . . , α5) = M4(α2 + 1, α3, α4, α5 + 1)

after fixing a cyclic ordering of the components of L8n7. More precisely, the
slopes on ∂M5(−1) represented by α2, α3, α4, α5 ∈ Φ using the homology
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Figure 6: Two distinct sets of slopes on the second to fifth component of
∂M5 give on M4 = M5(−1) slopes that are obtained from each other by the
order-4 symmetry of M4.

bases coming from L10n113 are the slopes on ∂M4 represented by α2 +
1, α3, α4, α5 + 1 ∈ Φ using the bases coming from L8n7. The link L8n7 has an
obvious order-4 symmetry (a rotation of angle π

2 around an axis orthogonal
to the projection plane) giving a symmetry of M4 that is not induced by a
symmetry of M5, and figure 6 shows how this symmetry can be translated
into the map

(−1, α2, α3, α4, α5) �−→ (−1, α3 − 1, α4, α5 + 1, α2)(1.4)

acting on {−1} × Φ4 viewed as a subset of the fillings Φ5 on M5. One easily
sees that (1.4) indeed cannot be deduced from (1.1) to (1.3). We also note
that the latter functions map −1 to 1

2 or 2, so 15 different fillings on M5

give M4.
The rest of the sequence of link exteriors (Mi)

5
i=1 introduced in figure 2

is obtained in a similar fashion, with Mi−1 = Mi(−1) as shown in figure 7,
whence

M4 = M5(−1), M3 = M5(−1,−2),
M2 = M5(−1,−2,−2), M1 = M5(−1,−2,−2,−2)

(though several alternative realizations of Mi as a filling of M5 exist). Of the
links in figure 2, only the figure-eight knot is amphichiral, and its equivalence
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Figure 7: Each Mi−1 as a (−1)-filling on Mi for i = 2, 3, 4, 5.

Figure 8: Four exceptional fillings that cannot be obtained by filling F .

with its mirror image induces on the fillings on M5 the partial map

(−1,−2,−2,−2, α5) �−→ (−1,−2,−2,−2,−α5 − 6)(1.5)

as one can check with SnapPy or prove using blow-downs as in figure 6.
We can now get back to the exceptional fillings on M5, showing that for

i = 2, 3, 4, 5 if all the boundary components of Mi are filled along the slope
−2, as illustrated in figure 8, then the resulting manifold is non-hyperbolic.

Indeed, using [24] for i = 2, 3 and the recognizer [25] for i = 4, 5 we were
able to prove that

Mi(−2, . . . ,−2) =
(
D, (2, 1), (2,−1)

)⋃(−1 i
1 −i + 1

) (
D, (2, 1), (3, 1)

)
.
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Figure 9: Two exceptional fillings of M5 not obtained by filling F .

None of these manifolds can be obtained as a filling of F = M5(∞), since
its JSJ decomposition is that apparent in its description, and the geometric
intersection number i on the splitting torus of the Seifert fibrations of the two
JSJ blocks is greater than 1, whereas it can only be 1 for a graph-manifold
filling of F . Recalling that Mi−1 was recognized to be Mi(−1) using the
blow-down of figure 5 it is now easy to see that the exceptional fillings just
described imply that the following elements of Φ5 are exceptional for M5:

(−1,−2,−2,−3,−5) (−1,−2,−3,−2,−4)
(−1,−3,−2,−2,−3) (−2,−2,−2,−2,−2).

We conclude with two more exceptional fillings, as described in figure 9, one
on M2 and one on M5. Using [24] and the Recognizer, the resulting manifolds
were identified to be respectively

M2(0) = (P × S1)
/(

0 1
1 0

) , M5

(
−2,−1

2
, 3, 3,−1

2

)
=

(
A, (2,−1)

)/(
1 2
1 1

) .

Neither of them can be obtained as a filling of F , and the latter cannot
be obtained as a filling of the former, because the geometric intersection
numbers of the Seifert fibers on the non-separating JSJ tori are different.
Using the blow-down of figure 5 to identify M2(0) as a filling of M5, we get
the following further exceptional fillings on M5:

(−1,−2,−2,−1)
(
−2,−1

2
, 3, 3,−1

2

)
.
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1.5. The main theorem

Quite surprisingly, the seven exceptional fillings on M5 just described turn
out to be sufficient to describe all other ones up to the symmetries of M1,
M4 and M5:

Theorem 1.2. Every exceptional filling on M5 is equivalent up to a com-
position of the maps (1.1) to (1.5) to a filling containing one of

∞ (−1,−2,−2,−1)
(
−2,−1

2
, 3, 3,−1

2

)
(−1,−2,−2,−3,−5)

(−1,−2,−3,−2,−4) (−1,−3,−2,−2,−3) (−2,−2,−2,−2,−2).

Moreover, no two of these seven fillings are related to each other by any
composition of the maps (1.1) to (1.5).

The exact identification given above of the manifolds obtained by filling
M5 along the 7 tuples of slopes listed in Theorem 1.2 now implies, together
with the discussion in Section 1.3, that a precise description can be provided
of all the manifolds arising as exceptional fillings of M5. We will now spell
this out in the closed case, i.e., for manifolds obtained by filling all 5 cusps
of M5, but the analogous statement for the case where fewer cusps are filled
could be easily given:

Corollary 1.3. Every closed filling of M5 is hyperbolic, except those listed
below and those obtained from them via compositions of the maps (1.1) to
(1.5)

M5

(
∞,

a

b
,
c

d
,
e

f
,
g

h

)
=

(
D, (a,−b), (d, c)

)⋃(
0 1
1 0

) (
D, (f, e), (g,−h)

)
,

M5

(
−1,−2,−2,−1,

a

b

)
=

(
A, (b,−a− b)

)/(
0 1
1 0

) ,

M5 (−1,−2,−2,−3,−5) =
(
D, (2, 1), (2,−1)

)⋃(−1 2
1 −1

) (
D, (2, 1), (3, 1)

)
,

M5 (−1,−2,−3,−2,−4) =
(
D, (2, 1), (2,−1)

)⋃(−1 3
1 −2

) (
D, (2, 1), (3, 1)

)
,
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M5 (−1,−3,−2,−2,−3) =
(
D, (2, 1), (2,−1)

)⋃(−1 4
1 −3

) (
D, (2, 1), (3, 1)

)
,

M5 (−2,−2,−2,−2,−2) =
(
D, (2, 1), (2,−1)

)⋃(−1 5
1 −4

) (
D, (2, 1), (3, 1)

)
,

M5

(
−2,−1

2
, 3, 3,−1

2

)
=

(
A, (2,−1)

)/(
1 2
1 1

) .

Proof. We only need to check the correct expression for the filled manifolds
on first two lines, depending on the filling parameters. The expression on
the first line is easily derived from figure 4, and that on the second line is
taken from [24]. �

2. The code

We have written a python code, named

find exceptional fillings.py

available from [23] and based on the SnapPy libraries written by Culler
et al. [9]. The code takes as an input a manifold N and gives as an output a
list of candidate isolated exceptional fillings of N . It uses the hikmot python
library [15] and contains a certain ad hoc rewriting of some SnapPea routines.

We explain in this section how and why the code works; the reader who
is interested only in its implementation may skip this section and read the
next one.

2.1. The algorithm

The code follows a standard iterative algorithm, already used in [24], that
we briefly recall here.

For every cusp T of N , the code uses SnapPy to determine the cusp
shape x + i y of T , in the sense that up to dilation T is the quotient of C

under the lattice generated by 1 and by x + i y. The code also finds the
area A of T in a maximal horospherical cusp section, where maximality is
meant in the sense that all cusps of N are simultaneously expanded at equal
volume until they first cease to be embedded and disjoint. The code then
enumerates the finitely many slopes on T having length at most 6. Note that
a slope expressed by p

q with respect to the basis of H1(T ) corresponding to
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the generators 1 and x + i y of the lattice giving T as a quotient has length

(2.1) �

(
p

q

)
=

√
A

y

(
(p + xq)2 + (yq)2

)
.

