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Mass angular momentum inequality for
axisymmetric vacuum data with small trace

XIN ZHOU

In this paper, we prove the mass angular momentum inequality
[12, 15, 23] for axisymmetric, asymptotically flat, and vacuum data
sets with small trace. Given an initial data set with small trace,
we construct a boost evolution spacetime of the Einstein vacuum
equations as [10]. Then a perturbation method is used to solve the
maximal surface equation in the spacetime under certain growing
condition at infinity. When the initial data set is axisymmetric,
we get an axisymmetric maximal graph with the same mass and
angular momentum as the given data. The inequality follows from
the known results [12, 15, 23] about the maximal graph.

1. Introduction

Based on the gravitational collapse pictures [14], it is conjectured that the
angular momentum should be bounded by the mass for physically rea-
sonable solutions of the Einstein equations. It is true for Kerr black hole
solutions which are stationary. For dynamical, axisymmetric solutions some
progresses have been made over the past few years. Dain [15] first proved
such an inequality for Brill data (see [15, Definition 2.1]), which is a special
class of axisymmetric, maximal, and asymptotically flat vacuum data. Later,
Chrusciel, Li and Weinstein [11, 12] generalized it to a class of axisymmetric,
maximal data admitting an Ernst potential with positive mass density, and
certain asymptotically flatness conditions. Recently Schoen and Zhou [23]
gave a simplified proof for more general asymptotic conditions and an LS
norm bound.

All the existing results require the solutions to be maximal, which rest-
ricts the data to be a special time-slice in a spacetime. However it should be
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unnecessary according to the gravitational collapse pictures'. It is natural
and interesting to study the non-maximal case. In this paper, we will prove
the mass angular momentum inequality for non-maximal vacuum data with
small trace by exploring the Einstein equations and a perturbation method.
Using notations in Section 1.2, our main theorem is.

Theorem 1.1 (Main Theorem 1). Suppose (X,e) is a simply connected
S-manifold, which is Fuclidean at infinity with two ends and axisymmetric
in the sense of Definition 1.3. Given an asymptotically flat, axisymmetric

vacuum data (g, k) € VCI, , 5.1(2) (see Definition 1.5) with s €N, s > 7,

J eR, —% <6< =1, if [[trekl|m,_, sya(x) < € with € giwen in Theorem 1.6,
we have ’

(1.1) m =/ |J|,

where m and J are the ADM (abbreviated for Arnowitt-Deser-Misner, see
page 193 [24]) mass (1.6) and angular momentum (1.8) of (3,g,k)
respectively.

Our method comes from a question suggested by R. Schoen:

(Q) : Is there a canonical way to deform a non-mazimal, axisymmetric,
vacuum data to a unique maximal, vacuum data with the same physical
quantities, i.e., the mass and angular momentum, which also preserves
the axially symmetry?

A definite answer of the above question will imply the mass angular momen-
tum inequality in the non-maximal case. In fact, there are already some
works about the deformation of vacuum constraint equations (VCEs) [4, 13].
But it is hard to maintain the symmetries and physical quantities at the same
time. So the main difficulty is to maintain the symmetries and the physi-
cal quantities simultaneously when deforming the VCEs. We overcome this
difficulty by using certain conversation laws of the Einstein equations.

1.1. General relativity backgrounds

In Einstein’s theory for General Relativity?, we use (V3!,7) to denote a
spacetime, where V31 is a 4-dimensional oriented smooth manifold, and 7 is

!The axisymmetric condition is indeed necessary, since otherwise vacuum coun-
terexamples were constructed by Huang, Schoen and Wang [18].
2We refer to [24] for all the concepts.
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a Lorentzian metric of signature (3, 1). The Einstein equation, which predicts
the evolution of the spacetime, is given by

1
(1.2) Ricy — §R’W = 8nT,

where Ric, is the Ricci curvature of «, and R, the scalar curvature of ~.
T is the stress-energy tensor. In the vacuum case, T'= 0, so the FEinstein
vacuum equation, abbreviated as (EVE) in the following, reduces to

(1.3) Ric, = 0.

A vacuum constraint initial data set or abbreviated as vacuum data for
the EVE is a triple (X, g, k), where ¥ is a connected complete 3-dimensional
manifold, ¢ a Riemannian metric, and k£ a symmetric two tensor on X,
satisfying the vacuum constraint equations, abbreviated as (VCE),

Ry — |k|2 + (tryk)? =0,
(14) { g ||g ( g)

divg(k — (trgk)g) = 0.

By the famous initial value formulation for the Einstein equations by Y.
Choquet—Bruhat in 1952 (see [9, 24]), we can always think the vacuum data
(3, g, k) as been embedded in some spacetime (V, v) satisfying (EVE), where
g is the restriction of v to ¥, and k is the second fundamental form of the
embedding.

(X, e) is called Fuclidean at infinity, where e is a Riemannian metric on
Y, if there is a compact subset X, C 3, such that the complement ey =
3\ Xint is a disjoint union of finitely many open sets Yexy = U; F;, and each
E; is diffeomorphic to R? cutting off a ball Bg, and on each E;, e is the
pull back of the standard Euclidean metric on R3. Here Yiy is called the
interior region, Yext the exterior region, and each F; an end. Each end E has
a coordinate system {z;: i = 1,2,3} inherited from R3. Let r = />, (;)2.
(3,9, k) is said to be asymptotically flat, abbreviated as (AF), if (X, e) is
Enclidean at infinity for some e, and there exists an o > %, such that under
coordinates {z;: i =1,2,3},

(1.5) 9ij = 6ij + O2(r™),  kij = O1(r~17%).

Under these conditions, the ADM mass is defined as,

1 .
(1.6) m = lim / (9ij.i — ii gV do(r),
s

r—oo 167

s
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where S, is the sphere of radius 7 in R?, Jijk = (gg; : and 17 is the Euclidean

unit outer normal of S, with do(r) the surface element of S,. The famous
positive mass theorem by Schoen and Yau [21, 22] and Witten [25] says that
m > 0 under the dominant energy condition.

If the initial data set (X, g, k) is axisymmetric (cf. [11, 15]) under an
axial Killing vector field &, i.e.,

(1.7) ﬁgg = 0, ﬁfk‘ = 0,

where £ denotes the Lie derivative, we also have a well-defined angular
momentum J (cf. [15, 24]) of a close 2-surface S C X

1 o
_ gi]
(1.8) J(S) . /Smjg Vdoy,

where 7;; = ki; — trg(k)gi; is divergence free by (1.4), and v, do, are, respec-
tively the unit outer normal of S and surface element w.r.t. g.

1.2. Ideas and main results

In this paper, we will prove the mass angular momentum inequality for cer-
tain axisymmetric, AF vacuum data (3, g, k) with small tryk, especially we
partially solved the question asked by Schoen. We will use the full Einstein
equations and a perturbation method. Given an AF vacuum data (X, g, k),
we will solve the boost problem of (EVE) for (X,¢g,k) as [3, 10] to get
a spacetime (V,7), where V is a subset of ¥ x R which grows linearly at
infinity. Given a function u defined on 3, the graph Graph, = {(z,u(x)) €
Y xR,z € X} of u lies inside V, when |u| has roughly sub-linear growth.
We want to find a solution to H, = 0, where H, is the mean curvature of
Graph,, w.r.t. (V,7). Now fix a 3-manifold (X, e) Euclidean at infinity, we
can construct a mapping H which takes the triple (g, k,u) to the mean cur-
vature H,, i.e., H: (g,k,u) — H,. Viewing (g, k) as parameters and u as
unknown function, our equation changes to

(1.9) H(g, k,u) = 0.

When (g, k) is maximal, i.e. trgk = 0,u = 0 is a solution to (1.9). So we can
use the Inverse Function Theorem to solve H(g, k,u) = 0 when tr¢k is small
enough. From now on, we always assume s € N and § € R. Using notations
from Section 2, we have
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Definition 1.2. Fix a 3-dimensional manifold (¥, e) which is Euclidean at
infinity.

(1) The wvacuum constraint data sets VC, 4 5. 1(X) is defined to be the
set of solutions (g, k) to (1.4), such that (g —e,k) € Hyy5,1(X) X
Hs,5+g(2)-

(2) The mazximal vacuum constraint data sets MVC 4 5, 1(%) is defined
to be the subset of VC ;5. 1(3) satisfying tr k = 0.

Inside VCS+175+%(Z) and MVCSH,H%(Z), we use the topology induced by
the Sobolev norms of HsH,(;Jr%(E) X HS,M%(Z) as in Definition 2.3.

Definition 1.3. A simply connected 3-manifold (3, e) which is Euclidean
at infinity is called azisymmetric, if

(1) ¥ is diffeomorphic to R® minus some points {ak}é_:ll on the z-axis
I ={(p,p,2) € R?: p =0}, with one end modeled by a neighborhood
of 0o, and other ends by a neighborhood of a; with coordinates given

by a Kelvin transformation: {2’ = e S

(2) Lo,e =0, where ¢ is the azimuth of the cylindrical coordinates
{p, ¢, 2}.

Remark 1.4. Near oo, e is given by the Euclidean metric dsg, and near
each puncture ag, e is the pull back of the Euclidean metric by the Kelvin
transformation, i.e., e = ﬁdsg. In fact, by Chrusciel’s reduction in [11], any
simply connected, axisymmetric, AF vacuum data (X, g) has the underlying
topology 3 given by R? minus finitely many points on the z axis, with the
Killing vector field %.

Definition 1.5. Given (X, e) as in Definition 1.3.

(1) An initial data set (g, k) is called azisymmetric, if the symmetry con-

ditions (1.7) hold for the Killing vector field £ = 2.

(2) VC?+1,6+§(Z) and MVC;LJFLH%(E) are the axisyﬁnmetric subset of

Vcs+1,6+§ (3) and MVCHLM% (3) respectively.

The following theorem is one of our main results, which is a summariza-
tion of Theorem 4.12, Lemma 4.13, Lemma 4.14 and Theorem 4.16.

Theorem 1.6 (Main Theorem 2). Given s >4, -2 < 4§ < —1.

(i) Let (X,e) be a 3-dimensional manifold which is Euclidean at infinity.
For any (g,k) € VCHZ’M%(E), where Ae < g < A te for some A > 0,
there exists a small number € depending only on X and
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lg — eHHS“,H%(E) + HM|H5+LH%(2); such that if ||trgk| g (%) S 6
then there exists a spacetime (V,v) solving the (EVE), and a func-
tionu € Hy o 5_1(%) solving the mazimal surface equation (1.9) inside
(V,v). The induced metric gy, and second fundamental form k, of
Graphy, satisfy (gu, ku) € MVCHLM%(E)-

(ii) If =3 <& < =1, the ADM mass of (X, gu, ky) is the same as that of
(%,9,k).

(iii) If (X,e,g,k) is simply connected, axisymmetric, then u can be cho-
sen to be axisymmetric, hence (3, gy, ky) is azisymmetric, and has the
same angular momentum as (3, g, k).

72,5+§(

Remark 1.7. The weight § corresponds the decay g ~ e + O(r~(*+2)) and
kE ~ O(r=©®+3)) by the Sobolev embedding Lemma 2.5. (gy, k) is always
assumed to be pulled back to ¥ by the graphical map F, : x — (z,u(x)).

Remark 1.8. The order of regularity of our final solution (g,, k) decreases
by 1 than our starting data (g, k). This is due to the fact that the restriction
of Hg-Sobolev functions on a spacetime to a hypersurface decreases the
regularity by 1 (see Lemma 2.8).

Our main Theorem 1.1 is then a corollary of the above theorem.

Proof of Theorem 1.1: Let u be the solution given in part (iii) of The-
orem 1.6. Then the induced maximal data (gu, ku) € MVCE, | 5.1 (%), and
the ADM mass m and angular momentum J of (g, k) and (gy, k;) are the
same. Now by Sobolev embedding Lemma 2.5, (g, —e,ky) € 0271(2) X
Ggﬁ(z) for some 3 <B<8+2<1. So (Z,gu,ky) is an axisymmetric,
maximal vacuum data, with asymptotic conditions g, = 6 + Os_l(%ﬁ) and

ky = Os_2(=3+), so the mass angular momentum inequality in [23] holds on
(3, gu, ky). Hence m > (/| J|. O

The paper is organized as follows: in Section 2, we will review the
weighted Sobolev space theory covered by [2, 7, 8, 10] and the geometry
of hypersurfaces in 3 + 1-dimensional Lorentzian spaces. In Section 3, we
will extend the boost theory in [8, 10] to the case of multi-ends. In Sec-
tion 4, we will set up a perturbation problem for the mean curvature of
graphs. We will take initial data sets as parameters and use linear theory
in [2, 7, 19] and the Quantitative Inverse Function Theorem 4.10. Finally,
we will prove the main results in Section 4.4.
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2. Preliminaries

In this section, we give some preliminary results on the weighted Sobolev
space theory and the geometry of hypersurfaces in Lorentzian spaces.

2.1. Weighted Sobolev space theory

Here we give our definition of the weighted Sobolev space. Most of the
results here can be found in [7, 8, 10]. We will mainly talk about two types
of domains.

Type 1 domain: sub-domain of R3.
Let U be an open set in R?, o(x) = (1 + |z[>)Y/? for z € R*, and V a

finite dimensional vector space. Given s € N, § € R.

