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Bipartite and neighborhood graphs and the

spectrum of the normalized graph Laplace operator

Frank Bauer and Jürgen Jost

We study the spectrum of the normalized Laplace operator of
a connected graph Γ. As is well known, the smallest non-trivial
eigenvalue measures how difficult it is to decompose Γ into two
large pieces, whereas the largest eigenvalue controls how close Γ
is to being bipartite. The smallest eigenvalue can be controlled
by the Cheeger constant, and we establish a dual construction
that controls the largest eigenvalue. Moreover, we find that the
neighborhood graphs Γ[l] of order l ≥ 2 encode important spectral
information about Γ itself which we systematically explore. In par-
ticular, the neighborhood graph method leads to new estimates for
the smallest non-trivial eigenvalue that can improve the Cheeger
inequality, as well as an explicit estimate for the largest eigenvalue
from above and below. As applications of such spectral estimates,
we provide a criterion for the synchronizability of coupled map lat-
tices, and an estimate for the convergence rate of random walks on
graphs.
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1. Introduction

A general principle in geometry tells us that the spectrum of a Laplace oper-
ator encodes important geometric information about the underlying space.
This principle has been particularly fertile in Riemannian geometry. One
of the key questions has been the control from below of the first non-zero
eigenvalue of the Laplace–Beltrami operator in terms of the geometry of the
underlying Riemannian manifold (assumed to be compact here for simplic-
ity of exposition). The Lichnerowicz bound estimates the first eigenvalue
from below in terms of a lower bound for the Ricci curvature. In contrast,
the Cheeger estimate controls the first eigenvalue from below in terms of a
global quantity that expresses how difficult it is to cut the manifold into two
large pieces [8]. In this way, the first eigenvalue could be related to the funda-
mental analytic constants of a Riemannian manifold, like the isoperimetric
or Sobolev constants. The work of Li and Yau [24] utilized gradient bounds
for eigenfunctions in order to control the first eigenvalue from below in terms
of the diameter and Ricci bounds of the Riemannian manifold. More gener-
ally, their famous Harnack inequality for the heat kernel [25] then allowed
for a systematic control of all eigenvalues of a Riemannian manifold, with
the optimal asymptotics as given by Weyl’s law. See for instance [7] for a
systematic treatment of eigenvalues in Riemannian geometry.

In graph theory, the algebraic graph Laplace operator has been explored
for a long time; see for example [26]. More recently, Chung and Yau, see e.g.,
[11–13] and the monograph [10], systematically investigated the normalized
graph Laplace operator Δ of an unweighted and undirected graph. This oper-
ator, which is different from the algebraic graph Laplace operator, underlies
random walks and diffusion processes with conservation laws on graphs.
The normalized graph Laplace operator is related to the Laplace–Beltrami
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operator for a Riemannian manifold. Thus, in order to study the spectrum
of Δ, one can systematically apply methods developed in Riemannian geom-
etry for the investigation of the spectrum of the Laplace–Beltrami operator
and this led to many remarkable insights, see the works just cited and the
references therein.

In particular, the smallest non-trivial eigenvalue can be well controlled
in terms of the Cheeger constant [10]. (In a graph-theoretical setting, such
constants can already be found in earlier work by Polyá and Szegö [29].)

In contrast to a Riemannian manifold, on a graph, the spectrum of the
normalized Laplace operator is always bounded from above. In fact, the
upper bound 2 is achieved if and only if the graph is bipartite. (We recall
that a graph is bipartite if its vertex set consists of two classes such that edges
are only permitted between two vertices from opposite classes.) Therefore,
it is a natural question how to control the largest eigenvalue for graphs that
are not bipartite. The original goal of this article was to derive bounds for
the largest eigenvalue of Δ from above and below. These bounds reflect how
different the graph in question is from a bipartite one resp. how close it is
to such a graph.

In fact, however, these estimates led us to discover more general struc-
tures that go beyond our original goal. First of all, we construct a dual
version h̄ of the Cheeger constant h and derive bounds for the largest eigen-
value from above and below in terms of h. We find interesting relations
between h and h̄, and the combination of these two constants tells us more
about the graph than either of them does individually. Moreover, we find
that the neighborhood graphs Γ[l], of order l ≥ 2, of a graph Γ also encode
important spectral information about Γ itself. For concreteness let l = 2 for
the moment. The idea then is that Γ[2] is a weighted graph with the same
vertices as Γ itself, and two vertices are connected in Γ[2] when they share at
least one neighbor in Γ, with lower weights for more shared neighbors. More
precisely, let Γ be a weighted graph, with the weight of the edge between
the vertices i and j denoted by wij (which is 0 unless i and j are neighbors),
and the degree of i being di =

∑
j wij . For the neighborhood graph Γ[2], the

weight of the edge e[2] = (i, j) in Γ[2] then is given by wij [2] =
∑

k
1
dk

wikwkj .
Consequently, i and j are neighbors in Γ[2] if i and j have at least one com-
mon neighbor in Γ, i.e., there exists a path of length 2 between i and j in
Γ. Note that the weights of Γ[2] are normalized in such a manner that every
vertex i has the same degree in both Γ and Γ[2]. It turns out that the eigen-
values of Γ[2] are given by λ(2− λ) when λ stands for the eigenvalues of Γ.
This well suits our purpose because controlling the highest eigenvalue λmax
from above is equivalent to controlling 2− λmax from below. Thus, lower
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spectral bounds on Γ[2] yield lower and upper spectral bounds for Γ. For
certain graphs, these new lower bounds improve the Cheeger estimate for
the smallest non-zero eigenvalue. We not only utilize this principle to derive
such bounds, but we also explore the relation between the spectra of Γ and
Γ[2] in more general terms. Naturally, the construction of the neighborhood
graph Γ[2] can be generalized to higher order neighborhood graphs, i.e., i
and j are neighbors in Γ[l] if there exists a path of length l between i and
j in Γ. Again, the weights of Γ[l] are normalized in such a way that every
vertex has the same degree in both Γ and Γ[l]. In the present paper, we
also explore the spectra of the higher order neighborhood graphs Γ[l] and
their relations to the spectrum of Γ. The concept of the neighborhood graph
is quite general, and can also be used to investigate the spectrum of the
normalized graph Laplace operator defined on directed [4] graphs.

In the last two sections, we will apply our new eigenvalue bounds to
two concrete problems — the convergence of random walks on graphs, and
the synchronization for coupled map lattices, that is, a dynamical system
supported on the vertices of a graph and coupled according to the interac-
tion structure given by the edges of the graph. Again, the principle is that
eigenvalue estimates control how different the graph in question is from the
two extremes of a disconnected or a bipartite graph. On a disconnected or a
bipartite graph, for different reasons, the random walk does not converge to
a stationary distribution, and the coupled map lattice does not synchronize.

2. The graph Laplace operator and its basic properties

In this paper, Γ is an undirected, weighted, connected, finite graph of N
vertices. We do not exclude loops, i.e., edges connecting a vertex with itself.
The vertices are denoted by i, j, . . .. V denotes the vertex and E the edge
set of Γ, respectively. When the vertices i and j are connected by an edge,
they are called neighbors, in symbols i ∼ j. The associated weight function
w : V × V → R satisfies wij = wji and wij > 0 whenever i ∼ j and wij = 0
iff i � j. For a vertex i, its degree di is given by di :=

∑
j wij . When wij = 1

whenever i ∼ j, we shall speak of an unweighted graph.
The clustering coefficient C of an unweighted graph Γ is defined as

(2.1) C :=
3× number of triangles

number of connected triples of vertices
,

where a triangle is a triple of mutually connected vertices. The clustering
coefficient measures how many connections there exist between the neighbors
of a node. C becomes maximal if Γ is a fully connected graph. In contrast, C
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vanishes when Γ is a bipartite graph, that is, consists of two classes V1, V2 of
vertices such that no vertices in the same class are connected by an edge. In
particular, there are no loops in a bipartite graph. Equivalently, a graph is
bipartite iff it has no cycles of odd length, and thus in particular no triangles.

We now recall the definition of the normalized graph Laplace operator
and state its basic properties.

Definition 2.1. We have a natural measure μ on the vertex set V given
by μ(i) = di. The inner product of two functions u, v ∈ �2(V, μ) is defined as

(2.2) (u, v)μ :=
∑
i∈V

μ(i)u(i)v(i).

The Hilbertspace �2(V, μ) is then given by

�2(V, μ) = {u : V → R | (u, u)μ < ∞}.

Since we consider only finite graphs here, the space �2(V, μ) is nothing
but the space of real-valued functions on V endowed with the inner product
(·, ·)μ. We study the normalized graph Laplace operator

Δ : �2(V, μ)→ �2(V, μ)

Δv(i) :=
1
di

⎛
⎝∑

j

wij(v(i)− v(j))

⎞
⎠ .(2.3)

The Laplace operator Δ underlies random walks on graphs. In fact, the
Laplace operator Δ can be considered as Δ =: I − P , where I denotes the
identity and P is transition probability operator of a random walk (or some-
times called the Markov operator), respectively. We should point our here
that the normalized graph Laplace operator Δ is not exactly the one studied
by Chung [10]. However, both Laplace operators are unitarily equivalent and
therefore have the same spectrum. We recall the following basic properties:

(i) Δ is self-adjoint w.r.t. (., .)μ, i.e.,

(2.4) (u,Δv)μ = (Δu, v)μ

for all u, v ∈ �2(V, μ). This follows from the symmetric weight function,
i.e., wij = wji for all i and j.
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Moreover,

(ii) Δ is non-negative, i.e.,

(2.5) (Δu, u)μ ≥ 0

for all u ∈ �2(V, μ). This follows from the Cauchy–Schwarz inequality.

(iii) Δu = 0 iff u is constant.
Clearly, Δu = 0 if u is constant. Let Δu = 0 and assume that u is

not constant. Then there exists a vertex, say i, with u(i) ≥ u(j) for all
j ∼ i with strict inequality for at least one such j. Thus there exists
a non-trivial local maximum. This is a contradiction since Δu(i) = 0
implies that the value u(i) is the average of the values at the neighbors
of i. Since Γ is connected, u then has to be a constant. (When Γ is
not connected, a solution of Δu = 0 is constant on every connected
component of Γ.)

We say that λ is an eigenvalue of Δ if there exists some u ≡/ 0 with

(2.6) Δu = λu.

The preceding properties have consequences for the eigenvalues of Δ:

• By (i), the eigenvalues are real.
• By (ii), they are non-negative, i.e., λk ≥ 0 for all k.

• By (iii), the smallest eigenvalue is λ0 = 0. Since Γ is connected, this
eigenvalue is simple, i.e.,

(2.7) λk > 0,

for k > 0 where the eigenvalues are ordered as

λ0 = 0 < λ1 ≤ · · · ≤ λN−1.

In the literature, the normalized Laplace operator Δ is sometimes intro-
duced in a different way (see for instance [34]): let E be the set of all oriented
edges in Γ. We denote by o(e) the origin and by t(e) the terminus of the edge
e ∈ E , respectively. Furthermore, e denotes the inversion of the edge e ∈ E .
Let C0(V,R) = {u : V → R} and C1(V,R) = {f : E → R, f(ē) = −f(e)} be
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the 0th and 1st cochain group and let

(2.8) (u, v)μ =
∑
i∈V

μ(i)u(i)v(i)

and

(2.9) (f, g)μ =
1
2

∑
e∈E

μ(e)f(e)g(e)

be inner products on C0(V,R) and C1(V,R), respectively, where μ(i) = di

and μ(e) = wij for e = (i, j) ∈ E . Note that C0(V,R) together with the inner
product (2.8) is equal to �2(V, μ). Now we can define the normalized Laplace
operator as

Δ : C0(V,R)→ C0(V,R),
Δ = d∗d,(2.10)

where d : C0(V,R)→ C1(V,R),

(2.11) (dv)(e) = v(t(e))− v(o(e))

is the coboundary operator (d can be considered as a discrete analog of the
exterior derivative) and d∗ : C1(V,R)→ C0(V,R)

(d∗f)(i) = − 1
μ(i)

∑
e∈Ei

μ(e)f(e),

is the (formal) adjoint of d with respect to the inner products (2.8) on
C0(V,R) and (2.9) on C1(V,R). Here, Ei is given by Ei := {e ∈ E : o(e) = i}.