For every slope s in this finite list, the code checks whether the filled mani-
fold N(s) is hyperbolic or not. If it is, the algorithm proceeds iteratively with
N(s). If it is not, it appends the slope s to the list of isolated exceptional
fillings on N . Every isolated exceptional filling on N is guaranteed to be
detected by this algorithm thanks to the Agol–Lackenby “6-theorem” [1, 22],
according to which a filling on N with all slopes all having length greater
than 6 is hyperbolike, and hence hyperbolic thanks to geometrization. (Perel-
man’s general proof of the geometrization conjecture is not strictly necessary
if N is a hyperbolic filling of M5, because the symmetry ι of M5 acts on each
cusp as the elliptic involution and hence extends to every filling of M5, there-
fore the orbifold theorem [5] ensures geometrization for all the fillings of M5.)

The process of listing the slopes of length at most 6 is of course sensitive
to any numerical approximation in the computation of the cusp shape x + i y
and the area A. To ensure rigor, our code computes these values up to some
(very) small error (see below), thus guaranteeing that all slopes of length at
most 6 are picked. Occasionally some slope of length more than 6 might be
included, causing a little redundant analysis but not affecting the accuracy of
the proof. It is also important to note that the program only produces a list of
candidate isolated exceptional fillings, that one needs to verify by hand. More
precisely, the code produces two lists of fillings of N , and each list requires
some kind of a posteriori confirmation. To describe these lists we need to
briefly recall how SnapPy constructs hyperbolic structures on 3-manifolds.

2.2. Thurston’s hyperbolicity equations

We describe here the classical general strategy used to construct hyperbolic
structures on 3-manifolds. Given a cusped manifold N and some filling s
on it, Thurston’s [29] method to construct a hyperbolic structure on N(s)
consists in taking one complex variable zi for each tetrahedron in an ideal
triangulation of N , and trying to solve certain holomorphic equations in
these variables. The number of equations can be reduced to be equal to the
number of variables, and a hyperbolic structure on N(s) is guaranteed in
presence of a geometric solution, namely one with 
(zi) > 0 for all i. If it
exists, a geometric solution is unique. A solution with some zero or nega-
tive 
(zi) corresponds (respectively) to some tetrahedra becoming flat or
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negatively oriented, and the manifold N(s) is not guaranteed to be hyper-
bolic if such a solution is found. Experimentally, if there are only a few
tetrahedra having 
(zi) � 0 (for instance, if there is only one), then often
N(s) has a hyperbolic structure anyway. Sometimes a geometric solution for
the same manifold can be found by randomly modifying the triangulation.
Sometimes hyperbolicity can be established by passing to some finite cover,
because if some cover of a manifold is hyperbolic then the manifold also is.
We have written [23] a short code named search geometric solutions.py
that tries to guarantee hyperbolicity using these techniques if a geometric
solution is not found in the first place.

2.3. Interval arithmetic

SnapPy uses Newton’s algorithm to find an approximate numerical solu-
tion of Thurston’s hyperbolicity equations. This algorithm is very efficient,
but a numerical solution does not rigorously guarantee the existence of a
nearby exact solution. This annoying problem was recently solved in [15]:
the authors wrote a python library called hikmot, freely available from [16],
that contains the function verify hyperbolicity(). The function takes a
SnapPy triangulation as an input and tries to provide a rigorous geometric
solution of Thurston’s equations using the Krawczyk test. If it succeeds, the
function returns a geometric solution expressed via interval arithmetic: in
interval arithmetic every real number is replaced by a small interval [a, b]
containing it, whose width |a− b| is the unavoidable error. Various functions
and operations easily extend from real numbers to intervals, for instance
[a, b] + [c, d] = [a + c, b + d], so that error propagation is automatically kept
under control. The function verify hyperbolicity() is of course not guar-
anteed a priori to find a geometric solution, but when it does it provides as
an output some variables zi (actually, small rectangles in the upper half-
plane) that are guaranteed to contain a geometric solution — in particu-
lar, if verify hyperbolicity() returns a solution then the existence of a
hyperbolic structure is rigorously guaranteed.

As explained above, to make the proof rigorous it is vital to list all the
slopes having length at most 6 in a system of embedded and disjoint horo-
spherical cusp sections. Including a few longer slopes is not a problem, but
none of length at most 6 must be missed. The length of a slope depends on
the computation of the cusp shape x + i y and area A, that SnapPy’s original
routines determine numerically without keeping track of error propagation.
We were then forced to rewrite these routines in python, using interval arith-
metic: the new routines produce intervals A, x and y that are guaranteed to
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contain the true values of A, x and y. The length �(p
q ) of the slope p

q is then
also an interval

[
�1(p

q ), �2(p
q )
]
, found using the interval-arithmetic analog of

(2.1). Selecting all the slopes p
q such that �1(p

q ) � 6 we then obtained a finite
list rigorously guaranteed to contain all possibly exceptional slopes.

2.4. Cusp area and shape

Our routines that calculate A, x and y differ at some points from those used
by SnapPea and we thus describe them. The first step is the construction
of some (probably non-maximal) horospherical section of each cusp. Recall
that the hyperbolic manifold is described by an ideal triangulation and by a
geometric solution (zi) of Thurston’s equations. Every zi is actually a small
rectangle, but in what follows we will manipulate it as if it were a complex
number, since all the operations we will use have their counterpart in interval
arithmetic.

The ideal triangulation induces a triangulation of each toric boundary
component. On each complete (i.e., unfilled) boundary component the code
picks an arbitrary oriented edge and assigns to it the complex length 1. The
code then uses the zi’s to extend the complex length assignment to all the
oriented edges of the torus. By construction, the complex lengths of one
edge with opposite orientations are opposite to each other, and the sums of
the complex edge lengths along the boundary of each oriented triangle is 0.
These complex lengths fully describe the Euclidean structure of the torus up
to similarity. In addition, the real length of an edge is just the modulus of its
complex length, therefore Heron’s formula can be used to compute the area
of each triangle and hence of the full Euclidean torus. We know that the
complex lengths describe an embedded horospherical cusp section provided
that the area is small enough, and for theoretical reasons [9] the universal
upper bound 3

8

√
3 on the area of each cusp is sufficient to ensure that all the

cusp sections are embedded and disjoint. To get the desired horospherical
section the code then rescales the Euclidean structure on each torus (which
amounts to multiplying the complex length of every edge on the torus by a
certain positive constant) until the area is 3

8

√
3.

Having found the complex lengths giving the Euclidean structure on the
torus, the code can now compute the cusp shape x + i y with respect to the
fixed meridian–longitude homology basis. To do this, following SnapPea,
the code describes two curves representing the meridian and the longitude
as normal curves with respect to the triangulation of the toric cusp, and it
computes the corresponding complex translation lengths by developing the



710 Bruno Martelli, Carlo Petronio and Fionntan Roukema

triangulation along the curve. The complex shape x + i y is then the ratio
of the translation lengths of the longitude and of the meridian.

