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Mass angular momentum inequality for

axisymmetric vacuum data with small trace

Xin Zhou

In this paper, we prove the mass angular momentum inequality
[12, 15, 23] for axisymmetric, asymptotically flat, and vacuum data
sets with small trace. Given an initial data set with small trace,
we construct a boost evolution spacetime of the Einstein vacuum
equations as [10]. Then a perturbation method is used to solve the
maximal surface equation in the spacetime under certain growing
condition at infinity. When the initial data set is axisymmetric,
we get an axisymmetric maximal graph with the same mass and
angular momentum as the given data. The inequality follows from
the known results [12, 15, 23] about the maximal graph.

1. Introduction

Based on the gravitational collapse pictures [14], it is conjectured that the
angular momentum should be bounded by the mass for physically rea-
sonable solutions of the Einstein equations. It is true for Kerr black hole
solutions which are stationary. For dynamical, axisymmetric solutions some
progresses have been made over the past few years. Dain [15] first proved
such an inequality for Brill data (see [15, Definition 2.1]), which is a special
class of axisymmetric, maximal, and asymptotically flat vacuum data. Later,
Chruściel, Li and Weinstein [11, 12] generalized it to a class of axisymmetric,
maximal data admitting an Ernst potential with positive mass density, and
certain asymptotically flatness conditions. Recently Schoen and Zhou [23]
gave a simplified proof for more general asymptotic conditions and an L6

norm bound.
All the existing results require the solutions to be maximal, which rest-

ricts the data to be a special time-slice in a spacetime. However it should be
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unnecessary according to the gravitational collapse pictures1. It is natural
and interesting to study the non-maximal case. In this paper, we will prove
the mass angular momentum inequality for non-maximal vacuum data with
small trace by exploring the Einstein equations and a perturbation method.
Using notations in Section 1.2, our main theorem is.

Theorem 1.1 (Main Theorem 1). Suppose (Σ, e) is a simply connected
3-manifold, which is Euclidean at infinity with two ends and axisymmetric
in the sense of Definition 1.3. Given an asymptotically flat, axisymmetric
vacuum data (g, k) ∈ VCa

s+2,δ+ 1
2
(Σ) (see Definition 1.5) with s ∈ N, s ≥ 7,

δ ∈ R, −3
2 < δ < −1, if ‖trgk‖Hs−2,δ+ 3

2
(Σ) ≤ ε with ε given in Theorem 1.6,

we have

(1.1) m ≥
√
|J |,

where m and J are the ADM (abbreviated for Arnowitt-Deser-Misner, see
page 193 [24]) mass (1.6) and angular momentum (1.8) of (Σ, g, k)
respectively.

Our method comes from a question suggested by R. Schoen:

(Q) : Is there a canonical way to deform a non-maximal, axisymmetric,
vacuum data to a unique maximal, vacuum data with the same physical
quantities, i.e., the mass and angular momentum, which also preserves
the axially symmetry?

A definite answer of the above question will imply the mass angular momen-
tum inequality in the non-maximal case. In fact, there are already some
works about the deformation of vacuum constraint equations (VCEs) [4, 13].
But it is hard to maintain the symmetries and physical quantities at the same
time. So the main difficulty is to maintain the symmetries and the physi-
cal quantities simultaneously when deforming the VCEs. We overcome this
difficulty by using certain conversation laws of the Einstein equations.

1.1. General relativity backgrounds

In Einstein’s theory for General Relativity2, we use (V3,1, γ) to denote a
spacetime, where V3,1 is a 4-dimensional oriented smooth manifold, and γ is

1The axisymmetric condition is indeed necessary, since otherwise vacuum coun-
terexamples were constructed by Huang, Schoen and Wang [18].

2We refer to [24] for all the concepts.
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a Lorentzian metric of signature (3, 1). The Einstein equation, which predicts
the evolution of the spacetime, is given by

(1.2) Ricγ − 1
2
Rγγ = 8πT,

where Ricγ is the Ricci curvature of γ, and Rγ the scalar curvature of γ.
T is the stress-energy tensor. In the vacuum case, T ≡ 0, so the Einstein
vacuum equation, abbreviated as (EVE) in the following, reduces to

(1.3) Ricγ = 0.

A vacuum constraint initial data set or abbreviated as vacuum data for
the EVE is a triple (Σ, g, k), where Σ is a connected complete 3-dimensional
manifold, g a Riemannian metric, and k a symmetric two tensor on Σ,
satisfying the vacuum constraint equations, abbreviated as (VCE),

(1.4)
{
Rg − |k|2g + (trgk)2 = 0,

divg(k − (trgk)g) = 0.

By the famous initial value formulation for the Einstein equations by Y.
Choquet–Bruhat in 1952 (see [9, 24]), we can always think the vacuum data
(Σ, g, k) as been embedded in some spacetime (V, γ) satisfying (EVE), where
g is the restriction of γ to Σ, and k is the second fundamental form of the
embedding.

(Σ, e) is called Euclidean at infinity, where e is a Riemannian metric on
Σ, if there is a compact subset Σint ⊂ Σ, such that the complement Σext =
Σ \ Σint is a disjoint union of finitely many open sets Σext = ∪iEi, and each
Ei is diffeomorphic to R

3 cutting off a ball BR, and on each Ei, e is the
pull back of the standard Euclidean metric on R

3. Here Σint is called the
interior region, Σext the exterior region, and each Ei an end. Each end E has
a coordinate system {xi : i = 1, 2, 3} inherited from R

3. Let r =
√∑

i(xi)2.
(Σ, g, k) is said to be asymptotically flat, abbreviated as (AF), if (Σ, e) is
Enclidean at infinity for some e, and there exists an α > 1

2 , such that under
coordinates {xi : i = 1, 2, 3},

(1.5) gij = δij +O2(r−α), kij = O1(r−1−α).

Under these conditions, the ADM mass is defined as,

(1.6) m = lim
r→∞

1
16π

∫
Sr

(gij,i − gii,j)νjdσ(r),
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where Sr is the sphere of radius r in R
3, gij,k =

∂gij

∂xk
and νj is the Euclidean

unit outer normal of Sr with dσ(r) the surface element of Sr. The famous
positive mass theorem by Schoen and Yau [21, 22] and Witten [25] says that
m ≥ 0 under the dominant energy condition.

If the initial data set (Σ, g, k) is axisymmetric (cf. [11, 15]) under an
axial Killing vector field ξ, i.e.,

(1.7) Lξg = 0, Lξk = 0,

where L denotes the Lie derivative, we also have a well-defined angular
momentum J (cf. [15, 24]) of a close 2-surface S ⊂ Σ

(1.8) J(S) =
1
8π

∫
S
πijξ

iνjdσg,

where πij = kij − trg(k)gij is divergence free by (1.4), and ν, dσg are, respec-
tively the unit outer normal of S and surface element w.r.t. g.

1.2. Ideas and main results

In this paper, we will prove the mass angular momentum inequality for cer-
tain axisymmetric, AF vacuum data (Σ, g, k) with small trgk, especially we
partially solved the question asked by Schoen. We will use the full Einstein
equations and a perturbation method. Given an AF vacuum data (Σ, g, k),
we will solve the boost problem of (EVE) for (Σ, g, k) as [3, 10] to get
a spacetime (V, γ), where V is a subset of Σ× R which grows linearly at
infinity. Given a function u defined on Σ, the graph Graphu = {(x, u(x)) ∈
Σ× R, x ∈ Σ} of u lies inside V, when |u| has roughly sub-linear growth.
We want to find a solution to Hu = 0, where Hu is the mean curvature of
Graphu w.r.t. (V, γ). Now fix a 3-manifold (Σ, e) Euclidean at infinity, we
can construct a mapping H which takes the triple (g, k, u) to the mean cur-
vature Hu, i.e., H : (g, k, u)→ Hu. Viewing (g, k) as parameters and u as
unknown function, our equation changes to

(1.9) H(g, k, u) = 0.

When (g, k) is maximal, i.e. trgk = 0, u ≡ 0 is a solution to (1.9). So we can
use the Inverse Function Theorem to solve H(g, k, u) = 0 when trgk is small
enough. From now on, we always assume s ∈ N and δ ∈ R. Using notations
from Section 2, we have
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Definition 1.2. Fix a 3-dimensional manifold (Σ, e) which is Euclidean at
infinity.

(1) The vacuum constraint data sets VCs+1,δ+ 1
2
(Σ) is defined to be the

set of solutions (g, k) to (1.4), such that (g − e, k) ∈ Hs+1,δ+ 1
2
(Σ)×

Hs,δ+ 3
2
(Σ).

(2) The maximal vacuum constraint data sets MVCs+1,δ+ 1
2
(Σ) is defined

to be the subset of VCs+1,δ+ 1
2
(Σ) satisfying trgk = 0.

Inside VCs+1,δ+ 1
2
(Σ) and MVCs+1,δ+ 1

2
(Σ), we use the topology induced by

the Sobolev norms of Hs+1,δ+ 1
2
(Σ)×Hs,δ+ 3

2
(Σ) as in Definition 2.3.

Definition 1.3. A simply connected 3-manifold (Σ, e) which is Euclidean
at infinity is called axisymmetric, if

(1) Σ is diffeomorphic to R
3 minus some points {ak}l−1

k=1 on the z-axis
Γ = {(ρ, ϕ, z) ∈ R

3 : ρ = 0}, with one end modeled by a neighborhood
of ∞, and other ends by a neighborhood of ak with coordinates given
by a Kelvin transformation: {x′ = x−ak

|x−ak|2 };
(2) L∂ϕ

e = 0, where ϕ is the azimuth of the cylindrical coordinates
{ρ, ϕ, z}.

Remark 1.4. Near ∞, e is given by the Euclidean metric ds20, and near
each puncture ak, e is the pull back of the Euclidean metric by the Kelvin
transformation, i.e., e = 1

|x|4ds
2
0. In fact, by Chruściel’s reduction in [11], any

simply connected, axisymmetric, AF vacuum data (Σ, g) has the underlying
topology Σ given by R

3 minus finitely many points on the z axis, with the
Killing vector field ∂

∂ϕ .

Definition 1.5. Given (Σ, e) as in Definition 1.3.
(1) An initial data set (g, k) is called axisymmetric, if the symmetry con-

ditions (1.7) hold for the Killing vector field ξ = ∂
∂ϕ .

(2) VCa
s+1,δ+ 1

2
(Σ) and MVCa

s+1,δ+ 1
2
(Σ) are the axisymmetric subset of

VCs+1,δ+ 1
2
(Σ) andMVCs+1,δ+ 1

2
(Σ) respectively.

The following theorem is one of our main results, which is a summariza-
tion of Theorem 4.12, Lemma 4.13, Lemma 4.14 and Theorem 4.16.

Theorem 1.6 (Main Theorem 2). Given s ≥ 4, −2 < δ < −1.
(i) Let (Σ, e) be a 3-dimensional manifold which is Euclidean at infinity.

For any (g, k) ∈ VCs+2,δ+ 1
2
(Σ), where λe ≤ g ≤ λ−1e for some λ > 0,

there exists a small number ε depending only on λ and
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‖g − e‖Hs+2,δ+ 1
2
(Σ) + ‖k‖Hs+1,δ+ 3

2
(Σ), such that if ‖trgk‖Hs−2,δ+ 3

2
(Σ) ≤ ε,

then there exists a spacetime (V, γ) solving the (EVE), and a func-
tion u ∈ Hs+2,δ− 1

2
(Σ) solving the maximal surface equation (1.9) inside

(V, γ). The induced metric gu and second fundamental form ku of
Graphu satisfy (gu, ku) ∈MVCs+1,δ+ 1

2
(Σ).

(ii) If −3
2 < δ < −1, the ADM mass of (Σ, gu, ku) is the same as that of

(Σ, g, k).
(iii) If (Σ, e, g, k) is simply connected, axisymmetric, then u can be cho-

sen to be axisymmetric, hence (Σ, gu, ku) is axisymmetric, and has the
same angular momentum as (Σ, g, k).

Remark 1.7. The weight δ corresponds the decay g ∼ e+O(r−(δ+2)) and
k ∼ O(r−(δ+3)) by the Sobolev embedding Lemma 2.5. (gu, ku) is always
assumed to be pulled back to Σ by the graphical map Fu : x→ (x, u(x)).

Remark 1.8. The order of regularity of our final solution (gu, ku) decreases
by 1 than our starting data (g, k). This is due to the fact that the restriction
of Hs-Sobolev functions on a spacetime to a hypersurface decreases the
regularity by 1 (see Lemma 2.8).

Our main Theorem 1.1 is then a corollary of the above theorem.

Proof of Theorem 1.1: Let u be the solution given in part (iii) of The-
orem 1.6. Then the induced maximal data (gu, ku) ∈MVCa

s+1,δ+ 1
2
(Σ), and

the ADM mass m and angular momentum J of (g, k) and (gu, ku) are the
same. Now by Sobolev embedding Lemma 2.5, (gu − e, ku) ∈ Cs−1

β (Σ)×
Cs−2

β+1(Σ) for some
1
2 < β < δ + 2 < 1. So (Σ, gu, ku) is an axisymmetric,

maximal vacuum data, with asymptotic conditions gu = δ +Os−1( 1
rβ ) and

ku = Os−2( 1
rβ+1 ), so the mass angular momentum inequality in [23] holds on

(Σ, gu, ku). Hence m ≥√|J |. �
The paper is organized as follows: in Section 2, we will review the

weighted Sobolev space theory covered by [2, 7, 8, 10] and the geometry
of hypersurfaces in 3 + 1-dimensional Lorentzian spaces. In Section 3, we
will extend the boost theory in [8, 10] to the case of multi-ends. In Sec-
tion 4, we will set up a perturbation problem for the mean curvature of
graphs. We will take initial data sets as parameters and use linear theory
in [2, 7, 19] and the Quantitative Inverse Function Theorem 4.10. Finally,
we will prove the main results in Section 4.4.
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2. Preliminaries

In this section, we give some preliminary results on the weighted Sobolev
space theory and the geometry of hypersurfaces in Lorentzian spaces.

2.1. Weighted Sobolev space theory

Here we give our definition of the weighted Sobolev space. Most of the
results here can be found in [7, 8, 10]. We will mainly talk about two types
of domains.

Type 1 domain: sub-domain of R
3.

Let U be an open set in R
n, σ(x) = (1 + |x|2)1/2 for x ∈ R

n, and V a
finite dimensional vector space. Given s ∈ N, δ ∈ R.

Definition 2.1. Cs
δ (U) is the Banach space of Cs functions u : U → V ,

with finite norm

‖u‖Cs
δ (U) = sup

U

⎧⎨
⎩
∑
|α|≤s

σδ+|α||Dαu|
⎫⎬
⎭ .

Hs,δ(U) is the class of functions u : U → V , with weak derivatives up to
order s, such that σδ+|α|Dαu ∈ L2(U) for all |α| ≤ s. Hs,δ(U) is a Hilbert
space with inner product:

〈u1, u2〉Hs,δ(U) =
∑
|α|≤s

〈σδ+|α|Dαu1, σ
δ+|α|Dαu2〉L2(U).

Then the norm is: ‖u‖Hs,δ(U) = 〈u, u〉1/2
Hs,δ(U).

Now we will list some properties of Hs,δ(U), which can be found in [7,
8, 10]. We will use the following notion on the geometry of domains. Given
0 < ε ≤ 1, and φε : R

3 → R
3 defined by φε(x) = x

(σ(x))1−ε . An open subset
U ⊂ R

3 is said to have the extended cone property if φε(U) has the cone
property3 for each 0 < ε ≤ 1.

Lemma 2.2. Given U satisfying the extended cone property,

(i) (embedding). If s′ < s− n
2 and δ′ < δ + n

2 , the inclusion Hs,δ(U) ⊂
Cs′

δ′ (U) is continuous;

3See the remark under [10, Definition 2.3].
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(ii) (multiplication). If s ≤ s1, s2, s < s1 + s2 − n
2 and δ < δ1 + δ2 + n

2 , the
multiplication (f1, f2)→ f1f2 is continuous: Hs1,δ1(U)×Hs2,δ2(U)→
Hs,δ(U).

Hence Hs,δ(U) is a Banach algebra if s > n
2 and δ > −n

2 .

Type 2 domain: manifold which is Euclidean at infinity.

