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Constrained Willmore tori and elastic curves in
2-dimensional space forms

LyNN HELLER

In this paper, we consider two special classes of constrained
Willmore tori in the 3-sphere. The first class is given by the rota-
tion of closed elastic curves in the upper half-plane — viewed as
the hyperbolic plane — around the z-axis. The second is given
as the preimage of closed constrained elastic curves, i.e., elastic
curves with enclosed area constraint, in the round 2-sphere under
the Hopf fibration. We show that all conformal types can be iso-
metrically immersed into S* as constrained Willmore (Hopf) tori
and explicitly parametrize all constrained elastic curves in H? and
52 in terms of the Weierstrass elliptic functions. Furthermore, we
determine the closing condition for the curves and compute the
Willmore energy and the conformal type of the resulting tori.

1. Introduction

Let f: M — S be a conformally immersed compact surface. It is called
constrained Willmore, if it is a critical point of the Willmore energy | M
(H? +1)dA under conformal variations. The minimizer of the Willmore
energy for a fixed conformal class can be viewed as the optimal realization
of the underlying Riemann surface in three space. Such a minimizer exists
for M; see [15], if the underlying conformal class provides an immersion to
S3 with Willmore energy below 8. Furthermore, the minimizer is smooth
and constrained Willmore. It is an open question whether the infimum of
the Willmore energy is below 87 for every conformal class.

The global minimizer of the Willmore energy in the class of tori is the
Clifford torus; see [20]. Furthermore, Ndiaye and Schétzle [21] have shown
that the homogenous tori 7). are minimizers of their respective conformal
classes near the Clifford torus. For rectangular conformal classes, the mini-
mizers are conjectured to be the 2-lobed tori of revolution, which have con-
stant mean curvature in S3; see figure 1. The Willmore energy of this family
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Figure 1: Embedded two lobed CMC tori of revolution in S3. (by Nick
Schmitt)

increases monotonically with the conformal type, see [17], and converges to
8m. The limiting surface is a double covering of a geodesic sphere. Thus,
the minimizer of the Willmore energy for tori with prescribed rectangular
conformal class exists by Kuwert and Schétzle [15]. Tori of revolution can be
constructed by rotation of a closed curve in the upper half-plane around the
z-axis. The torus is constrained Willmore if and only if the curve is elastic in
the upper half-plane viewed as H?. Since Brendle [8] and Andrews and Li [3]
have shown that all embedded CMC tori are rotational, the pictured tori are
the minimizers of the Willmore energy in their respective conformal classes
restricted to CMC tori. For non-rectangular conformal classes no candidates
for the minimizers are known in the literature, since tori of revolution are
always of rectangular conformal types.

First examples of Willmore tori, which are not minimal in a space form
were found by Pinkall [23] in the class of Hopf tori. These are given by the
preimage of closed curves in $? under the Hopf fibration. The torus is (con-
strained) Willmore, if and only if the corresponding curve is (constrained)
elastic, i.e., critical points of the energy functional with prescribed length
and enclosed area. In contrast to tori of revolution [23] shows that all con-
formal classes can be realized algebraically as Hopf tori. More generally,
equivariant Willmore tori were studied in [10].

In the literature, there exists an alternative notion of constrained Will-
more surfaces. These are critical points of the Willmore functional with
prescribed enclosed volume and surface area (Helfrich model). Since Hopf
tori are flat and the mean curvature of the torus is simply the geodesic cur-
vature of the curve in S2, constrained Willmore Hopf tori are constrained
Willmore in both sense.



Constrained Willmore Tori and elastic curves 345

In this paper, we study the two classes of constrained Willmore tori
which comes from closed elastic curves in H? and closed (constrained) elastic
curves in S2. We first show that every conformal class can be realized as
a constrained Willmore (Hopf) torus via the direct method of calculus of
variations. This generalizes the result by Pinkall [23]. Then we derive explicit
formulas for (constrained) elastic curves in 2-dimensional space forms. By
viewing H? and S? as subsets of CP', we define the Schwarzian derivative
q as a Mobius invariant of a curve v in CP!. The curve 7 is constrained
elastic if and only if its Schwarzian derivative is stationary under the first-
order Korteweg—de-Vries (KdV) flow. Thus, ¢ is generically given in terms
of a Weierstrass g-function defined on a torus C/I', which plays the role
of a spectral curve in our setting. We compute the closing conditions for
the curves and show that every constrained elastic curve is isospectral to
an elastic curve. Then we give formulas for the Willmore energy and the
conformal type of the resulting torus.

In their paper, Langer and Singer [19] constructed elastic curves in S?
and H? without the enclosed area constraint. Our result is a generalization
of this and uses the Schwarzian derivative instead of the geodesic curvature
of the curve. The moduli space of constrained willmore Hopf tori is studied
in [16].

2. Equivariant tori in the 3-sphere
We consider S ¢ C2.

Definition. A map f: C — S2 is called R-equivariant, if there exist group
homomorphisms

M : R — {Mobius transformations of S®}, ¢ +— M,

M : R — {conformal transformations of C}, ¢+ Mj,

such that
foM,=DMof, forall t.

If f is doubly periodic with respect to a lattice I' C C, then f is a torus and
the following proposition holds.

Proposition 1. Let f : T? = C/T — S be a equivariant conformal immer-
sion. Then there exists a holomorphic coordinate z = x + iy of T? together
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with m,n € N and ged(m,n) = 1, such that

flzy) = <e0 m> f(0,y),

e

up to isometries of S° and the identification of S® with SU(2). The curve
v(y) := f(0,y) (not necessarily closed) is called the profile curve of the
surface.