We now turn to the computation of the area A of a maximal horospher-
ical cusp section. As we will explain soon, this is best carried out when
the triangulation of the manifold is not an arbitrary one, but the canonical
Epstein–Penner [11] Euclidean decomposition, or a subdivision of it, that our
code then asks SnapPy to find. The triangulation that SnapPy gives as an
answer is not strictly guaranteed to be the canonical one because SnapPy’s
computations are not rigorous, but we can take this into account. In very
sporadic cases SnapPy is unable to canonize the triangulation, and in these
situations we just set A = 3

8

√
3, which is always fine because the existence of

embedded disjoint cusp sections each having this area is guaranteed on any
hyperbolic manifold. In all other cases, the code works with a triangulation
which is very likely to be the canonical one, and, as detailed above, it starts
by constructing a section of area 3

8

√
3 at each cusp. These cusp sections lift

to infinitely many horoballs in H3, and, if the triangulation is canonical, the
minimal distance between two distinct such horoballs is realized along some
edge of the ideal triangulation. For each edge e of the triangulation the code
then computes the distance d(e) between the horoballs centered at the ends
of e, to do which it picks one ideal tetrahedron of which e is an edge, and
it employs a nice formula to be found in the SnapPea kernel [9]. Supposing
the tetrahedron has vertices 0, 1, 2, 3 and denoting by e(p, q) the edge with
ends p and q, and by w(r; p, q) the boundary edge on the link of r with ends
on e(r, p) and e(r, q), the formula reads

d(e(p, q)) = −1
2

log(L(w(p; r, q))L(w(p; s, q))L(w(q; r, p))L(w(q; s, p))),

where {p, q, r, s} = {0, 1, 2, 3} and L denotes the real length of a boundary
edge with respect to the Euclidean structure already found. Taking the min-
imum d of d(e) over all the edges e of the triangulation, one theoretically
knows that by rescaling all the complex edge lengths by a factor e

d

2 the new
minimal d is then 0, and, if the triangulation is indeed canonical, this gives
a maximal horospherical cusp section with all cusps of area A = ed × 3

8

√
3.

However, we are not 100% sure that the triangulation is canonical. To
deal with this issue we use the fact that, for any triangulation, to guarantee
that embedded and disjoint horospherical cusp sections have been found,
besides checking the condition d > 0, one must make sure that for every
ideal tetrahedron T and at every vertex v of T the three complex lengths of
the boundary edges of the link of v determine a triangle entirely contained
in T . To do so, we represent T in the upper half-space model of H3 as in
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Figure 10: The horospherical section is a triangle if its height h is greater
than some k. If all the inner angles of the triangle with vertices 0, 1, z are
acute, then k is the radius of the circumcircle of the triangle, otherwise k is
half the length of the longest edge of the triangle.

figure 10, with v at ∞. The Euclidean height h of the cusp section at ∞ is
then easily seen to be the inverse of the length of the boundary edge whose
vertices lie above 0 and 1, and the horizontal plane at height h intersects
T in a triangle if and only if h is greater than some number k that we
now explain how to determine. Recall that T is the intersection of four half-
spaces, three bounded by vertical planes and one bounded by the hyperbolic
plane whose circle at infinity C contains 0, 1 and z. If the center of C lies in
the triangle of vertices 0, 1 and z then k equals the radius of C, otherwise k

equals max
{

1
2 , |z|2 , |z−1|

2

}
. Our code makes sure that embedded and disjoint

horospherical cusp sections have been found by checking that h > k for every
choice of T and v, taking errors into account. The code is actually designed
to return A = 3

8

√
3 as above in case some test h > k fails, but as a matter of

fact this never happened during our computations (which is not surprising,
since the triangulation T is extremely likely to be the canonical one or a
subdivision of it).

3. Proof of the main theorem

In this section we describe our proof of Theorem 1.2, that, as anticipated
above, is computer-assisted but rigorous. Our main tool is the python code
find exceptional fillings.py described in the previous section and
publicly available from [23].
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3.1. The output

The code find exceptional fillings.py takes a cusped hyperbolic man-
ifold N as an input and produces two lists as an output:

(I) A list of candidate exceptional fillings of N , for which SnapPy was
unable to find any kind of solution.

(II) A list of candidate hyperbolic fillings of N , for which SnapPy found
some numerical non-geometric solution (with flat or negatively oriented
tetrahedra).

Typically, list (II) consists of closed manifolds only. If this is the case,
the classification of the exceptional fillings of N then becomes complete and
rigorous provided we can a posteriori confirm the following:

(i) all the manifolds in list (I) are non-hyperbolic and

(ii) all the manifolds in list (II) are hyperbolic.

On the contrary, when list (II) contains some manifold Y with boundary
tori, (ii) is necessary but not sufficient, because we should separately test
for hyperbolicity the fillings of Y . However, for all the N ’s we had to deal
with in the proof of Theorem 1.2, list (II) indeed contained closed manifolds
only.

3.2. Organizing the search

Despite our main objective being that to establish Theorem 1.2, we have not
run our code directly with M5 as an input, because it turned out that con-
siderable computer time could be saved by dealing first with the manifolds
M2, M3 (thereby confirming the results of [24]) and M4, and only then with
M5. In the next pages, along with the description of the data obtained step
after step, we will give an explanation of the exact strategy we have used to
employ the data obtained at one step to make the next step simpler.

3.3. The Whitehead link exterior

Running the code for M2 (the exterior of the Whitehead link), we get for this
manifold the lists (I) and (II) described above. With a slope p

q 	= ∅ written
as (p,q), the empty slope written as (0,0), and pairs of slopes (used to fill
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the two boundary components of M2) written between square brackets, the
output is as follows:

Candidate exceptional fillings:
With 1 fillings:
[[(0,0),(0,1)],[(0,0),(1,0)],[(0,0),(1,1)],[(0,0),(2,1)],
[(0,0),(3,1)],[(0,0),(4,1)],[(0,1),(0,0)],[(1,0),(0,0)],
[(1,1),(0,0)],[(2,1),(0,0)],[(3,1),(0,0)],[(4,1),(0,0)]]
Total: 12
With 2 fillings:
[[(-4,1),(-1,1)],[(-3,1),(-1,1)],[(-2,1),(-2,1)],
[(-2,1),(-1,1)],[(-1,1),(-4,1)],[(-1,1),(-3,1)],
[(-1,1),(-2,1)],[(-1,1),(-1,1)],[(3,2),(5,1)],
[(4,3),(5,1)],[(5,1),(3,2)],[(5,1),(4,3)],
[(5,2),(7,2)],[(7,2),(5,2)]]
Total: 14
Candidate hyperbolic fillings:
With 1 fillings:
[]
Total: 0
With 2 fillings:
[[(-3,1),(-2,1)],[(-2,1),(-3,1)],[(3,2),(6,1)],
[(5,2),(6,1)],[(6,1),(3,2)],[(6,1),(5,2)]]
Total: 6

Getting back to our tasks, we first simplify (i) — the confirmation that
the candidate exceptional fillings are indeed non-hyperbolic — by noting
that there is a symmetry of M2 that switches the two boundary components,
with trivial action on slopes given by

(3.1) (α1, α2) �→ (α2, α1).

Using (3.1) we see that to achieve (i) we must only show that the fillings

0 1 2 3 4 ∞

on one component, and

(−2,−2) (−1,−4) (−1,−3) (−1,−2)

(−1,−1)
(

4
3
, 5

) (
3
2
, 5

) (
5
2
,
7
2

)
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on both components are truly exceptional. Exceptionality of these fillings
was already proved in [24], and we can actually make the list shorter using
the additional symmetries

(−1, α2) �→ (−1,−α2) ,(3.2)

(5, α2) �→
(

5,
α2

α2 − 1

)
(3.3)

that follow from the amphichirality of M2(−1) and M2(5) — the figure-
eight knot exterior and its sibling — and are detected by SnapPy. Under
the action of these maps the set of exceptional fillings on M2 reduces to

0 1 2 3 4 ∞ (−2,−2)
(

5
2
,
7
2

)

as summarized in table 2. Getting to task (ii) — the confirmation that the
candidate hyperbolic fillings are indeed hyperbolic — up to (3.1) we must
prove hyperbolicity only of

(−2,−3)
(

3
2
, 6

) (
5
2
, 6

)

which we can do using search geometric solution. In all three cases the
code finds a geometric solution on some finite cover of degree at most 10.
Note that M2

(
3
2 , 6

)
is the closed hyperbolic manifold Vol3 analyzed in [20],

for which no geometric solution is known. We have thus rigorously proved
the following:

Theorem 3.1. Every exceptional Dehn filling on M2 is equivalent up to a
composition of the maps (3.1) to (3.3) to a filling containing one of

0 1 2 3 4 ∞ (−2,−2)
(

5
2
,
7
2

)
.