A simple calculation shows that

(du, dv)μ =
1
2

∑
e=(i,j)∈E

wij(u(i)− u(j))(v(i)− v(j))

=
1
2

⎛
⎝∑

i,j∈V

wiju(i)v(i) +
∑

i,j∈V

wiju(j)v(j)− 2
∑

i,j∈V

wiju(i)v(j)

⎞
⎠(2.12)

=
∑
i∈V

diu(i)

⎛
⎝v(i)− 1

di

∑
j∈V

wijv(j)

⎞
⎠

= (u,Δv)μ.(2.13)
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This confirms that the two definitions (2.3) and (2.10) of the normalized
Laplace operator coincide.

An orthonormal basis of �2(V, μ) consisting of eigenfunctions of Δ,

uk, k = 0, . . . , N − 1

can be constructed in the standard way, which we now recall. Let H0 :=
H := �2(V, μ) be the Hilbert space of all real-valued functions on Γ with the
inner product (., .)μ. We iteratively define

(2.14) Hk := {v ∈ H : (v, ui)μ = 0 for i ≤ k − 1},

starting with a constant function u0 as the eigenfunction for the eigenvalue
λ0 = 0. Then the kth eigenvalue is given by

(2.15) λk = inf
u∈Hk−{0}

(du, du)μ
(u, u)μ

,

and the corresponding eigenfunction uk realizes this infimum. By way of
contrast, the highest eigenvalue is also given by

(2.16) λN−1 = sup
u≡/0

(du, du)μ
(u, u)μ

.

In particular, for any eigenfunction u for some eigenvalue λ, we then have

(2.17) λ =
(du, du)μ
(u, u)μ

.

All different eigenfunctions are orthogonal to each other. In particular the
eigenfunctions u1, . . . uN−1 are orthogonal to u0, the eigenfunction for the
eigenvalue λ0 = 0. This implies that

(2.18)
∑

i

diuk(i) = 0

for k = 1, . . . , N − 1, since u0(i) is constant for all i.
The largest eigenvalue satisfies

(2.19) λN−1 ≤ 2

with equality if and only if Γ is bipartite. A corresponding eigenfunction
equals a positive constant c on one class and −c on the other class of ver-
tices. In contrast, for loopless graphs, the highest eigenvalue λN−1 becomes
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smallest on a complete graph KN ,1 namely

(2.20) λN−1 =
N

N − 1
.

By considering the trace of Δ we obtain

(2.21)
∑

i

λi = N −
∑

i

wii

di
.

Altogether, the eigenvalues satisfy

(2.22) 0 = λ0 < λ1 ≤
N −∑i

wii

di

N − 1
≤ λN−1 ≤ 2.

Similarly to (2.20), the first eigenvalue λ1 is largest for the complete graph
KN , achieving the bound in (2.22), that is

(2.23) λ1 =
N

N − 1
.

For any other unweighted graph, we have in fact

(2.24) λ1 ≤ 1.

Hence, the complete graph KN satisfies

λ0 = 0 and λ1 = · · · = λN−1 =
N

N − 1
.

In fact, it is easy to show that for the complete graph KN any function v
that satisfies

∑
j djv(j) = 0 is an eigenfunction for the eigenvalue N

N−1 .

3. The Cheeger constant and its dual and eigenvalue
estimates

Our starting point are the estimates for the first eigenvalue λ1 in terms of
the (Polya-)Cheeger constant, see for example [1, 2, 9, 10, 17]. The (Polya-)

1KN denotes an unweighted complete loopless graph on N vertices.
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Cheeger constant [29] of a weighted graph is defined as

(3.1) h := min
U

|E(U,U)|
min{vol(U), vol(U)} = min

U⊂V :vol(U)≤ 1
2
vol(V )

|E(U,U)|
vol(U)

,

where U and U = V \ U yield a partition of the vertex set V and U,U
are both non-empty. Here, the volume of U is given by vol(U) :=

∑
i∈U di,

E(U,U) ⊆ E is the subset of all edges with one vertex in U and one vertex
in U , and |E(U,U)| :=∑k∈U,l∈U wkl is the sum of the weights of all edges
in E(U,U). In general, we have h ≤ 1 and equality holds for instance if Γ
is given by K2 or K3. This follows from the definition of h, since |E(U,U)| ≤
|E(U,U)|+ |E(U, U)| = vol(U) and |E(U,U)| ≤ |E(U,U)|+ |E(U,U)| =
vol(U). Let us first recall [9, 10] how h can bound λ1 from above. We use the
variational characterization (2.15), observing that H1 is the set of all func-
tions v with the normalization

∑
i∈V div(i) = 0. Let the edge set E(U,U)

divide the graph into the two disjoint sets U,U of nodes, and let U be
the one with the smaller volume vol(U) =

∑
i∈U di. We consider a func-

tion v that is = 1 on all the nodes in U and = −α for some positive α
on U . α is chosen so that the normalization

∑
i∈V div(i) = 0 holds, that

is,
∑

i∈U di −
∑

i∈U diα = 0. Since U is the subset with the larger volume∑
i∈U di, we have α ≤ 1. Thus, for our choice of v, the quotient in (2.15)

becomes ≤ (1+α)2|E(U,U)|∑
i∈U di+

∑
i∈U diα2 =

(1+α)|E(U,U)|∑
i∈U di

≤ 2 |E(U,U)|∑
i∈U di

= 2 |E(U,U)|
vol(U) . Since

this holds for all such splittings of our graph Γ, we obtain from (3.1)
and (2.15)

(3.2) λ1 ≤ 2h.

As a lower bound for λ1 in terms of the Cheeger constant h we obtain:

(3.3) λ1 ≥ 1−
√
1− h2.

In fact, the estimates (3.2) and (3.3) hold under rather general conditions,
and an appropriate version is also true for the algebraic (non-normalized)
graph Laplace operator [27].

The crucial step in the proof of (3.3) is the next lemma which we recall
here, because we will make use of it in the following. The proof given here
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is mainly based on [16] and uses some generalizations that can be found
in [10].

Lemma 3.1. Let g ∈ �2(V, μ) with S(g) := {i ∈ V : g(i) > 0} 
= ∅, put

(3.4) h(g) := min
∅�=S⊆S(g)

|E(S, S)|
vol(S)

and let g+ be the positive part of g, i.e.,

g+(i) =
{

g(i) if g(i) > 0
0 else.

Then

1 +
√
1− h2(g) ≥

∑
e=(i,j) wij(g+(i)− g+(j))2∑

i dig+(i)2
≥ 1−

√
1− h2(g).

Proof. For technical reasons it is convenient to define the new weights μij

by μij = wij , for all i 
= j and μii = 1
2wii for all i ∈ V .

First, we write

W :=

∑
e=(i,j) wij(g+(i)− g+(j))2∑

i dig+(i)2

=

∑
e=(i,j) μij(g+(i)− g+(j))2∑

i dig+(i)2

=

∑
e=(i,j) μij(g+(i)− g+(j))2

∑
e=(i,j) μij(g+(i) + g+(j))2∑

i dig+(i)2
∑

e=(i,j) μij(g+(i) + g+(j))2

=:
I

II
.

Using the Cauchy–Schwarz inequality we obtain

I ≥
⎛
⎝ ∑

e=(i,j)

μij |g+(i)2 − g+(j)2|
⎞
⎠2

=

⎛
⎝ ∑

e=(i,j)

wij |g+(i)2 − g+(j)2|
⎞
⎠2

.
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Now we have∑
e=(i,j)

wij |g+(i)2 − g+(j)2| =
∑

e=(i,j):g+(i)>g+(j)

wij(g+(i)2 − g+(j)2)

= 2
∑

e=(i,j):g+(i)>g+(j)

wij

∫ g+(i)

g+(j)
tdt

= 2
∫ ∞

0

∑
e=(i,j):g+(j)≤t<g+(i)

wij tdt.

Note that
∑

e=(i,j):g+(j)≤t<g+(i)
wij = |E(St, St)| where St := {i : g+(i) > t}.

Using (3.4) we obtain,

∑
e=(i,j)

wij |g+(i)2 − g+(j)2| ≥ 2h(g)
∫ ∞

0
vol(St)tdt

= 2h(g)
∫ ∞

0

∑
i:g+(i)>t

ditdt

= 2h(g)
∑
i∈V

di

∫ g+(i)

0
tdt

= h(g)
∑

i

dig+(i)2

and so it follows:

I ≥ h2(g)

(∑
i

dig+(i)2
)2

.

II =
∑

i

dig+(i)2
∑

e=(i,j)

μij(g+(i) + g+(j))2

=
∑

i

dig+(i)2

⎛
⎝∑

i

dig+(i)2 +
∑
i,j

wijg+(i)g+(j)

⎞
⎠

=
∑

i

dig+(i)2

⎛
⎝2∑

i

dig+(i)2 −
∑

e=(i,j)

μij(g+(i)− g+(j))2

⎞
⎠

= (2−W )

(∑
i

dig+(i)2
)2

.
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Combining everything we obtain,

W ≥ h2(g)
(2−W )

and consequently

1 +
√
1− h2(g) ≥ W ≥ 1−

√
1− h2(g).

�
The second observation that we need to prove the Cheeger inequality (3.3)
is the following lemma [16]:

Lemma 3.2. For every non-negative real number λ and g ∈ �2(V, μ) we
have

λ ≥
∑

e=(i,j) wij(g+(i)− g+(j))2∑
i dig+(i)2

= W

if Δg(i) ≤ λg(i) for all i ∈ S(g).

Proof. We have

(Δg, g+)μ =
∑
i∈V

diΔg(i)g+(i) ≤ λ
∑

i∈S(g)

dig+(i)g+(i) = λ
∑
i∈V

dig+(i)g+(i)

and

(Δg, g+)μ = (dg, dg+)μ =
∑

e=(i,j)∈E

wij(g(i)− g(j))(g+(i)− g+(j))

≥
∑

e=(i,j)∈E

wij(g+(i)− g+(j))2.

�
The Cheeger inequality now follows from the last two lemmata by taking λ =
λ1 and g = u1 an eigenfunction for λ1. Since (u1,1)μ = 0, we have S(u1) 
= ∅
and T (u1) := {i ∈ V : u1(i) < 0} 
= ∅. This implies that it is always possible
to choose u1 such that vol(S(u1)) ≤ vol(S(u1)) (if vol(S(u1)) ≥ vol(S(u1))
take −u1 instead of u1) and thus h(u1) ≥ h.

In any case, in qualitative terms, the Cheeger inequalities (3.2) and (3.3)
simply say that λ1 becomes small when the graph can be easily (that is, by
cutting only few edges) decomposed into two large parts. Thus, λ1 is small,
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that is, close to its minimal value 0, when Γ is similar to a disconnected
graph, with equality iff Γ is disconnected itself. Similarly, and this brings
us to our topic, the largest eigenvalue is large, that is, close to its maximal
value 2, when Γ is close to a bipartite graph, with equality iff Γ is bipartite
itself.

The main purpose of this section then is a dual version of (3.2) and (3.3)
for the largest eigenvalue λN−1. More precisely, we shall obtain an estimate
for λN−1 in terms of a dual version of the Cheeger constant which we now
introduce. Let V1, V2 and V1 ∪ V2 =: V3 be a partition of the vertex set V
into three disjoint sets such that V1 and V2 are non-empty.

It is helpful to think of V1 ∪ V2 as the (almost) bipartite part of Γ and
V3 as the part of Γ that contains many cycles of odd length, i.e., V3 is not
bipartite.

For a partition V1, V2, V3 of the vertex set V we define:

(3.5) h := max
V1,V2

2|E(V1, V2)|
vol(V1) + vol(V2)

,

where as before the volume of Vk is given by vol(Vk) :=
∑

i∈Vk
di and |E(Vi,

Vj)| :=
∑

k∈Vi,l∈Vj
wkl.

The next theorem shows that h characterizes bipartite graphs.

Theorem 3.1. h ≤ 1, and h = 1 if and only if Γ is bipartite.