Definition 2.1. C5(U) is the Banach space of C° functions v :U — V,
with finite norm

u||cs () = su o U
lulles @y = sup D> ol Dl

lal<s

H,5(U) is the class of functions u: U — V, with weak derivatives up to
order s, such that o?*1®l D € L2(U) for all |a| < s. Hs5(U) is a Hilbert
space with inner product:

(w1, u2) g, sy = Z (@ DUy, o1 DUy 21y,
loo|<s

1/2

Then the norm is: [Jul| g, @) = (u,u) S(U)"

Now we will list some properties of H 5(U), which can be found in [7,
8, 10]. We will use the following notion on the geometry of domains. Given
0<e<l, and ¢, : R — R? defined by ¢.(x) = W An open subset
U C R? is said to have the extended cone property if ¢.(U) has the cone
property® for each 0 < € < 1.

Lemma 2.2. Given U satisfying the extended cone property,

(1) (erpbedding). If  <s—%4 and &' <0+ 5, the inclusion H,5(U) C
C3 (U) is continuous;

3See the remark under [10, Definition 2.3].
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(1) (multiplication). If s < 51,52, 5 < 81+ 82 — 5 and 6 < 81 + 92 + 5, the
multiplication (f1, f2) — fif2 is continuous: Hy, 5, (U) x Hg, 5,(U) —
H5(U).

Hence H, 5(U) is a Banach algebra if s > § and 6 > —75.

Type 2 domain: manifold which is Euclidean at infinity.

Let (X,e) be an n-dimensional manifold which is Euclidean at infin-
ity. Let z = {2’} be the local coordinates, where {z'} is the pull back of
the standard coordinates on R™ \ Br when restricted to E;, and e = ds% =
> (dz%)? on E;. Fix a point O € iy, and define a function on ¥ by

oe(z) = (1+ dZ(z,0))"/2.
Clearly o.(z) is equivalent to o(z) = (1 + |z|?)!/? on each end FE;.
When we use ¥ to model an initial data set, the spacetime should have
topology as a sub-domain of ¥ x R. Using coordinates (z%,t) on ¥ x R, it
has a natural reference metric

(2.1) é=dt* +e.
For 0 € (0, 1], the boost region Qy is defined as,
(2.2) Qg ={(z,t) e ZxR: |t| < fboc(x)}.

On €y, the distance function dg(-,O) is equivalent to de(-,0), so we can
use o, to define the weighted Sobolev space on 2y. Given a smooth tensor
bundle ¥ — Y or E — Qg and s € N, § € R.

Definition 2.3. C5(X) or C5(€y) is the Banach space of C* sections wu :
Y — E,oru:y — F, with finite norm

lullessor 00y = sup < > oot D, 4

3(or Qo) o] <s

H, 5(3) or H,5(§2) is the class of sections u: ¥ — E, or u: Qp — E with
weak derivatives up to order s, such that oo pay ¢ L%(Z,e) (or L*(Q, €))
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for all || <'s. Hy5(X) or Hy 5(Qg) is a Hilbert space with inner product:

(U1, u2) B, ;(3) (or H.5(Q))
= Z <Ug+‘alDaU1,UgHa'DauﬁLz(z,e) (or L2(£2,€))-
|| <s

. 1/2
Then the norm is: HU||HS,5(E) (or H.5(Q0)) = (u, U>1£15(g) (or H, 5(Q))"

Remark 2.4. In fact, the definitions are independent of the choice of e on
Eint‘

Lemma 2.5 ([7], Lemmas 2.4, 2.5, [6], Appendix 1).

(i) (embedding). If s’ < s — 2,8 <&+ %, the inclusion Hy 5(X) C C5/ (%)
18 continuous;

(i) (multiplication). If s <s1,82, s <s1+s2— 15, 6 <41+ + 5, the
multiplication (f1, f2) — fif2 is a continuous map: Hg, s,(3) x Hg, s,
(¥) — Hss5(X), hence Hy5(X) is a Banach algebra if s > §, 0 > —5.
Furthermore,

(2.3) 1f1fella, sz) < Clfilla., s, )1 f2llm., 5, )

where C' is a constant depending only on {n, s1, 2,01, 2}.

Divide Qg as Qg = (Qp)int Ut_; ()i, where (Qp); = {(2,1) € Q: z €
E;}, and (Qp)int the complement. Now (£2p)int is @ compact manifold, and
(p); € R™"*! satisfies the extended cone property in the above section, hence
Lemma 2.2. By working separately on (£2g); and (€¢)int as in [7] using
Lemma 2.2, we have similar results.

Lemma 2.6. (i) (embedding). Ifs' < s — 2, 6" < § 4+ 2L the inclusion
is Hy115(Q9) C C5 (Qp) is continuous;
(7i) (multiplication). If s < s1,82, § < S+ S2 — %H, 0 <1+ + "7“,
then the multiplication (f1, f2) — fif2 is a continuous map: Hy, s,
(Qg) x Hy, 5,(Q9) — Hs5(Q), hence Hy 5(Qg) is a Banach algebra if
s> g > —ntl
2 2
Using ideas similar to the proof of Theorem 2.3 in [10] and Lemma 2.6,
we have
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Lemma 2.7 (composition). Given g, Qg as above and f: Qy — Qo a
differentiable map, such that |Df|s > ¢ >0 and f —id € Hgyy 5-1(Qp) with
5> nTH and § > —”?H, then for any s’ < s+ 1, &' € R, the composition
u — uo f is an isomorphism as a map:

Hy 5 (f(80)) = Hy 5:(2p)-

Define the function 7(z,t) = %(x) Denote the level surface of 7 by X, =
{(z,t) e X xR: 7(z,t) = 7}. Then Qy has a foliation Qy = U,¢(_g,9)%r
The restriction norm is defined as:

1/2
Hsg511( ) '

. (zunkurz 2,

Using ideas similar to the proof of [8, Lemma 3.1], we can get,

(2.4) [ulla

Lemma 2.8 (restriction). Vr € (—0,0), we have the following continuous
inclusion:

Herl,é(Q@) - Hs,6+§(277 D),
for every s € N and § € R.

2.2. Geometry of hypersurface in Lorentzian space

In this section, we will review the geometry of hypersurfaces in a Lorentzian
space. We will mainly focus on the mean curvature of the hypersurface.
Notation and part of the results here trace back to [1], and all concepts of
Lorentzian space can be found in [24]. Let (V,v) be a (3+1)-dimensional
Lorentzian space, with (-, -) the metric pairing and V the connection. A
smooth function ¢t € C*°(V) is called a time function if Vt is non-zero, and
everywhere timelike, i.e., (Vt, Vt) < 0. We call a hypersurface ¥ spacelike if
the restriction of  to ¥ is Riemannian. In a local coordinate system {x?,t},
where ¢ is a time function, the metric can be written as (see [1, Equation

(2.12))):
(2.5) v = —(a® — B%)dt* + 2B;dx'dt + g;jdx'da?,

where « is the lapse function, i.e., a? = —(Vt, Vt), g;; a Riemannian met-
ric, and 8 = g B3;0; the shift vector . Here we use 9y = % and 9; = % as

4See [24, Chap 10] for details.
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coordinate vectors. The inverse metric y~! is given by:
L B

(2.6) W= & . e
e 9 ms)

under coordinate system {t,z!, 22, 23}.

We will denote the level surface of the time function ¢ by ¥, = {p €
V: t(p) =t}. Let D be the gradient operator on X, and div® the diver-
gence operator on ;. The future-directed timelike unit normal 7' of 3} is
given by®:

(2.7) T=—-aVt=a ', - p),

and the second fundamental form k:?j and the mean curvature H? of the slice
> are given by,

1 1 _
(2.8) kY = (8i, Vo, T) = Tl '0hgij — e "Lagij,
g 1 .
(2.9) H® = g”A?j = 504*19”815%7 —a 1din?(B).

Given a spacelike hypersurface 3, we can always choose local coordinates
{x% t}, such that ¥ is locally the t = 0 level surface . Given a smooth func-
tion u € C°°(X), we can study the graph of u, i.e., Graph, = {(z*,u(z))}
in local coordinates. So we call this u the height function. By extending u
parallel to V requiring that

(2.10) dyu =0,

Graph,, can be viewed as level surface of (u —¢) = 0. The unit normal of
Graph, isb:

(2.11) N=v(U+T),
where

aDu 1
2.12 U=_—"22% dyve— -
(2.12) 1+ (3, Duy VT R

5See Appendix A for details.
6See Appendix A for details.
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So Graph,, is spacelike if and only if 1 — \U|§ >0, i.e., v is well-defined.
Define the canonical graphical diffeomorphism F' : ¥ — Graph, by F(z) =
(z,u(t)). Then Graph, has a local coordinate system {z: i =1,2,3}. The
coordinate vector frame {9;} on ¥ is passed by F to a local frame

(2.13) ;=0 +u;0r: i=1,2,3,

on Graph,. Now denote M = Graph,. Using this local coordinates, the
restriction y|p of v to Graph,, denoting by gar = (gm)ijda’da?, is given
by

(2.14) (921)ij = gij + By +wify — (o — B*)uiu;.

Then the inverse metric matrix is calculated in Appendix A by Equation

(A.12) as:
2

(93)" = g7 — ' + 25 (5~ al)'(5  aUY
.. 2 . .
=Y + Z5(8 - al)' (8 - aUY.

(2.15)

So the mean curvature H, of the graph M is given by

(2.16) Hy = (9m)7 (Vo N, )5

3. Boost evolution

Fix a 3-manifold (¥, e), which is Euclidean at infinity. Let € = dt? + e be the
reference metric (2.1) on ¥ x R. Given an integer s > 4, and a real number
d > —2, we consider vacuum constraint initial data sets (X, g, k), such that
(9,k) € VC; 5,1 (%). Here boost evolution means that in the spacetime (V,7)
which is evolved by (EVE) taking (X, g, k) as initial data set, where V C ¥ x
R, both the future and past temporal distance y(z)” to the boundary of
V is proportional to the space distance o¢(z) for x € X, i.e., x+(x) > coe(x)
for ¢ > 0. We will extend the boost evolution on R3 in [10] to the case of .

3.1. Reduced Einstein equation and results on compact domain

Let us review the reduction using harmonic gauge initially introduced by
Y. Choquet-Bruhat (see [6]). Using {x% : i = 1,2,3} as local coordinates on

"See [10] for reference.



Mass angular momentum inequality 531

¥, and z* = (2°,2%), with 20 = ¢ as coordinates on V C ¥ x R, the Ricci
curvature can be expressed as®:

1
Rich” = Y + S(3#° Dol + 97 Dal™*),
where T 5 is the Christoffel symbol of v, I'* = 8T 5> and
1
RZV - 5{'7016D04D/3'7w/ — B" (v, D)},

with B* = ng:g‘f\Dpyo‘ﬁDgym, and P is a rational function of v*. In fact,
the EVE Ric, = 0 is a degenerated differential equation system due to its
invariance under diffeomorphic transformations. Harmonic gauge is used to
fix this gauge freedom by Y. Choquet-Bruhat, which means that we can
choose id : (V,7) — (V, €) to be a wave map, i.e., O, o)id = 0%. Denote

(3.1) fr=Tr — 5Tk,

to be the harmonic gauge vector, where fgﬁ is the Christoffel symbol of é.
f* is the difference of two connections, hence a tensor, then the harmonic
gauge condition reduces to f* =0, or:

(3.2) Ozt = —’yo‘ﬂfgﬁ,

where [, is the Laplacian operator of the Lorentzian metric 7, and 0,2/ =
—I'*. Now under harmonic gauge (3.2), the (EVE) (1.3) is reduced to'°

R 1 o
(33) A DaDgy" = B (v, D7) + 5 A R, + 1P RE, )

where R is the curvature of &. The Cauchy data for these equations consist
of:

(3.4) Ve =9, Dpyls=1.

For given initial data set (g,k), we need to construct Cauchy data (¢,)
by requiring f*|y, = (T'* — yaﬁfgﬁ)b = 0. To fix the freedom in choosing a

8See [10, Section 4 ] and [24, Section 10.2].
9See [6, Chapter 6, Section 7.4].
10Gee [6, page 163].
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harmonic gauge, we require the coordinate system of V is Gaussian on X,
which means:

(35) (ZSOO —_ _17 ¢0i —_ 07 ¢l] — gZ]

The condition (T'* — ’yaﬁfgﬁ)]g = 0 requires'!:

(3.6) 0 = —dtrgk, ¢ = _(F; - gkjf\Zj)? P =2g"% gl k.
Define a reference Lorentzian metric by

When the initial data (g —e, k) € Hy5,1(3) x Hy_4 5,.2(X), the Cauchy
data (3.5) and (3.6) satisfy (¢ —7,)) € Hy 5, 1(X) x H,_1 5,3(%). In fact,
by the multiplication Lemma 2.5, (g — e, k) 2 (¢ —7,7) is "a continuous
map Hsﬁ-l—%(z) X Hs—lﬁ-&-%(z) - s,§+%(2) X Hs—l,ﬁ-i—%(z)'

To solve (EVE) (1.3), we can first solve the reduced Equation (3.3)
by quasilinear theory (see [6, Appendix 3] and [10, Section 5]), and then
show that the harmonic gauge is preserved. In fact, Bianchi identity and the
reduced equation (3.3) imply that the harmonic gauge vector f# satisfies a

linear equation'?:

(3.8) O, f*+ A(y,Dv)Df = 0.

