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Dressing transformations of constrained

Willmore surfaces

Francis E. Burstall and Áurea C. Quintino

We use the dressing method to construct transformations of con-
strained Willmore surfaces in arbitrary codimension. An adap-
tation of the Terng–Uhlenbeck theory of dressing by simple fac-
tors to this context leads us to define Bäcklund transforms of
these surfaces for which we prove Bianchi permutability. Special-
izing to codimension 2, we generalize the Darboux transforms of
Willmore surfaces via Riccati equations, due to Burstall–Ferus–
Leschke–Pedit–Pinkall, to the constrained Willmore case and show
that they amount to our Bäcklund transforms with real spectral
parameter.

1. Introduction

The Willmore functional is a conformally invariant functional, defined on
immersed surfaces in the conformal n-sphere, with a long, interesting history
[1, 7, 21, 39, 41]. Its extrema are the Willmore surfaces and these have
attracted a lot of attention in recent years, in large part due to interest in the
celebrated Willmore conjecture, now affirmed by Marques and Neves [28].

One approach to Willmore surfaces is via a certain Gauss map: to any
surface in Sn, one may associate [1, 7] its central sphere congruence. Geo-
metrically, this is a family of 2-spheres tangent to the surface and sharing
mean curvature vectors with it. Alternatively, it may be viewed as a map
into the space of 2-spheres which is a certain Grassmannian of 4-planes [36].
A key result is that a surface is Willmore if and only if its central sphere
congruence is a harmonic map [1, 7, 18, 35] and then the well-developed
theory of harmonic maps applies. In particular, the machinery of integrable
systems theory becomes available.

The starting point of the integrable systems approach to harmonic maps
is the observation [30, 40, 42, 43] that the harmonic map equations amount to
the flatness of a family of flat connections depending on a spectral parameter.
This structure gives rise to symmetries, of which we shall say much more
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below, and constructions via completely integrable Hamiltonian systems and
algebraic curves [11, 23].

This zero curvature representation of the harmonic map equations allows
one to deduce two kinds of symmetry. Firstly, harmonic maps admit a spec-
tral deformation [40] by exploiting a scaling freedom in the spectral parame-
ter. Secondly, harmonic maps admit dressing transformations [38, 40] which
arise by applying carefully chosen gauge transformations to the family of
flat connections.

A larger class of surfaces arises when one imposes the weaker require-
ment that a surface extremize the Willmore functional only with respect to
variations which preserve the conformal structure: these are the constrained
Willmore surfaces. Now the Euler–Lagrange equations include a Lagrange
multiplier in the form of a holomorphic quadratic differential [4] and, while
the central sphere congruence is no longer harmonic, a loop of flat connec-
tions is still available [2, 14].

It is the purpose of the present paper to apply the theory of dressing
transformations to constrained Willmore surfaces in Sn. Two considerations
prevent this from being a routine exercise in the existing theory for harmonic
maps: first, that theory applies to the central sphere congruence qua map
into a Grassmannian and it requires some care to see that the transformed
map is the central sphere congruence of a surface at all, let alone a con-
strained Willmore one. Moreover, the theory must be extended somewhat
to cover the possibly non-harmonic central sphere congruences of constrained
Willmore surfaces.

To address the second problem, we introduce and study the notion of a
k-perturbed harmonic map which includes (with k = 2) the central sphere
congruences of constrained Willmore surfaces. The idea is that the flat con-
nections associated to harmonic maps are characterized by having simple
poles (with respect to the spectral parameter) at 0 and ∞. Relaxing this
requirement to allow poles of order k leads us to k-perturbed harmonic maps.
These maps are a geometric incarnation of the kth elliptic integrable system
associated with a symmetric space in the sense of Terng [37] (see also Khe-
mar [24]) and also fit into the framework of Brander and Dorfmeister [5]. As
such, k-perturbed harmonic maps make sense with any symmetric space as
target but we focus on the space of 2-spheres that is of immediate interest
to us. We define spectral deformations and dressing transformations of such
maps, the latter mediated by gauge transformations we call dressing gauges.

We define an energy density for k-perturbed harmonic maps which coin-
cides with the harmonic map energy density when k = 1 and prove that
this changes by an explicit exact term under our dressing transformations.
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This result, of possible independent interest, appears to be new, even for
harmonic maps.

We then show that our dressing transformations preserve the class of
central sphere congruences of constrained Willmore surfaces. In this setting,
we see that the Willmore density changes by an exact term only and, more-
over, the holomorphic quadratic differential that acts as Lagrange multiplier
is fixed by the dressing transformations.

We complete our general theory by adapting the Terng–Uhlenbeck [38]
theory of dressing by simple factors to our context. Thus we construct dress-
ing gauges algebraically from parallel subbundles of one of the given flat
connections. We call the resulting dressing transformations Bäcklund trans-
formations and prove a Bianchi permutability theorem for them.

Finally, we restrict attention to the case of surfaces in S4. Here, there is
a well-developed quaternionic formalism [2, 3, 10, 19] that can be brought to
bear. In particular, arguing by analogy with Darboux transforms of constant
mean curvature surfaces, a Darboux transform of Willmore surfaces in S4 is
presented in [10] which proceeds by solving a Riccati equation. For us, the
key point about this codimension 2 setting is that the space of (oriented)
2-spheres is a (pseudo-)Hermitian symmetric space. Consequently, one may
apply a canonical gauge transformation, arising from the ambient complex
structure, to replace the family of flat connections with a simpler untwisted
family with poles of about half the order of the original family. Working with
the untwisted family, we find that the Bäcklund transformations specialize
precisely to simple factor dressing in the sense of Terng–Uhlenbeck and,
moreover, can be derived from solutions of a Riccati equation. In particular,
we simultaneously extend the Darboux transforms of [10] to the constrained
Willmore case and identify them with the Bäcklund transforms with real
spectral parameter. These results generalize a similar analysis of harmonic
maps into the 2-sphere and the constant mean curvature surfaces of which
they are Gauss maps that is carried out in [9].

The results of the paper are based, in part, on those in the second
author’s PhD thesis [31, 32] and some of them were announced in [33].

2. Constrained Willmore surfaces and perturbed
harmonicity

2.1. Conformal submanifold geometry

2.1.1. Conformal geometry of the sphere We are going to study sub-
manifolds of the conformal n-sphere Sn and find a convenient conformally
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invariant viewpoint on the latter in Darboux’s light-cone model
[16, Chapitre VI]. For this, contemplate the Lorentzian space-time Rn+1,1

with inner product ( , ) and light-cone L. The corresponding quadric P(L) is
a conformal manifold: each section σ of L× → P(L) provides a metric gσ via
gσ(X,Y ) = (dXσ, dY σ) and geuσ = e2ugσ. Fixing unit-timelike t0 ∈ Rn+1,1

yields a section σ with (σ, t0) ≡ −1 and so an isometry σ : (P(L), gσ) ∼= {v ∈
L : (v, t0) = −1} which last is isometric (via v �→ v − t0) to the unit sphere
in 〈t0〉⊥. Thus P(L) ∼= Sn qua conformal manifolds.

Moreover, it is clear that the orthogonal group O(n+ 1, 1) acts transi-
tively and conformally on P(L). In this way, it actually double covers the
Möbius group of global conformal diffeomorphisms on Sn.

For more details, see [22, Chapter 1].
In the sequel, we will have much to do with O(n+ 1, 1)-connections

and so forms with values in the Lie algebra o(n+ 1, 1). We shall make
repeated (and silent!) use of the isomorphism ∧2Rn+1,1 ∼= o(Rn+1,1) given
by u ∧ v(w) := (u,w)v − (v, w)u, for u, v, w ∈ Rn+1,1.

2.1.2. Conformally immersed surfaces and the central sphere con-
gruence A map f : Σ→ P(W ) of a manifold to a projective space is the
same as a line subbundle of the trivial bundle W = Σ×W : we identify f
with the bundle whose fibre at x is f(x). In particular, we will usually view
a map Λ : Σ→ P(L) as a null line subbundle of Rn+1,1. From this point of
view, sections of Λ are simply lifts of Λ to maps Σ→ Rn+1,1.

Given such a Λ, we define the derived bundle

Λ(1) := 〈σ, dσ(TΣ)〉 ≤ Λ⊥,

for σ an arbitrary lift of Λ. Note that Λ is an immersion if and only if the
bundle Λ(1) has rank dimΣ + 1 and then every lift is also an immersion
σ : Σ→ Rn+1,1.

Henceforth, we will take Σ to be a Riemann surface, thus an oriented,
conformal manifold of real dimension 2 or, equivalently, a complex manifold
of dimension 1. We denote the complex structure of Σ by JΣ. The type
decomposition of TΣ now induces a decomposition of Λ(1)/Λ: set

Λ1,0 = Λ⊕ dσ(T 1,0Σ) Λ0,1 = Λ⊕ dσ(T 0,1Σ),

for some, hence any, lift σ. Then

Λ1,0 + Λ0,1 = Λ(1),
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Λ1,0 ∩ Λ0,1 = Λ,

Λ1,0 = Λ0,1.

Convention. Here and below, we do not distinguish notationally between
a subbundle and its complexification. In fact, we shall usually take all sub-
bundles to be complex subbundles of Cn+2 = (Rn+1,1)C and view such a
subbundle as real if it is stable under the complex conjugation on Cn+2 with
fixed set Rn+1,1.

An immersion Λ is conformal if and only if each lift is a conformal
immersion Σ→ Rn+1,1 if and only if Λ1,0 (and hence also Λ0,1) is isotropic
with respect to the (complex bilinear extension of) ( , ).

A key tool in conformal submanifold geometry is the central sphere con-
gruence or conformal Gauss map [1, 7, 18, 21, 35] V of a conformal immer-
sion Λ. For us, this is the bundle V ≤ Rn+1,1 of (3, 1)-planes given by

Λ(1) ⊕ 〈Δσ〉,

for σ any lift of Λ and Δ the Laplacian of gσ.
From V , we get an orthogonal decomposition of the trivial bundle

Rn+1,1 = V ⊕ V ⊥

and a corresponding reduction of the trivial connection:

d = DV +NV ,

where V, V ⊥ are DV -parallel and NV takes values in V ∧ V ⊥ ⊂ o(Rn+1,1).
Alternatively, viewing V as a map Σ→ Gr(3,1)(Rn+1,1) to the Grassmannian
of (3, 1)-planes, NV may be canonically identified with dV .

We note that since Λ(1) ≤ V , NV (Λ) = 0 and, similarly, Δσ ∈ ΓV is
equivalent to N 1,0

V (Λ0,1) = 0.

2.2. Constrained Willmore surfaces and holomorphic quadric
differentials

Let Λ be a conformal immersion of a compact Riemann surface Σ with
central sphere congruence V . The Willmore energy W (Λ) of Λ is given by

W (Λ) = 1
2

∫
Σ
|II0|2,
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where II0 is the trace-free second fundamental form of Λ (computed against
any representative metric on Sn and independent of that choice). This is
known [1, 7, 10, 13, 18] to coincide with the harmonic map energy of V :

(2.1) W (Λ) = E(V ) = 1
2

∫
Σ
(NV ◦ JΣ ∧NV ).

A conformal immersion is Willmore if it extremizes the Willmore func-
tional and constrained Willmore if it extremizes the Willmore functional
with respect to infinitesimally conformal variations. It follows at once from
(2.1) that a surface is Willmore when its central sphere congruence is har-
monic and it is well known [1, 7, 35] that the converse holds. Thus, a surface
is Willmore if and only if dD ∗ N = 0. More generally, we have the following
reformulation of a theorem of Bohle–Peters–Pinkall [4]:

Theorem 2.1 [13, Section 14]. Λ is a constrained Willmore surface if
and only if there exists a real form q ∈ Ω1(Λ ∧ Λ(1)) with

(2.2a) dDV q = 0,

such that

(2.2b) dDV ∗ NV = 2[q ∧ ∗NV ].

Such a form q is said to be a (Lagrange) multiplier for Λ. Thus Willmore
surfaces are constrained Willmore surfaces with zero multiplier.

When Σ is non-compact, we define constrained Willmore surfaces to be
the solutions of (2.2).

The 1-form q is a bundle-valued avatar of a more familiar geometric
object: a holomorphic quadratic differential on Σ. Indeed, given q ∈ Ω1(Λ ∧
Λ(1)), we define a 2-tensor Q on M by setting

(2.3) Q(X,Y )σ := qX(dY σ),

for σ ∈ ΓΛ. We then have

Lemma 2.2 [13, Section 12]. Let q ∈ Ω1(Λ ∧ Λ(1)) and define Q by (2.3).
Then dDV q = 0 if and only if Q is symmetric and trace-free, thus Q1,1 = 0,
and Q2,0 is holomorphic.