Let (Σ, e) be an n-dimensional manifold which is Euclidean at infin-
ity. Let x = {xi} be the local coordinates, where {xi} is the pull back of
the standard coordinates on R

n \BR when restricted to Ei, and e = ds20 =∑n
i=1(dx

i)2 on Ei. Fix a point O ∈ Σint, and define a function on Σ by

σe(x) = (1 + d2
e(x,O))

1/2.

Clearly σe(x) is equivalent to σ(x) = (1 + |x|2)1/2 on each end Ei.
When we use Σ to model an initial data set, the spacetime should have

topology as a sub-domain of Σ× R. Using coordinates (xi, t) on Σ× R, it
has a natural reference metric

(2.1) ẽ = dt2 + e.

For θ ∈ (0, 1], the boost region Ωθ is defined as,

(2.2) Ωθ = {(x, t) ∈ Σ× R : |t| ≤ θσe(x)}.

On Ωθ, the distance function dẽ(·, O) is equivalent to de(·, O), so we can
use σe to define the weighted Sobolev space on Ωθ. Given a smooth tensor
bundle E → Σ or E → Ωθ and s ∈ N, δ ∈ R.

Definition 2.3. Cs
δ (Σ) or C

s
δ (Ωθ) is the Banach space of Cs sections u :

Σ→ E, or u : Ωθ → E, with finite norm

‖u‖Cs
δ (Σ(or Ωθ)) = sup

Σ(or Ωθ)

⎧⎨
⎩
∑
|α|≤s

σδ+|α|
e |Dαu|e(or ẽ)

⎫⎬
⎭ .

Hs,δ(Σ) or Hs,δ(Ωθ) is the class of sections u : Σ→ E, or u : Ωθ → E with
weak derivatives up to order s, such that σδ+|α|

e Dαu ∈ L2(Σ, e) (or L2(Ωθ, ẽ))
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for all |α| ≤ s. Hs,δ(Σ) or Hs,δ(Ωθ) is a Hilbert space with inner product:

〈u1, u2〉Hs,δ(Σ) (or Hs,δ(Ωθ))

=
∑
|α|≤s

〈σδ+|α|
e Dαu1, σ

δ+|α|
e Dαu2〉L2(Σ,e) (or L2(Ωθ,ẽ)).

Then the norm is: ‖u‖Hs,δ(Σ) (or Hs,δ(Ωθ)) = 〈u, u〉1/2
Hs,δ(Σ) (or Hs,δ(Ωθ)).

Remark 2.4. In fact, the definitions are independent of the choice of e on
Σint.

Lemma 2.5 ([7], Lemmas 2.4, 2.5, [6], Appendix 1).

(i) (embedding). If s′ < s− n
2 , δ′ < δ + n

2 , the inclusion Hs,δ(Σ) ⊂ Cs′
δ′ (Σ)

is continuous;

(ii) (multiplication). If s ≤ s1, s2, s < s1 + s2 − n
2 , δ < δ1 + δ2 + n

2 , the
multiplication (f1, f2)→ f1f2 is a continuous map: Hs1,δ1(Σ)×Hs2,δ2

(Σ)→ Hs,δ(Σ), hence Hs,δ(Σ) is a Banach algebra if s > n
2 , δ > −n

2 .
Furthermore,

(2.3) ‖f1f2‖Hs,δ(Σ) ≤ C‖f1‖Hs1,δ1 (Σ)‖f2‖Hs2,δ2 (Σ),

where C is a constant depending only on {n, s1, s2, δ1, δ2}.

Divide Ωθ as Ωθ = (Ωθ)int ∪l
i=1 (Ωθ)i, where (Ωθ)i = {(x, t) ∈ Ωθ : x ∈

Ei}, and (Ωθ)int the complement. Now (Ωθ)int is a compact manifold, and
(Ωθ)i ⊂ R

n+1 satisfies the extended cone property in the above section, hence
Lemma 2.2. By working separately on (Ωθ)i and (Ωθ)int as in [7] using
Lemma 2.2, we have similar results.

Lemma 2.6. (i) (embedding). If s′ < s− n+1
2 , δ′ < δ + n+1

2 , the inclusion
is Hs+1,δ(Ωθ) ⊂ Cs′

δ′ (Ωθ) is continuous;
(ii) (multiplication). If s ≤ s1, s2, s < s1 + s2 − n+1

2 , δ < δ1 + δ2 + n+1
2 ,

then the multiplication (f1, f2)→ f1f2 is a continuous map: Hs1,δ1

(Ωθ)×Hs2,δ2(Ωθ)→ Hs,δ(Ωθ), hence Hs,δ(Ωθ) is a Banach algebra if
s > n+1

2 , δ > −n+1
2 .

Using ideas similar to the proof of Theorem 2.3 in [10] and Lemma 2.6,
we have
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Lemma 2.7 (composition). Given Ωθ, Ωθ′ as above and f : Ωθ → Ωθ′ a
differentiable map, such that |Df |ẽ ≥ c > 0 and f − id ∈ Hs+1,δ−1(Ωθ) with
s > n+1

2 and δ > −n+1
2 , then for any s′ ≤ s+ 1, δ′ ∈ R, the composition

u→ u ◦ f is an isomorphism as a map:

Hs′,δ′(f(Ωθ))→ Hs′,δ′(Ωθ).

Define the function τ(x, t) = t
σe(x) . Denote the level surface of τ by Στ =

{(x, t) ∈ Σ× R : τ(x, t) = τ}. Then Ωθ has a foliation Ωθ = ∪τ∈(−θ,θ)Στ .
The restriction norm is defined as:

(2.4) ‖u‖Hs,δ(Στ ,Ωθ) =

(
s∑

k=0

‖Dk
t u|Στ

‖2Hs−k,δ+k(Σ)

)1/2

.

Using ideas similar to the proof of [8, Lemma 3.1], we can get,

Lemma 2.8 (restriction). ∀τ ∈ (−θ, θ), we have the following continuous
inclusion:

Hs+1,δ(Ωθ) ⊂ Hs,δ+ 1
2
(Στ ,Ωθ),

for every s ∈ N and δ ∈ R.

2.2. Geometry of hypersurface in Lorentzian space

In this section, we will review the geometry of hypersurfaces in a Lorentzian
space. We will mainly focus on the mean curvature of the hypersurface.
Notation and part of the results here trace back to [1], and all concepts of
Lorentzian space can be found in [24]. Let (V, γ) be a (3+1)-dimensional
Lorentzian space, with 〈·, ·〉 the metric pairing and ∇ the connection. A
smooth function t ∈ C∞(V) is called a time function if ∇t is non-zero, and
everywhere timelike, i.e., 〈∇t,∇t〉 < 0. We call a hypersurface Σ spacelike if
the restriction of γ to Σ is Riemannian. In a local coordinate system {xi, t},
where t is a time function, the metric can be written as (see [1, Equation
(2.12)]):

(2.5) γ = −(α2 − β2)dt2 + 2βidx
idt+ gijdx

idxj ,

where α is the lapse function, i.e., α2 = −〈∇t,∇t〉, gij a Riemannian met-
ric, and β = gijβi∂j the shift vector4. Here we use ∂t = ∂

∂t and ∂i = ∂
∂xi as

4See [24, Chap 10] for details.
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coordinate vectors. The inverse metric γ−1 is given by:

(2.6) γμν =

[
− 1

α2
βi

α2

βj

α2 gij − 1
α2βiβj

]
,

under coordinate system {t, x1, x2, x3}.
We will denote the level surface of the time function t by Σt = {p ∈

V : t(p) = t}. Let D be the gradient operator on Σt, and div0 the diver-
gence operator on Σt. The future-directed timelike unit normal T of Σt is
given by5:

(2.7) T = −α∇t = α−1(∂t − β),

and the second fundamental form k0
ij and the mean curvature H

0 of the slice
Σt are given by,

(2.8) k0
ij = 〈∂i,∇∂jT 〉 = 1

2
α−1∂tgij − 1

2
α−1Lβgij ,

(2.9) H0 = gijA0
ij =

1
2
α−1gij∂tgij − α−1div0(β).

Given a spacelike hypersurface Σ, we can always choose local coordinates
{xi, t}, such that Σ is locally the t = 0 level surface Σ0. Given a smooth func-
tion u ∈ C∞(Σ), we can study the graph of u, i.e., Graphu = {(xi, u(x))}
in local coordinates. So we call this u the height function. By extending u
parallel to V requiring that

(2.10) ∂tu = 0,

Graphu can be viewed as level surface of (u− t) = 0. The unit normal of
Graphu is6:

(2.11) N = ν(U + T ),

where

(2.12) U =
αDu

1 + 〈β,Du〉 , and ν =
1

(1− |U |2g)1/2
.

5See Appendix A for details.
6See Appendix A for details.
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So Graphu is spacelike if and only if 1− |U |2g > 0, i.e., ν is well-defined.
Define the canonical graphical diffeomorphism F : Σ→ Graphu by F (x) =
(x, u(t)). Then Graphu has a local coordinate system {xi : i = 1, 2, 3}. The
coordinate vector frame {∂i} on Σ is passed by F to a local frame

(2.13) αi = ∂i + ui∂t : i = 1, 2, 3,

on Graphu. Now denote M = Graphu. Using this local coordinates, the
restriction γ|M of γ to Graphu, denoting by gM = (gM )ijdxidxj , is given
by

(2.14) (gM )ij = gij + βiuj + uiβj − (α2 − β2)uiuj .

Then the inverse metric matrix is calculated in Appendix A by Equation
(A.12) as:

(gM )ij = gij − 1
α2
βiβj +

ν2

α2
(β − αU)i(β − αU)j

= γij +
ν2

α2
(β − αU)i(β − αU)j .

(2.15)

So the mean curvature Hu of the graph M is given by

(2.16) Hu = (gM )ij〈∇αi
N,αj〉γ .

3. Boost evolution

Fix a 3-manifold (Σ, e), which is Euclidean at infinity. Let ẽ = dt2 + e be the
reference metric (2.1) on Σ× R. Given an integer s ≥ 4, and a real number
δ > −2, we consider vacuum constraint initial data sets (Σ, g, k), such that
(g, k) ∈ VCs,δ+ 1

2
(Σ). Here boost evolution means that in the spacetime (V, γ)

which is evolved by (EVE) taking (Σ, g, k) as initial data set, where V ⊂ Σ×
R, both the future and past temporal distance χ±(x)7 to the boundary of
V is proportional to the space distance σe(x) for x ∈ Σ, i.e., χ±(x) ≥ cσe(x)
for c > 0. We will extend the boost evolution on R

3 in [10] to the case of Σ.

3.1. Reduced Einstein equation and results on compact domain

Let us review the reduction using harmonic gauge initially introduced by
Y. Choquet–Bruhat (see [6]). Using {xi : i = 1, 2, 3} as local coordinates on

7See [10] for reference.
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Σ, and xμ = (x0, xi), with x0 = t as coordinates on V ⊂ Σ× R, the Ricci
curvature can be expressed as8:

Ricμν = Rμν
h +

1
2
(γμαDαΓν + γναDαΓμ),

where Γμ
αβ is the Christoffel symbol of γ, Γμ = γαβΓμ

αβ, and

Rμν
h =

1
2
{γαβDαDβγ

μν −Bμν(γ,Dγ)},

with Bμν = Pμν,ρσ
αβ,κλDργ

αβDσγ
κλ, and P is a rational function of γαβ . In fact,

the EVE Ricγ = 0 is a degenerated differential equation system due to its
invariance under diffeomorphic transformations. Harmonic gauge is used to
fix this gauge freedom by Y. Choquet-Bruhat, which means that we can
choose id : (V, γ)→ (V, ẽ) to be a wave map, i.e., �(γ,e)id = 09. Denote

(3.1) fμ = Γμ − γαβΓ̃μ
αβ ,

to be the harmonic gauge vector, where Γ̃μ
αβ is the Christoffel symbol of ẽ.

fμ is the difference of two connections, hence a tensor, then the harmonic
gauge condition reduces to fμ = 0, or:

(3.2) �γx
μ = −γαβΓ̃μ

αβ ,

where �γ is the Laplacian operator of the Lorentzian metric γ, and �γx
μ =

−Γμ. Now under harmonic gauge (3.2), the (EVE) (1.3) is reduced to10

(3.3) γαβDαDβγ
μν = Bμν(γ,Dγ) +

1
2
γαβ{γμρR̃ν

βαρ + γνρR̃μ
βαρ},

where R̃ is the curvature of ẽ. The Cauchy data for these equations consist
of:

(3.4) γ|Σ = φ, Dtγ|Σ = ψ.

For given initial data set (g, k), we need to construct Cauchy data (φ, ψ)
by requiring fμ|Σ = (Γμ − γαβΓ̃μ

αβ)|Σ = 0. To fix the freedom in choosing a

8See [10, Section 4 ] and [24, Section 10.2].
9See [6, Chapter 6, Section 7.4].
10See [6, page 163].
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harmonic gauge, we require the coordinate system of V is Gaussian on Σ,
which means:

(3.5) φ00 = −1, φ0i = 0, φij = gij .

The condition (Γμ − γαβΓ̃μ
αβ)|Σ = 0 requires11:

(3.6) ψ00 = −4trgk, ψ0i = −(Γi
g − gkjΓ̃i

kj), ψij = 2gikgjlkkl.

Define a reference Lorentzian metric by

(3.7) η̃ = −dt2 + e.

When the initial data (g − e, k) ∈ Hs,δ+ 1
2
(Σ)×Hs−1,δ+ 3

2
(Σ), the Cauchy

data (3.5) and (3.6) satisfy (φ− η̃, ψ) ∈ Hs,δ+ 1
2
(Σ)×Hs−1,δ+ 3

2
(Σ). In fact,

by the multiplication Lemma 2.5, (g − e, k)→ (φ− η̃, ψ) is a continuous
map Hs,δ+ 1

2
(Σ)×Hs−1,δ+ 3

2
(Σ)→ Hs,δ+ 1

2
(Σ)×Hs−1,δ+ 3

2
(Σ).

To solve (EVE) (1.3), we can first solve the reduced Equation (3.3)
by quasilinear theory (see [6, Appendix 3] and [10, Section 5]), and then
show that the harmonic gauge is preserved. In fact, Bianchi identity and the
reduced equation (3.3) imply that the harmonic gauge vector fμ satisfies a
linear equation12:

(3.8) �γf
μ +A(γ,Dγ)Df = 0.

So we can use uniqueness of linear equations to show that fμ ≡ 0 since we
chose fμ|Σ = 0, and the VCEs (1.4) impliy that ∂tf

μ|Σ = 013.

Now we summarize a local version of the existence and causal uniqueness
theorem based on the interior region Σint of (Σ, e), which has dimension
n = 3. We can extend the interior region Σint to contain the annuli B2R \BR

of each end Ei of (Σ, e). Now define a causal set (Vint)θ,λ based on Σint as
follows:

(3.9) (Vint)θ,λ = {(x, t) ∈ Σint × [−θ, θ] : |x| ≤ 2R− λ|t|, if x ∈ Ei},

where θ ∈ (0, 1] and λ ≥ 2 is a positive number. Now (Vint)θ,λ has a lat-
eral boundary Lθ,λ = {(x, t) ∈ (Vint)θ,λ : |x| = 2R− λ|t|}. When λ is large

11See [6, page 164].
12See [6, page 167] and [10, Section 4].
13See [6, page 167].
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enough depending only on e, L+
θ,λ = Lθ,λ ∩ {t ≥ 0} (or L−θ,λ = Lθ,λ ∩ {t ≤ 0})

is spacelike and ingoing (or outgoing) w.r.t. η̃, hence ((Vint)θ,λ, η̃) is causal14.
Combining Theorem 7.4, Theorem 8.3 of Chap 6, and Corollary 4.8,

Theorem 4.11, Theorem 4.13 of Appendix 3 in [6], and using a cutoff argu-
ment as in Theorem 3.7, we have the following well-known local existence
and uniqueness theorem,

Theorem 3.1. Given an integer s ≥ 4. For a vacuum constraint data set
(Σint, g, k), with (g − e, k) ∈ Hs(Σint)×Hs−1(Σint), and g ≥ λ0e for some
λ0 > 0, there exists θ > 0, λ ≥ 2 and C0 > 0 depending only on λ0 and
‖g − e‖Hs(Σint) + ‖k‖Hs−1(Σint), and a unique regularly sliced15 Lorentzian met-
ric γ solving the reduced EVE (3.3) on (Vint)θ,λ, taking (3.5) and (3.6) as
initial value which is given by (g, k), such that (γ − η̃) ∈ Hs

(
(Vint)θ,λ

)
, with

‖γ − η̃‖Hs((Vint)θ,λ) ≤ C0, and L+
θ,λ (or L−θ,λ) is spacelike and ingoing (or out-

going) w.r.t γ. Furthermore, γ is a solution of (EVE) (1.3) under harmonic
gauge.