Moreover, no two of these eight fillings are related to each other by any
composition of the maps (3.1) to (3.3).

Remark 3.2. The last assertion of the previous theorem is readily proved
by direct inspection, and we will refrain from stating the analogous ones in
the subsequent Theorems 3.3 and 3.5.
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3.4. The magic manifold

After the Whitehead link exterior, the next item in the sequence (Mi)
5
i=1

introduced in Section 1.4 is the magic manifold M3. The exceptional fillings
on M3 were already classified in [24], and using our code we can rigor-
ously confirm this classification along the lines explained above. Since M2

is obtained by a (−1)-filling on any component of M3 and the exceptional
fillings on M2 are those in Theorem 3.1, we can exclude from our search any
filling on M3 containing a −1. In the code find exceptional fillings.py
there is a list named exclude that by default is empty and that for M3 we
set as

exclude = [[(-1,1),(0,0),(0,0)],[(0,0),(-1,1),(0,0)],
[(0,0),(0,0),(-1,1)]]

then getting the following as an output:

Candidate exceptional fillings:
With 1 fillings:
[[(0,0),(0,0),(0,1)],[(0,0),(0,0),(1,0)],[(0,0),(0,0),(1,1)],
[(0,0),(0,0),(2,1)],[(0,0),(0,0),(3,1)],[(0,0),(0,1),(0,0)],
[(0,0),(1,0),(0,0)],[(0,0),(1,1),(0,0)],[(0,0),(2,1),(0,0)],
[(0,0),(3,1),(0,0)],[(0,1),(0,0),(0,0)],[(1,0),(0,0),(0,0)],
[(1,1),(0,0),(0,0)],[(2,1),(0,0),(0,0)],[(3,1),(0,0),(0,0)]]
Total: 15
With 2 fillings:
[[(0,0),(1,2),(4,1)],[(0,0),(3,2),(5,2)],[(0,0),(4,1),(1,2)],
[(0,0),(5,2),(3,2)],[(1,2),(0,0),(4,1)],[(1,2),(4,1),(0,0)],
[(3,2),(0,0),(5,2)],[(3,2),(5,2),(0,0)],[(4,1),(0,0),(1,2)],
[(4,1),(1,2),(0,0)],[(5,2),(0,0),(3,2)],[(5,2),(3,2),(0,0)]]
Total: 12
With 3 fillings:
[[(-2,1),(-2,1),(-2,1)],[(1,2),(5,1),(5,1)],
[(2,3),(4,1),(4,1)],[(3,2),(3,2),(4,1)],[(3,2),(3,2),(8,3)],
[(3,2),(4,1),(3,2)],[(3,2),(7,3),(7,3)],[(3,2),(8,3),(3,2)],
[(4,1),(2,3),(4,1)],[(4,1),(3,2),(3,2)], [(4,1),(4,1),(2,3)],
[(4,3),(5,2),(5,2)],[(5,1),(1,2),(5,1)],[(5,1),(5,1),(1,2)],
[(5,2),(4,3),(5,2)],[(5,2),(5,2),(4,3)],[(5,2),(5,3),(5,3)],
[(5,3),(5,2),(5,3)],[(5,3),(5,3),(5,2)],[(7,3),(3,2),(7,3)],
[(7,3),(7,3),(3,2)],[(8,3),(3,2),(3,2)]]
Total: 22
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Candidate hyperbolic fillings:
With 1 fillings:
[]
Total: 0
With 2 fillings:
[]
Total: 0
With 3 fillings:
[[(-3,1),(-2,1),(-2,1)],[(-3,1),(-2,1),(4,1)],
[(-2,1),(-3,1),(-2,1)],[(-2,1),(-2,1),(-3,1)],
[(-2,1),(1,2),(3,2)],[(2,3),(4,1),(-2,1)],
[(4,3),(3,2),(4,1)],[(4,3),(4,1),(3,2)],
[(5,1),(3,2),(3,2)],[(5,3),(3,2),(4,1)],
[(5,3),(4,1),(3,2)],[(7,3),(3,2),(3,2)],
[(7,3),(3,2),(5,3)]]
Total: 13

To proceed we note that any element of the permutation group S3 on
the cusps of M3 is realized by an isometry of M3, with action on the slopes
generated by two transpositions:

(α1, α2, α3) �→ (α3, α2, α1),(3.4)
(α1, α2, α3) �→ (α2, α1, α3).(3.5)

In addition, as already stated in [24], a few fillings of M3 have additional
symmetries, inducing the following partial maps on the slopes:

(
1
2
, α2, α3

)
�→

(
1
2
, 4− α2, 4− α3

)
,(3.6) (

3
2
, α2, α3

)
�→

(
3
2
,
2α2 − 5
α2 − 2

,
2α3 − 5
α3 − 2

)
,(3.7) (

5
2
, α2, α3

)
�→

(
5
2
,
α2 − 3
α2 − 2

,
2α3 − 3
α3 − 1

)
,(3.8)

(4, α2, α3) �→
(

4,
α2 − 2
α2 − 1

,
α3 − 2
α3 − 1

)
,(3.9)

(−1,−2, α3) �→ (−1,−2,−α3 − 2) ,(3.10)

(−1, 4, α3) �→
(
−1, 4,

1
α3

)
.(3.11)
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Note that (3.10) and (3.11) follow from (3.2) and (3.3) because M3(−1,
α2, α3) = M2(α2 + 1, α3 + 1), whereas (3.3) induces at the level of M3 a map
that is obtained (in a complicated fashion) by the other maps listed. We now
embed the achievement of tasks (i)–(iii) for M3 in the proof of the following
result, that confirms the main statement of [24] — with an overall change of
sign because the chain link considered there is the mirror image of the one
considered here:

Theorem 3.3. Every exceptional Dehn filling on M3 is equivalent up to a
composition of the maps (3.4) to (3.11) to a filling containing one of

0 1 2 3 ∞ (−1,−1) (−1,−3,−3) (−2,−2,−2)
(

2
3
, 4, 4

)
.

Proof. All the candidate exceptional fillings on M3 contained in the list (I)
produced by our code for M3 had already been precisely recognized and
hence proved to be indeed exceptional in [24], which completes task (i) for
M3. Letting the maps (3.4) and (3.5) act we reduce the list to

0 1 2 3 ∞(
1
2
, 4

) (
3
2
,
5
2

)
(−2,−2,−2)

(
1
2
, 5, 5

) (
2
3
, 4, 4

)
(

4
3
,
5
2
,
5
2

) (
3
2
,
7
3
,
7
3

) (
3
2
,
3
2
,
8
3

) (
3
2
,
3
2
, 4

) (
5
3
,
5
3
,
5
2

)

to which we add

(−1,−1) (−1,−3,−3) (−1,−2,−5) (−1,−2,−4)

(−1,−2,−3) (−1,−2,−2)
(
−1,

1
3
, 4

)

coming from the isolated exceptional fillings on M2 = M3(−1) found in
Theorem 3.1, under the identification M3(−1, α2, α3) = M2(α2 + 1, α3 + 1)
given by the blow-down move of figure 5. This is in complete agreement
with [24], and letting all the maps (3.6) to (3.11) act we now get the list of
nine exceptional fillings in the statement.