In this case, q1,0 ∈ Ω1(Λ ∧ Λ0,1).
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It is the holomorphic quadratic differential Q that appears in the Bohle–
Peters–Pinkall version of (2.2b).

Remark 2.3. In general, for a given constrained Willmore surface Λ, the
multiplier q is unique. The exception is when Λ is in addition isothermic: if
dDV ∗ NV = 2[q1 ∧ ∗NV ] = 2[q2 ∧ ∗NV ] with dDV qi = 0 then η := ∗q2 − ∗q1
solves dDV η = [NV ∧ η] = 0 or, equivalently, dη = 0. This last condition
amounts to the existence of a holomorphic quadratic differential that com-
mutes with the trace-free second fundamental form, that is, that Λ is isother-
mic. In this situation, q1 + ∗sη is a multiplier for Λ for each s ∈ R.

The isothermic Willmore surfaces in S3 are precisely the minimal sur-
faces with respect to a constant curvature metric [39] while the isothermic
constrained Willmore surfaces include those of constant mean curvature [34].
See [4, 14] for more details on this topic.

2.3. Flat connections and perturbed harmonic maps

The key to the integrable systems approach to harmonic maps is the well-
known observation that the harmonic map equations amount to the flat-
ness of a family of connections [30, 40, 42, 43]. In particular, this gives a
zero-curvature characterization of Willmore surfaces but more is true: the
constrained Willmore equations also admit a spectral deformation [14] and
hence a zero-curvature representation:

Theorem 2.4 [13]. A conformal immersion Λ with central sphere con-
gruence V is constrained Willmore if and only if there exists a real form
q ∈ Ω1(Λ ∧ Λ(1)) such that

(2.4) dλ := DV + λN 1,0
V + λ−1N 0,1

V + (λ2 − 1)q1,0 + (λ−2 − 1)q0,1

is flat for all λ ∈ C×.

Let us abstract the main properties enjoyed by V and the family of
connections dλ. For this, we take V ≤ Rn+1,1 to be any bundle of (3, 1)-planes
and consider the corresponding decomposition of the trivial connection: d =
DV +NV . Let ρV denote reflection across V .

Definition 2.5. For k ∈ N, say that V is k-perturbed harmonic if there is
a family of flat metric connections dλ, λ ∈ C×, on Cn+2, with the following
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properties:

d1 = d (normalization),(2.5a)

ρV · dλ = d−λ (ρV -twisted),(2.5b)

d1/λ̄ = dλ (reality)(2.5c)

and λ �→ (dλ)1,0 is holomorphic on C with a pole of order k at ∞ (whence,
thanks to (2.5c), λ �→ (dλ)0,1 is holomorphic on C× ∪ {∞} with a pole of
order k at 0). In this case, we say that (V, dλ) is a k-perturbed harmonic
bundle.1

In this situation, we may write

dλ =
∑
|i|≤k

λiAi

with A0 a real metric connection preserving V and Ai ∈ Ω1(o(Cn+2)), i �= 0,
satisfying A1,0i = 0, for i < 0; A−i = Ai; AdρVAi = (−1)iAi and

DV =
∑

i

A2i NV =
∑

i

A2i+1.

It follows that V is 1-perturbed harmonic if and only if it is harmonic (A0 =
DV and A1 = N 1,0

V ).

Notation. For λ ∈ C ∪ {∞}, set λ∗ = 1/λ̄ so that the reality condition
(2.5c) reads

dλ∗ = dλ.

With these notions in hand, we reformulate Theorem 2.4 as follows:

Theorem 2.6. A conformal immersion Λ with central sphere congruence
V is constrained Willmore if and only if V is 2-perturbed harmonic with dλ

satisfying A2 +A−2 ∈ Ω1(Λ ∧ Λ(1)).

Remark 2.7. The condition of k-perturbed harmonicity makes sense for
maps into an arbitrary Grassmannian of non-degenerate subspaces of an
inner product space Rp,q, or, indeed, an arbitrary pseudo-Riemannian sym-
metric space. Much of what we say below applies in this more general context.

1A little circumspection is required here as we have seen in Remark 2.3 that a
given bundle V can be k-perturbed harmonic in more than one way.
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3. Transformations of k-perturbed harmonic bundles and
constrained Willmore surfaces

Our k-perturbed harmonic bundles come equipped with a family of flat con-
nections dλ. Such connections, at least on simply connected open subsets of
Σ, are gauge equivalent to the trivial connection. These, and other, gauge
transformations can be exploited to produce new k-perturbed harmonic bun-
dles in various ways. We begin with the simplest of these transformations.

3.1. Spectral deformation

Let (V, dλ) be k-perturbed harmonic. For μ ∈ S1, we have from (2.5c) that
dμ is a real, flat, metric connection and so there is, at least locally, a gauge
transformation Φμ ∈ Γ(O(Rn+1,1)) with

(3.1) Φμ · dμ = d,

where Φμ · dμ = Φμ ◦ dμ ◦ Φ−1μ is the usual action of gauge transformations
on connections. We note that Φμ is unique up to left multiplication by a
constant element of O(n+ 1, 1).

Proposition 3.1. Define Vμ := ΦμV . Then Vμ is also k-perturbed har-
monic with associated flat connections

(3.2) dλ
μ = Φμ · dλμ.

Proof. The connections dλ
μ are certainly flat, being gauges of the flat con-

nections dλμ, so we must show that they have the properties enumerated
in Definition 2.5. First, (3.1) tells us that d1μ = d so the family is normal-
ized. Secondly, we have ρVμ ◦ Φμ = Φμ ◦ ρV which, along with (2.5b), rapidly
yields that dλ

μ is ρVμ-twisted. Similarly, μ = μ∗ and Φμ = Φμ which, together
with (2.5c), gives the reality condition for dλ

μ. Finally, λ �→ dλμ has the same
poles at 0 and ∞ as dλ whence λ �→ dλ

μ does also. �

We can iterate this construction: for ν ∈ S1, find a gauge transformation
Φμ

ν for which Φμ
ν · dν

μ = d. Together with (3.2), this gives

(Φμ
νΦμ) · dμν = d,

so that we can take Φμν = Φμ
νΦμ and conclude:
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Proposition 3.2. For μ, ν ∈ S1 and (V, dλ) k-perturbed harmonic, Vμν =
(Vμ)ν .

Thus we have an S1-action on k-perturbed harmonic bundles up to con-
gruence. The analysis applies for k-perturbed harmonic maps into any sym-
metric space, mutatis mutandis, and, for k = 1, recovers the well-known
result of Terng (cf. [40]).

Expanding (3.2) in powers of λ gives:

Lemma 3.3. In the situation of Proposition 3.1, write dλ =
∑
Ai and dλ

μ =∑
Aμ

i . Then

Aμ
0 = Φμ ·A0,(3.3a)

Aμ
i = μiAdΦμAi,(3.3b)

for i �= 0.

We use this to examine the special case where V is the central sphere
congruence of a constrained Willmore surface Λ with multiplier q. In this
case, set Λμ = ΦμΛ and define qμ by

qμ = Aμ
2 +Aμ

−2 = AdΦμ(μ
2q1,0 + μ−2q0,1),

where the last equality is an instance of (3.3b). We now recover a result
of [14] as formulated in [13]:

Proposition 3.4 [14]. For each μ ∈ S1, Λμ is a conformal immersion and
a constrained Willmore surface with multiplier qμ.

Proof. To see that Λμ is a conformal immersion, we need Λ
1,0
μ to be maximal

isotropic in Vμ . For Vμ to be the central sphere congruence of Λμ, we need
N 1,0

Vμ
Λ0,1μ = 0 and, finally, we need q1,0μ to take values in ∧2Λ0,1μ . Then Theo-

rem 2.6 yields the result. However, since (3.3b) gives N 1,0
Vμ

= μAdΦμN 1,0
V , all

of this follows as soon as we know that Λ1,0μ = ΦμΛ1,0. For this last, observe
that qΛ = NΛ = 0, so that the operators dμ and d coincide on ΓΛ. We con-
clude that Λ1,0 = Λ⊕ dμσ(T 1,0Σ), for any σ ∈ ΓΛ and, gauging by Φμ, we
see that Λ1,0μ = ΦμΛ1,0 as required. �
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3.2. Dressing action

We are going to use a version of the Terng–Uhlenbeck dressing action [38] to
construct new constrained harmonic bundles from V . The key idea here is to
find λ-dependent gauge transformations that preserve the algebraic shape of
dλ (see [12, 15] for similar viewpoints on dressing). These transformations,
when applied to the central sphere congruence of a constrained Willmore
surface, will give rise to new such surfaces.

We begin by specifying the properties of this gauge transformation.

Definition 3.5. Let (V, dλ) be a k-perturbed harmonic bundle. A dressing
gauge for (V, dλ) is a family of gauge transformations λ �→ r(λ) ∈ ΓO(Cn+2)
which is holomorphic in λ near 0,∞ ∈ P1 and has the following properties:

(1) r(−λ) ◦ ρV ◦ r(λ)−1 is independent of λ ∈ dom(r).
(2) For all λ ∈ dom(r),

(3.4) r(λ∗) = r(λ) (reality).

(Thus we require that dom(r) is stable under λ �→ ±λ∗.)
(3) The connections r(λ) · dλ extend from dom(r) \ {0,∞} to a holomorphic

family of connections d̂λ on C× with d̂1 = d.

(4)

(3.5) det(r(0)−1r(∞)|V ) = 1.

For such an r, set V̂ = r(0)V and call (V̂ , d̂λ) the dressing transform of
(V, dλ) by r.

Note that item (1) now reads

(3.6) r(−λ) ◦ ρV = ρV̂ ◦ r(λ), (twisted)

for λ ∈ dom(r), and then evaluating at λ =∞ yields V̂ = r(∞)V also. In
particular, r(0)−1 r(∞)V = V , so that (3.5) makes sense.

It is our contention that (V̂ , d̂λ) is again a k-perturbed harmonic map
Σ→Gr3,1(Rn+1,1). We begin by showing that V̂ is indeed (the complexifica-
tion of) a bundle of real (3, 1)-planes. First, evaluate (3.4) at λ = 0, to get
r(∞) = r(0) so that V̂ = r(∞)V = V̂ . We now have:
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Lemma 3.6. Let W ≤ Cn+2 be a real (thus W =W ), non-degenerate 4-
plane and T ∈ O(Cn+2). Then

(1) W ∩ Rn+1,1 is a (3, 1)-plane if and only if dim(U ∩ U) = 1, for any max-
imal isotropic 2-plane U ≤W .

(2) If W ∩ Rn+1,1 is a (3, 1)-plane and TW = TW then TW ∩ Rn+1,1 is also
a (3, 1)-plane if and only if det(T−1T ) = 1.

Proof. For (1), note that WR :=W ∩ Rn+1,1 has signature (4, 0) or (3, 1).
Since U ∩ U ∩ Rn+1,1 is a real isotropic subspace of WR, we have dim(U ∩
U) ≤ 1 with equality forcingWR to have signature (3, 1). For the converse, if
dim(U ∩ U) = 0, then U and U are the ±√−1-eigenspaces of an orthogonal
complex structure on WR and this requires that WR be a (4, 0)-plane.

For (2), let U ≤W be maximal isotropic so that TU is maximal isotropic
in TW . We have just seen that (TW )R is a (3, 1)-plane if and only if
dim(TU ∩ TU) = 1, or, equivalently, dimU ∩ (T−1T )U = 1. Now U and U
define lines in the quadric in P(W ) given by the ambient inner product
and such lines intersect exactly when they lie in different rulings of that
quadric. These rulings comprise different SO(W )-orbits which are permuted
by O(W ) \ SO(W ). Thus det(T−1T ) = 1 if and only if U and (T−1T )U lie in
the same ruling if and only if (T−1T )U intersects U in a single (projective)
point. �

Applying this last fibrewise to V with T = r(0) and using (3.5) imme-
diately yields:

Corollary 3.7. Let (V̂ , d̂λ) be the dressing transform of (V, dλ) by r. Then,

(1) V̂ = V̂ .

(2) V̂ ∩ Rn+1,1 is a bundle of (3, 1)-planes.

(3) For any maximal isotropic subbundle of U of V̂ , U ∩ U has rank 1.

With these preliminaries dealt with, we have:

Theorem 3.8. Let (V̂ , d̂λ) be the dressing transform of (V, dλ) by r. Then
(V̂ , d̂λ) is k-perturbed harmonic.