So we can use uniqueness of linear equations to show that f* = 0 since we
chose fH|g = 0, and the VCEs (1.4) impliy that 0, f#|s = 0'3.

Now we summarize a local version of the existence and causal uniqueness
theorem based on the interior region i, of (X,e), which has dimension
n = 3. We can extend the interior region Y, to contain the annuli Bog \ Br
of each end E; of (3, e). Now define a causal set (Ving)g,n based on Xy as
follows:

(3.9) (Vint)ox = {(2,1) € Bing X [—0,0] = |z| < 2R — \[¢|,if z € E;},

where 0 € (0,1] and A > 2 is a positive number. Now (Vint)px has a lat-
eral boundary Lg ) = {(z,t) € (Vint)o,x : |z| = 2R — A|t|}. When X is large

HSee [6, page 164].
12Gee [6, page 167] and [10, Section 4].
13See [6, page 167).
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enough depending only on e, Le y=ZLoaN{t =0} (or Ly, =Ly N{t <0})
is spacelike and ingoing (or outgomg) w.r.t. 77, hence ((th)g’ A, 71) is causal'4,

Combining Theorem 7.4, Theorem 8.3 of Chap 6, and Corollary 4.8,
Theorem 4.11, Theorem 4.13 of Appendix 3 in [6], and using a cutoff argu-
ment as in Theorem 3.7, we have the following well-known local existence
and uniqueness theorem,

Theorem 3.1. Given an integer s > 4. For a vacuum constraint data set
(Bint, g, k), with (g — e, k) € Hs(Zint) X Hs—1(Zint), and g > Aoe for some
Ao > 0, there exists 0 >0, A > 2 and Cy > 0 depending only on Ay and
g — el + |kl o, (50)> and a unique regularly sliced"® Lorentzian met-
ric 7y solvmg the reduced EVE (3.3) on (Vint)o,, taking (3.5) and (3.6) as
initial value which is given by (g, k), such that (v — 1) € Hy((Vint)a,»), with
17 = 7l #, (Vine)on) < Cos and Le » (or Ly ) is spacelike and ingoing (or out-
going) w.r. t 7 Furthermore ~ is a solution of (EVE) (1.8) under harmonic
gauge.

3.2. Boost evolution on manifold Euclidean at infinity

We first modify the linear boost theory in [10] to the case based on an
Euclidean end E = R"~!\ Bg. Let us fix a special type of boost regions.
Denote z = (x!,...,2"71) € R*"! such that z = (z,t) € R". Later on, we
will denote the index for t-coordinates as 0, while index for z as ¢ with
i=1,...,n—1. Let 5(z) = (14 |z|*)"/2. For # € (0,1/2], A > 2 and a given
end £ = R""!\ Bp, the boost region Vp,» based on E is defined as:

i
()
Define the function 7 as 7(z) = % Then the level surface of 7 is E; =
{x € Vo : 7(x) =7}. Vp,) has a foliation:

(3.10) Voa={(@.1) € R",

)

<0, |z| > R+ Alt|}.

Vo = Ure(—g,0)Er-
The lateral boundary of Vp ) is defined as,
(3.11) Loy ={(z,t) € Vyr: |Z] = R+ Alt[}.

Denote the upper part of Vp by V(;FA = {(z,t) € Vp» : t >0}, then the
boundary (‘3V9+/\ is constituted by E, Fp and the upper lateral boundary

4See [6, Appendix 3, Definition 2.11].
15See [6, page 397 and page 585].
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L;/\ =L N VGTA' Similarly, we have Vyy = {(Z,t) € Vy,» : t <0} and the
lower lateral boundary L;’)\ =Lp N VaT/\' Clearly Vejf)\ and the slices F-
satisfy the extended cone property in R™ and R™ !, respectively as in Sec-
tion 2.1, and hence satisfy Lemma 2.2.

We introduce a class of hyperbolic metrics on Vj ) using the foliation
{E7}re(—6,9)- The function 7 is in fact a time function on (Vp,x,7), where
n = —dt® + Z?z_ll (dz%)? is the Minkowski metric. Let 7, be the unit future
co-normal of the foliation {E; : 7 € (—0,0)}, given by

. 1 s
3.12 n=NDrt = dt — ——x'dz" |,
(3.12) V1 - 72[z]2072(2) ( o(z) )

where N is the lapse function for the foliation {E,}, defined by: N=2 =

—(Dt,DT1),, = 1=ralo (@) 5 can be viewed as a standard calibration for

o*(2)
the foliation Vj y = UE, which is used to define the “regularity” of hyper-
bolicity. Denoting | - | as the standard Euclidean norm for tensors on Vj, we
have!6:

Definition 3.2. A CY covariant symmetric 2-tensor v** on Vo, is called
reqularly hyperbolic, if there exist positive numbers a, b, and C' such that in
Vo
(1) —y"nun, > a;
(2) for all tangent covectors ¢, of E., i.e., ¥*V(,n, = 0, we have v (,,(, >
bI¢|*:
3) <G
(4) The upper (or lower) lateral boundary LZ/\(or Ly ) is spacelike and
ingoing (or out going) w.r.t. 7, i.e., every timelike curve entering VQJF)\
(or every timelike curve exiting V) is past directed. 7

The coefficient of reqular hyperbolicity of v is defined as,

11
1 —maxd L Lol
(3.13) h ax{a,b,C}

Remark 3.3. Condition (4) implies that this type of Vp ) is a causal subset
based on E w.r.t. 7. Here we briefly talk about the criterion for Condi-
tion (4) to be true. We mainly discuss the case Lj,, and L, , is similar.
The defining function of L* is given by I(Z,t) = At + R — ||, so the nor-
mal co-vector of LT is given by dl = \dt — dr, where 7 = |Z|. Now dl =

16See also [10, Definition 4.1].
17See Definition 2.11 of [6, Appendix 3].
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A(dt — J5dr) + (A5 — Ddr = M1 — 127220 2(2)7 + (A\;7 — Ddr. So
using the regularly hyperbolicity, we have v(dl,dl) < A2(1 — 6%)y(7,7) +
AOX —1)C < —aX?(1 —62%) + OXNON—1) <0, when X is chosen large

enough depending only on a and C, hence depending only on h.

Remark 3.4. The set of regularly hyperbolic metrics on Vj ) is open in
the space C°(Vp.,) of bounded continuous covariant symmetric 2-tensors. In
fact, 1 is regular hyperbolic with a = 1, b= 1 — §? and C = \/n, and Ly » is
space-like and ingoing w.r.t 7 when \ > 2. Since the space-like and ingoing
condition for Lg  is an open condition, there exists a small € > 0, depending
only on 6, A and n, such that any C® covariant symmetric 2-tensor v, with
|y — | <€, is regularly hyperbolic in Vj ».

Now consider a family of linear differential operators of second order in
Vo

(3.14) Lu = ¥3_yay - DFu,

where v and Lu are RV -valued functions on Vo, and ay are matrix valued
functions. The following hypotheses are required for the existence theory:

e Hypothesis (1) (weak coupling and hyperbolicity). ay = vId, i.e.,
(ag)’f’l =" v =0,...,n—1,1,J=1,...,N, where v is a reg-
ularly hyperbolic metric on Vjp .

e Hypothesis (2) (regularity). There exist integers s; and real numbers
Ok, such that: s > 5 +k—1, 0 >2—-k—-5: 0<k<2, and (1)
ap € Hsk,ék (‘/9,)\) for k = 0,1; (2) T—neE H82,62(‘/9,/\)'

Remark 3.5. Now denote

(3.15) s" = mino<p<o{si} + 1,
(3.16) m =y =nlla., ,,ver) + Sheollarlla., 5, ver)s
1
(3.17) ,uJ - ”’Y - "7||H52_1152+1/2(E,V91A) + Z ||ak'||Hsk—1‘6k.+1/2(E)V6,>\)'

k=0

By the restriction Lemma 2.8, u < e¢m. Using the multiplication Lemma 2.2,
the regularity hypothesis (2) implies that

L:Hop15(Voyr) — Hs—1542(Von),

is a continuous map for 1 < s < s and § € R.
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Then we have the existence and uniqueness theorem for linear systems.

Theorem 3.6. Let L be a differential operator defined by (5.14) in Vyx,
satisfying Hypotheses (1) and (2). Let € He_1542(Vo), ¢ € H&H%(E)
and 1 € Hy_y 5.3 s (E), with 2 < s <s', 0 € R. Then the Cauchy problem:

(318) Lu = ﬂv U|E = ¢) DtU’Z = ¢)

has a unique solution w € Hy 5(Vy \), and satisfies the estimates:
(3.19)

ull 7, ,von) < €02 {[|0]l sy® T ] fr B F 18I H, . saven) )

71,5+%(
where ¢ is a continuous increasing function of (6, h,m), and h, m are defined
by Equations (3.13) and (3.16), respectively.

Proof. 1t follows from the energy estimates in Theorem A.8 in Appendix A.2,
and similar approximation argument as in the proof of [8, Theorem 5.1]
and [10, Theorem 4.1]. O

Now we extend the existence theory for the boost problem in [10] to X.
Let €y be the boost region based on ¥ as defined in (2.2). We will construct
a solution to the reduced EVE (3.3) in ©y. We deal with the boost evolution
separately on the interior region i, and on each end FE;. On compact set
Yint, we can use Theorem 3.1. On each end E, we can complete the initial
data (g, k)| to R? and apply the boost theory in [10] to get existence. Then
we can cut off the solution in the causal set based on the end E by our linear
Theorem 3.6. Causal uniqueness (see [6, Appendix 3, Corollary 4.8]) tells us
that the solutions we got based on >, and E;’s match together to a global
solution.

Theorem 3.7. Fors > 4,0 > —2. Given vacuum data (g,k) € VCy 5. 1(¥),
with g > Aoe for some )\0 > 0, there exit 0 € (0,1) and Cy > 0 depending
only on o, |lg —ellm. syt 1Ela, sa (D) and a unique Lorentzian met-

ric vy solving the reduced EVE (8.3) on Qg, which has Cauchy data (¢p,1)
on ¥ given by (g,k) in (3.5) (5.6), such that (v —17) € Hs5(Q), and ||y —
il a, Qo) < Co. Furthermore v is the solution to EVE (1.3) under harmonic

gauge

Proof. We first focus on a fixed end E. In fact, we can extend (g,k)|g to
(g, k) on R3 by a cutting and pasting method, such that (g,k) = (g, k) o
E with g > A\, where A > ¢~ ')\ and ||g — Olla, . . (o) + ||k:||H 5 (R%) <

5+ -1, z)+
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(g el | 2
Theorem 6.1 in [10], there exist C1 > 0 and ¢ € (0,1) depending only on
Aand |§=0|lm , e+ IKllm, Rrs), and a unique solution ¥ to the

) + Ikllm,_, ., (m) for some fixed ¢ > 1. By Lemma 5.1 and

—1,5+g(
reduce EVE (3.3) on Qy, , taking on R3 the Cauchy data (¢, ) given by (g, k)
as in (3.5) and (3.6) where the Christoffel symbol for R? is T'|gs = 0, and
17 = 1l 5(0,) < C1. Here Qp, is the boost region (2.2) when ¥ = R3. Fur-
thermore, 7 is regularly hyperbolic'®, with the coefficient of regularly hyper-
bolicity h; depending only on \ and ||g — Ollm, ., e+ Hl_ﬂ|]H57m+§(R3).

We claim that there exists a A\ > 2 depemding2 only on hp, such ‘that 5 is
regularly hyperbolic on Vj, ,. The first three conditions in Definition 3.2 are
naturally satisfied since 7 is regularly hyperbolic in €y, (see [10, Definition
4.1]). Condition (4) is true if we take take A; large enough depending only
on the regularly hyperbolicity h; of 4 as discussed in Remark 3.3.

Then we claim that 7 is a solution of (EVE) (1.3) in harmonic gauge
inside the causal set Vp, »,. In fact, since (g, k) is a solution of (VCE) (1.4)
on E, the harmonic gauge condition f* = F%L =0 and 0;f* =0 on F are
satisfied by the choice of initial conditions (3.5) and (3.6). Notice that f sat-
isfies a linear equation (3.8), which satisfies the requirement of Theorem 3.6
by the argument in [10, page 293]. Hence the harmonic gauge vector f =0
in Vp, , by the estimate (3.19) in Theorem 3.6, hence ¥ is a solution of EVE
(1.3) on Vp, ,-

Now denote the restriction 4 to Vp, », by 7. We claim that (Vp, x,,7)
is uniquely determined by (g, k)| when ~ is regularly hyperbolic on Vp, y,.
Suppose 1 and 7, are two such solutions of the reduced EVE (3.3) as above
with initial value given by (3.5) and (3.6) from vacuum data (g1, k1) and
(92, k2), respectively. Then [v; — || g, ,(v) are uniformly bounded by the
corresponding norm of (g; — 1, k;). Now subtract the reduced EVE (3.3)
satisfied by v1 and ~vs:

(3.20)

W DaDs(1” —A4") — (D*92) (72 — 1) — (B, Dy1) — B(ye, Dy2)) =0,
where (see [10, Equations (4.4) and (4.5)])
B(71, D) — B(y2, Dy2) = P(m)(D71)? = P(72)(D72)?