Turning to task (ii), the code search geometric solutions.py suc-
ceeds in finding a geometric solution for each candidate hyperbolic filling of
list (II) for M3. �
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3.5. The 4-chain link exterior

Our next aim is to classify the exceptional fillings on the exterior M4 of the
chain link with four components shown in figure 2. The symmetry group
of this link is isomorphic to D4 × Z/2, with the factor Z/2 generated by an
involution similar to the ι described in figure 3, with trivial action on fillings,
and two generators of the dihedral group D4 act on fillings as follows:

(α1, α2, α3, α4) �−→ (α4, α1, α2, α3),(3.12)
(α1, α2, α3, α4) �−→ (α4, α3, α2, α1).(3.13)

In addition to these symmetries coming from the link, the symmetry group
of M4 contains a Z/2 × Z/2 subgroup leaving each cusp invariant, with two
generators acting as follows on slopes:

(α1, α2, α3, α4) �−→
(

α1 − 2
α1 − 1

,
α2 − 2
α2 − 1

,
α3 − 2
α3 − 1

,
α4 − 2
α4 − 1

)
,(3.14)

(α1, α2, α3, α4) �−→
(

2− α1,
α2

α2 − 1
, 2− α3,

α4

α4 − 1

)
.(3.15)

Before running our code on M4 we can now exclude the filling −1, that
gives M3, and all the fillings obtained from −1 under compositions of the
maps (3.12) to (3.15), which give −1, 3

2 , 3, 1
2 on each cusp, for a total of 16

slopes. In find exceptional fillings.py we then modify the list exclude
to

exclude = [
[(-1,1),(0,0),(0,0),(0,0)],[(3,2),(0,0),(0,0),(0,0)],
[(3,1),(0,0),(0,0),(0,0)],[(1,2),(0,0),(0,0),(0,0)],
[(0,0),(0,0),(0,0),(-1,1)],[(0,0),(0,0),(0,0),(3,2)],
[(0,0),(0,0),(0,0),(3,1)],[(0,0),(0,0),(0,0),(1,2)],
[(0,0),(-1,1),(0,0),(0,0)],[(0,0),(3,2),(0,0),(0,0)],
[(0,0),(3,1),(0,0),(0,0)],[(0,0),(1,2),(0,0),(0,0)],
[(0,0),(0,0),(-1,1),(0,0)],[(0,0),(0,0),(3,2),(0,0)],
[(0,0),(0,0),(3,1),(0,0)],[(0,0),(0,0),(1,2),(0,0)]]

getting the following output:

Candidate exceptional fillings:
With 1 fillings:
[[(0,0),(0,0),(0,0),(0,1)],[(0,0),(0,0),(0,0),(1,0)],
[(0,0),(0,0),(0,0),(1,1)],[(0,0),(0,0),(0,0),(2,1)],
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[(0,0),(0,0),(0,1),(0,0)],[(0,0),(0,0),(1,0),(0,0)],
[(0,0),(0,0),(1,1),(0,0)],[(0,0),(0,0),(2,1),(0,0)],
[(0,0),(0,1),(0,0),(0,0)],[(0,0),(1,0),(0,0),(0,0)],
[(0,0),(1,1),(0,0),(0,0)],[(0,0),(2,1),(0,0),(0,0)],
[(0,1),(0,0),(0,0),(0,0)],[(1,0),(0,0),(0,0),(0,0)],
[(1,1),(0,0),(0,0),(0,0)],[(2,1),(0,0),(0,0),(0,0)]]
Total: 16
With 2 fillings:
[]
Total: 0
With 3 fillings:
[]
Total: 0
With 4 fillings:
[[(-2,1),(-2,1),(-2,1),(-2,1)],[(2,3),(4,1),(3,4),(4,1)],
[(4,1),(2,3),(4,1),(2,3)],[(4,3),(4,3),(4,3),(4,3)]]
Total: 4
Candidate hyperbolic fillings:
With 1 fillings:
[]
Total: 0
With 2 fillings:
[]
Total: 0
With 3 fillings:
[]
Total: 0
With 4 fillings:
[[(2,3),(-2,1),(2,3),(4,1)],[(2,3),(4,1),(2,3),(5,1)],
[(2,3),(4,1),(3,4),(4,1)],[(3,4),(4,1),(2,3),(4,1)],
[(4,1),(-2,1),(-2,1),(-2,1)],[(4,1),(2,3),(-2,1),(2,3)],
[(4,1),(2,3),(4,1),(3,4)],[(4,1),(3,4),(4,1),(2,3)],
[(4,1),(4,3),(4,1),(2,3)],[(4,3),(4,3),(4,3),(5,4)],
[(4,3),(4,3),(5,4),(4,3)],[(5,4),(4,3),(4,3),(4,3)]]
Total: 12

The list (I) of candidate exceptional fillings is then very short, and up to
the action of (3.12) to (3.15) it actually reduces to

0 ∞ (−2,−2,−2,−2)
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which are indeed all exceptional: we have M4(∞) = M5(−1,∞) and M4(0) =
M5(−1, ∅, 0), and we know that ∞ and 0 are exceptional for M5; moreover
the exceptionality of (−2,−2,−2,−2) was proved using the Recognizer [25],
as discussed in Section 1.4. To state our classification result for the excep-
tional fillings of M4 we now note that under the identification

M4(−1, α2, α3, α4) = M3(α2 + 1, α3, α4 + 1)

the maps (3.5) and (3.10) induce for M4, respectively

(−1, α2, α3, α4) �→ (−1, α3 − 1, α2 + 1, α4) ,(3.16)
(−1,−2,−2, α4) �→ (−1,−2,−2,−α4 − 4) .(3.17)

Proposition 3.4. Under the correspondence

(α1, α2, α3) � (−1, α1 − 1, α2, α3 − 1)

the action of the maps (3.4) to (3.11) on triples is generated by the action
of (3.12) to (3.17) on 4-tuples.

Proof. It is very easy to see that (3.4) is induced by a combination of (3.12)
and (3.13), while (3.5) is (3.16), therefore the action of (3.12) to (3.17)
generates the whole isometry group (3.4) and (3.5) of M3. To show that also
(3.6) to (3.11) get generated, we first note that as a composition of (3.14)
and (3.15) we get

(α1, α2, α3, α4) �−→
(

α1

α1 − 1
, 2− α2,

α3

α3 − 1
, 2− α4

)
.(3.18)

We then start with (3.6). Up to (3.4) and (3.5), that we already know to
come from (3.12) to (3.17), we can rewrite it as(

α2,
1
2
, α3

)
�→

(
4− α3,

1
2
, 4− α2

)

and then we can generate it as follows:

(3.6) :
(

α2,
1
2
, α3

)
�

(
−1, α2 − 1,

1
2
, α3 − 1

)

�→
(3.18)

(
1
2
, 3− α2,−1, 3− α3

)

�→
(3.12)2

(
−1, 3− α3,

1
2
, 3− α2

)
�

(
4− α3,

1
2
, 4− α2

)
.
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We next similarly realize (3.7) and (3.8), again only up to (3.4) and (3.5)

(3.7) :

(
α2,

3

2
, α3

)
�

(
−1, α2 − 1,

3

2
, α3 − 1

)
�→

(3.14)

(
3

2
,
α2 − 3

α2 − 2
,−1,

α3 − 3

α3 − 2

)

�→
(3.12)2

(
−1,

α3 − 3

α3 − 2
,
3

2
,
α2 − 3

α2 − 2

)
�

(
2α3 − 5

α3 − 2
,
3

2
,
2α2 − 5

α2 − 2

)
,

(3.8) :

(
5

2
, α2, α3

)
�

(
−1,

3

2
, α2, α3 − 1

)
�→

(3.14)

(
3

2
,−1,

α2 − 2

α2 − 1
,
α3 − 3

α3 − 2

)

�→
(3.12)3

(
−1,

α2 − 2

α2 − 1
,
α3 − 3

α3 − 2
,
3

2

)
�

(
2α2 − 3

α2 − 1
,
α3 − 3

α3 − 2
,
5

2

)
.

