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Hyperbolic volume and Heegaard distance

Tsuyoshi Kobayashi and Yo’av Rieck

We prove (Theorem 1.5) that there exists a constant Λ > 0 so
that if M is a (μ, d)-generic complete hyperbolic 3-manifold of
volume Vol(M) < ∞ and Σ ⊂ M is a Heegaard surface of genus
g(Σ) > ΛVol(M), then d(Σ) ≤ 2, where d(Σ) denotes the distance
of Σ as defined by Hempel. The term (μ, d)-generic is described
precisely in Definition 1.3; see also Remark 1.4.
The key for the proof of Theorem 1.5 is Theorem 1.8 which is

of independent interest. There we prove that if M is a compact
3-manifold that can be triangulated using at most t tetrahedra
(possibly with missing or truncated vertices), and Σ is a Heegaard
surface for M with g(Σ) ≥ 76t+ 26, then d(Σ) ≤ 2.

1. Introduction

All the manifolds considered in this paper are three-dimensional, compact,
connected and orientable. By hyperbolic manifold we mean a manifold whose
interior admits a complete finite volume Riemannian metric locally isometric
to hyperbolic 3-space H

3.
It is generally agreed that the volume of a hyperbolic manifold M ,

Vol(M), is a good measure of the complexity of M . As evidence of that,
arguments of M. Gromov, T. Jørgensen and W. Thurston show that the
hyperbolic volume is linearly equivalent to the number of tetrahedra needed
to triangulate a link exterior in M . The argument is based on Thurston’s
notes [31], for a detailed presentation see [13]; throughout this paper, we
follow the notation and definitions given in that paper. For a precise state-
ment, let tc(M) be the smallest number of tetrahedra needed to triangulate
M \N(L), where the minimum is taken over all links L ⊂M (possibly,
L = ∅) and all possible triangulations.

247



248 Tsuyoshi Kobayashi and Yo’av Rieck

Theorem 1.1 Gromov, Jørgensen, Thurston. There exist constants
A, B > 0 so that for any hyperbolic manifold M the following holds:

Atc(M) < Vol(M) < Btc(M).

Remark 1.2. In the proof of Theorem 1.1 given in [13] it is shown that
given μ > 0, a Margulis constant for H

3, and d > 0, there exists A > 0, so
that Nd(M≥μ) can be triangulated using at most 1

AVol(M) tetrahedra; here
Nd(M≥μ) denotes the closed d-neighborhood of the μ-thick part of M . We
note that A depends on μ and d.

Theorem 1.1 implies that manifolds of low volume admit Heegaard split-
tings of low genus: let M be a hyperbolic manifold, L ⊂M a link, and T a
triangulation ofM \N(L) that realizes tc(M). Let Γ be T (1) ∪ ∂(M \N(L)),
where T (1) denotes the 1-skeleton of T . It is easy to see that ∂N(Γ) is a
Heegaard surface for M \N(L) and its genus is at most the number of
tetrahedra plus one, that is, tc(M) + 1. Since the Heegaard genus does not
increase after Dehn filling we get:

g(M) ≤ tc(M) + 1 ≤ 2tc(M) <
2
A
Vol(M).

Here and throughout this paper, g(M) denotes the Heegaard genus of M .
The converse is false: it is easy to construct hyperbolic manifolds of arbi-
trarily high volume and Heegaard genus two (for example, consider Dehn
fillings of 2-bridge knots; see [29]).

Our goal is to show that any Heegaard surface for a generic hyperbolic
manifold M is “simple”. This is described precisely in Theorem 1.5, and we
informally explain it here. In [7] J. Hempel defined a complexity of Heegaard
surfaces which we will call the distance, denoted by d(Σ) (the distance, which
is based on Kobayashi’s idea of height of loops [11], is defined in Section 4).
We say that a Heegaard surface Σ is simple if either g(Σ) is low (in terms
of the volume) or d(Σ) ≤ 2. A. Casson and C. Gordon constructed a hyper-
bolic manifold admitting infinitely many Heegaard surfaces, and showed that
these surfaces all have distance at least two (in their language, are strongly
irreducible). They further showed that there is no upper bound on the genera
of these surfaces; hence this result is best possible.

We now explain what a generic hyperbolic manifold is. Let X be a
compact 3-manifold (not necessarily hyperbolic) so that ∂X consists of tori,
say T1, . . . , Tn. Let W be a manifold obtained from X by Dehn filling some
of its boundary components, say T1, . . . , Tm, m ≤ n. Note that X ⊂ W and
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any Heegaard surface for X is a Heegaard surface for W . Rieck and E.
Sedgwick [18–20] prove that on each Ti there is a finite set of slopes, denoted
by Bi, so that if the slope filled on each Ti intersects every slope of Bi more
than once, then any Heegaard surface for W is a Heegaard surface for X
(after isotopy if necessary). In that case, we say that W is a generic Dehn
filling of X. With this in mind, we define:

Definition 1.3. Let μ be a Margulis constant for H
3 and fix d > 0. Let

M be a complete hyperbolic manifold of finite volume. Let Nd(M≥μ) be the
closed d-neighborhood of the μ-thick part of M ; for a discussion see [13],
where it was observed that M is obtained from Nd(M≥μ) by Dehn filling.
We say that M is (μ, d)-generic if M is a generic Dehn filling of Nd(M≥μ).