In this paper, we only consider two very special cases of equivariant
tori, namely the case of tori of revolution (m = 1,n =0) and Hopf tori
(m=n=1).

Definition. Let M be a compact and oriented surface and let f : M — S3
be an immersion into the round sphere. The Willmore energy of f is defined
to be

W(f) = /M(H2 +1)dA,

where H is the mean curvature of f and dA is induced volume form.

A conformal immersion f : M — S3 is called Willmore, if it is a critical
point of the Willmore energy W under all variations and it is called con-
strained Willmore, if it is a critical point of W under conformal variations,
see [7] and [24].

It is shown in [18] that the Willmore functional reduces to the energy
functional f k2ds for surfaces of revolution, where  is the curvature of the
profile curve in the hyperbolic plane, and s is the arc length parameter. The
conformal type of the torus is determined by the length of the curve in H?2.
Further, Pinkall [23] shows that the Willmore energy for a Hopf torus reduces
to the generalized energy functional fﬁ/(/{2 + 1)ds of the corresponding curve
in S2. In particular, the mean curvature of Hopf tori satisfies H = x and by
construction the Gauflian curvature is zero. The conformal type of the torus
is determined by the length and the enclosed area of the curve. Thus, by the
principle of symmetric criticality [22], i.e., the critical symmetric points are
the symmetric critical points, a surface of revolution is constrained Willmore
if and only if its profile curve is elastic in H? and a Hopf torus is constrained
Willmore, if its profile curve is a critical point of the energy functional with
prescribed length and enclosed area.
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Definition. Let v be an arc length parametrized closed curve in a 2-dimen-
sional space form and k its geodesic curvature. The curve is called con-
strained elastic, if it is a critical point of the energy functional f7 k2ds with
fixed length and enclosed area.

Proposition 2 [7]. Let v be an arc length parametrized curve into a 2-
di-mensional space form of constant curvature G and let k be its geodesic
curvature in the space form. The Fuler—Lagrange equation for a constrained
elastic curve is:

1
(2.1) /{"+§/~£3+(,u—|—G)/£—|—)\:O,

for real parameters pu and .

This equation is the well-known stationary first-order modified KdV
(mKdV) equation. The real parameters p and A are the length and respec-
tively the enclosed area constraint for a closed curve. A solution to u = A =0
is a free elastic curve in the space form of curvature G. By multiplying the
equation with 2k’ the equation can be integrated once and yields

(2.2) (K)? = ==k = (u+ G)r? — 20k — 1.

Here, v is a real integration constant. We denote the negative of the poly-
nomial on the right-hand side by Py, i.e.,

1
Py = Zx‘l + (u+ G)z? 4+ 2z + v.

Theorem 1. For given real numbers Ly and Aqg satisfying the isoperimetric
inequality on S?

L} — 4w Ag + A% > 0,

there exists a smooth constrained elastic curve in S% minimizing the energy
E(y) = [(k* + 1)ds with length L(~v) = Lo and enclosed area A(vy) = Aop.

Remark 1. We use the notion of oriented enclosed area of a curve in S2
used in [23]. It is only well-defined modulo 4.

Proof. The proof is a straightforward application of the direct method of
calculus of variations. We want to find a minimizer of the Willmore energy
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in the set
S :={v: 8" = 5% smooth |L(y) = Lo and A(y) = Ap}.

By Theorem 1 of [23] the set is non-empty, if the isoperimetric inequality
holds. Thus, & = inf{E(v)|y € S} > 0. Without loss of generality we only
consider arc length parametrized curves. Let (v,)nen be a sequence in &
such that

lim &(v,) = &.

Since we have

/ Iy [2ds = Lo,

/\ (s = [[(< N 5 4 <ol >2ds = [+ 1),

the sequence (7, )nen is bounded in W22 and has a convergent subsequence
in W22 by the Arcela—Ascoli theorem. Let vy denote the limit of this sub-
sequence, then g is at least C'. Therefore, (v,)nen and (Y, )nen converges
point wise. Furthermore, by the Gaufl—Bonnet theorem the enclosed area
can be computed as A(7y,) = 2mm — f7 Kknds = Ag, where m is the winding
number of the curve. Thus, =g is a minimizer of £ for curves lying in

S:={y:58" = 5% v eW?2|L(y) = Ly and A(y) = Ap}.

It remains to show that v is smooth. For this, we rewrite the Euler-Lagrange
equation. The Hopf fibration induces a S'-fiberbundle with canonical con-
nection on S3. A conformal parametrization of the Hopf torus fq correspond-
ing to 7 is obtained by taking the horizontal lift 4 of vy as the profile curve
of fo; see Proposition 1. Note that the horizontal lift is well defined for 122
curves and preserves the regularity. Let (T, N, B) denote the Frénet frame
of 4. Then 7q is a constrained elastic curve in S? if and only if there exist
real constants A and p such that the vector field

X = (K2 +NT +2x'N + (26 + pu)B

is parallel with respect to the Levi-Civita connection on S3. Thus,  is a
BV function on a compact interval and therefore k € L, see [2]. Thus, one
can use the Caldéron—Zygmund estimates and obtain smoothness for k. [J

Corollary 1. FEwvery conformal class of the torus can be realized as a con-
strained Willmore immersion in the 3-sphere.
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Proof. By [23], the conformal type of a Hopf torus is given by (L/2,A4/2)
and the region, where the isoperimetric inequality holds covers the whole
moduli space of conformal structures of tori. O

3. Constrained elastic curves in space forms

Since the Willmore functional is Mébius invariant, it seems to be more nat-
ural to consider a Mébius invariant setup here. Thus, we consider

v:R — H?, 5% R? — CP!

via affine coordinates. The Mobius invariant of a map into CP' is the
Schwarzian derivative. It can be defined by the following construction, which
can be found in [9]. Let  be a curve in CP'. To  there exists a lift 7 to C2
(not necessarily closed) with respect to the canonical projection from C? to
CP'. Furthermore, there exists a complex valued function a with 4 := a7
such that detc(9,4’) = 1. Thus, 4” and 4 are linearly dependent over C and
there exists a complex valued function ¢ satisfying

(3.1) 5"+ i =0,
Definition. The function q is called the Schwarzian derivative of ~.