We now observe that (3.12) to (3.17) induce on triples the map

(3.19)
(4, α2, α3) � (−1, 3, α2, α3 − 1) �→

(3.18)

(
1
2
,−1,

α2

α2 − 1
, 3− α3

)

�→
(3.12)3

(
−1,

α2

α2 − 1
, 3− α3,

1
2

)
�

(
2α2 − 1
α2 − 1

, 3− α3,
3
2

)

and it is easy to see that (3.9) is obtained by conjugating (3.7) under (3.19).
Moreover we can generate (3.11) as

(−1, 4, α3) �→
(3.19)

(
3
2
,
3
2
, 3− α3

)
�→

(3.7)

(
3
2
, 4,

1− 2α3

1− α3

)
�→

(3.9)

(
−1, 4,

1
α3

)

and the conclusion eventually follows because (3.10) is (3.17). �

Theorem 3.5. Every exceptional filling on M4 is equivalent up to a com-
position of the maps (3.12) to (3.17) to a filling containing one of

0 ∞ (−1,−2,−1) (−2,−2,−2,−2)
(−1,−3,−2,−3) (−1,−2,−3,−4).

Proof. The code search geometric solutions.py shows that the 12 can-
didate hyperbolic manifolds in list (II) are indeed hyperbolic. We know from
above that up to (3.12) to (3.15) an exceptional filling (α1, α2, α3, α4) on
M4 either contains one of 0, ∞, (−2,−2,−2,−2) or α1 = −1 and (α2 +
1, α3, α4 + 1) is exceptional for M3. In the latter case by Theorem 3.3 we
have that (α2 + 1, α3, α4 + 1) contains one of

0 1 2 3 ∞ (−1,−1) (−1,−3,−3) (−2,−2,−2)
(

2
3
, 4, 4

)

up to the maps (3.4) to (3.11). Proposition 3.4 shows that the action of these
maps is generated by (3.12) to (3.17). We readily deduce that up to (3.12)
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to (3.17) an exceptional (−1, α2, α3, α4) for M4 contains one of

(−1,−1) (−1, 0) (−1, 1) (−1, 2) (−1,∞) (−1,−2,−1)

(−1,−2,−3,−4) (−1,−3,−2,−3)
(
−1, 3,

2
3
, 3

)
.

We can then dismiss (−1, 0), (−1, 1), (−1, 2) and (−1,∞) because we see
that 0, 1, 2, ∞ are exceptional on M4: we know that ∞ and 0 are, while 1 is
generated by ∞ and 2 is generated by 0 under both (3.14) and (3.15). Using
(3.16) we can also transform (−1,−1) into (−1, ∅, 0) and then dismiss it.
Finally, using (3.18) we can transform

(−1, 3, 2
3 , 3

)
into

(
1
2 ,−1,−2,−1

)
and

dismiss it because it contains (−1,−2,−1), and the proof is complete. �

Corollary 3.6. Every filling on M4 is hyperbolic, except those listed below
and those obtained from them via compositions of the maps (3.12) to (3.17)

M4

(
∞,

a

b
,
c

d
,
e

f

)
=

(
S2, (a, b), (d,−c), (e, f)

)
,

M4

(
0,

a

b
,
c

d
,
e

f

)
=

(
D, (b, b− a), (f, f − e)

)⋃(
0 1
1 0

) (
D, (2,−1), (c− 2d, c− d)

)
,

M4

(
−1,−2,−1,

a

b

)
=

(
A, (b,−a)

)/(
0 1
1 0

) ,

M4 (−1,−2,−3,−4) =
(
D, (2, 1), (2,−1)

)⋃(−1 2
1 −1

) (
D, (2, 1), (3, 1)

)
,

M4 (−1,−3,−2,−3) =
(
D, (2, 1), (2,−1)

)⋃(−1 3
1 −2

) (
D, (2, 1), (3, 1)

)
,

M4 (−2,−2,−2,−2) =
(
D, (2, 1), (2,−1)

)⋃(−1 4
1 −3

) (
D, (2, 1), (3, 1)

)
.

Proof. We only need to check the correct expression for the filled manifold on
the first three lines depending on the parameters a, b, . . . , f . The equation
on the first line follows by expressing M4(∞) as an open chain link with
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three components. For the equation on the second line we have

M4

(
0,

a

b
,
c

d
,
e

f

)
= M5

(
0,

a− b

b
,−1,

c− d

d
,
e

f

)

= M5

(
b

a− b
,∞, 2,

c− d

c− 2d
,
f − e

f

)

= M5

(
∞,

b

a− b
,
f − e

f
,

c− d

c− 2d
, 2

)
=

(
D, (b, b− a), (f, f − e)

)⋃(
0 1
1 0

) (
D, (2,−1), (c− 2d, c− d)

)

using (1.3) and Corollary 1.3. Finally the equation on the third line also
follows from Corollary 1.3 or [24]. �

3.6. The minimally twisted 5-chain link

We eventually prove here Theorem 1.2, concerning the isolated exceptional
fillings on M5. Recall first that M5 decomposes into 10 regular ideal hyper-
bolic tetrahedra, and this decomposition is totally symmetric, so each cusp
section decomposes into eight equilateral triangles. More precisely, with
respect to the meridian–longitude homology basis of the cusp, its shape
is given by −1

2 + i
√

3
2 , and it is quite easy to see that the area of each cusp

in a maximal horospherical cusp section is equal to A = 2
√

3, because each
individual equilateral triangle has Euclidean area

√
3

4 . The length of a slope
p
q is hence

�

(
p

q

)
=

√
4
((

p− q

2

)2
+ 3

(q

2

)2
)

= 2
√

p2 + q2 − pq.

The slopes having length at most 6 are therefore

∞ − 2 − 1 − 1
2

0
1
3

1
2

2
3

1
3
2

2 3.

Recall now that the action on slopes of the symmetry group of M5 is gen-
erated by (1.1) to (1.3); of course (1.1) and (1.2) act trivially on the set
of slopes of length less than 6 just enumerated, but (1.3) allows to group
them as

{∞, 0, 1},
{
−1,

1
2
, 2

}
,

{
−2, −1

2
,

1
3
,

2
3
,

3
2
, 3

}
.

Now, we already know that the slopes in the first set are exceptional and
those in the second set are not, since they give M4 as a filling. SnapPy
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tells us that M5(−2) is hyperbolic so the slopes in the third set are again
non-exceptional. Since we know the isolated exceptional fillings on M4, to
understand those on M5 we are only left to understand those on M5(−2),
which we can do feeding M5(−2) to our code. But, to avoid considering
again the slopes ∞, 0, 1 that we know to be exceptional on M5, and those
coming from exceptional slopes on M4, we put the preamble

exclude = [
[(1,0),(0,0),(0,0),(0,0)],[(0,1),(0,0),(0,0),(0,0)],
[(1,1),(0,0),(0,0),(0,0)],[(0,0),(1,0),(0,0),(0,0)],
[(0,0),(0,1),(0,0),(0,0)],[(0,0),(1,1),(0,0),(0,0)],
[(0,0),(0,0),(1,0),(0,0)],[(0,0),(0,0),(0,1),(0,0)],
[(0,0),(0,0),(1,1),(0,0)],[(0,0),(0,0),(0,0),(1,0)],
[(0,0),(0,0),(0,0),(0,1)],[(0,0),(0,0),(0,0),(1,1)],
[(-1,1),(0,0),(0,0),(0,0)],[(2,1),(0,0),(0,0),(0,0)],
[(1,2),(0,0),(0,0),(0,0)],[(0,0),(-1,1),(0,0),(0,0)],
[(0,0),(2,1),(0,0),(0,0)],[(0,0),(1,2),(0,0),(0,0)],
[(0,0),(0,0),(-1,1),(0,0)],[(0,0),(0,0),(2,1),(0,0)],
[(0,0),(0,0),(1,2),(0,0)],[(0,0),(0,0),(0,0),(-1,1)],
[(0,0),(0,0),(0,0),(2,1)],[(0,0),(0,0),(0,0),(1,2)]]

The output of our code is the following:

Candidate exceptional fillings:
With 1 fillings:
[]
Total: 0
With 2 fillings:
[]
Total: 0
With 3 fillings:
[]
Total: 0
With 4 fillings:
[[(-2,1),(-2,1),(-2,1),(-2,1)],[(-2,1),(1,3),(3,1),(1,3)],
[(-1,2),(-2,1),(3,2),(3,2)],[(-1,2),(3,1),(3,1),(-1,2)],
[(1,3),(3,1),(1,3),(-2,1)],[(1,3),(3,2),(3,2),(1,3)],
[(3,2),(3,2),(-2,1),(-1,2)]]
Total: 7
Candidate hyperbolic fillings:
With 1 fillings:
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Table 5: Computer time needed by each code to classify the exceptional
fillings of M2, . . . , M5.