3.2. Boost evolution on manifold Euclidean at infinity

We first modify the linear boost theory in [10] to the case based on an
Euclidean end E ∼= R

n−1 \BR. Let us fix a special type of boost regions.
Denote x̄ = (x1, . . . , xn−1) ∈ R

n−1, such that x = (x̄, t) ∈ R
n. Later on, we

will denote the index for t-coordinates as 0, while index for x̄ as i with
i = 1, . . . , n− 1. Let σ̄(x̄) = (1 + |x̄|2)1/2. For θ ∈ (0, 1/2], λ ≥ 2 and a given
end E ∼= R

n−1 \BR, the boost region Vθ,λ based on E is defined as:

(3.10) Vθ,λ =
{
(x̄, t) ∈ R

n,
|t|
σ̄(x̄)

< θ, |x̄| ≥ R+ λ|t|}.
Define the function τ as τ(x) = t

σ̄(x̄) . Then the level surface of τ is Eτ =
{x ∈ Vθ,λ : τ(x) ≡ τ}. Vθ,λ has a foliation:

Vθ,λ = ∪τ∈(−θ,θ)Eτ .

The lateral boundary of Vθ,λ is defined as,

(3.11) Lθ,λ = {(x̄, t) ∈ Vθ,λ : |x̄| = R+ λ|t|}.

Denote the upper part of Vθ,λ by V +
θ,λ = {(x̄, t) ∈ Vθ,λ : t ≥ 0}, then the

boundary ∂V +
θ,λ is constituted by E, Eθ and the upper lateral boundary

14See [6, Appendix 3, Definition 2.11].
15See [6, page 397 and page 585].
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L+
θ,λ = Lθ,λ ∩ V +

θ,λ. Similarly, we have V
−
θ,λ = {(x̄, t) ∈ Vθ,λ : t ≤ 0} and the

lower lateral boundary L−θ,λ = Lθ,λ ∩ V −θ,λ. Clearly V ±θ,λ and the slices Eτ

satisfy the extended cone property in R
n and R

n−1, respectively as in Sec-
tion 2.1, and hence satisfy Lemma 2.2.

We introduce a class of hyperbolic metrics on Vθ,λ using the foliation
{Eτ}τ∈(−θ,θ). The function τ is in fact a time function on (Vθ,λ, η), where
η = −dt2 +∑n−1

i=1 (dx
i)2 is the Minkowski metric. Let ñμ be the unit future

co-normal of the foliation {Eτ : τ ∈ (−θ, θ)}, given by

(3.12) ñ = ÑDτ =
1√

1− τ2|x̄|2σ−2(x̄)

(
dt− τ

σ(x̄)
xidxi

)
,

where Ñ is the lapse function for the foliation {Eτ}, defined by: Ñ−2 =
−〈Dτ,Dτ〉η = 1−τ2|x̄|2σ−2(x̄)

σ2(x̄) . ñ can be viewed as a standard calibration for
the foliation Vθ,λ = ∪Eτ , which is used to define the “regularity” of hyper-
bolicity. Denoting | · | as the standard Euclidean norm for tensors on Vθ, we
have16:

Definition 3.2. A C0 covariant symmetric 2-tensor γμν on Vθ,λ is called
regularly hyperbolic, if there exist positive numbers a, b, and C such that in
Vθ,λ:

(1) −γμν ñμñν ≥ a;
(2) for all tangent covectors ζμ of Eτ , i.e., γμνζμñν = 0, we have γμνζμζν ≥

b|ζ|2;
(3) |γ| ≤ C;
(4) The upper (or lower) lateral boundary L+

θ,λ(or L
−
θ,λ) is spacelike and

ingoing (or out going) w.r.t. γ, i.e., every timelike curve entering V +
θ,λ

(or every timelike curve exiting V −θ,λ) is past directed.

The coefficient of regular hyperbolicity of γ is defined as,

(3.13) h = max
{
1
a
,
1
b
, C

}
.

Remark 3.3. Condition (4) implies that this type of Vθ,λ is a causal subset
based on E w.r.t. γ17. Here we briefly talk about the criterion for Condi-
tion (4) to be true. We mainly discuss the case L+

θ,λ, and L−θ,λ is similar.
The defining function of L+ is given by l(x̄, t) = λt+R− |x̄|, so the nor-
mal co-vector of L+ is given by dl = λdt− dr̄, where r̄ = |x̄|. Now dl =

16See also [10, Definition 4.1].
17See Definition 2.11 of [6, Appendix 3].
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λ(dt− τ r̄
σ(x̄)dr̄) + (λ τ r̄

σ(x̄) − 1)dr̄ = λ
√
1− τ2|x̄|2σ−2(x̄)ñ+ (λ τ r̄

σ(x̄) − 1)dr̄. So
using the regularly hyperbolicity, we have γ(dl, dl) ≤ λ2(1− θ2)γ(ñ, ñ) +
λ(θλ− 1)C ≤ −aλ2(1− θ2) + Cλ(θλ− 1) < 0, when λ is chosen large
enough depending only on a and C, hence depending only on h.

Remark 3.4. The set of regularly hyperbolic metrics on Vθ,λ is open in
the space C0(Vθ,λ) of bounded continuous covariant symmetric 2-tensors. In
fact, η is regular hyperbolic with a = 1, b = 1− θ2 and C =

√
n, and Lθ,λ is

space-like and ingoing w.r.t η when λ ≥ 2. Since the space-like and ingoing
condition for Lθ,λ is an open condition, there exists a small ε > 0, depending
only on θ, λ and n, such that any C0 covariant symmetric 2-tensor γ, with
|γ − η| ≤ ε, is regularly hyperbolic in Vθ,λ.

Now consider a family of linear differential operators of second order in
Vθ,λ:

(3.14) Lu = Σ2
k=0ak ·Dku,

where u and Lu are R
N -valued functions on Vθ,λ, and ak are matrix valued

functions. The following hypotheses are required for the existence theory:

• Hypothesis (1) (weak coupling and hyperbolicity). a2 = γId, i.e.,
(a2)

μνI
J = γμνδI

J , μ, ν = 0, . . . , n− 1, I, J = 1, . . . , N , where γ is a reg-
ularly hyperbolic metric on Vθ,λ.

• Hypothesis (2) (regularity). There exist integers sk and real numbers
δk, such that: sk >

n
2 + k − 1, δk > 2− k − n

2 : 0 ≤ k ≤ 2, and (1)
ak ∈ Hsk,δk

(Vθ,λ) for k = 0, 1; (2) γ − η ∈ Hs2,δ2(Vθ,λ).

Remark 3.5. Now denote

s′ = min0≤k≤2{sk}+ 1,(3.15)

m = ‖γ − η‖Hs2,δ2 (Vθ,λ) +Σ1
k=0‖ak‖Hsk,δk

(Vθ,λ),(3.16)

μ = ‖γ − η‖Hs2−1,δ2+1/2(E,Vθ,λ) +
1∑

k=0

‖ak‖Hsk−1,δk+1/2(E,Vθ,λ).(3.17)

By the restriction Lemma 2.8, μ ≤ cm. Using the multiplication Lemma 2.2,
the regularity hypothesis (2) implies that

L : Hs+1,δ(Vθ,λ)→ Hs−1,δ+2(Vθ,λ),

is a continuous map for 1 ≤ s ≤ s′ and δ ∈ R.
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Then we have the existence and uniqueness theorem for linear systems.

Theorem 3.6. Let L be a differential operator defined by (3.14) in Vθ,λ,
satisfying Hypotheses (1) and (2). Let β ∈ Hs−1,δ+2(Vθ,λ), φ ∈ Hs,δ+ 1

2
(E)

and ψ ∈ Hs−1,δ+ 3
2
(E), with 2 ≤ s ≤ s′, δ ∈ R. Then the Cauchy problem:

(3.18) Lu = β, u|Σ = φ, Dtu|Σ = ψ,

has a unique solution u ∈ Hs,δ(Vθ,λ), and satisfies the estimates:
(3.19)
‖u‖Hs,δ(Vθ,λ) ≤ cθ

1
2
{‖φ‖Hs,δ+ 1

2
(E) + ‖ψ‖Hs−1,δ+ 3

2
(E) + ‖β‖Hs−1,δ+2(Vθ,λ)

}
,

where c is a continuous increasing function of (θ, h,m), and h, m are defined
by Equations (3.13) and (3.16), respectively.

Proof. It follows from the energy estimates in Theorem A.8 in Appendix A.2,
and similar approximation argument as in the proof of [8, Theorem 5.1]
and [10, Theorem 4.1]. �

Now we extend the existence theory for the boost problem in [10] to Σ.
Let Ωθ be the boost region based on Σ as defined in (2.2). We will construct
a solution to the reduced EVE (3.3) in Ωθ. We deal with the boost evolution
separately on the interior region Σint and on each end Ei. On compact set
Σint, we can use Theorem 3.1. On each end E, we can complete the initial
data (g, k)|E to R

3 and apply the boost theory in [10] to get existence. Then
we can cut off the solution in the causal set based on the end E by our linear
Theorem 3.6. Causal uniqueness (see [6, Appendix 3, Corollary 4.8]) tells us
that the solutions we got based on Σint and Ei’s match together to a global
solution.

Theorem 3.7. For s ≥ 4, δ > −2. Given vacuum data (g, k) ∈ VCs,δ+ 1
2
(Σ),

with g ≥ λ0e for some λ0 > 0, there exit θ ∈ (0, 1) and C0 > 0 depending
only on λ0, ‖g − e‖Hs,δ+ 1

2
(Σ) + ‖k‖Hs−1,δ+ 3

2
(Σ), and a unique Lorentzian met-

ric γ solving the reduced EVE (3.3) on Ωθ, which has Cauchy data (φ, ψ)
on Σ given by (g, k) in (3.5) (3.6), such that (γ − η̃) ∈ Hs,δ(Ωθ), and ‖γ −
η̃‖Hs,δ(Ωθ) ≤ C0. Furthermore γ is the solution to EVE (1.3) under harmonic
gauge.

Proof. We first focus on a fixed end E. In fact, we can extend (g, k)|E to
(ḡ, k̄) on R

3 by a cutting and pasting method, such that (ḡ, k̄) = (g, k) on
E with ḡ ≥ λ̄δ, where λ̄ ≥ c−1λ0 and ‖ḡ − δ‖Hs,δ+ 1

2
(R3) + ‖k̄‖Hs−1,δ+ 3

2
(R3) ≤
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c(‖g − e‖Hs,δ+ 1
2
(E) + ‖k‖Hs−1,δ+ 3

2
(E)) for some fixed c > 1. By Lemma 5.1 and

Theorem 6.1 in [10], there exist C1 > 0 and θ1 ∈ (0, 1) depending only on
λ̄ and ‖ḡ − δ‖Hs,δ+ 1

2
(R3) + ‖k̄‖Hs−1,δ+ 3

2
(R3), and a unique solution γ̄ to the

reduce EVE (3.3) on Ωθ1 , taking on R
3 the Cauchy data (φ̄, ψ̄) given by (ḡ, k̄)

as in (3.5) and (3.6) where the Christoffel symbol for R
3 is Γ̃|R3 = 0, and

‖γ̄ − η‖Hs,δ(Ωθ1 ) < C1. Here Ωθ1 is the boost region (2.2) when Σ = R3. Fur-
thermore, γ̄ is regularly hyperbolic18, with the coefficient of regularly hyper-
bolicity h1 depending only on λ̄ and ‖ḡ − δ‖Hs,δ+ 1

2
(R3) + ‖k̄‖Hs−1,δ+ 3

2
(R3).

We claim that there exists a λ1 > 2 depending only on h1, such that γ̄ is
regularly hyperbolic on Vθ1,λ1 . The first three conditions in Definition 3.2 are
naturally satisfied since γ̄ is regularly hyperbolic in Ωθ1 (see [10, Definition
4.1]). Condition (4) is true if we take take λ1 large enough depending only
on the regularly hyperbolicity h1 of γ̄ as discussed in Remark 3.3.

Then we claim that γ̄ is a solution of (EVE) (1.3) in harmonic gauge
inside the causal set Vθ1,λ1 . In fact, since (g, k) is a solution of (VCE) (1.4)
on E, the harmonic gauge condition fμ = Γμ

γ̄ = 0 and ∂tf
μ = 0 on E are

satisfied by the choice of initial conditions (3.5) and (3.6). Notice that f sat-
isfies a linear equation (3.8), which satisfies the requirement of Theorem 3.6
by the argument in [10, page 293]. Hence the harmonic gauge vector f = 0
in Vθ1,λ1 by the estimate (3.19) in Theorem 3.6, hence γ̄ is a solution of EVE
(1.3) on Vθ1,λ1 .

Now denote the restriction γ̄ to Vθ1,λ1 by γ. We claim that (Vθ1,λ1 , γ)
is uniquely determined by (g, k)|E when γ is regularly hyperbolic on Vθ1,λ1 .
Suppose γ1 and γ2 are two such solutions of the reduced EVE (3.3) as above
with initial value given by (3.5) and (3.6) from vacuum data (g1, k1) and
(g2, k2), respectively. Then ‖γi − η‖Hs,δ(V ) are uniformly bounded by the
corresponding norm of (gi − η, ki). Now subtract the reduced EVE (3.3)
satisfied by γ1 and γ2:
(3.20)
γαβ

1 DαDβ(γ
μν
1 − γμν

2 )− (D2γ2)(γ2 − γ1)−
(
B(γ1, Dγ1)−B(γ2, Dγ2)

)
= 0,

where (see [10, Equations (4.4) and (4.5)])

B(γ1, Dγ1)−B(γ2, Dγ2) = P (γ1)(Dγ1)2 − P (γ2)(Dγ2)2

= (P (γ1)− P (γ2))(Dγ1)2

+ P (γ2)(Dγ1 +Dγ2)(Dγ1 −Dγ2).

18Here regularly hyperbolicity is given in [10, Definition 4.1], which only requires
the first three conditions in our Definition 3.2.
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Here P is a rational function of γ. Using the multiplication Lemma 2.2,
(Dγ1)2, P (γ2)(Dγ1 +Dγ2) ∈ Hs−1,δ+1(V ). Using the mean value inequality,
and the Sobolev embedding Lemma 2.2, we have the pointwise estimates:

|P (γ1)− P (γ2)| ≤ C|γ1 − γ2|,

where C depends only on ‖γi − η‖Hs,δ(V ), i = 1, 2. Now viewing equation
(3.20) as a differential equation for (γ1 − γ2), and using the first energy
estimate Lemma A.4 in Appendix A.2, we have

‖γ1 − γ2‖H1,δ+ 1
2
(Eτ ,V ) ≤ C‖γ1 − γ2‖H1,δ+ 1

2
(E,V )

≤ C(‖g1 − g2‖H1,δ+ 1
2
(E) + ‖k1 − k2‖H0,δ+ 3

2
(E)).

Hence the uniqueness is true.
Combing all the above, we get a unique regularly hyperbolic solution γ to

the (EVE) under harmonic gauge in Vθ1,λ1 , where θ1, λ1 and ‖γ − η‖Hs,δ(V )
19

depend only on λ0 and ‖g − e‖Hs,δ+ 1
2
(E) + ‖k‖Hs−1,δ+ 3

2
(E).

Now extend Σint to include the annuli Br \BR ⊂ Ei, and take the solu-
tion γ inside the causal set (Vint)θ0,λ0 based on Σint by Theorem 3.1. We
can combine it with all the solutions (Vθi,λi

, γ) on each end Ei. Now causal
uniqueness (see [6, Appendix 3, Corollary 4.8]) implies that they coincide in
the intersection of (Vint)θ0,λ0 and Vθi,λi

, since (Vint)θ0,λ0 ∩ Vθi,λi
is a causal set

based on Σint ∩ E w.r.t. γ by our construction. So by choosing the smallest
θ, such that Ωθ ⊂ (Vint)θ0,λ0 ∪l

i=1 Vθi,λi
, we get the conclusion. �

4. Perturbation method

Here we will apply the Inverse Function Theorem (see [5, 20]) to find max-
imal graphs in the spacetime evolution of given AF vacuum data sets with
small trace. Fix a 3-manifold (Σ, e) which is Euclidean at infinity. We always
assume s ∈ N, s ≥ 4, and δ > −2. Consider the vacuum data sets (Σ, g, k),
with (g, k) ∈ VCs+1,δ+ 1

2
(Σ). Let (V, γ) be the boost evolution of (g, k) given

by Theorem 3.7, then we will study the graph of a given function u in the
spacetime (V, γ). We will take (g, k) as parameters, and study the perturba-
tion problem for the mean curvature Hu of this graph. We will show that for
appropriately chosen weighted Sobolev spaces, the linearization of Hu with
respect to u is invertible in certain sense.