Remark 1.4. In an effort to justify the term “generic” we now sketch an
argument that shows that for any μ and d, there are indeed many (μ, d)-
generic manifold. Fix V > 0. By Remark 1.2 there are only finitely many
topological types for the manifoldsNd(M≥μ), whereM ranges over all hyper-
bolic manifolds of volume less than V . Let X be one of these manifolds and
denote the components of ∂X by T1, . . . , Tn. Then for each i there is a finite
set of slopes of Ti, say Fi, with the following property: as above let W be
a manifold obtained from X by Dehn filling some of its boundary compo-
nents, say T1, . . . , Tm, m ≤ n, so that slope filled is not in Fi for all i. Then
W is hyperbolic, the short geodesics in W coincide with the cores of the
attached solid tori, and each short geodesic has a neighborhood of radius
greater than d. Thus Nd(W≥μ) = X. We conclude that if W is obtained by
filling X along slopes that are not in Fi and intersect every slope in Bi more
than once (where Bi was defined in the paragraph preceding Definition 1.3),
then W is (μ, d)-generic. This shows that if V is at least the volume of the
figure eight knot exterior (so that there are infinitely many hyperbolic man-
ifolds of volume less than V ), then there are infinitely many (μ, d)-generic
manifolds that have volume less than V .

In this paper we prove that (μ, d)-generic manifolds enjoy the following
property:

Theorem 1.5. Let μ > 0 be a Margulis constant for H
3 and fix d > 0.

Then there exists Λ > 0 so that for any complete finite volume (μ, d)-generic
hyperbolic manifold M and any Heegaard surface Σ for M the following
holds:

If g(Σ) > ΛVol(M), then d(Σ) ≤ 2.
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Remark 1.6. Fix a hyperbolic manifold M . It is easy to see that if d is
sufficiently large or μ sufficiently small, thenM is diffeomorphic toNd(M≥μ),
and in particular M is (μ, d)-generic. Thus, the conclusion of Theorem 1.5
holds for M . This has two consequences:

1) It is well known that the examples of Casson and Gordon mentioned
above have distance two and arbitrarily high genus. Hence, the con-
clusion of Theorem 1.5 cannot be improved.

2) If there exists Λ as in Theorem 1.5 that is independant of μ and d,
then the assumption that M is (μ, d)-generic can be removed. Unfor-
tunately, for Λ constructed in this paper both limd→∞ Λ =∞ and
limμ→0 Λ =∞ hold.

Our proof of Theorem 1.5 uses Dehn filling and hence forces us to assume
that M is (μ, d)-generic. However, this does not seem to be an integral part
of the theory. In light of this and Remark 1.6 (2) we ask:

Question 1.7. Is the assumption that M is (μ, d)-generic necessary?

The three ingredients necessary for the proof of Theorem 1.5 are Theo-
rem 1.1, the work of Rieck and Sedgwick, and Theorem 1.8, which repre-
sents the bulk of the work in this paper. In this theorem, we allow a flexible
definition of triangulation, which we call generalized triangulation. See Def-
inition 4.1 and Lemma 4.2 for existence.

Theorem 1.8. Let M be a compact orientable connected 3-manifold and Σ
a Heegaard surface for M . Suppose that for some (possibly empty or discon-
nected) compact surface K ⊂ ∂M , M \K admits a generalized triangulation
with t generalized tetrahedra.

If g(Σ) ≥ 76t+ 26, then d(Σ) ≤ 2.

Remark 1.9.

1) Theorem 1.8 generalizes S. Schleimer’s [27, Theorem 11.1], where it was
shown that if M is a closed manifold and g(Σ) ≥ 2216t2 , then d(Σ) ≤ 2.

2) Theorem 1.8 implies that for every manifold M , there is gM ≥ 0, so
that if Σ ⊂ M is a Heegaard surface of genus at least gM , then d(Σ) ≤
2; this also follows from [27, Theorem 11.1].



Hyperbolic volume and Heegaard distance 251

Outline. In Section 2, we show how Theorem 1.5 follows from Theorem 1.8.
In Section 3 we explain our perspective of Theorem 1.8 and list open ques-
tions related to it. In Section 4 we explain a few preliminaries. The work
begins in Section 5, where we take a strongly irreducible Heegaard surface
of genus at least 76t+ 26, color it, and analyze the coloring; the climax of
Section 5 is Proposition 5.6, where we prove existence of a pair of pants with
certain useful properties. Finally, in Section 6 we prove Theorem 1.8.

2. Proof of Thoerem 1.5

We first show how Theorem 1.5 follows from Theorem 1.8. Fix the notation of
Theorem 1.5. Let λ = 1

A , where A > 0 is the constant given in Theorem 1.1.
By Remark 1.2, for any complete finite volume hyperbolic 3-manifold M ,
Nd(M≥μ) can be triangulated using at most λVol(M) tetrahedra.

Set Λ = 76λ+ 29. Let Σ ⊂ M be a Heegaard surface of genus g(Σ) ≥
ΛVol(M). Using the definition of Λ and the fact that Vol(M) > .9 (Gabai,
Meyerhof and Milley [5]) we get:

g(Σ) ≥ ΛVol(M)
= (76λ+ 29)Vol(M)
= 76λVol(M) + 29Vol(M)
> 76λVol(M) + 26.