Proof. This amounts to showing that the connections d̂λ satisfy the condi-
tions of Definition 2.5. By hypothesis, d̂λ is normalized. For the remaining
conditions that are pointwise in λ, we establish them first for λ ∈ dom(r) \
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{0,∞} and then conclude they hold for all λ ∈ C× by unique continua-
tion. Indeed, (3.6) together with the fact that dλ is ρV -twisted combine to
show that d̂λ is ρV̂ -twisted on dom(r) \ {0,∞}. Similarly, the reality con-
dition on d̂λ follows immediately from that on dλ and (3.4). Moreover, for
λ ∈ dom(r) \ {0,∞}, d̂λ is flat since it is a gauge of the flat connection dλ.

Finally, the pole behaviour of d̂λ at zero and infinity coincides with that
of dλ since the connections differ by the gauge transformations r(λ) which
are holomorphic in λ near those points. �

To go further, we need to establish some relations between the coeffi-
cients Âi of d̂λ and those of dλ. First let us establish some notation: write

A+ =
∑
0<i≤k

λiAi, A− =
∑

k≤i<0

λiAi

so that dλ = A+ +A0 +A− and, similarly, d̂λ = Â+ + Â0 + Â−. Moreover,
define χ0, χ∞ by

χ0 = r−1∂r/∂λ,
χ∞ = r−1∂r/∂μ,

where μ = 1/λ. We note that χ∞(λ) = χ0(λ∗), for λ ∈ C×. On dom(r) \
{0,∞}, we have

(3.7) d̂λ = r(λ) · dλ.

The (1, 0)-part of this is holomorphic at λ = 0 and differentiating with
respect to λ yields

(3.8) ∂Â+/∂λ = Adr(∂A+/∂λ−A1,00 χ0 − [A+, χ0]).

Again, we may write the (0, 1)-part of (3.7) as

(3.9) Â0,10 + Â− = r ·A0,10 +AdrA−,

from which we conclude that Â− −AdrA− is holomorphic near λ = 0.
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Taking coefficients of powers of λ now yields:

Lemma 3.9. In the situation of Theorem 3.8, with dλ =
∑
|i|≤k λ

iAi and
d̂λ =

∑
|i|≤k λ

iÂi, we have:

Â1,00 = r(0) ·A1,00 , Â0,10 = r(∞) ·A0,10 ,

(3.10a)

Â1 = Adr(0)(A1 −A1,00 χ0(0)), Â−1 = Adr(∞)(A−1 −A0,10 χ∞(∞)),
(3.10b)

Â−k = Adr(0)A−k, Âk = Adr(∞)Ak

(3.10c)

and, for k > 1,

Â−k+1 = Adr(0)(A−k+1 + [χ0(0), A−k])(3.10d)

Âk−1 = Adr(∞)(Ak−1 + [χ∞(∞), Ak]).

Finally,

Â1,00 = r(∞) ·A1,00 +
1
k!

∂k

∂μk |μ=0
Adr(Ak + · · ·+ μk−1A1),(3.10e)

Â0,10 = r(0) ·A0,10 +
1
k!

∂k

∂λk |λ=0
Adr(A−k + · · ·+ λk−1A−1).

Proof. Evaluate the (1, 0) part of (3.7) at λ = 0 to get (3.10a)1,0 and evaluate
(3.8) at λ = 0 to get (3.10b)1,0.

Meanwhile, comparing coefficients of λ in (3.9) yields

Â−k+i =
1
i!
∂i

∂λi |λ=0
Adr(λ)(A−k + · · ·+ λk−1A−1), for 0 ≤ i < k,

Â0,10 = r(0) ·A0,10 +
1
k!

∂k

∂λk |λ=0
Adr(λ)(A−k + · · ·+ λk−1A−1).

The last equation is (3.10e)0,1 while the cases i = 0, 1 of the first yield
(3.10c)0,1 and (3.10d)0,1. A similar argument at μ = 0 (or an appeal to the
reality of d̂λ) gives the remaining equations. �

We pause for a short diversion of possibly independent interest: our
dressing transformation changes a certain energy density by an exact 2-
form. First a definition:



Dressing transformations of constrained Willmore surfaces 483

Definition 3.10. Let (V, dλ) be k-perturbed harmonic. The energy density
e(V ) of (V, dλ) is the 2-form on Σ given by

e(V ) = i
∑
0<j≤k

j(Aj ∧A−j).

Note that, when V is harmonic (thus k = 1), e(V ) is the usual harmonic
map energy density:

e(V ) = 1
2(NV ◦ JΣ ∧NV ).

We now have:

Proposition 3.11. Let (V, dλ) and (V̂ , d̂λ) be k-perturbed harmonic bun-
dles with V̂ the dressing transform of V by r. Then

e(V̂ ) = e(V )− i dResλ=0(χ0, A−).

Proof. We begin by observing that our energy density is a residue:∑
0<j≤k

j(Aj ∧A−j) = Resλ=0(∂A+/∂λ ∧A−).

Now Â− −AdrA
− is holomorphic near λ = 0 so that (3.8) yields:

Resλ=0(∂Â+/∂λ ∧ Â−) = Resλ=0
(
Adr(∂A+/∂λ−A1,00 χ0 − [A+, χ0]) ∧AdrA

−)
= Resλ=0

(
∂A+/∂λ−A1,00 χ0 − [A+, χ0] ∧A−

)
.

Since A− is a (0, 1)-form, (A1,00 ∧A−) = (A0 ∧A−) and we have

(A1,00 χ0 + [A+, χ0] ∧A−) = (A0χ0 + [A+, χ0] ∧A−)
= d(χ0, A−)− (χ0, dA0A−)− (χ0, [A+ ∧A−])
= d(χ0, A−) + (χ0, RA0 + dA0A+),

where, for the last equality, we have used the flatness of dλ. Since (χ0, RA0 +
dA0A+) is holomorphic near λ = 0 and so has no residue there, we conclude:

Resλ=0(∂Â+/∂λ ∧ Â−) = Resλ=0
(
∂A+/∂λ ∧A−)− dResλ=0(χ0, A−)

and the result follows at once. �
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Corollary 3.12. Let V, V̂ be harmonic bundles with V̂ a dressing transform
of V . Then the harmonic map energy densities of V and V̂ differ by an exact
1-form.

So far, just as in Section 3.1, our analysis could be applied mutatis
mutandis to k-perturbed harmonic maps into any symmetric space but now
we specialize to the case of particular interest to us: we suppose that V
is the central sphere congruence of a constrained Willmore surface Λ with
multiplier q. In this case, Theorem 3.8 yields a 2-perturbed harmonic V̂
and we are going to show that V̂ is also the central sphere congruence of a
constrained Willmore surface Λ̂.

Our candidates for a new constrained Willmore surface and correspond-
ing multiplier are

Λ̂ = r(0)Λ1,0 ∩ r(∞)Λ0,1,(3.11a)

q̂ = Â2 + Â−2 = Adr(∞)q
1,0 +Adr(0)q

0,1,(3.11b)

where the last identity is (3.10c). Since r(0)Λ1,0 = r(∞)Λ0,1, Lemma 3.7(3)
assures us that Λ̂ is a real line subbundle of Cn+2.

We now have the main result of this section:

Theorem 3.13. Let (V, dλ) be the 2-perturbed harmonic central sphere con-
gruence of a constrained Willmore surface Λ with multiplier q. Let (V̂ , d̂λ)
be the dressing transform of (V, dλ) by r and define Λ̂, q̂ by (3.11).

Then Λ̂ is conformal and a constrained Willmore surface with multiplier
q̂ and central sphere congruence V̂ on the open set where it immerses.

We therefore extend the terminology of Definition 3.5 and say that Λ̂ is
the dressing transform of Λ by r.

Proof. There are three things to prove here. For conformality, we must show
that Λ̂1,0 is isotropic. To see that Λ̂ is constrained Willmore with multiplier q̂,
we need to show that q̂1,0 ∈ Ω1,0(∧2Λ̂0,1) so that q̂ gives rise to a holomorphic
quadratic differential and that N 1,0

V̂
Λ̂0,1 = 0 so that V̂ is the central sphere

congruence of Λ̂. Theorem 2.6 then establishes the conclusion.
For all this, we prove that Λ̂0,1 = r(∞)Λ0,1, whence, by reality, Λ̂1,0 =

r(0)Λ1,0, and N 0,1

V̂
r(0)Λ1,0 = 0. It is convenient to prove the second of these
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assertions first. From (3.10d), we have

(3.12) N 0,1

V̂
= Adr(0)(N 0,1

V + [χ0(0), q0,1]),

so that we need to establish that

(N 0,1
V + [χ0(0), q0,1])Λ1.0 = 0.

However, N 0,1
V Λ1,0 vanishes, since V is the central sphere congruence of Λ,

leaving us with the [χ0(0), q0,1] term. However, differentiating (3.6) at λ = 0
shows that χ0(0) anti-commutes with ρV and so takes values in V ∧ V ⊥.
On the other hand, q0,1 takes values in ∧2Λ1,0 so that their bracket lies in
Λ1,0 ∧ V ⊥ and so annihilates Λ1,0 as required. Similarly, N 1,0

V̂
r(∞)Λ0,1 = 0

and, in particular, NV̂ Λ̂ vanishes.
Again q̂0,1r(0)Λ1,0 = r(0)q0,1Λ1,0 = 0 and, similarly, q̂1,0r(∞)Λ0,1 van-

ishes. In particular, q̂Λ̂ = 0.
It follows that the operators d0,1, D0,1

V̂
and (DV̂ − q̂)0,1 all coincide on

ΓΛ̂. However, (3.10a) reads

(DV̂ − q̂)0,1 = r(∞) · (DV − q)0,1

and Λ0,1 is (DV − q)0,1-stable whence r(∞)Λ0,1 is (DV̂ − q̂)0,1-stable. It fol-
lows at once that d0,1 : ΓΛ̂→ Ω0,1(r(∞)Λ0,1) so that Λ̂0,1 = r(∞)Λ0,1 and,
similarly, Λ̂1,0 = r(0)Λ1,0, since Λ̂ immerses. �

We remark that q vanishes exactly when q̂ does so that our dressing trans-
forms when applied to Willmore surfaces give Willmore surfaces once more.

Proposition 3.11 applies in the current setting:

Corollary 3.14. Let Λ̂ be a dressing transform of a constrained Willmore
surface Λ. Then the Willmore densities of Λ and Λ̂ differ by an exact 1-form.

Proof. We know from Section 2.2 that the Willmore density of a surface
coincides with the harmonic map energy 1

2(NV ◦ JΣ ∧NV ) of its central
sphere congruence V . On the other hand, in the present situation, the energy
e(V ) of definition 3.10 is given by

e(V ) =
1
2
(NV ◦ JΣ ∧NV ) + (q ◦ JΣ ∧ q) = 1

2
(NV ◦ JΣ ∧NV ),

since q takes values in the isotropic bundle Λ ∧ Λ⊥. �
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We conclude this analysis by showing that the holomorphic quadratic
differentials that are the Lagrange multipliers for Λ and Λ̂ coincide. First,
we extend the scope of (2.3):

Lemma 3.15. Let Λ be a conformal immersion with central sphere con-
gruence V . Let q ∈ Ω1(Λ ∧ Λ(1) corresponding to a holomorphic quadratic
differential Q via (2.3). Then, for any τ ∈ ΓΛ1,0, we have

(3.13) Q0,2τ = q0,1(D0,1V τ).

Proof. Choose Z ∈ T 1,0Σ and σ ∈ ΓΛ with (dZσ, dZ̄σ) = 1. Since Λ ∧ Λ1,0 =∧2 Λ1,0 has rank 1, qZ̄ is a multiple of σ ∧ dZσ and (2.3) quickly yields

(3.14) qZ̄ = −Q(Z̄, Z̄)σ ∧ dZσ.

The right-hand side of (3.13) is tensorial in τ so that, in view of (2.3), it
suffices to check (3.13) with τ = dZσ. But

(σ ∧ dZσ)(DV )Z̄dZσ = (σ, (DV )Z̄dZσ)dZσ − (dZσ, (DV )Z̄dZσ)σ
= −(dZ̄σ, dZσ)dZσ + 1

2dZ̄(dZσ, dZσ)
= −dZσ

and the result follows at once from (3.14). �

Proposition 3.16. Let Λ be a constrained Willmore surface and Λ̂ the
dressing transform of Λ by r. Then QΛ̂ = QΛ.

Proof. From Lemma 3.15, for any section τ̂ of Λ̂1,0, we have

Q0,2

Λ̂
τ̂ = q̂0,1(D0,1

V̂
τ̂) = q̂0,1((DV̂ − q̂)0,1τ̂).