19The bound for (γ − η) also comes directly by Theorem 3.6.
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4.1. Differentiability of mean curvature operator

Given a vacuum data set (g, k) ∈ VCs+1,δ+ 1
2
(Σ), with g ≥ λe for some λ > 0.

By Theorem 3.7, there exists a uniform θ ∈ (0, 1) and a uniform C > 0,
depending only on λ and ‖g − e‖Hs+1,δ+ 1

2
(Σ) + ‖k‖Hs,δ+ 3

2
(Σ), and a unique

Lorentzian solution γ of the reduced EVE (3.3) on Ωθ, taking (g, k) as initial
data, and ‖γ − η̃‖Hs+1,δ(Ωθ) ≤ C. Moreover, from the proof of Theorem 3.7,
the regularly hyperbolic coefficient h of γ in each boost end Vθi,λi

, and the
regularly sliced coefficient20 of γ in (Vint)θ0,λ0 are all uniformly bounded by a
constant depending only on λ and the norm of (g, k). Hence the determinant
of γμν is bounded away from 0 by a constant depending only on λ and the
norm of (g, k).

Now let us summarize some properties of the metric components of γ.

Lemma 4.1. For s ≥ 3, δ > −2. Given a (3 + 1) Lorentz metric γμν of
form (2.6) in Ωθ with (γ − η̃)μν ∈ Hs,δ(Ωθ), if the determinant det
(γμν) ≤ −λ̃ for some λ̃ > 0, then (γ − η̃)μν lies in Hs,δ(Ωθ), and in the met-
ric form (2.5) and (2.6) of γ, the components (α−2 − 1), (α− 1), βi, βi, g

ij −
eij , gij − eij all lie in Hs,δ(Ωθ). Furthermore, their norms are all bounded by
a constant depending only on λ̃ and ‖γ − η̃‖Hs,δ(Ωθ).

Proof. The inverse matrix γμν = det(γμν)adj(γμν), where adj(γμν) is the
adjoint matrix of γμν . Since det(γμν) is bounded away from 0 by λ̃, the
Banach algebra property (Lemma 2.6) of Hs,δ(Ωθ) implies that γμν − η̃μν

also lies inHs,δ(Ωθ), with ‖γμν − η̃μν‖Hs,δ(Ωθ) bounded by a constant depend-
ing only on λ̃ and ‖(γ − η̃)μν‖Hs,δ(Ωθ). From the expression (2.5) and (2.6) of
γ and the fact that (γ − η̃)μν , (γ − η̃)μν ∈ Hs,δ(Ωθ), we know that (α2 − 1),
( 1

α2 − 1), βi, βi

α2 , (gij − eij), (gij − βiβj

α2 − eij) ∈ Hs,δ(Ωθ) with their norms
bounded by ‖(γ − η̃)‖Hs,δ(Ωθ). So α2 is bounded both from below and above
by certain constant. By Taylor’s expansion |α− 1| = |√1 + (α2 − 1)− 1)| ≤
C|α2 − 1|, hence is L2

δ integrable. For higher order derivatives of (α− 1),
we can use the multiplication Lemma 2.6 and the bound of (α2 − 1) to
show that Dμ(α− 1) lies in Ls−|μ|,δ+|μ|(Ωθ). So (α− 1) lies in Hs,δ(Ωθ)
and has the norm bounded by a constant depending only on λ̃ and ‖(γ −
η̃)μν‖Hs,δ(Ωθ). �

So the metric coefficients of out boost solution γ satisfy that {(α− 1),
βi, βi, g

ij − eij , gij − eij} ∈ Hs+1,δ(Ωθ) with norms bounded by a constant

20See the constant N , A and B in Definition 11.8 on [6, page 397].



540 Xin Zhou

depending only on the elliptic constant λ of g and ‖g − e‖Hs+1,δ+ 1
2
(Σ) +

‖k‖Hs,δ+ 3
2
(Σ). By the Sobolev embedding Hs+1,δ(Ωθ) ⊂ C2

κ(Ωθ) for some
0 < κ < δ + 2, all the terms above are uniformly bounded.

Given s1 ≥ 3 and δ1 > −2. Let Bρ be a ball of radius ρ containing scalar
functions in Hs1+1,δ1− 1

2
(Σ) with ‖u‖Hs1+1,δ1− 1

2
(Σ) ≤ ρ. We can choose ρ small

enough, such that after embedding ‖u‖C2
κ(Σ) ≤ Cρ ≤ θ/2 for some −1 < κ <

δ1 + 1, and,

(4.1) Condition (A): |u(x)| ≤ (θ/2)(σ(x))−κ < (θ/2)σ(x).

So Graphu = {(x, u(x)) : x ∈ Σ} is a submanifold in Ωθ. Furthermore,
|Du|e ≤ Cρ(σ(x))−(κ+1). As (α− 1), β, (g − e) are all uniformly bounded,
we can then choose ρ small enough so that:
(4.2)

Condition (B): |Du|e ≤ 1
100

, |〈β,Du〉g| ≤ 1
2
, |U | = | α|Du|g

1 + 〈β,Du〉g | ≤
1
2
,

where U is defined in (2.12). Then Graphu is spacelike and ν =
√
1− |U |2

is well-defined. So we can study the operator

(4.3) H : u→ Hu,

where Hu is the mean curvature of Graphu given by (2.16).
Now we will show that composition is continuous as follows.

Lemma 4.2. Given s1 ≥ 3, δ1 > −2 and θ ∈ (0, 1). Consider Bρ ⊂
Hs1+1,δ1− 1

2
(Σ) with ρ small enough satisfying Condition (A) as above for

the θ. Then the composition map:

(f, u)→ f̃ = f(x, u(x) + t),

is a continuous map Hs′,δ′(Ωθ)× Bρ → Hs′,δ′(Ωθ/2), for s′ ≤ s1 + 1 and
δ′ ∈ R. Furthermore, when restricted to Graphu,

(f, u)→ f(x, u(x))

is a continuous map Hs′,δ′(Ωθ)× Bρ → Hs′−1,δ′+ 1
2
(Σ,Ωθ/2).

Proof. Condition (A) (4.1) implies that |u(x)| ≤ (θ/2)σ(x)−κ for some −1 <
κ < δ1 + 1, so we can consider a well-defined map F : Ωθ → Ω 3

2
θ, where

F : (x, t)→ (x, u(x) + t). Then det(DF ) = 1, so F is a diffeomorphism Ωθ →
F (Ωθ). Furthermore, (F − id)(x, t) = (0, u(x)) ∈ Hs1+1,δ1(Ωθ). Now we can
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apply Lemma 2.7 to the mapping F , so f → f̃ = f ◦ F is an isomorphism
Hs′,δ′(Ωθ)→ Hs′,δ′(F (Ωθ)). In fact, by the bound of u, we know that F (Ωθ)
contains Ωθ/2, so clearly f̃ lies in Hs′,δ′(Ωθ/2), and we have the continuity
for the first factor f . For the second factor u, we only need to show that
u→ f(x, u(x) + t) is continuous Hs1+1,δ1− 1

2
(Σ)→ L2

δ′(Ωθ/2) for fixed f ∈
L2

δ′(Ωθ). Using multiplication Lemma 2.6 recursively to higher derivatives as
in the proof of [10, Theorem 2.3] gives the continuity inHs′,δ′ . Suppose un →
u in Hs1+1,δ1− 1

2
, hence un → u in C0

κ for some −1 < κ < δ1 + 1. To show
the L2

δ′ continuity, we can approximate f by compactly supported smooth
function g in L2

δ′ , then |f(x, un(x) + t)− f(x, u(x) + t)| ≤ |f(x, un(x) + t)−
g(x, un(x) + t)| + |g(x, u(x) + t) − f(x, u(x) + t)| + |g(x, un(x) + t)−
g(x, u(x) + t)|. The first and second terms can be chosen very small in L2

δ′ ,
and the third one converge to 0 in L2

δ′ . So we get the continuity. For the
restriction, we can directly apply the restriction Lemma 2.8 to f̃ . �

Moreover, we also have the differentiability w.r.t. u.

Lemma 4.3. Given s1≥3, δ1>−2, θ ∈ (0, 1), δ′ ∈ R and f ∈ Hs1+1,δ′(Ωθ).
Consider Bρ ⊂ Hs1+1,δ1− 1

2
(Σ) with ρ chosen to satisfy Condition (A) in (4.1)

for the θ. Then

(4.4) F : u→ f(x, u(x)),

is continuous Fréchet differentiable as a map Bρ → Hs1−1,δ′+ 1
2
(Σ). Further-

more, the Fréchet derivative is given by formal derivatives,

(4.5) DuF(v) = ∂tf(x, u(x)) · v,

where v ∈ Hs1+1,δ1− 1
2
(Σ).

Proof. Using Lemma 4.2, we know that f(x, u(x) + t) lies in Hs1+1,δ′(Ωθ/2),
and f(x, u(x)) ∈ Hs1,δ′+ 1

2
(Σ,Ωθ/2). Hence ∂tf(x, t) ∈ Hs1,δ′+1(Ωθ/2) and

∂tf(x, u(x)) ∈ Hs1−1,δ′+ 3
2
(Σ). To show that F is Fréchet differentiable (see

[5, Definition 1.1.1]), we can first show that it is Gateaux differentiable
(see [5, Definition 1.1.2]), i.e.,

lim
τ→0

‖f(x, u(x) + τv(x))−f(x, u(x))−∂tf(x, u(x))(τv(x))‖Hs1−1,δ′+ 1
2
(Σ)

τ‖v(x)‖Hs1+1,δ1− 1
2
(Σ)

= 0,

(4.6)
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for any v ∈ Hs1+1,δ1− 1
2
(Σ). Using Newton-Leibniz formula,

(4.7)

f(x, u(x) + τv(x))− f(x, u(x)) =
(∫ 1

s=0
∂tf(x, u(x) + sτv(x))ds

)
(τv(x)),

Using the multiplication Lemma (2.3) in the caseHs1−1,δ′+ 3
2
(Σ)×Hs1+1,δ1− 1

2

(Σ)→ Hs1−1,δ′+ 1
2
(Σ), we only need to show,

lim
τ→0

‖∂tf(x, u(x) + τv(x))− ∂tf(x, u(x))‖Hs1−1,δ′+ 3
2
(Σ) = 0.

This convergence follows from the continuity of (∂tf, u)→ ∂tf(x, u(x)) as a
map Hs1,δ′+1(Ωθ)×Hs1+1,δ1− 1

2
(Σ)→ Hs1−1,δ′+ 3

2
(Σ) in Lemma 4.2. Now the

multiplication operator Lu : v → ∂tf(x, u(x)) · v is a bounded linear opera-
tor in L(Hs1+1,δ1− 1

2
(Σ), Hs1−1,δ′+ 1

2
(Σ)) with

‖Lu‖L(Hs1+1,δ1− 1
2
(Σ),Hs1−1,δ′+ 1

2
(Σ)) ≤ C‖∂tf(x, u(x))‖Hs1−1,δ′+ 3

2
(Σ)

by inequality (2.3). The operator Lu is also continuous w.r.t u by Lemma 4.2,
so we know that F is Fréchet differentiable by [5, Theorem 1.1.3], and
DuF(v) = ∂tf(x, u(x)) · v. �

Now we can prove the differentiability of Hu w.r.t. u.

Proposition 4.4. For s ≥ 4, δ > −2. Given a vacuum data (g, k) ∈
VCs+1,δ+ 1

2
(Σ) and the boost ratio θ as in the beginning of this section. If Bρ ⊂

Hs,δ− 1
2
(Σ) with ρ satisfying Conditions (A) and (B) as in (4.1) and (4.2)

for the θ, then the mean curvature operator (4.3) H : Bρ → Hs−2,δ+ 3
2
(Σ) is

continuously differentiable w.r.t. u, i.e., (DuH) ∈ C
(Bρ, L(Hs,δ− 1

2
(Σ),

Hs−2,δ+ 3
2
(Σ))

)
. Furthermore, DuH is given by the formal variational

formula.

Proof. By the choice of ρ, H is well-defined. Write out the expression for Hu

in (2.16) in local coordinates {(t, xi) : i = 1, 2, 3} of Ωθ as follows:

Hu = (gM )ij〈∇αi
N,αj〉γ = ν · (gM )ij〈∇∂i+ui∂t

(U + T ), ∂j + uj∂t〉γ
= ν · (gM )ij

{
(∂i + ui∂t)(U + T )μ〈∂μ, ∂j + uj∂t〉γ

+ (U + T )μ〈∇∂i+ui∂t
∂μ, ∂j + uj∂t〉γ

}
= ν · (γij +

ν2

α2
(βi − αU i)(βj − αU j))

{
(∂i + ui∂t)(Uμ + Tμ)

· (γμj + ujγμt) + (Uμ + Tμ)(Γiμ,j + uiΓtμ,j + ujΓiμ,t + uiujΓtμ,t)
}
,

(4.8)
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where Γμν,σ is the Christoffel symbol for γ, and all coefficients of γ are
evaluated at (x, u(x)). Except for the term ν, Hu is an algebraic expression
containing two type of terms in (4.8). One type of terms are the composition
of the coefficients of (γ − η̃) and ∂γ with (x, u(x)), and the other terms
contains ∂u and ∂2u. The only term appears in the denominator is 1 +
〈β,Du〉g, and |〈β,Du〉g| ≤ 1

2 by the choice of ρ as in Condition (B).
Since (γ − η̃) ∈ Hs+1,δ(Ωθ), the composition of the metric coefficients of

(γ − η̃) with (x, u(x)), i.e., {(γμν − η̃μν), (γμν − η̃μν), (α− 1), βi, βi, (gij −
eij), (gij − eij)}(x, u(x)) are continuously differentiable w.r.t. u as maps
Hs,δ− 1

2
(Σ)→ Hs−2,δ+ 1

2
(Σ) by Lemma 4.3. Similarly the composition of the

coefficients of ∂γ with (x, u(x)), i.e., (∂γ)(x, u(x)) are also continuously dif-
ferentiable w.r.t. u as maps Hs,δ− 1

2
(Σ)→ Hs−2,δ+ 3

2
(Σ). The terms ∂u and

∂2u are trivially continuous differentiable w.r.t. u as maps Hs,δ− 1
2
(Σ)→

Hs−1,δ+ 1
2
(Σ) and Hs,δ− 1

2
(Σ)→ Hs−2,δ+ 3

2
(Σ), respectively. Hence U =

αDu
1+〈β,Du〉 ∈ Hs−1,δ+ 1

2
(Σ) and is continuously differentiable w.r.t. u, hence

is ν2 − 1 = |U |2
1−|U |2 ∈ Hs−1,δ+ 3

2
(Σ), since |U | ≤ 1

2 . So by similar argument as
that for α in Lemma 4.1, (ν − 1) is also continuous differentiable w.r.t. u as
Hs,δ− 1

2
(Σ)→ Hs−2,δ+ 3

2
(Σ). Combing all them together, Hu is continuously

differentiable w.r.t. u by the multiplication Lemma 2.6. �

4.2. Linear theory

Given a 3-dimensional manifold (Σ, e) which is Euclidean at infinity. Let
us give some results about linear elliptic operators which are asymptotic to
the Laplacian �e on (Σ, e). Such type of elliptic operators have been widely
studied in [2, 7, 10, 19].