By assumption, M is a (μ, d)-generic, that is, M is obtained from
Nd(M≥μ) by a generic Dehn filling (recall Definition 1.3). Hence, after iso-
topy if necessary, Σ is a Heegaard surface for Nd(M≥μ). By Remark 1.2,
Nd(M≥μ) can be triangulated using t ≤ λVol(M) tetrahedra. We see that
g(Σ) > 76λVol(M) + 26 ≥ 76t+ 26, and by Theorem 1.8 (applied to Σ as a
Heegaard surface of Nd(M≥μ)), d(Σ) ≤ 2. It is elementary to see that dis-
tance never increases under Dehn filling, and we conclude that Σ ⊂ M is a
Heegaard surface of distance at most 2, completing the proof of Theorem 1.5.

3. Open questions

Theorem 1.8 is a constraint on the distance of surfaces of genus 76t+ 26 or
more. There are other constraints on the distance known, and by far the most
important is Casson and Gordon’s theorem [3] that says that no Heegaard
surface of an irreducible, non-Haken 3-manifold has distance exactly one.
Other examples include W. Haken’s theorem that says that any Heegaard



252 Tsuyoshi Kobayashi and Yo’av Rieck

surface of a reducible 3-manifold has distance zero, and T. Li’s theorem [16]
that says that a non-Haken 3-manifold admits only finitely many Heegaard
surfaces of positive distance. Another constraint is [26, Corollary 3.5], where
M. Scharlemann and M. Tomova prove that if Σ1 and Σ2 are non isotopic
Heegaard surfaces of a closed manifold so that d(Σ2) > 2g(Σ1), then d(Σ1) =
0 (in fact, they show that Σ1 is obtained from Σ2 by stabilization).

On the positive side, all but finitely many of the surfaces constructed
by Casson and Gordon have distance exactly two (Casson and Gordon’s
work show that the distance is at least 2 and Theorem 1.5 provides a new
proof that the distance is at most 2). Hempel [7], using a construction
of Kobayashi [11], shows that for any g ≥ 2 there exists a sequence of 3-
manifolds Mn and Heegaard splittings Σn for Mn, so that g(Σn) = g and
limn→∞ d(Σn) =∞. T. Evans [4] improved this by constructing, given g ≥ 2
and d ≥ 0, a Heegaard splitting of genus g with distance at least d. Recently,
Qiu et al. [22] and, independently, Ido et al. [9], constructed, given g ≥ 2 and
d ≥ 1, a compact manifold with Heegaard splitting of genus g and distance
exactly d. In [32], Yoshizawa shows that when d is even, a Heegaard splitting
of distance exactly d can be obtained by applying high powers of a single
Dehn twist.

However, the answers to the following questions are not known in general:

Questions 3.1. 1) Given gi ≥ 2 and di > 0 (i = 1, 2), does there exist
a 3-manifold admitting distinct Heegaard surfaces Σ1, Σ2, so that
g(Σi) = gi and d(Σi) = di?

2) Given di > 0 (i = 1, 2), does there exist a 3-manifold admitting distinct
Heegaard surfaces Σ1, Σ2, so that d(Σi) = di?

Questions (1) and (2) above can naturally be generalized to more that
two surfaces by setting i = 1, . . . , n, for some chosen n. The word “distinct”
in the questions above can be interpreted as “distinct up to isotopy” or
“distinct up to homeomorphism”; both yield interesting questions.

The answer for Question 3.1 (2) is known only in the following cases:

• d1 = d2 = 2: As mentioned above, there are examples of Casson and
Gordon of 3-manifolds admitting infinitely many Heegaard surfaces of
unbounded genera and of distance invariant two. Other examples fol-
low from S. Beiler and Y. Moriah [2] (see also K. Morimoto and M.
Sakuma [17]). They show that there exist 2-bridge knots K admitting
more than one minimal genus Heegaard surface (up to homeomor-
phism). Let Σ be one of these surfaces. It is easy to see that d(Σ) = 2:
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first, since g(Σ) = 2, it is easy to see that d(Σ) ≥ 2. Next, Σ is con-
structed by viewing K as a torus 1-bridge knot (that is, there exists
a genus 1 Heegaard splitting T1 ∪ T2 so that K intersects each Ti in
a single unknotted arc) and tubing once. Meridian disks for Ti which
are disjoint from K and the tube, are also disjoint from the core of the
tube, showing that d(Σ) ≤ 2.

• d1 = d2 = 1: Let S be a 4-punctured sphere and M = S × S1. J. Schul-
tens [28] showed that g(M) = 3. We note that M admits two minimal
genus Heegaard splittings, say Σ1 and Σ2, such that Σ1 is obtained
by tubing three boundary parallel tori, and Σ2 is obtained by tubing
two boundary parallel tori, with an extra tube that wraps around a
third boundary component. Since Σ1 and Σ2 induce boundary par-
titions with distinct numbers of components, they are distinct up to
homeomorphism. By construction, d(Σ1) = d(Σ2) = 1.

• d1 = 1, d2 = 2: In [12] the authors constructed a 3-manifold M admit-
ting minimal genus Heegaard splittings Σ1, Σ2, with d(Σ2) = 2 and
d(Σ1) = 1. In this example, g(M) = g(Σ1) = g(Σ2) = 3.

• d1 = d2 = 3: Scharlemann [25], based on a preprint by Berge [1], shows
that there exists a closed manifold M admitting two Heegaard split-
tings Σ1 and Σ2, distinct up-to homeomorphism, so that g(M) =
g(Σ1) = g(Σ2) = 2 and d(Σ1) = d(Σ2) = 3.