We write τ̂ = Adr(0)τ , for τ ∈ ΓΛ1,0, and apply (3.10) to see that

q̂0,1((DV̂ − q̂)0,1τ̂) = r(0)q0,1((DV − q)0,1τ)
+ q̂0,1

(
1
2
∂2

∂λ2 |λ=0
Adr(λ)(q

0,1 + λN 0,1
V )τ̂

)
= Q0,2

Λ τ̂ + q̂0,1
(
1
2
∂2

∂λ2 |λ=0
Adr(λ)(q

0,1 + λN 0,1
V )τ̂

)
,

so that the issue is to show that the last term vanishes.
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For this, note that

∂2

∂λ2 |λ=0
Adr(λ)(q

0,1 + λN 0,1
V ) = Adr(0)((∂/∂λ+ adχ0)2(q0,1 + λN 0,1

V )λ=0),

(3.15)

so that it suffices to show that C := (∂/∂λ+ adχ0)2(q0,1 + λN 0,1
V )λ=0

preserves Λ1,0. We may write (3.15) as

Adr(0)C =
∂2

∂λ2 |λ=0
g(λ),

where g(λ) = Adr(λ)(q0,1 + λN 0,1
V ). From (3.6), we have AdρV̂ g(λ) = g(−λ)

and, differentiating this twice, we learn that C commutes with ρV and
so preserves V . Since Λ1,0 is maximal isotropic in V , we are reduced to
showing that (Cτ1, τ2) vanishes for all τ1, τ2 ∈ Λ1,0. Now set Bλ = (∂/∂λ+
adχ0)(q0,1 + λN 0,1

V ) so that C = (∂/∂λ+ adχ0)|λ=0Bλ. We observe that

B0 = N 0,1
V + [χ0(0), q0,1],

which, from (3.2), annihilates Λ1,0. We compute:

(Cτ1, τ2) = (∂/∂λ|λ=0Bλτ1, τ2) + ([χ0(0), B0]τ1, τ2)
= (∂/∂λ|λ=0Bλτ1, τ2)− (B0τ1, χ0(0)τ2) + (χ0(0)τ1, B0τ2)
= ∂/∂λ|λ=0(Bλτ1, τ2).

However, Bλ = (∂/∂λ+ adχ0)Aλ for Aλ = q0,1 + λN 0,1
V which last annihi-

lates Λ1,0, for all λ, so that repeating the last computation with Bλ gives

(Bλτ1, τ2) = ∂/∂λ(Aλτ1, τ2),

which vanishes identically. �

3.3. Bäcklund transformation

Let us now remedy a lack in the analysis of the last section by providing
examples of dressing gauges. For this, we follow Terng–Uhlenbeck [38] and
contemplate dressing by simple factors.

Here is the basic building block of the construction: for L+, L− null line
subbundles of Cn+2 which are complementary in the sense that L+x and L−x
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are not orthogonal, for all x ∈ Σ, define ΓL+

L− : C× → Γ(O(Cn+2)) by

ΓL+

L−(λ) =

⎧⎪⎨⎪⎩
λ on L+;
1 on (L+ ⊕ L−)⊥;
λ−1 on L−.

The key property enjoyed by these gauge transformations is that AdΓL+

L−(λ)
is semisimple with eigenvalues λ, 1 and λ−1 only.

Our simple factors will be constructed by precomposing these gauge
transformations with a linear fractional transformation of λ so the following
simple lemma will be important for us:

Lemma 3.17. Let λ �→ dλ, λ ∈ C×, be a family of metric connections on
Cn+2, holomorphic in λ on an open subset of P1. Let α, β ∈ P1 and ψα

β :
P1 → P1 a linear fractional transformation with a zero at α and a pole at β.
If dλ is holomorphic at α, then the gauged family of connections

ΓL+

L−(ψ
α
β (λ)) · dλ

extend holomorphically across the singularity at α if and only if L+ is dα-
parallel. Similarly, if dλ is holomorphic at β, the connections extend holo-
morphically at β if and only if L− is dβ-parallel.

Proof. Write W = (L+ ⊕ L−)⊥, so that we have a decomposition Cn+2 =
L− ⊕W ⊕ L+. We have a corresponding decomposition of dα:

dα = D + β+ + β−

where D preserves L± and β± ∈ Ω1(L± ∧W ). We note that L± ∧W are the
λ±1-eigenbundles of AdΓL+

L−(λ).
Now write dλ = dα + (λ− α)B(λ) (we assume that α �=∞, otherwise we

work with 1/λ). Then, with Γ(λ) = ΓL+

L−(ψ(λ))

Γ(λ) · dλ = Γ(λ) · dα + (λ− α)AdΓ(λ)B(λ).

The second term is holomorphic near α since AdΓ(λ) introduces at most a
simple pole at α. As for the first term,

Γ(λ) · dα = Γ(λ) ·D +AdΓ(λ)(β
+ + β−)

= D + ψ(λ)β+ + ψ(λ)−1β−,
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which is holomorphic near α if and only if β− vanishes. However, this is the
case if and only if L+ is dα-parallel.

The case at β now follows after noting that ΓL+

L−(ψ
α
β (λ)) = ΓL−

L+(1/ψα
β (λ))

to which the first case applies. �

Simple factors have only two poles so, in order to take care of both the
twisting and reality conditions2 that Definition 3.5 imposes, we shall need a
product of two simple factors (cf. [25, 27, 29]) and have recourse to a Bianchi
permutability result to account for the non-commutativity of that product.
For this and related results, the following lemma will be useful.

Lemma 3.18. Let 
+, 
− and 
̂+, 
̂− be two pairs of complementary null
lines in Cn+2. Let ψα

β : P1 → P1 be a linear fractional transformation with
zero at α and pole at β. Finally, let E : λ �→ E(λ) ∈ O(Cn+2) be holomorphic
near α and β. Then

(3.16) λ �→ Γ�̂+

�̂−
(ψα

β (λ))E(λ)
(
Γ�+

�−(ψ
α
β (λ))

)−1
is holomorphic at α if and only if E(α)
+ = 
̂+ and holomorphic at β if and
only if E(β)
− = 
̂−.

Proof. Consider first the case where ψα
β (λ) = λ. Here, holomorphicity of

(3.16) at 0 is precisely the statement of [8, Lemma 4.10] while holomor-
phicity at ∞ follows by swapping the roles of 
± and replacing λ with 1/λ.

The case of arbitrary α, β can now be reduced to the first case by pre-
composing (3.16) with (ψα

β )
−1. �

Remark 3.19. Lemma 3.18 can be viewed as a discrete analogue of
Lemma 3.17 and, indeed, for flat dλ, implies Lemma 3.17 by letting E(λ) be
a gauge transform relating dλ and d.

With all this in hand, let V be a non-degenerate subbundle of Cn+2,
α ∈ C× and L a null, line subbundle such that L and ρV L are complementary
on an open set. From these data, define gauge transformations pV

α,L(λ) on

2These conditions mean that if α is a pole, so is −α and ±1/ᾱ.
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that open set by

pV
α,L(λ) = ΓL

ρV L

( (1+α)(λ−α)
(1−α)(λ+α)

)
.

We observe:

pV
α,L(1) = 1,(3.17a)

pV
α,L(−λ) ◦ ρV ◦ pV

α,L(λ)
−1 = ρV ′ ,(3.17b)

where V ′ = pV
α,L(0)V = pV

α,L(∞)V ,

pV
α,L(λ

∗) = pV
α∗,L

(λ).(3.17c)

Moreover, λ �→ pV
α,L(λ) is holomorphic on P1 \ {±α}. We have

(3.17d) (pV
α,L(0))

−1pV
α,L(∞) = ΓL

ρV L(−1),

the restriction of which to V is reflection across (L⊕ ρV L)⊥ ∩ V which has
codimension 1 in V (otherwise L = ρV L) so that

(3.17e) det
(
ΓL

ρV L(−1)
)
= −1.

We now have the main result of this section:

Theorem 3.20. Let (V, dλ) be k-perturbed harmonic, α ∈ C× \ S1 and L
a dα-parallel null line subbundle with L, ρV L complementary. Moreover, set
L′ = pV

α,L(α
∗)L̄ and V ′ = pV

α,L(0)V . Assume also that L′, ρV ′L
′ are comple-

mentary. Then r := pV ′
α∗,L′p

V
α,L is a dressing gauge for (V, dλ).

Thus, Theorem 3.8 applies with r so defined to give a dressing trans-
form of V which, by Theorem 3.13, induces a transformation of constrained
Willmore surfaces when V is the central sphere congruence of such a surface.

Proof. First r is rational in λ on P1 and holomorphic on P1 \ {±α,±α∗}.
Since dλ is ρV -twisted, we see that ρV L is d−α-parallel so that, by

Lemma 3.17, pV
α,L(λ) · dλ extends from C× \ {±α} to a holomorphic fam-

ily of connections d̃λ on C×. By the reality (2.5c) of dλ, L̄ is dα∗-parallel
so that L′ is d̃α∗ = pV

α,L(α
∗) · dα∗-parallel3. Moreover, we use (3.17b) to see

that d̃λ is ρV ′-twisted so that ρV ′L
′ is d̃−α∗-parallel. We therefore apply

3Here we use our hypothesis that α /∈ S1.
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Lemma 3.17 again to see that d̂λ = r(λ) · dλ = pV ′

α∗,L̂
(λ) · d̃λ is holomorphic

on C× with d̂1 = d since r(1) = 1.
Two applications of (3.17b) show that

r(−λ) ◦ ρV ◦ r(λ)−1 = pV ′
α∗,L′(−λ) ◦ (pV

α,L(−λ) ◦ ρV ◦ pV
α,L(λ)

−1) ◦ pV ′
α∗,L′(λ)

−1

= pV ′
α∗,L′(−λ) ◦ ρV ′ ◦ pV ′

α∗,L′(λ)
−1

is independent of λ so that r satisfies (3.6).
Meanwhile, from (3.17d), we have

r(0)−1r(∞) = (pV ′
α∗,L′(0)p

V
α,L(0))

−1pV ′
α∗,L′(∞)pV

α,L(∞)

= pV
α,L(0)

−1ΓL′
ρV ′L′(−1)pV

α,L(∞)

= ΓL′′
ρV L′′(−1)ΓL

ρV L(−1),

where L′′ = pV
α,L(0)

−1L′. Equation (3.17e) now tells us that
det(r(0)−1r(∞)|V ) = 1.

We are therefore left to deal with the reality condition (3.4). For this, it
suffices to prove that λ �→ r(λ∗)r(λ)−1 is holomorphic on P1 and so indepen-
dent of λ. The conclusion then follows since r(1) = 1. To stop the decorations
piling up, let us temporarily writeM = L′, U = V ′ and β = α∗ so that, using
(3.17c),

(3.18) r(1/λ̄)r(λ)−1 = pŪ
α,M̄ (λ)pV

β,L̄(λ)p
V
α,L(λ)

−1pU
β,M (λ)−1.

This is holomorphic in λ on P1 \ {±α,±β}. However, Lemma 3.18 tells us
that pV

β,L̄
pV

α,L
−1pU

β,M
−1 is holomorphic at β since L̄ = pV

α,L(β)
−1M and holo-

morphic at −β since ρV L̄ = pV
α,L(−β)−1ρV ′M . Since pŪ

α,M̄
is also holomor-

phic at ±β, we see that r(λ∗)r(λ)−1 is holomorphic there also.
A similar argument with pŪ

α,M̄
pV

β,L̄
pV

α,L
−1 using M̄ = pV

β,L̄
(α)L establishes

holomorphicity at ±α and we are done. �

Remark 3.21. To construct bundles L that satisfy the hypotheses of Theo-
rem 3.20 it suffices to choose an initial condition Lx, some x ∈ Σ, that satis-
fies the (open) complementarity conditions and extend to an open set by par-
allel translation since dα is flat. We observe that the complementarity con-
ditions are non-empty since they are satisfied by real, null Lx transverse to
Vx and V ⊥x . Indeed, in this case, L′x = pV

α,Lx
(α∗)Lx = Lx and ρV ′xL

′
x = ρV Lx

since Lx is an eigenspace of pV
α,Lx

(λ), for all λ.
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By analogy with the Bianchi–Bäcklund transform of constant Gauss cur-
vature surfaces (cf. [29]), we make the following

Definition 3.22. The dressing transform by the dressing gauge r of The-
orem 3.20 is the Bäcklund transform with parameters α,L.

Remark 3.23. In the classical literature, Bäcklund transforms are specified
by a choice of spectral parameter α and an initial condition which locates the
transformed surface in space at a base-point x ∈ Σ. In our setting, this last
amounts to choosing the fibre Lx from which our bundle L can be recovered
by parallel translation with respect to the flat connection dα.