Let L be an operator on (Σ, e) of the form:

Lu = Σ2
k=0ak∂

ku,

with u and Lu functions on Σ, satisfying:

λe ≤ a2 ≤ λ−1e as metrics, with λ the elliptic coefficient ;
(a2 − e) ∈ Hs0+1,δ0(Σ), a1 ∈ Hs0,δ0+1(Σ), a0 ∈ Hs0−1,δ0+2(Σ),

(4.9)

where s0 ≥ 4, δ0 > −3
2 . We will show that in certain weighted spaces, such

L has uniformly bounded inverse on the orthogonal complement of ker(L)
depending only on the norms of the coefficients. First we have,
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Lemma 4.5. Let s0, δ0 be as in (4.9). Given s ≤ s0, −3
2 < δ < −1

2 . There
exist a constant C and a large r > R, depending only on s0, δ0, the elliptic
coefficient λ and the norms ‖a2 − e‖Hs0,δ0 (Σ), ‖a1‖Hs0−1,δ0+1(Σ) and
‖a0‖Hs0−2,δ0+2(Σ), such that for any u ∈ Hs,δ−1(Σ),

(4.10) ‖u‖Hs,δ−1(Σ) ≤ C(‖Lu‖Hs−2,δ+1(Σ) + ‖u‖Hs−2(Σint,2r)),

where Σint,2r is the union of Σint with all the annuli B2r \BR inside each
end Σi, and Hs−2 is the standard L2 Sobolev space on Σint,2r.

Proof. Let Σ = Σint ∪l
i=1 Ei. Given a function χ ∈ C∞(R3 \B1), such that

0 ≤ χ ≤ 1, χ ≡ 1 on R
3 \B2 and χ ≡ 0 near ∂B1. We can find a partition

of unity {χi,r}l
i=0 of Σ for r > R, with χi,r(x) = χ(x/r) for x ∈ Ei

∼= R
3 \

BR, and χi,r(x) = 0 for x ∈ Σ \ Ei, and χ0,r(x) = 1− Σl
i=1χi,r(x). Then u =

Σl
i=1ui,r, with ui,r = χi,ru. Let us fix an end Ei and ui,r and forget the sub-

index i now. Since −3
2 < δ < −1

2 corresponds to non-exceptional value in [2],
we can apply [2, Theorem 1.7] with p = 2 here,

‖ur‖Hs,δ−1(R3) ≤ C1‖�ur‖Hs−2,δ+1(R3)

≤ C1

{‖Lur‖Hs−2,δ+1(E) + ‖(L−�)ur‖Hs−2,δ+1(E)

}
,

(4.11)

where � is the Laplacian operator w.r.t. δij and C1 a uniform constant.

‖Lur‖Hs−2,δ+1(E) ≤ ‖χrLu‖Hs−2,δ+1(E) + ‖2aij
2 ∂iu∂jχr

+ (aij
2 ∂

2χr + ai
1∂χr)u‖Hs−2,δ+1(E)

≤ C2(r)(‖Lu‖Hs−2,δ+1(E) + ‖u‖Hs−1(Ar)),

(4.12)

with Ar = B2r \Br, and C2(r) is a constant depending only on r and ‖a2 −
e‖Hs0,δ0 (Ar), ‖a1‖Hs0−1,δ0+1(Ar). Since δ0 > −3

2 , there exists some ε > 0, such
that δ1 = δ0 − ε > −3

2 . Using the multiplication Lemma 2.5,

‖(L−�)ur‖Hs−2,δ+1(Er) = ‖(aij
2 − δij)∂2ur + ai

1∂ur + a0ur‖Hs−2,δ+1(Er)

≤ C3

(‖a2 − e‖Hs,δ1 (Er) + ‖a1‖Hs−1,δ1+1(Er)

+ ‖a0‖Hs−2,δ1+2(Er)

)‖ur‖Hs,δ−1(Er),

(4.13)

where Er = R
3 \Br and C3 a uniform constant. Now ‖a2 − e‖Hs,δ1 (Er) +

‖a1‖Hs−1,δ1+1(Er) + ‖a0‖Hs−2,δ1+2(Er)≤
(‖a2 − e‖Hs,δ0 (Er) + ‖a1‖Hs−1,δ0+1(Er) +

‖a0‖Hs−2,δ0+2(Er)

)
r−ε for r large enough. So we can always choose a r > R,

depending only on δ0 and
(‖a2 − e‖Hs,δ0 (Er) + ‖a1‖Hs−1,δ0+1(Er) +
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‖a0‖Hs−2,δ0+2(Er)

)
, such that ‖(L−�)ur‖Hs−2,δ+1(Er) ≤ 1

2C1
‖ur‖Hs,δ−1(Er).

Putting them back to inequality (4.11), we get

(4.14) ‖ur‖Hs,δ−1(Σ) ≤ C4{‖Lu‖Hs−2,δ+1(E) + ‖u‖Hs−1(Ar)},

where C4 depends only on C2(r). Using an interpolation inequality (see [7,
Lemma 2.2]) to ‖u‖Hs−1(Ar), we can get the estimate of (4.10) on each end.
Applying the standard L2 estimates to u0,r on Σint,2r (see [6, page 547,
Corollary 2.2]),

(4.15) ‖u0,r‖Hs(Σint,2r) ≤ C5{‖Lu0,r‖Hs−2(Σint,2r) + ‖u0,r‖Hs−2(Σint,2r)},

where C5 depends only on s0, the elliptic coefficient λ and the norms ‖a2 −
e‖Hs(Σint,2r), ‖a1‖Hs−1(Σint,2r) and ‖a0‖Hs−2(Σint,2r). Combing results on all ends
Ei,r and Σint,2r together, we can get (4.10) with r and constant C satisfying
the requirement. �

Now we can prove a lemma similar to [2, Theorem 1.10] and [19, Theorem
5.6].

Lemma 4.6. Let s0, δ0 be as in (4.9). Given s ≤ s0, −3
2 < δ < −1

2 , the
operator L is a Fredholm operator:

Hs,δ−1(Σ)→ Hs−2,δ+1(Σ),

i.e., L has finite-dimensional kernel ker(L, δ − 1) = {v ∈ Hs,δ−1(Σ) :
Lv = 0}, and finite-dimensional co-kernel coker(L, δ − 1).

Proof. From the multiplication Lemma 2.5, we know that L is a bounded
linear map Hs,δ−1(Σ)→ Hs−2,δ+1(Σ). Standard argument using inequality
(4.10) as in [2, Theorem 1.10] shows that the null space N(L) is finite-
dimensional and L has closed range. So L is semi-Fredholm.

To show that L has finite-dimensional co-kernel, we will borrow the
techniques in [19, Theorem 5.6]. First, inequality (4.13) shows that the
operator norm of (L−�) : Hs,δ−1(Er)→ Hs−2,δ+1(Er) is o(1) as r →∞.
So for large enough r, the fact that � is Fredholm by [2, Theorem 1.7]
and that the Fredholm property is open w.r.t operator norms [16, Proposi-
tion 16.35] show that Li = �+ χi,r(L−�) is Fredholm on R

3, where clearly
Li = L on E2r. By [16, Theorem 16.32] there exists a bounded linear operator
Si : Hs−2,δ+1(R3)→ Hs,δ−1(R3), such that LiSi = id+Ki with Ki a com-
pact operator. Now L : Hs,δ−1(Σint,8r)→ Hs−2,δ+1(Σint,8r) is Fredholm since
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Σint,8r is compact, so there exists a Fredholm inverse S0 : Hs−2,δ+1(Σint,8r)→
Hs,δ−1(Σint,8r), such that LS0 = id+K0, for K0 compact operator. Define

(4.16) Su = χ0,4rS0u0,8r +Σl
i=1χi,2rSiui,r,

which is a bounded linear operator Hs−2,δ+1(Σ)→ Hs,δ−1(Σ). Then a cal-
culation as in [19, (5.6.5)] shows that LS = id+K, where K is a compact
operator. Hence L has finite-dimensional co-kernel. �

The Fredholm index of L is defined to be:

i(L, δ − 1) = dim ker(L, δ − 1)− dim coker(L, δ − 1).

By comparing the index of L to that of the Laplacian �e of e, we can show
that L is surjective when a0 ≤ 0.

Lemma 4.7. Let s0, δ0 be as in (4.9). Given s ≤ s0, −3
2 < δ < −1

2 . Sup-
pose a0 ≤ 0, then L is surjective. Furthermore, dim ker(L, δ − 1) = dδ−1 =
dim ker(�e, δ − 1). If we denote ker(L, δ − 1)⊥ to be the orthogonal com-
plement of ker(L, δ − 1) w.r.t the L2

δ−1 inner product 〈·, ·〉L2
δ−1(Σ) as in Def-

inition 2.3, then:

L : ker(L, δ − 1)⊥ → Hs−2,δ+1(Σ),

is an isomorphism.

Proof. Since L can be joined continuously to �e by Lt = tL+ (1− t)�e, we
know i(L, δ − 1) = i(�e, δ − 1). [19, Theorem 6.2] says that �e is surjective
when δ − 1 < −1

2 . In order to show that L is surjective, or equivalently
dim coker(L, δ − 1) = 0, we only need to show that dim ker(L, δ − 1) ≤
dim ker(�e, δ − 1). This comes from the asymptotical expansion given in
[2] as follows. For u ∈ ker(L, δ − 1), by [2, Theorem 1.17], Lu = 0 implies
that on each end Ei, there exists a harmonic homogenous function hk of
order k ≤ k(δ − 1), where k(δ̃) = max{k ∈ Z : k ≤ −(δ̃ + 3

2)}21, such that
u = hk + o(rk−β) for 0 < β < δ + 3

2 . In our case, k(δ − 1) = 0. In fact, if
u �= 0, there must exist at least one end, on which k ≥ 0. Or the decay
implies that u = o(1) at infinity on Σ, so u = 0 by maximum principle since
a0 ≤ 0. So dim ker(L, δ − 1) is less or equal than the the number of linearly
independent harmonic polynomials of order ≤ k(δ − 1) multiplied with the

21See the definition for k(δ) in [2, Equation (1.21)]. Their δ is the same as
−(δ + 3

2 ) here.
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number of ends. It is easy to see that the basis of ker(�e, δ − 1) just consists
of functions which have main part as the harmonic polynomial of oder ≤
k(δ − 1) on one end, and O(1/r) parts in other ends. So the leading terms
shows that dim ker(L, δ − 1) ≤ dim ker(�e, δ − 1). The isomorphism on
the orthogonal complement follows from the fact that L is bijective. �

In fact, we can show a uniform norm bound for the inverse of L on
ker(L, δ − 1)⊥.

Lemma 4.8. Let s0, δ0 be as in (4.9). Given s ≤ s0, −3
2 < δ < −1

2 . Sup-
pose a0 ≤ 0. Denote the inverse of L : ker(L, δ − 1)⊥ → Hs−2,δ+1(Σ) by L−1,
then there exists a constant C depending only on s0, δ0, the elliptic coefficient
λ and the norms ‖a2 − e‖Hs0+1,δ0 (Σ), ‖a1‖Hs0,δ0+1(Σ) and ‖a0‖Hs0−1,δ0+2(Σ),
such that for any v ∈ Hs−2,δ+1(Σ),

(4.17) ‖L−1v‖Hs,δ−1(Σ) ≤ C‖v‖Hs−2,δ+1(Σ).

Proof. We only need to show that for any u ∈ ker(L, δ − 1)⊥,

‖u‖Hs,δ−1(Σ) ≤ C1‖Lu‖Hs−2,δ+1(Σ)

for a uniform constant C1 depending only on s0, δ0, the elliptic coefficient
λ, and the norms ‖a2 − e‖Hs0+1,δ0 (Σ), ‖a1‖Hs0,δ0+1(Σ), and ‖a0‖Hs0−1,δ0+2(Σ).
By contradiction argument, suppose that the statement is wrong, which
means that there exists a sequence of operators Li with ai,0 ≤ 0, uniformly
bounded elliptic coefficient λi ≥ λ0 > 0 and uniformly bounded coefficients
‖ai,2 − e‖Hs0+1,δ0(Σ), ‖ai,1‖Hs0,δ0+1(Σ), ‖ai,0‖Hs0−1,δ0+2(Σ) ≤ C0, and a sequence
of functions ui ∈ ker(Li, δ − 1)⊥, such that ‖ui‖Hs,δ−1(Σ) ≥
i‖Liui‖Hs−2,δ+1(Σ). By re-normalizing, we get a sequence of functions ui, with
‖ui‖Hs,δ−1(Σ) = 1, while ‖Liui‖Hs−2,δ+1(Σ) → 0. By weak compactness, there
exists a subsequence, which we still denote by Li, such that the coefficients of
Li converges weakly to that of a linear operator L∞ with λ0e ≤ a∞,2 ≤ λ−1

0 e,
a∞,0 ≤ 0 and ‖a∞,2 − e‖Hs0+1,δ0(Σ), ‖a∞,1‖Hs0,δ0+1(Σ), ‖a∞,0‖Hs0−1,δ0+2(Σ) ≤
C0. Using inequality (4.10), there is a uniform constant C2,

‖ui − uj‖Hs,δ−1(Σ) ≤ C2(‖Li(ui − uj)‖Hs−2,δ+1(Σ) + ‖ui − uj‖Hs−2(Σint,2r))
≤ C2(‖Liui‖Hs−2,δ+1(Σ) + ‖(Li − Lj)uj‖Hs−2,δ+1(Σ)

+ ‖Ljuj‖Hs−2,δ+1(Σ) + ‖ui − uj‖Hs−2(Σint,2r)).

(4.18)

Now ‖(Li − Lj)uj‖Hs−2,δ+1(Σ) ≤ C(‖a2,i − a2,j‖Hs0,δ′−1(Σ) + ‖a1,i −
a1,j‖Hs0−1,δ′ (Σ) + ‖a0,i − a0,j‖Hs0−2,δ′+1(Σ)) for some δ0 > δ′ > −3

2 by the
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multiplication Lemma 2.6. The compact embedding ( [7, Lemma 2.1]) of
Hs0+1−k,δ0−1+k(Σ) ⊂ Hs0−k,δ′−1+k(Σ) for k = 0, 1, 2 imply that
‖(Li − Lj)uj‖Hs−2,δ+1(Σ) → 0 for a subsequence of {Li}. Together with the
compactness of Hs,δ−1(Σ) ⊂ Hs−2(Σint,2r), there exists a subsequence, which
we still denote by ui, such that ui converge strongly in Hs,δ−1(Σ) to a
function u∞, with ‖u∞‖Hs,δ−1(Σ)=1. Furthermore we have that L∞u∞ = 0
weakly by the weak convergence, and hence strongly in Hs−2,δ+1(Σ) by ellip-
tic regularity.

By Lemma 4.7, we know that dimker(Li, δ − 1) ≡ dδ−1. We claim that
ker(Li, δ − 1) converge to a dδ−1-dimensional linear subspace of ker(L∞,
δ − 1). Let {vi,a}dδ−1

a=1 be an L2
δ−1 orthonormal basis for ker(Li, δ − 1), with

‖vi,a‖Hs,δ−1(Σ) = 1. By equation (4.18),

‖vi,a − vj,a‖Hs,δ−1(Σ) ≤ C(‖(Li − Lj)vj,a‖Hs−2,δ+1(Σ)

+ ‖vi,a − vj,a‖Hs−2(Σint,2r)).

Similar argument as above implies that a subsequence of vi,a converge
strongly in Hs,δ−1(Σ) to some v∞,a. Hence v∞,a ∈ ker(L∞, δ − 1), and
{v∞,a}dδ−1

a=1 are also orthogonal in L2
δ−1 with ‖v∞,a‖Hs,δ−1(Σ) = 1. Since L∞

satisfies all the requirement of Lemma 4.7, dimker(L∞, δ − 1) = dδ−1. Hence
the limit of ker(Li, δ − 1) is exactly the entire ker(L∞, δ − 1). As ui is per-
pendicular to ker(Li, δ − 1) in L2

δ−1, passing to the limit, we know that u∞
is perpendicular to ker(L∞, δ − 1) in L2

δ−1 too, which is a contradiction to
that ‖u∞‖Hs,δ−1(Σ) = 1 and L∞u∞ = 0. So we finish the proof. �

4.3. Existence of maximal data

Now let us calculate the linearization of H with respect to u at (g, k, 0).
Fix a vacuum data (g, k) ∈ VCs+2,δ+ 1

2
(Σ) with the unique boost solution

(V, γ) given by Theorem 3.7. Recall the form (2.5) of γ in local coordinates
(xi, t) of Ωθ. According to the initial data equations (3.5) and (3.6) for γ,
the coefficients restricted to t = 0 slice are given by:

(4.19) α|Σ ≡ 1; β|Σ ≡ 0.