M2 M3 M4 M5

find exceptional fillings 1′′ 24′′ 2′ 10′′ 3′ 48′′

search geometric solutions <1′′ <1′′ <1′′ <1′′

[]
Total: 0
With 2 fillings:
[]
Total: 0
With 3 fillings:
[]
Total: 0
With 4 fillings:
[[(-2,1),(-2,1),(3,1),(-2,1)],[(-2,1),(1,3),(3,1),(2,3)],
[(-2,1),(3,1),(3,1),(-2,1)],[(-1,2),(-2,1),(3,2),(3,1)],
[(-1,2),(-1,2),(3,2),(3,2)],[(-1,2),(3,1),(3,1),(-2,1)],
[(-1,3),(1,3),(3,2),(2,3)],[(-1,3),(3,1),(-2,1),(-2,1)],
[(-1,3),(3,1),(-1,2),(-2,1)],[(1,3),(3,2),(2,3),(2,3)],
[(1,3),(4,3),(2,3),(2,3)],[(2,3),(2,3),(3,1),(1,3)],
[(3,1),(1,3),(3,1),(1,3)],[(3,2),(3,1),(-1,2),(-2,1)],
[(3,2),(3,1),(-1,2),(-1,2)]]
Total: 15

To achieve tasks (i) and (ii) we then have to show that the 7 candidate
exceptional (closed) fillings in list (I) are indeed exceptional, and that the
15 candidate hyperbolic (closed) fillings in list (II) are indeed hyperbolic.
For task (i) we take into account the maps (1.1) to (1.3), under which the
seven fillings reduce to

(−2,−2,−2,−2,−2)
(
−2,−1

2
, 3, 3,−1

2

)
.

The Recognizer [25] then confirms that both these fillings are exceptional
and give rise to the graph manifolds described in Corollary 1.3. Task (ii)
is achieved directly by running the code search geometric solutions.py
on the 15 candidate hyperbolic manifolds.

To conclude the proof of Theorem 1.2 we are only left to enumerate up
to the action of (1.1) to (1.5) the exceptional fillings of M5 coming from the
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Table 6: Non-closed isolated exceptional fillings on M4, split according to
the number k of filled slopes, up to the action of the isometry group of M4.

k Exceptional fillings Filled manifold

1 (∞) P × S1

(0)
(
P × S1

)⋃(
0 1
1 0

) (
A, (2, 1)

)

2 (−1,−1)
(
D, (2,−1), (3, 1)

)⋃(
0 1
1 0

) (
P × S1

)

(−1, ∅, 3)
(
A, (2, 1)

)⋃(
0 1
1 0

) (
A, (2, 1)

)

3 (−1,−2,−1) (−2,−1,−2)
(
P × S1

)/(
0 1
1 0

)
(−1,−1

2 , 4
) (−1, 1

2 , 5
2

) (
D, (2,−1), (3, 1)

)⋃(
0 1
1 0

) (
A, (2,−1)

)

exceptional ones on M4 = M5(−1) determined in Theorem 3.5. Recall first
that

M5(−1, α2, α3, α4, α5) = M4(α2 + 1, α3, α4, α5 + 1)

and that up to this identification the maps (1.1) to (1.5) generate the maps
(3.12) to (3.17) induced by the symmetries of M4. So up to (3.12) to (3.17)
we see that (−1, α2, α3, α4, α5) is exceptional for M5 if and only if (α1 +
1, α2, α3, α4 + 1) contains one of

0 ∞ (−1,−2,−1)
(−2,−2,−2,−2) (−1,−3,−2,−3) (−1,−2,−3,−4)

i.e., if and only if (−1, α2, α3, α4, α5) contains one of

(−1,−1) (−1,∞) (−1,−2,−2,−1)
(−1,−3,−2,−2,−3) (−1,−2,−3,−2,−4) (−1,−2,−2,−3,−5)

but we can dismiss (−1,−1) and (−1,∞) because the latter contains ∞,
and the former does up to (1.1) to (1.5). The proof is now complete.
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Table 7: Closed isolated exceptional fillings on M4 up to the action of the
isometry group of M4.

Exceptional fillings Filled manifold

(−1,−2,−2,−5)

(−1,−3,−1,−5)

(−1,−2,−4,−3)

(
S2, (3, 1), (3, 1), (4,−3)

)

(−1,−2,−2,−4)

(−1,−3,−1,−4)

(−1,−2,−3,−3)

(
S2, (2,−1), (4, 1), (5, 1)

)

(−1,−2,−2,−3)

(−1,−3,−1,−3)

(
S2, (2,−1), (3, 1), (7, 1)

)
(−1,−2,−2,−6)

(−1,−3,−1,−6)

(−1,−3,−5,−2)

(
D, (2, 1), (2,−1)

)⋃(−1 1
1 0

) (
D, (2, 1), (3, 1)

)

(−1, 1
2 , 8

3 , 1
2

)
(−1,−2, 4,−2

3

) (
D, (2, 1), (2,−1)

)⋃(
1 1
0 −1

) (
D, (2, 1), (3, 1)

)
(−1, 2

3 , 5
2 , 2

3

) (
D, (2, 1), (2,−1)

)⋃(
2 1
−1 −1

) (
D, (2, 1), (3, 1)

)

(−1,−2,−3,−4)

(−1,−4,−1,−4)

(
D, (2, 1), (2,−1)

)⋃(−1 2
1 −1

) (
D, (2, 1), (3, 1)

)

(−1,−3,−2,−3)
(
D, (2, 1), (2,−1)

)⋃(−1 3
1 −2

) (
D, (2, 1), (3, 1)

)

(−2,−2,−2,−2)
(
D, (2, 1), (2,−1)

)⋃(−1 4
1 −3

) (
D, (2, 1), (3, 1)

)
(−1, 1

2 , 3
2 , 3

)
T(−3 1

−1 0

)

continued
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Table 7: Continued.

(−1, 4, 5,−1
2

) (
A, (2, 1)

)/(
0 1
1 0

)
(−1, 3, 4,−1

3

) (
A, (2, 1)

)/(
1 1
1 0

)
(−1, 3

2 , 5
2 , 1

3

) (
A, (2, 1)

)/(
2 1
1 0

)

Table 8: Non-closed isolated exceptional fillings on M5, split according to
the number k of filled slopes, up to the action of the isometry group of M5.

k Exceptional fillings Filled manifold

1 (1)
(
P × S1

)⋃(
0 1
1 0

) (
P × S1

)

2 (−1,−1)
(
P × S1

)⋃(
0 1
1 0

) (
A, (2, 1)

)

3
(−1,−2,−1)

(−2,−1,−2)

(
P × S1

)⋃(
0 1
1 0

) (
D, (2, 1), (3, 1)

)
(

1
2 , 3, 1

3

) (
A, (2, 1)

)⋃(
0 1
1 0

) (
A, (2, 1)

)

4

(−1,−2,−2,−1)

(−1,−3,−1,−2)

(−2,−2,−1,−3)

(
P × S1

)/(
0 1
1 0

)

(−1,−2, 1
2 , 5

2

)
(−2,−1,−1

2 , 5
2

)
(−1,−2,−1

2 , 4
)

(−2,−1,−3
2 , 4

)
(
D, (2,−1), (3, 1)

)⋃(
0 1
1 0

) (
A, (2,−1)

)
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Table 9: Closed isolated exceptional fillings on M5 up to the action of the
isometry group of M5 (part I).