We see that much is known when d1, d2 ≤ 3. By contrast, the answers
to the following basic questions are unknown:

Questions 3.2. 1) Does there exist a 3-manifold admitting two (or
more) distinct Heegaard surfaces with distance four or more?

2) Does there exist a 3-manifold admitting a Heegaard surface of distance
three or more that is not of minimal genus?

4. Preliminaries

Bymanifold we mean compact, connected, orientable 3-manifold. We assume
familiarity with the basic notions of 3-manifold topology (see, for example,
[8] or [10]) and the basic facts about Heegaard splittings (see, for example,
[24] or [23]). We use the notation N( ) for open normal neighborhood, ∂ for
boundary, and | | for the number of components. We define:
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Definitions 4.1. 1) Let T be a tetrahedron. A generalized tetrahedron
is obtained by fixing two disjoint sets of vertices of T , denoted V1, V2,
and then removing V1 and truncating V2; that is, a generalized tetrahe-
dron T ′ has the form T ′ = T \ (V1 ∪N(V2)). T ′ has exactly four faces
(resp. exactly six edges, at most four vertices), which are the inter-
section of the faces (resp. edges, vertices) of T with T ′. In particular,
the components of ∂N(V2) ∩ T ′ are not considered faces. Important
special cases are when V2 = ∅, then T ′ is called semi-ideal, and when
V1 consists of all four vertices, then T ′ is called ideal.

2) A generalized triangulation is obtained by gluing together finitely many
generalized tetrahedra, where the gluings are done by identifying faces,
edges and vertices. Self-gluings (that is, gluing a tetrahedron to itself)
are allowed, as are multiple gluings (that is, gluing two tetrahedra
along more than one face). We refer the reader to [6] for a detailed
description in the special case when only tetrahedra are used, known
there as Δ complexes. If all the generalized tetrahedra are ideal (resp.
semi ideal), then the generalized triangulation is called an ideal (resp.
semi ideal) triangulation. If the quotient obtained is homeomorphic to
a given manifold M it is said to be a generalized triangulation of M .

We refer the reader to, for example, [15, Section 2] for a detailed dis-
cussion of generalized tetrahedra. It is well known that a very large class of
3-manifolds admits generalized triangulations, including all compact
3-manifolds. We outline the proof here. Let W be a compact manifold and
Ki ⊂ ∂W (i = 1, . . . , n) a disjoint, closed, connected subsurfaces. By crush-
ing each Ki to a point pi, we obtain a 3-complex X. We can triangulate X so
that each pi is a vertex of the triangulation. Removing pi we obtain a semi-
ideal triangulation of N \ (∪iKi). We conclude that (with K corresponding
to ∪iKi):

Lemma 4.2. Let M be a compact manifold and K ⊂ ∂M a (not
necessarily connected) closed subsurface. Then M \K admits a generalized
triangulation.

In [7] Hempel defined the distance of a Heegaard splitting:

Definition 4.3. Let V1 ∪Σ V2 be a Heegaard splitting and d ≥ 0 an integer.
We say that the distance of Σ is d, denoted by d(Σ) = d, if d is the smallest
integer so that there exist meridian disksD1 ⊂ V1 andD2 ⊂ V2, and essential
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curves αi ⊂ Σ (i = 0, . . . , d), so that α0 = ∂D1, αd = ∂D2, and αi−1 ∩ αi = ∅
(for 1 ≤ i ≤ d).

The following lemma is easy and well known (see, for example [27,
Remark 2.6]):

Lemma 4.4. Let V1 ∪Σ V2 be a Heegaard splitting. Suppose that one of the
following holds:

1) for i = 1, 2, there exists a properly embedded, non-boundary parallel
annulus Ai ⊂ Vi, and there exists an essential curve α ⊂ Σ so that
α ⊂ A1 ∩A2 (that is to say, A1 and A2 have an essential common
boundary component), or:

2) there exists a meridian disk D1 ⊂ V1 and a properly embedded non-
boundary parallel annulus A2 ⊂ V2, so that D1 is disjoint from at least
one component of ∂A2 that is essential in Σ.

Then d(Σ) ≤ 2.

5. Coloring Σ and constructing the pair of pants X

Fix M as in the statement of Theorem 1.8 and let V1 ∪Σ V2 be a Heegaard
splitting for M with g(Σ) ≥ 76t+ 26. Let T be a generalized triangulation of
M \K (whereK ⊂ ∂M is a closed subsurface) with t generalized tetrahedra.

If Σ weakly reduces, then d(Σ) ≤ 1; we assume as we may that Σ is
strongly irreducible. Rubinstein [21] (see also Stocking [30] and Lackenby [14,
15] when M is not closed) show that Σ is isotopic to an almost normal sur-
face, that is, after isotopy the intersection of Σ with the generalized tetra-
hedra of T consists of normal faces, of which there are two types:

1) normal disks (normal triangles and normal quadrilaterals);

2) an exceptional component, which is either an octagonal disk or an
annulus obtained by tubing together two normal disks; at most one
normal face of Σ is an exceptional component.

Let N be a regular neighborhood of T (1), the 1-skeleton of T . For each
v ∈ T (1) ∩ Σ, let Dv be the component of Σ ∩N containing v. Then Dv

is a disk properly embedded in N , called the vertex disk corresponding to
v. Let ̂F be a normal face contained in a generalized tetrahedron T . Then
F = ̂F \ intN is obtained from ̂F by removing a neighborhood of the vertices
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of ̂F . F is called a truncated normal face. For the remainder of this paper,
by a face we mean a truncated normal face or a vertex disk.