= (P(m) — P(2))(Dm)?
+ P(72)(Dy1 + Dy2)(Dy1 — Dy2).

18Here regularly hyperbolicity is given in [10, Definition 4.1], which only requires
the first three conditions in our Definition 3.2.
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Here P is a rational function of 7. Using the multiplication Lemma 2.2,
(Dy1)?%, P(y2)(Dy1 + Dv2) € Hs_1 5:1(V). Using the mean value inequality,
and the Sobolev embedding Lemma 2.2, we have the pointwise estimates:

|P(71) — P(72)| < Cly1 — 72l

where C' depends only on ||v; —nllg, ,v), @ = 1,2. Now viewing equation
(3.20) as a differential equation for (71 — 2), and using the first energy
estimate Lemma A.4 in Appendix A.2, we have

Il =2lm, ,, @ v) < Clln =l @

< C(llgr — g2llm

1,643

ey () T k1 — k2HH075+%(E))'
Hence the uniqueness is true.

Combing all the above, we get a unique regularly hyperbolic solution 7y to
the (EVE) under harmonic gauge in Vj, »,, where 61, A; and ||y — 77||Hs,5(V)19
depend only on A\ and ||g — e”H&H%(E) + ”kHHs_l,Hg(E)‘

Now extend Yy to include the annuli B, \ Br C Ej;, and take the solu-
tion « inside the causal set (Vint)g,,\, based on Xiy by Theorem 3.1. We
can combine it with all the solutions (Vj, x,,7) on each end E;. Now causal
uniqueness (see [6, Appendix 3, Corollary 4.8]) implies that they coincide in
the intersection of (Vint)g, z, and Vp, »,, since (Vint)g,, 2, N Vo, 2, is a causal set
based on Y, N E w.r.t. v by our construction. So by choosing the smallest
0, such that Qp C (Vint)g,xo Ul Va,.0,» We get the conclusion. O

4. Perturbation method

Here we will apply the Inverse Function Theorem (see [5, 20]) to find max-
imal graphs in the spacetime evolution of given AF vacuum data sets with
small trace. Fix a 3-manifold (X, e) which is Euclidean at infinity. We always
assume s € N, s > 4, and § > —2. Consider the vacuum data sets (X, g, k),
with (g, k) € VCS+1’5+%(E). Let (V,~) be the boost evolution of (g, k) given
by Theorem 3.7, then we will study the graph of a given function u in the
spacetime (V, 7). We will take (g, k) as parameters, and study the perturba-
tion problem for the mean curvature H, of this graph. We will show that for
appropriately chosen weighted Sobolev spaces, the linearization of H, with
respect to w is invertible in certain sense.

19The bound for (v — 1) also comes directly by Theorem 3.6.
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4.1. Differentiability of mean curvature operator

Given a vacuum data set (g, k) € VCy, 4 5,1(X), with g > Ae for some A > 0.
By Theorem 3.7, there exists a uniform 6 € (0,1) and a uniform C > 0,
depending only on A and ||g — ey )+ & g (D) and a unique

3+1 (5+

Lorentzian solution v of the reduced EVE (3 3) on (g, taklng (g, k) as initial
data, and ||y — 7| #,,, ,,) < C. Moreover, from the proof of Theorem 3.7,
the regularly hyperbolic coefficient h of v in each boost end Vj, ,, and the
regularly sliced coefficient?® of v in (Vint)g, », are all uniformly bounded by a
constant depending only on A and the norm of (g, k). Hence the determinant
of v*¥ is bounded away from 0 by a constant depending only on A and the
norm of (g, k).
Now let us summarize some properties of the metric components of ~.

Lemma 4.1. For s >3, 6 > —2. Given a (3+ 1) Lorentz metric Y* of
form (2.6) in Qg with (y—0)" € Hys5(Qy), if the determinant det
(7)) < =X for some X > 0, then (y — 7)), lies in HS 5(Q0), and in the met-
ric form (2.5) and (2.6) of v, the components (a2 — 1), (a — 1), 8%, B;, g7 —
e, gij — €ij all lie in Hy 5(Q). Furthermore, their norms are all bounded by
a constant depending only on X\ and 1Y = 7l . 5 00)-

Proof. The inverse matrix v, = det(y*")adj(y*"), where adj(y"") is the
adjoint matrix of y*”. Since det(y*”) is bounded away from 0 by A, the
Banach algebra property (Lemma 2.6) of H,5(£2) implies that ., — 7.
also lies in Hy 5(829), with [|7u — 7uv || 1, ,(02,) Pounded by a constant depend-
ing only on A and ||(y — ;)" &, 5(00)- From the expression (2.5) and (2.6) of
7 and the fact that (y —7)"” (’y M v € Hs5(Qp), we know that (a? — 1),
(& -1), 6, %, (gij — €ij), (gij - % —¢e) € Hg5(Qp) with their norms
bounded by ||(v — )| g, ;(,)- S0 @ is bounded both from below and above
by certain constant. By Taylor’s expansion | — 1| = [{/1 4+ (a2 — 1) — 1)| <
Cla? — 1|, hence is L? integrable. For higher order derivatives of (o — 1),
we can use the multiplication Lemma 2.6 and the bound of (a? —1) to
show that DF(a —1) lies in L, 54/u(Q9)- So (a—1) lies in H; 5(Sp)
and has the norm bounded by a constant depending only on A and ||(y —
M 1, 5(90)- O

So the metric coefficients of out boost solution v satisfy that {(a — 1),
B, Bi,g" — €Y, gi; — eij} € Hsy1,5(82%) with norms bounded by a constant

20See the constant N, A and B in Definition 11.8 on [6, page 397].
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depending only on the elliptic constant A of g and ||g — 6HH5+1,6+%(2) +
15l e, 53 (D) By the Sobolev embedding H,i15(Q%) C C2() for some
0<k<6+ 2, all the terms above are uniformly bounded.

Given s; > 3 and 07 > —2. Let B, be a ball of radius p containing scalar
functions in H 51_,(2) with HuHH 3 () < p. We can choose p small

enough, such that after embedding ||’LL||02 () < Cp < 0/2 for some —1 < Kk <
61 + 1, and,

(4.1) Condition (A): lu(z)| < (0/2)(c(z))" " < (8/2)0(x).

So Graphy, = {(z,u(z)) : x € £} is a submanifold in y. Furthermore,
|Dul. < Cp(o(z))~ Y. As (o —1),3, (g — e) are all uniformly bounded,
we can then choose p small enough so that:

(4.2)

1 1 D 1
Condition (B): |Dul|, < 100" |(3, Du)y| < > Ul =| o Duly

— | < -,
14 (B, Du)gy 2

where U is defined in (2.12). Then Graph,, is spacelike and v = /1 — |U|?
is well-defined. So we can study the operator

(4.3) H:u— Hy,

where H, is the mean curvature of Graph, given by (2.16).
Now we will show that composition is continuous as follows.

Lemma 4.2. Given sy >3, 61 >—2 and 0 € (0,1). Consider B, C
Hg 45, -1(X) with p small enough satisfying Condition (A) as above for
the 0. Then the composition map:

(fau) —>f:f(ar,u(a?)+t),

is a continuous map Hgy 5 () x B, — Hy 5:(9)2), for s'<s1+1 and
0" € R. Furthermore, when restricted to Graph,,

(fsu) = f(z,u(z))
is a continuous map Hy 5(g) x B, — HS/_LE/_,_é(E, Qp/2)-

Proof. Condition (A) (4.1) implies that |u(x)| < (0/2)o(x) ™" for some —1 <
Kk <01+ 1, so we can consider a well-defined map F : Qy — ng, where
F:(z,t) = (z,u(x) + t). Then det(DF) = 1,s0 F'is a diffeomorphism Qp —
F(Qp). Furthermore, (F —id)(z,t) = (0,u(x)) € Hg,4+1,4,(Q). Now we can
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apply Lemma 2.7 to the mapping F, so f — f = f o F is an isomorphism
Hy 5/(Q9) — Hy 5/ (F(Qg)). In fact, by the bound of u, we know that F' ()
contains (g5, so clearly f lies in Hy 5 (£ /2), and we have the continuity
for the first factor f. For the second factor u, we only need to show that
u — f(z,u(x) +t) is continuous Hsl+1,61—§(2) — L3,(Qyo) for fixed f e
Lg, (Qp). Using multiplication Lemma 2.6 recursively to higher derivatives as
in the proof of [10, Theorem 2.3] gives the continuity in Hy 5. Suppose u, —
u in HSIH’JI,%, hence u, — u in CY for some —1 < xk < d; + 1. To show
the Lg, continuity, we can approximate f by compactly supported smooth
function g in L%, then | f(z, un(z) +t) — f(z,u(x) + )| < |f(@, up(z) +t) —
9@, un(2) + )] + lg(z,u(@) +) — flau@) +0)] + |9, unle) +1)
g(x,u(z) +t)]. The first and second terms can be chosen very small in L3,
and the third one converge to 0 in Lg,. So we get the continuity. For the
restriction, we can directly apply the restriction Lemma 2.8 to f . Il

Moreover, we also have the differentiability w.r.t. u.

Lemma 4.3. Given s1>3,61>-2,0¢ (0,1), 8 € Rand f € Hg, 11,5 (Qp).
Consider B, C Hy, 1 5,_1(X) with p chosen to satisfy Condition (A) in (4.1)
for the 0. Then

(1.4) Fiu— f(z,u()),

is continuous Fréchet differentiable as a map B, — H, 1 5, 1(X). Further-
’ 2
more, the Fréchet derivative is given by formal derivatives,

(4.5) D,F(v) = 0cf(z,u(z)) - v,
where v € H81+1’51,%(E).

Proof. Using Lemma 4.2, we know that f(x,u(x) + t) lies in Hy, 11,5 (9/2),
and f(z,u(x)) € Hsl,(;ur%(E,Q@ﬂ). Hence 0, f(w,t) € Hy, 541(2/2) and
Ouf(z,u(z)) € Hy, 1 5+3(¥). To show that F is Fréchet differentiable (see
[5, Definition 1.1.1]), we can first show that it is Gateaux differentiable
(see [5, Definition 1.1.2]), i.e.,

(4.6)

o) + ()~ e u@) -0 @ (@) o),

lim 2 =0,
7—0 @), ., o
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for any v € Hy 15 _1(%). Using Newton-Leibniz formula,
(4.7)

1
flz,u(z) +1v(z)) — flz,u(z)) = </:0 Ocf (z,u(x) + STv(:z:))ds> (tv(x)),

Using the multiplication Lemma (2.3) in the case Hy _q 5, 3(3) X Hy 15 1
(¥) — H, 1 541(%), we only need to show,

timn [0, u(r) + 70(@) = O u(@) i,y =0

This convergence follows from the continuity of (0;f,u) — 0:f(x,u(x)) as a
map Hy, 541(Q9) X Hy 15 1(X) = H, 1 5, 3(X) in Lemma 4.2. Now the
multiplication operator L, : v — O, f(z,u(x)) - v is a bounded linear opera-
tor in L(Hsl+1,61—§(2)> Hsl—1,6/+§(z)) with

| Ll oot (2),H ) < Clocf (@ w@)llu,, .4

s1+1,61— % s1-1,6"+1

by inequality (2.3). The operator L, is also continuous w.r.t u by Lemma 4.2,
so we know that F is Fréchet differentiable by [5, Theorem 1.1.3], and
Dy F(v) = 0 f (x, u(z)) - v. O

Now we can prove the differentiability of H, w.r.t. u.

Proposition 4.4. For s>4, 6 > —2. Given a vacuum data (g,k) €
VC;i1.5+1(X) and the boost ratio 6 as in the beginning of this section. If B, C
HS75,;(22) with p satisfying Conditions (A) and (B) as in (4.1) and (4.2)
for the 6, then the mean curvature operator (4.3) H : B, — Hs—275+§(2) 08
continuously differentiable w.r.t. w, i.e., (D,/H) € C(BP,L(HM_%(E),
Hs—Zé—&—%(E)))' Furthermore, D,H is given by the formal wvariational
formula.

Proof. By the choice of p, H is well-defined. Write out the expression for H,
in (2.16) in local coordinates {(t,x%) : i = 1,2,3} of £y as follows:

(4.8) - )
Hy = (gm)?(Va, N, o)y = v - (9m)" Vo, 1u,0,(U +T), 0; 4 u;0)
=V: (gM)”{(é?Z + u,ﬁt)(U + T)M<6#, (9j + Ujat>«/

+ (U + T)#<v8i+uiatau7 a] + ujat>’)’}
2
=v- (47 + %(ﬁi —aU)(# — alU?){(9; + wid) (U* +TH)

(Vg + wivue) + (U +T) (i g + wil'epg + wilipe + wiwToe) §
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where I', » is the Christoffel symbol for v, and all coefficients of ~ are
evaluated at (z,u(z)). Except for the term v, H,, is an algebraic expression
containing two type of terms in (4.8). One type of terms are the composition
of the coefficients of (y —7) and 0y with (z,u(z)), and the other terms
contains Ju and 0?u. The only term appears in the denominator is 1 +
(B,Du)g, and |(B, Du)y| < 3 by the choice of p as in Condition (B).