The curve is uniquely determined by ¢ up to Mobius transformations. A
straightforward computation gives the following lemma. The lifts 4 needed
for the computations are: for R? 22 C < C? and H? — R? we use 7 = (v, 1),
and for S? we use ¥ = 7, where n C S C C? is the horizontal lift of y under
the Hopf fibration.

Lemma 1. Let v be a reqular and arc length parametrized curve in a 2-
dimensional space form of constant curvature G and let k be its geodesic
curvature. Then the Schwarzian derivative q of v is given by

q=—+ +

iK' K2 G
2 4 4

Further, if v is constrained elastic in the space form, i.e., k is a real solution
of the stationary mKdV equation (2.2) with real parameters A, u and v, then
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q satisfies the stationary KdV equation
(3.2) (¢')? 4 2¢° + cq® +2dg+ e =0,

with real parameters ¢, d and e given by

(33) d=—% -5 —u§

Remark 2. The transformation k — ¢ of an arc length parametrized curve
is a geometric version of the well-known Miura transformation; see for
example [11].

Let
c? (n+G)? v
T I S TR
cd e 1 4 3 1 .5 1
= B (U4 GP N — G
g3 ptateEe =gt A — vt )

Py := 423 — gox — g3.
If D = g3 — 2793 # 0 then the differential equation

(3.4) 0% = Ps(p)

defines a double periodic meromorphic function — the Weierstrass g func-
tion. Its periods w; are linearly independent over the reals, i.e., the w;
generates a lattice I' in C, and ¢ is a well-defined function on 72 = C/T.
Equation (3.2) is then solved by

q(z) = —2p(x + z0) — e,

for some constant xy € C\ {0}. We refer to [1] for details on the Weierstrass
elliptic functions.

A necessary condition for ¢ to be the Miura transformation of a real
valued curvature function k is that the lattice invariants g, and g3 are real.
We also need that D # 0 to obtain a well-defined gp-function. This requires
the polynomial P3 to have only simple roots. Then the generators of the
lattice I' are linearly independent over the reals. We deal with the case of
Ps5 having multiple roots in Section 3.2. For real g2 and g3, the lattice I is
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rectangular or its double covering is rectangular, depending on the sign of
its discriminant.

Definition. A solution of Equation (3.2) with D > 0 is called orbitlike
and wavelike, if D < 0. The polynomial P; has multiple roots if and only if
D=0.

Remark 3. For given parameters p and A, consider the trajectories of
solutions to Equation (2.1) with different initial values. The trajectories
of the constant solutions mark special points in the (k,«’)-plane. If the
Equation (2.1) possesses orbitlike solutions, then there exist three constant
solutions and the trajectories of orbitlike solutions only wind around one of
these constant solutions, i.e., they lie in the orbit of the constant solution.
Wavelike solutions always wind around all constant solutions of the equation.
For A = 0, the periodic solutions x changes the sign, thus the corresponding
curves resemble waves.

A curve in CP! with Schwarzian derivative g solving Equation (3.2)

can be parametrized in terms of Weierstrass ¢ and o functions. The Weier-

strass (-function is determined by ¢’ = —p and lim,_({(z) — %) =0 and

the Weierstrass o function is given by 2 = ¢ and lim, . JS) = 1. Again,
we refer to [1] for the properties of these functions.

Theorem 2. Let§ = —2p(x + 20) — £c be a solution of Equation (5.2) with
real parameters c,d,e. We define a family of curves 45 = (95,9%) C C2,
EeR by

1 0'(55 + zg — P) eg(p)(z‘-i-:co)

(3.5) o(z + xo) ’
. 22 U(.%' + Zo + P) C(=p)(z+x0) ;
e = 0(9«“—‘*‘9@'0)6 , with p(p) = E.

Then Ag induces a family of curves vg in CP' with Schwarzian derivative
qg = (G + %c — E), if E is not a branch point of ¢.

Remark 4. The parameter p is determined by E only up to sign. The
choice of —p (instead of p) exchanges 'ylE and 'y% and the resulting curves in
CP' are Mobius equivalent.

Proof. If E is not a branch point of g, the functions f%j, 1 = 1,2 are linearly
independent over C and have no common poles and zeros, thus the curve
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(Y%, 7v%) induces a well-defined curve in CP!. Further, since
(¥p)" = 20(x + 20)i = EAp,
the stated ¢g is the Schwarzian derivative of the curve vg = [y5,7%]. O

Lemma 2. Let gy and g3 be real constants with g3 —27g3 # 0. And let
© be the Weierstrass function with respect to the lattice I' C C given by the
lattice invariants g2 and gs. If zo € C\ (%F + R), then there exists a function
k: R — R with

(3.6) p(r+x9) = —1—— — —— —b,

where b is a real constant. Moreover, k is periodic and a stationary mKdV
solution with coefficients determined by g2, g3.