Remark 5.1. The union of the boundaries of the faces forms a 3-valent
graph in Σ.

Let v, v′ ∈ T (1) ∩ Σ be two vertices and Dv, Dv′ the corresponding ver-
tex disks. Then Dv and Dv′ are called I-adjacent if v and v′ are contained
in the same edge e ∈ T (1) and v is adjacent to v′ along e. Note that Dv is
I-adjacent to Dv′ if and only if v and v′ are contained in the same edge
e ∈ T (1) and there exists an I-bundle over D2 with total space Q ⊂ N , so
that ∂Q \ (Dv ∪Dv′) ⊂ ∂N , Q ∩ Σ = Dv ∪Dv′ , and Dv ∪Dv′ is the associ-
ated ∂I-bundle.

Let F and F ′ be truncated normal faces. Then F and F ′ are called I-
adjacent if the corresponding normal faces are parallel and there is no normal
face between the two. Note that F and F ′ are I-adjacent if and only if they
are contained in the same generalized tetrahedron T , and there exists an I-
bundle with total space Q ⊂ T \ intN , so that ∂Q \ (F ∪ F ′) ⊂ ∂(T \ intN)
and is disjoint from the vertices, truncated vertices, and missing vertices,
Q ∩ Σ = F ∪ F ′, and F ∪ F ′ is the associated ∂I-bundle.

Clearly I-adjacency is symmetric but not, in general, transitive. The
equivalence relation generated by I-adjacency is called I-equivalence, and
its equivalence classes are called I-equivalent families. For example, suppose
that a tetrahedron contains four quadrilaterals and denote the corresponding
truncated normal faces by q1, q2, q3, q4 (listed in order). If there is a truncated
exceptional piece between q2 and q3, then the truncated quadrilaterals form
exactly two I-equivalent families: {q1, q2} and {q3, q4}.

Let F be an I-equivalent family. Then I-adjacency induces a linear order-
ing on the faces in F , ordered as F1, . . . , Fn, so that Fi is I-adjacent to Fi+1

(i = 1, . . . , n− 1). This order is unique up-to reversing. We color the faces
of F as follows:

1) F1, F2, Fn−1, and Fn are colored red.

2) If n ≥ 5, then F3, . . . , Fn−2 are colored blue and yellow alternately.
Note that this leaves us the freedom to exchange the blue and yellow
colors of the faces of F .

Remark. For most of our work it suffices to color red F1 and Fn. We need
to color F2 and Fn−1 red as well for the last case of the proof of Theorem 1.8,
where a further refinement of the colors will be given.
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By construction, any yellow or blue face is I-adjacent to two distinct
faces.

Remark 5.2. LetDv be a red vertex disk. By construction,Dv is outermost
or next to outermost along an edge of T (1). Therefore all the truncated
normal faces that intersect Dv are red as well.

Lemma 5.3. Let fr,t denote the number of the red truncated triangles and
fr,q the number of the red truncated quadrilaterals. Then one of the following
holds:

1) fr,t ≤ 16t and fr,q ≤ 4t+ 4.

2) fr,t ≤ 16t+ 4 and fr,q ≤ 4t.

Proof. A generalized tetrahedron not containing the exceptional component
admits at most four I-equivalent families of truncated triangles and one
I-equivalent family of truncated quadrilaterals. If there is an exceptional
component, the generalized tetrahedron containing it admits at most five
I-equivalent families of truncated triangles and one I-equivalent family of
truncated quadrilaterals, or at most four I-equivalent families of truncated
triangles and two I-equivalent families of truncated quadrilaterals. Each
family contains at most four red faces. The lemma follows. �

Let B (resp. Y , R) denote the union of the blue (resp. yellow, red) faces;
note that faces are closed, so R, Y , and B are compact and may intersect
along their boundaries. By Remark 5.1, B, Y , R and B ∪ Y are subsurfaces
of Σ.

Lemma 5.4. χ(B ∪ Y ) ≤ −(108t+ 38).

Proof. We first show that χ(R) ≥ −(44t+ 12); for that, we order the red
faces as F0, F1, . . . , Fk, Fk+1, . . . , Fn (for some k, n), so that F0 is the
exceptional piece (if there is one, F0 = ∅ otherwise), F1, . . . , Fk are the red
truncated normal faces, and Fk+1, . . . , Fn are red vertex disks. Note that
χ(F0) = 0 or χ(F0) = 1, so the worst case scenario is 0. By Remark 5.1,
for 0 ≤ i ≤ k, the possibilities for Fi ∩ (∪i−1

j=1Fj) are: ∅, S1, or a number
of segments, each homeomorphic to I. Since a truncated normal triangle
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(respectively, quadrilateral) is a hexagon (respectively octagon), the num-
ber of segments is at most 3 (respectively 4). We see that

χ(∪ij=1Fj) ≥ χ(∪i−1
j=1Fj)− 2,

when Fi is a truncated normal triangle and

χ(∪ij=1Fj) ≥ χ(∪i−1
j=1Fj)− 3,

when Fi is a truncated normal quadrilateral. By Remark 5.2, for i ≥ k + 1,
Fi caps a hole of ∪i−1

j=1Fi; hence

χ(∪ij=1Fj) = χ(∪i−1
j=1Fj) + 1

in that case. Recall that fr,t and fr,q were defined and bounded in Lemma 5.3.
Adding the contributions of the exceptional component (at worst 0), the
triangles (at worst −2fr,t), the quadrilaterals (at worst −3fr,q), and ignoring
the positive contribution of the vertex disks, Lemma 5.3 gives:

χ(R) ≥ 0− 2fr,t − 3fr,q
≥ 0− 2(16t)− 3(4t+ 4)
= −(44t+ 12).

