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Displacement convexity of generalized relative

entropies. II

Shin-Ichi Ohta and Asuka Takatsu

We introduce a class of generalized relative entropies (inspired by
the Bregman divergence in information theory) on the Wasserstein
space over a weighted Riemannian or Finsler manifold. We prove
that the convexity of all the entropies in this class is equivalent
to the combination of the non-negative weighted Ricci curvature
and the convexity of another weight function used in the definition
of the generalized relative entropies. This convexity condition cor-
responds to Lott and Villani’s version of the curvature-dimension
condition. As applications, we obtain appropriate variants of the
Talagrand, HWI and logarithmic Sobolev inequalities, as well as
the concentration of measures. We also investigate the gradient
flow of our generalized relative entropy.
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1. Introduction

This is a continuation of our work [51] on the displacement convexity of gen-
eralized entropies and its applications. We consider more general entropies
than [51] and generalize most results in appropriate ways. Some of our obser-
vation shall shed new light on [51].

It has been known since the celebrated work of McCann [38] that the
convexity of an energy (entropy) functional along geodesics in the Wasser-
stein space plays a vital role in the study of the existence and the uniqueness
of a ground state (a minimizer of the energy). Here the (quadratic) Wasser-
stein space over a complete separable metric space (X, d) is the space P2(X)
of Borel probability measures on X having finite second moments, endowed
with the Wasserstein distance function W2 derived from the Monge–
Kantorovich mass transport problem (see Section 2.2). We say that a func-
tional S on P2(X) is displacement K-convex for K ∈ R (HessS ≥ K for
short) if any pair μ0, μ1 ∈ P2(X) can be joined by a minimal geodesic
(μt)t∈[0,1] in (P2(X),W2) such that

S(μt) ≤ (1− t)S(μ0) + tS(μ1)−
K

2
(1− t)tW2(μ0, μ1)2

holds for all t ∈ [0, 1]. As usual, the displacement 0-convexity may be simply
called the displacement convexity. The word “displacement” is inserted for
avoiding a possible confusion with the convexity along the linear interpo-
lation S((1− t)μ0 + tμ1) ≤ (1− t)S(μ0) + tS(μ1). Since we deal with only
the displacement convexity, we may sometimes omit “displacement.”

As any geodesic in the Wasserstein space is written as the transport
along geodesics in the underlying metric space, the displacement convexity
of an energy functional can be derived from the convexity of its generat-
ing function. For instance, let SΨu be the free energy functional on P2(Rn)
consisting of the internal energy and the potential energy as

SΨu (μ) :=
∫

Rn

u

(
dμ

dLn

)
dLn +

∫
Rn

Ψ dμ
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for absolutely continuous probability measures μ on R
n with respect to the

Lebesgue measure Ln, where the energy density u is a function on R and the
potential Ψ is a function on R

n. Then SΨu is strictly displacement convex if u
is convex (and satisfies certain additional conditions to be precise, see Defi-
nition 3.1) and Ψ is strictly convex, and the unique ground state ν := σLn

satisfies u′(σ) = −Ψ+ λ with a normalizing constant λ. We mention that
the uniqueness is measured at the level of the energy functional, that is, we
have SΨu (μ)− SΨu (ν) ≥ 0 and equality holds if and only if μ = ν. Moreover,
the displacement convexity of the free energy SΨu is a crucial tool also in the
investigation of the asymptotic behavior of the solution to the associated
evolution equation

∂ρ

∂t
= div

(
ρ∇[u′(ρ)] + ρ∇Ψ

)
by regarding it as the gradient flow of SΨu in the Wasserstein space (see [5,
14, 15, 30] among others). In particular, the heat flow is regarded as the
gradient flow of the relative entropy (with respect to the Lebesgue measure)

EntLn(μ) :=
∫

Rn

dμ

dLn
ln
(
dμ

dLn

)
dLn,

which is also called the Kullback–Leibler divergence in information theory.
On curved spaces such as Riemannian manifolds, the displacement con-

vexity of energy functionals is related to the curvature of the underlying
space, that is a crucial difference from the convexity along linear interpo-
lations (1− t)μ0 + tμ1. On a Riemannian manifold equipped with the Rie-
mannian volume measure volg, the relative entropy is similarly defined by

Entvolg(μ) :=
∫

M

dμ

dvolg
ln
(

dμ

dvolg

)
dvolg .

It has been shown by von Renesse and Sturm [58] (inspired by [20, 53]) that
for any K ∈ R the following are mutually equivalent:

• The relative entropy Entvolg is K-convex on (P2(M),W2).

• The Ricci curvature is bounded from below by K in the sense that
Ricg(v,v) ≥ K〈v,v〉 for all v ∈ TM .

• The heat flow isK-contractive, i.e.,W2(μt, μ̃t) ≤ e−KtW2(μ0, μ̃0) holds
for all t ≥ 0 and for any weak solutions (ρt)t≥0, (ρ̃t)t≥0 to the heat
equation ∂ρ/∂t = Δρ such that μt := ρt volg, μ̃t := ρ̃t volg ∈ P2(M).
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See also [5, 7, 44, 59] and [69, Chapter 23] for the connection between the
K-convexity of the functional and theK-contraction property of its gradient
flow.

The displacementK-convexity of Entvolg (Hess Entvolg ≥ K) is called the
curvature-dimension condition CD(K,∞) after Bakry and Émery’s pioneer-
ing work [9]. One remarkable point of CD(K,∞) is that it can be formu-
lated on general metric measure spaces without any differentiable (manifold)
structure. Such metric measure spaces with Ricci curvature bounded below
are independently investigated by Sturm [62] and Lott and Villani [35],
and known to enjoy several properties common to Riemannian manifolds of
Ricg ≥ K. For example, as was indicated by Otto and Villani [53], CD(K,∞)
with K > 0 implies various functional inequalities such as the Talagrand
inequality, the HWI inequality, the logarithmic Sobolev inequality and the
global Poincaré inequality [35, Section 6].

The curvature-dimension condition CD(K,∞) is generalized to CD
(K,N) for each K ∈ R and N ∈ (1,∞]. On an n-dimensional complete con-
nected Riemannian manifold (M, g) of n ≥ 2 equipped with a weighted mea-
sure ω = e−f volg with f ∈ C∞(M), the condition CD(K,N) is known to
be equivalent to the lower bound of the N -Ricci curvature RicN (v,v) ≥
K〈v,v〉 ([34, 35, 61, 63], see Definition 2.1 for the definition of RicN ). In
particular, an unweighted Riemannian manifold (M, volg) satisfies CD(K,N)
if and only if its Ricci curvature is bounded below by K and its dimension is
bounded above by N . We remark that Sturm’s and Lott and Villani’s def-
initions of the curvature-dimension condition are slightly different, though
they are equivalent on non-branching spaces such as Riemannian or Finsler
manifolds. In both cases it is a certain convexity condition of a class of
entropies, and Lott and Villani’s class is larger than Sturm’s one.

On non-branching metric measure spaces, the condition CD(0, N) for
N ∈ [n,∞) is equivalent to the displacement convexity of the Rényi entropy

SN (μ) := −
∫

M

(
dμ

dω

)(N−1)/N
dω.

For K 	= 0, however, CD(K,N) is not simply the displacement K-convexity
of SN . In fact, it was shown in [61] (see also [51, Theorem 4.1, Remark 4.3(2)]
and [8]) that, on a weighted Riemannian manifold (M,ω), HessSN ≥ K can
hold only for K ≤ 0 and is equivalent to RicN ≥ 0 regardless of the value of
K ≤ 0. It was also observed in [61, Theorem 1.7] for unweighted Riemannian
manifolds that there are some functionals whose displacement K-convexity
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characterizes the combination of Ric ≥ K and dim ≤ N , whereas it is unclear
if there are any applications of these entropies.

In our previous work [51], we introduced the m-relative entropy Hm for
the parameter m ∈ [(n− 1)/n, 1) ∪ (1,∞) inspired by the Bregman diver-
gence in information theory/geometry (see [3, 4]) as well as the Tsallis
entropy in statistical mechanics (see [66, 67]). We fix a reference measure
ν = expm(−Ψ)ω on a weighted Riemannian manifold (M,ω) involving the
m-exponential function

expm(t) := max{1 + (m− 1)t, 0}1/(m−1),

then the m-relative entropy of an absolutely continuous measure μ ∈ P2(M)
with respect to ν is given by (up to an additive constant)

Hm(μ) :=
1

m(m− 1)

∫
M

{(
dμ

dω

)m

−mdμ

dω

(
dν

dω

)m−1}
dω.

This includes the relative and Rényi entropies as special cases in the sense
that limm→1Hm(μ) = Entν(μ)− 1 and that Hm(μ) = N{m−1SN (μ) + 1}
with N = 1/(1−m) if Ψ ≡ 0 (i.e., ν = ω).

Then the displacement K-convexity of Hm is equivalent to the combina-
tion of RicN ≥ 0 (of (M,ω)) and HessΨ ≥ K [51, Theorem 4.1]. We stress
that N becomes negative for m > 1, then RicN is defined in the same form
as the case of N ∈ (n,∞) (see Definition 2.1). Similarly to CD(K,∞), we
can derive from HessHm ≥ K > 0 the associated functional inequalities (see
also [1, 19, 64] for related works) and the concentration of measures (in terms
of expm). Furthermore, the gradient flow of Hm produces weak solutions to
the fast diffusion equation (m < 1) or the porous medium equation (m > 1)
with drift of the form

∂ρ

∂t
= divω

(
1
m
∇(ρm) + ρ∇Ψ

)
,

where divω is the divergence of (M,ω) (see also [52], [69, Theorem 23.19]).
We remark that Sturm [61] studied a more general class of entropies on
unweighted Riemannian manifolds, where RicN = Ric for all N . Compared
to it, [51] gave a detailed investigation of a concrete class of entropies,
on more general weighted Riemannian manifolds (by choosing appropriate
parameters N).

In this paper, we introduce the more general class of entropies, called
the ϕ-relative entropies Hϕ, again inspired by information theory/geometry.
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Here ϕ : (0,∞) −→ (0,∞) is a non-decreasing, positive, continuous function.
Roughly speaking, our new class corresponds to Lott and Villani’s class of
entropies in their definition of the curvature-dimension condition, while the
m-relative entropies in [51] correspond to Sturm’s class. The definition ofHϕ

(see Definition 5.3 for details) involves ν = expϕ(−Ψ) with the ϕ-exponential
function expϕ which is the inverse function of the ϕ-logarithmic function
lnϕ(t) :=

∫ t
1 ϕ(s)

−1 ds. We recover expm and Hm from ϕ(s) = s2−m.
Our first main theorem (Theorem 5.7) asserts that HessHm ≥ K is

equivalent to HessHϕ ≥ K for all ϕ’s in a certain class. This actually corre-
sponds to the equivalence between Sturm’s and Lott and Villani’s curvature-
dimension conditions on weighted Riemannian manifolds. This reveals that
Hm is an extremal element among Hϕ’s in the appropriate class, see [65] for
a related work. Similarly to Hm, we can derive from HessHϕ ≥ K > 0 the
variants of the Talagrand, HWI, logarithmic Sobolev, and global Poincaré
inequalities (Theorem 6.3) as well as the concentration of measures in terms
of expm for some m = m(ϕ) (Theorem 7.9). Moreover, the gradient flow of
Hϕ in (P2(M),W2) produces weak solutions to the ϕ-heat equation (Theo-
rems 8.7, 9.7)

∂ρ

∂t
= divω

(
ρ∇ρ
ϕ(ρ)

+ ρ∇Ψ
)
.

The article is organized as follows: We first review the basic notions
of weighted Riemannian geometry, Wasserstein geometry and information
geometry in Section 2. Then, after preparing necessary notions in Sec-
tions 3 and 4, we define Hϕ and study its displacement convexity in Sec-
tion 5. Section 6 is devoted to the functional inequalities and Section 7 is
concerned with the concentration of measures. The gradient flow of Hϕ is
studied in Sections 8 and 9 in the compact and non-compact cases, respec-
tively. We extend most results to Finsler manifolds in Section 10. Finally
in Appendix, we compare our concentration of measures derived from the
generalized Talagrand inequality with the Herbst-type argument deriving
the concentration from the uϕ-entropy inequality, which is a generalization
of the logarithmic Sobolev inequality different from ours.

2. Preliminaries

2.1. Weighted Riemannian manifolds

Throughout the article except Section 10, (M, g) will be an n-dimensional
complete connected Riemannian manifold without boundary. As we are
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interested in the role of the curvature, we will always assume n ≥ 2. Denote
by dg and volg the Riemannian distance function and the Riemannian vol-
ume measure of (M, g). We fix an arbitrary measure

ω = e−f volg, f ∈ C∞(M),

as our base measure. To control the behavior of ω, we modify the Ricci
curvature Ricg of (M, g) as follows.

Definition 2.1 (Weighted Ricci curvature). ForN ∈ (−∞, 0) ∪ [n,∞],
we define the N -Ricci curvature tensor of (M,ω) by

RicN :=

⎧⎪⎪⎨⎪⎪⎩
Ricg +Hessg f if N =∞,
Ricg +Hessg f −

Df ⊗Df
N − n if N ∈ (−∞, 0) ∪ (n,∞),

Ricg +Hessg f −∞ · (Df ⊗Df) if N = n,

where by convention ∞ · 0 = 0.

We set RicN (v) := RicN (v,v) and will say that RicN ≥ K holds for
some K ∈ R if RicN (v) ≥ K〈v,v〉 for every v ∈ TM .

Remark 2.2. The tensor RicN was usually considered only for N ∈ [n,∞],
and then the monotonicity RicN (v) ≤ RicN ′(v) for N < N ′ clearly holds.
Note that Ric∞ is the famous Bakry–Émery tensor and RicN for N ∈ (n,∞)
was introduced by Qian (see [9, 33, 56] as well). Extending the range of N
to (−∞, 0) ∪ [n,∞] violates the above monotonicity in N , however, observe
that RicN is non-decreasing in the parameter

m := 1− 1
N
∈
[
1− 1

n
,∞

)
, where m := 1 if N =∞.

This observation will be helpful for understanding the validity of Theo-
rem 5.7 below.

Note that, if (M,ω) satisfies RicN ≥ K for some K ∈ R and N ∈ [n,∞),
then it behaves like a Riemannian manifold with dimension bounded above
by N and Ricci curvature bounded below by K (see [33, 56], as well as [34,
35, 62, 63], [69, Part III] related to the curvature-dimension condition). For
example, the following area growth inequality of Bishop type (numerically
extended to non-integer N ’s) holds. Denote by areaω[S(x0, r)] the area of
the sphere S(x0, r) := {x ∈M | dg(x0, x) = r} with respect to ω.
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Theorem 2.3 [56], [63, Theorem 2.3]. If (M,ω) satisfies RicN ≥ 0 for
some N ∈ [n,∞), then

areaω[S(x0, R)] ≤ areaω[S(x0, r)] ·
(
R

r

)N−1

holds for any 0 < r < R and x0 ∈M .

For N =∞, we have the following global estimate.

Theorem 2.4 [69, Theorem 18.12]. Under the non-negativity of Ric∞
of (M,ω), ∫

M
exp

(
−λdg(x0, x)2

)
dω(x) <∞

holds for any λ > 0 and x0 ∈M .

Though Theorems 2.3 and 2.4 are generalized to RicN ≥ K for K 	= 0,
we will need only the above special cases.

2.2. Wasserstein geometry

Let us recall some basic notions and facts in optimal transport theory and
Wasserstein geometry. See [5, 68, 69] for details and more information.

Let (X, d) be a metric space. A rectifiable curve γ : [0, 1] −→ X is called
a geodesic if it is locally minimizing and has a constant speed. We say that
γ is a minimal geodesic if it is globally minimizing, namely d(γ(s), γ(t)) =
|s− t|d(γ(0), γ(1)) holds for all s, t ∈ [0, 1]. A subset Y of X is said to be
totally convex if, for any x, y ∈ Y , any minimal geodesic in X from x to y
is contained in Y .

For a complete Riemannian manifold (M, g), let P(M) be the set of all
Borel probability measures on M . Given μ ∈ P(M) and a measurable map
T :M −→M , the push forward measure T�μ of μ through T is defined by
T�μ[B] := μ[T −1(B)] for all Borel sets B ⊂M . For each p ∈ [1,∞), denote
by Pp(M) ⊂ P(M) the subset consisting of measures μ of finite pth
moments, that is,

∫
M dg(x0, x)p dμ(x) <∞ for some (and hence all) x0 ∈M .

For μ, ν ∈ P(M), a probability measure π ∈ P(M ×M) is called a cou-
pling of μ and ν if its projections are μ and ν, namely π[B ×M ] = μ[B]
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and π[M ×B] = ν[B] hold for any Borel set B ⊂M . We define the Lp-
Wasserstein distance between μ, ν ∈ Pp(M) by

Wp(μ, ν) := inf
{(∫

M×M
dg(x, y)p dπ(x, y)

)1/p ∣∣∣∣ π: couplings of μ and ν}.
A coupling π is said to be optimal if it attains the infimum above. The
function Wp is indeed a distance function on Pp(M). The metric space
(Pp(M),Wp) is complete, separable and called the Lp-Wasserstein space
overM . TheWasserstein space inherits several properties ofM . For instance,
ifM is compact, then (Pp(M),Wp) is also compact and the topology induced
from Wp coincides with the weak topology. We will mainly consider the
quadratic case p = 2, and then we omit “L2-” and simply call W2 and
(P2(M),W2) the Wasserstein distance function and the Wasserstein space.

In view of optimal transport theory, W2(μ0, μ1)2 is regarded as the least
cost of transporting μ0 to μ1, where the cost of transporting a unit mass from
x to y is dg(x, y)2. A minimal geodesic (μt)t∈[0,1] with respect to W2 is then
also called the optimal transport from μ0 to μ1, and it can be described
by using a family of minimal geodesics in the underlying space M . We
denote by Γ(M) the set of all minimal geodesics γ : [0, 1] −→M endowed
with the uniform topology induced from the distance function dΓ(M)(γ, η) :=
supt∈[0,1] dg(γ(t), η(t)). For t ∈ [0, 1], the evaluation map evt : Γ(M) −→M
is defined by evt(γ) := γ(t), which is clearly 1-Lipschitz.

Proposition 2.5 [35, Proposition 2.10], [69, Corollary 7.22]. Given
any minimal geodesic (μt)t∈[0,1] ⊂ P2(M), there exists Π ∈ P(Γ(M)) such
that (evt)�Π = μt for all t ∈ [0, 1] and that (ev0× ev1)�Π is an optimal cou-
pling of μ0 and μ1.