Proof. We first show that there exists a real valued function s solving the
differential Equation (3.6). The imaginary part of (3.6) can be easily inte-
grated and we obtain

(3.7) K = —2i(¢ —  + consty).
Then the real part of Equation (3.6) must satisfy
P+ = (¢~ C+ consty)® — 20,
which can be proved as follows: differentiating Equation (3.4) we obtain
(3.8) ¢ (x + m0) = 6p(x + 20)* — 392.

Furthermore, since the functions @ and @ are holomorphic and
anti-holomorphic, respectively, we get that the derivative of p with respect to
z = x + iy and the derivative of ¢ with respect to Z is the same as the deriva-
tive of p and @ with respect to x. Consider now only the points z € C/T’
with o — @ # 0. Then by (3.4) and (3.8) we have

206 —9)° = (" +0")(p—p) + (¢) - ()

This is equivalent to
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By integration we obtain

~

o + @
@_

2(¢ — ¢ + consty) =

)

<

with a purely imaginary integration constant const;. Thus,
o' + ¢ =2(p — p)(¢ — C + consty).
Integrate again we obtain
o+ 9= ((¢—¢) + consty)? 4 consto,

with a real integration constant consts. Then replacing o by p(x + ) and
define b = —%cons‘m proves the first statement.

Since all the functions we consider are continuous, the equation above
is still valid at the boundaries in the x-direction. Thus, it is necessary to
choose a xg, which does not lie on the real axis or on a parallel translate
of the real axis by a half lattice point. These choices of g does not lead to
an arc length parametrized constrained elastic curve, since ¢ would be real
valued.

Now we show that x defined by Equation (3.7) is mKdV stationary. We

(x)  k(z)?

have p = —i=~ — =g~ — b and therefore
" 1 " 1 " 1 / 2
pla+x0)" = —iz w7 (2) — oK' (2)r(z) — L (K(2))%,
3t 3 3 3
6p(z + x0)? = gZR/RQ + 3ibk’ — gﬁ’2 + 3—2f14 + 6b% + 5bl£2.

Hence the imaginary part of Equation (3.8) yields
n 3 /.2 /
(3.9) K"+ Pl + 12bk" = 0.

Thus, x is the curvature of an arc length parametrized constrained elastic
curve. 0

Remark 5. Lemma 2 shows that the curve yg with Schwarzian derivative
q defined in Theorem 2 is Md&bius equivalent to an arc length parametrized
constrained elastic curve v in a 2-dimensional space form. We fix the M6bius
transformation in Section 3.4.
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3.1. The roots of the polynomials P; and Py

Since we want to consider closed curves, the curvature function x is peri-
odic and achieves its maximum and minimum. Thus, we can always choose
k'(0) = 0 as the initial value for Equation (2.1). This corresponds to the
choice of zg € iR \ {3T'}. The necessary and sufficient condition for the exis-
tence of a real function k solving Equation (2.2) with parameters p, A\ and
v is that the polynomial P, has real roots. In the case of a fourth-order
polynomial, there exists an algorithm to compute its roots explicitly. To Py
one associate a polynomial of degree 3 — the cubic resolvent. In our case,
it is given by

Py =83+ 8(u+ G)s® +16((u+ G)? — v)s — 64)\%

By a variable change 16z = s + §(u+ G), we obtain a positive multiple of
the polynomial P3. The roots of P4 are determined by the roots of P; (respec-
tively Ps). In particular, Py has simple real roots if and only if Py has either
only one real root (D < 0 and Py has 2 real roots) or the roots of Py are all
real and non-negative (D > 0 and P, has four real roots). Furthermore, if Ps
has multiple roots, then also P, has multiple roots. This yields the following
lemma.

Lemma 3. Let Py be the real polynomial of degree 4 given in (2.2) with
only simple roots and let P3 denote its cubic resolvent. Then Py has real
roots if and only if all real roots of P3 are mon-negative.

Proof. The statement is obviously true for D > 0. For D < 0 let ey, ez and
e3 denote the roots of Py. Then the cubic resolvent can be written as P3( ) =
(s —e1)(s —e2)(s — e3). We obtain in our particular case that

P3(0) — —e€1€9€3 = —64)\2 S 0.

For D < 0 there is only 1 real root and a pair of complex conjugate roots of
Pj5. Therefore, the real root must be non-negative. O

Remark 6. The proof shows that for given g, and g3 and (u+ G) the
parameter \ is fixed up to sign. The choice of the sign corresponds to the
transformation x — —k or equivalently xo(€ iR) — —x.

Corollary 2. The stationary mKdV Equation (2.2) with real parameters
(b + G), A and v has real solutions if and only if %(,u + G) is less or equal
to all real roots of the polynomial Ps. Equality holds if and only if A = 0.
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Corollary 3. There exist no orbitlike free elastic curves on S*. Further-
more, there are no orbitlike elastic curves corresponding to Willmore Hopf
tori.

Proof. Firstly, it requires g2 > 0 to have D > 0. Further, the condition for

the existence of real solutions is equivalent to the condition that the roots
of % =352 +16(u + G)s + 16(pu + G)? — 16v are positive!. This condition

is computed to be
164

(u+G)<0and v < (u+ G)>.

which is equivalent to

But for free elastic curves in S? we have: G >0, and A = =0 and for
Willmore Hopf tori we have : G >0, A= 0 and (u+G) = 3G > 0. O

3.2. Multiple roots

We have shown that in the case where the polynomial P, has only simple
roots Equation (3.2) can be solved using the Weierstrass p-function. Now
we study the case where P, has multiple roots.