3.4. Bianchi permutability for Bäcklund transforms

Our terminology in Definition 3.22 may be justified by the fact that there
is a Bianchi permutability theorem available for our Bäcklund transform.

Let us recall in outline the statement of Bianchi permutability: we start
with a k-perturbed harmonic (V, dλ) and construct two Bäcklund transforms
(V1, dλ

1), (V2, d
λ
2) with parameters α1, L1 and α2, L2, respectively. The theo-

rem then asserts the existence of a fourth k-perturbed harmonic (V12, d12)
which is simultaneously a Bäcklund transform of V1 with parameter α2 and
of V2 with parameter α1.

This amounts to finding the right line bundles L12 and L
2
1 with L

1
2 d

α2
1 -

parallel and L21 d
α1
2 -parallel. However, we have natural candidates close at

hand: by construction, we have gauge transformations r1, r2 with rj(λ) · dλ =
dλ

j and so

L12 := r1(α2)L2,(3.19a)

L21 := r2(α1)L1(3.19b)

fit the bill. It remains to verify that the Bäcklund transformations of Vj

with parameters αk, L
j
k, j �= k ∈ {1, 2}, coincide and it is to this that we

now turn.
We begin with an effort to keep the notation under control: as already

indicated, we denote by rj the dressing gauge that implements the Bäcklund
transform of (V, dλ) with parameters αj , Lj . Similarly, let rk

j be the dressing
gauge that implements the Bäcklund transform of Vk with parameters αj , L

k
j .

Thus, for example,

r1(λ) = p∗α∗1 ,L′1
pV

α1,L1
,
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where ∗ denotes a bundle (in fact pV
α1,L1

(0)V ) that we will not have to keep
track of. We have dλ

1 = r1(λ) · dλ, off a divisor, V1 = r1(0)V = r1(∞)V , and,
in case that V is the central sphere congruence of a constrained Willmore
Λ, Λ1 = r1(0)Λ1,0 ∩ r1(∞)Λ0,1.

The key fact is contained in the following lemma:

Lemma 3.24. Suppose that α2 /∈ {±α1,±α∗1}. Then

(3.20) r12r1 = r21r2.

Proof. We shall argue as in the proof of Theorem 3.20 (itself in part a
permutability theorem for p’s) and show that Π := r21r2(r1)

−1(r12)−1 is holo-
morphic on P1 and so constant. Then (3.20) follows by evaluating at λ = 1.

First we consider holomorphicity at α1: we know that r12 is holomorphic
and invertible at α1 so the issue is with r21r2(r1)

−1 which reads

p∗
α∗1 ,L̂2

1
pV2

α1,L2
1
r2p

V
α1,L1

−1p∗
α∗1 ,L̂1

−1.

Here, the outer p∗-terms are holomorphic at α1 (recall that α1 /∈ S2!) and
what is left is holomorphic thanks to Lemma 3.18 and (3.19b). Thus, our
product Π is holomorphic and O(Cn+2)-valued at α1. The same argument,
with the roles of α1 and α2 swopped shows that r12r1(r2)

−1 and so r2(r1)−1(r12)−1

is holomorphic and invertible at α2.
For the remaining potential singularities at −αj ,±α∗j , we observe that,

first, Π is real: Π(λ) = Π(λ∗) and then that, with ρ21 being the reflection
across Π21(0)V2 and similarly for ρ

1
2, we have

ρ12Π(λ) = Π(−λ)ρ21.

Consequently, holomorphicity at −αj ,±α∗j follows from that at αj and Π is
holomorphic on P1 as required. �

With this in hand, the permutability theorem follows quickly: with r the
common value in (3.20), set V12 = r(0)V = r(∞)V , dλ

12 = r(λ) · dλ and, in
case we are working with a constrained Willmore surface Λ12 = r(0)Λ1,0 ∩
r(∞)Λ0,1. Then

V12 = r12r1(0)V = r12(0)V1,

dλ
12 = r12(λ) · (r1(λ) · dλ) = r12(λ) · dλ

1 ,

Λ12 =
(
r12r1(0)Λ

1,0
) ∩ (

r12r1(∞)Λ0,1
)
= r12(0)Λ

1,0
1 ∩ r12(∞)Λ0,11 ,
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so that (V12, dλ
12) (respectively Λ12) is the Bäcklund transform of (V1, dλ

1)
(respectively Λ1) with parameters α2, L12. Similarly, these data are the
Bäcklund transform of (V2, dλ

2) (respectively Λ2) with parameters α1, L21.
To summarize:

Theorem 3.25. Let (V, dλ) be k-perturbed harmonic and α1, α2 ∈C× \ S1
with α2 /∈ {±α1,±α∗1}. Let (V1, dλ

1), (V2, d
λ
2) be the Bäcklund transforms of

(V, dλ) with parameters α1, L1 and α2, L2 respectively. Then, with Lk
j defined

by (3.19), the Bäcklund transform of (V1, dλ
1) with parameters α2, L12 coin-

cides with the Bäcklund transform of (V2, dλ
2) with parameters α1, L21.

Moreover, if V is the central sphere congruence of a constrained Will-
more surface Λ, the corresponding iterated transforms of Λ coincide also.

3.5. Spectral deformation versus Dressing transform

We conclude our analysis by comparing the spectral and dressing transfor-
mations. In an appropriate sense, these commute. For this, begin with a
k-perturbed harmonic map (V, dλ). Recall from Section 3.1 that, for μ ∈
S1, we have k-perturbed harmonic maps (Vμ, d

λ
μ) given by Vμ = ΦμV and

dλ
μ = Φμ · dλμ where Φμ ∈ ΓO(Rn+1,1) solves Φμ · dμ = d. Now let (V̂ , d̂λ) be
a dressing transform of (V, dλ) via a dressing gauge r. Then (V̂ , d̂λ) has a
spectral deformation (V̂μ, d̂

λ
μ) given by V̂μ = Φ̂μV̂ , d̂λ

μ = Φ̂μ · d̂λμ, where Φ̂μ

solves Φ̂μ · d̂μ = d.
For λ ∈ dom(r) \ {0,∞}, we have d̂λ = r(λ) · dλ so that, defining rμ(λ) :=

Φ̂μr(λμ)(Φμ)−1, we have

d̂λ
μ = rμ(λ) · dλ

μ, λ ∈ dom(rμ) \ {0,∞},
V̂μ = rμ(0)Vμ.

It is now a simple matter to check that rμ is a dressing gauge for Vμ and we
conclude that V̂μ is a dressing transform of Vμ. Thus:

Proposition 3.26. Let (V̂ , d̂λ) be a dressing transform of a k-perturbed
harmonic (V, dλ). For μ ∈ S1, the spectral deformation (V̂μ, d̂

λ
μ) of (V̂ , d̂λ) is

a dressing transform of the spectral deformation (Vμ, d
λ
μ) of (V, dλ).

In case that (V̂ , d̂λ) is a Bäcklund transform of (V, dλ), we can do a
little better. First observe that, in this case, μ ∈ dom(r) \ {0,∞} so that
d̂μ = r(μ) · dμ = (r(μ)Φ−1μ ) · d and we may therefore take Φ̂μ = Φμr(μ)−1.
Further, suppose that the Bäcklund transformation of (V, dλ) has parameters
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α, L so that L is a dα-parallel, null line subbundle. Then ΦμL is d
μ/α
μ -parallel

which prompts the following result:

Proposition 3.27. Let (V̂ , d̂λ) be the Bäcklund transform of (V, dλ) with
parameters α, L. For μ ∈ S1, the spectral deformation (V̂μ, d̂

λ
μ) is the

Bäcklund transform with parameters α/μ, ΦμL of the spectral deformation
(Vμ, d

λ
μ).

Proof. In this case, we have r(λ) = pV ′
α∗,L′(λ)p

V
α,L(λ). We set Lμ = ΦμL. Then,

in view of the discussion above, our result amounts to the identity

Φμr(μ)−1r(λμ)Φ−1μ = p
V ′μ
α∗/μ,L′μ

(λ)pVμ
α/μ,Lμ

(λ).

For this, we use the, by now familiar, permutability argument. Rearranging
all terms onto the left-hand side yields a product which is holomorphic in
λ except possibly at ±α/μ and ±α∗/μ. The part with possible singularities
at ±α/μ is

ΓL
ρV L(

λμ−α
λμ+α)Φ

−1
μ (ΓLμ

ρVμLμ
(λ−α/μ

λ+α/μ))
−1

which is readily seen to reduce to Φ−1μ and so is independent of λ. The
reality condition now establishes holomorphicity at ±α∗/μ so that the whole
product is independent of λ and we are done. �

In particular, we see that any Bäcklund transform can be obtained as a
combination of spectral deformations and a Bäcklund transform with α ∈ R.

4. Codimension 2

Conformal surface geometry in S4 has a distinctive flavour of its own. This
manifests itself in various ways such as a well-developed twistor theory [6, 17,
20] and the quaternionic formalism of the Berlin school [2, 10, 19]. However,
for us, the key feature of this setting is that the space of oriented 2-spheres
is a complex manifold (in fact, a pseudo-Hermitian symmetric space). We
will show that this structure allows us both to simplify the preceding theory
and to relate it to a construction of Willmore surfaces in [10].

4.1. Additional structure in codimension 2

We consider maps of the Riemann surface Σ into the space G̃3,1(R5,1) of ori-
ented 2-spheres in S4, or, equivalently, oriented bundles V of (3, 1)-planes in
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C6. Note that if V is the central sphere congruence of a conformal immersion
Λ, then σ ∧ dXσ ∧ dJΣXσ ∧Δσ, X ∈ TΣ, σ ∈ ΓΛ, gives an orientation of V
which is independent of choices.

In this setting, V ⊥ is a real bundle of oriented (2, 0)-planes and so splits
as a sum of complex conjugate, DV -parallel, null line subbundles:

V ⊥ = V ⊥+ ⊕ V ⊥− .

As a consequence, we have a family of DV -parallel gauge transformations
τV (λ) := ΓV ⊥+

V ⊥−
(λ) and, in particular, an almost complex structure JV on

V ∧V ⊥ given by JV = τV (
√−1)|V ∧V ⊥ . We may therefore split NV into its

holomorphic and anti-holomorphic parts:

(4.1) NV = AV +QV ,

with AV ◦ JΣ = JV ◦ AV and QV ◦ JΣ = −JV ◦ QV . Thus A1,0V ∈ Ω1,0(V ∧
V ⊥+ ) while Q1,0

V ∈ Ω1,0(V ∧ V ⊥− ).
We note the case where A = 0 (respectively, Q = 0): this means that V

is a (anti-)holomorphic map into the space of oriented 2-spheres or, equiva-
lently, V ⊥+ (respectively, V ⊥− ) is a holomorphic subbundle of C6. If, in addi-
tion, V is the central sphere congruence of a conformal immersion Λ, then
this condition obtains if and only if Λ is twistor holomorphic, that is, Λ has
a holomorphic twistor lift to CP 3 [10, Section 8.1 and Lemma 22]. Such Λ
are, of course, Willmore surfaces.

4.2. Untwisted family of flat connections

Let (V, dλ) be a k-perturbed harmonic map into G̃3,1(R5,1). Since λ �→ τV (λ)
is a group homomorphism C× → O(C6) and τV (−1) = ρV , we readily con-
clude from (2.5b) that

(4.2) τV (λ) · dλ = τV (−λ) · d−λ.

Thus there is a second family of connections ∇μ, μ ∈ C×, defined by

(4.3) ∇λ2
= τV (λ) · dλ,

for λ ∈ C×.
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Proposition 4.1. Let (V, dλ) be a k-perturbed harmonic map into G̃3,1(R5,1)
with dλ =

∑
|i|≤k Ak. Define ∇μ, μ ∈ C×, by (4.3). Then:

∇1 = d (normalization)(4.4a)

∇μ∗ = ∇μ (reality)(4.4b)

and μ �→ (∇μ)1,0 is holomorphic on C with a pole of order l at ∞ (whence,
by (4.4b), μ �→ (∇μ)0,1 is holomorphic on C× ∪ {∞} with a pole of order l
at 0). Here

(4.5) l =

⎧⎪⎨⎪⎩
(k − 1)/2 if k is odd and AkV

⊥− = 0;
k/2 if k is even;
(k + 1)/2 otherwise.

Moreover V ⊥− is (∇0)1,0-stable (whence V ⊥+ is (∇∞)0,1-stable).

Proof. We have τV (1) = 1 and τV (λ∗) = τV (λ) which, together with (2.5),
readily yields (4.4).