Since R and B ∪ Y are subsurfaces, Σ = R ∪ (B ∪ Y ) and R ∩ (B ∪
Y ) = ∂R = ∂(B ∪ Y ) consists of circles, we have that χ(B ∪ Y ) = χ(Σ)−
χ(R). By assumption g(Σ) ≥ 76t+ 26, or equivalently χ(Σ) ≤ 2− 2(76t+
26). Hence:

χ(B ∪ Y ) = χ(Σ)− χ(R)
≤ [2− 2(76t+ 26)] + [44t+ 12]
= −(108t+ 38).

�

Lemma 5.5. |∂(B ∪ Y )| ≤ 44t+ 14.

Proof. By construction ∂(B ∪ Y ) = ∂R. Bounding |∂R| is similar to the
proof of the previous lemma and we only paraphrase it here: we order the
red faces as F0, . . . , Fn as in the proof of the previous lemma. It is easy to
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see that |∂F0| is at most 2, and (similar to the Euler characteristic count on
the previous lemma) for 1 ≤ i ≤ k,

|∂(∪ij=1Fj)| ≤ |∂(∪i−1
j=1Fj)|+ 2,

when Fi is a truncated normal triangle, and

|∂(∪ij=1Fj)| ≤ |∂(∪i−1
j=1Fj)|+ 3,

when Fi is a truncated normal quadrilateral. By Remark 5.2, for i ≥ k + 1,

|∂(∪ij=1Fj)| ≤ |∂(∪i−1
j=1Fj)| − 1.

Adding up the contributions of the truncated normal faces and ignoring the
negative contribution of the vertex disks, Lemma 5.3 gives:

|∂(B ∪ Y )| = |∂R|
≤ 2 + 2fr,t + 3fr,q
≤ 2 + 2(16t) + 3(4t+ 4)
= 44t+ 14. �

By Remark 5.1, B ∩ Y is a compact 1-manifold properly embedded in
B ∪ Y . Let Γ ⊂ B ∪ Y be the union of the arc components of B ∩ Y . End-
points of Γ are the vertices of Σ where red, blue and yellow faces meet. By
Remark 5.2 around any vertex of Σ that is on the boundary of a red vertex
disk all the colors are red; therefore the vertex disk at an endpoints of Γ is
yellow or blue.

Let V be the set of vertices of red truncated normal faces. We subdivide
V into three disjoint sets as follows: V0 are vertices that are on the boundary
of at least two red faces; V+ are vertices that are on the boundary of three
faces so that one is red, one is yellow, and one is blue; V− are vertices that
are on the boundary of three faces so that one is red and two are yellow,
or one is red and two are blue. By construction, V+ is exactly the set of
endpoints of Γ.

By construction, at every vertex exactly one face is a vertex disk. We
exchange the colors of the blue vertex disks with the colors of the yellow
vertex disks; let R′, B′, Y ′ and Γ′ be defined as above, using the new coloring.
By Remark 5.2, V− is exactly the set of endpoints of Γ′ (we emphasize that
V− is the set of vertices defined above using the original coloring). Hence, by
exchanging colors if necessary, we may assume that the number of endpoints
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of Γ is at most 1
2 |V|. Since every arc of Γ has two distinct endpoints and Γ

has at most 1
2 |V| endpoints, we get that |Γ| ≤ 1

4 |V|.
There are at most 16 vertices in V from the truncated exceptional com-

ponent, at most 6 from each truncated red triangle, and at most 8 from each
truncated red quadrilateral. By Lemma 5.3 we get:

|V| ≤ 16 + 6fr,t + 8fr,q
≤ 16 + 6(16t) + 8(4t+ 4)
≤ 128t+ 48.

Hence:

|Γ| ≤ 1
4
|V| ≤ 32t+ 12.

Let F1, . . . , Fk be the components of B ∪ Y cut open along Γ (note that
F1, . . . , Fk are not, in general, faces). Cutting along Γ increases the Euler
characteristic by |Γ| and increases the number of boundary components by
at most |Γ|. Using Lemma 5.4 we get:

Σki=1χ(Fi) = χ(∪ki=1Fi)
= χ(B ∪ Y ) + |Γ|
≤ −(108t+ 38) + (32t+ 12)
= −(76t+ 26).

And using Lemma 5.5 we get:

Σki=1|∂Fi| = |∂ ∪ki=1 Fi|
≤ |∂(B ∪ Y )|+ |Γ|
≤ (44t+ 14) + (32t+ 12)
= 76t+ 26.

Combining these inequalities we get:

(1) Σki=1χ(Fi) ≤ −(Σki=1|∂Fi|).

Proposition 5.6. There exists a pair of pants X ⊂ Σ with the following
two properties:

1) Either X ⊂ int(B) or X ⊂ int(Y ) (say the former).