In fact, our choice of α|Σ and β|Σ implies that ∂t|Σ is the unit normal of
Σ. Now recall the second variational formula for the mean curvature in [1,
Section 2]. Let X be a vector field in a neighborhood of Σ with associated
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flow φs : V → V. Denote H(s) by the mean curvature of φs(Σ), then

∂s(H(s))|s=0 = −�g〈X,N〉+ 〈X,N〉(|k|2g +Ricγ(N,N)) + 〈X,∇gH〉,
(4.20)

where N is the unit normal of Σ insider V, and Ricγ the Ricci curvature
of γ. In our case, Ricγ ≡ 0 by (1.3) since our (V, γ) is vacuum, and the
unit normal N = ∂t on Σ. We can choose the vector field to be X = v∂t,
where v is a compactly supported smooth scalar function, so 〈X,∇gH〉 = 0.
Then ∂sH(s)|s=0 is the linearization of H w.r.t u, and 〈X,N〉 = −v. Now
combining all and using Proposition 4.4, we have,

Lemma 4.9. Using notations in Proposition 4.4, the Fréchet derivative of
H(g, k, u) with respect to the factor u at a vacuum data (g, k, 0) is a linear
operator L0 : Hs,δ− 1

2
(Σ)→ Hs−2,δ+ 3

2
(Σ) given by:

(4.21) (DvH)(g,k,0) = L0v = (�g − |k|2g)v.

Now let us focus on the operator L0. L0 is in fact Fredholm and sur-
jective by Lemmas 4.6 and 4.7. By making use the fact that L0 has finite-
dimensional kernel and is surjective, we can get the existence of solutions
of H(g, k, u) = 0 for (g, k) with small trace trgk by a perturbation method,
but no uniqueness due to the existence of non-trivial kernel ker(L0, δ − 1

2).
We will give an existence and uniqueness theorem in the orthogonal com-
plement of the kernel in order to find symmetry preserving solutions in the
following section. Let us first give a Quantitative Inverse Function Theorem
motivated by [20].

Theorem 4.10. Let X, Y be Banach spaces, and U ⊂ X an open set.
Suppose F : U → Y is a continuous map, and has Fréchet derivative w.r.t.
x, such that ∂F

∂x is continuous. For a point x0 ∈ U , with F (x0) = y0. Suppose
∂F
∂x (x0) : X → Y is invertible, and ‖[∂F

∂x (x0)
]−1‖ ≤ C. Assume that we can

find r0 > 0, such that for any x ∈ Br0(x0) ⊂ U ,

(4.22) ‖∂F
∂x

(x)− ∂F

∂x
(x0)‖ ≤ 1

2C
.

Then for any y ∈ Y with

|y − y0|Y <
r0
2C

,

there exists a unique x ∈ Br0(x0), such that F (x) = y.



550 Xin Zhou

Proof. Fix a y ∈ Br0/2C(y0) ⊂ Y . Let us consider the map T : Br0(0) ⊂ X →
X, defined by

T (x) = x−
[
∂F

∂x
(x0)

]−1

(F (x0 + x)− y).

x is a fixed point if and only if F (x0 + x) = y. So let us use the Banach
Fixed Point Theorem to find a fixed point for T in Br0(0). First, for any
x1, x2 ∈ Br0(0),

|T (x1)− T (x2)|X
= |(x1 − x2)−

[
∂F

∂x
(x0)

]−1

(F (x0 + x1)− F (x0 + x2))|X

≤ ‖[∂F
∂x

(x0)
]−1‖ · |∂F

∂x
(x0)(x1 − x2)− ∂F

∂x
(x0 + x̄)(x1 − x2)|Y

≤ C‖∂F
∂x

(x0)− ∂F

∂x
(x0 + x̄)‖ · |x1 − x2|X

≤ C
1
2C
|x1 − x2|X ≤ 1

2
|x1 − x2|X ,

(4.23)

where we used the mean value theorem to estimate (F (x0 + x1)− F (x0 +
x2)) in the first “ ≤ ”, and condition (4.22) in the third “ ≤ ”. So T is a
contraction map on Br0(0). Next, for any x ∈ Br0(0), and |y − y0|Y < r0

2C ,

|T (x)|X
≤ ‖

[
∂F

∂x
(x0)

]−1

‖ · |∂F
∂x

(x0)x− (F (x0 + x)− F (x0))− (y − F (x0))|Y

≤ C

(
|
(
∂F

∂x
(x0)− ∂F

∂x
(x0 + x̄)

)
x|X + |y − F (x0)|Y

)

≤ C

(
‖∂F
∂x

(x0)− ∂F

∂x
(x0 + x̄)‖ · |x|X + |y − F (x0)|Y

)

< C

(
1
2C

r0 +
r0
2C

)
= r0,

(4.24)

where we use condition (4.22) in the last “ < ”. So T maps Br0(0) to Br0(0).
By applying the Banach Fixed Point Theorem (or Contraction Mapping
Theorem) to T : Br0(0)→ Br0(0), we finish the proof. �
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Remark 4.11. This can be viewed as a careful reworking of the proof
of [5, Theorem 1.2.1]. Theorem 3.1 and Theorem 3.2 in [20] also gave a
proof about the quantitative inverse function theorem.

Theorem 4.12. For s ≥ 4, −2 < δ < −1. Fix a 3-manifold (Σ, e) which is
Euclidean at infinity and a λ>0. Given a vacuum data (g, k)∈VCs+2,δ+ 1

2
(Σ),

with g ≥ λe, there exist ε > 0 and ρ′ > 0 small enough, depending only on the
norms ‖g − e‖Hs+2,δ+ 1

2
(Σ) + ‖k‖Hs+1,δ+ 3

2
(Σ) and the elliptic constant λ, such

that if ‖trgk‖Hs−2,δ+ 3
2
(Σ) ≤ ε, there exists a unique function u ∈ ker(L0, δ −

1
2)
⊥ with ‖u‖Hs,δ− 1

2
(Σ) ≤ ρ′, such that u is a solution of the maximal surface

equation (1.9).

Proof. For the given (g, k) ∈ VCs+2,δ+ 1
2
(Σ) with θ the boost ratio, we can

choose a ρ-ball Bρ ⊂ Hs,δ− 1
2
(Σ), with ρ small enough depending only on θ,

‖g − e‖Hs+2,δ+ 1
2
+ ‖k‖Hs+1,δ+ 3

2
and λ as in Proposition 4.4. Then the map

H is continuously differentiable w.r.t. u as a map Bρ ∩ ker(L0, δ − 1
2)
⊥ →

Hs−2,δ+ 3
2
(Σ), and the Fréchet derivative is (DuH)(g,k,0)=L0v=(�g − |k|2g)v

by Lemma 4.9. The coefficient of L0 satisfies the hypothesis (4.9), where
s0 = s+ 1 and δ0 = δ + 1

2 by the multiplication Lemma 2.5, the elliptic con-
stant equals to λ and ‖a0,2 − e‖Hs+2,δ+ 1

2
(Σ), ‖a0,1‖Hs+1,δ+ 3

2
(Σ), ‖a0,0‖Hs,δ+ 5

2
(Σ)

are bounded from above by a constant depending only on ‖g − e‖Hs+2,δ+ 1
2
(Σ)

and ‖k‖Hs+1,δ+ 3
2
(Σ). So (DuH)(g,k,0) is an isomorphism ker(L0, δ − 1

2)
⊥ →

Hs−2,δ+ 3
2
(Σ) by Lemma 4.7, since a0,0 = −|k|2g ≤ 0. Now we will show that

the conditions in the Quantitative Inverse Function Theorem 4.10 are sat-
isfied. By Lemma 4.8, there exists a constant C0 depending only on λ,
‖a0,2 − e‖Hs+2,δ+ 1

2
(Σ), ‖a0,1‖Hs+1,δ+ 3

2
(Σ), ‖a0,0‖Hs,δ+ 5

2
(Σ), such that,

‖L−1
0 ‖L(Hs−2,δ+ 3

2
(Σ), ker(L0,δ− 1

2
)⊥) ≤ C0.

Abbreviate the operator norm ‖ · ‖L(Hs,δ− 1
2
(Σ), Hs−2,δ+ 3

2
(Σ))=‖ · ‖. Let us study

‖DuH(g, k, u)−DuH(g, k, 0)‖. Fix the boost evolution (Ωθ, γ) of (g, k), with
‖γ − η̃‖Hs+2,δ(Ωθ) uniformly bounded by a constant depending only on λ and
‖g − e‖Hs+2,δ+ 1

2
(Σ) + ‖k‖Hs+1,δ+ 3

2
(Σ). Then DuH(g, k, u) is the first variation

Du(Hu) of Hu w.r.t. u inside (Ωθ, γ). From the formula of Hu in (4.8), we
know that Du(Hu) is a second order differential operator. The coefficients of
Du(Hu) are constituted by algebraic expressions of ∂u, ∂2u and components
of γ, ∂γ, ∂2γ evaluated at (x, u(x)). Let a be any component of ∂2γ (similar
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for γ and ∂γ), using the Newton-Leibniz formula,

a(x, u(x))− a(x, 0) =
(∫ 1

τ=0
∂ta(x, τu(x))dτ

)
u(x),

where ∂ta(x, u(x)) has uniform Hs−2,δ+ 7
2
(Σ) norm depending only on

‖∂3γ‖Hs−1,δ+3(Ωθ) and ρ by Lemma 4.2. So ‖a(x, u(x))− a(x, 0)‖Hs−2,δ+ 5
2
(Σ) ≤

C3‖u‖Hs,δ− 1
2
(Σ) by the multiplication Lemma 2.6, where C3 depends only on

‖γ − η̃‖Hs+2,δ(Ωθ) and ρ. Hence by comparing the coefficients of DuH(g, k, u)
with DuH(g, k, 0), we can choose ‖u‖Hs,δ− 1

2
(Σ) ≤ ρ′ with ρ′ small enough,

depending only on ‖γ − η̃‖Hs+2,δ(Ωθ) and C0, such that,

(4.25) ‖DuH(g, k, u)−DuH(g, k, 0)‖ ≤ 1
2C0

.

For the ρ′ chosen above, if we take ε < ρ′

2C0
, then

‖0−H(g, k, 0)‖Hs−2,δ+ 3
2
(Σ) = ‖trgk‖Hs−2,δ+ 3

2
(Σ) <

ρ′

2C0
.

Now by the Quantitative Inverse Function Theorem 4.10, if we choose the
ε and ρ′ as above, where ε and ρ′ depend only on λ, ‖g − e‖Hs+2,δ+ 1

2
(Σ) and

‖k‖Hs+1,δ+ 3
2
(Σ), there exists a unique u ∈ Bρ′ ∩ ker(L0, δ − 1

2)
⊥, such that u

solves H(u) = 0. �

4.4. Proof of the main theorem

Here we will study the properties of the maximal graph gotten above. We will
improve the regularity of the solution using a bootstrap argument, and show
that the ADM mass of the maximal graph is the same as that of the given
data. Moreover the maximal graph is axisymmetric if (g, k) is axisymmetric,
and the angular momentum of the maximal graph is the same as that of
(g, k).

In Theorem 4.12, the solution u has only s weak derivatives due to the
Contraction Mapping Principle. In fact, by exploring the structure of the
mean curvature operator (4.8), we can gain more regularity for u.
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Lemma 4.13 (Regularity analysis). In Theorem 4.12, the solution u ∈
Hs+2,δ− 1

2
(Σ). Denote M = Graphu, and let gM be the metric and kM the sec-

ond fundamental form induced by the embedding M ⊂ (V, γ), then
(gM , kM ) ∈ VCs+1,δ+ 1

2
(Σ).

Proof. In the local coordinates formula (4.8), we can collect together all the
terms containing ∂2

iju, then the maximal surface equation H(u) = 0 can be
rewritten as a linear second order elliptic equation for u with ∂u and u terms
as coefficients:

(gM )ij(x, u(x))uij = f(x),

where f(x) is a polynomial of gM (x, u(x)), ∂u, γ(x, u(x)) and (∂γ)(x, u(x)).
First the spacelike property of M = Graphu implies that (gM )ij is elliptic.
Furthermore, (gM )ij(x, u(x))− eij(x) = γij − eij + ν2

α2 (βi − αU i)(βj − αU j)
∈ Hs−1,δ+ 1

2
(Σ), f(x) ∈ Hs−1,δ+ 3

2
(Σ) by the argument in the proof of Propo-

sition 4.4, Lemma 4.2, and the Banach algebra property in Lemma 2.6.
Since (gM )ij lie in C0 and Hs−1 locally, u ∈ (Hs+1)loc(Σ) by standard ellip-
tic regularity theory [18]. Furthermore, the linear operator Lu = (gM )ij∂2

iju
satisfies the hypothesis of the weighted elliptic regularity [7, Theorem 6.1]
since s ≥ 4, hence u ∈ Hs+1,δ− 1

2
(Σ) by [7, Theorem 6.1]. Now we can boot-

strap this process. In fact, by the composition Lemma 4.2, the right-hand
side f(x) lies in at most Hs,δ+ 3

2
(Σ) since there are ∂γ(x, u(x)) terms. So

bootstrap ends when u ∈ Hs+2,δ− 1
2
(Σ).

On the graph M , (gM )ij = (gij + βiuj + βjui − (α2 − β2)uiuj)(x, u(x))
by (2.14),

(kM )ij = ν · {(∂i + ui∂t)(Uμ + Tμ) · (γμj + ujγμt)
+ (Uμ + Tμ)(Γiμ,j + uiΓtμ,j + ujΓiμ,t + uiujΓtμ,t)

}
,

(4.26)

by formula (4.8). So by the proof of Proposition 4.4, ((gM )ij − eij) ∈
Hs+1,δ+ 1

2
(Σ) and (kM )ij ∈ Hs,δ+ 3

2
(Σ). �

In order to define the ADM mass and linear momentum, we need to
assume −3

2 < δ < −1, then by the embedding Lemma 2.5, (gM − e) ∈
Cs−1

κ (Σ) and kM ∈ Cs−2
κ+1(Σ) for some

1
2 < κ < 1, which satisfy the condi-

tions (1.5). Similar conditions are also satisfied by (g − e, k). We can defined
the ADM mass m, mM for (g, k) and (gM , kM ), respectively.

Lemma 4.14. For −3
2 < δ < −1, in Theorem 4.12, m = mM .

Proof. We will use the multiplication Lemma 2.5 frequently when we mul-
tiply two Sobolev functions. Now (gM )ij(x)− gij(x, u(x)) = (βiuj + βjui −
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(α2 − β2)uiuj)(x, u(x)) by (2.14). β(x, u(x)) ∈ Hs+1,δ+ 1
2
(Σ) and ∂u ∈

Hs+1,δ+ 1
2
(Σ) imply (gM )ij(x)− gij(x, u(x)) ∈ Hs+1,δ+1(Σ).

gij(x, u(x))− gij(x) =
{∫ 1

s=0
∂tgij(x, su(x))ds

}
· u(x),

which shows {gij(x, u(x))− gij(x)} ∈ Hs+1,δ+1(Σ), since ∂tgij(x, su(x)) ∈
Hs+1,δ+ 3

2
(Σ) and u ∈ Hs+2,δ− 1

2
(Σ). Hence {(gM )ij(x)− gij(x)} ∈

Hs+1,δ+1(Σ) ⊂ Cs−1
κ (Σ), for some 1 < κ < δ + 5

2 by the embedding Lemma
2.5. By checking the definition (1.6), we know that a error term of decay
rate o(r−1) will not change the mass, so m = mM . �

Now we will study the preservation of symmetry by this construction.
We need a lemma about symmetry preserving by the reduced EVE (3.3).

Lemma 4.15. Given a vacuum data (g, k) ∈ VCs+2,δ+ 1
2
(Σ), and (Ωθ, γ)

the boost evolution of (g, k) given by Theorem 3.7. Suppose that both (g, k)
and e are symmetric under a Killing vector field ξ on Σ, i.e., (g, k) satisfy
(1.7), and Lξe = 0, where e is the canonical metric on Σ. Then the parallel
translation ξ̃ of ξ into Ωθ is a Killing vector field of γ.

Proof. Now let φs : Σ→ Σ be the one parameter group of diffeomorphisms
corresponding to ξ. Then (φs)∗g = g, (φs)∗k = k and (φs)∗e = e. Now let us
extend φs to a diffeomorphism φ̃s : Ωθ → Ωθ by

(4.27) φ̃s(x, t) = (φs(x), t).