For A ∈ Ω1(∧2C6), decompose A = A+ +A0 +A− according to the
eigenspace decomposition of AdτV (λ):

∧2C6 = (V ∧ V ⊥+ )⊕ (∧2V ⊕∧2V ⊥)⊕ (V ∧ V ⊥− ).

Then
(∇λ2

)1,0 = (A0 +A−1 ) + λ2(A+1 +A2 +A−3 ) + · · · ,
which establishes the holomorphicity of μ �→ (∇μ)1,0 on C. Moreover, as A0
preserves V ⊥± while A−1 annihilates V ⊥− , we conclude that V ⊥− is (∇0)1,0-
stable.

Finally, we contemplate the leading term in λ of (∇λ2
)1,0: if k is even,

this is λk(Ak +A+k−1), while, for odd k, it is either λ
k+1A+k , if A

+
k �= 0, or

λk−1(Ak−1 +A−k ) when A
+
k = 0, or, equivalently, AkV

⊥− = 0. �
Thus, these connections share many properties of the family dλ but are

not ρV -twisted and have poles of half the order. In view of the first property,
we call ∇μ the untwisted family of connections associated to (V, dλ).

We can reverse this line of argument and start from an untwisted family
of flat connections:

Theorem 4.2. Let V be a bundle of (3, 1)-planes in R5,1 and ∇μ =∑
|j|≤l μ

jBj, μ ∈ C×, a family of flat connections satisfying the conclusions
of Proposition 4.1.
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Define connections dλ by

(4.6) dλ = τV (λ)−1 · ∇λ2
,

λ ∈ C×. Then dλ satisfies the conditions of Definition 2.5, so that (V, dλ) is
a k-perturbed harmonic bundle where

(4.7) k =

⎧⎪⎨⎪⎩
2l − 1 if B−l = B0

l = 0;
2l if B−l = 0 but B0

l �= 0;
2l + 1 otherwise.

Proof. It is clear that, with dλ defined by (4.6), we have d1 = d and that the
reality condition (2.5c) holds. Moreover, we readily compute:

d−λ = τV (−λ)−1 · ∇λ2
= (ρV τV (λ)−1) · ∇λ2

= ρV · dλ,

so that the twisting condition (2.5b) holds also.
As for the dependence in λ of dλ, it is clear that λ �→ dλ is holomorphic

on C× while the argument of Lemma 3.17 can be easily adapted to treat
the family of partial connections λ �→ (∇λ2

)1,0 and we deduce that (dλ)1,0 is
holomorphic at 0 since V ⊥− is (∇0)1,0-stable. Finally, the leading terms in λ
of dλ are

λ2k+1B−l + λ2kB0
l + λ2k−1(B+

l +B−l−1) + · · ·
from which (4.7) follows at once. �

We conclude that the families dλ and ∇μ carry the same information
and therefore refer to a k-perturbed harmonic bundle in codimension 2 as
either (V, dλ) or (V,∇μ), where dλ and ∇μ are related via (4.3) and (4.6).

We list some examples:

(1) ∇μ ≡ d satisfies the conditions of Proposition 4.1 if and only if V ⊥+ is
holomorphic. This is the case l = 0 of Theorem 4.2.

(2) V is harmonic if and only if ∇μ = d+ (μ− 1)A1,0 + (μ−1 − 1)A0,1 is
flat, for all μ ∈ C×. A similar result is true for maps into any (pseudo-)
Hermitian symmetric space.

(3) Let V be the central sphere congruence of Λ. Then Λ is constrained
Willmore with multiplier q if and only if ∇μ = d+ (μ− 1)(q +A)1,0 +
(μ−1 − 1)(q +A)0,1 is flat, for all μ ∈ C× [2]. This is the case l = 1 of
Theorem 4.2 with B−1 = 0 and the additional constraint that B0

1 take
values in Λ ∧ Λ(1).
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4.3. Untwisted dressing gauges

The untwisted family of connections has a simpler algebraic structure. It
is therefore unsurprising that we may dress such families with algebraically
simpler gauge transformations:

Definition 4.3. Let (V,∇μ) be a k-perturbed harmonic bundle in C6. An
untwisted dressing gauge for (V,∇μ) is a family of gauge transformations
μ �→ R(μ) ∈ ΓO(C6) which is holomorphic in μ near 0,∞ ∈ P1 and has the
following properties:

(a) For all μ ∈ dom(R),

(4.8) R(μ∗) = R(μ) (reality).

(b) The connections R(μ) · ∇μ extend from dom(R) \ {0,∞} to a holo-
morphic family of connections ∇̂μ on C× with ∇̂1 = d.

(c) The line bundles R(0)V ⊥− and R(∞)V ⊥+ are complementary.

For such an R, set V̂ = (R(0)V ⊥− ⊕R(∞)V ⊥+ )⊥, oriented so that

V̂ ⊥− = R(0)V ⊥− , V̂ ⊥+ = R(∞)V ⊥+ ,(4.9)

and call (V̂ , ∇̂μ) the untwisted dressing transform of (V,∇μ) by R.

We note that V̂ is a bundle of (3, 1)-planes since V̂ ⊥ is a sum of complex
conjugate null lines.

It is our contention that (V̂ , ∇̂μ) is again k-perturbed harmonic. This
will follow at once from the next proposition which reduces the situation to
the twisted setup of Section 3.2.

Proposition 4.4. Let (V̂ , ∇̂μ) be the untwisted dressing transform of (V,∇μ)
by R. Set

(4.10) r(λ) = τV̂ (λ)
−1 ◦R(λ2) ◦ τV (λ).

Then r is a dressing gauge for (V, dλ) and, with d̂λ = τV̂ (λ)
−1 · ∇̂λ2

, (V̂ , d̂λ)
is the dressing transform of (V, dλ) by r.

In particular, (V, dλ) is k-perturbed harmonic by Theorem 3.8.

Proof. We check that r defined by (4.10) satisfies the conditions of Defini-
tion 3.5. For this, first note that Lemma 3.18 along with (4.9), shows that
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λ �→ r(λ) is holomorphic near 0 and ∞. Now, for item (1) of Definition 3.5,
a short calculation gives

(4.11) r(−λ) ◦ ρV ◦ r(λ)−1 = ρV̂ ,

which is certainly independent of λ. Item (2) is immediate from the corre-
sponding reality conditions on R, τV , τV̂ . In particular, evaluating at λ = 0
gives r(∞) = r(0). Again, with dλ = τV (λ)−1 · ∇λ2

, we have, from item (b)
of Definition 4.3, that d̂λ = r(λ) · dλ on dom(r) \ {0,∞}. However, it is clear
from its definition that λ �→ d̂λ is holomorphic on C× and that d̂1 = d. This
settles item (3). Finally, for item (4), evaluate (4.11) at λ = 0,∞ to deduce
that V̂ = r(0)V = r(∞)V . We have already noted that V̂ is a bundle of
(3, 1)-planes and now Lemma 3.6(2) together with r(∞) = r(0) immediately
yields (3.5).

We therefore conclude that r is indeed a dressing gauge for (V, dλ). More-
over, since r(λ) · dλ = d̂λ, for λ ∈ dom(r) \ {0,∞}, and V̂ = r(0)V , we see
that (V̂ , d̂λ) is the dressing transform of (V, dλ) by r. �

With an eye to dressing constrained Willmore surfaces, we compute r(0)
and r(∞):

Lemma 4.5. With V, V̂ and r,R as in Proposition 4.4, define projections
πi, π̂i by

τV (λ) = λπ1 + π0 + λ−1π−1,
τV̂ (λ) = λπ̂1 + π̂0 + λ−1π̂−1.

Then:

r(0) =
∑
|i|≤1

π̂iR(0)πi r(∞) =
∑
|i|≤1

π̂iR(∞)πi.(4.12)

Proof. We have already seen that r(0)V = r(∞)V = V̂ but more is true:
rearrange (4.10) to give

R(λ2) = τV̂ (λ) ◦ r(λ) ◦ τV (λ)−1,

so that the holomorphicity of λ �→ R(λ2) near 0 and∞, along with Lemma 3.18,
tells us that r(0)V ⊥+ = V̂ ⊥+ and r(∞)V ⊥− = V̂ ⊥− . Moreover, since r(0) is an
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isometry and V ⊥− is maximal isotropic in V ⊥, we have that r(0)V ⊥− is max-
imal isotropic in V̂ ⊥ and so must be V̂ ⊥− . Thus

r(0) =
∑
|i|≤1

π̂ir(0)πi

and similarly for r(∞).
However,∑

|i|≤1
π̂ir(λ)πi =

∑
|i|≤1

π̂iτV̂ (λ)
−1R(λ2)τV (λ)πi =

∑
|i|≤1

π̂iR(λ2)πi

and evaluating this last at λ = 0,∞ establishes (4.12). �

Putting all this together with Theorem 3.13 yields:

Theorem 4.6. Let (V,∇μ) be the 2-perturbed harmonic central sphere con-
gruence of a constrained Willmore surface Λ with multiplier q. Let (V̂ , ∇̂μ)
be the untwisted dressing transform of (V,∇μ) by R.

Define:

Λ̂ = (πV̂R(0)Λ
1,0) ∩ (πV̂R(∞)Λ0,1),(4.13a)

q̂ = AdπV̂ R(∞)q
1,0 +AdπV̂ R(0)q

0,1.(4.13b)

Then Λ̂ is a constrained Willmore surface with multiplier q̂ and central
sphere congruence V̂ on the open set where it immerses.

Definition 4.7. We say that Λ̂ is the untwisted dressing transform of Λ
by R.

We shall see below in Proposition 4.12 and Corollary 4.13 that a quater-
nionic formalism provides cleaner formulae in which the projections πV̂ do
not intervene.

Remark 4.8. Which dressing gauges r arise from untwisted dressing gauges
R via (4.10)? Lemma 4.5 provides a necessary condition: r(0)V ⊥± = V̂ ⊥± and
r(∞)V ⊥± = V̂ ⊥± . It is not difficult to see that this condition is also sufficient
by arguing as in Proposition 4.4.

Any dressing gauge has r(0)V ⊥ = V̂ ⊥ and r(0)V ⊥± maximal isotropic in
V̂ ⊥, so that the remaining possibility is that r(0)V ⊥± = V̂ ⊥∓ and r(∞)V ⊥± = V̂ ⊥∓ .
This amounts to switching the orientation of V̂ ⊥ or, equivalently, replacing
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τV̂ by its inverse. We leave it as an exercise to the interested reader to work
out the analogue of our analysis in this case.

4.4. Untwisted simple factors

The lack of ρV -twisting allows the possibility of untwisted dressing gauges
with just two poles so that, in codimension 2, we may dress by simple fac-
tors. For this, let (V, dλ) = (V,∇μ) be a k-perturbed harmonic bundle. For
ν ∈ C× \ S1, let M be a null, line subbundle such that M and M are com-
plementary on an open set4. Use this data to define gauge transformations
Pν,M (μ) on that set by

Pν,M (μ) = ΓM
M

( (1−ν∗)(μ−ν)
(1−ν)(μ−ν∗)

)
.

We have:

Pν,M (1) = 1,(4.14a)

Pν,M (μ∗) = Pν,M (μ),(4.14b)

and that μ �→ Pν,M (μ) is rational on P1 and holomorphic on P1 \ {ν, ν∗}.

Theorem 4.9. Let (V,∇μ) be a k-perturbed harmonic bundle in C6, ν ∈
C× \ S1 and M a ∇ν-parallel null line subbundle of C6. Assume that M,M
are complementary and then that Pν,M (∞)V ⊥+ and Pν,M (0)V ⊥− are comple-
mentary. Then Pν,M is an untwisted dressing gauge for (V,∇μ).

Proof. We have already seen that μ �→ Pν,M (μ) is holomorphic on P1 \ {ν, ν∗}
and so, in particular, near 0 and∞. Moreover, (4.14b) is precisely the reality
condition (4.8) of Definition 4.3.

We have that M is ∇ν-parallel, when, thanks to (4.14b), M is ∇ν∗-
parallel. It is now immediate from Lemma 3.17 that μ �→ Pν,M (μ) · ∇μ

extends holomorphically to C× settling Definition 4.3(b).
Finally, Definition 4.3(c) holds by hypothesis. �
In fact, the dressing transformation induced by these simple factor dress-

ing gauges are generically Bäcklund transforms as in Section 3.3. Indeed, if
M is ∇ν-parallel and α = ±√ν, then (4.6) tells us that L := τV (α)−1M is
dα-parallel. Thus α,L are parameters for a Bäcklund transform of (V, dλ)
which turns out to have the same effect as dressing by Pν,M . In more detail:

4This is the open set on which M is not real.
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Proposition 4.10. Let (V,∇μ) be a k-perturbed harmonic bundle in C6,
ν ∈ C× \ S1 and M a ∇ν-parallel null line subbundle satisfying the hypothe-
ses of Theorem 4.9. Let (V̂ , ∇̂μ) be the dressing transform of (V,∇μ) by
Pν,M .