Proof. First, note that, for a partition V1, V2 and V3 of V , the volume of Vi

can also be written in the form

(3.6) vol(Vi) =
3∑

j=1

|E(Vi, Vj)|.

Consequently, h is given by

(3.7) h = max
V1,V2

2|E(V1, V2)|∑3
j=1 |E(V1, Vj)|+

∑3
j=1 |E(V2, Vj)|

.

Thus, clearly,

(3.8) h ≤ 1.

Assume that Γ is bipartite. Then there exists a partition V1, V2, V3 of
V such that V3 = ∅ and there are no edges within the subsets V1 and V2.
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For this partition, it follows that |E(V1, V3)| = |E(V2, V3)| = |E(V1, V1)| =
|E(V2, V2)| = 0. By (3.7) this implies that h ≥ 1. Together with (3.8) it fol-
lows that h = 1.

Now assume that h = 1. Equation (3.7) implies that there exists a parti-
tion V1, V2, V3 of V such that |E(V1, V3)| = |E(V2, V3)| = |E(V1, V1)| =
|E(V2, V2)| = 0. Since Γ is connected V3 = ∅ and thus Γ is bipartite. �

As an illustration, let us consider loopless Erdös-Renyi random graphs,
i.e., we start with a given vertex set and add edges between two vertices
with a fixed probability p. If we start with p = 1 then we obtain a complete
graph and thus h̄ ≈ 1/2, as will be shown in Example 4.1. Now if we decrease
p we decrease the number of edges in the graph. This will lead to a local
bipartite subgraph in Γ and thus h̄ will be increased. If we decrease p further
we finally have |E| ≈ |V |, i.e., the graph will be approximately a tree (we
assume that the random graphs are connected) thus h̄ ≈ 1. We conclude
that, for random graphs h̄ is a function of p. More details are revealed by
numerical simulations.

Proposition 3.1. For a loopless graph Γ,

1
2
≤ h.

Proof. Assume that there exists a partition V1, V2 and V3 = ∅ of the vertex
set V such that

(3.9) |E(V1, V2)| ≥ max
i=1,2

|E(Vi, Vi)|.

Then by using (3.6) we obtain:

h ≥ max
V1,V2,V3=∅

2|E(V1, V2)|
2|E(V1, V2)|+ |E(V1, V1)|+ |E(V2, V2)|

≥ max
V1,V2,V3=∅

|E(V1, V2)|
|E(V1, V2)|+maxi=1,2 |E(Vi, Vi)|

≥ 1
2
.

Thus, it is sufficient to find a partition that satisfies (3.9).
In the following, we will construct such a partition. Start with an arbi-

trarily partition V1, V2 and V3 = ∅ of V . If (3.9) is satisfied we are done.
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Otherwise, assume w.l.o.g. that |E(V1, V1)| > |E(V1, V2)|, i.e.,∑
i∈V1

∑
j∈V1

wij >
∑
i∈V1

∑
j∈V2

wij .

We observe that there exists a vertex i in V1 such that∑
j∈V1

wij >
∑
j∈V2

wij .

We remove the vertex i from V1 and add it to V2. By doing so, |E(V1, V2)| is
increased by

∑
j∈V1

wij −
∑

j∈V2
wij > 0, |E(V1, V1)| is decreased by∑

j∈V1
wij , and |E(V2, V2)| is increased by

∑
j∈V2

wij . If (3.9) is still not
satisfied, continue this procedure several times. Eventually, (3.9) holds since
|E(V1, V2)| is strictly monotonically increasing. �

This lower bound is optimal, since Example 4.1 shows that for complete
graphs KN , h(KN )→ 1

2 as N →∞. Clearly, the proof of Proposition 3.1
cannot be extended to graphs with loops. In fact, Proposition 3.1 only holds
for loopless graphs, as can be seen by considering a graph with

∑
i

wii

di
>

N − 1. In that case, h ≥ 1/2 would lead to a contradiction in Theorem 3.2
since

1 ≤ 2h ≤ λN−1 < 1,

where we used (2.21) in the last inequality.
We now have a counterpart of the Cheeger inequality (3.2) and (3.3).

Theorem 3.2. The largest eigenvalue λN−1 of the graph Laplace operator
Δ satisfies

(3.10) 2h ≤ λN−1 ≤ 1 +
√
1− (1− h)2.

Proof. First, we prove that 2h ≤ λN−1. The largest eigenvalue λN−1 of Δ is
given by (2.16). Let V1, V2, V3 be a partition that achieves h. We consider
the following function u:

u(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
vol(V1)

if i ∈ V1,

−1
vol(V2)

if i ∈ V2,

0 else.
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Substituting u into (2.16) yields:

λN−1 = sup
v �=0

(dv, dv)μ
(v, v)μ

= sup
v �=0

∑
e=(i,j) wij(v(i)− v(j))2∑

i div(i)2

≥
(

1
vol(V1)

+ 1
vol(V2)

)2

|E(V1, V2)|+
(

1
vol(V1)

)2

|E(V1, V3)|+
(

1
vol(V2)

)2

|E(V2, V3)|(
1

vol(V1)
+ 1

vol(V2)

)
≥ (vol(V1) + vol(V2))

2

2vol(V1)vol(V2)

2|E(V1, V2)|
vol(V1) + vol(V2)

+
min(vol(V1), vol(V2))

max(vol(V1), vol(V2))

|E(V1 ∪ V2, V3)|
(vol(V1) + vol(V2))

≥ 2h +
min(vol(V1), vol(V2))

max(vol(V1), vol(V2))

|E(V1 ∪ V2, V3)|
(vol(V1) + vol(V2))

≥ 2h,

where we used the simple inequality (a+b)2

2ab ≥ 2 for a, b ∈ R.

Now we prove the remaining inequality λN−1 ≤ 1 +
√
1− (1− h)2.

When one studies the largest eigenvalue of Δ it is convenient to introduce
the operator L = 2I −Δ. If λ is an eigenvalue of Δ and corresponding eigen-
function u then u is also an eigenfunction for L and corresponding eigenvalue
μ = 2− λ. Thus, controlling the largest eigenvalue λN−1 of Δ from above
is equivalent to controlling the smallest eigenvalue μ0 of L from below. The
smallest eigenvalue μ0 of L is given by

μ0 = inf
u �=0

1
2

∑
i,j∈V wij(u(i) + u(j))2∑

i∈V diu(i)2

= inf
u �=0

∑
e=(i,j)∈E μij(u(i) + u(j))2∑

i∈V diu(i)2

where as above μij = wij for all i 
= j and μii = 1
2wii for all i ∈ V . This

simply follows from the standard min-max characterization of eigenvalues

μ0 = inf
u �=0

(Lu, u)μ
(u, u)μ

.

We have for all u, v ∈ �2(V, μ)

(Lu, v)μ =
∑

i

diLu(i)v(i) =
∑

i

∑
j

wij(u(i) + u(j))v(i)

=
∑

j

∑
i

wji(u(j) + u(i))v(j),
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where we just exchanged i and j. Adding the last two lines and setting u = v
yields

(Lu, u)μ =
1
2

∑
i,j

wij(u(i) + u(j))2.

In order to prove the lower bound for μ0 we will use a technique devel-
oped in [15]. The idea is the following: Construct a graph Γ′ out of Γ s.t.
the quantity h′(g) defined in Lemma 3.1 for the new graph Γ′ controls μ0
from below. In a second step, we show that h′(g) in turn can be controlled
by the quantity 1− h of the original graph. This then yields the desired
estimate.

Let u be an eigenfunction for the eigenvalue μ0 and define as above
S(u) = {i ∈ V : u(i) > 0} and T (u) = {i ∈ V : u(i) < 0}. Since u is also an
eigenfunction for λN−1 of Δ we know that (u,1)μ = 0 and thus S(u), T (u) 
=
∅. Then the new graph Γ′ = (V ′, E′) is constructed from Γ in the following
way. Duplicate all vertices in S(u) ∪ T (u) and denote the copies by a prime,
e.g., if i ∈ S(u) then the copy of i is denoted by i′. The copies of S(u) and
T (u) are denoted by S′(u) and T ′(u) respectively. The vertex set V ′ of Γ′

is given by V ′ = V ∪ S′(u) ∪ T ′(u). Every edge (i, j) ∈ E(S(u), S(u)) in Γ
is replaced by two edges (i, j′) and (j, i′) in Γ′ s.t. wij = w′ij′ = w′ji′ . Sim-
ilarly, if the edge is a loop, then e = (i, i) is replaced by one edge (i, i′)
s.t. wii = wii′ . The same is done with edges in E(T (u), T (u)). All other
edges remain unchanged, i.e., if (k, l) ∈ E \ (E(S(u), S(u)) ∪ E(T (u), T (u)))
then (k, l) ∈ E′ and wkl = w′kl. It is important to note that this construc-
tion does not change the degrees of the vertices in V ′ \ (S′(u) ∪ T ′(u)).

Consider the function g : V ′ → R,

g(i) =
{|u(i)| if i ∈ S(u) ∪ T (u)

0 else.

It can easily be checked that by construction of Γ′, we have

μ0 =

∑
e=(i,j)∈E μij(u(i) + u(j))2∑

i∈V diu(i)2

≥
∑

e′=(i,j)∈E′ w′ij(g(i)− g(j))2∑
i∈V ′ d′ig(i)2

≥ 1−
√
1− (h′(g))2

where we used Lemma 3.1 to obtain the last inequality. For any non-empty
subset W ⊆ S(g) = S(u) ∪ T (u) we define S1 = W ∩ S(u) and T1 = W ∩
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T (u). Let ∅ 
= U ⊆ S(g) the subset that realizes the infimum, i.e.,

h′(g) = inf
∅�=W⊆S(g)

|E′(W, W )|
vol(W )

=
|E′(U,U)|
vol(U)

=
|E(S1, S1)|+ |E(T1, T1)|+ |E(S1 ∪ T1, S1 ∪ T1)|

vol(S1) + vol(T1)

= 1− 2|E(S1, T1)|
vol(S1) + vol(T1)

≥ 1− h.

Thus, we have

2− λN−1 = μ0 ≥ 1−
√
1− (1− h)2

and so

λN−1 ≤ 1 +
√
1− (1− h)2.

�

For example, the lower estimate for λN−1 in (3.10) is sharp if Γ is a
bipartite (by Theorem 3.1) or if Γ is a complete graph KN , and N is even
(by Example 4.1). In both examples, the partition that achieves h satisfies
V3 = ∅. In fact, the proof of Theorem 3.2 shows that the estimate for λN−1
from below can only be sharp if V3 = ∅. However, if the volume of V3 is
sufficiently large, we can improve the estimate given in (3.10) and estimate
the eigenvalue λN−1 from below by using both the Cheeger constant h and
its dual h.

Corollary 3.1. Assume that V1, V2 and V3 is a partition of V that achieves
h. If

vol(V1 ∪ V2) ≤ vol(V3),

then

(3.11) λN−1 ≥ 2h+R(V1, V2)h,

where we define for the partition V1, V2, V3 of the vertex set V

(3.12) R(V1, V2) := min(vol(V1), vol(V2))
max(vol(V1), vol(V2))

.
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Proof. The proof of Theorem 3.2 shows that

λN−1 ≥ 2h+R(V1, V2) |E(V1 ∪ V2, V3)|
vol(V1) + vol(V2)

= 2h+R(V1, V2) |E(V1 ∪ V2, V3)|
min(vol(V1 ∪ V2), vol(V3))

≥ 2h+R(V1, V2)h.

�
The next corollary shows that if the eigenfunction for the largest eigen-

value λN−1 is sufficiently localized, then λN−1 can also be controlled from
above in terms of the Cheeger constant h

Corollary 3.2. Let u be the eigenfunction for the largest eigenvalue of Δ.
If the eigenfunction is sufficiently localized, i.e.,

(3.13)
∑

i:u(i) �=0
di ≤

∑
i:u(i)=0

di

then
λN−1 ≤ 1 +

√
1− h2.