2) The components of ∂X, denoted by α, β, and γ, are essential in Σ.
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Figure 1: A process for obtaining F ′

Proof. By Inequality (1) above, for some i, χ(Fi) ≤ −|∂Fi|; equivalently,
g(Fi) ≥ 1. Fix such i. By construction, (B ∩ Y ) ∩ int(Fi) consists of simple
closed curves; see figure 1. Let E (resp. I) denote the curves of (B ∩ Y ) ∩
intFi that are essential (resp. inessential) in Σ. Let Δ be the union of the
components of cl(Σ \ Fi) that are disks (possibly, Δ = ∅). Let F = Fi ∪Δ.
By construction, every component of ∂F is essential in Σ (possibly, ∂F = ∅).
Thus, a closed curve of F is essential in Σ if and only if it is essential
in F . Since g(F ) = g(Fi) > 0, if ∂F 
= ∅ then χ(F ) < 0; if, on the other
hand, ∂F = ∅, then F = Σ and in particular, g(F ) = g(Σ) ≥ 76t+ 26 > 1;
we conclude that in either case χ(F ) < 0. Thus some component of F cut
open along E , denoted by F ′, has χ(F ′) < 0. Note that every curve of ∂F ′

is essential in Σ. By construction, (B ∩ Y ) ∩ intF ′ ⊂ I. Let Δ′ be the union
of the disks bounded by outermost curves of I ∩ F ′ and the disks Δ ∩ F ′.
Note that Δ′ ⊂ intF ′ consists of disks, and F ′ \Δ′ is entirely blue or yellow;
in figure 1, Δ′ consists of two disks, one of each kind.

Assume first that ∂F ′ 
= ∅. Let c ⊂ F ′ be a curve, parallel to a component
of ∂F ′, that decomposes F ′ as A′′ ∪c F ′′, where A′′ is an annulus. By isotopy
of c in F ′ we may assume that Δ′ ⊂ A′′. We see that F ′′ is entirely blue or
yellow, χ(F ′′) = χ(F ′) < 0, and ∂F ′′ is essential in Σ.
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Next assume that ∂F ′ = ∅ (that is, F ′ = Σ). Let c be a separating, essen-
tial curve in F ′. By isotopy of c we may assume that Δ′ is contained in one
component of F ′ cut open along c. Let F ′′ be the other component. We
conclude that in this case too, F ′′ is entirely blue or yellow, χ(F ′′) < 0, and
∂F ′′ is essential in Σ.

Let α, β and γ ⊂ int(F ′′) be three curves that are essential in F ′′ (and
hence in Σ) and co-bound a pair of pants, denoted by X, in F ′′. It is easy
to see that X, α, β and γ have the properties listed in Proposition 5.6. �

Since X ⊂ int(B) it is on the boundary of the total space of an I-bundle
in Vi (i = 1, 2). The other component of the associated ∂I-bundle is a pair
of pants denoted by Xi. The components of ∂Xi are denoted by αi, βi, and
γi so that αi is parallel to α, βi is parallel to β, and γi is parallel to γ. Since
X ⊂ int(B), every point of Xi is yellow or red; we conclude that X ∩Xi = ∅.
Hence the I-bundle in Vi is trivial. The annulus extended from α to αi (resp.
β to βi, γ to γi) in Vi is denoted by Ai (resp. Bi, Ci). By construction, these
annuli are embedded. Note that X1 ∩X2 
= ∅ is possible.

Lemma 5.7. One of the following holds:

1) After renaming if necessary, A1 ⊂ V1 and B2 ⊂ V2 are not boundary
parallel, and A2 ⊂ V2, B1 ⊂ V1 and C1 ⊂ V1 are boundary parallel.

2) d(Σ) ≤ 2.

Proof. We claim that one of Ai, Bi or Ci is not boundary parallel in Vi (i =
1, 2). Suppose, for a contradiction, that Ai, Bi, Ci are all boundary parallel.
Let ˜Ai ⊂ Vi be the annulus that Ai is parallel to. Since X is an essential
pair of pants it is not contained in ˜Ai; it is easy to see that the intersection
of the region of parallelism between Ai and ˜Ai and the trivial I-bundle in Vi
is exactly Ai; similarly we treat Bi and Ci. We see that Vi is homeomorphic
to the trivial I-bundle, and hence is a genus 2 handlebody. This contradicts
our assumption that g(Σ) ≥ 76t+ 26 > 2.

Therefore one of A1, B1 or C1 is not boundary parallel, and after renam-
ing if necessary we may assume it is A1. We may assume A2 is boundary
parallel, for otherwise d(Σ) ≤ 2 by Lemma 4.4 (1). Similarly, one of A2, B2

or C2 is not boundary parallel, after renaming if necessary we may assume
it is B2, while B1 is boundary parallel. Finally by Lemma 4.4 (1) we may
assume that C1 or C2 is boundary parallel, say C1. �
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Figure 2: Configuration of X, X1, and X2 in Σ

Lemma 5.8. One of the following holds:

1) α1, β2 and γ2 are essential in Σ, and α is not isotopic in Σ to α1, β
or γ.

2) d(Σ) ≤ 2.

Proof. We may assume that Conclusion (1) of Lemma 5.7 holds; thus A2,
B1 and C1 are boundary parallel. We denote by ˜A2, ˜B1, ˜C1 ⊂ Σ the annuli
to which A2, B1, and C1 are parallel (respectively). See figure 2, where
X1 ∩X2 = ∅, but this need not be the case.