In particular, for any totally convex set X of (M,dg), P2(X) is also
totally convex in (P2(M),W2).

If one of μ0 and μ1 is absolutely continuous with respect to volg, then
a more precise description of a minimal geodesic (μt)t∈[0,1] is obtained via
the gradient vector field of a locally semi-convex function φ (i.e., every point
x ∈M admits a neighborhood on which φ is K-convex in the weak sense
for some K ∈ R, see Definition 4.1). For a measure ν on M , we denote
by Pac(M,ν) ⊂ P(M) the subset of absolutely continuous measures with
respect to ν. We also set P2ac(M,ν) := P2(M) ∩ Pac(M,ν).

Theorem 2.6 [24, Theorem 1]. Given any μ0 ∈ P2ac(M, volg) and μ1 ∈
P2(M), there exists a locally semi-convex function φ : Ω −→ R on an open
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set Ω ⊂M with μ0[Ω] = 1 such that the map Tt(x) := expx(t∇φ(x)), t ∈
[0, 1], provides a unique minimal geodesic from μ0 to μ1. To be precise,
(T0 × T1)�μ0 is a unique optimal coupling of μ0 and μ1, and μt := (Tt)�μ0 is
a unique minimal geodesic from μ0 to μ1 with respect to W2.

If M is compact, then the above theorem is due to McCann’s celebrated
work [39] and we can take as the potential function −φ a c-concave func-
tion for the cost c(x, y) = dg(x, y)2/2. (We do not give the definition of the
c-concave function, what we need is only the fact that c-concave functions
are locally semi-concave.) A locally semi-convex function is locally Lipschitz
and twice differentiable almost everywhere by the Alexandrov–Bangert the-
orem. Thus Tt is differentiable μ0-a.e. and the following Jacobian (or Monge–
Amperè) equation holds.

Theorem 2.7 [69, Theorems 8.7, 11.1]. Under the same assumptions
as Theorem 2.6 above, we have μt ∈ P2ac(M, volg) for all t ∈ [0, 1). Moreover,
by putting

ρtω := μt = (Tt)�μ, Jω
t (x) := ef(x)−f(Tt(x)) det

(
DTt(x)

)
,

we have ρt(Tt(x))Jω
t (x) = ρ0(x) and Jω

t (x) > 0 for all t ∈ [0, 1) at μ0-a.e.
x ∈ Ω. In the case of ν ∈ P2ac(M, volg), the above assertions hold also at
t = 1.

Note that Jω
t should be understood as the Jacobian with respect to ω,

and its behavior is naturally controlled by the weighted Ricci curvature.
This is a fundamental geometric intuition behind the curvature-dimension
condition (see Section 5).

2.3. Information geometry

We briefly summarize some notions in information geometry associated with
a non-decreasing, positive, continuous function ϕ : (0,∞) −→ (0,∞). We
refer to [41, 42] for further discussion.

We define the ϕ-logarithmic function on (0,∞) by

lnϕ(t) :=
∫ t

1

1
ϕ(s)

ds,
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which is clearly strictly increasing. We will denote by lϕ and Lϕ the infimum
and the supremum of lnϕ, that is,

lϕ := inf
t>0

lnϕ(t) = lim
t↓0

lnϕ(t) ∈ [−∞, 0),

Lϕ := sup
t>0

lnϕ(t) = lim
t↑∞

lnϕ(t) ∈ (0,∞].

The inverse function of lnϕ is called the ϕ-exponential function. We extend
it to the function on R as

expϕ(τ) :=

⎧⎪⎨⎪⎩
0 if τ ≤ lϕ,

ln−1ϕ (τ) if τ ∈ (lϕ, Lϕ) ,
∞ if τ ≥ Lϕ.

We also introduce the strictly convex function

uϕ(r) :=
∫ r

0
lnϕ(t) dt, r ∈ [0,∞),

provided that it is well defined (i.e., lnϕ is integrable on (0, 1)).

Lemma 2.8. The function uϕ is well-defined if

(2.1) inf
{
δ ∈ R

∣∣∣∣ s1+δ

ϕ(s)
is bounded on (0, 1)

}
< 1.

Proof. As ϕ is positive and non-decreasing, it suffices to see uϕ(1) > −∞.
We deduce from the hypothesis that s/ϕ(s) is integrable on (0, 1). This
shows the claim since

uϕ(1) = −
∫ 1

0

∫ 1

t

1
ϕ(s)

ds dt = −
∫ 1

0

s

ϕ(s)
ds > −∞.

�

Entropy is a function measuring the uncertainty of an event, and the
divergence in information theory is a quantity expressing the difference
between a pair of probability measures. In this spirit, the ϕ-entropy for
ρω ∈ Pac(M,ω) is defined by

Eϕ(ρω) := −
∫

M
uϕ(ρ) dω
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(provided that it is well-defined). Then we define the Bregman divergence
between ρω, σω ∈ Pac(M,ω) by

(2.2) Dϕ(ρω|σω) :=
∫

M

{
uϕ(ρ)− uϕ(σ)− u′ϕ(σ)(ρ− σ)

}
dω.

The strict convexity of uϕ guarantees Dϕ(ρω|σω) > 0 unless ρ = σ ω-a.e.
Furthermore, the square root of the divergence Dϕ satisfies a generalized
Pythagorean theorem (see [43, Proposition 3]) and hence it can be regarded
as a kind of distance function, though it is not symmetric (i.e.,Dϕ(ρω|σω) 	=
Dϕ(σω|ρω) in general).

We define three more quantities measuring the order of ϕ for later use:

θϕ := sup

{
s

ϕ(s)
· lim sup

t↓0

ϕ(s+ t)− ϕ(s)
t

∣∣∣∣ s > 0

}
∈ [0,∞],(2.3)

δϕ := inf

{
s

ϕ(s)
· lim sup

t↓0

ϕ(s+ t)− ϕ(s)
t

∣∣∣∣ s > 0

}
∈ [0,∞),(2.4)

Nϕ :=

{
(θϕ − 1)−1 if θϕ 	= 1,
∞ if θϕ = 1.

(2.5)

The following lemma will be useful.

Lemma 2.9. The function sδϕ/ϕ(s) is non-increasing in s ∈ (0,∞). More-
over, if θϕ is finite, then the function sθϕ/ϕ(s) is non-decreasing in s ∈
(0,∞).

Proof. Assume θϕ <∞ (which will not play any role in the discussion on
δϕ), and fix s > 0 and small ε > 0. By the definitions of θϕ and δϕ, there
exists rε(s) > 0 such that

δϕ ≤
s

ϕ(s)
· sup

t∈(0,rε(s)]

ϕ(s+ t)− ϕ(s)
t

≤ θϕ +
ε

2
.

Consider the functions

h+(τ) := θϕ +
ε

2
− (1 + τ)θϕ+ε − 1

τ
, h−(τ) := δϕ −

(1 + τ)δϕ−ε − 1
τ

for τ > 0. Since h+ and h− are continuous and satisfy

lim
τ↓0

h+(τ) = θϕ +
ε

2
− (θϕ + ε) < 0, lim

τ↓0
h−(τ) = δϕ − (δϕ − ε) > 0,
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there exists τε > 0 such that we have h+(τ) < 0 and h−(τ) > 0 for all τ ∈
(0, τε).

Given any t ∈ (0,min{rε(s), sτε}), we have

sθϕ+ε

ϕ(s)
− (s+ t)θϕ+ε

ϕ(s+ t)

=
tsθϕ+ε−1

ϕ(s+ t)

{
s

ϕ(s)
ϕ(s+ t)− ϕ(s)

t
−
(
1 + ts−1

)θϕ+ε − 1
ts−1

}

≤ tsθϕ+ε−1

ϕ(s+ t)
h+(ts−1) < 0.

As s > 0 was arbitrary, this shows that sθϕ+ε/ϕ(s) is strictly increasing in
s > 0. We similarly obtain

sδϕ−ε

ϕ(s)
− (s+ t)δϕ−ε

ϕ(s+ t)
≥ tsδϕ−ε−1

ϕ(s+ t)
h−(ts−1) > 0,

so that sδϕ−ε/ϕ(s) is strictly decreasing. Letting ε ↓ 0, we complete the
proof. �

Remark 2.10. The function ϕ will be sometimes normalized so as to satisfy
ϕ(1) = 1. This costs no generality as we easily see the following relations for
any a > 0:

lnaϕ(t) = a−1 lnϕ(t), expaϕ(τ) = expϕ(aτ), uaϕ(r) = a−1uϕ(r),

laϕ(τ) = a−1lϕ, Laϕ = a−1Lϕ, θaϕ = θϕ, δaϕ = δϕ, Naϕ = Nϕ.

2.4. Information geometry continued: the case of ϕm(s) = s2−m

In [51], we considered the power function ϕm(s) := s2−m for m ∈ (0, 2] and
the corresponding m-logarithmic and m-exponential functions. (We have
actually considered m ∈ [(n− 1)/n,∞) in [51], but ϕm is non-decreasing
only when m ≤ 2.) We summarize several facts in this especially important
case. For brevity, we set

�m := lnϕm
, em := expϕm

, lm := lϕm
, Lm := Lϕm

, θm := θϕm
, Nm := Nϕm

.

(A) In the case of ϕ1(s) = s, �1 and e1 coincide with the usual logarithmic
and exponential functions, respectively. Thus, we find l1 = −∞ and L1 =∞.
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We can easily observe θ1 = 1 and N1 =∞ as well. For ρω, σω ∈ Pac(M,ω),
we deduce from uϕ1(r) = r ln r − r that

Eϕ1(ρω) = −
∫

M
ρ ln ρ dω + 1, Dϕ1(ρω|σω) =

∫
M
ρ ln

ρ

σ
dω.

Namely Eϕ1 is the Boltzmann entropy up to adding 1, and Dϕ1 is the
Kullback–Leibler divergence. By choosing σ ≡ 1 formally in the definition of
Dϕ1(ρω|σω), the relative entropy of μ ∈ P2(M) with respect to ω is defined
by

(2.6) Entω(μ) :=

⎧⎨⎩limε↓0
∫
{ρ≥ε}

ρ ln ρ dω, if μ = ρω ∈ P2ac(M,ω),

∞ otherwise.

In other words, the relative entropy is “(−1)× the Boltzmann entropy.”
(B) For ϕm(s) = s2−m with m ∈ (0, 1) ∪ (1, 2], �m and em are given by

power functions as

�m(t) =
tm−1 − 1
m− 1

, em(τ) = [1 + (m− 1)τ ]1/(m−1)+ ,

where we set [t]+ := max{t, 0} and by convention 0a :=∞ for a < 0. Observe

(2.7) lm =

⎧⎨⎩−∞ if m < 1,

− 1
m− 1

if m > 1,
Lm =

⎧⎨⎩
1

1−m if m < 1,

∞ if m > 1,

θm = 2−m andNm = (1−m)−1. As uϕm
(r) = (rm −mr)/{m(m− 1)}, the

ϕm-entropy for ρω ∈ Pac(M,ω) is given by

Eϕm
(ρω) = −

∫
M

ρm

m(m− 1)
dω +

1
m− 1

.

Up to additive and multiplicative constants, this entropy coincides with the
Rényi(–Tsallis) entropy

(2.8) SN (ρω) := −
∫

M
ρ(N−1)/N dω

with N = Nm, which is applied to complex (strongly correlated) systems.
The Bregman divergence between ρω, σω ∈ Pac(M,ω) is given by

Dϕm
(ρω|σω) = 1

m(m− 1)

∫
M

[
(ρm − σm)−mσm−1(ρ− σ)

]
dω.
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This coincides with the β-divergence, whose strength is its robustness. For
instance, we refer to [40] for the roles and the differences of statistical diver-
gences including the Bregman divergences. Note that as m→ 1 we have
�m(t)→ �1(t), em(τ)→ e1(t), Eϕm

(ρω)→ Eϕ1(ρω) and Dϕm
(ρω|σω)→

Dϕ1(ρω|σω).
The function ϕm = s2−m is an extremal element among those ϕ’s satis-

fying θϕ = 2−m in several respects, as one can see in the next useful lemma
for instance.

Lemma 2.11. Assume θϕ < 2 and put m = 2− θϕ. Then for any t > 0 and
r ∈ R we have

1
ϕ(1)

�m(t) ≤ lnϕ(t) ≤
tθϕ

ϕ(t)
�m(t),(2.9)

expϕ(r) ≤ em
(
ϕ(1)r

)
.(2.10)

Proof. It follows from Lemma 2.9 that, for any t > 0,

1
ϕ(1)

∫ t

1
s−θϕ ds ≤

∫ t

1

1
ϕ(s)

ds ≤ tθϕ

ϕ(t)

∫ t

1
s−θϕ ds.

This is exactly (2.9) since θϕ = 2−m.
As for (2.10), the assertion for r ≤ lϕ is trivial since expϕ(r) = 0 by

definition. If r ≥ Lϕ, then we deduce from (2.9) that ϕ(1)r ≥ ϕ(1)Lϕ ≥ Lm,
which shows em(ϕ(1)r) =∞. We therefore assume lϕ < r < Lϕ and set t :=
expϕ(r) > 0. Then, we obtain again from (2.9) that

expϕ(r) = t = em
(
�m(t)

)
≤ em

(
ϕ(1) lnϕ(t)

)
= em

(
ϕ(1)r

)
.

�

Taking the limits as t ↓ 0 or t ↑ ∞ in (2.9), we obtain from (2.7) the
following.

Lemma 2.12. Suppose θϕ < 2.

(i) If θϕ < 1, then lϕ > −∞ (equivalently, if lϕ = −∞, then θϕ ≥ 1).

(ii) If θϕ ≤ 1, then Lϕ =∞ (equivalently, if Lϕ <∞, then θϕ > 1).

We similarly find the corresponding estimates concerning δϕ. Note that
δϕm

= θm = 2−m.
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Lemma 2.13. Assume δϕ < 2 and put m = 2− δϕ. Then for any t > 0 and
r ∈ R we have

tδϕ

ϕ(t)
�m(t) ≤ lnϕ(t) ≤

1
ϕ(1)

�m(t), expϕ(r) ≥ em
(
ϕ(1)r

)
.

In particular,

(i) If δϕ > 1, then Lϕ <∞ (equivalently, if Lϕ =∞, then δϕ ≤ 1).

(ii) If δϕ ≥ 1, then lϕ = −∞ (equivalently, if lϕ > −∞, then δϕ < 1).

3. Displacement convexity classes DCN

In this section, we introduce the important classes of convex functions. These
classes were first considered by McCann [38] for N ≥ 1 (see also [35, Sec-
tion 5.1], [68, Section 5.2], [69, Chapter 16]), we adopt the same definition
also for N < 0.

Definition 3.1 (Displacement convexity classes). For N ∈ (−∞, 0) ∪
[1,∞), we define DCN as the set of all continuous convex functions u :
[0,∞) −→ R such that u(0) = 0 and that the function

ψN (r) := rNu(r−N )

is convex on (0,∞). In a similar way, DC∞ is defined as the set of all con-
tinuous convex functions u : [0,∞) −→ R such that u(0) = 0 and that the
function

ψ∞(r) := eru(e−r)

is convex on R.

The following is well known for N ≥ 1, we give a proof for completeness.

Lemma 3.2. If u ∈ DCN for N ∈ [1,∞] (resp. N ∈ (−∞, 0)), then the
function ψN is non-increasing (resp. non-decreasing).

Proof. For N ∈ [1,∞) and 0 < s < t, the convexity of u and u(0) = 0 yield

ψN (t) = tNu(t−N ) ≤ tN
{(

1− sN

tN

)
u(0) +

sN

tN
u(s−N )

}
= ψN (s).
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We similarly obtain for N =∞ and s, t ∈ R with s < t that

ψ∞(t) = etu(e−t) ≤ et
{(

1− es

et

)
u(0) +

es

et
u(e−s)

}
= ψ∞(s).

Finally, for N < 0 and 0 < s < t, it holds

ψN (s) = sNu(s−N ) ≤ sN

{(
1− s−N

t−N

)
u(0) +

s−N

t−N
u(t−N )

}
= ψN (t).

�
It is also known that DCN ′ ⊂ DCN for 1 ≤ N < N ′ ≤ ∞. This mono-

tonicity in N is violated by extending to N < 0, but the monotonicity in
m = (N − 1)/N ∈ [0,∞) holds instead. Compare this with the monotonicity
of RicN in m (Remark 2.2).

Lemma 3.3. For each N,N ′ ∈ (−∞, 0) ∪ [1,∞] with m < m′, we have
DCN ′ ⊂ DCN , where we set m = (N − 1)/N , m′ = (N ′ − 1)/N ′ and m = 1
if N =∞ (resp. m′ = 1 if N ′ =∞).

Proof. We first consider the case of 0 ≤ m < m′ < 1 (equivalently, 1 ≤ N <
N ′ <∞). For any u ∈ DCN ′ and r > 0, we observe

ψN (r) = rNu(r−N ) = (rN/N ′
)N

′
u
(
(rN/N ′

)−N ′)
= ψN ′(rN/N ′

).

This is convex in r since the function r �→ rN/N ′
is concave and ψN ′ is convex

and non-increasing. Thus, u ∈ DCN and hence DCN ′ ⊂ DCN .
The other cases are similar. For 1 < m < m′, we have N < N ′ < 0 so

that r �→ rN/N ′
is convex and ψN ′ is non-decreasing. When m′ = 1 > m,

ψN (r) = ψ∞(N log r) holds and note that r �→ N log r is concave and ψ∞
is non-increasing. For m = 1 < m′, we find ψ∞(r) = ψN ′(er/N ′

) and that
r �→ er/N ′

is convex and ψN ′ is non-decreasing. �
We shall write down a condition for uϕ ∈ DCN on ϕ. As uϕ is continu-

ous, convex and satisfies uϕ(0) = 0 by definition once it is well-defined, it is
sufficient to check (2.1) and the convexity of ψN .