Since (v — 1) € Hgy1,6(29), the composition of the metric coefficients of
(7'_ ﬁ) with (LL‘, U(ZL‘)), i'e'? {(’YWJ - 77/“’)’ (’Y,LW - ﬁ,tw)v (Oé - 1)761361'3 (g” -
e7),(gij — eij) H(x,u(z)) are continuously differentiable w.r.t. v as maps
H&(;_é(E) — 8_2754%(2) by Lemma 4.3. Similarly the composition of the
coefficients of 0y with (z,u(x)), i.e., (07)(x,u(z)) are also continuously dif-
ferentiable w.r.t. u as maps HS75,%(E) — S,Q’M%(E). The terms Ju and
0?u are trivially continuous differentiable w.r.t. u as maps Hi s 1(¥) —
Hs—1,5+§(2) and Hsﬁ_%(Z) — 8—2,6+§(E)v respectively. Hence U =

% € Hy,_y 5.1(X) and is continuously differentiable w.r.t. u, hence
’ |U‘2 2

is V2 —1= 1—|7U|2
that for a in Lemma 4.1, (v — 1) is also continuous differentiable w.r.t. u as
Hg 5 1(X) — Hy_55,2(%). Combing all them together, H, is continuously

€ Hs—1,5+%(2)7 since |U| < % So by similar argument as

differentiable w.r.t. u by the multiplication Lemma 2.6. O

4.2. Linear theory

Given a 3-dimensional manifold (X, e) which is Euclidean at infinity. Let
us give some results about linear elliptic operators which are asymptotic to
the Laplacian A, on (X, e). Such type of elliptic operators have been widely
studied in [2, 7, 10, 19].

Let L be an operator on (X, ¢) of the form:

Lu = %2_,a,0%u,
with 4 and Lu functions on X, satisfying:

Xe < as < A\ le as metrics, with X the elliptic coefficient;

(4.9)
(a2 —€) € Hgy11,6,(X), a1 € Hy, 5,41(2), a0 € Hsy—1,5,+2(2),
where sg > 4, §y > —%. We will show that in certain weighted spaces, such
L has uniformly bounded inverse on the orthogonal complement of ker(L)
depending only on the norms of the coefficients. First we have,
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Lemma 4.5. Let sg,d9 be as in (4.9). Given s < sg, —% << —%. There
exist a constant C and o large v > R, depending only on sqg, oy, the elliptic
coefficient N and the norms |ag — e||HSO150(E), Ha1||H5071‘50+1(2) and
||a0||H3072150+2(2), such that for any v € Hy5_1(X%),

(4.10) lull i, 5oy z) < C([Lul

(Zint,Zr) ) ?

H, 3541(%)

where Lin 2r s the union of i with all the annuli Ba, \ Br inside each
end ¥;, and Hy_o is the standard L? Sobolev space on Yint,2r -

Proof. Let ¥ = Xt Uﬁzl E;. Given a function y € C*®°(R?\ By), such that
0<x<1, xy=1onR*\ By and x =0 near dB;. We can find a partition
of unity {x;,}\_o of ¥ for 7 > R, with x;.(z) = x(z/r) for z € E; 2R3\
Bpg, and x;(z) =0 for x € X\ E;, and xo,(z) = 1 — XL x;»(7). Then u =
Zézluw, with u; , = x;ru. Let us fix an end E; and u;, and forget the sub-
index i now. Since —% <0< —% corresponds to non-exceptional value in [2],
we can apply [2, Theorem 1.7] with p = 2 here,

||’LL7«| H, 5-1(R3) < ClHAUH H. 3541(R3)

< Cl{”Lu'f'HHgfzyﬂl(E) + ”(L - A)’U’T”Hsfz,JJA(E)}7

where A is the Laplacian operator w.r.t. 4;; and C; a uniform constant.

(4.11)

|l nm) < e Luillr, () + 11205 0100
(4.12) + (a3 0*xr + a10x)ullm, 5.0 (m)
< Go(r)( Lulla 1(40)s
with A, = Ba, \ By, and Ca(r) is a constant depending only on 7 and ||az —

ellm., 5 A llaillm,, - oo (A0): Since dg > —3, there exists some € > 0, such
that §; = (50 —e> —3 Usmg the multlphcamon Lemma 2.5,

s—2,54+1(FE

(4.13)
(L — A)UTHH a4l = ”( 5”)82%“ + alaur + aOUTHH _as541(Er)
< C3(llaz = ellu, ,, &) + larlla. ., .0 0m)
+ [|ao] H5,2,51+2(Er)) wr e, 5y ()5

where E, =R3\ B, and C3 a uniform constant. Now |ag — ellm, s (&)t
latll a0 + laoll e, s s, o) < (la2 = ella, ;&) + laalla, s +
HGOHsz,aOH(EP)) —¢ for r large enough. So we can always choose a r > R,
depending only on §y and (||a2 — e\|H5750(ET) + ||a1HH5,1,50+1(ET) +
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laoller, s s ,0(2,)), such that [[(L—D)urllm, .. 5) < g lurlla., ez
Putting them back to inequality (4.11), we get

(414)

Hosa(®) < Ol Lullg, o) + vl an )

where Cy depends only on Cy(r). Using an interpolation inequality (see [7,
Lemma 2.2]) to |lul g, ,(a,), Wwe can get the estimate of (4.10) on each end.

Applying the standard L? estimates to Up,r ON Ying2r (see [6, page 547,
Corollary 2.2]),

(415) HU’OJ‘HHS(th,Qr) < C5{HL/LL077"HHS—Z(Eint,2T') + HU’O,"'HH572(Eint,27~)}7

where C5 depends only on sg, the elliptic coefficient A and the norms [jas —
el i, (Siman)s N0l E, (S ) @0 (@0l F, (5, »,)- Combing results on all ends
E;, and i 2 together, we can get (4.10) with r and constant C satisfying
the requirement. O

Now we can prove a lemma similar to [2, Theorem 1.10] and [19, Theorem
5.6].

Lemma 4.6. Let sg,00 be as in (4.9). Given s < sg, —% <i< —%, the
operator L is a Fredholm operator:

Hy5 1(X) = He—2511(%),

i.e., L has finite-dimensional kernel ker(L,0 —1)={ve Hs5_1(%):
Lv = 0}, and finite-dimensional co-kernel coker(L,0 —1).

Proof. From the multiplication Lemma 2.5, we know that L is a bounded
linear map Hys5_1(X) — Hs_2541(X). Standard argument using inequality
(4.10) as in [2, Theorem 1.10] shows that the null space N(L) is finite-
dimensional and L has closed range. So L is semi-Fredholm.

To show that L has finite-dimensional co-kernel, we will borrow the
techniques in [19, Theorem 5.6]. First, inequality (4.13) shows that the
operator norm of (L —A): Hys5_1(Er) — Hs_2541(Er) is o(1) as r — oo.
So for large enough r, the fact that A is Fredholm by [2, Theorem 1.7]
and that the Fredholm property is open w.r.t operator norms [16, Proposi-
tion 16.35] show that L; = A + x;,(L — A) is Fredholm on R3, where clearly
L; = L on Ey,. By [16, Theorem 16.32] there exists a bounded linear operator
S; : H372’§+1(R3) — HS75,1(R3), such that L;S; = id + K; with K; a com-
pact operator. Now L : Hy 5_1(Zint,8r) — Hs—2,5+1(Zint,8r) is Fredholm since
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Yint,8r is compact, so there exists a Fredholm inverse Sy : Hs_2 541 (Zint,8r) —
Hg 5-1(Zint 8r), such that LSy = id + Ky, for Ky compact operator. Define

(4.16) Su = X0,4rSouo,sr + Tty Xi,2r Sitliyr,

which is a bounded linear operator H_25+1(2X) — Hs5-1(X). Then a cal-
culation as in [19, (5.6.5)] shows that LS = id + K, where K is a compact
operator. Hence L has finite-dimensional co-kernel. O

The Fredholm index of L is defined to be:
i(L,0 — 1) =dim ker(L,0 — 1) — dim coker(L,0 — 1).

By comparing the index of L to that of the Laplacian A, of e, we can show
that L is surjective when ag < 0.

Lemma 4.7. Let so,0p be as in (4.9). Given s < sq, —% << —%. Sup-
pose ag < 0, then L is surjective. Furthermore, dim ker(L,6 —1) = ds_1 =
dim ker(e,d —1). If we denote ker(L,5 — 1)+ to be the orthogonal com-
plement of ker(L,8 — 1) w.r.t the L}_, inner product (-, 1z (x) as in Def-
inition 2.3, then:

L: ker(L,6 — l)J‘ — Hy_9541(%),
s an isomorphism.

Proof. Since L can be joined continuously to A, by Ly = tL + (1 — t) A\, we
know i(L,d — 1) = i(Ae,d — 1). [19, Theorem 6.2] says that A, is surjective
when § —1 < —%. In order to show that L is surjective, or equivalently
dim coker(L,d —1) =0, we only need to show that dim ker(L,0 —1) <
dim ker(Ae,0 —1). This comes from the asymptotical expansion given in
[2] as follows. For u € ker(L,d — 1), by [2, Theorem 1.17], Lu = 0 implies
that on each end FE;, there exists a harmonic homogenous function hj of
order k < k(6 — 1), where k(6) = max{k € Z: k< —(6 + 3)}21, such that
u=hy+o(r*=F) for 0 < B <5+ 3. In our case, k(6 —1) =0. In fact, if
u # 0, there must exist at least one end, on which k£ > 0. Or the decay
implies that u = o(1) at infinity on 3, so u = 0 by maximum principle since
ag < 0. So dim ker(L,§ — 1) is less or equal than the the number of linearly
independent harmonic polynomials of order < k(§ — 1) multiplied with the

21See the definition for k(§) in [2, Equation (1.21)]. Their § is the same as
—(6+ 2) here.
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number of ends. It is easy to see that the basis of ker(A.,d — 1) just consists
of functions which have main part as the harmonic polynomial of oder <
k(6 — 1) on one end, and O(1/r) parts in other ends. So the leading terms
shows that dim ker(L,6 — 1) < dim ker(A¢,d —1). The isomorphism on
the orthogonal complement follows from the fact that L is bijective. O

In fact, we can show a uniform norm bound for the inverse of L on

ker(L,5 — 1)*.

Lemma 4.8. Let 50,09 be as in (4.9). Given s < s, —% <0< —%. Sup-
pose ag < 0. Denote the inverse of L : ker(L,6 — 1)t — Hs_5511(3) by L™,
then there exists a constant C' depending only on sq, dg, the elliptic coefficient
A and the norms |las — €]

Hoginsy(2)r 011HL, 500 and [laollm,, . 5, .008)

such that for any v € Hy_9541(2),

(4.17) | L |

Hs,éfl(z) S CHU| H‘,‘72,5+1(2)'

Proof. We only need to show that for any u € ker(L,5 — 1)+,

||U’ H. 5-1(%) < ClHLuHsz&H(E)

for a uniform constant C; depending only on sq, dp, the elliptic coefficient
A, and the norms ||a2 - €||HSU+1,50(E)7 HCLIHHSO‘%_H(E)v and ||a0”H50—1,50+2(E)‘
By contradiction argument, suppose that the statement is wrong, which
means that there exists a sequence of operators L; with a; o < 0, uniformly
bounded elliptic coefficient A\; > A\¢g > 0 and uniformly bounded coefficients
lai2 = ellm,, s, @it lm., 5002 1000l HL, 1 s sa() < Co, and a sequence
of  functions  w; € ker(L;,6 — 1)+,  such  that will e, 5 (x) =
il Livill g, _, 5., (5)- By re-normalizing, we get a sequence of functions u;, with
luillfr, ,_ () = 1, while || Liui||lg,_, ,.,(s) — 0. By weak compactness, there
exists a subsequence, which we still denote by L;, such that the coefficients of
L; converges weakly to that of a linear operator Lo, with Age < a2 < /\ale,
too,0 <0 and Jlace2 —€llm, 14 (2)5 001l s5010(2) 18000l Hy 1500202 <
Cp. Using inequality (4.10), there is a uniform constant Cs,

(4.18)
s = il .,y < Call s =l )+ i = sl )
< Co||Liwillm, , 50y (x) + I1(Li — Ly)uy)|

+ 1 Ljusll g yr(s) + i — g

H,_55+1(%)
Hoo(Siear))-

Now I(Li = Lj)ujlla, syincm) < Clllazi — azjlla, o) + lar —
a17j||Hso—1,6/(E) =+ ||a0,,- — aoijHso—2,é/+1(E)) for some (50 >4 > —% by the
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multiplication Lemma 2.6. The compact embedding ([7, Lemma 2.1]) of
Hso+1—k,6o—1+k(2) C Hso_k,(;,_Hk(E) for k=0,1,2 imply that
I(Li — Lj)ujlla, .. (x) — O for a subsequence of {L;}. Together with the
compactness of Hy 5_1(X) C Hs—2(Xint,2r), there exists a subsequence, which
we still denote by wu;, such that wu; converge strongly in Hss_1(X) to a
function Uy, with |luscl| g, , ,(x)=1. Furthermore we have that Loote, = 0
weakly by the weak convergence, and hence strongly in Hs_9 541(X) by ellip-
tic regularity.

By Lemma 4.7, we know that dimker(L;,0 — 1) = ds_1. We claim that
ker(L;,0 — 1) converge to a ds_i-dimensional linear subspace of ker(Leoo,
9 —1). Let {UW}Z‘; be an L% | orthonormal basis for ker(L;, 6 — 1), with
|viallf, , . (x) = 1. By equation (4.18),

H,s5_1(%) < C(H(Ll - Lj)Ujﬂ H, _5511(%)

+ Hviﬂ - ’UjuaHHs—Z(Eint,Zr')).