Exceptional fillings Filled manifold

(−1,−3,−1,−5,−3)
(−1,−4,−1,−5,−2)
(−1,−2,−2,−2,−6)
(−1,−2,−3,−1,−6)
(−1,−2,−2,−4,−4)
(−1,−2,−5,−2,−3)
(−1,−2,−3,−4,−3)

(
S2, (3, 1), (3, 1), (4,−3)

)

(−1,−2,−2,−2,−5)
(−1,−2,−3,−1,−5)
(−1,−2,−2,−3,−4)
(−1,−2,−4,−1,−4)
(−1,−3,−1,−4,−3)
(−1,−2,−3,−3,−3)
(−1,−2,−4,−2,−3)

(
S2, (2,−1), (4, 1), (5, 1)

)

(−1,−2,−2,−2,−4)
(−1,−2,−3,−1,−4)
(−1,−3,−1,−3,−3)
(−1,−2,−1,−3,−2)

(
S2, (2,−1), (3, 1), (7, 1)

)

(−2,−2,−2,−1,−7)
(−1,−2,−3,−1,−7)
(−1,−2,−3,−5,−3)
(−1,−2,−6,−2,−3)
(−1,−3,−1,−6,−3)
(−1,−4,−1,−6,−2)
(−1,−2,−2,−5,−4)

(
D, (2, 1), (2,−1)

)⋃(−1 1
1 0

) (
D, (2, 1), (3, 1)

)

continued
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Table 9: Continued.

Exceptional fillings Filled manifold(
−1,−2,−2

3
, 4,−3

)
(
−1,−2,−2, 4,−5

3

)
(
−1,−2, 3,−1,−5

3

)
(
−1,−1

2
,−1,

1
2
,
5
3

)
(
D, (2, 1), (2,−1)

)⋃(
1 1
0 −1

) (
D, (2, 1), (3, 1)

)

3.7. Computer time

As thoroughly explained above, during our investigation we have used two
different programs: the main python code find exceptional fillings and
a shorter python code named search geometric solutions. Both codes
are available from [23], and the computer time spent to run each of them for
each manifold M2, . . . , M5 is shown in table 5. As one can see, once properly
organized as we have described, the search requires very little computer
time.

4. Tables

In this section we expand Theorems 1.2 and 3.5, listing all the isolated
exceptional fillings on M4 and M5, up to the action of their isometry groups.
The results stated here are summarized by the entries in table 2, while those
in table 1 were obtained a posteriori using the action of the isometry groups.
We also show all the filled manifolds, to do which, in addition to the notation
for Seifert and graph manifolds introduced in Section 1.3, we will use TX to
denote the torus-bundle on S1 obtained from T × [0, 1] by gluing T × {0} to
T × {1} along X ∈ GL(2, Z) with respect to parallel homology bases; note
that for TX to be orientable now one needs to have det(X) = +1.

Theorem 4.1. The isolated exceptional fillings on M4, seen up to the
action of the isometry group of M4 generated by (3.12) to (3.15), are those
listed in tables 6 and 7. These fillings are pairwise inequivalent under (3.12)
to (3.15).
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Table 10: Closed isolated exceptional fillings on M5 up to the action of the
isometry group of M5 (part II).

Exceptional fillings Filled manifold(
−1,−1

3
,−1,

2
3
,
3
2

)
(
−1,−1

3
,
5
2
,
2
3
,−2

) (
D, (2, 1), (2,−1)

)⋃(
2 1
−1 −1

) (
D, (2, 1), (3, 1)

)

(−1,−3,−1,−4,−4)
(−1,−2,−2,−3,−5)
(−1,−2,−4,−1,−5)
(−1,−2,−4,−3,−3)

(
D, (2, 1), (2,−1)

)⋃(−1 2
1 −1

) (
D, (2, 1), (3, 1)

)

(−1,−2,−3,−2,−4)
(−1,−3,−3,−1,−4)

(
D, (2, 1), (2,−1)

)⋃(−1 3
1 −2

) (
D, (2, 1), (3, 1)

)

(−1,−3,−2,−2,−3)
(
D, (2, 1), (2,−1)

)⋃(−1 4
1 −3

) (
D, (2, 1), (3, 1)

)

(−2,−2,−2,−2,−2)
(
D, (2, 1), (2,−1)

)⋃(−1 5
1 −4

) (
D, (2, 1), (3, 1)

)
(
−1,−2,−1,

1
2
,
1
2

)
(
−1,

1
2
, 3,−1,−1

2

)
(
−2,−1,−1

2
,
3
2
, 3

) T(−3 1
−1 0

)

(
−1,−2,−1

2
, 5, 3

)
(
−1,−2, 4, 5,−3

2

)
(
−1, 4, 4,−1,−3

2

)
(
A, (2, 1)

)/(
0 1
1 0

)

(continued)
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Table 10: Continued.

Exceptional fillings Filled manifold(
−2,−1, 2, 4,−1

3

)
(
−1,−2, 3, 4,−4

3

)
(
−1,−2,

1
2
,
7
3
,
1
3

)
(
A, (2, 1)

)/(
1 1
1 0

)

(
1
2
,−1,−2,

1
3
,
5
2

)
(
−1,−2,

3
2
,
5
2
,−2

3

)
(
−1,

1
2
,−1,

1
3
,
3
2

)
(
A, (2, 1)

)/(
2 1
1 0

)

(
−2,−1

2
, 3, 3,−1

2

) (
A, (2,−1)

)/(
1 2
1 1

)

Proof. The discussion in Section 3.5 shows that, up to the action (3.12)
to (3.15) of the isometry group of M4, an isolated exceptional filling on
M4 either contains −1 or is equal to 0, ∞, or (−2,−2,−2,−2). If it con-
tains −1 then it is of type (−1, α2 − 1, α3, α4 − 1) where (α2, α3, α4) is
an isolated exceptional filling on the magic manifold M3, as described in
Theorem 3.3. But now we are not identifying slopes on M4 equivalent
under the maps (3.16) and (3.17) induced by isometries of M3 = M4(−1)
or M2 = M4(−1,−2) or M1 = M4(−1,−2,−2), therefore we must take the
slopes listed in Theorem 3.3, consider their full orbit under the isometries
(3.4) and (3.5), pull them back to M4, and then remove those that are not
isolated on M4 and mod out under (3.12) to (3.15). The process is long but
straight-forward and leads to the tables, with the manifolds always identified
by hand and/or using the Recognizer. �

Theorem 4.2. The isolated exceptional fillings on M5, seen up to the
action of the isometry group of M5 generated by (1.1) to (1.3), are those
listed in tables 8 to 10. These fillings are pairwise inequivalent under (1.1)
to (1.3).
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Proof. The scheme of the proof is similar, and we omit all details (carried out
using a dedicated code). The isolated exceptional fillings on M5 described
in Theorem 1.2 not coming from M4, namely not containing a −1 slope
up to (1.1) to (1.3), contribute directly to the tables. Those coming from
M4 are acted on using the full isometry group of M4, pulled back to M5,
depurated from the non-isolated ones, and modded out under the isometry
group of M5. Again the manifolds are identified by hand and/or using the
Recognizer. �
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