Proof. Again we consider the smallest eigenvalue μ0 of the operator
L = I + P instead of the largest eigenvalue λN−1 of Δ. Since u is also an
eigenfunction for the eigenvalue μ0 we have

μ0 =

∑
e=(i,j) μij(u(i) + u(j))2∑

i diu(i)2

≥
∑

e=(i,j) wij ||u(i)| − |u(j)||2∑
i di|u(i)|2

≥ 1−
√
1− h2(|u|),

where we used the reverse triangle inequality and Lemma 3.1. Since the
eigenfunction is sufficiently localized, it follows from (3.13) that vol(S(u) ∪
T (u)) ≤ vol(S(u) ∪ T (u)). This implies that h(|u|) satisfies h(|u|) ≥ h.
Inserting this in the above equation yields

2− λn−1 = μ0 ≥ 1−
√
1− h2.

�
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By considering a bipartite graph it becomes clear that Corollary 3.2 is in
general not true if (3.13) is not satisfied. However, for infinite graphs the
situation is different. For infinite graphs, the supremum of the spectrum
can always be controlled from above in terms of a Cheeger constant, see
Theorem 5.1. In Section 5, we develop a new approach that allows us to
control the largest eigenvalue of a graph in terms of the Cheeger constant
of its neighborhood graphs (instead of the Cheeger constant of the graph
itself), see Corollary 5.1.

Proposition 3.2. Let u be an eigenfunction for the largest eigenvalue of
Δ that satisfies maxi |u(i)| = 1 then

λN−1 ≤ 2− mini,j wij (1−mini |u(i)|)2
D vol(V )

,

where D is the diameter of the graph. In particular, if there exists a vertex
i such that u(i) = 0 then

λN−1 ≤ 2− mini,j wij

D vol(V )
.

Proof. Again, we consider the smallest eigenvalue μ0 of L = I + P instead
of the largest eigenvalue λN−1 of Δ. Let ik, k = 1, . . . , n be the shortest path
connecting the vertices that satisfy maxi |u(i)|= |u(i1)|=1 and mini |u(i)| =
|u(in)|. Then we have

μ0 =

∑
e=(i,j) μij(u(i) + u(j))2∑

i diu(i)2

≥
∑

e=(i,j) wij ||u(i)| − |u(j)||2∑
i di|u(i)|2

≥ min
i,j

wij

∑n
k=1(|u(ik)| − |u(ik+1)|)2

vol(V )
.

Using the Cauchy–Schwarz inequality we obtain

μ0 ≥ mini,j wij

n

(
∑n

k=1 |u(ik)| − |u(ik+1)|)2
vol(V )

≥ mini,j wij

D

(1−mini |u(i)|)2
vol(V )

,

where we used the fact that the length of a shortest path connecting any two
vertices is less or equal to D. Since 2− λN−1 = μ0, the proof is complete. �
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In particular, the estimate in Proposition 3.2 is sharp for bipartite graphs,
because then |u(i)| = 1 for all i ∈ V .

Again, by using the concept developed in Section 5, we can derive a
similar result to Proposition 3.2. In Corollary 5.2, we show that the largest
eigenvalue can, independently of the corresponding eigenfunction, be con-
trolled from above in terms of the diameter of the neighborhood graph.

Jerrum and Sinclair have shown how one can bound the Cheeger constant
h by using canonical paths [31, 32]. Similarly, we can derive an upper bound
for the dual Cheeger constant h by considering a suitable collection of paths.
Let σi be a path from vertex i to vertex i with an odd number of edges and
let Σ be the collection of all these paths (one for each vertex).

Theorem 3.3. We have

h ≤ 1− 1
ξ
,

where

ξ := max
e=(k,l)

1
wkl

∑
i:σi�e=(k,l)

di.

The sum is over all i for which the path σi contains the edge e = (k, l).

Proof. For simplicity, we define the subset Ω ⊂ E as Ω := E(V1, V1) ∪ E(V1,
V3) ∪ E(V2, V2) ∪ E(V2, V3). Now observe that for every vertex i ∈ V1 ∪ V2 a
path σi with an odd number of edges contains at least one edge in Ω. Thus
we have for any partition V1, V2, V3 of the vertex set V

vol(V1) + vol(V2) =
∑

i∈V1∪V2

di

≤
∑

e=(k,l)∈Ω

∑
i:σi�e=(k,l),i∈V1∪V2

di

≤
∑

e=(k,l)∈Ω

∑
i:σi�e=(k,l)

wkl

wkl
di

≤ ξ
∑

e=(k,l)∈Ω
wkl ≤ ξ|Ω|.

Since this holds for all partitions, we have for the partition V1, V2 and V3
that achieves h

1− h =
|Ω|

vol(V1) + vol(V2)
≥ 1

ξ
.

�
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Corollary 3.3. We have

ξ ≤ dΓwΓbΓ,

where dΓ = maxi di, wΓ = 1
mini,j wij

and bΓ = maxe#{σ ∈ Σ : e ∈ σ}.
Together with Theorems 3.2 and 3.3, this implies that

(3.14) λN−1 ≤ 1 +

√
1−

(
1

dΓwΓbΓ

)2
.

Remark. Diaconis and Stroock show in [16], by using a discrete analog of
the Poincare inequality, that the largest eigenvalue satisfies

(3.15) λN−1 ≤ 2− 2
dΓwΓbΓσΓ

,

where σΓ is the maximum number of edges in any σ ∈ Σ. A simple calculation
shows that the estimate (3.14) obtained from the dual Cheeger inequality is
better than the estimate (3.15) obtained from the Poincare inequality iff

dΓwΓbΓ <
1
σΓ

+
σΓ
4

.

In general, it is not clear which of these estimates is better. See also the
related discussion in [19], where the authors analyze when the Cheeger
inequality improves the Poincare estimate for the smallest non-trivial eigen-
value.

4. Relations between h and h

By looking at the definitions of h and h it is apparent that there is a con-
nection between those two quantities. We shall explore this now in more
detail.

Similarly to (3.12) we define:

Definition 4.1. For any partition U,U of the vertex set V we define

R(U) := min(vol(U), vol(U))
max(vol(U), vol(U))

.

Furthermore,

R := max
U
R(U).
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First, we will restrict ourselves to unweighted graphs. Later on we will
prove similar results for weighted graphs.

Unweighted graphs:

Lemma 4.1. Let Γ be an unweighted graph with N vertices, then

(4.1)
N − 1
N + 1

≤ R ≤ 1.

Equality holds on the left-hand side if and only if Γ is a regular graph and
N is odd.

Proof. Order the vertices w.r.t. their degree, i.e., d1 ≥ d2 ≥ · · · ≥ dN . We
construct a partition U,U of V that satisfies N−1

N+1 ≤ R(U). We begin with
two empty sets U0, U0. After the partition of K vertices we denote the
subsets by UK , UK . Having started with vertex 1 as one of largest degree,
we iteratively partition the vertices into two subsets such that vertex K + 1
is then added to the subset UK , UK that has the smaller volume. We continue
this procedure until we obtain a complete partition U,U := UN , UN of the
vertex set V . Let M ≤ N be such that

(4.2) vol(UM−1) ≥ vol(UM−1)

and

vol(UK) ≥ vol(UK) for M ≤ K ≤ N.

For simplicity, we define

vol(UK) + vol(UK) =: vol(VK) for 1 ≤ K ≤ N.

Then, we have

(4.3) vol(UM )− vol(UM ) ≤ dM ≤ vol(UM ) + vol(UM )
M

=
vol(VM )

M
.

Equality holds on the left-hand side if and only if vol(UM−1) = vol(UM−1)
and equality holds on the right hand side if and only if d1 = d2 = · · · = dM .
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For the final partition UN , UN we obtain

vol(UN )− vol(UN ) = vol(UM )− (vol(UM ) + vol(VN )− vol(VM ))

≤ vol(VM )
M

− vol(VN ) + vol(VM )

≤ vol(VN )
N

.

The last inequality follows from:

vol(VN )
N

+ vol(VN )− vol(VM )− vol(VM )
M

=
1

NM
[M(1 +N)vol(VN )−N(1 +M)vol(VM )]

=
1

NM
[M(1 +N) (vol(VN )− vol(VM )) + (M −N)vol(VM )]

≥ 1
NM

[M(1 +N)(N −M) + (M −N)MN ]

=
(N −M)

N
≥ 0.(4.4)

Thus, we constructed a partition that satisfies

max(vol(UN ), vol(UN ))−min(vol(UN ), vol(UN )) ≤ vol(VN )
N

.

Since

vol(VN )
N

=
max(vol(UN ), vol(UN )) + min(vol(UN ), vol(UN ))

N
,

this yields

N − 1
N + 1

≤ R(U) ≤ R.

From the proof we see that equality holds iff N = M , the graph is regular,
and vol(UM−1) = vol(UM−1). This implies that equality holds iff Γ is regular
and N is odd. �

The last lemma shows that for large graphs, i.e., N large, it is always
possible to partition V into two subsets of almost equal volume.
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Corollary 4.1. In particular we have for unweighted graphs,

1
2
≤ R ≤ 1

and equality holds on the left hand side iff Γ is a triangle.

Proof. The proof follows from Lemma 4.1 since there exists only one con-
nected graph on two vertices for which we have R = 1 and the only regular
graph on three vertices is the triangle. �

Theorem 4.1. For unweighted graphs we have

(4.5)
N − 1

N
h ≤ 2R

1 +Rh ≤ h ≤ 1.

Equality holds on the l.h.s. iff Γ is a regular graph and N is odd.

Proof. By (3.5), we have for any partition U,U of the vertex set V

(4.6) h ≤ |E(U,U)|
min(vol(U), vol(U))

.

For the partition V1 = U , V2 = U and V3 = ∅ we obtain

(4.7) h ≥ 2|E(U,U)|
vol(U) + vol(U)

.

Since this holds for all partitions U,U , we get

h ≤ h
vol(U) + vol(U))

2min(vol(U), vol(U))
= h

(
1
2
+

1
2R
)
≤ h

N

N − 1

where we used Lemma 4.1. The remaining inequality follows from Theo-
rem 3.1. �

Corollary 4.2. Let Γ be an unweighted graph. If there exists a partition
U,U of the vertex set V such that vol(U) =vol(U) then

(4.8) h ≤ h ≤ 1.

If Γ = K2, we even have equality in (4.8), i.e., h = h = 1. Note that, in
general there does not exist a partition U,U of V such that vol(U) = vol(U).
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Counterexamples are regular graphs if N is odd or so-called wheel graphs
WN with N vertices and degree sequence π = {N − 1, 3, . . . , 3} if N − 1 is
not a multiple of 3.

Example 4.1. For a complete graph KN on N vertices, we have

(4.9) h =

⎧⎪⎪⎨
⎪⎪⎩

N

2(N − 1)
, N even,

N + 1
2(N − 1)

, N odd

and

(4.10) h =

⎧⎪⎨
⎪⎩

N

2(N − 1)
, N even,

N + 1
2N

, N odd.

This example shows that, for complete graphs, we have equality in (4.5) if
N is odd and in (4.8) if N even, respectively.

Weighted graphs:
Lemma 4.1 does not hold for weighted graphs. This can be seen by consid-
ering sufficiently small weights c in figure 1. In particular, it turns out that

Figure 1: For sufficiently small weights c this graph shows that Lemma 4.1
is not true for weighted graphs.
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inequality (4.4) does not hold for weighted graphs. However, we have the
following result for weighted graphs.

Lemma 4.2. Let Γ be a weighted graph with N vertices and let M ≤ N be
defined as in (4.2), then

(4.11)
M − 1
M + 1

≤ R ≤ 1.

Proof. Using the notation from the proof of Lemma 4.1 we conclude from
(4.3):

vol(UN )− vol(UM ) = vol(UM )− vol(UM )

≤ vol(UM ) + vol(UM )
M

=
vol(UM ) + vol(UN )

M
.

This implies
M − 1
M + 1

≤ vol(UM )
vol(UN )

≤ vol(UN )
vol(UN )

≤ R.

�
Note that figure 1 does not contradict Lemma 4.2 for all c > 0. Similarly

to Theorem 4.1, we obtain for weighted graphs:

Theorem 4.2. Let Γ be a weighted graph and let M be defined as in (4.2),
then

(4.12)
M − 1

M
h ≤ 2R

1 +Rh ≤ h ≤ 1.

5. Neighborhood graphs

In the preceding sections, we have used geometric properties (like the
Cheeger, the dual Cheeger constant or the diameter) of the underlying graph
in order to control the eigenvalues of the graph Laplace operator.