Since we are looking for periodic solutions, we can restrict ourselves
without loss of generality to the initial value problem for Equation (2.1)
with initial values

k(0) =Ko and K'(0)=0.

Then kg is a real root of Py with parameters A, p and v. There are two cases

to consider. In the first case, kg is a multiple zero of P, itself. Then it is also a
root of %P < which is the right-hand side of Equation (2.1). Therefore, k = ko

K
is the unique solution to the given initial value problem by Picard—Lindel6ff.

In the second case, P4 has multiple roots but kg is a simple root of Pj.

Definition. A solution of Equation (2.1) (or of Equation (3.2)), where Py
has multiple roots and the initial condition kg is a simple root is called an
asymptotic solution.

'Tf the maximum and the minimum of the polynomial are positive, then at least
two roots must be positive. But since the product of all roots is also non-negative
by Lemma 3, the third root is non-negative.
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Proposition 3. Asymptotic solutions with A\ = 0 are never periodic.
Proof. For A = 0, we have the differential equation
()% = —i/ﬁ‘i —2(u+ G)K? — 1.

The polynomial on the right-hand side is even and has multiple roots by
assumption. In order to obtain non-constant solutions, we need at least one
simple root of P;. By symmetry, the only case to consider is that the multiple
root of Py is at k = 0 with multiplicity 2 and we have two simple roots for
Kk = =xkg and kg € R.

We solve an initial value problem for the differential equation of second
order

'+ 4% + (p+ Gk =0,

with initial value k(0) = ko and '(0) = 0. At k(0) we obtain that x"(0) =
a(;;)Q |z=0 < 0. Thus, there exists an € > 0 with /() < 0 for ¢ € (0,€) and the
curvature function x decreases monotonically for ¢t € (0,¢). Let T := sup{e €
R4|s/(t) <0 fort e (0,€)}. If T < oo, then x'(T) = 0 and we obtain x(T) is
a root of Pj. Since k is continuous, we obtain x(7") = 0, which is a multiple
root. By Picard—Linderloff, we get that x(¢) = 0 is the unique solution to
the initial value problem «/(T") = x(T") = 0. This contradicts x(0) = ko # 0.

Therefore, T' = oo and « is not periodic. O

Corollary 4. Constrained Willmore tori of revolution and Willmore Hopf
tori are either homogenous, i.e., k = Ko is constant, or Py has only simple
T001S.

Remark 7. Closed asymptotic solutions corresponding to constrained Will-
more tori do exist for curves in S2. These are obtained by a simple factor
dressing of a multi-covered circle. In fact, all asymptotic solutions on S? can
be obtained this way.

3.3. Closing conditions

To obtain closing conditions for the curves vg defined in Theorem 2, we
compute their monodromy. The curve vz closes if and only if the monodromy
is a rotation by a rational angle. We fix a lattice I' in C with real lattice
invariants go and g3 and get a p-function with respect to this lattice. We
denote by w;, 1 = 1,2, 3, the half periods of I and fix wy to be the half period
lying on the real axis. For real g, and g3, we always obtain a half lattice point
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on the imaginary axis, which we denote by ws. In the case of D < 0, we have
w1 = w3 mod I.

Proposition 4. With the notations above the curve yg closes after n peri-
ods of the Weierstrass p-function if and only if there exists a m € N with
ged(m,n) =1 such that

m .
2mp = 2(pJwr = .
Here ¢ is the Weierstrass -function, 1 := ((w1) and E = p(p).

Remark 8. Geometrically speaking, the number m is the winding number
of the curve and the number 7 is the lobe number.

Proof. Provided that E is not a branch point of the gp-function the curve
vE =[5, 7%] is given by two complex valued functions

1 _ 0@+ 70— P) ()@t

5= o(z + xo) ° ’

2 _ 0@ 20+P) ()t
_ZZrHTe) 0 th p(p) = E.

TE O’(.I' + xO) € ) W1 p(p)

Furthermore, let ¢ be the Weierstrass (-function and define 7; := ((w1),
which is a real number because the lattice invariants go and g3 are real.
With the formulas for the monodromy of the Weierstrass o function we
obtain:

(@ + 2en) = e RO ()

(@ +20) = KO @),

The monodromy of the vg is the quotient of the both monodromies com-
puted here. Therefore, we get that the curve closes after n periods if and
only if there exists a m € Z with (m,n) coprime such that

eAmp—4C(p)wr e 2T
which proves the statement. O
Corollary 5. Varying xo yields isospectral deformations of constrained

elastic curves, i.e., deformations preserving the monodromy and the parame-
ters g2, g3 and E. In particular, every constrained elastic curve is isospectral
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to an elastic curve, i.e., a solution of Fquation (2.1) with A = 0, unique up
to reparametrization.

Proof. Varying xy does not effect the closing condition, thus we obtain a 1-
parameter family of closed constrained elastic curves. For the second state-
ment we define 1(u + G) := p(ws), which is by definition the smallest real
root of P3. Thus we have A =0 and v = 4g2 — 12p(w3)?. This choice of
parameters leads to an elastic curve since the so defined P; has real roots
by Lemma 3. The corresponding o can be determined as follows: the roots

of Py are given by

Ky = \/—24@(@03) + /62402 (w3) — 163,
ke = —\/—24@((03) + /62402 (w3) — 1642,
Ky = \/—24@(@03) — /62402(w3) — 1692,
Ky = —\/—24p(w3) — /62492 (w3) — 1649,

if the solution is orbitlike. For wavelike solutions, there are only two real
roots, which are given by k} and x2.
Thus, the possible values of p(zg) are

(3.10)

(w3) — §/624(ws) — 1692,
(w3) + /62402 (w3) + 16g2.