Proposition 3.4. Assume that ϕ satisfies the condition (2.1). Then the
function ψN for N ∈ (−∞, 0) ∪ (1,∞] is convex if and only if

(3.1)
∫ t

0

s

ϕ(s)
ds ≤ N

N − 1
t2

ϕ(t)

holds for all t > 0, where N/(N − 1) = 1 if N =∞.
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Proof. We first of all recall that uϕ is well-defined by (2.1) (Lemma 2.8).
For N ∈ (−∞, 0) ∪ (1,∞) and r > 0, we calculate

ψ′N (r) =Nr
N−1uϕ(r−N )−Nr−1u′ϕ(r−N ),

ψ′′N (r) =N(N − 1)rN−2uϕ(r−N ) + (N −N2)r−2u′ϕ(r
−N )

+N2r−N−2u′′ϕ(r
−N )

=N(N − 1)rN−2
{
uϕ(r−N )− r−N lnϕ(r−N ) +

N

N − 1
r−2N

ϕ(r−N )

}
.

Note that N(N − 1) > 0. For any t > 0, we have

uϕ(t)− t lnϕ(t) +
N

N − 1
t2

ϕ(t)
=
∫ t

0
{lnϕ(τ)− lnϕ(t)} dτ +

N

N − 1
t2

ϕ(t)

= −
∫ t

0

∫ t

τ

1
ϕ(s)

dsdτ +
N

N − 1
t2

ϕ(t)
= −

∫ t

0

s

ϕ(s)
ds+

N

N − 1
t2

ϕ(t)
.

Therefore, ψ′′N ≥ 0 if and only if (3.1) holds. For N =∞, we similarly obtain

ψ′′∞(r) = er
{
uϕ(e−r)− e−r lnϕ(e−r) +

e−2r

ϕ(e−r)

}
for r ∈ R, and

uϕ(t)− t lnϕ(t) +
t2

ϕ(t)
= −

∫ t

0

s

ϕ(s)
ds+

t2

ϕ(t)

for t > 0. �

Theorem 3.5. If θϕ < 2, then the condition (2.1) holds and we have uϕ ∈
DCNϕ

.

Proof. We deduce from Lemma 2.9 that

0 ≤ sθϕ

ϕ(s)
≤ 1
ϕ(1)

for all s ∈ (0, 1), this implies (2.1) since θϕ < 2. Lemma 2.9 also yields that,
for any t > 0, ∫ t

0

s

ϕ(s)
ds ≤

∫ t

0

tθϕ

ϕ(t)
s1−θϕ ds =

1
2− θϕ

t2

ϕ(t)
.
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This is nothing but (3.1) with N = Nϕ (recall the definition of Nϕ in (2.5)),
and hence uϕ ∈ DCNϕ

by Proposition 3.4. �

Recall that ϕm(s) = s2−m with m ∈ (0, 2] satisfies θm = 2−m < 2.
Hence Theorem 3.5 shows uϕm

∈ DCNm
. We close the section with a partial

converse of Theorem 3.5.

Proposition 3.6. If the condition (2.1) holds, δϕ < 2 and if we have uϕ ∈
DCN with some N ∈ (−∞, 0) ∪ (1,∞], then it holds δϕ ≤ (N + 1)/N (where
(N + 1)/N = 1 for N =∞).

Proof. Lemma 2.9 with Proposition 3.4 yields that, for any t > 0,

N

N − 1
t2

ϕ(t)
≥
∫ t

0

s

ϕ(s)
ds ≥

∫ t

0

tδϕ

ϕ(t)
s1−δϕ ds =

1
2− δϕ

t2

ϕ(t)
,

which shows δϕ ≤ (N + 1)/N as desired. �

In particular, for m ∈ (0, 2], uϕm
∈ DCN if and only if m ≥ (N − 1)/N .

4. Admissible spaces

This section is devoted to introducing the class of spaces admissible in our
consideration. Recall our weighted Riemannian manifold (M,ω) and a func-
tion ϕ as in Section 2.3. From here on, we further fix the reference measure

ν = σω := expϕ(−Ψ)ω,

where Ψ ∈ C(M) such that

(4.1) Ψ > −Lϕ on M, MΨ
ϕ := Ψ−1

(
(−Lϕ,−lϕ)

)
	= ∅.

Note that supp ν =MΨ
ϕ 	= ∅. For later convenience, let us define the

K-convexity of a function on a general metric space.

Definition 4.1 (K -convexity). Given K ∈ R, we say that a function Ψ :
X −→ (−∞,∞] on a metric space (X, d) is K-convex in the weak sense
(denoted by HessΨ ≥ K by slight abuse of notation) if it is not identically
+∞ and, for any two points x, y ∈ X, there exists a minimal geodesic γ :
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[0, 1] −→ X from x to y along which

(4.2) Ψ
(
γ(t)

)
≤ (1− t)Ψ(x) + tΨ(y)− K

2
(1− t)td(x, y)2

holds for all t ∈ [0, 1].

We remark that, on a Riemannian manifold M , (4.2) certainly holds for
any minimal geodesic γ : [0, 1] −→M by approximation. Indeed, γ|[ε,1−ε]

is a unique minimal geodesic for any ε > 0 and Ψ is continuous. We are
interested in the situation that RicNϕ

≥ 0 as well as HessΨ ≥ K hold (see
Theorem 5.7). Finer analysis is possible in the particular case of K > 0
(Sections 6, 7). We prove a lemma in such a case for later use. The open
ball of center x ∈M and radius r > 0 will be denoted by B(x, r).

Lemma 4.2. Suppose that ϕ(1) = 1 (without loss of generality, see Remark
2.10), HessΨ ≥ K for some K > 0, and take a minimizer x0 ∈M of Ψ.

(i) If lϕ > −∞, then the set MΨ
ϕ as in (4.1) is totally convex and MΨ

ϕ ⊂
B(x0, R) holds with R =

√
−2(lϕ +Ψ(x0))/K. Moreover, supp ν is

also totally convex and compact.

(ii) If lϕ = −∞, Nϕ ∈ [n,∞) and if RicNϕ
≥ 0, then we have MΨ

ϕ =M ,
ν[M ] <∞ and∫

M
dg(x0, x)pσ(x)a dω(x) ≤ C1ν[M ]a + C2K

−aNϕ <∞

for any a ∈ (1/2, 1] and p ∈ [0,∞) satisfying (2a− 1)Nϕ − p > 0,
where C1 = C1(ω) and C2 = C2(a, p, θϕ, ω). In particular, σ ∈
La(M,ω) for all a ∈ (1/2, 1] and ν[M ]−1 · ν ∈ Pp

ac(M,ω) for all
p ∈ [0, Nϕ).

(iii) If Nϕ =∞ and RicNϕ
≥ 0, then σ ∈ La(M,ω) for any a > 0.

Proof. We first remark that the assumption HessΨ ≥ K > 0 guarantees the
unique existence of a point x0 ∈MΨ

ϕ such that Ψ(x0) = infM Ψ. We deduce
from the K-convexity (4.2) that

(4.3) Ψ
(
γ(1)

)
≥ Ψ(x0) +

K

2
dg

(
x0, γ(1)

)2
holds for all minimal geodesics γ : [0, 1] −→M with γ(0) = x0.
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(i) For any minimal geodesic γ : [0, 1] −→M connecting two points x, y ∈
MΨ

ϕ , we have

Ψ
(
γ(t)

)
≤ (1− t)Ψ(x) + tΨ(y)− K

2
(1− t)tdg(x, y)2 < −lϕ,

so that γ is contained inMΨ
ϕ . The total convexity of supp ν can be seen

similarly. Precisely, for any x, y ∈ Ψ−1((−Lϕ,−lϕ]), γ as above satisfies
γ((0, 1)) ⊂MΨ

ϕ . This implies that supp ν =MΨ
ϕ = Ψ−1((−Lϕ,−lϕ])

and is totally convex. We moreover obtainMΨ
ϕ ⊂ B(x0, R) from (4.3),

and thus supp ν is compact.

(ii) The first assertion MΨ
ϕ =M is obvious by definition (see (4.1)). Note

that Nϕ ∈ [n,∞) implies θϕ ∈ (1, (n+ 1)/n] (see (2.5)). Set m := 2−
θϕ < 1 and take a ∈ (1/2, 1] and p ≥ 0 satisfying (2a− 1)Nϕ − p > 0.
Then (2.10) and (4.3) imply∫

M
dg(x0, x)pσ(x)a dω(x)

≤
∫

B(x0,1)
σa dω +

∫ ∞

1
em

(
−Ψ(x0)−

K

2
r2
)a

rp areaω[S(x0, r)] dr.

We mention thatm = (Nϕ − 1)/Nϕ and, for s < Lϕ and t < 0, we have

em(s+ t) = {em(s)m−1 + (m− 1)t}−Nϕ .

Thanks to the hypothesis RicNϕ
≥ 0 withNϕ ∈ [n,∞), we can estimate

the second term by Theorem 2.3 as∫ ∞

1
em

(
−Ψ(x0)−

K

2
r2
)a

rp areaω[S(x0, r)] dr

≤ areaω[S(x0, 1)]
∫ ∞

1

{
em(−Ψ(x0))m−1+(1−m)K

2
r2
}−aNϕ

× rp+Nϕ−1 dr

= areaω[S(x0, 1)]
∫ ∞

1

{
em
(
−Ψ(x0)

)m−1
r−2 + (1−m)K

2

}−aNϕ

× r−(2a−1)Nϕ+p−1 dr

≤ areaω[S(x0, 1)]
{
(1−m)K

2

}−aNϕ
∫ ∞

1
r−(2a−1)Nϕ+p−1 dr

=
1

(2a− 1)Nϕ − p
areaω[S(x0, 1)]

{
(1−m)K

2

}−aNϕ

.
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We used the condition (2a− 1)Nϕ − p > 0 in the last equality. Choos-
ing a = 1 and p = 0, we in particular find ν[M ] <∞. Then the Hölder
inequality yields that∫

B(x0,1)
σa dω ≤

(∫
B(x0,1)

σ dω

)a

ω[B(x0, 1)]1−a ≤ ν[M ]aω[B(x0, 1)]1−a.

Thus choosing

C1 := max{ω[B(x0, 1)], 1} ≥ ω[B(x0, 1)]1−a,

C2 :=
1

(2a− 1)Nϕ − p

(
2

1−m

)aNϕ

areaω[S(x0, 1)]

gives the desired estimate.

(iii) Combining (4.3) with (2.10) provides, as θϕ = 1,∫
M
σ(x)a dω(x) ≤

∫
M
expϕ

(
−Ψ(x0)−

K

2
dg(x0, x)2

)a

dω(x)

≤ exp
(
− aΨ(x0)

) ∫
M
exp

(
−aK

2
dg(x0, x)2

)
dω(x).

Hence, the assertion follows from Theorem 2.4. �

Now, we introduce the conditions for a quadruple (M,ω, ϕ,Ψ) to be
admissible in our consideration.

Definition 4.3 (Admissibility). We say that a quadruple (M,ω, ϕ,Ψ) is
admissible if all the following conditions hold:

(A-1) ϕ(1) = 1.

(A-2) Nϕ ∈ (−∞,−1] ∪ [n,∞] and Nϕ 	= 2 or, equivalently, θϕ ∈
[0, (n+ 1)/n] and θϕ < 3/2.

(A-3) Ψ > −L2−θϕ
on M and MΨ

ϕ = Ψ−1((−Lϕ,−lϕ)) 	= ∅.
(A-4) hϕ(σ) ∈ L1(M,ω) and σ lnϕ(σ) ∈ L1(M,ω), where hϕ := uϕ if Lϕ =

∞ and hϕ(r) := uϕ(r)− rLϕ if Lϕ <∞ (see (5.3) below).

We mention that lm ≤ lϕ and Lm ≤ Lϕ hold with m = 2− θϕ by (2.9),
and hence MΨ

ϕ ⊂MΨ
ϕm

by (A-3). The first condition ϕ(1) = 1 is merely the
normalization (see Remark 2.10), and (A-4) is imposed for ν being adopted
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as a reference measure of the Bregman divergence (see (2.2)). The next
lemma ensures that (A-4) automatically holds if RicNϕ

≥ 0 and HessΨ ≥ K
for some K > 0.

Lemma 4.4. Suppose that (M,ω, ϕ,Ψ) satisfies (A-1), (A-2), Ψ > −Lϕ on
M , MΨ

ϕ 	= ∅, RicNϕ
≥ 0 and HessΨ ≥ K for some K > 0. Then (A-4) also

holds.

Proof. The case of lϕ > −∞ is clear due to Lemma 4.2(i), so that we assume
lϕ = −∞ and then θϕ ≥ 1 (Proposition 2.12(i)). Observe also that uϕ(σ) ∈
L1(M,ω) implies hϕ(σ) ∈ L1(M,ω) since ν[M ] <∞ by Lemma 4.2(ii), (iii).
Let x0 be the minimizer of Ψ and set R :=

√
max{1,−2Ψ(x0)}/K. Note

that the K-convexity of Ψ (4.3) guarantees that, on M \B(x0, R),

0 ≤ σ = expϕ(−Ψ) ≤ expϕ

(
−Ψ(x0)−

K

2
R2
)
≤ expϕ(0) = 1.

We first consider the case of θϕ > 1. OnM \B(x0, R), (2.9) implies that

|σ lnϕ(σ)| = −σ lnϕ(σ) ≤ −σ�2−θϕ
(σ) = Nϕ(σ2−θϕ − σ),

|uϕ(σ)| = −
∫ σ

0
lnϕ(t) dt ≤

∫ σ

0
Nϕ(t1−θϕ − 1) dt = Nϕ

(
σ2−θϕ

2− θϕ
− σ

)
.

Thus, we have∫
M
|σ lnϕ(σ)| dω ≤

∫
B(x0,R)

|σ lnϕ(σ)| dω +
∫

M\B(x0,R)
Nϕ(σ2−θϕ − σ) dω,∫

M
|uϕ(σ)| dω ≤

∫
B(x0,R)

|uϕ(σ)| dω +
∫

M\B(x0,R)
Nϕ

(
σ2−θϕ

2− θϕ
− σ

)
dω.

As 2− θϕ ∈ (1/2, 1) by θϕ < 3/2, Lemma 4.2(ii) ensures uϕ(σ), σ lnϕ(σ) ∈
L1(M,ω).

In the case of θϕ = 1, we similarly have on M \B(x0, R)

|σ lnϕ(σ)| ≤ −σ lnσ ≤
√
σ, |uϕ(σ)| = −

∫ σ

0
lnϕ(t) dt ≤

∫ σ

0

1√
t
dt = 2

√
σ.

Then the claim follows from Lemma 4.2(iii). �
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We close the section with an auxiliary lemma on how to normalize ν
when K > 0.

Lemma 4.5. Let (M,ω, ϕ,Ψ) be admissible, RicNϕ
≥ 0 and HessΨ ≥ K

for some K > 0, and set I = (l, L) := (lϕ + infM Ψ, Lϕ + infM Ψ). We in
addition assume that Ψ is differentiable at the minimizer of Ψ if Nϕ = n.
Then there exists some λ ∈ I such that expϕ(λ−Ψ)ω ∈ Pac(M,ω).

Proof. We first remark that infM Ψ > −∞, and that for any λ ∈ I

Ψ− λ > inf
M
Ψ−

(
Lϕ + inf

M
Ψ
)
= −Lϕ

as well as Hess(Ψ− λ) = HessΨ ≥ K hold. Thus

Ξ(λ) :=
∫

M
expϕ(λ−Ψ) dω <∞

by Lemma 4.2. Since Ξ is non-decreasing and continuous on I by Lebesgue’s
dominated convergence theorem (or the monotone convergence theorem),
we are done if limλ↓l Ξ(λ) < 1 < limλ↑L Ξ(λ) holds. We also deduce from the
dominated convergence theorem that limλ↓l Ξ(λ) = 0. If Lϕ =∞, then we
find limλ↑∞ Ξ(λ) =∞ by the monotone convergence theorem.

The rest is to prove limλ↑L Ξ(λ) > 1 when Lϕ <∞. Note that Lϕ <∞
implies lims↑∞ ϕ(s) =∞ by definition, and θϕ > 1 (i.e., Nϕ ∈ [n,∞)) by
Proposition 2.12(ii). Let x0 ∈M be the unique minimizer of Ψ and take
R0 > 0 such that B(x0, R0) ⊂MΨ

ϕ and that B(x0, R0) contains no cut point
of x0. Then, for any x ∈ S(x0, r) with 0 < r < R ≤ R0, the K-convexity of
Ψ provides

Ψ(x) ≤
(
1− r

R

)
Ψ(x0) +

r

R
sup

S(x0,R)
Ψ− K

2

(
1− r

R

) r

R
R2(4.4)

= Ψ(x0) +
K

2
r2 + ar,

where we set

a = a(R) :=
1
R

(
sup

S(x0,R)
Ψ−Ψ(x0)−

K

2
R2

)
≥ 0.

Observe that limR↓0 a(R) <∞ by theK-convexity of Ψ, and limR↓0 a(R) = 0
holds if Nϕ = n since Ψ is assumed to be differentiable at x0. In both cases
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(Nϕ > n or Nϕ = n), we can choose R ∈ (0, R0] small enough to satisfy

(4.5)
K

2
R2 + aR < Lϕ, 2a <

(
areaω[S(x0, R)]
NϕRNϕ−1

)1/Nϕ

.

Then take large λ ∈ I such that

λ > Ψ(x0) +
K

2
R2 + aR.

Set
eλϕ(r) := expϕ

(
λ−Ψ(x0)−

K

2
r2 − ar

)
and note that it is decreasing.

We deduce from Theorem 2.3 and (4.4) that

Ξ(λ) ≥
∫

B(x0,R)
expϕ(λ−Ψ) dω ≥

∫ R

0
areaω[S(x0, r)]eλϕ(r) dr

≥ areaω[S(x0, R)]
RNϕ−1

∫ R

0
rNϕ−1eλϕ(r) dr

=
areaω[S(x0, R)]

RNϕ−1

(
RNϕ

Nϕ
eλϕ(R)−

∫ R

0

rNϕ

Nϕ
(eλϕ)

′(r) dr
)
.

The concavity of lnϕ yields

lnϕ(t) ≤ lnϕ

(
eλϕ(0)

)
+
t− eλϕ(0)
ϕ(eλϕ(0))

,

and hence it holds for t := eλϕ(r) that

Kr = −a+
√
a2 + 2K

{
lnϕ

(
eλϕ(0)

)
− lnϕ(t)

}
≥ −a+

√
a2 + 2K

eλϕ(0)− t
ϕ(eλϕ(0))

.