Let α = ±√ν and set L = τV (α)−1M . Assume that L satisfies the hypothe-
ses of Theorem 3.20: thus L, ρV L are complementary and, with L′ = pV

α,L(α
∗)L̄

and V ′ = pV
α,L(0)V , L′, ρV ′L

′ are also complementary.
Then

(4.15) pV ′
α∗,L′(λ)p

V
α,L(λ) = τV̂ (λ)

−1Pν,M (λ2)τV (λ),

for all λ.

Thus, Proposition 4.4 tell us that (V̂ , d̂λ) is the Bäcklund transform of
(V, dλ) with parameters α,L.

Proof. Set

L(λ) := pV ′
α∗,L′(λ)p

V
α,L(λ),

R(λ) := τV̂ (λ)
−1Pν,M (λ2)τV (λ).

We follow what should now be a familiar strategy: we use Lemma 3.18 to
see that λ �→ R(λ)L(λ)−1 is holomorphic on P1 and so constant.

Both L(λ) and R(λ) are holomorphic on P1 \ ±α,±α∗, L(λ) by construc-
tion and R(λ) by Proposition 4.4. Moreover, both R,L satisfy the reality
condition so it suffices to show holomorphicity of RL−1 at ±α. Now the part
of this product with poles at ±α is

ΓM
M

(
λ2−α2

λ2−1/ᾱ2

)
τV (λ)ΓL

ρV L

(
λ−α
λ+α

)−1 = ΓM
M

(
λ+α
λ+α∗

)
ΓM

M

(
λ−α
λ−α∗

)
τV (λ)ΓL

ρV L

(
λ−α
λ+α

)−1(4.16a)

= ΓM
M

(
λ−α
λ−α∗

)
ΓM

M

(
λ+α
λ+α∗

)
τV (λ)Γ

ρV L
L

(
λ+α
λ−α

)−1
.(4.16b)

We have M = τV (α)L and this, together with Lemma 3.18 applied to the
right hand side of (4.16a), gives holomorphicity at α. Again, τV (−α)ρV L =
τV (α)L =M , so that Lemma 3.18 applies to (4.16b) to give holomorphicity
at −α. �

4.5. Quaternionic formalism

The Klein correspondence offers another viewpoint on the conformal geom-
etry of S4 which has been heavily exploited by Pedit, Pinkall and their
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collaborators [2, 3, 10, 19]. We rehearse the basics of this viewpoint with a
view to extending the transformation theory of [10, Chapter 12] and relating
it to our dressing transformations in Section 4.6.

We begin with a 2-dimensional quaternionic vector space which we view
as C4 equipped with a quaternionic structure j: thus j : C4 → C4 is anti-
linear and j2 = −1. Now fix det ∈ ∧2(C4)∗ with

j∗ det = det, det(v1 ∧ v2 ∧ jv1 ∧ jv2) > 0,

when v1 ∧ v2 ∧ jv1 ∧ jv2 �= 0 vi ∈ C4. These data equip C6 := ∧2C4 with a
real structure v1 ∧ v2 := jv1 ∧ jv2 and an inner product (ξ, η) := det(ξ ∧ η)
of signature (5, 1).

Set SL(H2) = {g ∈ SL(C4) : jg = gj}. The action of SL(H2) on ∧2C4

induces a map SL(H2)→ SO(5, 1) which is a double cover. Differentiating
gives an isomorphism of Lie algebras sl(H2) ∼= o(R5,1) where sl(H2) = {A ∈
sl(C4) : [A, j] = 0}.

The Klein correspondence identifies the Grassmannian of 2-planes in
C4 with the quadric in P(C6) defined by our inner product: W �→ ∧2W .
Clearly, j-stable 2-planes (thus one-dimensional quaternionic subspaces) are
identified with points of P(L) = S4 yielding the celebrated isomorphism
HP 1 ∼= S4.

Under this correspondence, oriented 2-spheres are identified with 2-
planes S+ ≤ C4 which are not j-stable: for such an S+, set S− = jS+ and
then C4 = S+ ⊕ S− and the corresponding (3, 1)-plane V in R5,1 is given
by:

V = S+ ∧ S−, V ⊥± = ∧2S±.

Equivalently, such S+ correspond bijectively to S ∈ SL(H2) with S2 = −1
via S = ±i on S±.

Thus, a bundle V of oriented (3, 1)-planes amounts to S ∈ ΓSL(H2) with
S2 = −1 and ±i-eigenbundles S± so that V ⊥± = ∧2S±. The corresponding
decomposition C4 = S+ ⊕ S−1 induces a decomposition of the flat connec-
tion

d = DS +NS

with DSS = 0 and NS anti-commuting with S: {NS , S} = 0. Using V =
S+ ∧ S−, we readily see that DS induces the connection DV on C6 = ∧2C4

and that NS coincides with NV under the isomorphism sl(H2) ∼= o(5, 1).
Again, the subspace V ∧ V ⊥ of o(5, 1) corresponds to {A ∈ sl(H2) : {A,S} =
0} with the almost complex structure JV corresponding to post-composition
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with S. Thus the decomposition (4.1) of NV is identified with the decom-
position

NS = AS +QS

of [10, Section 5.1] where

∗AS = SAS = −ASS,(4.17a)
∗QS = −SQS = QSS.(4.17b)

Here, and below, we follow [10] by setting ∗α = α ◦ JΣ, for α ∈ Ω1Σ. Thus
our ∗ is minus that of Hodge.

We note the following simple consequences of this analysis [10, Equations
(5.2) and (5.11)]:

dS = 2(∗QS − ∗AS),(4.18a)
0 = AS ∧QS ,(4.18b)
0 = QS ∧ AS ,(4.18c)

where coefficients in the wedge products are multiplied using composition
in End(C4).

Now let Λ be a conformal immersion with oriented central sphere con-
gruence V . Then Λ corresponds to a quaternionic line subbundle of C4,
thus a j-stable, rank 2 bundle L ≤ C4 with ∧2L = Λ. To the central sphere
congruence V corresponds S ∈ ΓSL(H2) characterized by the following con-
ditions [10, Section 5.2, Theorem 2]:

SL = L, dSL ≤ T ∗Σ⊗ L,(4.19a)
∗δ = Sδ = δS,(4.19b)
QSL = 0,(4.19c)

where δ = π ◦ d for π : C4 → C4/L the projection away from L.
From (4.19a), we see that L = L+ ⊕ L− where L± = L ∩ S± and L− =

jL+. Thus Λ = L+ ∧ L−. We remark that L±, viewed as maps Σ→ CP 3

are the two twistor lifts of Λ. Moreover, from (4.19b), we readily compute
that:

Λ1,0 = S+ ∧ L−, Λ0,1 = L+ ∧ S−.
We have therefore established a dictionary between subbundles of C4

and C6 = ∧2C4 which we shall use without further comment. Thus we can
(and will!) talk of conformal immersions L with central sphere congruence S.
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With a view to working with constrained Willmore surfaces in this for-
malism, we list the algebraic properties of a Lagrange multiplier q when
viewed as an sl(H2)-valued 1-form.

Lemma 4.11. Let Λ = ∧2L be a conformal immersion with central sphere
congruence S. Let q ∈ Ω1 ⊗ o(5, 1). Then q1,0 takes values in Λ ∧ Λ0,1 if and
only if, when viewed as a sl(H2)-valued 1-form, we have

q ∈ Ω1(End(H2/L,L))(4.20a)
∗q = Sq = qS.(4.20b)

Proof. Suppose that q1,0 takes values in Λ ∧ Λ0,1, or, equivalently, q preserves
V and annihilates V ⊥ while q1,0 additionally annihilates Λ0,1. The first two
of these imply that qS = Sq so that q preserves S±. Moreover, qV ⊥ = 0
means that q∧2S± = 0, so that trace(q|S±) = 0.

Let Z ∈ T 1,0Σ, σ+ ∈ L+ and s− ∈ S−. Then

qZ(σ+ ∧ s−) = (qZσ+) ∧ s− + σ+ ∧ (qZs−) = 0.

It follows at once that L+ is an eigenspace of qZ with eigenvalue λ, say,
and then that qZ = −λ on S−. Since qZ is trace-free on S−, we immedi-
ately get that qZ annihilates S− (so that ∗q = qS) and also L+ and so
L. Finally, choose s+ ∈ S+ so that σ+ ∧ s+ �= 0. Then 0 = qZ(σ+ ∧ s+) =
σ+ ∧ (qZs+) so that qZS+ ≤ L+. This establishes Equations (4.20). The
converse is straightforward. �

Let R be a dressing gauge for a k-perturbed harmonic (S,∇μ). We wish
to describe its effect in quaternionic terms for which we need a little nota-
tion: for g ∈ O(C6), write g̃ for a preimage of g under the double covering
SL(C4)→ O(C6). Thus

g(v ∧ w) = (g̃v) ∧ (g̃w),

for v, w ∈ C4. Clearly g̃ is determined up to sign by g and has an unambigu-
ous projective action on C4.

With this in hand, we have:

Proposition 4.12. Let (S,∇μ) be k-perturbed harmonic in C6. Let R be
an untwisted dressing gauge for (S,∇μ) and (Ŝ, ∇̂μ) the untwisted dressing
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transform by R. Then

Ŝ+ = R̃(∞)S+ Ŝ− = R̃(0)S−.(4.21a)

Moreover, if S is the central sphere congruence of a constrained Willmore
surface L with multiplier q, then the dressing transform Ŝ and its multiplier
q̂ are given by:

L̂+ = R̃(∞)L+ L̂− = R̃(0)S−,(4.21b)

q̂|Ŝ+ = R̃(∞)qR̃(∞)−1|Ŝ+
q̂|Ŝ− = R̃(0)qR̃(0)−1|Ŝ− .(4.21c)

Proof. First note that the right members of (4.21) follow at once from the
left members because R(0) = R(∞) so that we may take R̃(0) to be j ◦
R̃(∞) ◦ j−1.

For (4.21a), first note that (4.9) amounts to ∧2Ŝ+ = R(∞)∧2S+, which
immediately yields Ŝ+ = R̃(∞)S+.

For the rest, let π±, π̂± be the projections corresponding to the decompo-
sitions C4 = S+ ⊕ S− and C4 = Ŝ+ ⊕ Ŝ−. It is easy to deduce from Lemma 4.5
that

r̃(∞) = π̂+R̃(∞)π+ + π̂−R̃(∞)π− = R̃(∞)π+ + π̂−R̃(∞)π−

r̃(0) = π̂+R̃(0)π+ + π̂−R̃(0)π− = π̂+R̃(0)π+ + R̃(0)π−.

In particular,

r(∞)Λ0,1 =
(
R̃(∞)L+

) ∧ (
π̂−R̃(∞)S−

)
=

(
R̃(∞)L+

) ∧ Ŝ−,
where, for the last equality, we note that π̂−R̃(∞) has kernel S+ and so
injects (therefore surjects) when restricted to S−. Complex conjugation now
yields r(0)Λ1,0 = Ŝ+ ∧ R̃(0)L− and then (3.11a) gives

Λ̂ = (Ŝ+ ∧ R̃(0)L−) ∩ (R̃(∞)L+ ∧ Ŝ−) = R̃(∞)L+ ∧ R̃(0)L−.
In particular, L̂+ = R̃(∞)L+ and L̂− = R̃(0)L− settling (4.21b).

Finally, we consider q. From (4.20b), we see that q preserves S± while
q1,0|S− = 0 and similarly for q̂. On the other hand, from (3.11b), we have:

q̂1,0 = Adr(∞)q
1,0 = r̃(∞)q1,0r̃(∞)−1.

Since r̃(∞)|S+ = R̃(∞)|S+ with image Ŝ+, this immediately yields

q̂1,0|Ŝ+
= R̃(∞)q1,0R̃(∞)−1|Ŝ+

.
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On the other hand, both q̂0,1 and R̃(∞)q0,1R̃(∞)−1 vanish on Ŝ+ and so
(4.21c) is established. �

We summarize the development in the following corollary:

Corollary 4.13. Let R be an untwisted dressing gauge of a k-perturbed
harmonic (S,∇μ) in C6 and define T0 ∈ ΓGL(H2) by

T0 = R̃(∞)π+ + R̃(0)π−.