[via = vjal

Similar argument as above implies that a subsequence of v;, converge
strongly in Hgs5_1(X) to some vsoq. Hence vooq € ker(Log,d — 1), and
{Vs0.a Zi‘f are also orthogonal in L?;_l with ””oo,aHHs,a,l(E) = 1. Since Lo
satisfies all the requirement of Lemma 4.7, dimker(Leo,d — 1) = ds_1. Hence
the limit of ker(L;,d — 1) is exactly the entire ker(Loo,d — 1). As w; is per-
pendicular to ker(L;,d — 1) in L ,, passing to the limit, we know that us
is perpendicular to ker(Loo,d — 1) in L§—1 too, which is a contradiction to

that [|uocllfr, , () = 1 and LeoUso = 0. So we finish the proof. O

4.3. Existence of maximal data

Now let us calculate the linearization of H with respect to u at (g,k,0).
Fix a vacuum data (g,k) € VCy 9 5,1(¥) with the unique boost solution
(V,~) given by Theorem 3.7. Recall the form (2.5) of v in local coordinates
(x%,t) of Qy. According to the initial data equations (3.5) and (3.6) for v,
the coefficients restricted to t = 0 slice are given by:

(419) Oé|2 = 1; ﬁ|2 =0.

In fact, our choice of aly and f|y, implies that d¢|x is the unit normal of
Y. Now recall the second variational formula for the mean curvature in [1,
Section 2]. Let X be a vector field in a neighborhood of ¥ with associated
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flow ¢5 : V — V. Denote H(s) by the mean curvature of ¢4(X), then

(4.20)
Bs(H(s))]s=0 = —=LDg(X, N) + (X, N)(|k[; + Ric, (N, N)) + (X, V H),

where N is the unit normal of 3 insider V, and Ric, the Ricci curvature
of v. In our case, Ricy =0 by (1.3) since our (V,7) is vacuum, and the
unit normal N = 0; on Y. We can choose the vector field to be X = v,
where v is a compactly supported smooth scalar function, so (X, V,H) = 0.
Then 0sH (s)|s=o is the linearization of H w.r.t u, and (X, N) = —v. Now
combining all and using Proposition 4.4, we have,

Lemma 4.9. Using notations in Proposition 4.4, the Fréchet derivative of
H(g, k,u) with respect to the factor u at a vacuum data (g,k,0) is a linear
operator Lo : Hy s 1(X) — H,_55,3(%) given by:

Y Ty

(4.21) (DuH) (g0 = Lov = (Dg — \k|§)v.

Now let us focus on the operator Lg. Lg is in fact Fredholm and sur-
jective by Lemmas 4.6 and 4.7. By making use the fact that Ly has finite-
dimensional kernel and is surjective, we can get the existence of solutions
of H(g,k,u) =0 for (g, k) with small trace tryk by a perturbation method,
but no uniqueness due to the existence of non-trivial kernel ker(Lg,d — %)
We will give an existence and uniqueness theorem in the orthogonal com-
plement of the kernel in order to find symmetry preserving solutions in the
following section. Let us first give a Quantitative Inverse Function Theorem
motivated by [20].

Theorem 4.10. Let X, Y be Banach spaces, and U C X an open set.
Suppose F : U — Y is a continuous map, and has Fréchet derivative w.r.t.
x, such that ?TI; is continuous. For a point xy € U, with F(x9) = yo. Suppose
%—I;(xo) : X =Y is invertible, and || [%—I;(xo)]_lﬂ < C. Assume that we can
find ro > 0, such that for any x € B,,(x¢) C U,

OF OF 1
. —(z) — — < .
(4.22) 152 @) = S (o)l < 5
Then for any y € Y with
70
ly — yoly < Yok

there exists a unique x € By (x¢), such that F(x) = y.
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Proof. Fixay € B, /5c(yo) C Y. Let us consider the map 7" : B,,(0) C X —
X, defined by

~1
T(x) =2 — [gi(ﬂto)} (F(zo +2)—y).

x is a fixed point if and only if F(xzo+ x) =y. So let us use the Banach
Fixed Point Theorem to find a fixed point for T in B, (0). First, for any
T1,T2 S BT‘O(O)a

T (1) — T'(z2)|x

-1
~ (1= a0)~ |G e0)| - (Flao+0) ~ Flao +22)x
@23) <N )] 7 I (o) — 22) — (w0 + B — w2y
< cuaiwo) - gi;m + )] lo1 — ol

< C—\a:l —xo|lx < = ]JJ1 — alx,

where we used the mean value theorem to estimate (F'(zo+ z1) — F(zo +
x2)) in the first “ <7, and condition (4.22) in the third “<”. So T is a
contraction map on By, (0). Next, for any = € B, (0), and |y — yoly < &,

(4.24)
T(@))x
-1
<[ Getan)| 115 o)e = (Plao-+) = Flao) - s - Flan)ly
<0 (1(Geten) - Gt ) alx +1y - Flao)ly )

< 0 (1550 - 5+ Dol + 1y~ Flaoll

< C(%,TO+ 20) =To,

where we use condition (4.22) in the last “ < ”. So T' maps B,,(0) to B,,(0).
By applying the Banach Fixed Point Theorem (or Contraction Mapping
Theorem) to T : By, (0) — By, (0), we finish the proof. O



Mass angular momentum inequality 551

Remark 4.11. This can be viewed as a careful reworking of the proof
of [5, Theorem 1.2.1]. Theorem 3.1 and Theorem 3.2 in [20] also gave a
proof about the quantitative inverse function theorem.

Theorem 4.12. Fors >4, -2 < § < —1. Fiz a 3-manifold (X, e) which is
Euclidean at infinity and a A>0. Given a vacuum data (g, k) EVCy 9 5.1(2),
with g > e, there exist € > 0 and p’ > 0 small enough, depending only on the
norms |lg — €HHS+21H%(Z) + ’|k||Hs+1,5+g(E) and the elliptic constant X\, such
that if Htrngsz,H%(E) < e, there exists a unique function u € ker(Lo,d —

Dt with |lullg () < ¢, such that u is a solution of the maximal surface
5,077

equation (1.9).

Proof. For the given (g,k) € VCy 9 5.1(¥) with 6 the boost ratio, we can
choose a p-ball B, C HS75_%(E), with p small enough depending only on 6,
lg — el + [I%|
H is continuously differentiable w.r.t. u as a map B, N ker(Lg,d — %)l —
H,_5,3(%), and the Fréchet derivative is (DyH) g 1,0)= Lov=(Lg — |k|§)v
by Lemma 4.9. The coefficient of Ly satisfies the hypothesis (4.9), where
sop=s+1land dy =06+ % by the multiplication Lemma 2.5, the elliptic con-
stant equals to A and [lao2 —ellu ., \ ) llaolla,,, . g5 laoolla, ,, ;)
are bounded from above by a constant depending only on ||g — e||

and k[,

<+1,5+g(2)
H, 55.3(%) by Lemma 4.7, since a0 = —|k|2 < 0. Now we will show that

and A\ as in Proposition 4.4. Then the map

Hs+2,5+% Hs+1,5+%

s+2,6+%(2)

- So (DyH)(gk,0) is an isomorphism ker(Lo,d — Ht—

the conditions in the Quantitative Inverse Function Theorem 4.10 are sat-
isfied. By Lemma 4.8, there exists a constant Cy depending only on A,

llao2 — ey ) llao () ”aOvO”HS,Hg(E)v such that,

H

s+2,6+% s+1.543

Loz ar (%), ker(Lo,s—1)+) < Co-

s—2,6+3
Abbreviate the operator norm || - ”L(Hs,é—%(E)7Hs—2,5+%(2)) =|| - ||. Let us study
|DwH (g, k,u) — DyH(g, k,0)||. Fix the boost evolution (g, ) of (g, k), with
17 = 7l i, .. 5 () uniformly bounded by a constant depending only on A and
lg—elle, ,, .o T Ella,, , ) Then DyH(g,k, u) is the first variation

D,(H,) of H, w.r.t. u inside (€y,~). From the formula of H, in (4.8), we
know that D, (H,) is a second order differential operator. The coefficients of
D, (H,) are constituted by algebraic expressions of du, 9?u and components
of 7, 97, 9%y evaluated at (z,u(z)). Let a be any component of 9%y (similar
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for v and 0), using the Newton-Leibniz formula,

a(z,u(z)) — alz, 0) (/ dya(z, Tul ))m) u(z),

where Oa(r,u(r)) has uniform H,_, +1 7(¥) norm depending only on
0%, o2 2 p by Lemma 4.2, [a(ar u(x)) — a(@. 0)l, ;) <
Cslullw, , , () by the multiplication Lemma 2.6, where C3 depends only on

17 = 7l i, ,..5(0,) and p. Hence by comparing the coefficients of D, H(g, k,u)
with D, H(g, k,0), we can choose [lul|p 5y (D) < p' with p’ small enough,

depending only on ||y — 7 #,,, ,(0,) and C’o, such that,

1
(4.25) 1DuH(g, k;u) — DuH(g, k, 0)|| < =~
2Co’

For the p’ chosen above, if we take € < 2’)—(;0, then

/

1%
< .
572,5+%(E) 200

10 = H(g,k,0)|lu, ) = troklla

—2,6+3

Now by the Quantitative Inverse Function Theorem 4.10, if we choose the

e and p’ as above, where € and p’ depend only on A\, ||g — €|y sy () and
s+2,6+5

”kHHs+1,5+g(E)’ there exists a unique u € B, Nker(Lo,d — 3)*, such that u

solves H(u) = 0. O

4.4. Proof of the main theorem

Here we will study the properties of the maximal graph gotten above. We will
improve the regularity of the solution using a bootstrap argument, and show
that the ADM mass of the maximal graph is the same as that of the given
data. Moreover the maximal graph is axisymmetric if (g, k) is axisymmetric,
and the angular momentum of the maximal graph is the same as that of
(9, k).

In Theorem 4.12, the solution w has only s weak derivatives due to the
Contraction Mapping Principle. In fact, by exploring the structure of the
mean curvature operator (4.8), we can gain more regularity for .
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Lemma 4.13 (Regularity analysis). In Theorem /.12, the solution u €
Hg o5 1(%). Denote M = Graphy, and let gns be the metric and kyy the sec-
ond fqudamental form induced by the embedding M C (V,v), then
(901, k) € VCiiy 541 (2).

Proof. In the local coordinates formula (4.8), we can collect together all the
terms containing 8i2ju, then the maximal surface equation H(u) =0 can be
rewritten as a linear second order elliptic equation for v with Ju and u terms
as coefficients:
(9" (2, u(x))uij = f(),

where f(x) is a polynomial of g™ (z,u(x)), Ou, y(z,u(x)) and (07)(z, u(x)).
First the spacelike property of M = Graph, implies that (¢™)¥ is elliptic.
Furthermore, (¢™)¥ (z, u(z)) — e¥ (z) = 497 — eV + Z—i(ﬁ’ —aU% (B — aU7)
€H, y5.1(%), f(z) € Hy_y 5,3(%) by the argument in the proof of Propo-
sition 4.4,2 Lemma 4.2, and the Banach algebra property in Lemma 2.6.
Since (¢M)¥ lie in C° and H,_; locally, u € (Hg11)10¢(X) by standard ellip-
tic regularity theory [18]. Furthermore, the linear operator Lu = (g™ )4 8z-2ju
satisfies the hypothesis of the weighted elliptic regularity [7, Theorem 6.1]
since s > 4, hence u € Hy 5 1(¥) by [7, Theorem 6.1]. Now we can boot-
strap this process. In fact, by the composition Lemma 4.2, the right-hand
side f(r) lies in at most H, s, 3(X) since there are dy(w,u(r)) terms. So
bootstrap ends when u € HS+2752_%(E).

On the graph M, (gar)ij = (gij + Biuj + Bju; — (@ — 5%)uu;) (z, u(z))
by (2.14),

(kar)ij = v - {05 + wide) (U" +T) - (Vs + ujyut)

(4.26)
+ (U +T")(Cipj + wil'tpj + uilipe + witjToe) §,

by formula (4.8). So by the proof of Proposition 4.4, ((gar)ij — e€ij) €
Hgy1541(35) and (knr)ij € Hy 55 (5). O

In order to define the ADM mass and linear momentum, we need to
assume —% < 6 < —1, then by the embedding Lemma 2.5, (gp —e€) €
C:71(¥) and ky € Czﬁ(Z) for some 3 < x < 1, which satisfy the condi-
tions (1.5). Similar conditions are also satisfied by (g — e, k). We can defined

the ADM mass m, mys for (g,k) and (gar, kar), respectively.
Lemma 4.14. For —% < 6§ < —1, in Theorem 4.12, m = myy.