By the change of variables formula for t = eλϕ(r), we have

−
∫ R

0
rNϕ(eλϕ)

′(r) dr

=
1

KNϕ

∫ eλ
ϕ(0)

eλ
ϕ(R)

(
−a+

√
a2 + 2K

{
lnϕ

(
eλϕ(0)

)
− lnϕ(t)

})Nϕ

dt

≥ 1
KNϕ

∫ eλ
ϕ(0)

eλ
ϕ(R)

(
−a+

√
a2 + 2K

eλϕ(0)− t
ϕ(eλϕ(0))

)Nϕ

dt.
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Combining the triangle inequality{∫ eλ
ϕ(0)

eλ
ϕ(R)

(
− a+

√
a2 + 2K

eλϕ(0)− t
ϕ(eλϕ(0))

)Nϕ

dt

}1/Nϕ

≥

⎧⎨⎩
∫ eλ

ϕ(0)

eλ
ϕ(R)

(√
a2 + 2K

eλϕ(0)− t
ϕ(eλϕ(0))

)Nϕ

dt

⎫⎬⎭
1/Nϕ

− {eλϕ(0)− eλϕ(R)}1/Nϕa

with Jensen’s inequality for the convex function s �→ (
√
a2 + s)Nϕ (s ≥ 0),

we deduce that∫ eλ
ϕ(0)

eλ
ϕ(R)

(
−a+

√
a2 + 2K

eλϕ(0)− t
ϕ(eλϕ(0))

)Nϕ

dt

≥ {eλϕ(0)− eλϕ(R)}
{√

a2 +
2K

ϕ(eλϕ(0))

∫ eλ
ϕ(0)

eλ
ϕ(R)

eλϕ(0)− t
eλϕ(0)− eλϕ(R)

dt− a
}Nϕ

= {eλϕ(0)− eλϕ(R)}
(√

a2 +K
eλϕ(0)− eλϕ(R)
ϕ(eλϕ(0))

− a
)Nϕ

.

Hence we obtain, as ϕ(s) ≤ sθϕ for s ≥ 1 by Lemma 2.9,

lim
λ↑L

Ξ(λ) ≥ areaω[S(x0, R)]
NϕRNϕ−1KNϕ

× lim
λ↑L

⎡⎣{eλϕ(0)− eλϕ(R)}
(√

a2 +K
eλϕ(0)− eλϕ(R)
ϕ(eλϕ(0))

− a
)Nϕ

⎤⎦
≥ areaω[S(x0, R)]

NϕRNϕ−1KNϕ
lim
s↑∞

[
s

(√
a2 +

Ks

(s+ eLϕ(R))θϕ
− a

)Nϕ

]

=
areaω[S(x0, R)]
NϕRNϕ−1KNϕ

lim
s↑∞

[
sθϕ−1(

√
a2 +Ks1−θϕ − a)

]Nϕ

=
areaω[S(x0, R)]
NϕRNϕ−1KNϕ

lim
t↓0

(√
a2 +Kt− a

t

)Nϕ

=
areaω[S(x0, R)]
NϕRNϕ−1 (2a)−Nϕ .

This is bigger than 1 by the choice of R (recall (4.5)) and we complete the
proof. �
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Remark 4.6. If RicNϕ
≥ 0 and HessΨ ≥ K with some K > 0, then

Lemma 4.2 yields ν[M ] <∞. We will sometimes normalize (M,ω, ϕ,Ψ) so
as to satisfy ν[M ] = 1 (Sections 6 and 7). There are two ways of such a
normalization:

• Put a := ν[M ]−1 and consider (M, ω̃, ϕ,Ψ) := (M,aω, ϕ,Ψ), i.e., ω̃ =
e−f+ln a volg.

• Take λ as in Lemma 4.5 and consider (M,ω, ϕ, Ψ̃) := (M,ω, ϕ,Ψ− λ).

In both cases, it is easily seen that the conditions RicNϕ
≥ 0 and Hess

Ψ ≥ K are preserved. These two normalizations are equivalent when ϕ = ϕ1,
where we indeed observe

exp(−Ψ)ω̃ = exp(−Ψ− f + ln a)ω, exp(−Ψ̃)ω = exp(−Ψ− f + λ)ω,

and hence λ = ln a.

5. ϕ-relative entropy and its displacement convexity

In this section, we introduce a generalization of the relative entropy, that
we call the ϕ-relative entropy, associated with functions ϕ in an appropriate
class. For the relative entropy on a (unweighted) Riemannian manifold, it is
known by von Renesse and Sturm [58] that its K-convexity in the Wasser-
stein space (P2(M),W2) (in the sense of Definition 4.1) is equivalent to
the lower Ricci curvature bound Ric ≥ K. Then it was shown by Lott and
Villani [35] that Ric ≥ K further implies a kind of convexity property of a
class of entropies including the relative entropy. In this sense, the relative
entropy is an extremal element in such a class of entropies. In the same spirit,
our main theorem in the section (Theorem 5.7) asserts that the m-relative
entropy induced from ϕ = ϕm (studied in [51], recall Subsection 2.4 as well)
is an extremal one in an appropriate class of ϕ-relative entropies.

5.1. Curvature-dimension condition

Let us begin with a brief review of Lott, Sturm and Villani’s curvature-
dimension condition. To formulate it, we need to introduce the two functions
often used in comparison theorems in Riemannian geometry.
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For K ∈ R, N ∈ (1,∞) and 0 < r (< π
√
(N − 1)/K if K > 0), we con-

sider the function

sK,N (r) :=

⎧⎪⎨⎪⎩
√
(N − 1)/K sin(r

√
K/(N − 1)) if K > 0,

r if K = 0,√
−(N − 1)/K sinh(r

√
−K/(N − 1)) if K < 0.

This is the solution to the differential equation

s′′K,N +
K

N − 1
sK,N = 0

with the initial conditions sK,N (0) = 0 and s′K,N (0) = 1. For n ∈ N with
n ≥ 2, sK,n(r)n−1 is proportional to the area of the sphere of radius r in the
n-dimensional space form of constant sectional curvature K/(n− 1). Using
sK,N , we define

βt
K,N (r) :=

(
sK,N (tr)
tsK,N (r)

)N−1
, βt

K,∞(r) := eK(1−t2)r2/6

for K,N, r as above and t ∈ (0, 1). Now, we are ready to state Sturm’s
curvature-dimension condition characterizing lower Ricci curvature bounds,
developed in [58, 61, 63] in gradually general situations (see also [20, 21]
for related important work). Recall (2.8) and (2.6) for the definitions of the
Rényi entropy SN and the relative entropy Entω.

Theorem 5.1 (Sturm’s curvature-dimension condition). Let (M,ω)
be a weighted Riemannian manifold. We have RicN ≥ K for some K ∈ R

and N ∈ [n,∞) if and only if any pair of measures μ0 = ρ0ω, μ1 = ρ1ω ∈
P2ac(M,ω) satisfies

SN (μt) ≤ −(1− t)
∫

M×M
β1−t

K,N

(
dg(x, y)

)1/N
ρ0(x)−1/N dπ(x, y)(5.1)

− t
∫

M×M
βt

K,N

(
dg(x, y)

)1/N
ρ1(y)−1/N dπ(x, y)

for all t ∈ (0, 1), where (μt)t∈[0,1] ⊂ P2ac(M,ω) is the unique minimal geodesic
from μ0 to μ1, and π is the unique optimal coupling of μ0 and μ1.

Similarly, Ric∞ ≥ K is equivalent to the K-convexity of Entω,

Entω(μt) ≤ (1− t) Entω(μ0) + tEntω(μ1)−
K

2
(1− t)tW2(μ0, μ1)2.
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ForK = 0, we find βt
0,N ≡ 1 and (5.1) is nothing but the convexity of SN ,

SN (μt) ≤ (1− t)SN (μ0) + tSN (μ1).

For K 	= 0, however, (5.1) is not simply the K-convexity of SN .
Lott and Villani’s version of the curvature-dimension condition requires

a similar convexity condition, but for all entropies induced from functions
in DCN ([34, 35], [69, Part III]). For U ∈ DCN and μ ∈ P2(M), we denote
by μ = ρω + μs its Lebesgue decomposition into absolutely continuous and
singular parts with respect to the base measure ω, and define

Uω(μ) := lim
ε↓0

∫
{ρ≥ε}

U(ρ) dω + U ′(∞)μs[M ], U ′(∞) := lim
r→∞

U(r)
r

.

We set ∞ · 0 = 0 by convention, and remark that U ′(∞) = limr→∞ U ′(r)
holds due to the convexity of U .

Theorem 5.2 (Lott and Villani’s version). It holds RicN ≥ K for some
K ∈ R and N ∈ [n,∞] if and only if, given any pair of measures μ0, μ1 ∈
P2(M) decomposed as μi = ρiω + μs

i (i = 0, 1), there is a minimal geodesic
(μt)t∈[0,1] ⊂ P2(M) between them such that

Uω(μt) ≤ (1− t)
∫

M

∫
M
β1−t

K,N

(
dg(x, y)

)
U

(
ρ0(x)

β1−t
K,N (dg(x, y))

)
dπx(y)dω(x)

(5.2)

+ t

∫
M

∫
M
βt

K,N

(
dg(x, y)

)
U

(
ρ1(y)

βt
K,N (dg(x, y))

)
dπy(x)dω(y)

+ U ′(∞){(1− t)μs
0[M ] + tμs

1[M ]}

holds for all U ∈ DCN and t ∈ (0, 1), where πx (∈ P(M) μ0-a.e. x) and πy

(∈ P(M) μ1-a.e. y) denote the disintegrations of π by μ0 and μ1, i.e.,

dπ(x, y) = dπx(y)dμ0(x) = dπy(x)dμ1(y).

Recall that DCN ′ ⊂ DCN for n ≤ N < N ′ (Lemma 3.3). This agrees with
the monotonicity RicN ≤ RicN ′ for n ≤ N ≤ N ′. In the case where both μ0
and μ1 are absolutely continuous with respect to ω, we find

dπ(x, y) = ρ0(x)dπx(y)dω(x) = ρ1(y)dπy(x)dω(y)
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and (5.2) is rewritten in the more symmetric form

Uω(μt) ≤ (1− t)
∫

M×M

β1−t
K,N (dg(x, y))

ρ0(x)
U

(
ρ0(x)

β1−t
K,N (dg(x, y))

)
dπ(x, y)

+ t

∫
M×M

βt
K,N (dg(x, y))

ρ1(y)
U

(
ρ1(y)

βt
K,N (dg(x, y))

)
dπ(x, y).

It is in fact enough to consider only absolutely continuous measures, the
general inequality (5.2) follows by approximating μ0, μ1 ∈ P2(M) with abso-
lutely continuous ones. In this sense the essential difference between Theo-
rems 5.1 and 5.2 is their choices of admissible entropies.

Besides Riemannian manifolds, these two versions of curvature-
dimension condition are equivalent for metric measure spaces where
geodesics do not branch, such as Finsler manifolds and Alexandrov spaces
(or for spaces with Riemannian Ricci curvature bounded below in the sense
of [7] which are “essentially non-branching,” see recent [57]). In other words,
Sturm’s version implies Lott and Villani’s one. Roughly speaking, this impli-
cation can be seen by localizing Sturm’s (5.1) thanks to the non-branching
property, and then integrating these local inequalities for each U ∈ DCN

yields (5.2). The same infinitesimal estimate (Claim 5.8) will appear in our
discussion. Theorem 5.2 is extended to general Finsler manifolds by intro-
ducing the appropriate notion of the weighted Ricci curvature (see Section 10
and [45]).

General (not necessarily differentiable) metric measure spaces satisfy-
ing the condition in Theorem 5.1 or 5.2 are known to behave like Rieman-
nian manifolds of Ric ≥ K and dim ≤ N in geometric and analytic respects
( [34, 35, 62, 63], [69, Part III]). We shall generalize this technique to ϕ-
relative entropies in the following sections (but only on Riemannian or
Finsler manifolds).

5.2. ϕ-relative entropy Hϕ

Let (M,ω, ϕ,Ψ) be an admissible space in the sense of Definition 4.3. We
modify uϕ as, for r ≥ 0,

(5.3) hϕ(r) :=

{
uϕ(r) if Lϕ =∞,
uϕ(r)− rLϕ if Lϕ <∞.
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We also define

h′ϕ(∞) := lim
r→∞

h′ϕ(r) =

{
∞ if Lϕ =∞,
0 if Lϕ <∞.

Note that uϕ ∈ DCNϕ
(by Theorem 3.5 thanks to the admissibility) imme-

diately implies hϕ ∈ DCNϕ
. Moreover, if Lϕ <∞, then hϕ is non-increasing

and hence non-positive. We set

Lϕ(M,ω) := {ρ :M −→ R |measurable, hϕ(ρ) ∈ L1(M,ω)},
PΨ(M) := {μ ∈ P(M) |Ψ ∈ L1(MΨ

ϕ , μ)}

(we will use these notations only in Remark 5.4). Now the Bregman diver-
gence (2.2) leads us to the following generalization of the relative entropy.

Definition 5.3 (ϕ-relative entropy). Given μ ∈ P(M), letting μ = ρω +
μs be its Lebesgue decomposition, we define the ϕ-relative entropy of μ by

Hϕ(μ) :=
∫

M
{hϕ(ρ)− h′ϕ(σ)ρ} dω −

∫
M
h′ϕ(σ) dμ

s + h′ϕ(∞)μs[M ](5.4)

=
∫

M
hϕ(ρ) dω −

∫
M
h′ϕ(σ) dμ+ h′ϕ(∞)μs[M ]

if hϕ(ρ) ∈ L1(M,ω) and h′ϕ(σ) ∈ L1(M,μ), otherwise we set Hϕ(μ) :=∞.

Let us summarize several remarks on Definition 5.3.

Remark 5.4. (1) In the second term of (5.4), to be precise, we set

h′ϕ(σ) :=

{
lϕ if Lϕ =∞,
lϕ − Lϕ if Lϕ <∞,

on M \MΨ
ϕ .

This causes no problem because M =MΨ
ϕ if lϕ = −∞. The additional

condition μ[MΨ
ϕ ] = 1 (in other words, μ ∈ P(MΨ

ϕ )) will be imposed
only when we compare the behavior of Ψ with that of Hϕ (as in The-
orems 5.7, 8.7 and so forth).

(2) We remark that the condition (A-4) in the admissibility guarantees
that σ ∈ Lϕ(M,ω) as well as Ψ ∈ L1(MΨ

ϕ , ν). Thus we haveHϕ(ν) ∈ R

(by extending the definition (5.4) verbatim).
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(3) The validity of the definition of h′ϕ(∞) (for the lower semi-continuity of
Hϕ, see Lemma 5.6) would be understood by the following observation:
For small ε > 0, put με = ρεω := ω[B(x, ε)]−1χB(x,ε)ω, where χB(x,ε)

stands for the characteristic function of B(x, ε). Then we have∫
B(x,ε)

hϕ(ρε) dω = ω[B(x, ε)] · hϕ

(
1

ω[B(x, ε)]

)
→ h′ϕ(∞)

as ε tends to zero.

(4) Finally, as for the domain ofHϕ, it is more consistent to setHϕ(μ) =∞
only if hϕ(ρ)− ρh′ϕ(σ) 	∈ L1(M,ω). However, as we sometimes treat
the internal energy

∫
M hϕ(ρ) dω and the potential energy

∫
M h′ϕ(σ)dμ

separately, we consider the smaller domain in Definition 5.3. This may
cause a problem when considering the lower semi-continuity of Hϕ,
whereas we need it only for compact M (see Lemma 5.6 below) where
h′ϕ(σ) ∈ L1(M,μ) is always true (so that hϕ(ρ) ∈ L1(M,ω) if and only
if hϕ(ρ)− ρh′ϕ(σ) ∈ L1(M,ω)).

Let us add a comment on the relation between ρ ∈ Lϕ(M,ω) and μ ∈
PΨ(M). Assume Lϕ <∞ and μ = ρω + μs ∈ PΨ(M). The non-positivity
and the convexity of hϕ yield∫

M
|hϕ(ρ)| dω = −

∫
M
hϕ(ρ) dω ≤ −

∫
M
{hϕ(σ) + h′ϕ(σ)(ρ− σ)} dω

= −
∫

M
{hϕ(σ)− h′ϕ(σ)σ} dω −

∫
M
ρh′ϕ(σ) dω <∞.

Hence, ρ ∈ Lϕ(M,ω) automatically holds. One can also see the converse
implication (ρ ∈ Lϕ(M,ω) ⇒ μ ∈ PΨ(M)) for the special case ϕm(s) = sm

with m > 1, where Lm =∞ as in (2.7) ([51, Remark 3.2(2)]).

It is easily observed that ν is a unique ground state of Hϕ (provided that
ν[M ] = 1).

Lemma 5.5. Suppose ν[M ] = 1. For any μ = ρω + μs ∈ P(M), we have
Hϕ(μ) ≥ Hϕ(ν) and equality holds if and only if μ = ν.

Proof. We assume Hϕ(μ) <∞ without loss of generality. Observe that

Hϕ(μ)−Hϕ(ν) =
∫

M
{hϕ(ρ)− hϕ(σ)− h′ϕ(σ)(ρ− σ)} dω(5.5)

−
∫

M
h′ϕ(σ) dμ

s + h′ϕ(∞)μs[M ].
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On the one hand, if μs[M ] > 0, then the singular part

−
∫

M
h′ϕ(σ) dμ

s + h′ϕ(∞)μs[M ]

in (5.5) is positive if Lϕ <∞ (recall that h′ϕ(σ) = lϕ − Lϕ < 0 on M \MΨ
ϕ )

or infinity if Lϕ =∞. On the other hand, the strict convexity of hϕ implies
that the absolutely continuous part∫

M
{hϕ(ρ)− hϕ(σ)− h′ϕ(σ)(ρ− σ)} dω

in (5.5) is non-negative and equality holds if and only if ρ = σ ω-a.e. Thus,
Hϕ(μ) ≥ Hϕ(ν) and equality holds if and only if μs[M ] = 0 and ρ = σ holds
ω-a.e. �

Observe from (5.5) that it holdsDϕ(μ|ν) = Hϕ(μ)−Hϕ(ν) for any abso-
lutely continuous measure μ with respect to ω. Thus the Bregman divergence
Dϕ(μ|ν) measures the difference between the entropies at μ and the ground
state ν. In [51], we have studied the specific function ϕm(s) = s2−m and
the associated m-relative entropy Hm(μ|ν) for m ∈ [(n− 1)/n, 1) ∪ (1,∞).
In the present context, Hm(μ|ν) coincides with Hϕm

(μ)−Hϕm
(ν).

The following lemma will be used in Section 8 (Claim 8.8) to construct
a discrete approximation of the gradient flow of Hϕ, where M is assumed to
be compact.