Then the dressing transform Ŝ of S by R is given by

Ŝ = T0ST
−1
0 .

Moreover, if S is the central sphere congruence of a constrained Willmore
surface L with multiplier q, then the dressing transform L̂ and its multiplier
q̂ are given by:

L̂ = T0L,

q̂ = T0qT
−1
0 .

Proof. The only thing to check here is that T0 so defined is indeed an iso-
morphism. But the image of T0 is Ŝ+ + Ŝ− = C4 thanks to (4.21). �

Clearly there is some gauge freedom here: we could precompose T0 with any
gauge transformation, which is a scalar multiple of the identity on each of
S±. We shall exploit this below.

4.6. Darboux transforms and Riccati equations

A transformation of Willmore surfaces in S4 via solutions of a Riccati equa-
tion is described in [10, Chapter 12] while a related transform is derived by
Leschke in [26]. We now show that these transforms all amount to untwisted
dressing by simple factors as described in Section 4.4. Along the way, we
extend the theory to constrained Willmore surfaces.

For this, we specialize the considerations of the last section to the case
where the dressing gauge R is a simple factor Pν,M . Recall that here ν ∈ C× \
S1 and M is a ∇ν-parallel null line subbundle with M,M complementary.
Equivalently, in the quaternionic formalism,M = ∧2W for W a ∇ν-parallel
complex subbundle of C4 such that C4 =W ⊕ jW (so that rankW = 2). If
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we now define ΓW
jW (μ) ∈ ΓEnd(C4) by

ΓW
jW (μ) =

{
μ on W
1/μ on jW,

then
˜Pν,M (μ) = ΓW

jW

(√
(1−ν∗)(μ−ν)
(1−ν)(μ−ν∗)

)
.

We now have the following improvement on Corollary 4.13 in case that
R is a simple factor:

Theorem 4.14. Let (S,∇μ) be k-perturbed harmonic in C6. Fix ν ∈ C× \
S1 and let W ≤ C4 be a ∇ν-parallel subbundle such that W ⊕ jW = C4.
Define μ0, μ1 ∈ C× by

(4.22) μ0 = i
ν + 1
ν − 1

, μ1 = i
ν∗ + 1
ν∗ − 1

.

Further, define X ∈ Γgl(H2) by

X =

{
μ0 on W ;
μ1 on jW .

and then T ∈ Γgl(H2) by

(4.23) T = X − S.

Then Pν,∧2W is an untwisted dressing gauge for (S,∇μ) on the open set on
which T is an isomorphism and the dressing transform of S by Pν,∧2W is
given by

(4.24a) Ŝ = TST−1

In particular, Ŝ is k-perturbed harmonic.
Moreover, when S is the central sphere congruence of a constrained Will-

more surface L with multiplier q, then the untwisted dressing transform of
L by Pν,∧2W is given by

L̂ = TL,(4.24b)

q̂ = TqT−1.(4.24c)
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Proof. Set R = Pν,∧2W . We claim that there are constants λ0, λ1 ∈ C× such
that:

R̃(0) = λ0(X + i) R̃(∞) = λ1(X − i).(4.25)

Given the claim, we immediately deduce that:

R̃(0)|S− = λ0(X + i)|S− = λ0T|S− ,

R̃(∞)|S+ = λ1(X − i)|S+ = λ1T|S+ .

We note that μ1 = −μ0 so that X and so T are gl(H2)-valued. Moreover,
T is an isomorphism exactly when R̃(0)S− ∩ R̃(∞)S+ = {0} or, equiva-
lently, when R(0)V ⊥− and R(∞)V ⊥+ are complementary, that is, when R
is an untwisted dressing gauge. The rest of the theorem now follows at once
from Proposition 4.12.

For the claim, note that both sides of each equation in (4.25) haveW and
jW as eigenspaces and so we must simply equate eigenvalues and require
that √

ν(1− ν∗)
ν∗(1− ν) = λ0(μ0 + i)

√
1− ν∗
1− ν = λ1(μ0 − i),√

ν∗(1− ν)
ν(1− ν∗) = λ0(μ1 + i)

√
1− ν
1− ν∗ = λ1(μi − i).

These amount to linear equations for the μi which are solved by (4.22) and
then the λi are given by

λ0 = − i2

√
(ν − 1)(ν∗ − 1)

νν∗
λ1 = − i

2

√
(ν − 1)(ν∗ − 1).

�

Remark 4.15. For Willmore L and, more generally, harmonic S, the con-
struction in Theorem 4.14 of Ŝ and L̂ from a ∇ν-parallel W coincides with
Leschke’s ν-Darboux transform [26, Theorems 4.2 and 4.4]. She conjectured
that this procedure should amount to a dressing transform as we have just
affirmed.

Theorem 4.14 offers a different perspective on untwisted dressing by
simple factors by focusing on the field of endomorphisms X rather than
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the dressing gauge Pν,∧2W . The key conditions on X, that it have constant
eigenvalues and ∇ν or ∇ν∗-parallel eigenspaces W, jW , are encapsulated in
a Riccati equation with a conserved quantity:

Proposition 4.16. Let (S,∇μ) be k-perturbed harmonic, X ∈ Γgl(H2) and
μ0 ∈ C \ R. Then X has eigenvalue μ0 with rank 2 ∇ν-parallel eigenbundle
if and only if

(μ1 − μ0)dX = X(β∗ − β)X + (μ0β − μ1β∗)X +X(μ1β − μ0β∗) + μ0μ1(β∗ − β)
(4.26a)

X2 − (μ0 + μ1)X + μ0μ1 = 0,(4.26b)

where μ1 = μ0, ∇ν = d+ β and ∇ν∗ = d+ β∗.

Proof. First note that if X has rank 2 μ0-eigenbundle W then it also has
μ1-eigenbundle jW with C4 =W ⊕ jW so that the minimal polynomial of
X is X2 − (μ0 + μ1)X + μ0μ1. Conversely, if X solves (4.26b) with μ0 non-
real, then, since [X, j] = 0, X is not a scalar multiple of the identity and so
has X2 − (μ0 + μ1)X + μ0μ1 as its minimal polynomial. It follows at once
that X has eigenvalues μ0, μ1 with rank 2 eigenbundles.

Thus, we may assume that X has rank 2 μ0-eigenbundle W and the
only remaining issue is whether W is ∇ν-parallel, or equivalently, jW is
∇ν∗-parallel. This is easily seen to be equivalent to the demand that

(X − μ0)∇ν(X − μ1) = 0,

(X − μ1)∇ν∗(X − μ0) = 0,

or, since these last have image in different eigenbundles,

(X − μ0)∇ν(X − μ1) = (X − μ1)∇ν∗(X − μ0).

However, writing this out in terms of β and β∗ promptly yields (4.26a). �

Remark 4.17. In the situation of Theorem 4.14 with μ0 given by (4.22),
we see that the excluded case that μ0 ∈ R amounts to the already excluded
case of ν ∈ S1.

Observe that the coefficients in the Riccati equation (4.26a) are all pure
imaginary so that solutions with initial condition in gl(H2) remain in gl(H2).
In fact, much more is true: the Riccati equation is completely integrable and
admits (4.26b) as a first integral. All this uses almost nothing about the
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specifics of the situation beyond the flatness of the connections ∇ν and ∇ν∗ .
Indeed, we have:

Proposition 4.18. Let A be a complex finite-dimensional associative alge-
bra with unit, μ0 �= μ1 ∈ C and β, β∗ A-valued 1-forms on Σ defining flat
connections:

dβ + β ∧ β = dβ∗ + β∗ ∧ β∗ = 0.

Then the Riccati equation (4.26a)

(μ1 − μ0)dX = X(β∗ − β)X + (μ0β − μ1β∗)X
+X(μ1β − μ0β∗) + μ0μ1(β∗ − β)

for X : Σ→ A is completely integrable.
Moreover, if X is a solution and I = X2 − (μ0 + μ1)X + μ0μ1, then I

solves the linear equation

(μ1 − μ0)dI = I(β∗ − β)X +X(β∗ − β)I + I(μ1β − μ0β∗) + (μ0β − μ1β∗)I

and so, in particular, vanishes identically if it vanishes at a single point.

Proof. One can prove complete integrability by direct computation but we
offer a more conceptual and, perhaps, instructive proof based on the well
known classical observation that Riccati equations are the affine expression
of linear equations in homogeneous coordinates. So consider a general Riccati
equation

dX = XAX +BX +XC +D,

with A-valued 1-forms A,B,C,D. Write X = PQ−1 for P,Q : Σ→ A (we
can always do this near some initial point p0 ∈ Σ by taking Q(p0) = 1).
Then the equation becomes

dP −BP −DQ− PQ−1(dQ+AP + CQ) = 0,

so that integrability is guaranteed by flatness of the connection on the trivial
A⊕ A bundle given by

d+
(−B −D
A C

)
.

In the case at hand, this connection reads

d+
1

μ1 − μ0

(
μ1β

∗ − μ0β μ0μ1(β − β∗)
β∗ − β μ1β − μ0β∗

)
=

(
μ0 μ1
1 1

)
·
(
d+

(
β 0
0 β∗

))
,
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which is clearly flat.
The derivation of the linear equation for I is a straightforward compu-

tation which we leave to the interested reader. �

Let us summarize this development which amounts to a construction of
new k-perturbed harmonic bundles from old via solving a Riccati equation:

Corollary 4.19. Let (S,∇μ) be k-perturbed harmonic in C6 and fix ν ∈
C× \ S1. Define μ0, μ1 ∈ C× by (4.22). Fix a base-point xo ∈ Σ and Xo ∈
gl(H2) satisfying X2

o − (μ0 + μ1)Xo + μ0μ1 = 0.
There is (locally) X ∈ Γgl(H2) solving:

(μ1 − μ0)dX = X(β∗ − β)X + (μ0β − μ1β∗)X
+X(μ1β − μ0β∗) + μ0μ1(β∗ − β)

X(xo) = Xo,

where ∇ν = d+ β and ∇μ = d+ β∗. Then, with T = X − S, Ŝ = TST−1 is
k-perturbed harmonic on the open set on which T is invertible.

Moreover, if S is the central sphere congruence of a constrained Willmore
surface L, then Ŝ is the central sphere congruence of a constrained Willmore
surface TL.

Of course, our Riccati equation for X can be phrased as a Riccati equa-
tion for T the form of which, for general ν, is not very edifying. However,
when ν is real, matters simplify considerably and we not only recover the
Darboux transforms of Willmore surfaces described in [10, Section 12.3] but
generalize them to the constrained Willmore case.

So let L be a constrained Willmore surface with multiplier q and central
sphere congruence S. We then have ∇μ = d+ (μ− 1)(AS + q)1,0 + (μ−1 −
1)(AS + q)0,1. Fix ν ∈ R \ {±1} so that ν∗ = 1/ν and then

μ0 = i
ν + 1
ν − 1

= −μ1.

Set

(4.27) ρ = −(ν − 1)2

4ν
=
2− ν − ν∗

4

so that

ρ−1 − 1 = μ20 = μ21.
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We may now use (4.18a) along with (4.17) and (4.20b) to write the Riccati
equation (4.26a) for X as the following Riccati equation for T = X − S:

(4.28) dT = ρT
(
2 ∗ (AS + q)

)
T − 4ρTq − 2 ∗ (QS + q)

with first integral (T + S)2 − (ρ−1 − 1).
In this situation, ρ−1 < 1 and, conversely, if ρ−1 < 1, we can rearrange

(4.27) and recover ν, ν∗ as the two real roots of μ2 + 2(2ρ− 1)μ+ 1 = 0. We
therefore have:

Theorem 4.20. Let L be a constrained Willmore surface in S4 with mul-
tiplier q and central sphere congruence S. Let ρ ∈ R with ρ−1 < 1 and let
T ∈ gl(H2) be a solution of the integrable Riccati equation (4.28) with (T +
S)2 − (ρ−1 − 1) = 0 at one, and hence every, point.

Then L̂ = TL is also a constrained Willmore surface with multiplier
TqT−1 and central sphere congruence TST−1 on the open set on which T is
invertible.

Moreover, L̂ is an untwisted dressing transform of L by a simple factor.

For Willmore surfaces (thus q = 0), this construction of L̂ is the Darboux
transform of [10, Section 12.3] with the caveat that their Riccati equation
swops the roles of AS and QS and their T is the inverse of ours. This is, of
course, a well-known symmetry of the Riccati equation.
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[21] S. Germain, Mémoire sur la coubure des surfaces, Crelle’s J., 7 (1831),
1–29.

[22] U. Hertrich-Jeromin, Introduction to Möbius differential geometry, Lon-
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