If α1 is inessential in Σ, then we may cap A1 off, and after a small
isotopy we obtain a meridian disk D1 ⊂ V1 with ∂D1 = α. Using D1 and B2,
Lemma 4.4 (2) shows that d(Σ) ≤ 2. Similarly if β2 (resp. γ2) is inessential
in Σ then β (resp. γ) bounds a meridian disk D2 ⊂ V2. Using D2 and A1,
Lemma 4.4 (2) shows that d(Σ) ≤ 2.

If α is isotopic to α1 in Σ then either the annulus connecting the two
contains X or g(Σ) = 2. The former is impossible since X is an essential pair
of pants and the latter contradicts the assumption g(Σ) ≥ 76t+ 26 > 2.

Let c ⊂ Σ be a closed curve constructed by pasting together four arcs,
the first connecting β to γ in X, the second connecting γ to γ1 in ˜C1, the
third connecting γ1 to β1 in X1, and the final arc connecting β1 to β in ˜B1.
Since X ∩X1 = ∅, we have |c ∩ β| = |c ∩ γ| = 1. By construction |c ∩ α| = 0.
Therefore, α is not isotopic in Σ to either β or γ. �

6. Proof of Theorem 1.8

With notation as in Section 5 we assume, as we may by Lemma 5.7, that
A1 and B2 are not boundary parallel and that A2, B1 and C1 are boundary



264 Tsuyoshi Kobayashi and Yo’av Rieck

Table 1: Colors of I-adjacent points.

p p1, p2

Blue Yellow or light red
Yellow Blue or light red
Light red One is dark red and the other can be any color

parallel. We assume, as we may by Lemma 5.8, that α1, β2 and γ2 are
essential in Σ and α is not isotopic in Σ to α1, β or γ.

The proof is divided into the following two cases:

Case One. α1 can be isotoped to be disjoint from X 2. Let ˜A2, ˜B1, and
˜C1 be as in Lemma 5.8. Let T ⊂ Σ be the twice punctured torus X ∪ ˜B1 ∪
˜C1 ∪X1. Isotope α1 so that α1 ∩X2 = ∅. After this isotopy,X2 ∩ (α1 ∪X) =
∅. Hence either X2 ⊂ (X1 ∪ ˜B1 ∪ ˜C1) or X2 ∩ T = ∅. In the former case,
α2 ⊂ (X1 ∪ ˜B1 ∪ ˜C1). Since α is isotopic to α2 in Σ, α is isotopic into X1 ∪
˜B1 ∪ ˜C1. By Proposition 5.6(2) α is essential, and hence α is isotopic to a
component of ∂(X1 ∪ ˜B1 ∪ ˜C1) = α1 ∪ β ∪ γ, contradicting our assumptions.

Hence, we may assume that X2 ∩ T = ∅. Let D1 ⊂ V1 be a meridian
disk obtained by compressing or boundary compressing A1. After a small
isotopy we may assume that ∂D1 ∩ ∂A1 = ∂D1 ∩ (α ∪ α1) = ∅, and hence
either ∂D1 ⊂ T (hence ∂D1 ∩ β2 = ∅) or ∂D1 ∩ T = ∅ (hence ∂D1 ∩ β = ∅).
Thus D1 is disjoint from at least one component of ∂B2; by Lemma 4.4 (2),
d(Σ) ≤ 2, proving Theorem 1.8 in Case One.

Before proceeding to Case Two we refine our colorings. Let F be an I-
equivalent family of faces, ordered as F1, . . . , Fn so that Fi is I-adjacent to
Fi+1 (i = 1, . . . , n− 1). Then the red faces are F1, F2, Fn−1, and Fn. We
color F1 and Fn dark red. If n ≥ 3 we color F2 and Fn−1 light red.

Clearly, a face is I-adjacent to two distinct faces if and only if it is colored
blue, yellow, or light red. Let p be a point on such a face. Then p is on the
boundary of two I-fibers, on the V1 and V2 sides. Denote the other endpoints
of these fibers by p1 and p2. By construction we see that the colors at p, p1

and p2 fulfill the conditions in Table 1.

Notation 6.1. Every light red face is I-equivalent to a dark red face on
one side. On the other side, it is I-equivalent to a face that may be blue,
yellow, light red or dark red. This decomposes the set of light red points
into four disjoint subsets. We label a light red face that is I-equivalent to a
blue (resp. yellow) face by lr[b] (resp. lr[y]).
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Figure 3: Coloring of the I-bundles adjacent to α1

Case Two. α1 cannot be isotoped to be disjoint from X 2. Since
α ⊂ int(B), each point of α1 is yellow or light red. Hence α1 bounds I-
bundles on both sides. Let A1,2 be the be the (possibly immersed) I-bundle
obtained by extending α1 into V2, and denote ∂A1,2 \ α1 by α1,2; see figure 3.
Since every point of α1 is yellow or light red and labeled lr[b], every point
of α1,2 is blue, light red and labeled lr[y], or dark red (see Table 1 and
Notation 6.1). Thus α1 ∩ α1,2 = ∅, and we see that A1,2 is trivial I-bundle,
that is, an embedded annulus.

Since X2 and X co-bound an I-bundle, every point of X2 is yellow or
light red and labeled lr[b]. Thus α1,2 ∩X2 = ∅. By assumption α1 cannot
be isotoped off X2. Hence α1 is not isotopic to α1,2; this implies that A1,2 is
not boundary parallel. By assumption A1 is not boundary parallel and α1

is essential in Σ. Applying Lemma 4.4 (1) to A1, A1,2, and α1 we conclude
that d(Σ) ≤ 2, completing the proof of Theorem 1.8.
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