Then (φ̃s)∗ẽ = ẽ where ẽ is defined by (2.1). By the initial conditions (3.5)
and (3.6) for γ, we know that γs = (φ̃s)∗γ has the same initial conditions
as those of γ on Σ. If we can show that γs also solves the reduced (EVE)
(3.3), the uniqueness in Theorem 3.7 implies that γs = γ. Since γs is Ricci
flat, we only need to show that (Ωθ, γs) is also in a harmonic gauge, or
equivalently, id : (Ωθ, γs)→ (Ωθ, ẽ) is a wave map. By pulling back the wave
map equation �(γ,ẽ)id = 0 by φ̃, we get �((φ̃s)∗γ,(φ̃s)∗ẽ)

id = 0, which reduces
to �(γs,ẽ)id = 0. This means that γs is also in a harmonic gauge, hence γs =
γ. Now the vector field corresponding to φ̃s is clearly the parallel translation
of ξ into Ωθ. �

Now we can prove the preservation of symmetry for the maximal surface.
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Theorem 4.16. Given s ≥ 4, −2 < δ < −1. Suppose (Σ, e) is a 3-manifold,
which is Euclidean at infinity and axisymmetric in the sense of Defini-
tion 1.3. If (g, k) ∈ VCa

s+2,δ+ 1
2
(Σ) is axisymmetric, and ‖trgk‖Hs−2,δ+ 3

2
(Σ) ≤ ε

with ε given by Theorem 4.12, then the solution u of the maximal surface
equation (1.9) given in Theorem 4.12 is axisymmetric, i.e., ∂ϕu = 0. Hence
(Σ, gu, ku) is axisymmetric, and the angular momentum of (gu, ku) equals
that of (g, k).

Proof. By Theorem 4.12, H(g, k, u) = 0 has a unique solution u ∈ Bρ′ ∩
ker(L0, δ − 1

2)
⊥. Let φs be the diffeomorphism corresponding to the Killing

vector field ξ = ∂
∂ϕ in Definition 1.3, and φ̃s the extension given in (4.27).

When (g, k) is also axisymmetric, the boost solution (Ωθ, γ) is invariant
under φ̃s by Lemma 4.15. Now pulling back H(g, k, u) = 0 by φ̃s, we can
see that φ∗su is a solution of H(φ∗sg, φ∗sk, φ∗su) = 0, hence H(g, k, φ∗su) = 0.
Since (Σ, e) and (g, k) are all invariant under φs, ker(L0, δ − 1

2) and hence
ker(L0, δ − 1

2)
⊥ are also invariant under φs, which means that (φs)∗u ∈ Bρ′ ∩

ker(L0, δ − 1
2)
⊥, then uniqueness in Theorem 4.12 implies that (φs)∗u = u.

So u is axisymmetric, hence is (gu, ku) since γ is also axisymmetric.
For the angular momentum, we have another formula, which is called

Komar integral (for angular momentum) (see [24, Section 11.2] for definition
and equivalence with (1.8)),

(4.28) J(S) =
1
16π

∫
S
∗dξ,

where ∗ is the Hodge star operator w.r.t. γ, and ξ the killing vector field.
Since ∗dξ is a closed form, we know that J(S) is invariant for any two
spacelike close surface S and S′ which are homologous to each other. To
show that (Σ, g, k) and (Graphu, gu, ku) have the same angular momentum,
we can take a coordinate two surface S0 = ∂BR(0) inside Σ (recall that
Σ � R

3 \ {0}), then the angular momentum of Σ is J(S0). As the boost
evolution spacetime Ω is a subset of Σ× R, let S′0 be the intersection of
the cylinder S0 × R with Graphu inside (Ω, γ), then S′0 is a smooth two
surface when R is large enough. Clearly S′0 is homologous to S0, hence
J(S′0) = J(S0). The angular momentum of (Graphu, gu, ku) is J(S′0) which
equals that of (Σ, g, k). �

Acknowledgments

The author would like to express his gratitude to his advisor Professor
Richard Schoen for all of his helpful guidance and constant encouragement.



556 Xin Zhou

He would like to thank Professor Rafe Mazzeo and Professor Leon Simon for
lots of useful talks. He would also like to thank his friend Pin Yu for talking
a lot about the hyperbolic equations. Finally, the author thanks the referee
for comments.

A. Appendix

A.1. Geometry of hypersurface

Here we show the detailed calculation of the mean curvature of a level sur-
face. Part of the results here already appeared in [1]. First let us calculate
the future-directed timelike unit normal vector of Σt defined by T = − ∇t

|∇t| ,
which is given by:

(A.1) T = −α∇t = −α(γtt∂t + γti∂i) = α−1(∂t − β).

Graphu can be viewed as the level surface of (u− t) = 0, so the unit normal
of Graphu is N = ∇(u−t)

|∇(u−t)| . Now

∇u = γtjuj∂t + γijuj∂i =
1
α2
〈β,Du〉∂t +Du− 1

α2
〈β,Du〉βi∂i

=
1
α
〈β,Du〉T +Du.

(A.2)

So N is calculated as

∇(u− t) = 1
α2
〈β,Du〉∂t +Du− 1

α2
〈β,Du〉βi∂i +

1
α2
∂t − 1

α2
βi∂i

= Du+
1 + 〈β,Du〉

α2
(∂t − β)

= α−1(1 + 〈β,Du〉)
(

αDu

1 + 〈β,Du〉 + T

)
.

(A.3)

Writing U = αDu
1+〈β,Du〉 , then N = U+T

|U+T | , where |U + T | = (1− |U |2)1/2, so
we get (2.11).

Denoting M = Graphu, let us calculate the mean curvature. For com-
pleteness we give the inverse metric matrix (gM )−1 of gM in (2.14). First
we need to calculate the co-frame of (2.13). Denoting them by αi = ai

kdx
k +

ai
tdt : i, k = 1, 2, 3, then they should satisfy:

(A.4) αi(αk) = δi
k, αi(N) = 0.
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The last equation gives

(ai
kdx

k + ai
tdt)[α(U + T )] = (ai

kdx
k + ai

tdt)
(

α2Du

1 + 〈β,Du〉 + (∂t − β)
)

= ai
k

(
α2uk

1 + 〈β,Du〉 − β
k

)
+ ai

t = 0.

(A.5)

So

(A.6) ai
t = ai

k

(
β − α2Du

1 + 〈β,Du〉
)k

= ai
k(β − αU)k.

Putting into the first one in (A.4), we have

(A.7) (ai
kdx

k + ai
l(β

l − αU l)dt)(∂k + uk∂t) = ai
k + ai

l(β
l − αU l)uk = δi

k.

Denoting matrix A = (ai
k), then the above equations change to the matrix

equation

(A.8) A · [id+ (β − αU)(Du)t] = id.

Solving the last matrix equation22, we get

ai
k = Id− (βi − αU i)uk

1 + 〈β − αU,Du〉 = Id− (βi − αU i)uk

1 + 〈β,Du〉 − (1 + 〈β,Du〉)|U |2

= Id− ν2 (β
i − αU i)uk

1 + 〈β,Du〉 = Id− ν2(β/α− U)iUk,

(A.9)

where we have used U = αDu
1+〈β,Du〉 , and ν

−2 = 1− |U |2. Then

ai
t = ai

k(β − αU)k =
(
δi
k − ν2 (β

i − αU i)uk

1 + 〈β,Du〉
)
(βk − αUk)(A.10)

= βi − ν2 (β
i − αU i)〈β,Du〉
1 + 〈β,Du〉 − αU i + ν2(βi − αU i)|U |2

= (1 + ν2|U |2)(βi − αU i)− ν2 〈β,Du〉
1 + 〈β,Du〉(β

i − αU i)

22The inverse of Id+ uvt is given by Id− uvt

1+u·v .
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= ν2(βi − αU i)− ν2 〈β,Du〉
1 + 〈β,Du〉(β

i − αU i)

=
ν2

1 + 〈β,Du〉(β − αU)
i.

So the co-frame is given by

(A.11) αi = (δi
k − ν2(β/α− U)iUk)dxk +

ν2

1 + 〈β,Du〉(β − αU)
idt.

Taking inner product of the co-frame with respect to γ−1, we can
calculate g−1

M .

(gM )ij =
〈
(δi

k − ν2(β/α− U)iUk)dxk +
ν2(β − αU)i
1 + 〈β,Du〉 dt,

(A.12)

(δj
l − ν2(β/α− U)jUl)dxl +

ν2(β − αU)j
1 + 〈β,Du〉 dt

〉
γ

= (δi
k − ν2(β/α− U)iUk)(δ

j
l − ν2(β/α− U)jUl)(gkl − 1

α2
βkβl)

+ (δi
k − ν2(β/α− U)iUk)

ν2(β − αU)j
1 + 〈β,Du〉

βk

α2

+ (δj
k − ν2(β/α− U)jUk)

ν2(β − αU)i
1 + 〈β,Du〉

βk

α2

− 1
α2

ν4(β − αU)i(β − αU)j
(1 + 〈β,Du〉)2

= gij − 1
α2
βiβj − ν2(β/α− U)jU i − ν2(β/α− U)iU j

+
ν2(β − αU)jβi〈β,Du〉

α2(1 + 〈β,Du〉) +
ν2(β − αU)iβj〈β,Du〉

α2(1 + 〈β,Du〉)
+ ν4(β/α− U)i(β/α− U)j |U |2 − ν4(β − αU)i(β − αU)j

α2(1 + 〈β,Du〉)2 〈β,Du〉2

+
ν2

α2

βi(β − αU)j + βj(β − αU)i
1 + 〈β,Du〉

− 2
ν4(β − αU)i(β − αU)j
α2(1 + 〈β,Du〉)2 〈β,Du〉 − ν4(β − αU)i(β − αU)j

α2(1 + 〈β,Du〉)2
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= gij − 1
α2
βiβj − ν2(β/α− U)jU i − ν2(β/α− U)iU j

+ ν4(β/α− U)i(β/α− U)j |U |2 + ν2

α2
[βi(β − αU)j + βj(β − αU)i]

− ν4

α2
(β − αU)i(β − αU)j

= gij − 1
α2
βiβj +

ν2

α2
(β − αU)i(β − αU)j .

A.2. Linear boost estimates on an end

Here we will give a detailed version of linear boost estimates on an Euclidean
end using method in [8, 10]. It was also mentioned in [3]. We will mainly
give the energy estimates needed to prove Theorem 3.6. For convenience, we
sometime abbreviate Vθ,λ = V in this section. Given a regularly hyperbolic
metric γμν and a R

N -valued function u in Vθ,λ, we can associate it with the
energy-momentum tensor Tμν23:

(A.13) Tμν = GμνρσDρu ·Dσu,
24

where
Gμνρσ = γμργνσ + γμσγνρ − γμνγρσ.

Given the unit normal ñ of {Eτ} defined in (3.12), the momentum vector
field relative to ñ is

(A.14) Pμ = Tμν ñν .

Furthermore, the divergence of Pμ is

(A.15) DμP
μ = 2(γρσñρDσu) · γμνD2

μνu+Q,

where
Q = ΛμνDμu ·Dνu, with Λμν = Dρ(Gμνρσñσ).

LetN−2 = −〈Dτ,Dτ〉γ be the lapse function for τ w.r.t. γ and n = NDτ
the unit co-normal of {Eτ} w.r.t. γ. We introduce an orthonormal frame
{e0, e1, · · · , en−1} w.r.t. γ, such that e0 is along the direction of ñμ = γμν ñμ,
i.e., e0 = N

Ñ
ñμ, where (N

Ñ
)−2 = |ñ|2γ , and ei is perpendicular to ñμ. According

23See [8, Equation (4.6)].
24Here the inner product of Dρu ·Dσu =

∑N
k=1Dρu

kDσu
k.
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to [8, Section 2], we know that |ñ|2γ = γμν ñμñν = (N
Ñ
)−2 is bounded from

both above and below by some constants depending only on θ and h.

Lemma A.1. When γ is regularly hyperbolic, Pμ is past time-like w.r.t. γ.

Proof. Tμν = 2Dμu ·Dνu− |Du|2γγμν , so Pμ = Tμν ñν = 2Dμu ·Dνuñν −
|Du|2γñμ, and

γμνP
μP ν = 4γμν(Dμu ·Dρuñρ)(Dνu ·Dσuñσ)

− 4|Du|2γ(Dμuñμ ·Dνuñν) + |Du|4γ |ñ|2γ
≤ |Du|4γ |ñ|2γ ≤ 0.

The first “ ≤ ” comes from Cauchy–Schwartz inequality, and the second
comes from the fact that ñ is time-like w.r.t. γ.

Take lμ as a future timelike vector field, then in the orthonormal frame
{e0, e1, . . . , en−1} as above, l0 >

√∑n−1
i=1 (li)2, and

γμνP
μlμ = 2[(D0u)l0 + (Diu)li](D0u)(Ñ/N)− [−(D0u)2

+
∑

(Diu)2](−l0)(Ñ/N)
= [(D0u)2 +

∑
(Diu)2]l0(Ñ/N) + 2DiuD0ul

i(Ñ/N)

≥ (Ñ/N)[(D0u)2 +
∑

(Diu)2](l0 −
√∑

(li)2) ≥ 0.

The first “ ≥ ” comes from the Cauchy–Schwartz inequality. So it shows that
P is past time-like w.r.t. γ. �

Now we introduce the restriction norm and restriction lemma similar to
(2.4) and Lemma 2.8. Given u ∈ Hs,δ(Vθ,λ), the restriction norm to hyper-
surface Eτ is defined as:

(A.16) ‖u‖Hs,δ(Eτ ,Vθ,λ) =
(
Σs

k=0‖Dk
t u|Eτ

‖2Hs−k,δ+k(E)

)1/2
.

The following restriction lemma follows similar from [8, Lemma 3.1]:

Lemma A.2 (Restriction). ∀τ ∈ (−θ, θ), we have the following continu-
ous inclusion:

Hs+1,δ(Vθ,λ) ⊂ Hs,δ+ 1
2
(Eτ , Vθ,λ),

for every s ∈ N and δ ∈ R.

Now we have the first energy estimates.
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Lemma A.3 (First Energy Estimates). Assume that γμν is regularly
hyperbolic, and (γ − η) ∈ C∞ ∩ C1,0(V ), a1 ∈ C∞ ∩ C0,1(V ) and a0 ∈ C∞ ∩
C0,2(V ). For L defined in (3.14), with a2 = γId, every u ∈ C∞0 (V ) satisfies
the fundamental energy estimates:

(A.17) ‖u‖H1,δ+ 1
2
(Eτ ,V ) ≤ c(‖u‖H1,δ+ 1

2
(E,V ) + ‖β‖H0,δ+2(V )),

where 0 ≤ τ ≤ θ, β = Lu, and c is a constant depending only on θ, the
coefficient of regular hyperbolicity h (3.13) of γ, and ‖Dγ‖C0,1 + ‖a1‖C0,1 +
‖a2‖C0,2.

Proof. Let P̃μ = σ2(δ+ 3
2
)Pμ. Multiply (A.15) by σ2(δ+ 3

2
), we get:

(A.18) DμP̃
μ = 2σ2(δ+ 3

2
)(γρσñρDσu) · γμνD2

μνu+ Q̃,

where

Q̃ = σ2(δ+ 3
2
)Q′,

with

Q′ = Q+ 2(δ + 3/2)xi/σ2P i � (Dγ ∗ γ + σ−1γ ∗ γ)Du ∗Du.

Plug in Lu = β,

DμP̃
μ = σ2(δ+ 3

2
)[2(γρσñρDσu) · (β − a1Du− a0u) +Q′].

Now we integrate on the upper part V +
τ,λ = {x ∈ Vτ,λ : t ≥ 0} for τ ≤ θ.

Since P is compactly supported, the divergence theorem in (V +
τ,λ, η) gives,

∫
Eτ

P̃μñμdΣτ −
∫

E
P̃μñμdΣ+

∫
L+

τ,λ

P̃μν̃μdσ =
∫

V +
τ,λ

DμP̃
μdx

=
∫

V +
τ,λ

σ2(δ+ 3
2
)[2(γρσñρDσu) · (β − a1Du− a0u) +Q′]dx,

(A.19)

where ν̃μ is the unit outer co-normal of the upper lateral boundary L+
τ,λ =

Lτ,λ ∩ V +
τ,λ under η, which is future timelike w.r.t. γ by property (4) of the

regular hyperbolicity (3.2). Using the fact that P is past timelike
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(Lemma A.1), we know that

P̃μν̃μ = σ2(δ+ 3
2
)Pμν̃μ ≥ 0, on L+

τ,λ.

Now define:

(A.20) x1(τ) =
∫

Eτ

|σδ+3/2Du|2dΣ = ‖Du‖2H0,δ+ 3
2
(Eτ ,V ).