Lemma 5.6. Let M be compact. Then the ϕ-relative entropy Hϕ is lower
semi-continuous with respect to the weak topology, that is to say, if a sequence
{μi}i∈N ⊂ P(M) weakly converges to μ ∈ P(M), then we have

Hϕ(μ) ≤ lim inf
i→∞

Hϕ(μi).

Proof. We divide Hϕ(μ) into two parts as

H(1)
ϕ (μ) :=

∫
M
hϕ(ρ) dω + h′ϕ(∞)μs[M ], H(2)

ϕ (μ) := −
∫

M
h′ϕ(σ) dμ,

where μ = ρω + μs. Note that ‖h′ϕ(σ)‖∞ <∞ thanks to the compactness of
M (recall Remark 5.4(1)). Then H(2)

ϕ (μ) is clearly continuous in μ and the
lower semi-continuity of H(1)

ϕ (μ) follows from [35, Theorem B.33]. �
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5.3. Displacement convexity of Hϕ

In our previous work [51], we showed that the displacement K-convexity
of the m-relative entropy Hm(μ|ν) = Hϕm

(μ)−Hϕm
(ν) with respect to μ ∈

P2(M) is equivalent to the combination of RicN ≥ 0 and HessΨ ≥ K, where
N = 1/(1−m) ([51, Theorem 4.1]). This characterization can be regarded
as to correspond to Sturm’s version of the curvature-dimension condition
(5.1) (HessHm(·|ν) ≥ K and (5.1) actually coincide if Ψ is constant and
K = 0). In the reminder of the section, we shall consider the convexity of
appropriate families of the ϕ-relative entropies corresponding to Lott and
Villani’s version of the curvature-dimension condition (5.2). Recall (2.3) for
the definition of θϕ.

Theorem 5.7 (Displacement convexity of families of Hϕ). Given
K ∈ R, N ∈ R \ (−1, n) and an admissible space (M,ω, ϕm,Ψ), the follow-
ing three conditions are mutually equivalent, where m = (N − 1)/N :

(A) We have RicN ≥ 0 and HessΨ ≥ K on MΨ
ϕm

.

(B) For any μ0, μ1 ∈ P2(M) with μ0[MΨ
ϕm
] = μ1[MΨ

ϕm
] = 1 such that any

pair of points xi ∈ suppμi ∩MΨ
ϕm

(i = 0, 1) are joined by some minimal
geodesic contained in MΨ

ϕm
, there exists a minimal geodesic (μt)t∈[0,1] ⊂

P2(MΨ
ϕm
) along which

Hϕm
(μt) ≤ (1− t)Hϕm

(μ0) + tHϕm
(μ1)−

K

2
(1− t)tW2(μ0, μ1)2

holds for all t ∈ [0, 1].
(C) Take any ϕ with θϕ ≤ 2−m such that (M,ω, ϕ,Ψ) is admissible. Then,

for any μ0, μ1 ∈ P2(M) with μ0[MΨ
ϕ ] = μ1[MΨ

ϕ ] = 1, such that any pair
of points xi ∈ suppμi ∩MΨ

ϕ (i = 0, 1) are joined by some minimal
geodesic contained in MΨ

ϕ , there exists a minimal geodesic (μt)t∈[0,1] ⊂
P2(MΨ

ϕ ) along which

(5.6) Hϕ(μt) ≤ (1− t)Hϕ(μ0) + tHϕ(μ1)−
K

2
(1− t)tW2(μ0, μ1)2

holds for all t ∈ [0, 1].

Proof. The equivalence between (A) and (B) has been established in [51,
Theorem 4.1]. As (C) ⇒ (B) is trivial (recall θϕm

= 2−m, see Section 2.4),
it is enough to show (A) ⇒ (C).
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We can assume that both Hϕ(μ0) and Hϕ(μ1) are finite, otherwise the
assertion (5.6) is obvious. We first consider the case where both μ0 and
μ1 are absolutely continuous with respect to ω. By Theorem 2.6, there
exists an almost everywhere twice differentiable function φ : Ω −→ R with
μ0[Ω] = 1 such that the map Tt(x) := expx(t∇φ(x)) (t ∈ [0, 1]) gives the
unique minimal geodesic μt := (Tt)�μ0 from μ0 to μ1. Given μ0-a.e. x, T1(x)
is not a cut point of x due to [20, Proposition 4.1], so that the geodesic
(Tt(x))t∈[0,1] is unique and contained in MΨ

ϕ . Put μt = ρtω and Jω
t (x) :=

ef(x)−f(Tt(x))det(DTt(x)). By the change of variables formula with the Jaco-
bian equation (ρt ◦ Tt)Jω

t = ρ0 μ0-a.e. (Theorem 2.7), we deduce that

H(1)
ϕ (μt) :=

∫
M
hϕ(ρt) dω =

∫
M
hϕ

(
ρt(Tt)

)
Jω

t dω

=
∫

M
hϕ

(
ρ0
Jω

t

)
Jω

t

ρ0
dμ0 =

∫
M
ψ

((
Jω

t

ρ0

)1/N)
dμ0,

where we set ψ(r) := rNhϕ(r−N ). As Theorem 3.5 together with the mono-
tonicity of DCN in m (Lemma 3.3) ensures hϕ ∈ DCN , the function ψ(r) is
non-increasing (resp. non-decreasing) and convex in r if N ≥ 1 (resp. N < 0)
due to Lemma 3.2.

Then the essential ingredient is the concavity of NJω
t (x)

1/N as in the
next claim. We give a sketch of the proof for completeness (see [63] or [45]
for a detailed proof, where a more delicate estimate under RicN ≥ K for
general K ∈ R is discussed).

Claim 5.8. Under RicN ≥ 0, NJω
t (x)

1/N is concave in t for μ0-a.e. x.

Proof. Take an orthonormal basis {ei}n
i=1 of TxM and extend each ei to

the vector field Ei(t) := D(Tt)x(ei) for t ∈ [0, 1]. Note that every Ei is a
Jacobi field along the geodesic γ(t) := Tt(x), since Tt is a transport along
geodesics. Let us consider the n× n matrix-valued functions A(t) = (aij(t))
andB(t) = (bij(t)) given by, denoting byDγ̇ the covariant derivative along γ,

aij(t) := 〈Ei(t), Ej(t)〉, Dγ̇Ei(t) =
n∑

j=1

bij(t)Ej(t).

Observe that Jω
t (x) = ef(x)−f(γ(t))

√
detA(t). We see by calculations A′ =

2BA and A′′ = −2Ricγ̇ +2B2A, where we set Ricγ̇ := (〈R(Ei, γ̇)γ̇, Ej〉)ni,j=1
and R stands for the Riemannian curvature tensor of (M, g). Combining
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these with the symmetry of B, we have

d2

dt2

[
(detA)1/2n

]
=
{
(trB)2

n
− tr(Ricγ̇ A−1)− tr(B2)

}
(detA)1/2n

n

≤ −Ric(γ̇)
n

(detA)1/2n.

Put

v(t) := Jω
t (x)

1/N , v1(t) := e{f(x)−f(γ(t))}/(N−n), v2(t) := {detA(t)}1/2n.

As v = v
(N−n)/N
1 v

n/N
2 , we obtain

Nv−1v′′ = (N − n)v−11 v′′1 + nv−12 v′′2 −
(N − n)n

N
(v−11 v′1 − v−12 v′2)

2

≤ −(f ◦ γ)′′ + {(f ◦ γ)
′}2

N − n − Ric(γ̇) = −RicN (γ̇).

Note that the range of N ∈ (−∞, 0) ∪ [n,∞) is essential here for making
(N − n)/N non-negative. Thus, the assumption RicN ≥ 0 implies Nv′′ ≤ 0,
so that Nv = NJω

t (x)
1/N is concave in t. �

Therefore we have, as Jω
0 ≡ 1,

ψ
(
(Jω

t /ρ0)
1/N

)
≤ ψ

(
(1− t)(1/ρ0)1/N + t(Jω

1 /ρ0)
1/N

)
(5.7)

≤ (1− t)ψ
(
(1/ρ0)1/N

)
+ tψ

(
(Jω

1 /ρ0)
1/N

)
μ0-a.e. This implies

H(1)
ϕ (μt) =

∫
M
ψ

((
Jω

t

ρ0

)1/N)
dμ0(5.8)

≤
∫

M

{
(1− t)ψ

((
1
ρ0

)1/N)
+ tψ

((
Jω
1

ρ0

)1/N)}
dμ0

= (1− t)H(1)
ϕ (μ0) + tH(1)

ϕ (μ1).

On the other hand, it follows from HessΨ ≥ K that∫
M
Ψ dμt =

∫
M
Ψ(Tt) dμ0

≤
∫

M

{
(1− t)Ψ(T0) + tΨ(T1)−

K

2
(1− t)tdg(T0, T1)2

}
dμ0,
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and hence

H(2)
ϕ (μt) := −

∫
M
h′ϕ(σ) dμt(5.9)

≤ (1− t)H(2)
ϕ (μ0) + tH(2)

ϕ (μ1)−
K

2
(1− t)tW2(μ0, μ1)2.

Combining (5.8) with (5.9), we obtain the desired inequality (5.6).
Let us next consider the case where μ0 or μ1 has non-trivial singular part.

We may assume Lϕ <∞, otherwise (5.6) trivially holds by the definition of
h′ϕ(∞). Decompose μ0 and μ1 as μ0 = ρ0ω + μs

0 and μ1 = ρ1ω + μs
1, and

take an optimal coupling π of μ0 and μ1. Let p1, p2 :M ×M −→M denote
the projections to the first and second components. Now, π is decomposed
into four parts

π = πaa + πas + πsa + πss

such that (p1)�(πaa), (p1)�(πas), (p2)�(πaa) and (p2)�(πsa) are absolutely con-
tinuous and that (p1)�(πsa), (p1)�(πss), (p2)�(πas) and (p2)�(πss) are singu-
lar or null measures. We divide optimal transport between μ0 and μ1 into
two parts, corresponding to π − πss and πss. For μ̂0 := (p1)�(π − πss) and
μ̂1 := (p2)�(π − πss), Theorem 2.6 guarantees the existence of a geodesic

μ̂t ∈ (1− πss[M ×M ]) · P2ac(M,ω), t ∈ (0, 1),

(i.e., μ̂t[M ] = 1− πss[M ×M ]) such that μ̂t[MΨ
ϕ ] = μ̂t[M ]. Setting μ̂t = ρ̂tω,

we observe∫
M
hϕ(ρ̂t) dω ≤ (1− t)

∫
M
hϕ(ρ0) dω + t

∫
M
hϕ(ρ1) dω,

−
∫

M
h′ϕ(σ) dμ̂t ≤ −(1− t)

∫
M
h′ϕ(σ) dμ̂0 − t

∫
M
h′ϕ(σ) dμ̂1

− K

2
(1− t)t

∫
M×M

dg(x, y)2 d(π − πss)(x, y).

To be precise, in the first inequality, we used hϕ ≤ 0 along the transports
corresponding to πas and πsa. By Proposition 2.5, we find a minimal geodesic

μ̃t = ρ̃tω + μ̃s
t ∈ πss[M ×M ] · P2(M)
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from μ̃0 := (p1)�(πss) to μ̃1 := (p2)�(πss) realized through a family of
geodesics in MΨ

ϕ . Then the condition HessΨ ≥ K implies

−
∫

M
h′ϕ(σ) dμ̃t ≤ −(1− t)

∫
M
h′ϕ(σ) dμ̃0 − t

∫
M
h′ϕ(σ) dμ̃1

− K

2
(1− t)t

∫
M×M

dg(x, y)2 dπss(x, y).

We put μt := μ̂t + μ̃t and conclude that

Hϕ(μt) =
∫

M
hϕ(ρ̂t + ρ̃t) dω −

∫
M
h′ϕ(σ) dμt

≤
∫

M
hϕ(ρ̂t) dω −

∫
M
h′ϕ(σ) d(μ̂t + μ̃t)

≤ (1− t)Hϕ(μ0) + tHϕ(μ1)−
K

2
(1− t)tW2(μ0, μ1)2,

where we used the fact that hϕ is non-increasing (since Lϕ <∞) in the
second line. �

Remark 5.9. Recall that MΨ
ϕ =MΨ

ϕm
=M if lϕ = −∞ by definition (and

admissibility). Hence, the condition in (B) and (C) that suppμ0 and suppμ1
are connected in MΨ

ϕ is non-trivial only if lϕ > −∞. Even when lϕ > −∞,
Lemma 4.2(i) guarantees that MΨ

ϕ is totally convex if HessΨ ≥ K > 0.

In the limit case of N =∞ (m = 1), we can follow the proof of (A) ⇒
(C) using ψ(r) = erhϕ(e−r) as well as the concavity of log(Jω

t (x)). However,
the implication (B)⇒ (A) is not true. This is because the two weights f and
Ψ are synchronized as ν = e−f−Ψ volg and we can control only the behavior
of f +Ψ (see the proof of (B) ⇒ (A) sketched in the next subsection).

Instead, one can see from Theorem 5.2 that Ric∞ ≥ K (of (M,ω))
implies the λK,U -convexity of Uω for all U ∈ DC∞, where

λK,U := inf
r>0

K
rU ′(r)− U(r)

r
=

⎧⎨⎩
K limr↓0{rU ′(r)− U(r)}/r (K > 0),

0 (K = 0),
K limr→∞{rU ′(r)− U(r)}/r (K < 0)

([35, Theorem 7.3], [69, Theorem 30.5]).

6. Functional inequalities

If RicNϕ
≥ 0 and HessΨ ≥ K for some K > 0, then we can obtain variants

of the Talagrand inequality, the HWI inequality, the logarithmic Sobolev
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inequality and the global Poincaré inequality. These are derived from fun-
damental properties of convex functions along the lines of [53] and [35, Sec-
tion 6] (see also [51, Section 5] where we studied the special case of the
m-relative entropies). We will impose only the strictly weaker condition
HessHϕ ≥ K > 0 (for single ϕ) in the ϕ-Talagrand inequality for the use in
the next section.

For μ = ρω ∈ P2ac(M,ω) with μ[MΨ
ϕ ] = 1, we define the ϕ-relative Fisher

information with respect to ν = σω by

(6.1) Iϕ(μ) :=
∫

M
|∇[lnϕ(ρ)− lnϕ(σ)]|2 dμ =

∫
M

∣∣∣∣ ∇ρϕ(ρ)
+∇Ψ

∣∣∣∣2 dμ
provided that it is well-defined, otherwise we set Iϕ(μ) :=∞. This quantity
describes the directional derivatives of Hϕ as follows. (At this point the
treatment in [51] was somewhat too rough, the argument in the present
paper is correct.)

Proposition 6.1 (Directional derivatives of Hϕ). Let (M,ω, ϕ,Ψ) be
an admissible space with RicNϕ

≥ 0 and HessΨ ≥ K on MΨ
ϕ for some K ∈

R, and μ = ρω ∈ P2ac(M,ω) be such that μ[MΨ
ϕ ] = 1, Hϕ(μ) <∞, ρh′ϕ(ρ)−

hϕ(ρ) ∈ H1
loc(M) and that |∇ρ/ϕ(ρ) +∇Ψ| ∈ L2(M,μ). Take a minimal

geodesic (μt)t∈[0,1] ⊂ P2(M) emanating from μ0 = μ generated by a locally
semi-convex function φ :M −→ R as μt = (Tt)�μ with Tt(x) = expx(t∇φ(x)).
If θϕ < 1, then we further suppose that suppμ0 and suppμ1 are compact.
Then we have

(6.2) lim inf
t↓0

Hϕ(μt)−Hϕ(μ)
t

≥
∫

M

〈 ∇ρ
ϕ(ρ)

+∇Ψ,∇φ
〉
dμ.

Moreover, equality holds in (6.2) (with limt↓0 in place of lim inft↓0) if φ ∈
C∞c (M).

Proof. We first deduce equality in (6.2) for φ ∈ C∞c (M). Put μt = ρtω and
Jω

t := ef−f(Tt)det(DTt) as in the proof of Theorem 5.7. We follow the calcu-
lation in Theorem 5.7 and see

Hϕ(μt)−Hϕ(μ) =
∫

M

{
hϕ

(
ρ

Jω
t

)
Jω

t − hϕ(ρ)
}
dω

−
∫

M
{h′ϕ(σ ◦ Tt)− h′ϕ(σ)} dμ.
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By the convexity (5.7) of hϕ(ρ/Jω
t )J

ω
t in t and HessΨ ≥ K, we can apply

the monotone convergence theorem and obtain

lim
t↓0

Hϕ(μt)−Hϕ(μ)
t

=
∫

M
lim
t↓0

hϕ(ρ/Jω
t )J

ω
t − hϕ(ρ)
t

dω +
∫

M
〈∇Ψ,∇φ〉 dμ.

Note that, by using the weighted Laplacian Δω introduced at the beginning
of Section 8.3 below,

lim
t↓0

Jω
t − 1
t

= lim
t↓0

ef−f(Tt)det(DTt)− 1
t

= tr(Hessφ)− 〈∇φ,∇f〉

= Δφ− 〈∇φ,∇f〉 = Δωφ.

Thus, we have

lim
t↓0

hϕ(ρ/Jω
t )J

ω
t − hϕ(ρ)
t

= {hϕ(ρ)− h′ϕ(ρ)ρ} lim
t↓0

Jω
t − 1
t

= {hϕ(ρ)− h′ϕ(ρ)ρ
}
Δωφ.

Therefore, we conclude by the integration by parts for Δω (since φ ∈ C∞c (M))

lim
t↓0

Hϕ(μt)−Hϕ(μ)
t

=
∫

M
〈∇[h′ϕ(ρ)ρ− hϕ(ρ)] + ρ∇Ψ,∇φ〉 dω

=
∫

M

〈 ∇ρ
ϕ(ρ)

+∇Ψ,∇φ
〉
dμ.