[\CIENEE RN

©
©
The first choice corresponds to +zg € iR and the second to +zgiR 4 w;.
Both choices yield the same curve up to reparametrization and there exists
a unique xy € i(0, —iws) such that kg is a root of Py. The choice of xg €

(iws,0)) leads to the same curves with different orientation, since the map
xo — —x corresponds to Kk — —K. O

Because of the above corollary, we restrict ourselves in the following to
the case with A = 0.

Theorem 3. Let gy and g3 be real constants with g5 — 2793 # 0. Then every
rational point of the function

g iR\ {wsZ} — iR, p— g(p) = mp — C(p)w1

gives rise to a closed elastic curve yg, E = p(p), as defined in Theorem 2,
on a round S? with curvature G = 4(p(ws) — E). In particular, for fized gs
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and g3 there exist to every integer n, a simply closed elastic curve with n
lobes.

Proof. The polynomial P; defining the Weierstrass g-function has either
one or three real roots. By assumption p(ws) = ¢(p+ G), where ws € iR
is a half lattice point of I'. We vary p, with p(p) = F, to close the curves.
Since E = #(u — $G) < p(w3), we obtain p € iR\ {wsZ}; see [1]. For fixed
real invariants go and g3, we get that 77; and w; are also real. Furthermore,
for p € iR the constant ((p) € iR, too. Thus, the map

g 1R — iR, g(p) = mp — ((p)w1,
is well defined and ¢(iR) is a non-trivial interval since

lim g(p) = +oo and g(w3) = 0 or g(ws) = i,
p—=£0

depending on whether the solution is orbitlike or wavelike. O

Figure 2 shows a wavelike 3-lobed Willmore Hopf torus. The correspond-
ing curve in S? is elastic.

Remark 9. For constrained elastic curves in S?, it is necessary to choose
p € iR mod I'. Thus, it is isospectral to an elastic curve in a space form of
positive curvature and #(u+G) > E = ¢(u— 3G). Nevertheless, by
decreasing %(,u + @) for fixed go, g3 and E?, the resulting curves first become
a constrained elastic curve in R? for }(u+ G) = E and then turns into a

constrained elastic (but not elastic) curve in H?2.

Proposition 5. Let go and g3 be real constants with g3 — 27g§ <0 and
vE be the family of curves defined in Theorem 2. Then there exists at most
one closed elastic curve in a space form of constant curvature G < 0 in that
family.

Proof. In this case, e = %(,u + G) is the only real root of Ps. Furthermore, p
with p(p) = E > e does not lie on the imaginary axis. Since E' must be real,

2By choosing %(u + G) according to Lemma 2 the parameter A is determined up

2
to sign and v is fixed and there is a zg € i(0, —iws) with p(z¢) = =2 — 5 (u + G).
Therefore, varying %(u + G) is equivalent to the isospectral deformations given by
varying xg.
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Figure 2: Wavelike elastic curve in S? to parameters p = —% and A =0 in
S? and corresponding Willmore Hopf torus (by Nick Schmitt).

we get p € R and thus ((p) € R. Therefore, the only chance to get a closed
solution is that

pm — C(p)wr = 0.

The solution holds obviously for p = w; but this choice contradicts the fact
that 2 > e. The closing condition can be interpreted as the intersection of
the line given by p — pwﬂ—l1 with the graph of the function (|g. The function
(|r is anti-symmetric with respect to w; and has a simple pole in 0 and
is convex for p < w; and concave for p > w;. Thus there exist two other
intersection points if and only if —p(w) = —(E + 1G) > &, which makes
the same curve. Otherwise there are no other intersection points and no
closed curves. O

Example 1. A closed curve in this class is an elastic figure-eight in H?. It
is shown in [19] that there is no free elastic wavelike curve in the hyperbolic
plane. Thus there is no Willmore torus coming from this construction.

Theorem 4. Let gy and g3 be real constants with g3 — 27g§ > 0. Then every
rational point of the function

g iR\ {wsZ} — iR, g(p) = m(p +w1) — ((p + w1)wr

gives rise to a closed constrained elastic curve vg (E = p(p)) as defined in
Theorem 2) in H? with curvature G. In particular, for fived go and g3 there
exist to every integer n > 1 a simply closed elastic curve with n lobes.

Proof. The polynomial Ps has three real roots and thus we can choose a
E > %(u + G) such that P3(E) < 0 by varying G < 0. The corresponding p
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satisfies p = p + w; with p € iR and

C(p+w1)=—C(p—wi) =—C(p+wr)+2m.

Thus, the function

9(p) = m(p+wi) — ¢(p+ wi)w

is purely imaginary. Further g(ws) = %m’ and ¢g(0) = 0. By the same argu-
ment as in Theorem 3 we get a dense set of solutions. In particular, forn > 1
we obtain 5-7i € g(iR). O

Remark 10. In contrast to constrained elastic curves in S?, elastic curves
in H? never lie in an isospectral family of constrained elastic curves in other
space forms.

3.4. How to obtain the space form

We want to show that the curves stated in Theorem 2 are already the con-
strained elastic curves we are looking for without applying any Md&bius trans-
formations. We use the Poincare disc model or the upper half-plane model
of H? — C (depending on whether the function g defined above is real or
imaginary valued) and consider S? = C U {oo}. The curve yg given by The-
orem 2 is Mobius equivalent to a constrained elastic curve v in a space form
G of constant curvature G. A Mdbius transformation M is fixed by its values
on three points. We want to determine the Mo6bius transformation M from
G to CP! which maps the arc length parametrized constrained elastic curve
v to vg. Without loss of generality we can fix v(0) € iR.