In this section, we shall use a new, conceptually different approach in
order to control the eigenvalues of the graph Laplace operator. Instead of
using geometric properties of Γ itself, we shall use the geometric properties
of the neighborhood graph Γ[l] of Γ, to be defined shortly, in order to control
the eigenvalues of Δ.
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As a motivation, consider the following result for infinite graphs [18, 23]:

Theorem 5.1. If Γ is a locally finite graph, then

(5.1) 1−
√
1− α2(Γ) ≤ inf spec(Δ) ≤ sup spec(Δ) ≤ 1 +

√
1− α2(Γ),

where

(5.2) α(Γ) = inf
W⊆V,|W |<∞

E(W, W )
vol(W )

is a version of the Cheeger constant for an infinite graph.

Thus, for infinite graphs, it is possible to control the supremum and the
infimum of spec(Δ) by the Cheeger constant α(Γ). Clearly, this estimate is
not useful for finite graphs as α(Γ) = 0 in that case, because we may then
simply take W = V . The point here is that inf spec(Δ) = λ0 = 0 for finite
graphs, but not necessarily for infinite graphs, and this is the content of the
lower bound in Theorem 5.1 in qualitative terms. It is remarkable that the
constant α(Γ) at the same time may also yield a non-trivial upper spectral
bound for an infinite graph.

In the finite graph case we showed in Corollary 3.2 that a similar result
to Theorem 5.1 is true if the eigenfunction that corresponds to the largest
eigenvalue is sufficiently localized. In this section, we shall show (Corol-
lary 5.1) that it is possible to control the maximal and the smallest non-
zero eigenvalue of a finite graph in a similar way as in (5.1), if we use the
Cheeger constant h[l] of the neighborhood graph Γ[l], for l even, instead
of the Cheeger constant h of the graph Γ itself. In particular, we obtain
new lower bounds for the second smallest eigenvalue that can improve the
classical Cheeger estimate (3.3); for a discussion and examples see the next
section.

Definition 5.1. For a graph Γ = (V, E) its neighborhood graph Γ[l] =
(V, E[l]) of order l ≥ 1 is the graph with the same vertex set V whose edge set
E[l] is defined in the following way: The weight wij [l] of the edge e[l] = (i, j)
in Γ[l] is given by

wij [l] =
∑

k1,...,kl−1

1
dk1

· · · 1
dkl−1

wik1wk1k2 · · ·wkl−1j
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if l > 1 and we set wij [l] = wij if l = 1, i.e., Γ[1] = Γ. In particular, i and j
are neighbors in Γ[l] if there exists at least one path of length l between i
and j in Γ.

Remark. (i) The idea of neighborhood graphs is the following: define a
family of graphs Γ[l], l ≥ 1 that encodes the transition probabilities of
the l-step random walk on the graph Γ.
We give an alternative definition of the neighborhood graphs. The

neighborhood graph Γ[l] = (V, E[l]) of Γ = (V, E) has the same vertex
set V and the weights of the edges of Γ[l] are defined by

wij [l] := P l(i, j)di,

where P l(i, j) is the probability that a random walker starts at vertex
i and moves in l steps to vertex j.

(ii) Neighborhood graphs are directly related to the discrete heat kernel
pt(i, j) studied in [14]. We have the following relationship:

pt(i, j) =
wij [t]
didj

.

Lemma 5.1. The weights of the neighborhood graphs satisfy the following
semi-group identity:

wij [l] =
∑

t

1
dt

wit[k]wtj [l − k] for 1 ≤ k < l.

Proof. The proof follows from a direct calculation and we omit it here. �

In order to become familiar with the concept of neighborhood graphs we
consider the following examples:

Example 5.1. Consider the family of graphs in figure 2 for c ≥ 0. Let W
be the adjacency operator of the graph in figure 2. W can be represented as

W = W [1] =
(

c 1
1 c

)
.

If we go to higher order neighborhood graphs Γ[l] of Γ, the topological
structure remains the same and the adjacency operator W [l], l = 2, 3, 4, 5
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Figure 2: Graph in Example 5.1.

can be represented as

W [2] =

⎛
⎜⎜⎝

c2 + 1
1 + c

2c
1 + c

2c
1 + c

c2 + 1
1 + c

⎞
⎟⎟⎠ W [3] =

⎛
⎜⎜⎝

c3 + 3c
(1 + c)2

3c2 + 1
(1 + c)2

3c2 + 1
(1 + c)2

c3 + 3c
(1 + c)2

⎞
⎟⎟⎠ ,

W [4] =

⎛
⎜⎜⎝
(c2 + 1)2 + 4c2

(1 + c)3
4c3 + 4c
(1 + c)3

4c3 + 4c
(1 + c)3

(c2 + 1)2 + 4c2

(1 + c)3

⎞
⎟⎟⎠

W [5] =

⎛
⎜⎜⎝

c(5 + 10c2 + c4)
(1 + c)4

1 + 10c2 + 5c4

(1 + c)4
1 + 10c2 + 5c4

(1 + c)4
c(5 + 10c2 + c4)

(1 + c)4

⎞
⎟⎟⎠ .

Example 5.2. As a second example we consider the family of graphs in
figure 3. We have

W = W [1] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 c c 0 0 0
c 0 c 0 0 0
c c 0 1 0 0
0 0 1 0 c c
0 0 0 c 0 c
0 0 0 c c 0

⎞
⎟⎟⎟⎟⎟⎟⎠ and

W [2] =

⎛
⎜⎜⎜⎜⎜⎜⎝

c/2 + c2/a c2/a c/2 c/a 0 0
c2/a c/2 + c2/a c/2 c/a 0 0
c/2 c/2 1/a+ c 0 c/a c/a
c/a c/a 0 1/a+ c c/2 c/2
0 0 c/a c/2 c/2 + c2/a c2/a
0 0 c/a c/2 c2/a c/2 + c2/a

⎞
⎟⎟⎟⎟⎟⎟⎠,

where a := 1 + 2c.
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Figure 3: Graph in Example 5.2.

The neighborhood graphs Γ[l] have the following property:

Lemma 5.2. di = di[l] for all i ∈ V and l ≥ 1.

Proof. We have

di[l] =
∑

j

wij [l] =
∑

k1,...,kl−1

1
dk1

· · · 1
dkl−1

wik1wk1k2 · · ·wkl−2kl−1

∑
j

wkl−1j

=
∑

k1,...,kl−2

1
dk1

· · · 1
dkl−2

wik1wk1k2 · · ·
∑
kl−1

wkl−2kl−1

...

=
∑
k1

wik1 = di.

�

Remark. Lemma 5.2 implies that (·, ·)μ = (·, ·)μ[l] and thus �2(V, μ) =
�2(V, μ[l]), as will be frequently utilized below.

Theorem 5.2. For any function u ∈ �2(V, μ) we have

(5.3) (I − (I −Δ)l)u = (I − P l)u = Δ[l]u,

where P is the transition probability operator of a random walk on Γ and
Δ[l] is the graph Laplace operator on Γ[l].



Bipartite and neighborhood graphs and the graph Laplacian 819

Proof. For any function u ∈ �2(V, μ), we have

(I − P l)u(i) = u(i)−
∑

j

qiju(j),

where qij :=
∑

k1,...,kl−1

wik1
di
· · · wkl−1j

dkl−1
is ij-th entry of P l. Thus,

(I − P l)u(i) = u(i)−
∑

j

∑
k1,...,kl−1

wik1

di
· · · wkl−1j

dkl−1

u(j).

Using the definition wij [l] =
∑

k1,...,kl−1

1
dk1
· · · 1

dkl−1
wik1wk1k2 · · ·wkl−1j and

di = di[l], this yields

(I − P l)u(i) =
1

di[l]

∑
j

wij [l](u(i)− u(j))

= Δ[l]u(i).

�

Lemma 5.3. Let Γ be a graph and Γ[l] its neighborhood graph of order l.

(i) If Γ is connected and l is even, then Γ[l] consists of exactly two con-
nected components iff Γ is bipartite.

(ii) If l is odd, then Γ[l] is bipartite iff Γ is bipartite. Furthermore, Γ[l] has
the same number of connected components as Γ.

(iii) The multiplicity m1 of the eigenvalue one is an invariant for all neigh-
borhood graphs, i.e., m1(Δ) = m1(Δ[l]) for all l ≥ 1.

(iv) The eigenvalues of Δ[l] satisfy

0 = λ0[l] ≤ · · ·λN−1[l] ≤ 1

if l is even and

0 = λ0[l] ≤ · · ·λN−1[l] ≤ 2

if l is odd.

(v) If λ 
= 0, 2 then λ[l] = 1− (1− λ)l → 1 as l →∞.

Proof. Γ and Γ[l] have the same vertex set, thus both Δ and Δ[l] = (I −
(I −Δ)l) have N = |V | eigenvalues. Furthermore, every eigenfunction uk
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for Δ and eigenvalue λk is also an eigenfunction for Δ[l] and eigenvalue
1− (1− λk)l.
(i) If l is even, λk[l] = 0 iff λk = 0 or λk = 2. Recall that the multiplicity
of the eigenvalue zero is equal to the number of connected components of
a graph and 2 is an eigenvalue iff the graph is bipartite. Now let Γ be
a connected, bipartite graph and let l be even. Then λ[l] = 0 is twice in
the spectrum of Δ[l] since λ0 = 0 and λN−1 = 2 are in the spectrum of Δ.
Consequently, Γ[l] consists of exactly two connected components. On the
other hand if Γ[l] consists of exactly two connected components, λ[l] = 0 is
twice in the spectrum of Δ[l], and we know that either the eigenvalue λ = 0
is twice in the spectrum of Δ or λ = 0 and λ = 2 are both in the spectrum
of Δ. Since we assume that Γ is connected, λ = 0 is a simple eigenvalue, and
thus we can conclude that 2 ∈ spec(Δ) and Γ is bipartite.

(ii)–(v) follow from simple calculations. �

Remark. By Lemma 5.3 (iv) all eigenvalues of Δ[l] (l even) are less or
equal to 1. From (2.22) we observe that this is only possible because Γ[l]
(l even) contains many (in fact N) loops. In contrast, for a graphs without
loops we have 1 < N

N−1 ≤ λN−1.

We now use Theorem 5.2 to control the eigenvalues of Δ on Γ in terms
of geometric properties of its neighborhood graphs Γ[l].

Theorem 5.3. Let A[l] be a lower bound for the eigenvalue λ1[l] of Δ[l],
i.e., A[l] ≤ λ1[l]. Then, the eigenvalues of Δ satisfy

(5.4) 1− (1−A[l]) 1
l ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1−A[l]) 1

l ,

if l is even and

(5.5) 1− (1−A[l]) 1
l ≤ λ1

if l is odd.
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Proof. Let uk, k 
= 0 be an eigenfunction for Δ. Using (5.3) we obtain

1− (1− λk)l =
(uk, (I − (I −Δ)l)uk)μ

(uk, uk)μ

=
(uk,Δ[l]uk)μ[l]
(uk, uk)μ[l]

≥ inf
u:(u,1)μ[l]=0

(u,Δ[l]u)μ[l]
(u, u)μ[l]

= λ1[l] ≥ A[l],

since (u,1)μ = 0 iff (u,1)μ[l] = 0. Alternatively, since the eigenvalues of Δ[l]
are given by 1− (1− λk)l if λk are the eigenvalues of Δ we have

1− (1− λk)l ≥ min
k �=0

1− (1− λk)l = λ1[l] ≥ A[l].

This implies that for all k 
= 0

|1− λk| ≤ (1−A[l]) 1
l

if l is even and

1− λk ≤ (1−A[l]) 1
l

if l is odd. �
As a concrete example, we use the Cheeger inequality (3.3) as a lower bound
for λ1[l], i.e., A[l] = 1−√1− h2[l] ≤ λ1[l], where h[l] is the Cheeger con-
stant of the neighborhood graph Γ[l].

Corollary 5.1. The eigenvalues of Δ on Γ satisfy:

(5.6) 1− (1− h2[l])
1
2l ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1− h2[l])

1
2l

if l is even and

(5.7) 1− (1− h2[l])
1
2l ≤ λ1

if l is odd.