In the case of φ 	∈ C∞c (M), we need to take care about the last step of
integration by parts. If θϕ ≥ 1 (equivalently, Nϕ ∈ [n,∞] ∩ (2,∞]), then we
can directly apply [69, Theorem 23.14] to see (6.2). For θϕ < 1, the same
proof (Step 3 in [69, Theorem 23.14]) still works provided that suppμ0 and
suppμ1 are compact. �

Remark 6.2. Let us add some more remarks on the case of θϕ < 1. A large
part of the proof of [69, Theorem 23.14] also works in this case (even with-
out the approximation procedure based on [69, Proposition 17.7]). Proposi-
tion 2.12(i) ensures lϕ > −∞, so that uϕ(r) ≥ lϕr for all r ≥ 0, and Lemma
2.9 shows

s

ϕ(s)
≤
(
s

t

)1−θϕ t

ϕ(t)
≤ t

ϕ(t)

for all 0 < s < t, which corresponds to [69, (23.52)] with A =∞ (hence
(23.53) and (23.54) are unnecessary). Note that p′(s) in [69] is s/ϕ(s) in
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our context. The only problem is that s/ϕ(s) is never bounded for large s,
as seen from the model case of s/ϕm(s) = sm−1 with m > 1. The bounded-
ness is used to guarantee p′(ρ) ∈ L2(M,μ), so that we can assume ρ/ϕ(ρ) ∈
L2(M,μ) instead of the compactness of suppμ0 ∪ suppμ1 in Proposition 6.1
above.

We assume ν[M ] = 1 by scaling (recall Remark 4.6), and prove functional
inequalities associated with Hϕ.

Theorem 6.3. Let (M,ω, ϕ,Ψ) be admissible with ν ∈ P2ac(M,ω). We set
Hν := Hϕ(ν) for brevity.

(i) (ϕ-Talagrand inequality) Suppose that HessHϕ ≥ K for some K > 0.
For any μ ∈ P2(M), we have

(6.3) W2(μ, ν) ≤
√

2
K
(Hϕ(μ)−Hν).

(ii) (ϕ-HWI, ϕ-logarithmic Sobolev inequalities) Assume RicNϕ
≥ 0 and

HessΨ ≥ K on MΨ
ϕ for some K > 0. Given μ = ρω ∈ P2ac(M) with

μ[MΨ
ϕ ] = 1 such that Hϕ(μ) <∞ and that ρ is locally Lipschitz, we

have

Hϕ(μ)−Hν ≤
√
Iϕ(μ) ·W2(μ, ν)−

K

2
W2(μ, ν)2,(6.4)

Hϕ(μ)−Hν ≤
1
2K

Iϕ(μ).(6.5)

(iii) (ϕ-global Poincaré inequality) Let (M, g) be compact and ϕ be C1, and
assume RicNϕ

≥ 0 and HessΨ ≥ K on MΨ
ϕ for some K > 0. Then for

any Lipschitz function w :MΨ
ϕ −→ R such that

∫
MΨ

ϕ
w dν = 0, we have

(6.6)
∫

MΨ
ϕ

w2σ

ϕ(σ)
dν ≤ 1

K

∫
MΨ

ϕ

∣∣∣∣∇( wσ

ϕ(σ)

)∣∣∣∣2 dν.
Proof. We first remark that MΨ

ϕ is totally convex if HessΨ ≥ K > 0 (see
Lemma 4.2 and Remark 5.9 as well). Thus MΨ

ϕ is totally convex in (ii)
and (iii).

(i) There is nothing to prove if Hϕ(μ) =∞, so that we assume Hϕ(μ) <
∞. By the hypothesis HessHϕ ≥ K, there is a minimal geodesic
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(μt)t∈[0,1] ⊂ P2(M) from μ0 = μ to μ1 = ν such that

(6.7) 0 ≤ Hϕ(μt)−Hν ≤ (1− t)Hϕ(μ)− (1− t)Hν −
K

2
(1− t)tW2(μ, ν)2

for all t ∈ [0, 1]. Dividing both sides with 1− t and letting t go to 1,
we obtain the desired inequality (6.3).

(ii) As the case of Iϕ(μ) =∞ is trivial, we assume Iϕ(μ) <∞. For the min-
imal geodesic (μt)t∈[0,1] from μ0 = μ to μ1 = ν, Theorem 2.6 ensures
that μt ∈ P2ac(M,ω) for all t ∈ [0, 1] and there is a locally semi-convex
function φ such that μt = (Tt)�μ with Tt(x) = expx(t∇φ(x)). Due to
(6.7), we have

(6.8)
Hϕ(μt)−Hϕ(μ)

t
≤ −Hϕ(μ) +Hν −

K

2
(1− t)W2(μ, ν)2.

Moreover, Proposition 6.1 shows that

lim inf
t↓0

Hϕ(μt)−Hϕ(μ)
t

≥
∫

M
〈∇[lnϕ(ρ)− lnϕ(σ)],∇φ〉 dμ.

We remark that MΨ
ϕ is bounded if θϕ < 1 (by Proposition 2.12(i) and

Lemma 4.2(i)), so that Proposition 6.1 is certainly available. We obtain
from the Cauchy–Schwarz inequality that

lim inf
t↓0

Hϕ(μt)−Hϕ(μ)
t

≥ −
(∫

M
|∇[lnϕ(ρ)− lnϕ(σ)]|2 dμ

)1/2(∫
M
|∇φ|2 dμ

)1/2
= −

√
Iϕ(μ) ·W2(μ, ν),

where the last equality follows from

|∇φ(x)| = dg

(
x, expx(∇φ)

)
= dg

(
T0(x), T1(x)

)
μ-a.e. x.

Combining this with (6.8), we obtain (6.4). By completing the square,
we deduce (6.5) from (6.4) as√

Iϕ(μ) ·W2(μ, ν)−
K

2
W2(μ, ν)2

= −K
2

(
W2(μ, ν)−

1
K

√
Iϕ(μ)

)2
+
Iϕ(μ)
2K

≤ Iϕ(μ)
2K

.
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(iii) For small ε > 0, we put μ = ρω := (1 + εw)σω. We remark that Hϕ(μ)
and Iϕ(μ) are finite as M is compact. It follows from (6.5) that∫

MΨ
ϕ

{uϕ(ρ)− uϕ(σ)− u′ϕ(σ)(ρ− σ)} dω

≤ 1
2K

∫
MΨ

ϕ

|∇[lnϕ(ρ)− lnϕ(σ)]|2 dμ.

On the one hand, we have by expansion

uϕ(ρ)− uϕ(σ)− u′ϕ(σ)(ρ− σ) =
(ρ− σ)2

2
u′′ϕ(σ) +O

(
(ρ− σ)3

)
=
ε2w2σ2

2ϕ(σ)
+O(ε3),

where O(ε3) is uniform on M (for fixed w) thanks to the compactness
of M . On the other hand, it holds

|∇[lnϕ(ρ)− lnϕ(σ)]|2 =
∣∣∇[(ρ− σ) ln′ϕ(σ) +O

(
(ρ− σ)2

)]∣∣2
=
∣∣∣∣∇( εwσϕ(σ)

)
+O(ε2)

∣∣∣∣2 = ε2
∣∣∣∣∇( wσ

ϕ(σ)

)∣∣∣∣2 +O(ε3).

Thus we have, letting ε go to zero,∫
MΨ

ϕ

w2σ

ϕ(σ)
dν =

∫
MΨ

ϕ

w2σ2

ϕ(σ)
dω ≤ 1

K

∫
MΨ

ϕ

∣∣∣∣∇( wσ

ϕ(σ)

)∣∣∣∣2 dν. �

The ϕ-Talagrand inequality (6.3) is regarded as a comparison between
the distance functions appearing in Wasserstein geometry and informa-
tion geometry, since the square root of the Bregman divergence behaves
like a distance function (see Subsection 2.3). Note that, in the ϕ-global
Poincaré inequality (6.6), the usual global Poincaré inequality

∫
M w2 dν ≤

K−1 ∫
M |∇w|2 dν is indeed recovered when ϕ(s) = ϕ1(s) = s. Other inequal-

ities are also clearly reduced to the usual ones for ϕ = ϕ1.

7. Concentration of measures

The aim of this section is to derive the concentration of measures from the
ϕ-Talagrand inequality (6.3). Let us assume ν[M ] = 1 (see Remark 4.6) and
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define the concentration function by

α(r) = α(M,ν)(r) := sup
{
1− ν[B(A, r)] |A ⊂M : measurable, ν[A] ≥ 1/2

}
for r > 0, where B(A, r) := {y ∈M | infx∈A dg(x, y) < r}. The function α
describes how the probability measure ν is concentrating on the neighbor-
hood of an arbitrary set A of half the total measure in a quantitative way (in
other words, a kind of large (or moderate) deviation principle). Equivalently,
α measures how any 1-Lipschitz function is close to the constant function
at its mean. We refer to the excellent book [32] for an introduction to the
concentration of measure phenomenon.

In the classical case of ϕ1(s) = s, the Talagrand inequality (6.3) implies
the normal concentration α(r) ≤ C exp(−cr2) or equivalently α(r)−1 ≥
C−1 exp(cr2) with constants c, C > 0 depending only on K (see [32, Sec-
tion 6.1]). For general ϕ, we will similarly derive from (6.3) the m-normal
concentration involving the m-exponential function em (see Subsection 2.4).
Precisely, we have α(r) ≤ Cem(−cr2) with m = m(ϕ) ≤ 2− θϕ if θϕ > 1,
and α(r)−1 ≥ C−1em(cr2) withm = m(ϕ) ≥ 2− θϕ if θϕ ≤ 1 (Theorem 7.9).

7.1. General estimate

For each measurable set A ⊂M with 0 < ν[A] <∞, denote the normalized
restriction of ν on A by

νA :=
χA

ν[A]
ν ∈ Pac(M,ω).

To analyze its entropy Hϕ(νA), we introduce the function

U(ξ, t) := uϕ

(
ξ

t

)
− ξ

t
lnϕ(ξ), (ξ, t) ∈ (0,∞)× (0, 1].

Note that Hϕ(νA) =
∫
A U(σ, ν[A]) dω. Precisely, we can set U(σ, ν[A]) := 0

on M \MΨ
ϕ thanks to the following lemma.

Lemma 7.1. If θϕ < 2, then we have limξ↓0 U(ξ, t) = 0 for every t ∈ (0, 1].



732 Shin-Ichi Ohta and Asuka Takatsu

Proof. Note that

U(ξ, t) =
∫ ξ/t

0
{lnϕ(s)− lnϕ(ξ)} ds =

∫ ξ/t

0

∫ s

ξ

1
ϕ(r)

dr ds(7.1)

= −
∫ ξ

0

∫ ξ

s

1
ϕ(r)

dr ds+
∫ ξ/t

ξ

∫ s

ξ

1
ϕ(r)

dr ds

= −
∫ ξ/t

0

r

ϕ(r)
dr +

ξ

t

∫ ξ/t

ξ

1
ϕ(r)

dr.

Then (2.1) (deduced from Theorem 3.5) shows the claim. �

Lemma 7.2. Assume θϕ < 2. For any measurable set A with ν[A] ≥ 1/2,
we have Hϕ(νA) ≤ 0. In particular, it holds Hϕ(ν) ≤ 0 if ν[M ] = 1.

Proof. For any ξ > 0, U(ξ, t) is non-increasing in t ∈ (0, 1] since we have

∂U

∂t
(ξ, t) = − ξ

t2
lnϕ

(
ξ

t

)
+
ξ

t2
lnϕ(ξ) =

ξ

t2

∫ ξ

ξ/t

1
ϕ(s)

ds ≤ 0.

Similarly, U(ξ, 1/2) is non-increasing in ξ due to

dU

dξ

(
ξ,
1
2

)
= 2 lnϕ(2ξ)− 2 lnϕ(ξ)−

2ξ
ϕ(ξ)

= 2
∫ 2ξ

ξ

(
1

ϕ(s)
− 1
ϕ(ξ)

)
ds ≤ 0.

Thus, we deduce from Lemma 7.1 that, for any ξ > 0 and t ≥ 1/2,

U(ξ, t) ≤ U(ξ, 1/2) ≤ lim
ξ↓0

U(ξ, 1/2) = 0,

which shows Hϕ(νA) =
∫
A U(σ, ν[A]) dω ≤ 0. �

Next, we give an estimate on Hϕ(νB) for B ⊂M not necessarily ν[B] ≥
1/2. Recall (2.4) for the definition of δϕ.

Lemma 7.3. Assume θϕ < 2 and ‖σ‖∞ <∞. Given any measurable set
B ⊂M with 0 < ν[B] <∞ and any ξ0 ≥ max{ν[B], ‖σ‖∞}, we have

(7.2) Hϕ(νB) ≤ −ν[B]δϕ−2 lnϕ(ν[B])ξ
θϕ−δϕ

0

∫
B
σ2−θϕ dω.
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Proof. For t, ξ ∈ (0, ξ0], we deduce from (7.1) that

U(ξ, t) ≤ ξ

t

∫ ξ/t

ξ

1
ϕ(r)

dr =
ξ2

t2

∫ 1

t

1
ϕ(sξt−1)

ds,

where we changed the variables as r = sξt−1. Note that Lemma 2.9 shows
that for all s > 0

ξ2

ϕ(sξt−1)
≤ ξ2−θϕξ

θϕ

0

ϕ(sξ0t−1)
≤ ξ2−θϕξ

θϕ

0

ϕ(s)

(
ξ0
t

)−δϕ

.

Thus, we find

U(ξ, t) ≤ −tδϕ−2 lnϕ(t)ξ
θϕ−δϕ

0 ξ2−θϕ .

This implies

Hϕ(νB) =
∫

B
U(σ, ν[B]) dω ≤ −ν[B]δϕ−2 lnϕ(ν[B])ξ

θϕ−δϕ

0

∫
B
σ2−θϕ dω

as desired. �

We remark that, if δϕ ≤ 2, then we have at any s ∈ (0, 1)

d

ds

[
sδϕ−2 lnϕ(s)

]
= sδϕ−3

{
(δϕ − 2) lnϕ(s) +

s

ϕ(s)

}
> 0.

Therefore the right-hand side of (7.2) is non-increasing in ν[B] provided that
ν is a probability measure.

Now we show a general estimate of α(r) under the strict convexity ofHϕ.

Proposition 7.4. Assume that (M,ω, ϕ,Ψ) is admissible, ν ∈ Pac(M,ω),
HessHϕ ≥ K for some K > 0 and that ‖σ‖∞ <∞. We set Hν := Hϕ(ν) (≤
0) as in Theorem 6.3. Then, for any ξ0 ≥ max{1/2, ‖σ‖∞} and any r > 0
with α(r) > 0, we have

α(r)δϕ−2 lnϕ

(
α(r)

)
ξ
θϕ−δϕ

0 · sup
A

∫
B
σ2−θϕ dω ≤ −

(√
K

2
r −

√
−Hν

)2
−Hν ,

(7.3)

where A ⊂M runs over all measurable sets of ν[A] ≥ 1/2 and we set B :=
M \B(A, r).
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Proof. Since α(r) ≤ 1 by definition, the left hand side of (7.3) is always non-
positive. Therefore, the assertion is clear if r2 ≤ −8Hν/K. Suppose r2 >
−8Hν/K, take a measurable set A ⊂M with ν[A] ≥ 1/2 and put B :=M \
B(A, r). We also assume ν[B] > 0 since we have α(r) = 0 if ν[B] = 0 for all
such A.

Observe that W1(νA, νB) ≥ r as dg(x, y) ≥ r for all x ∈ A and y ∈ B.
Note also that W1 ≤W2 holds by the Cauchy–Schwarz inequality. Then the
triangle inequality for W1 and the ϕ-Talagrand inequality (6.3) yield

r ≤W1(νA, νB) ≤W1(νA, ν) +W1(ν, νB)

≤
√

2
K
(Hϕ(νA)−Hν) +

√
2
K
(Hϕ(νB)−Hν).

Applying Lemma 7.2 gives, as r2 > −8Hν/K ensures
√
K/2r ≥

√
−Hν ,

Hϕ(νB) ≥
(√

K

2
r −

√
−Hν

)2
+Hν .

Since A is arbitrary and ν[B] ≤ 1/2 ≤ ξ0, combining the above estimate with
Lemma 7.3 yields

−
(√

K

2
r −

√
−Hν

)2
−Hν ≥ sup

A

{
ν[B]δϕ−2 lnϕ(ν[B])ξ

θϕ−δϕ

0

∫
B
σ2−θϕ dω

}
≥ α(r)δϕ−2 lnϕ

(
α(r)

)
ξ
θϕ−δϕ

0 · sup
A

∫
B
σ2−θϕ dω.

�

7.2. Concentration of measures

We shall obtain the concentration of {(M,ω, ϕ,Ψi)}i∈N, limi→∞ α(M,νi)(r) =
0 for all r > 0 with νi := expϕ(−Ψi)ω, under an appropriate condition on
the convexity of Hϕ associated with Ψi. We first prove an auxiliary lemma.

Lemma 7.5. Assume that (M,ω, ϕ,Ψ) is admissible, ν ∈ Pac(M,ω) and
that ‖σ‖∞ <∞. Set Hν := Hϕ(ν) and take arbitrary ξ0 ≥ ‖σ‖∞.

(i) If θϕ ≤ 1, then we have∫
M
σ2−θϕ dω ≤ ξ

1−θϕ

0 , Hν ≥ −
ξ0

(2− θϕ)ϕ(ξ0)
.
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(ii) If θϕ ∈ (1, 3/2) and ω[M ] <∞, then we have

∫
M
σ2−θϕ dω ≤ ω[M ]θϕ−1, Hν ≥ −

ξ
θϕ

0 ω[M ]θϕ−1

(2− θϕ)ϕ(ξ0)
.

Proof. It follows from (7.1) and Lemma 2.9 that

Hν =
∫

M
U(σ, 1) dω ≥ −

∫
M

∫ σ

0

r

ϕ(r)
drdω ≥ −

∫
M

∫ σ

0

ξ
θϕ

0 r
1−θϕ

ϕ(ξ0)
drdω

= − ξ
θϕ

0

ϕ(ξ0)

∫
M

σ2−θϕ

2− θϕ
dω.

(i) The assertion immediately follows from

∫
M
σ2−θϕ dω ≤ ‖σ‖1−θϕ

∞

∫
M
σ dω ≤ ξ

1−θϕ

0 .

(ii) The Hölder inequality yields that

∫
M
σ2−θϕ dω ≤

(∫
M
σ dω

)2−θϕ

ω[M ]θϕ−1 = ω[M ]θϕ−1,

which shows the claim. �

Theorem 7.6. Let {(M,ω, ϕ,Ψi)}i∈N be a sequence of admissible spaces
satisfying

(a) ω[M ] <∞ if θϕ > 1,

(b) νi = σiω := expϕ(−Ψi)ω ∈ Pac(M,ω) for all i,

(c) ξi := max{1, ‖σi‖∞} <∞ for all i,

(d) HessH i
ϕ ≥ Ki for some Ki > 0, where H i

ϕ is the ϕ-relative entropy for
(M,ω, ϕ,Ψi),

(e) limi→∞Kiξ
δϕ−1
i =∞ if θϕ ≤ 1, and limi→∞Kiξ

δϕ−θϕ

i =∞ if θϕ > 1.