For real valued parameter E the function ¢ is either real or imaginary
valued. In the first case, the monodromy is a rotation which has two fixed
points 0 and oo in CP! and this rotation must be an isometry of G. Thus we
use the poincare disc model of the hyperbolic plane here. Since the inversion
at the unit circle preserves the constrained elastic property of a curve, the
only Mobius transformations left are z — 7z, for a real number r. We can fix
r by asking the curve vg to be arc length parametrized with respect to the
induced metric (which we need only to check in one point), i.e., [v5(0)[g = 1.
In the second case (which only happens for constrained elastic curves in H?),
the hyperbolic space is given by the upper half-plane and again the arc length
property fixes the parameter . The choice of r corresponds to the choice of
the infinity boundary of the hyperbolic plane or respectively the image of
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the geodesic under the stereographic projection of S2. If the space form is
R?, then multiplication with r preserves the constrained elastic property.

3.5. Constrained Willmore cylinders of revolution

Constrained Willmore cylinders of revolution have constant mean curvature
(CMC) in a 3-dimensional space form by [6]. For tori we have two cases to
distinguish. Either the whole torus is CMC in one space form or the torus
is constructed by the glueing of two CMC cylinders in the hyperbolic 3-
space (viewed as the inner of the unit ball in R? for one cylinder and as
the outer of the unit ball for the other cylinder) at the infinity boundary.
In both cases, we can associate with the immersion a Riemann surface —
the spectral curve. The details concerning the construction of the immersed
surfaces and its corresponding spectral curves can be found in [5] in the first
case and in [4] in the second. For a constrained Willmore torus of revolution,
its CMC spectral curve is determined by the family of differential operators

. -k
—1a 15

(f:ax‘i‘ - K -2 ’
Z§ 1a

see [13], where & is the curvature of its profile curve in the hyperbolic plane
(G= —1) and a € C\ {0}. To be more concrete, the spectral curve is given
by the normalization and compactification of the analytic variety

{(a,b) € C\ {0} x C\ {0}|b is eigenvalue of the holonomy of Df}.

The so-defined spectral curve is a hyperelliptic curve over the a-plane and
there exist by construction two involutions which cover the involutions

c:a— —aand p:a—a

on the a-plane. The spectral curve is unbranched over a € R (since the cor-
responding D{ are in su(2,C)) and thus it is in particular unbranched over
a = 0 and a = co. Which of the above cases of constrained Willmore tori of
revolution occur depends on whether the involution p o o of the CMC spec-
tral curve has fixed points, which must lie over a € iR. We show that these
two different cases of CMC surfaces correspond to the distinction between
orbitlike and wavelike profile curves. Moreover, the different choices of the
Sym-point E used here to construct the curve correspond to the different
space forms in which the tori (respectively cylinders) have constant mean
curvature.
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Proposition 6. Let vg be an elastic curve in H?, as defined in Theorem 2
and f the corresponding constrained Willmore cylinder of revolution. Then
f is CMC in H? with mean curvature |H| < 1 if and only if vg is wavelike.
If ~ is orbitlike we have the following:

For P3(E) < 0 the cylinder f is CMC in S3.

If P3(E) >0 f is CMC in H® with mean curvature H > 1.

Proof. The torus on which the Schwarzian derivative of the profile curve is
defined is referred to in the following as the KdV spectral curve. It is an
elliptic curve over the E-plane defined by the equation:

(3.11) Y2 =A4F3 — o F — g3.

It can also be obtained by considering the operator

0 ¢—-E—-1
D2E_81‘+<_1 q 0 6C>7

where ¢ is the Schwarzian derivative of the curve and c is as in Lemma 1
3: this follows from the fact that a C2-function (¢1,15) lies in the kernel of
Df if and only if ¢y = ¢} and 19 solves the equation

b+ (q—E — :c)pa = 0.

We first want to show how the CMC spectral curve of the surface and the
KdV spectral curve of its profile curve are related. Let

E=—-ad’+3%(u—1).

The equation defines a double covering of the FE-plane by the a-plane

branched at FE = %(u —1) and E = co. Furthermore, we have ¢ = z% +
%2 — %. Then the gauge transformation from DZ to D¢ is given by

(15 —ia —if +ia
g_ 1 1 9

for a € C\ {0}*. This gauge defines a double covering 7 of the KdV spectral
curve by the CMC spectral curve which is unbranched for a € C\ {0}. Thus,

3Instead of the holonomies of D over the a-plane, we consider the holonomies
of D¥ over the E-plane in the above construction.

4The spectral curve is an analytic variety and it is thus determined by its generic
points.
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we only need to investigate what happens over ¢ =0 and a = co. Since
the CMC spectral curve is unbranched for these points and the parameter
covering is branched, the covering of the spectral curves 7 is unbranched if
and only if £ = oo and E = %(M — 1) are branch points of the KdV spectral
curve. This is the case by Corollary 2, since A = 0 for constrained Willmore
tori of revolution.

As mentioned before, a constrained Willmore torus of revolution is a
CMC torus in a space form, if and only if the involution p oo has fixed
points. Since p o o interchanges the points over a = oo (see [6, 13]), it has
fixed points if and only if there are branch points of the CMC spectral curve
over a € iR. This happens if and only if the KdV spectral curve is branched
over E € R and F > %(u —1). Otherwise the torus is obtained through the
glueing of two non-compact CMC, |H| < 1, cylinders in H? by [4].