We point out that this result is similar to Theorem 5.1 for locally finite
graphs. However, the difference is that we have to use here the Cheeger
constant of the neighborhood graph instead of the Cheeger constant itself.
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As another example, we use the well-known estimate λ1 ≥ mini,j wij

Dvol(V ) for
the smallest non-trivial eigenvalue in terms of the diameter and the volume
of a graph; see for instance [10]. This yields the following estimates:

Corollary 5.2. All eigenvalues of Δ satisfy

1−
(
1− mini,j wij [l]

D[l]vol(V [l])

) 1
l

≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 +
(
1− mini,j wij [l]

D[l]vol(V [l])

) 1
l

if l is even and

1−
(
1− mini,j wij [l]

D[l]vol(V [l])

) 1
l

≤ λ1

if l is odd.

Remark. Some graph properties, like the discrepancy or the expansion
property of a graph, can be controlled by the quantity ρ = maxk �=0 |1− λk|
[10]. Corollary 5.1 and Corollary 5.2 or more generally Theorem 5.3 can
be used to derive explicit bounds for those quantities. As one particular
application, we show in Section 9 how Corollary 5.1 can be used to control
the convergence of random walks on graphs.

We can use Theorem 5.2 to obtain further eigenvalue estimates.

Theorem 5.4. Let B[l] be any upper bound for λ1[l], i.e., λ1[l] ≤ B[l]. Then
the eigenvalues of Δ satisfy

(5.8) λ1 ≤ 1− (1− B[l]) 1
l

or

(5.9) λN−1 ≥ 1 + (1− B[l]) 1
l

if l is even and

λ1 ≤ 1− (1− B[l]) 1
l

if l is odd.

Proof. First note that, by Lemma 5.3, (5.8) and (5.9) are well defined, if l is
even, since we can assume w.l.o.g. that B[l] ≤ 1. Using (5.3), we obtain B[l] ≥
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λ1[l] = mink �=0 1− (1− λk)l. This implies that for at least one eigenvalue λi,
i 
= 0 we have

(1− B[l]) 1
l ≤ |1− λi|

if l is even and

(1− B[l]) 1
l ≤ 1− λi

if l is odd. �

Using the Cheeger inequality (3.2) for Γ[l] we obtain:

Corollary 5.3. If l is even, and 2h[l] ≤ 1, then we have

(5.10) λ1 ≤ 1− (1− 2h[l])
1
l .

or

(5.11) λN−1 ≥ 1 + (1− 2h[l])
1
l .

If l is odd, we have

(5.12) λ1 ≤ 1− (1− 2h[l])
1
l .

In the next section, we show that the estimate (5.10) and (5.12) for λ1
can improve the Cheeger estimate (3.2).

Theorem 5.5. Let C[l] be any lower bound for the largest eigenvalue
λN−1[l], i.e., C[l] ≤ λN−1[l]. At least one eigenvalue of Δ is contained in
the interval

(5.13)
[
1− (1− C[l]) 1

l , 1 + (1− C[l]) 1
l

]
if l is even and the largest eigenvalue of Δ satisfies

λN−1 ≥ 1− (1− C[l]) 1
l

if l is odd.

Proof. Again, by Lemma 5.3, (5.13) is well defined, if l is even, since C[l] ≤
λN−1[l] ≤ 1. Using (5.3) we have C[l] ≤ λN−1[l] = maxk(1− (1− λk)l).
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Thus,
min

k
|1− λk| ≤ (1− C[l]) 1

l

if l is even and

min
k
(1− λk) = 1−max

k
λk ≤ (1− C[l]) 1

l

if l is odd. �
In particular, we have from Theorem 3.2 and Theorem 5.5:

Corollary 5.4. If l is even, and 2h[l] ≤ 1, then at least one eigenvalue of
Δ is contained in the interval

(5.14)
[
1− (1− 2h[l])

1
l , 1 + (1− 2h[l])

1
l

]
.

If l is odd, then the largest eigenvalue satisfies

λN−1 ≥ 1− (1− 2h[l])
1
l .

We now turn to the gap phenomenon for eigenvalues, that is, find some
interval that does not contain any eigenvalue.

Theorem 5.6. Let D[l] be any upper bound for the largest eigenvalue, i.e.,
λN−1[l] ≤ D[l]. Then all eigenvalues of Δ are contained in the union of
intervals

(5.15)
[
0, 1− (1−D[l]) 1

l

]⋃[
1 + (1−D[l]) 1

l , 2
]

if l is even and the largest eigenvalue of Δ satisfies

λN−1 ≤ 1− (1−D[l]) 1
l

if l is odd.

The proof is similar to the proofs above so we omit it here. We only note
that (5.15) is well defined if l is even since, by Lemma 5.3, we can assume
w.l.o.g. that D[l] ≤ 1.

In other words: let l be even, then for any upper bound D[l] ≤ 1 none
of the eigenvalues of Δ is contained in the interval (1− (1−D[l]) 1

l , 1 + (1−
D[l]) 1

l ). Thus, if l is even, an upper bound D[l] ≤ 1 for λN−1[l] of Δ[l] can
be used to bound all eigenvalues of Δ on Γ away from 1. In particular, if
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D[l] < 1, Δ then does not possess the eigenvalue 1; see also Lemma 5.3.
In [3], it was observed that the eigenvalue 1 occurs in an unweighted graph
whenever there are two nodes i1, i2 that are not neighbors themselves, but
who possess the same neighbors, that is, for any k, we have k ∼ i1 iff k ∼ i2.
Thus, a graph satisfying the assumptions of Theorem 5.6 cannot have any
such pair of nodes if D[l] < 1 and l is even.

From the dual Cheeger inequality (3.10), we only obtain an upper bound

for λN−1 if l is odd since D[l] = 1 +
√
1− (1− h[l])2 ≥ 1 for all l.

Corollary 5.5. If l is odd, then

λN−1 ≤ 1 + (1− (1− h[l])2)
1
2l .

6. Comparison of the Cheeger estimates with the estimates
obtained by the neighborhood graph method

In the following, we compare the Cheeger estimates (3.2) and (3.3) with the
new estimates in Corollary 5.1 and Corollary 5.3. Recall that Corollary 5.1
and Corollary 5.3 were obtained by applying (3.2) and (3.3) to the neigh-
borhood graph Γ[l] and then using the relationship between the spectrum
of Δ and Δ[l], which was established in Theorem 5.2.

Comparing Corollary 5.1 with (3.3) reveals that our new estimates
improve the Cheeger estimate (3.3) if

(6.1) h[l] ≥
√
1− (1− h2)l,

for some l ≥ 2. In general, it is not clear for which graphs Γ and which l
the equation (6.1) is satisfied. However, we can develop some qualitative
intuition about (6.1).

We have to distinguish whether l is even or odd. Assume for the moment
that l is even. Clearly, (6.1) is not satisfied whenever Γ is bipartite since then,
by Lemma 5.2, Γ[l] is disconnected and so h[l] = 0. In fact, Corollary 5.1
yields only the trivial estimate 0 ≤ λ1 for bipartite graphs. In contrast, for
graphs that are not bipartite the estimate in (5.6) always yields a non-trivial
lower bound 0 < 1− (1− h2[l])

1
2l ≤ λ1 for the second smallest eigenvalue λ1.

A necessary condition for strict inequality in (6.1) is that h[l] > h. In order
to understand for which graphs it is likely that this necessary condition
is satisfied we distinguish the following two cases. If λ1 ≥ 2− λN−1 then
λ1[l] = 1− (1− λN−1)l. In this case it is possible that λ1[l] < λ1. Hence,
in general, we cannot expect that h[l] > h is satisfied, unless the Cheeger
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estimate on the graph Γ[l] is sharper (this will be made more precise in the
next proposition) than the Cheeger estimate on the graph Γ. In particular, if
λ1 ≥ 2− λN−1, we cannot expect that (6.1) is satisfied. On the other hand,
if λ1 < 2− λN−1 then λ1[l] = 1− (1− λ1)l > λ1 and so it is likely that the
necessary condition h[l] > h is satisfied. Roughly speaking, if l is even, we
can expect that our eigenvalue estimates improve the Cheeger estimates if
the graph in question is closer to disconnected graph than to bipartite graph.

If l is odd then Corollary 5.1 always yields non-trivial estimates and
λ1[l] > λ1 is always satisfied. Thus, we can expect that the necessary condi-
tion h[l] > h is, in general, satisfied if l is odd.

After all, we are mainly interested in the question when the estimates
in Corollary 5.1 improve the Cheeger estimate (3.3)

Proposition 6.1. Let S[l] := 1−
√
1−h2[l]

λ1[l]
be the sharpness of the Cheeger

estimate (3.3) on the graph Γ[l], i.e., the closer S[l] is to 1 the sharper is
the Cheeger estimate. We set S[1] =: S and h[1] =: h. If one of the following
two conditions is satisfied

(i) l is odd and S[l] satisfies

(6.2) S[l] ≥ 1− (1− h2)
l

2

1− [1− 1
S (1−

√
1− h2)]l

,

(ii) l is even, S[l] satisfies (6.2), and λ1 ≤ λN−1,

then the estimates in Corollary 5.1 improve the Cheeger estimate (3.3).

Proof. We have

S[l] =
1−√1− h2[l]

λ1[l]
=
1−√1− h2[l]
1− (1− λ1)l

=
1−√1− h2[l]

1− [1− 1
S (1−

√
1− h2)]l

.

A comparison with (6.2) yields

1−
√
1− h2[l] ≥ 1− (1− h2)

l

2 ,

which implies (6.1). �
As an example we consider again the family of graphs in Example 5.1.

The corresponding Cheeger constants of the neighborhood graphs are given
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Figure 4: Plot of different lower bounds 1− (1− h2[l])
1
2l for the second

smallest eigenvalue λ1 of the family of graphs in figure 2. The Cheeger esti-
mate (l = 1) is plotted in dark blue, and the red, yellow, green and light
blue curves correspond to l = 2, 3,4, and l = 5, respectively.

by h[1] = 1
1+c , h[2] = 2c

(1+c)2 , h[3] = 3c2+1
(1+c)3 , h[4] = 4c3+4c

(1+c)4 , and h[5] =
1+10c2+c4

(1+c)5 . In figure 4, we plot the lower bounds 1− (1− h[l]2)
1
2l , for the

second smallest eigenvalue λ1, for different values of l. We observe that for
c < 2.2 the Cheeger inequality (l = 1) yields the best estimate for the sec-
ond smallest eigenvalue λ1 of the graph in figure 2. However, if we increase
c the estimates for larger values of l become better. This confirms the intu-
ition that graphs that are closer to disconnected than to bipartite graphs
are likely to satisfy (6.1).

As a second example, we consider the family of graphs in Example 5.2.
The Cheeger constants of the neighborhood graphs are given by h[1] =
min{ 1

6c+1 ,
1
2}, h[2] = min{ 4c

(6c+1)(2c+1) ,
5c+8c2

2(1+6c+8c2)}, and h[3] = min

{ 12c2+4c+1
(1+2c)2(1+6c) ,

c(12c2+12c+7)
(1+2c)2 min{8c,2+4c}}. In figure 5, the lower bounds 1− (1−

h[l]2)
1
2l , for the second smallest eigenvalue λ1, are plotted for l = 1, 2, 3.

Again, for small c the Cheeger estimate, l = 1 yields the best estimate. How-
ever, if c > 0.8 then the estimate for l = 3 improves the Cheeger estimate.

We can also compare the upper bound for λ1 in Corollary 5.3 with the
Cheeger inequality (3.2). We observe that if l is odd and

(6.3) h[l] ≤ 1− (1− 2h)l

2
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Figure 5: Plot of different lower bounds 1− (1− h2[l])
1
2l , for the second

smallest eigenvalue of the family of graphs in figure 3. The Cheeger estimate
(l = 1) is plotted in blue, and the black, red curves correspond to l = 2, and
l = 3, respectively.

is satisfied then the estimates in Corollary 5.3 improve the Cheeger estimate
(3.2). If l is even, h[l] ≤ 1

2 , (6.3) is satisfied, and λ1 ≤ 2− λN−1, then Corol-
lary 5.3 improves the Cheeger estimate (3.2). If l is even, we have to assume
that λ1 ≤ 2− λN−1, because otherwise (5.11) holds instead of (5.10) and so
we do not always have an upper bound for λ1. Similarly to Proposition 6.1
we obtain:

Proposition 6.2. Let s[l] := λ1[l]
2h[l] be the sharpness of the upper Cheeger

estimate for the second smallest eigenvalue λ1[l] of Γ[l]. If one of the follow-
ing two conditions is satisfied

(i) l is odd and

(6.4) s[l] ≥ 1− (1− s2h)l

1− (1− 2h)l
.