Then the concentration function αi(r) := α(M,νi)(r) satisfies limi→∞ αi(r) =
0 for all r > 0.
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Proof. Fix r > 0 and put αi := αi(r) andHνi
:= H i

ϕ(νi) for brevity. It follows
from Proposition 7.4 that

α
δϕ−2
i lnϕ(αi)ξ

θϕ−δϕ

i ≤ −
{(√

Ki

2
r −

√
−Hνi

)2
+Hνi

}(∫
M
σ
2−θϕ

i dω

)−1
.

We have lnϕ(αi) ≥ �2−θϕ
(αi) by (2.9), so that

(7.4)

α
δϕ−2
i �2−θϕ

(αi) ≤ −ξδϕ−θϕ

i

(
Ki

2
r2 −

√
2Ki

√
−Hνi

r

)(∫
M
σ
2−θϕ

i dω

)−1
.

Now, for θϕ ≤ 1, Lemma 7.5(i) and Lemma 2.9 yield∫
M
σ
2−θϕ

i dω ≤ ξ
1−θϕ

i , Hνi
≥ − ξi

(2− θϕ)ϕ(ξi)
≥ − ξ

1−δϕ

i

2− θϕ

since ξi ≥ 1. Hence, the right-hand side of (7.4) is bounded from above by
(for large i)

−ξδϕ−1
i

(
Ki

2
r2 −

√
2Ki

√
ξ
1−δϕ

i

2− θϕ
r

)
= − Ki

ξ
1−δϕ

i

(
r2

2
−

√
2

2− θϕ

ξ
1−δϕ

i

Ki
r

)
which diverges to −∞ as i goes to infinity due to the condition (e). Therefore
we obtain

lim
i→∞

α−2i �2−θϕ
(αi) ≤ lim

i→∞
α

δϕ−2
i �2−θϕ

(αi) = −∞,

and hence limi→∞ αi = 0.
For θϕ > 1, we similarly deduce from Lemma 7.5(ii) that∫

M
σ
2−θϕ

i dω ≤ ω[M ]θϕ−1, Hνi
≥ − ξ

θϕ

i ω[M ]θϕ−1

(2− θϕ)ϕ(ξi)
≥ −ξ

θϕ−δϕ

i ω[M ]θϕ−1

2− θϕ
.

Hence, the right-hand side of (7.4) is bounded from above by

− ξ
δϕ−θϕ

i

ω[M ]θϕ−1

(
Ki

2
r2 −

√
2Ki

√
ξ
θϕ−δϕ

i ω[M ]θϕ−1

2− θϕ
r

)

= −Kiξ
δϕ−θϕ

i

ω[M ]θϕ−1

(
r2

2
−

√
2ω[M ]θϕ−1

2− θϕ

ξ
θϕ−δϕ

i

Ki
r

)
→ −∞ (i→∞).

Thus, we have limi→∞ αi = 0. �
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Remark 7.7. (1) For ϕm with m < 1, we have θϕm
= δϕm

and hence the
condition (e) is reduced to limi→∞Ki =∞, whereas the condition ‖σi‖∞ <
∞ was implicitly used in our discussion. See [51, Section 6] for a more precise
estimate associated with ϕm without assuming ‖σi‖∞ <∞.

(2) We stress that only HessH i
ϕ ≥ Ki for single ϕ is assumed in The-

orem 7.6, rather than RicNϕ
≥ 0 and HessΨi ≥ Ki. If HessΨi ≥ Ki and

lϕ > −∞, then Lemma 4.2(i) gives a stronger estimate on the diameter of
MΨi

ϕ as

diamMΨi
ϕ ≤ 2

√
2
Ki
{lnϕ(‖σi‖∞)− lϕ} ≤ 2

√
2
Ki
{lnϕ(ξi)− lϕ}.

Indeed, we observe from (2.9) and Lemma 2.9 that

lnϕ(ξi)
Ki

≤ ξ
θϕ

i �2−θϕ
(ξi)

Kiϕ(ξi)
≤ ξ

θϕ−δϕ

i �2−θϕ
(ξi)

Ki
=
ξ
θϕ−δϕ

i (ξ1−θϕ

i − 1)
Ki(1− θϕ)

,

provided that θϕ 	= 1. If θϕ < 1, then the leading term (as ξi →∞) is

1
1− θϕ

ξ
1−δϕ

i

Ki
→ 0 (i→∞)

under the condition (e) in Theorem 7.6. Similarly, for θϕ > 1 the leading
term is

1
θϕ − 1

ξ
θϕ−δϕ

i

Ki
→ 0 (i→∞).

Therefore, in both cases, limi→∞ diamMΨi
ϕ = 0 holds and it is obviously

stronger than limi→∞ α(M,νi)(r) = 0.

7.3. m(ϕ)-normal concentration

In order to derive the m-normal concentration for some m = m(ϕ) from
the general estimate (7.3), we prove a computational lemma on em (see
also [51, Lemma 6.4]). Recall from Section 2.4 that em(τ) = expϕm

(τ) =
[1 + (m− 1)τ ]1/(m−1)+ .
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Lemma 7.8. (i) Given 0 < m ≤ m′ < 1 with m+m′ > 1, set

β = β(m,m′) = 1 +
1−m′
1−m ∈ (1, 2].

Then we have βm′ > 1 and, for any a, r > 0,

em

(
−
(
ar − 1√

m′

)2
+

1
m′

)
≤ em(β)em

(
−
(
1− 1

βm′

)
a2r2

m+m′ − 1

)
.

(ii) For any m ∈ [1, 2) and a, r > 0, we have

em
(
(ar − 1)2 − 1

)
≥ em

(
− 2
m

)
em

(
a2

2
r2
)
.

Proof. (i) Note that the assumptions m′ < 1 and m+m′ > 1 yield
(m+m′)(1−m′) > (1−m′), and hence

βm′ =
m′{2− (m+m′)}

1−m =
(m′ +m)(1−m′) +m′ −m

1−m
>
1−m′ +m′ −m

1−m = 1.

From the direct calculation

−
(
ar − 1√

m′

)2
+

1
m′

= −a2r2 + 2ar√
m′
≤ −a2r2 + a2r2

βm′
+ β

and the monotonicity of em, we deduce that

em

(
−
(
ar − 1√

m′

)2
+

1
m′

)
≤ em

(
−
(
1− 1

βm′

)
a2r2 + β

)
=
[
1 + (m− 1)

{
−
(
1− 1

βm′

)
a2r2 + β

}]1/(m−1)
= {1 + (m− 1)β}1/(m−1)

{
1− (m− 1)

(
1− 1

βm′

)
a2r2

m+m′ − 1

}1/(m−1)
.

(ii) The assertion for m = 1 (with e1(τ) = eτ ) is easily checked. For m ∈
(1, 2), we deduce from

(ar − 1)2 − 1 = a2r2 − 2ar ≥ a2r2 − m

2

{
a2r2 +

(
2
m

)2}
=
(
1− m

2

)
a2r2 − 2

m
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that

em
(
(ar − 1)2 − 1

)
≥ em

((
1− m

2

)
a2r2 − 2

m

)
=
[
1 + (m− 1)

{(
1− m

2

)
a2r2 − 2

m

}]1/(m−1)
=
{
1− (m− 1)

2
m

}1/(m−1){
1 +

m− 1
2

ma2r2
}1/(m−1)

= em

(
− 2
m

)
em

(
ma2

2
r2
)
≥ em

(
− 2
m

)
em

(
a2

2
r2
)
.

�

Theorem 7.9 (m(ϕ)-normal concentration). Assume that (M,ω, ϕ,Ψ)
is admissible, ν ∈ Pac(M,ω), HessHϕ ≥ K for some K > 0 and that ‖σ‖∞ <
∞. Fix arbitrary ξ0 ≥ max{1, ‖σ‖∞}.

(i) If θϕ < 1 and δϕ > 0, then we have for any r > 0

α(r)−1 ≥
{

δϕ(1− θϕ)
(1− δϕ)(2− δϕ)

}1/(1−δϕ)

· e2−δϕ

(
K

4
ξ
δϕ−1
0 r2

)
.

(ii) If θϕ ∈ (1, 3/2), δϕ > 3(θϕ − 1) and if ω[M ] <∞, then we have for any
r > 0

α(r) ≤
(
(θϕ − 1)(3− 3θϕ + δϕ)

2θϕ − δϕ − 1

)}1/(1−2θϕ+δϕ)

× e2(1−θϕ)+δϕ

(
−K
2

θϕ − 1
(2− θϕ)(3θϕ − δϕ − 2)

ξ
δϕ−θϕ

0 ω[M ]1−θϕr2
)
.

(iii) If θϕ = 1 and δϕ > 1/2, then we have for any r > 0

α(r)−1 ≥ e3−2δϕ

( −2
3− 2δϕ

)
· e3−2δϕ

(
K

4
ξ
δϕ−1
0 r2

)
.

Proof. We abbreviate α(r) as α in this proof, and assume α > 0 without
loss of generality. Let A ⊂M be a measurable set of ν[A] ≥ 1/2 and put
B :=M \B(A, r).
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(i) We first observe∫
B
σ2−θϕ dω ≤ ‖σ‖1−θϕ

∞

∫
B
σ dω ≤ αξ

1−θϕ

0 .

Then (7.3) yields

(7.5) αδϕ−1 lnϕ(α) ≤ ξ
δϕ−1
0

{
−
(√

K

2
r −

√
−Hν

)2
−Hν

}
,

where Hν := Hϕ(ν). On the one hand, it follows from (2.9) that

αδϕ−1 lnϕ(α) ≥ αδϕ−1�2−θϕ
(α) =

αδϕ−θϕ − αδϕ−1

1− θϕ
.

Since αδϕ−θϕ ≥ 1 ≥ (1− θϕ)/(1− δϕ), we obtain

αδϕ−1 lnϕ(α) ≥
1− (Cα−1)1−δϕ

1− δϕ
= −�2−δϕ

(Cα−1),

C :=
(
1− δϕ
1− θϕ

)1/(1−δϕ)

≥ 1.

On the other hand, Lemmas 7.5(i) and 2.9 give

(7.6) −ξδϕ−1
0 Hν ≤

ξ
δϕ

0

(2− θϕ)ϕ(ξ0)
≤ 1
2− θϕ

≤ 1.

Hence, we have

�2−δϕ
(Cα−1) ≥

⎛⎝
√
Kξ

δϕ−1
0

2
r − 1

⎞⎠2

− 1.

We apply Lemma 7.8(ii) and obtain

α−1 ≥ C−1e2−δϕ

⎛⎝(√K

2
ξ
(δϕ−1)/2
0 r − 1

)2

− 1

⎞⎠
≥ C−1e2−δϕ

(
2

δϕ − 2

)
e2−δϕ

(
K

4
ξ
δϕ−1
0 r2

)
=
{

δϕ(1− θϕ)
(1− δϕ)(2− δϕ)

}1/(1−δϕ)

· e2−δϕ

(
K

4
ξ
δϕ−1
0 r2

)
.
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(ii) We deduce from the Hölder inequality that

∫
B
σ2−θϕ dω ≤

(∫
B
σ dω

)2−θϕ

ω[B]θϕ−1 ≤ α2−θϕω[M ]θϕ−1.

Then (7.3) gives

αδϕ−θϕ lnϕ(α) ≤ ξ
δϕ−θϕ

0 ω[M ]1−θϕ

{
−
(√

K

2
r −

√
−Hν

)2
−Hν

}
.

Set m := 2(1− θϕ) + δϕ and m′ := 2− θϕ, and observe 0 < m ≤
m′ < 1 as well as m+m′ > 1. Similarly to (i), (2.9) yields

αδϕ−θϕ lnϕ(α) ≥ αδϕ−θϕ�2−θϕ
(α) =

αδϕ−2θϕ+1 − αδϕ−θϕ

1− θϕ
=
αm−1 − αm−m′

m′ − 1
.

As αm−m′ ≥ 1 ≥ (1−m′)/(1−m), we find

αδϕ−θϕ lnϕ(α) ≥
(cα)m−1 − 1

m− 1
= �m(cα), c :=

(
1−m
1−m′

)1/(m−1)
≤ 1.

Lemmas 7.5(ii) and 2.9 imply

−ξδϕ−θϕ

0 ω[M ]1−θϕHν ≤
ξ
δϕ

0

(2− θϕ)ϕ(ξ0)
≤ 1
2− θϕ

=
1
m′
,

and hence

�m(cα) ≤ −

⎛⎝
√
Kξ

δϕ−θϕ

0 ω[M ]1−θϕ

2
r − 1√

m′

⎞⎠2

+
1
m′
.

Then we apply Lemma 7.8(i) to have, with β = (2−m−m′)/(1−m),

α ≤ c−1em(β)em

(
−
(
1− 1

βm′

)
Kξ

δϕ−θϕ

0 ω[M ]1−θϕ

2(m+m′ − 1)
r2

)
.
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(iii) It immediately follows from (7.5) and (7.6) that

αδϕ−1 lnϕ(α) ≤ ξ
δϕ−1
0

⎧⎨⎩−
(√

K

2
r −

√
−Hν

)2

−Hν

⎫⎬⎭
≤ −

⎛⎝
√
Kξ

δϕ−1
0

2
r − 1

⎞⎠2

+ 1.

Note that (2.9) provides αδϕ−1 lnϕ(α) ≥ αδϕ−1 ln(α). If δϕ = 1, then it
holds αδϕ−1 ln(α) = − ln(α−1). Otherwise, the numerical estimate

ln(t) ≥ ts − t−s

2s
for t ∈ (0, 1], s > 0,

shows αδϕ−1 ln(α) ≥ −�3−2δϕ
(α−1) (let s = 1− δϕ and t = α). There-

fore we have, thanks to Lemma 7.8(ii) with m = 3− 2δϕ < 2,

α−1 ≥ e3−2δϕ

⎛⎜⎝
⎛⎝
√
Kξ

δϕ−1
0

2
r − 1

⎞⎠2

− 1

⎞⎟⎠
≥ e3−2δϕ

( −2
3− 2δϕ

)
· e3−2δϕ

(
K

4
ξ
δϕ−1
0 r2

)
.

�
Note that 3(θϕ − 1) < θϕ in (ii) by θϕ < 3/2, so that the condition δϕ >

3(θϕ − 1) is not vacuous.

Remark 7.10. Letting δϕ = θϕ and then θϕ → 1, we see that all of the
estimates (i)–(iii) in Theorem 7.9 tend to the normal concentration α(r) ≤ e2

exp(−Kr2/4).

8. Gradient flow of Hϕ: compact case

In this and the next sections, we show that the gradient flow of the ϕ-relative
entropy produces weak solutions to the non-linear evolution equation

∂ρ

∂t
= divω

(
ρ∇ρ
ϕ(ρ)

+ ρ∇Ψ
)

on the weighted Riemannian manifold (M,ω). See the beginning of Sec-
tion 8.3 for more explanation and background. This kind of interpretation
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of evolution equations has turned out extremely useful after the pioneer-
ing work due to Jordan et al. [30]. There are several ways of interpreting
this coincidence. In this section, we adapt the rather “metric geometric”
approach developed in [44] inspired by [36, 54] (see also [55]). This formula-
tion of gradient flows requires a strong structure theorem (Theorem 8.1) of
the Wasserstein space, which is known only for compact spaces. The non-
compact situation will be treated in the next section in a different strategy
along [5, 22].

Before beginning the review of the structure of Wasserstein spaces, let us
recall basic notions of calculus on our weighted Riemannian manifold (M,ω)
with ω = e−f volg. For a differentiable vector field V on M , the weighted
divergence is defined as

divω V := div V − 〈V,∇f〉,

where div V denotes the usual divergence of V for the unweighted space
(M, volg). Note that divω V = ef div(e−fV ) and, for any w ∈ C1

c (M), the
integration by parts holds:∫

M
〈∇w, V 〉 dω =

∫
M
〈∇w, e−fV 〉 dvolg = −

∫
M
w div(e−fV ) dvolg

= −
∫

M
w divω V dω.

Through this formula, the weighted divergence is defined in the weak sense
also for measurable vector fields. For ρ ∈ H1

loc(M), the weighted Laplacian
is defined in the weak form by

Δωρ := divω(∇ρ) = Δρ− 〈∇ρ,∇f〉.

8.1. Geometric structure of (P(M), W2)

Let M be compact throughout the section, so that P(M) = P2(M). It is
known that (P(M),W2) is an Alexandrov space of non-negative curvature
if and only if (M, g) has the non-negative sectional curvature ([62, Proposi-
tion 2.10], [35, Theorem A.8]). Alexandrov spaces are metric spaces whose
sectional curvature is bounded from below by a constant in the sense of the
triangle comparison property, and such spaces are known to possess nice
infinitesimal structures (we refer to [13] for the basic theory). We remark
that it is in most cases impossible to bound the curvature of P(M) from
above (cf. [5, Example 7.3.3]). In the case where (M, g) is not non-negatively



744 Shin-Ichi Ohta and Asuka Takatsu

curved, although (P(M),W2) does not admit any lower curvature bound in
the sense of Alexandrov ( [62, Proposition 2.10]), we can consider the “angle”
between geodesics (see also [44, Theorem 3.6]).

Theorem 8.1 [26, Theorem 3.4, Remark 3.5]. For any μ ∈ P(M) and
unit speed geodesics α, β : [0, δ) −→ P(M) with α(0) = β(0) = μ, the joint
limit

lim
s,t↓0

s2 + t2 −W2(α(s), β(t))2

2st
∈ [−1, 1]

exists.