Since ñμ = ÑDμτ = Ñ
N nμ,

Pμñμ = Tμν ñμñν = 2(γμσDσuñμ)2 − |Du|2γ |ñ|2γ

=

(
Ñ

N

)2

(2nμnν + γμν)DμuDνu.

Using [8, Proposition 2.3], Γμν = 2nμnν + γμν is uniformly elliptic, with the
elliptic coefficient depending only on the coefficient of regular hyperbolicity
h. Using [8, Equations (2.8) and (2.13)], dΣτ � cdΣ, with c depending only
on θ, so we have:

∫
Eτ

P̃μñμdΣτ ≥ c−1
1 x1(τ),∫

E
P̃μñμdΣ0 ≤ c1x1(0),

where c1 is a constant depending only on θ and the regular hyperbolic-
ity coefficient h. Now using Cauchy–Schwartz inequality and the fact dx =
σdτdΣ to the right-hand side of (A.19),

∣∣∣∣∣
∫

V +
τ,λ

2σ2(δ+ 3
2
)(γρσñρDσu) · βdx

∣∣∣∣∣
≤ c1

∫ τ

0
‖Du‖H0,δ+ 3

2
(Eτ′ ,V )‖β‖H0,δ+ 5

2
(Eτ′ ,V )dτ

′;∣∣∣∣∣
∫

V +
τ,λ

2σ2(δ+ 3
2
)(γρσñρDσu) · a1Dudx

∣∣∣∣∣ ≤ c1‖a1‖C0,1

∫ τ

0
‖Du‖2H0,δ+ 3

2
(Eτ′ ,V )dτ

′;
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∣∣∣∣∣
∫

V +
τ,λ

2σ2(δ+ 3
2
)(γρσñρDσu) · a0udx

∣∣∣∣∣
≤ c1‖a0‖C0,2

∫ τ

0
‖Du‖H0,δ+ 3

2
(Eτ′ ,V )‖u‖H0,δ+ 1

2
(Eτ′ ,V )dτ

′;∣∣∣∣∣
∫

V +
τ,λ

2σ2(δ+ 3
2
)Q′dx

∣∣∣∣∣ ≤ c1(1 + ‖Dγ‖C0,1)
∫ τ

0
‖Du‖2H0,δ+ 3

2
(Eτ′ ,V )dτ

′,

where c1 denotes a constant depending only on the regular hyperbolicity
coefficient h. Now define:

(A.21) x0(τ) =
∫

Eτ

|σδ+1/2u|2dΣ = ‖u‖2H0,δ+ 1
2
(Eτ ,V ),

then (A.19) can be changed to
(A.22)

x1(τ) ≤ c2

{
x1(0) +

∫ τ

0
‖β‖H0,δ+ 5

2
(Eτ′ ,V )x1(τ ′)1/2dτ ′ +m1

∫ τ

0
y1(τ ′)dτ ′

}
,

where c2 is a constant depending only on θ and the regular hyperbolicity
coefficient h, and

(A.23) m1 = ‖Dγ‖C0,1 + ‖a1‖C0,1 + ‖a0‖C0,2 ,

(A.24) y1(τ) = x1(τ) + x0(τ) = ‖u‖2H1,δ+ 1
2
(Eτ ,V ).

Using Cauchy–Schwartz inequality,

(u(τ)− u(0))2 =
(∫ τ

0

∂u

∂τ ′
dτ ′
)2

≤ τ

∫ τ

0

(
∂u

∂τ ′

)2

dτ ′.

Consider the projection map π : Vθ,λ → E defined by π(x̄, t) = x̄, then E′τ =
π(Eτ ) ⊂ E′τ ′ if τ ′ < τ , then

∫
E′τ

|σδ+1/2(u(τ)− u(0))|2dΣ ≤ τ

∫ τ

0

{∫
E′τ

|σδ+3/2∂u

∂t
|2dΣ

}
dτ ′

≤ τ

∫ τ

0
x1(τ ′)dτ ′.

So,

(A.25) x0(τ) ≤ 2x0(0) + 2τ
∫ τ

0
x1(τ ′)dτ ′.
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Adding (A.22) and (A.25), we can get the integral inequality,

y1(τ) ≤ c2
{
y1(0) +

∫ τ

0
‖β‖H0,δ+ 5

2
(Eτ′ ,V )y

1/2
1 (τ ′)dτ ′ +m1

∫ τ

0
y1(τ ′)dτ ′

}(A.26)

Using the Gronwall lemma,

y
1/2
1 (τ) ≤ exp

(
1
2
c2m1τ

){
y

1/2
1 (0) +

1
2

∫ τ

0
e

1
2
c2m1τ ′c2‖β‖H0,δ+ 5

2
(Eτ′ ,V )dτ

′
}
.

(A.27)

Hence we finished the proof by using y1/2
1 (τ) = ‖u‖H1,δ+ 1

2
(Eτ ,V ). �

This result can be weaken to the case of rough coefficients by approxi-
mation methods.

Lemma A.4. If γ is regularly hyperbolic on V , (γ − η) ∈ C1,0(V ), a1 ∈
C0,1(V ) and a0 ∈ C0,2(V ), then every u ∈ H2,δ(V ) satisfies the fundamental
energy estimates (A.17), with β = Lu.

Proof. This comes from an approximation argument exactly the same as [8,
Lemma 4.2]. �

Using more differentiability of the coefficients, we can improve the energy
estimates containing high order derivatives.

Lemma A.5 (High Order Estimates). Given s ≤ s′ with s′ defined in
(3.15). If γ is regularly hyperbolic, (γ − η) ∈ C∞(V ), a1 ∈ C∞(V ) and a0 ∈
C∞(V ), then every u ∈ C∞0 (V ) satisfies the main energy estimates:

(A.28) ‖u‖Hs,δ+ 1
2
(Eτ ,V ) ≤ c(‖u‖Hs,δ+ 1

2
(E,V ) + ‖β‖Hs−1,δ+2(V )),

where 0 ≤ τ ≤ θ, β = Lu, and c is a constant depending only on θ, the coef-
ficient of regular hyperbolicity h and m (defined in (3.16)).
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Proof. Apply Di−1 for 2 ≤ i ≤ s to Lu = β, we can get

(A.29) γμνD2
μνu

[i−1] = β[i−1],

where u[i−1] = Di−1u, and

β[i−1] =Di−1β −
i−1∑
p=1

(
i− 1
p

)
DpγDi+1−pu

−
i−1∑
p=0

(
i− 1
p

)
(Dpa1D

i−pu+Dpa0D
i−1−pu).

Now define

(A.30) xi(τ) =
∫

Eτ

|σδ+i+ 1
2Diu|2dΣ = ‖Diu‖2H0,δ+i+1/2(Eτ ,V ),

and apply (A.22) in Lemma A.3 to (A.29) with δ replaced by δ + i− 1, then

xi(τ)≤c1
{
xi(0)+

∫ τ

0
‖β[i−1]‖H0,δ+i+3/2(Eτ′,V )x

1/2
i (τ ′)dτ ′+m1

∫ τ

0
xi(τ ′)dτ ′

}
,

with c1 depending only on the coefficient of regular hyperbolicity h and m1

defined in (A.23). Compared to (A.22), we have only xi(τ ′) in the third term
since there is no first order term a0 in (A.29). Now using the multiplication
Lemma 2.2 and restriction Lemma A.2 in the case

Hs2−p−1,δ2+p+1/2(Eτ , V )×Hp−1,δ+i+3/2−p(Eτ , V )→ H0,δ+i+3/2(Eτ , V ),

we get

‖DpγDi+1−pu‖H0,δ+i+3/2(Eτ ,V ) ≤ c3‖Dγ‖Hs2−1,δ2+1(V )‖Du‖Hi−1,δ+3/2(Eτ ,V ),

with c3 a constant depending only on i and δ. Similarly,

‖Dpa1D
i−pu+Dpa0D

i−1−pu‖Hτ (Eτ ,V )

≤ c3(‖a1‖Hs1,δ1 (V ) + ‖a0‖Hs0,δ0 (V ))‖u‖Hi,δ+1/2(Eτ ,V ).

So

‖β[i−1]‖H0,δ+i+ 3
2
(Eτ′ ,V ) ≤ ‖Di−1β‖H0,δ+i+ 3

2
(Eτ′ ,V ) + c4m‖u‖Hi,δ+1/2(Eτ ,V ),
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where c4 is a constant depending on s, δ, and m is given by (3.16). Now
define:

(A.31) yi(τ) = y1(τ) +
i∑

j=2

xj(τ) = ‖u‖2Hi,δ+1/2(Eτ ,V ).

We have

xi(τ) ≤ c1
{
xi(0) +

∫ τ

0
‖Di−1β‖H0,δ+i+ 3

2
(Eτ′ ,V )x

1/2
i (τ ′)dτ ′

+ c4(m+m1)
∫ τ

0
yi(τ ′)dτ ′

}
.

Summing all i from 1, we can get

yi(τ) ≤ c1

{
yi(0) +

∫ τ

0
‖β‖Hi−1,δ+5/2(Eτ′ ,V )y

1/2
i (τ ′)dτ ′

+ c4(m+m1)
∫ τ

0
yi(τ ′)dτ ′

}
.(A.32)

Using the Gronwall Lemma,

y
1/2
i (τ) ≤ exp(c5(m+m1)τ)

×
{
y

1/2
i (0) + c1

∫ τ

0
ec5(m+m1)τ ′ |β‖Hi−1,δ+5/2(Eτ′ ,V )dτ

′
}
,(A.33)

where c5 = 1
2c1c4. Hence we finish the proof realizing m1 ≤ c6m by the

embedding Lemma 2.2. �
Using the equation Lu = β and an argument similar to [8, Lemma 4.4],

we can estimate ‖u‖Hs,δ+1/2(E,V ) by the spatial norms ‖φ‖Hs,δ+1/2(E),
‖ψ‖Hs−1,δ+3/2(E) and ‖β‖Hs−2,δ+5/2(E,V ), where φ = u|E and ψ = Dtu|E . We
need the following technical lemma which says that we can take the division
in the Banach algebra Hs,δ(U), when s > n

2 and δ > −n
2 .

Lemma A.6. Given U satisfying the extended cone property, s > n
2 ,

δ > −n
2 and a function f , if (f − 1) ∈ Hs,δ(U), and |f | ≥ c > 0, then

(f−1 − 1) ∈ Hs,δ(U), furthermore, ‖f−1 − 1‖Hs,δ(U) is bounded by a constant
depending only on n, s, δ and ‖f − 1‖Hs,δ(U).

Proof. Since |f | ≥ c > 0, f−1 is well defined. Since f−1 − 1 = −f−1
f and

|f |−1 ≤ c−1 uniformly bounded, (f−1 − 1) ∈ H0,δ(U). Now Dα(f−1 − 1) =
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∑
α1+···+αl=α

Dα1f ···Dαlf
f |α|+1 , where α is multi-indexes, with 1 ≤ |α| ≤ s. Since

(f |α|)−1 is uniformly bounded, and using the multiplication Lemma 2.2,
Dα1f · · ·Dαlf ∈ H0,δ+|α|(U), hence Dα(f−1 − 1) ∈ H0,δ+|α|(U). So (f−1 −
1) ∈ Hs,δ(U). The norm bounds follows from the norm bounds of each
Dα(f−1 − 1). �

Lemma A.7. Given an operator L defined in (3.14) satisfying Hypothesis
(1) and (2), then every u ∈ Hs+1,δ(V ) with 2 ≤ s ≤ s′, which solves Lu = β
satisfies:

‖u‖Hs,δ+1/2(E,V ) ≤ c(‖φ‖Hs,δ+1/2(E) + ‖ψ‖Hs−1,δ+3/2(E) + ‖β‖Hs−2,δ+5/2(E,V )),
(A.34)

where φ = u|E, ψ = Dtu|E and c is a constant depending only on s, δ and
μ (defined in (3.17)).

Proof. By the restriction Lemma A.2, u ∈ Hs+1,δ(V ) implies that φ ∈
Hs,δ+1/2(E) and ψ ∈ Hs−1,δ+3/2(E). Now define the following functions on
E:

ψ[p] = Dp
t u, 0 ≤ p ≤ s.

Since

‖u‖2Hs,δ+1/2(E,V ) =
s∑

p=0

‖ψ[p]‖2Hs−p,δ+p+1/2(E),

we only need to prove that:

‖ψ[p]‖Hs−p,δ+p+1/2(E) ≤ cp(‖φ‖Hs,δ+1/2(E) + ‖ψ‖Hs−1,δ+3/2 + ‖β‖Hs−2,δ+5/2(E,V )).

It is true for p = 0, 1. Let us use a reduction argument to prove this for
all p ≤ s. Suppose it is true for 0 ≤ q ≤ p− 1. Take Dp−2

t to the equation
Lu = β, and move all the terms containing t-derivatives of u of order less
than p, i.e., Dq

tu with q < p, to the right-hand side, then we get

γ00ψ[p] = Dp−2
t β −

p−3∑
q=0

(
p− 2
q

)
(Dp−2−q

t γ00)ψ[q+2]

−
p−2∑
q=0

(
p− 2
q

){
2(Dp−2−q

t γ0i)Diψ
[q+1] + (Dp−2−q

t γij)DiDjψ
[q]

+ (Dp−2−q
t a0

1)ψ
[q+1] + (Dp−2−q

t ai
1)Diψ

[q] + (Dp−2−q
t a0)ψ[q]

}
.

(A.35)
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Using the multiplication Lemma 2.2 and Hypothesis (1) in the case:

Hs2−1−(p−2−q),δ2+1/2+(p−2−q)(E)×Hs−(q+2),δ+1/2+(q+2)(E)
→ Hs−p,δ+1/2+p(E),

we can estimate

‖(Dp−2−q
t γ0i)Diψ

[q+1]‖Hs−p,δ+1/2+p(E)

≤ c3‖γ − η‖Hs2−1,δ2+1/2(E,V )‖ψ[q+1]‖Hs−(q+2),δ+1/2+(q+2)(E),

where c3 is a constant depending only on s and δ. Now using similar argu-
ments to evaluate the Hs−p,δ+p+1/2(E) norm of other terms in (A.35),
together with our inductive hypothesis, we can get

‖γ00ψ[p]‖Hs−p,δ+p+1/2(E)

≤ ‖Dp−2
t β‖Hs−p,δ+1/2+p(E) + c4μ

p−1∑
q=0

‖ψ[q]‖Hs−q,δ+1/2+q(E)

≤ c′p(‖φ‖Hs,δ+1/2(E) + ‖ψ‖Hs−1,δ+3/2(E) + ‖β‖Hs−2,δ+5/2(E,V )),

(A.36)

where μ is defined in (3.17), c4 is a constant depending only on s, p and δ,
while c′p a constant depending only on μ, s, p and δ.

Here

γ00|E = (γμνDμtDνt)|t=0 = σ2(γμνDμτDντ)|t=0 = −N−2σ2 ≤ −c < 0,

where c > 0 is a constant depending only on θ and h according to [8, Sec-
tion 2]. Now (γ − η) ∈ Hs2,δ2(V ) implies that (γ

00 + 1)|E ∈ Hs2−1,δ2+1/2(E),
hence ((γ00)−1 + 1) ∈ Hs2−1,δ2+1/2(E) by Lemma A.6, and furthermore
‖(γ00)−1 + 1‖Hs2−1,δ2+1/2(E) is bounded by a constant depending only on n,
s2, δ2 and ‖γ00 + 1‖Hs2−1,δ2+1/2(E). Now multiply γ00ψ[p] by (γ00)−1, and
use Equation (A.36) and the multiplication Lemma 2.2, then we finish the
proof. �

By combining all the above estimates, we can get the energy estimates
in Theorem 3.6.

Theorem A.8. Given L a differential operator defined by (3.14) in Vθ,λ,
satisfying hypotheses (1) and (2). Let β ∈ Hs−1,δ+2(Vθ,λ), φ ∈ Hs,δ+ 1

2
(E)

and ψ ∈ Hs−1,δ+ 3
2
(E), with 2 ≤ s ≤ s′, δ ∈ R. Then every u ∈ Hs+1,δ(V ),

which solves Lu = β, with u|E = φ, Dtu|E = ψ satisfies the estimates (3.19).
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Proof. First we can plug in (A.34) to (A.28). Then it follows from an approx-
imation argument similar to the proof of [8, Lemma 4.5] and an integration
of (A.28) w.r.t. τ on [−θ, θ]. �
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