Proof. We will use the multiplication Lemma 2.5 frequently when we mul-
tiply two Sobolev functions. Now (gar)ij(x) — gij(z, u(z)) = (Biuj + Bjui —
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(a? = B?)usu)(x,u(z)) by (2.14). B(z,u(z)) € Hyyy 541 1(X) and OJu €
Hypy 541 (3) imply (ga0)i5(2) — g3 (@, u(®)) € Hop1501(3).

g ua) - 1) = { / Ougs o suta)ds | - ula).

which shows {gi;(z,u(x)) — gij(x)} € Hey1,5+1(2), since 0,gi;(x, su(x)) €
Hypspx(E) and  we Hypp o(S). Hence  {(gar)i(e) — gi(x)} €
Hgi1541(8) C C57H(X), for some 1 < k < § + 3 by the embedding Lemma
2.5. By checking the definition (1.6), we know that a error term of decay
rate o(r~!) will not change the mass, so m = mj;. O

Now we will study the preservation of symmetry by this construction.
We need a lemma about symmetry preserving by the reduced EVE (3.3).

Lemma 4.15. Given a vacuum data (g,k) € VCyyo5.1(X), and (Qp,7)
the boost evolution of (g, k) given by Theorem 3.7. Suppoze that both (g, k)
and e are symmetric under a Killing vector field £ on X, i.e., (g,k) satisfy
(1.7), and Lee = 0, where e is the canonical metric on ¥. Then the parallel
translation € of & into Qy is a Killing vector field of ~.

Proof. Now let ¢4 : X2 — X be the one parameter group of diffeomorphisms
corresponding to . Then (¢s)*g = g, (¢s)*k = k and (¢s)*e = e. Now let us
extend ¢s to a diffeomorphism ¢g : Q9 — Qg by

(4'27) és(aj’t) = (¢s(x)vt)'

Then (¢s)*¢ = & where € is defined by (2.1). By the initial conditions (3.5)
and (3.6) for v, we know that v, = (g?)s)*y has the same initial conditions
as those of v on . If we can show that -, also solves the reduced (EVE)
(3.3), the uniqueness in Theorem 3.7 implies that vs = 7. Since ~s is Ricci
flat, we only need to show that (€p,s) is also in a harmonic gauge, or
equivalently, id : (Q¢,7s) — (g, €) is a wave map. By pulling back the wave
map equation U, zid = 0 by ¢, we get D(( o) ,(B)" )zd 0, which reduces
to U, &¢d = 0. This means that s is also in a harmonic gauge, hence 75 =
~. Now the vector field corresponding to ¢, is clearly the parallel translation
of £ into (2. O

Now we can prove the preservation of symmetry for the maximal surface.
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Theorem 4.16. Givens >4, —2 < 6 < —1. Suppose (3, e) is a 3-manifold,
which is Euclidean at infinity and axisymmetric in the sense of Defini-

tion 1.3. If (g, k) € VC3 5 5, 1(X) is azisymmetric, and |[trgk|| g

with € given by Theorem 4.12, then the solution u of the maximal surface
equation (1.9) given in Theorem 4.12 is axisymmetric, i.e., Opu = 0. Hence
(2, gu, k) is axisymmetric, and the angular momentum of (gu,ky) equals
that of (g,k).

n) S €

72,5+%(

Proof. By Theorem 4.12, H(g,k,u) =0 has a unique solution u € B, N
ker(Lg, 0 — %)J— Let ¢s be the diffeomorphism corresponding to the Killing
vector field £ = % in Definition 1.3, and ¢, the extension given in (4.27).
When (g, k) is also axisymmetric, the boost solution ({y,7) is invariant
under ¢, by Lemma 4.15. Now pulling back H(g,k,u) = 0 by ¢, we can
see that ¢}u is a solution of H(¢kg, dik, piu) = 0, hence H(g, k, piu) = 0.
Since (%, e) and (g, k) are all invariant under ¢, ker(Lo,§ — %) and hence

ker(Lo, — %) are also invariant under ¢, which means that (¢s)*u € By N

ker(Lo,d — 3)*, then uniqueness in Theorem 4.12 implies that (¢s)*u = u.
So u is axisymmetric, hence is (gy, k) since 7 is also axisymmetric.

For the angular momentum, we have another formula, which is called
Komar integral (for angular momentum) (see [24, Section 11.2] for definition
and equivalence with (1.8)),

(4.28) J(S) = 16% /5 wde,

where * is the Hodge star operator w.r.t. 7, and & the killing vector field.
Since *d¢ is a closed form, we know that J(S) is invariant for any two
spacelike close surface S and S’ which are homologous to each other. To
show that (X, g, k) and (Graph,, gy, k,) have the same angular momentum,
we can take a coordinate two surface Sp = OBR(0) inside ¥ (recall that
¥ ~ R3\ {0}), then the angular momentum of ¥ is J(Sp). As the boost
evolution spacetime € is a subset of ¥ x R, let S, be the intersection of
the cylinder Sp x R with Graph, inside (£2,7), then Sj is a smooth two
surface when R is large enough. Clearly S| is homologous to Sy, hence
J(Sy) = J(So). The angular momentum of (Graphy, gy, ky) is J(S;) which
equals that of (3, g, k). d

Acknowledgments

The author would like to express his gratitude to his advisor Professor
Richard Schoen for all of his helpful guidance and constant encouragement.



556 Xin Zhou

He would like to thank Professor Rafe Mazzeo and Professor Leon Simon for
lots of useful talks. He would also like to thank his friend Pin Yu for talking
a lot about the hyperbolic equations. Finally, the author thanks the referee
for comments.

A. Appendix
A.1. Geometry of hypersurface

Here we show the detailed calculation of the mean curvature of a level sur-
face. Part of the results here already appeared in [1]. First let us calculate
the future-directed timelike unit normal vector of ¥; defined by T = —%,
which is given by:

(A1) T = —aVt=—a(y"d, ++"9;) = a (8 — B).

Graph,, can be viewed as the level surface of (u —¢) = 0, so the unit normal

of Graph, is N = \ng igl Now

Vi = yPu;0, + 90 = — (B, Du)d; + Du — — (8, Du)3id,
(A.2) X a a
= a(ﬁ, Du)T + Du.

So N is calculated as

1

V(u—t)= <5, Du)dy; + Du — 7<5, Du)3'8; +— [5”8
(A.3) = Du + M(& 3)
= a Y1+ (3, Du)) (HOEQDZM) + T) .

Writing U = 1+C<Yéj,%u>’ then N = %, where |U +T| = (1 —|U[>)Y2, so
we get (2.11).

Denoting M = Graph,, let us calculate the mean curvature. For com-
pleteness we give the inverse metric matrix (gas)~" of g in (2.14). First
we need to calculate the co-frame of (2.13). Denoting them by of = aldz* +

aldt : i,k =1,2,3, then they should satisfy:

(A4) (o) =0k, o'(N)=0.
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The last equation gives

(A.5)
2
(abda® 4 aldt)[a(U + T)] = (aldz® + aldt) <1+a<51)1;>u> + (0 — 5))
i a’u” k i _
:ak<1—|—<ﬂ7Du> —B ) +a‘t_0'

So

A6 P = i(ﬁ o Du >k— L(8 =)

(A.6) a; = aj, ~ 1% (3.Du) = aj, al)".

Putting into the first one in (A.4), we have
(A7) (abda® + ai(B' — aU)dt) (O + urds) = ai. + al (8 — aU'Yuy, = 4t

Denoting matrix A = (a}), then the above equations change to the matrix
equation

(A.8) A-[id+ (8 — aU)(Du)'] = id.
Solving the last matrix equation??, we get
(A.9) ' ' . ‘
i = Id— (8" — aU")ug 4 (6" — aU")uy,
’ 1+ (8~ aU, Du) 1+ (8, Du) — (1+ (3, Du))|U]?
— Id— 2 (8" —a — Id— 2 Ry
d—v 1 (3. Du) d—v*(B/a—U)"Us,
where we have used U = #D’;)u), and v=2 = 1 — |U|?. Then

; . . i — aUYu
(A.10) aj = ap(B — al)* = (5,; - I/2W> (B — aU")

a2 _rri 203 rTiNTTI2
=03 —v T (3. Du) aU' +v*(B' — aU")|U]|
_ 2/ i i s (B, Du) i i
_(1+1/2|U] )P —aU") —v 71+(6,Du)(ﬁ —aU")

th

22The inverse of Id + uv?® is given by Id — Tuv
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(8, Du)

20/ _ A TTEY 2 i rTi
= (B~ aU") = S (8 = al)
v? i
= 14Dy U
So the co-frame is given by
. . . 2 .
(A11) o = (868 — v (B/a— U)'U)da" + m(ﬁ —aU)'dt.
Taking inner product of the co-frame with respect to ~~!, we can
calculate g;/[l.
(A.12)
(o) = {(6 — 2 (8/a — VYUt + L —00)
A ¢ L+ (3. Du)
. ) 2(8 — qU)!
6 (3 - Uy vt + TS
= (0}~ (B~ UY U] — (B /o~ VYU — 558
+ (5}~ 280 - vyr) LV
¥ 1+<ﬁ, Du) «
j 2 B—al)p
+ (6, — VA (B/a—UY Uy )W*

_ 1 viB—al)'(B ~ alY
o? (14 (8, Du))?
=g~ LB P (Bla - UV~ A(Bfa~ U)V?
| V(B = aU)Y BB, D)  v*(B —al)'B (B, Du)
a2(1+ (8, Du)) a(1 + (8, Du))
A8 — alU)(B — alU)
+v4(B/a—=U)(B/a—-UY U - (52(1 +U<)5§6Du>)2U)
+ Lﬁ@(ﬁ —al) + (B~ o)’
1+ (3, Du)
v (8 — aU) (8 — aU )
a?(1+ (B, Duy)?

(8, Du)?

V(B — al)' (B — aU)
a?(1+ (8, Du))?

<57Du> -
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= ¢ — B P (Bla—UPU* — (/o U)U?

VA (B)a = U)(B/a = UY|UP + 155 ~ aU)’ + (5 ~ aUY]

4

- 55(8—aU) (8- vy
i Lo VP i j
=g" - 5B + 5B —-al)(B—-alU).
o «o
A.2. Linear boost estimates on an end

Here we will give a detailed version of linear boost estimates on an Euclidean
end using method in [8, 10]. It was also mentioned in [3]. We will mainly
give the energy estimates needed to prove Theorem 3.6. For convenience, we
sometime abbreviate Vp y = V' in this section. Given a regularly hyperbolic
metric ¥ and a R¥-valued function u in Vh,n, we can associate it with the
energy-momentum tensor TH'23:

(A.13) T = G"*Dyu - Dyu,*
where
Guupcr — ’Y‘LLP"}/VU 4 /V'LLO-’YVP - ,y,uu,ypcr'

Given the unit normal n of {E;} defined in (3.12), the momentum vector
field relative to n is

(A.14) PH=THn,,.
Furthermore, the divergence of P* is

(A.15) Dy P" = 2(y"fi,Dgu) - " D2 u+ Q,
where

Q = A"Dyu- Dyu, with A" = D,(G"" ).

Let N=2 = —(Dr, D7), be the lapse function for 7 w.r.t. y and n = NDt
the unit co-normal of {E;} w.r.t. 7. We introduce an orthonormal frame
{eo,e1,- - ,en—1} w.r.t. 7, such that eg is along the direction of 2# = v**n,,,

ie., e = %ﬁ“, where (%)_2 = |ﬁ|,2y7 and e; is perpendicular to n*. According

ZSee (8, Equation (4.6)].
24Here the inner product of Dyu- Dou = Ziv:l DpukDguk.
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to [8, Section 2], we know that |A|2 = "7, = (%)*2 is bounded from
both above and below by some constants depending only on 6 and h.

Lemma A.1. When v is regularly hyperbolic, P* is past time-like w.r.t. 7.

Proof. TH = 2Dy - DY — ]Du\%*y‘“’, so Pt =TW"nq, =2DFu- DYun, —
| Duf27*, and
Y P*PY = 473, (DMu - DPun,)(DYu - D7uiy)
— 4| Duf2 (D" ufy, - DYufty,) + | Dul3|A)?
< [Dufj|af2 <O0.
The first “ <” comes from Cauchy—-Schwartz inequality, and the second

comes from the fact that 7 is time-like w.r.t. .
Take [* as a future timelike vector field, then in the orthonormal frame

{eo,€1,...,en_1} as above, 1 > \/Z?:_ll(li)z, and

Y PPI* = 2[(Dou)l® + (Dyu)l')(Dou)(N/N) — [—(Dou)?
+) (D)’ (~1o)(N/N)
= [(Dow)? + Y (Du)*JI°(N/N) + 2DsuDoul’ (N /N)
> (N/N)[(Dou) + Y (Dau)*)(I° = /> _(1)2) > 0.
The first “ > ” comes from the Cauchy—Schwartz inequality. So it shows that
P is past time-like w.r.t. 7. O

Now we introduce the restriction norm and restriction lemma similar to
(2.4) and Lemma 2.8. Given u € Hy 5(Vjp, 1), the restriction norm to hyper-
surface F; is defined as:

1/2
(A.16) lallr, o(8,va0) = (Sicol DEule, 1%, )"

The following restriction lemma follows similar from [8, Lemma 3.1]:

Lemma A.2 (Restriction). V7 € (—6,0), we have the following continu-
ous inclusion:

Hs—‘,—lﬁ(‘/@,)\) - Hs,é—&—%(ET? Vb)‘)?
for every s € N and § € R.