For wavelike elastic curves the KdV spectral curve has only one real
branch point over £ = %(,u — 1), which vanishes over a = 0. Therefore, there
is no branch point of the CMC spectral curve over a € iR.

For orbitlike elastic curves the polynomial Ps; has three real roots. By
Corollary 2 all roots are greater or equal to %(,u — 1). Thus, all branch points
of the CMC-spectral curve lie over a € iR and the involution p o ¢ has fix-
points. By the Sym-Bobenko formula, see [5], the surface is CMC in S3
if the Sym-points are fixed under the involution p o o (which happens for
P;(E) < 0). If the Sym-points are no fix points of the involution (P3(E) > 0),
the surface is CMC in H3. (]

Remark 11. A similar covering is given between the constrained Willmore
spectral curve of a Hopf torus and the KdV spectral curve of its spherical
profile curve. In this case, we have

—ia  i5 —1
2

see [13], the operator DI is defined as before but with G' = 1 and the param-
eter covering is given by E = —a®+ ¢(u—5). For a € C\ {0}, the gauge
between the operators slightly changes and becomes

. —i5g +1—ida —ig —1+ia
g= .
1 1

As before the induced covering of the spectral curves is not branched for
those points where the gauge is defined. Thus, we need only to take a closer
look at the points over a =0 and a = co. For a = 0o, the corresponding
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FE = oo is a branch point of the p-function and the covering of the spectral
curves is unbranched for these two points over a = oo as before. But this
does not hold for the points over a = 0, which corresponds to FE = %(,u —5).
By Corollary 2 this is never a branch point of the KdV spectral curve. Hence,
the covering of the spectral curves is branched at the points over a = 0 and
by the Riemann—-Hurwitz formula the constrained Willmore spectral curve of
a Hopf torus has genus 2. Furthermore, by [12, 14] all constrained Willmore
tori of spectral genus g < 2 are either associated to a constrained Willmore
cylinder of revolution or a constrained Willmore Hopf torus.

3.6. Conformal type and Willmore energy

The conformal types of tori of revolution and Hopf tori in terms of their
profile curve were derived in [18, 23].

Theorem 5. Let f:T? — S3 be either a constrained Willmore torus of
revolution or a constrained Willmore Hopf torus determined by the formulas
of Theorem 2 for fixed parameters go, g3, E € R. Then we have the following.

o If f is a constrained Willmore torus of revolution, then its conformal
class is given by the lattice generated by z1 = 21 and zo = ivV/GL and
its Willmore energy is

W(f) = 8nmm — dnwip(ws)7.

o If f is a constrained Willmore Hopf torus, then its conformal class is
given by the lattice generated by z1 = 27w and z3 = %GA + %z\/éL and
its Willmore energy is

W(f) = ﬁ(mnmw — 8nwy E).

Here L = 2nwy denotes the length of the curve in the respective space form
and A is the oriented enclosed area of the curve in S? is given by

$GA mod 21 = (mm — dinmxo — 2nw1 (5£(0) — 2i¢(z0)) mod 2.

Proof. We first compute the Willmore energy of the tori. Recall that for
constrained Willmore tori of revolution and constrained Willmore Hopf tori
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we have

oz +x0) = 2ir' — 1k — L(n+G),

where x is the geodesic curvature of the arc length parametrized profile
curve in the space form of curvature G. Thus, the integral of the real part
of the Weierstrass g function, i.e., the real part of Weierstrass (-function
determines the bending energy of the curve. We have

/(Ii2 + 2(u+ G))ds = 8n(Re(¢(z — zo + 2w1) — {(z — 20))) = 16nn1,

if the curve closes after n periods of p. For constrained Willmore tori of
revolution the Willmore energy is given by

W(f) = éﬂ'/liQdS.
gl

Since constrained Willmore tori of revolution comes from elastic curves in
H?, we have p(ws) = £(u+ G) and thus

W(f) = 8nmm — dnwy p(ws)7.

For constrained Willmore Hopf tori we have
W(f) = 17/(/@2 +G)ds.
va v

Since E = %(u — 1G) the Willmore energy of a constrained Willmore Hopf
torus is computed to be

W(f) = %(Mnnm — 8nwi E').

Now we turn to the conformal type of the tori considered. The conformal
type is given by two vectors generating the lattice I' € C. In the case of tori
of revolution, these are given by

z1 =27 and 2z = i\@L,
where L is the length of the curve in the space form of curvature G < 0.

Since the profile curve g is arc length parametrized, we get that the length
of the curve is 2nwy.
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For constrained Willmore Hopf tori the lattice is generated by
z1 =2 and 29 = %G’A + %i\/aL,

where A is the oriented enclosed area of the curve; see [23], which is only
well-defined modulo é47‘1’. By the Gaufi-Bonnet theorem, the enclosed area
of a curve is given by

GA =2mm — / kds mod 4,
gl

where m is the winding number of the curve. On the other hand we have:
Im((z + z0) = § — ¢ — i((x0). Thus,

%/Fods — 2nw1(%/€(0) — 2i¢(z0))

”
= 2Im (In(o(z + zo + 2nw1)) — In(o(z + x0)))
— il (emm%wf’@ + 7)oz - w)

62nn1(x7:1:o+w1)o-(x + xo)O’(Q? — ZEO)

= —iln(emmeo),

The logarithm is only well defined modulus 27i. We obtain
%//ﬁds — 2nw1 (3K0 — 2i¢(20)) = (27 — dnim o) mod 27.
.

Therefore %GA is given by
(mm — dinmxo + 2nw1(%/@0 — 2i¢(xp)) mod 27. O
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