(ii) l is even and in addition to (6.4), h[l] ≤ 1
2 , and λ1 ≤ 2− λN−1,

then the estimates in Corollary 5.3 improve the Cheeger estimate (3.2).

The proof is straightforward so we omit it here.
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Figure 6: Plot of different upper bounds 1− (1− 2h[l])
1
l , for the second

smallest eigenvalue of the family of graphs in figure 3. The Cheeger estimate
(l = 1) is plotted in blue, and the black, red curves correspond to l = 2, and
l = 3, respectively. The dashed black line indicates that for c ≤ 0.5 this is
not an upper bound for λ1 because in this case (5.11) holds and (5.10) is
not satisfied.

It turns out that, if we consider the family of graphs in Example 5.1, the
different upper bounds λ1 ≤ 1− (1− 2h[l])

1
l for the second smallest eigen-

value are the same for all l. In contrast for the family of graphs in Exam-
ple 5.2 the plot in figure 6 shows that the estimate in Corollary 5.3 can
improve the Cheeger estimate (3.2). For example, if c > 0.3 the estimate for
l = 3 improves the Cheeger estimate (3.2). Comparing figures 5 and 6 show
that the estimates in Corollaries 5.1 and 5.3 improve both Cheeger estimates
(3.2) and (3.3) at the same time if c > 0.8 and l = 3.

Finally, we observe that if h[l] is not contained in the interval[
1−(1−2h)l

2 ,
√
1− (1− h2)l

]
(where the interval is the empty set if 1−(1−2h)

l

2 >√
1− (1− h2)l) then at least one of the Cheeger estimates (3.2) and (3.3)

is improved by the estimates in Corollaries 5.1 and 5.3.
Similarly, one can also compare the dual Cheeger estimate for the largest

eigenvalue in Theorem 3.2 with the estimates obtained in Corollary 5.5. We
observe that, similarly to the Cheeger estimate, the neighborhood graph
method can improve the estimates obtained from the dual Cheeger estimate.
As one such example we consider the family of graphs in Example 5.1. In
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Figure 7: Plot of different upper bounds 1 + (1− (1− h[l])2)
1
2l in Corol-

lary 5.5 for the largest eigenvalue of the family of graphs in figure 2. The
dual Cheeger estimate (Theorem 3.2) (l = 1) is plotted in dark blue, and
the red and yellow curves correspond to l = 3 and l = 5, respectively. Note
that for the family of graphs in figure 2 we have h[l] = h[l].

figure 7, we plot different upper bounds 1 + (1− (1− h[l])2)
1
2l for the largest

eigenvalue λN−1. For the largest eigenvalue, one can derive similar results
as in (6.1) and Proposition 6.1. However, we do not want to go into further
detail here because the calculations are exactly the same as before.

We conclude this section by noting that the neighborhood graph method
is very powerful because it may improve any known eigenvalue estimate.

7. An example

As discussed above, the highest eigenvalue λN−1 of Δ becomes largest for
bipartite and smallest for complete graphs, respectively. And a guiding ques-
tion for this paper is what can we say about the highest eigenvalue of graphs
that are neither bipartite nor complete, i.e., what structural properties of
Γ lead to a highest eigenvalue λN−1 close to 2, or very different from 2,
respectively.

In order to develop some further intuition about the highest eigenvalue,
we now consider the following example. Let Γ0 be a bipartite graph with N
vertices. We consider a highest eigenfunction ū that is +1 on one class and
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−1 on the other class of vertices, as described above. In particular by (2.17),

(7.1)
1
2

∑
k

∑
j wkj(ū(j)− ū(k))2∑

i diū(i)2
= 2.

By adding another vertex i0 and connecting it to one of the vertices i1 of Γ0
we obtain a new bipartite graph Γ1. We extend ū by ū(i0) = 0 to Γ1. Thus,
the numerator and the denominator of (7.1) are both increased by wi0i1 . Let
Γ0 be sufficiently large, i.e.,

∑
i di is sufficiently large, then we can achieve

for Γ1 that for any given small ε > 0,

(7.2)
1
2

∑
k

∑
j wkj(ū(j)− ū(k))2∑

i diū(i)2
> 2− ε.

Now, this is not affected when we construct a graph Γ by attaching another
graph Γ2 at i0 and extend ū by 0 to all of Γ2. For instance, Γ2 could be a
complete graph KM with M vertices, for any M . In particular, the difference
2− λN−1 which has to be smaller than ε by (2.16), is not very sensitive to the
shape of Γ2. This implies, for instance, that 2− λN−1 cannot reflect a global
quantity like the clustering coefficient C of (2.1) that expresses an averaged
difference from a graph being bipartite. In fact, our construction of attaching
a complete graph KM to a bipartite graph Γ0 through a connecting node
produces a graph with C arbitrarily close to its maximal value 1 when M is
sufficiently large.

By extending this example, we can also see that we should have many
eigenvalues λ for which 2− λ is small when the graph possesses several
relatively large bipartite or almost bipartite parts that are only loosely
connected with the rest. (By (5.3), the neighborhood graph Γ[2] of such
a graph contains several large components that are only loosely connected,
i.e., many eigenvalues λk[2] that are small.) This is analogous to the fact
that a graph possesses several small eigenvalues when it has many rela-
tively large components that are only loosely connected to the rest, that
is, when the graph can be easily decomposed into several large clusters.
Of course, for a non-connected graph, that is, one with several compo-
nents without links between them, the spectrum simply is the union of
the spectra of the components. Therefore, by the continuity principle, a
graph consisting of clusters that are only loosely connected to each other
has its spectrum approximated by the spectra of these clusters, that is,
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by the one of the graph resulting from deleting the few links between the
clusters.

8. Controlling the largest eigenvalue in terms of a local
clustering coefficient

In this section, we shall provide a more technical estimate from above for
the highest eigenvalue λN−1. For that purpose, we shall first derive some
general identity, for a function u on the vertex set V of Γ.

Lemma 8.1. Let u be an eigenfunction of Δ for the eigenvalue λ. Then,
the following identity holds:

(8.1) 2− λ =
(Δ[2]u, u)μ
(Δu, u)μ

=

∑
i
1
di

∑
j,k wijwik(u(j)− u(k))2∑

i

∑
j wij(u(i)− u(j))2

.

Remark. This identity follows from Theorem 5.2 for l = 2 and (2.12)
applied to the neighborhood graph. Here, as an alternative, we shall provide
a direct proof.

Proof.

∑
i

1
di

∑
j,k

wijwik(u(j)− u(k))2

=
∑

i

1
di

⎛
⎝∑

j,k

wikwiju(j)2 − 2
∑
j,k

wijwiku(j)u(k) +
∑
j,k

wijwiku(k)2

⎞
⎠

= 2
∑

i

⎛
⎝∑

j

wiju(j)2 − 1
di

⎛
⎝∑

j

wiju(j)

⎞
⎠2⎞⎠

= 2
∑

i

∑
j

wiju(j)2 −
∑

i

2di

⎛
⎝ 1

di

∑
j

wiju(j)

⎞
⎠2

.
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We now observe that we can replace u by u− u(i) in the first and hence also
in all subsequent lines. This yields

∑
i

1
di

∑
j,k

wijwik(u(j)− u(k))2

= 2
∑

i

∑
j

wij(u(j)− u(i))2 −
∑

i

2di

⎛
⎝ 1

di

∑
j

wij(u(j)− u(i))

⎞
⎠2

= 2
∑

i

∑
j

wij(u(j)− u(i))2 −
∑

i

2di(Δu(i))2.

Since u is an eigenfunction, Δu = λu for some eigenvalue λ, then, recalling
(2.17), we obtain

(8.2)
∑

i

1
di

∑
j,k

wijwik(u(j)− u(k))2 = 2λ(2− λ)
∑

i

diu(i)2.

Using (2.17) again, we can also reformulate this as

2− λ =

∑
i
1
di

∑
j,k wijwik(u(j)− u(k))2∑

i

∑
j wij(u(i)− u(j))2

.

�

We also observe, by a reasoning similar to the one for Lemma 8.1:

Lemma 8.2. Let u be an eigenfunction of Δ for the eigenvalue λ. Then,

(8.3) 2− λ =
2
∑

i

∑
k wik

(
1
di

∑
j wij(u(j)− u(k))

)2
∑

i

∑
j wij(u(j)− u(i))2

.

We now employ (8.1) to interpret 2− λN−1 as quantifying how much Γ
is locally different from being bipartite. Recall that this quantity is 0 iff Γ
happens to be bipartite. Note that (8.3) can also be used to estimate the
local difference from being bipartite in terms of 2− λN−1.

As discussed above, the (global) clustering coefficient C is not an appro-
priate measure for the difference 2− λN−1. For instance, in Section 7 we
constructed a graph whose largest eigenvalue is close to 2 although its clus-
tering coefficient is close to 1. However, we shall see that it is possible to
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control 2− λN−1 by the following local clustering measure

(8.4) C0 := min
e=(i,j)

αi + αj

2
,

where

αi :=

∑
j:e=(i,j)∈�wij

di

and e = (i, k) ∈ � (i ∈ �) denotes that the edge e = (i, k) (the vertex i) is
contained in some triangle. Hence, αi is the fraction of weights wij for fixed
i that are contained in some triangle. In particular, if i /∈ � then αi = 0.
Again, C0 = 0 for a bipartite and C0 = 1 for a complete graph. Furthermore,
we define

(8.5) W :=

⎛
⎝min

i∈�
min

k:e=(i,k)∈�

∑
l:(i,k,l)∈�

di

dl

wliwlk

wik

⎞
⎠1/2

and

(8.6) d := max
i∈�

di.

Theorem 8.1. The largest eigenvalue λN−1 of Δ can be controlled from
above by

(8.7) 2− 1
2d

C0

(
W

1 +W

)2
=: 2−H ≥ λN−1.

Proof. First we rewrite (8.1) for the largest eigenvalue λN−1 in the following
form:

2− λN−1 =

∑
e=(i,j)

(
1
di

∑
k μijwik(uN−1(j)− uN−1(k))2

+ 1
dj

∑
k μjiwjk(uN−1(i)− uN−1(k))2

)
∑

e=(i,j) μij(uN−1(i)− uN−1(j))2 + μji(uN−1(j)− uN−1(i))2

(8.8)

where again μij = wij if i 
= j and μij = 1
2wij if i = j. In order to control

2− λN−1 from below we need to match any term μij(uN−1(i)− uN−1(j))2 in
the denominator by some term in the numerator of comparable magnitude.
Since there is nothing to match if i = j we can use the weights wij instead of
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μij throughout the proof. For ease of notation we will drop the index N − 1
in the rest of the proof.

For simplicity, we first match the term wij(u(i)− u(j))2 in the denom-
inator with 1

di

∑
k wijwik(u(j)− u(k))2 in the numerator. Because of the

symmetry in i and j the second term in the numerator and denominator
can be treated in the same way.

Let K1(i) ⊂ V be the set of all neighbors k of i for which e = (i, k) ∈ �
and

(8.9) (u(j)− u(k))2 ≥ γ2ij(u(i)− u(j))2

is satisfied. The constant γij will be used later on to minimize our upper
bound for λN−1. Similarly, let K2(i) ⊂ V be the set of all neighbors k of i
which satisfy e = (i, k) ∈ � and

(8.10) (u(j)− u(k))2 < γ2ij(u(i)− u(j))2.

Clearly, ∑
k∈K1(i)∪K2(i)

wik =
∑

k:e=(i,k)∈�
wik = αidi.