Now we have the first energy estimates.
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Lemma A.3 (First Energy Estimates). Assume that y*¥ is reqularly
hyperbolic, and (y —n) € C*NCH(V), a3 € C®°NC* (V) andag € C>® N
C%2(V). For L defined in (3.14), with ay = vId, every u € C§(V) satisfies
the fundamental energy estimates:

(A.17) [[l| o

vy < cllulla, vy 18 000))s

1,6+1 1,6+1

where 0 <7 <0, 8= Lu, and ¢ is a constant depending only on @, the
coefficient of reqular hyperbolicity h (3.13) of v, and || D¥||cor + ||a1||cos +
lazlico.

Proof. Let PH = o20+3) pr. Multiply (A.15) by 02(5+%), we get;:

(A.18) D, P = 202 +2) (v07 7, Dpu) - 4" D2 u + Q,

where

Q = 203,

with
Q =Q+2(6+3/2)1' /o P! ~ (Dvy %~ + 0 'y *xv)Dux* Du.
Plug in Lu = 3,
D, P" = 02(5+%)[2(7p0ﬁpD0u) (B — a1 Du — apu) + Q'].

Now we integrate on the upper part V;’/\ ={reV,\: t>0}forT <6.
Since P is compactly supported, the divergence theorem in (V:A, n) gives,

/ Pl dS, — / PFp,dS + / Pt do = D, Ptdx
E, E Lt, Vi

= /V+ 02(5+%)[2(7paﬁngu) (B — a1 Du — agu) + Q'dx,

EPN

(A.19)

where 7, is the unit outer co-normal of the upper lateral boundary Lj =
LN VTJF)\ under 7, which is future timelike w.r.t. v by property (4) of the
regular hyperbolicity (3.2). Using the fact that P is past timelike
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(Lemma A.1), we know that
15“17M = 02(6+%)P“17u >0, on Li)\.
Now define:

(A.20) 1(7) = / 032 D) 2dy. = ||Du|]%015+%(ET’V).

. Y _ N
Since ny, = NDy1 = {ny,

Py, = T 7y, = 2(y*7 Dyuiy,)® — |Dul?|7f2

N\ 2
N
= (N) (2nF'n” +~+")DyuD,u.

Using [8, Proposition 2.3], T*” = 2n#n” + " is uniformly elliptic, with the
elliptic coefficient depending only on the coefficient of regular hyperbolicity
h. Using [8, Equations (2.8) and (2.13)], d¥; ~ ¢dX, with ¢ depending only
on #, so we have:

/ Pl dY, > ey tay (1),
B,

/ P“ﬁudEO S 611}1(0),
E

where c¢; is a constant depending only on 6 and the regular hyperbolic-
ity coefficient h. Now using Cauchy—Schwartz inequality and the fact dx =
odrd¥ to the right-hand side of (A.19),

/V+ 202(5+%)(79‘7ﬁngu) - Bdx

T,

)
<o /0 1Dl g5 1Bl g (5, "

/V+ 202(5+%)(’y'o"ﬁngu) - a1 Dudz

)
<elaillons [ 10l e
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/ 202(0+3) (v pDgu) - agudx
v

.

/
0,641 (F /,V)dTv

< e1l|allos / 1Dl .yl

/\/* 202043 Q'dx

where c¢; denotes a constant depending only on the regular hyperbolicity
coefficient h. Now define:

< a1+ 1lens) [ Dl 5, i

a2y wom = [ 0T =l e

0,5+%

o

then (A.19) can be changed to
(A.22)

z1(7) < ¢ {w1(0)+/ HB”HOHs(ET/,V)xl(T/)l/sz/+m1/ yl(T/)dT/},
0 3 0

where ¢o is a constant depending only on 6 and the regular hyperbolicity
coefficient h, and

(A.23) my = [|Dyllcor + [lafcor + [laollco2,

(A.24) n1(7) = o1(7) + 20(r) =l sy

Using Cauchy—Schwartz inequality,

(u(r) — u(0))? = ( 0 gi%) <T/OT (gf,)QdT’.

Consider the projection map 7 : Vp y — E defined by n(z,t) = z, then E. =
n(E;) C EL if 7/ <7, then

| 1o )~ wopPas < - [ {/ ]a5+3/2?;]2d2}d7’
- 0 4
/

So,

(A.25) 20(7) < 220(0) + 27 /O "o ()dr
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Adding (A.22) and (A.25), we can get the integral inequality,

(A.26)

yl(T) SCQ{yl(O)—I—/O ||ﬂ||H015+g(ET/7v)yi/2(7-/)d7'/+m1/0 yl(T’)dTl}

Using the Gronwall lemma,

(A.27)
1/2 ]- 1/2 1 T l021n17" /
v (7) <exp 52T |\ % (0) + 2/, e: CZ”BHHO,H%(ET/,V)CZT .

Hence we finished the proof by using yi/Q(T) = lullg, . (& v) O

1,643

This result can be weaken to the case of rough coefficients by approxi-
mation methods.

Lemma A.4. If v is reqularly hyperbolic on V, (y —n) € CYO(V), a1 €
COY(V) and ag € C¥%(V'), then every u € Ha5(V) satisfies the fundamental
energy estimates (A.17), with 3 = Lu.

Proof. This comes from an approximation argument exactly the same as [8,
Lemma 4.2]. O

Using more differentiability of the coefficients, we can improve the energy
estimates containing high order derivatives.

Lemma A.5 (High Order Estimates). Given s <s' with s’ defined in
(3.15). If v is reqularly hyperbolic, (v —n) € C®(V), a1 € C°(V) and ap €
C>®(V), then every u € C§°(V) satisfies the main energy estimates:

(A.28) [[ul

H, 53 (EV) < C(|’“HHM+%(E,V) + HﬂHHsfl,m(V)),

where 0 < 17 <60, B = Lu, and ¢ is a constant depending only on 0, the coef-
ficient of regular hyperbolicity h and m (defined in (3.16)).
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Proof. Apply D! for 2 <i < s to Lu = 3, we can get
(A.29) 'y‘“’wau[i_” = gli-1,

where uli=t = Di=1y and

i-1 .
gl —pi-ig _ Z <z - 1> DPy D7y,
p
p=1

i—1 .

1 . .

- E (Z > (DPay D" "Pu 4 DPag D' 7Pu).
p

p=0

Now define

(A.30) zi(r) = /E e DS = Dl vy

T

and apply (A.22) in Lemma A.3 to (A.29) with 6 replaced by § + 4 — 1, then

n(r)<e {xi<o>+ Al | xi<T’>dT’},
0 0

with ¢; depending only on the coefficient of regular hyperbolicity h and mq
defined in (A.23). Compared to (A.22), we have only x;(7') in the third term
since there is no first order term ag in (A.29). Now using the multiplication
Lemma 2.2 and restriction Lemma A.2 in the case

Hs, p16stpr1/2(Er, V) X Hy 15104372 p(Er, V) = Hosyivsy2(Er, V),
we get
e
IDPAD ™ Pull gy svvvaa( vy < 31DV aL, oy oo IDUl oo, )5
with c3 a constant depending only on ¢ and §. Similarly,

HDpalDi_pu + Dpa()Di_l_pu”HT(Eﬂv)

< cs(llatlla,, 5,0v) + laoll a5, (o)l 50 0 0)-

So

185

i—1
0,(5+i+%(ET"v) = HDZ ﬁ||HO,5+i+%(ET’7V) +C4m”u’ His11/2(E:,V)»
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where ¢4 is a constant depending on s, d§, and m is given by (3.16). Now
define:

(A.31) ) = (7 +ij = [lull%

Hisi1/2(E:,V)"
We have
50 (@ + [ I B, .yl i
+ca(m +my) /OT yi(r')dr'}.

Summing all ¢ from 1, we can get

wilT) < cl{ / 1BIlE, +sapa(mor vy ()T
(A.32) + C4(m—|—m1)/ yilT )dT}.

0

Using the Gronwall Lemma,
1/2
y,' (1) < exp(es(m + mq)T)

(A33) % {y3/2(0)+01/ 605(m+m1)7’
0

(E.,V) dT/} )

where c5 = 10104 Hence we finish the proof realizing m; < cgm by the
embedding Lemma 2.2. O

Using the equation Lu =  and an argument similar to [8, Lemma 4.4],
we can estimate ||ully, ., ,(zv) by the spatial norms ||@|lg, ., ,.(5);
105,y sp52(m) a0d 1Blla, s 4.50(5,v), Where ¢ = u|g and 9 = Dyulp. We
need the following technical lemma which says that we can take the division
in the Banach algebra H,;(U), when s > % and § > —13.

Lemma A.6. Given U satisfying the extended cone property, s> 3,
> -5 and a function f, if (f— 1) € Hy5(U), and |f| >¢>0, then
(f7'=1) € Hy5(U), furthermore, || f~* — 1| g, ;) is bounded by a constant
depending only on n, s, 6 and ||f — 1|g, @)

Proof. Since |f| > ¢ >0, f~! is well defined. Since f~! —1= —% and
|f|7t < ¢! uniformly bounded, (f~' —1) € Hos(U). Now DY(f~1 —1) =
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Y bt a—a %, where « is multi-indexes, with 1 < |a| < s. Since
(fleh=1 is uniformly bounded, and using the multiplication Lemma 2.2,
D f---D*f € Hysy)a)(U), hence DY(ft-1)¢ Hy 5110)(U). So (f1—
1) € H;5(U). The norm bounds follows from the norm bounds of each
De(f~t —1). O

Lemma A.7. Given an operator L defined in (3.14) satisfying Hypothesis
(1) and (2), then every uw € Heyy 5(V) with 2 < s < s, which solves Lu = 3
satisfies:

(A.34)
||u”H 5+1/2(EV (H¢HH o+1/2(F) + HwHH —1.543/2(E) + ||B||H572,5+5/2(E,V))7

where ¢ = u|g, ¥ = Dwu|g and ¢ is a constant depending only on s, § and
w (defined in (3.17)).

Proof. By the restriction Lemma A.2, w € Hgpq5(V) implies that ¢ €
Hg511/2(E) and ¢ € H,_y 5,3/2(F). Now define the following functions on

v,b[p]:Dfu, 0<p<s.

Since

lull 7

sé+1/2 EV Z HQ]Z)[p”

p=0

Ho_psipt1/2(E)

we only need to prove that:

1Pk, o) < o108 4oty + 18l sess + 1Bl o s a(mv)-

It is true for p =0,1. Let us use a reduction argument to prove this for
all p <. Suppose it is true for 0 < g < p — 1. Take Df_Q to the equation
Lu = 3, and move all the terms containing t-derivatives of u of order less
than p, i.e., Dju with ¢ < p, to the right-hand side, then we get

(A.35)
p—3

g = 13 z( >>
q=0

p—2

q=
+ (Dp 2—q O)Q]ZJ[Q-H] + (DfiQiqai)Dﬂ/J[Q] + (Df*Q*an)qb[lﬂ}.
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Using the multiplication Lemma 2.2 and Hypothesis (1) in the case:
H, 1~ (p-2-0),85+1/2+(0-2-0) (E) X Ho—(q12),54+1/2+(3+2) (E)
- s—p,(5+1/2+p(E)7
we can estimate

_o9_ i
H(Df q’YOZ)Diw[q-H} HHsfp,s+1/2+p(E)
<ez|ly—nl

lg+1]
Hoy—1.6541/2(EV) I | Ho(g+2),6+1/2+(a+2) (E)>

where c3 is a constant depending only on s and ¢. Now using similar argu-
ments to evaluate the H,_, 51, 1/2(F) norm of other terms in (A.35),
together with our inductive hypothesis, we can get

|4 20y Pl

Hsfp,5+p+1/2(E)

p—1
—2
(A36) < ||Df ﬁ”Hs—p,5+1/2+p(E) + C4MZ ”w[q] HHsfq,5+1/2+q(E)
q=0

< UM, 11 /am) H I H, 1 sisa) T 1B H, 55 2E1));

where p is defined in (3.17), ¢4 is a constant depending only on s, p and J,
while c;, a constant depending only on p, s, p and 4.
Here

YO g = (Y Dyt Dyt)|1—o = 0> (" D7Dy 1) |i—0 = —N 20? < —c < 0,

where ¢ > 0 is a constant depending only on € and h according to [8, Sec-
tion 2]. Now (y — 1) € Hy, 5,(V) implies that (v +1)|g € Hy,_15,41/2(E),
hence ((4%°)~1+1) ¢ Hg,_15,41/2(FE) by Lemma A.6, and furthermore
(%)=t + UlH,, \4,.1/2(E) is bounded by a constant depending only on n,
59, 62 and [|y%0 + UlH,, .\ s,01/2()- Now multiply 0Pl by (490)=1 and
use Equation (A.36) and the multiplication Lemma 2.2, then we finish the
proof. O

By combining all the above estimates, we can get the energy estimates
in Theorem 3.6.

Theorem A.8. Given L a differential operator defined by (3.14) in Vy x,
satisfying hypotheses (1) and (2). Let B € Hs 1512(Von), ¢ € Hy5,1(E)
and P € Hy_y5,.3(E), with 2<s<s', 6 €R. Then every u € H5+1,52(V),
which solves Lu = J3, with ulg = ¢, Diu|p = 1 satisfies the estimates (3.19).
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Proof. First we can plug in (A.34) to (A.28). Then it follows from an approx-
imation argument similar to the proof of [8, Lemma 4.5] and an integration
of (A.28) w.r.t. 7 on [—6,0]. O

1]

[6]

7]

8]
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