If i /∈ � then αi = 0 and K1(i) = K2(i) = ∅. We distinguish the following
two cases:
(i) Assume that

∑
k∈K1(i)

wik ≥ αidi

2 is satisfied for vertex i. Consequently,
there exists a term

(8.11)
1
di

∑
k

wijwik(u(j)− u(k))2 ≥ αi

2
γ2ijwij(u(i)− u(j))2

in the numerator. Thus, the term wij(u(i)− u(j))2 in the numerator is
matched.
(ii) Now assume that

∑
k∈K2(i)

wik ≥ αidi

2 is satisfied for vertex i. We can
not directly match wij(u(i)− u(j))2 by using (8.10) because it could happen
that 1

di

∑
k wijwik(u(j)− u(k))2 = 0. However, Equation (8.10) can be used

to find a term of comparable size in the numerator. (8.10) implies that all
neighbors k of i in K2(i) satisfy

(8.12) (u(i)− u(k))2 > (1− γij)2(u(i)− u(j))2.
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Now the idea is to use the terms in the numerator several times in order to
match wij(u(i)− u(j))2. Multiplying the numerator in (8.1) by wij

yields

wij

∑
l

1
dl

∑
m,k

wlmwlk(u(m)− u(k))2

= wij

∑
l

1
dl

∑
k

wliwlk(u(i)− u(k))2

+ wij

∑
l

1
dl

∑
k,m �=i

wlmwlk(u(m)− u(k))2.(8.13)

Now, we will only use the first term on the r.h.s. The second term can be
used to match other terms in the denominator. The first term on the r.h.s.
of (8.13) yields:

wij

∑
l

1
dl

∑
k

wliwlk(u(i)− u(k))2

≥ wij

∑
l

1
dl

∑
k∈K2(i)

wliwlk(u(i)− u(k))2

= wij

∑
k∈K2(i)

∑
l:(i,k,l)∈�

1
dl

wliwlk(u(i)− u(k))2

> (1− γij)2wij(u(i)− u(j))2

⎛
⎝ ∑

k∈K2(i)

wik

⎞
⎠ min

k∈K2(i)

∑
l:(i,k,l)∈�

1
dl

wliwlk

wik

≥ (1− γij)2wij(u(i)− u(j))2
αi

2
min

k:e=(i,k)∈�

∑
l:(i,k,l)∈�

di

dl

wliwlk

wik︸ ︷︷ ︸
:=A(i)

.

Thus, wij(u(i)− u(j))2 is matched in the numerator. In order to match all
other terms of the form wip(u(i)− u(p))2 in the denominator for fixed i we
need to use the terms in the numerator at most

∑
p wip = di times. Note

that we can use the second term on the r.h.s. of (8.13) in order to match
other terms of the form wmp(u(m)− u(p))2 for m 
= i. If some vertex q is not
contained in a triangle we have αq = 0 and thus we do not need to match
the terms wqp(u(q)− u(p))2 for fixed q. We conclude that we used the terms
in the numerator at most maxi∈� di times. Owing to the symmetry in i and
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j the second term in the numerator (8.8) can be treated in the same way.
We obtain the following estimate:

2− λN−1 ≥ 1
2d

min
e=(i,j)

max
γij

min{aij , bij , cij , dij},

where

aij :=
αi + αj

2
γ2ij ,

bij :=
αi

2
γ2ij +

αj

2
W 2(1− γij)2,

cij :=
αi

2
W 2(1− γij)2 +

αj

2
γ2ij ,

dij :=
αi

2
W 2(1− γij)2 +

αj

2
W 2(1− γij)2,

and W 2 := mini∈�A(i).
Choosing γij = W

1+W yields

(8.14) 2− λN−1 ≥ 1
2d

C0

(
W

1 +W

)2
.

�

Remark. Similarly as the local clustering coefficient, the Olliver–Ricci cur-
vature on a graph [28] is related to the relative abundance of triangles. In [6]
it is shown that the largest eigenvalue of Δ can be controlled from above by
a lower bound for the Olliver–Ricci curvature on graphs.

With the scheme developed in this section, the control in the other direc-
tion, that is, estimating the largest eigenvalue from below, does not quite
work, because of the following example. Consider a graph with many cycles
of odd length, but all of them of length at least 5. Here, C0(Γ) = 0 as there
are no triangles, but 2− λN−1 
= 0 because the graph is not bipartite as
bipartite graphs can only have cycles of even length.

However, we can control the largest eigenvalue from below in a different
way, as we have seen in Section 3.
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9. Random walks on graphs and the convergence to
equilibrium

We have seen that neighborhood graphs are deeply related to random walks
on graphs. Hence, it is not surprising that the techniques developed in Sec-
tions 3 and 5 can be applied to random walks on graphs. We recall the
following theorem for the convergence of random walks on graphs [20].

Theorem 9.1. For any function f ∈ �2(V, μ), set

f =
1

vol(V )

∑
j

djf(j).

Then for any positive integer t, we have

(9.1) ‖P tf − f‖ ≤ ρt‖f‖,

where ρ = maxk �=0 |1− λk| = max{|1− λ1|, |1− λN−1|} is the spectral radius
of the transition probability operator of a random walk P and ‖f‖ =√
(f, f)μ. Consequently, if Γ is connected and not bipartite, then

‖P tf − f‖ → 0

as t →∞, i.e., P tf converges to a constant f as t→∞.

We define the equilibrium transition probability operator P : �2(V, μ)→
�2(V, μ) as

Pu(i) =
1

vol(V )

∑
j

dju(j).

For all functions f ∈ �2(V, μ) we have, Pf = f and thus, by (9.1), P t con-
verges to P as t →∞ (if Γ is not bipartite). As expected, the equilibrium
transition probability for going from i to j only depends on the degree of
vertex j (and the volume of the graph, i.e., the sum of all degrees). In addi-
tion, we define the equilibrium weighted adjacency operator as W := DP ,
where D : �2(V, μ)→ �2(V, μ) is the multiplication operator defined as

Du(i) = diu(i).

The adjacency operator of Γ[l] is given by W [l] = DP l. Hence, if Γ is not
bipartite, Γ[l] converges to the equilibrium graph Γ as l →∞ (in the sense
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that W [l] converges to W ). The equilibrium graphs of the families of graphs
studied in Examples 5.1 and 5.2 can be represented as

W =

⎛
⎜⎝
1 + c

2
1 + c

2
1 + c

2
1 + c

2

⎞
⎟⎠

and

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 a1 a2 a2 a1 a1
a1 a1 a2 a2 a1 a1
a2 a2 a3 a3 a2 a2
a2 a2 a3 a3 a2 a2
a1 a1 a2 a2 a1 a1
a1 a1 a2 a2 a1 a1

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where a1 = 4c2

12c+2 , a2 =
4c2+2c
12c+2 , and a3 = 4c2+4c+1

12c+2 .
If Γ is bipartite then Γ[l] does not converge as l →∞. This can for exam-

ple be seen from Lemma 5.2. For a bipartite graph Γ, Γ[l] is disconnected
and not bipartite whenever l is even and Γ[l] is connected and bipartite
whenever l is odd. However, for a bipartite graph Γ, the subsequence of
neighborhoods graphs Γ[l] for l even converges to Γleven as l →∞. The cor-
responding operator W l even can be represented as

W l even =
(

W 1 0
0 W 2

)
,

where (W k)ij =
2didj

vol(V ) =
didj

vol(Vk)
, for k = 1, 2, if i and j belong to the same

subset Vk and V1, V2 yields a bipartite decomposition of the vertex set V .
Thus, Γl even is the disjoint union of two complete graphs of size |V1| and
|V2|. Similarly, if Γ is bipartite, the subsequence Γ[l] for l odd converges
to Γl odd as l →∞. In this case, the corresponding operator W l odd can be
represented as

W l odd =
(
0 W 1

W 2 0

)
,

where (W k)ij =
2didj

vol(V ) , for k = 1, 2, if i and j belong to different subsets.
Thus, Γl odd is the complete bipartite graph that has same bipartite decom-
position V1, V2 of vertex set V as Γ.

From Theorem 9.1 we see that we need to control the spectral radius
ρ of the transition probability operator P . Our results in Sections 3 and 5
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allow us to control ρ in various different ways. For example, Corollary 5.1
implies that

ρ = max
k �=0

|1− λk| ≤ (1− h2[l])
1
2l , for all l even.

This gives us the following explicit estimates for Theorem 9.1:

Theorem 9.2.

‖P tf − f‖ ≤ (1− h2[l])
t

2l ‖f‖,

where we can use the Cheeger constant h[l] for any even l.

Remark. Instead of considering the convergence in the norm ‖f |‖ =√
(f, f)μ, as in (9.1), one could also study stronger notions of convergence,

e.g., the relative pointwise distance [33] or other measures of convergence as
the mixing time [20, 33]. All these quantities can be bounded from above
in terms of the spectral radius of the transition probability operator P .
Thus, the techniques developed in Sections 3 and 5 yield explicit bounds
for the convergence of a random walk measured by any of these notions of
convergence.

10. Synchronization in coupled map lattices

In this section, we present another application of our eigenvalue estimates.
We consider a coupled map lattice supported by a graph Γ, that is, a

dynamical system updated at discrete times t ∈ N and of the form

(10.1) xi(t+ 1) = f(xi(t)) +
ε

di

∑
j

wij(f(xj(t))− f(xi(t)))),

where ε ≥ 0 is the overall coupling strength and wij is the strength of the
interaction between unit i and unit j. It was discovered by Kaneko [22] that
the system (10.1) can (asymptotically) synchronize, i.e., |xi(t)− xj(t)| → 0
for t →∞ and all i, j, even if the function f displays chaotic behavior, i.e.,
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its Lyapunov exponent μ(f) satisfies2

(10.2) μ(f) = lim
T→∞

1
T

T−1∑
t=0

ln |f ′(s(t))| > 0.

Here s(t) is a synchronous solution, i.e., xi(t) = s(t) for all i.
More precisely, system (10.1) synchronizes under suitable conditions that

will depend on μ(f), ε, and the properties of Γ. In particular, we have the fol-
lowing criterion for the asymptotic stability of a synchronized state (which,
when fulfilled, implies that (10.1) will asymptotically synchronize when its
initial values are sufficiently close to that state).

Theorem 10.1 [21]. A synchronized state s(t) of the coupled map lattice
(10.1) is asymptotically stable if

(10.3)
1− e−μ(f)

λ1
< ε <

1 + e−μ(f)

λN−1
.

Thus, there exists a range of values of ε for which we have asymptotic sta-
bility if

(10.4)
λN−1
λ1

<
eμ(f) + 1
eμ(f) − 1

and μ(f) > 0

or

(10.5)
λN−1
λ1

>
eμ(f) + 1
eμ(f) − 1

and μ(f) < 0.

The non-trivial case here is, of course, the one where μ(f) > 0.

Thus, we can determine conditions under which system (10.1) synchro-
nizes.

The main point of Theorem 10.1 is that the graph in question should
be sufficiently different from both a disconnected graph (as characterized by
λ1 = 0) and a bipartite one (as characterized by λn−1 = 2). A disconnected
graph cannot synchronize dynamics because its components do not interact.

2If f preserves a “reasonable” good measure, then the Lyapunov exponent does
not depend on the initial value s(0) and a positive Lyapunov exponent implies
positive topological entropy, which is usually used in the mathematical literature
to characterize chaotic behavior [30]. In the following, we assume that f preserves
such a reasonable measure.
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Dynamics on a bipartite graph need not synchronize because the two classes
can exchange their states every other period, that is, the bipartite graph can
sustain non-synchronized period 2 oscillations. For a more general framework
for synchronization of coupled dynamics, see [5].

In order to apply Theorem 10.1, we need to control the ratio λN−1

λ1
. So

far, only suitable bounds, in terms of graph invariants, where known for λ1.
Using our estimates for the largest eigenvalue λN−1, we can now control the
ratio λN−1

λ1
in an appropriate way. In particular, the our results imply:

Corollary 10.1. For every graph we have:

h

h
≤ λN−1

λ1

(10.6)

≤
min

[
minl∈N, even 1 + (1− h[l]2)

1
2l ,minl∈N, odd 1 + (1− (1− h[l])2)

1
2l

]
maxl∈N

(
1− (1− h[l]2)

1
2l

)
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