Theorem 8.1 in particular guarantees that the scaling limit

lim
ε↓0

(sε)2 + (tε)2 −W2(α(sε), β(tε))2

2stε2

exists, and is independent of the choices of the parameters s, t > 0. This
means that an angle between α and β makes sense, so that (P(M),W2)
looks like a Riemannian space (rather than a Finsler space). This observation
makes it possible to investigate the infinitesimal structure of (P(M),W2) in
the manner of the theory of Alexandrov spaces. For μ ∈ P(M), denote by
Σ′μ[P(M)] the set of all non-trivial unit speed minimal geodesics emanating
from μ. Given α, β ∈ Σ′μ[P(M)], Theorem 8.1 verifies that the angle

∠μ(α, β) := arccos
(
lim
s,t↓0

s2 + t2 −W2(α(s), β(t))2

2st

)
∈ [0, π]

is well-defined. We define the space of directions (Σμ[P(M)],∠μ) as the com-
pletion of (Σ′μ[P(M)]/∼,∠μ), where α ∼ β holds if ∠μ(α, β) = 0. The angle
∠μ provides a natural distance structure of Σμ[P(M)]. The tangent cone
(Cμ[P(M)], σμ) is defined as the Euclidean cone over (Σμ[P(M)],∠μ), i.e.,

Cμ[P(M)] :=
(
Σμ[P(M)]× [0,∞)

)/(
Σμ[P(M)]× {0}

)
,

σμ

(
(α, s), (β, t)

)
:=

√
s2 + t2 − 2st cos∠μ(α, β).

By means of this infinitesimal structure, we introduce a class of “differen-
tiable curves.”

Definition 8.2 (Right differentiability). A curve ξ : [0, l) −→ P(M) is
said to be right differentiable at t ∈ [0, l) if there is v ∈ Cξ(t)[P(M)] such
that, for any sequences {εi}i∈N of positive numbers tending to zero and
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{αi}i∈N of unit speed minimal geodesics from ξ(t) to ξ(t+ εi), the sequence
{(αi,W2(ξ(t), ξ(t+ εi))/εi)}i∈N ⊂ Cξ(t)[P(M)] converges to v. Such v is
clearly unique if it exists, and then we write ξ̇(t) = v.

8.2. Gradient flows in (P(M), W2)

Consider a lower semi-continuous function H : P(M) −→ (−∞,+∞] which
is K-convex in the weak sense for some K ∈ R. In addition, we suppose that
H is not identically +∞, and define P∗H(M) := {μ ∈ P(M) |H(μ) <∞}.

Given μ ∈ P∗H(M) and α ∈ Σμ[P(M)], we set

DμH(α) := lim inf
Σ′

μ[P(M)]
β→α
lim
t↓0

H(β(t))−H(μ)
t

,

where the convergence β → α is with respect to ∠μ. Define the absolute
gradient (also called the local slope) of H at μ ∈ P∗H(M) by

|∇−H|(μ) := max
{
0, lim sup

μ̃→μ

H(μ)−H(μ̃)
W2(μ, μ̃)

}
,

where μ̃→ μ is with respect to W2. Note that −DμH(α) ≤ |∇−H|(μ) for
any α ∈ Σμ[P(M)]. The K-convexity of H guarantees the unique existence
of the direction along which H decreases the most.

Lemma 8.3 [44, Lemma 4.2]. For each μ ∈ P∗H(M) with 0 < |∇−H|(μ) <
∞, there exists a unique direction α ∈ Σμ[P(M)] satisfying DμH(α) =
−|∇−H|(μ).

Using α in the above lemma, we define the negative gradient vector of
H at μ by

∇−H(μ) :=
(
α, |∇−H|(μ)

)
∈ Cμ[P(M)].

If |∇−H|(μ) = 0, then we simply define ∇−H(μ) as the origin of Cμ[P(M)].
A trajectory of the gradient flow of H (which will be called a gradient curve)
should be understood as a curve ξ solving ξ̇(t) = ∇−H(ξ(t)). Precisely, we
adopt the following definition.

Definition 8.4 (Gradient curves). We call a continuous curve ξ : [0, l) −→
P∗H(M) which is locally Lipschitz on (0, l) a gradient curve of H if it holds
|∇−H|(ξ(t)) <∞ for all t ∈ (0, l) and if ξ is right differentiable with ξ̇(t) =
∇−H(ξ(t)) at all t ∈ (0, l). We say that a gradient curve ξ is complete if it is
defined on entire [0,∞).
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By virtue of theK-convexity ofH as well as the compactness ofM , there
starts a unique gradient curve from an arbitrary initial point μ ∈ P∗H(M)
enjoying the K-contraction property as follows.

Theorem 8.5 [44, Theorem 5.11, Corollary 6.3], [28, Theorem 4.2].
Let M be compact and H : P(M) −→ (−∞,+∞] be a K-convex function for
some K ∈ R.

(i) From any μ ∈ P∗H(M), there exists a unique complete gradient curve
ξ : [0,∞) −→ P∗H(M) of H with ξ(0) = μ.

(ii) (K-contraction property) For any two gradient curves ξ, ζ : [0,∞) −→
P∗H(M) of H, we have

(8.1) W2

(
ξ(t), ζ(t)

)
≤ e−KtW2

(
ξ(0), ζ(0)

)
for all t ∈ [0,∞).

The uniqueness in (i) is indeed a consequence of the K-contraction prop-
erty (8.1). Thus, the gradient flow G : [0,∞)× P∗H(M) −→ P∗H(M) of H,
given as G(t, μ) = ξ(t) for ξ in Theorem 8.5(i), is uniquely determined and
continuously extended to the closure G : [0,∞)× P∗H(M) −→ P∗H(M).

8.3. Hϕ and the ϕ-heat equation

It is an established fact that the gradient flow of the relative entropy (or the
free energy) with respect to ω,

Entω(ρω) =
∫

M
ρ ln ρ dω =

∫
M
(ρe−f ) ln(ρe−f ) dvolg +

∫
M
f dμ,

produces solutions to the associated heat equation (or the Fokker–Planck
equation)

∂ρ

∂t
= Δωρ = ef

{
Δ(ρe−f ) + div

(
(ρe−f )∇f

)}
.

See [30, Theorem 5.1], [68, Section 8.4.2] for the Euclidean case, [44, Theo-
rem 6.6], [28, Theorem 4.6], [69, Corollary 23.23] for the Riemannian case,
[48, Section 7] for the Finsler case, and [6, 23, 27, 29, 37] for further related
work on various kinds of spaces.
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We shall see that a similar argumentation gives weak solutions to the
equation

(8.2)
∂ρ

∂t
= divω

(
ρ∇ρ
ϕ(ρ)

+ ρ∇Ψ
)

as the gradient flow of the ϕ-relative entropy Hϕ. We will call (8.2) the
ϕ-heat equation. Note that σ = expϕ(−Ψ) is a stationary solution to (8.2)
since ∇σ = −ϕ(σ)∇Ψ. In the special case of ϕm(s) = s2−m, (8.2) is called
the fast diffusion equation (for m < 1) or the porous medium equation (for
m > 1). Then this identification was demonstrated by Otto [52] on (Rn,Ln),
and by [69, Theorem 23.19] as well as [51] on weighted Riemannian manifolds
(by the different means). We can follow the strategy of [51] for general ϕ,
up to some technical difficulties.

We first observe |∇−Hϕ|(μ) =
√
Iϕ(μ) as Proposition 6.1 suggests.

Proposition 8.6. Let (M,ω, ϕ,Ψ) be a compact admissible space such that
RicNϕ

≥ 0 and HessΨ ≥ K for some K ∈ R. Take μ = ρω ∈ Pac(M,ω) with
μ[MΨ

ϕ ] = 1, Hϕ(μ) <∞, ρh′ϕ(ρ)− hϕ(ρ) ∈ H1(M) and with |∇ρ/ϕ(ρ)| ∈
L2(M,μ). Then we have |∇−Hϕ|(μ) =

√
Iϕ(μ), and the negative gradient

vector ∇−Hϕ(μ) is given by −∇ρ/ϕ(ρ)−∇Ψ.

Proof. Given any μ1 ∈ P(M) with Hϕ(μ1) <∞, let (μt)t∈[0,1] ⊂ P(M) be
a minimal geodesic from μ0 = μ to μ1 along which Hϕ is K-convex (The-
orem 5.7). Letting μt = (Tt)�μ with Tt(x) = expx(t∇φ(x)), we deduce from
the K-convexity of Hϕ that

lim
t↓0

Hϕ(μt)−Hϕ(μ)
t

≤ Hϕ(μ1)−Hϕ(μ)−
K

2
W2(μ, μ1)2.

Combining this with Proposition 6.1, we have

Hϕ(μ)−Hϕ(μ1)
W2(μ, μ1)

≤ − 1
W2(μ, μ1)

∫
M

〈 ∇ρ
ϕ(ρ)

+∇Ψ,∇φ
〉
dμ− K

2
W2(μ, μ1)

≤
√
Iϕ(μ)−

K

2
W2(μ, μ1).

Thus, we obtain |∇−Hϕ|(μ) ≤
√
Iϕ(μ), and equality follows also from Propo-

sition 6.1 by choosing {φi}i∈N ⊂ C∞(M) which approximates − lnϕ(ρ) +
lnϕ(σ) in H1(M,μ). Then, moreover, ∇−Hϕ(μ) is achieved by −∇ρ/ϕ(ρ)−
∇Ψ (to be precise, ((μt)t∈[0,1],W2(μ, μ1)) associated with φi converges to
∇−Hϕ(μ) in Cμ[P(M)]). �
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Now we are ready to show the main theorem of the section.

Theorem 8.7 (Gradient flow of Hϕ). Let (M,ω, ϕ,Ψ) be a compact
admissible space such that RicNϕ

≥ 0 and HessΨ ≥ K on MΨ
ϕ for some K ∈

R. We in addition assume that θϕ ∈ (0, (n+ 1)/n), lims→∞ sθϕ/ϕ(s) <∞
and that Ψ is Lipschitz. If a curve (μt)t∈[0,∞) ⊂ Pac(M,ω) with μt[MΨ

ϕ ] ≡ 1
is a gradient curve of Hϕ, then its density function ρt is a weak solution to
the ϕ-heat equation (8.2). To be precise, ρt is weakly differentiable as well
as |∇ρt/ϕ(ρt)| ∈ L2(M,μt) a.e. t, and we have

∫
M
wt1 dμt1 −

∫
M
wt0 dμt0 =

∫ t1

t0

∫
M

{
∂wt

∂t
−
〈 ∇ρt

ϕ(ρt)
+∇Ψ,∇wt

〉}
dμt dt

(8.3)

for all 0 ≤ t0 < t1 <∞ and w ∈ C∞(R×M), where μt = ρtω and wt =
w(t, ·).

Proof. The weak differentiability of ρt and |∇ρt/ϕ(ρt)| ∈ L2(M,μt) follow
from (I) ⇒ (II) of Proposition 9.6 below. Fix t ∈ (0,∞) and, given small
δ > 0, choose μδ ∈ P(M) as a minimizer of the function

(8.4) μ �−→ Hϕ(μ) +
W2(μ, μt)2

2δ
.

We postpone the proof of the following technical claim until the end of the
section. The condition θϕ < (n+ 1)/n will come into play in (i), while θϕ > 0
and lims→∞ sθϕ/ϕ(s) <∞ will be used in (iii).

Claim 8.8. (i) Such a minimizer μδ of (8.4) indeed exists and is abso-
lutely continuous with respect to ω.

(ii) We have

lim
δ↓0

W2(μδ, μt)2

δ
= 0, lim

δ↓0
Hϕ(μδ) = Hϕ(μt).

In particular, μδ converges to μt weakly.

(iii) Moreover, by putting μδ = ρδω, the function hϕ(ρδ)− h′ϕ(ρδ)ρδ con-
verges to hϕ(ρt)− h′ϕ(ρt)ρt in L1(M,ω) as δ ↓ 0.

Take a semi-convex function φ :M −→ R such that T (x) := expx(∇φ(x))
gives the optimal transport from μδ to μt (recall Theorem 2.6). We also
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consider the transport μδ
ε := (Fε)�μδ in another direction for small ε > 0,

where Fε(x) := expx(ε∇wt(x)). It immediately follows from the choice of μδ

that

(8.5) Hϕ(μδ
ε) +

W2(μδ
ε, μt)2

2δ
≥ Hϕ(μδ) +

W2(μδ, μt)2

2δ
.

We first estimate the difference of the Wasserstein distances. Observe that,
as (Fε × T )�μδ is a (not necessarily optimal) coupling of μδ

ε and μt,

lim sup
ε↓0

W2(μδ
ε, μt)2 −W2(μδ, μt)2

ε

≤ lim sup
ε↓0

1
ε

∫
M

{
dg

(
Fε(x), T (x)

)2 − dg

(
x, T (x)

)2}
dμδ(x)

= −
∫

M
2〈∇wt,∇φ〉 dμδ.

We used the first variation formula for the Riemannian distance function dg

in the last line (cf., e.g., [18, Theorem II.4.1]). Thanks to the compactness
ofM , there is a constant C > 0 (depending only on (M, g) and w) such that

wt

(
T (x)

)
≤ wt(x) + 〈∇wt(x),∇φ(x)〉+ Cdg

(
x, T (x)

)2
for a.e. x ∈M . Thus we obtain, by virtue of Claim 8.8(ii),

lim inf
δ↓0

1
2δ

lim sup
ε↓0

W2(μδ
ε, μt)2 −W2(μδ, μt)2

ε

≤ − lim sup
δ↓0

1
δ

∫
M
〈∇wt,∇φ〉 dμδ

≤ lim inf
δ↓0

1
δ

[ ∫
M
{wt − wt(T )} dμδ + CW2(μδ, μt)2

]
= lim inf

δ↓0
1
δ

{∫
M
wt dμ

δ −
∫

M
wt dμt

}
.

Next, we calculate the difference of the entropies in (8.5). We put μδ =
ρδω, μδ

ε = ρδ
εω and Jω

ε := ef−f(Fε)det(DFε). Then we obtain from
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Proposition 6.1 that, as wt ∈ C∞(M),

lim
ε↓0

Hϕ(μδ)−Hϕ(μδ
ε)

ε

=
∫

M

[
{h′ϕ(ρδ)ρδ − hϕ(ρδ)}Δωwt + 〈ρδ∇[lnϕ(σ)],∇wt〉

]
dω

(we need the conditions RicNϕ
≥ 0 and HessΨ ≥ K only here for applying

Proposition 6.1). Hence, we deduce that, together with Claim 8.8(ii), (iii),

lim
δ↓0

lim
ε↓0

Hϕ(μδ)−Hϕ(μδ
ε)

ε

=
∫

M

[
{h′ϕ(ρt)ρt − hϕ(ρt)}Δωwt − 〈ρt∇Ψ,∇wt〉

]
dω

= −
∫

M
〈∇[h′ϕ(ρt)ρt − hϕ(ρt)] + ρt∇Ψ,∇wt〉 dω

= −
∫

M

〈 ∇ρt

ϕ(ρt)
+∇Ψ,∇wt

〉
dμt.

These together imply

lim inf
δ↓0

1
δ

{∫
M
wt dμ

δ −
∫

M
wt dμt

}
≥ −

∫
M

〈 ∇ρt

ϕ(ρt)
+∇Ψ,∇wt

〉
dμt.

Moreover, equality holds since we can change w into−w. Recall from [28, (5)]
(see also [44, Lemma 6.4]) that

lim
δ↓0

1
δ

{∫
M
η dμt+δ −

∫
M
η dμδ

}
= 0

holds for all η ∈ C∞(M). Therefore, we conclude

lim
δ↓0

1
δ

{∫
M
wt+δ dμt+δ −

∫
M
wt dμt

}
= lim

δ↓0
1
δ

{∫
M
(wt+δ − wt) dμt+δ +

∫
M
wt dμt+δ −

∫
M
wt dμt

}
=
∫

M

{
∂wt

∂t
−
〈 ∇ρt

ϕ(ρt)
+∇Ψ,∇wt

〉}
dμt.

This shows (8.3) by integration in t. �
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Remark 8.9. In Theorem 8.7, assuming that μt is absolutely continuous is
in fact redundant. If Lϕ =∞, then Hϕ(μt) <∞ guarantees μt ∈ Pac(M,ω)
by definition. As for Lϕ <∞, if μt with t > 0 has a non-trivial singular
part μs, then we can modify μt as in the proof of Claim 8.8(i) below (with
μδ = μt and π = diag� μt where diag(x) := (x, x)) and obtain μ̂r ∈ Pac(M,ω)
for small r > 0 such that

W2(μ̂r, μt)2 ≤ μs[M ]r2, lim
r↓0

Hϕ(μ̂r)−Hϕ(μt)
r

= −∞.

This yields |∇−Hϕ|(μt) =∞ and contradicts the definition of gradient curves
(compare this discussion with [5, Theorem 10.4.8]).

Combining Theorems 5.7, 8.5, 8.7, we obtain the following.

Corollary 8.10. Let (M,ω, ϕ,Ψ) be an admissible space as in Theorem 8.7,
and further suppose that MΨ

ϕ is totally convex. Then the weak solution
(μt)t∈[0,∞) ⊂ Pac(MΨ

ϕ , ω) to the ϕ-heat equation constructed in Theorem 8.7
satisfies the K-contraction property (8.1).

8.4. Proof of Claim 8.8

(i) The existence follows from the compactness of P(M) and the lower semi-
continuity ofHϕ (Lemma 5.6). The absolute continuity is obvious if Lϕ =∞.

Assume Lϕ <∞, so that θϕ ∈ (1, (n+ 1)/n) and Nϕ = (θϕ − 1)−1 ∈
(n,∞) (Proposition 2.12(ii)). We decompose μδ into absolutely continuous
as well as singular parts μδ = ρω + μs and suppose μs[M ] > 0. For small
r > 0, we modify μδ into μ̂r = ρ̂rω ∈ Pac(M,ω) as

ρ̂r(x) := ρ(x) +
∫

M

χB(y,r)(x)
ω[B(y, r)]

dμs(y).

We shall show that μ̂r gives a better choice than μδ in our approximation
scheme (8.4), which is a contradiction and hence μs[M ] = 0. We first observe

∫
M
h′ϕ(σ) dμ̂r

(8.6)

≥
∫

M
h′ϕ(σ) dμ

δ −
∫

M

∣∣∣∣h′ϕ(σ(y))− 1
ω[B(y, r)]

∫
B(y,r)

h′ϕ(σ) dω
∣∣∣∣ dμs(y)

≥
∫

M
h′ϕ(σ) dμ

δ −
{
sup
M
|∇(h′ϕ ◦ σ)| · r

}
μs[M ].
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Note that, onMΨ
ϕ , h

′
ϕ(σ) = −Ψ− Lϕ is Lipschitz since Ψ is Lipschitz. Given

an optimal coupling π = π1 + π2 of μδ and μt such that (p1)�π1 = ρω and
(p1)�π2 = μs,

dπ̂r(x, z) := dπ1(x, z) +
∫

y∈M

χB(y,r)(x)
ω[B(y, r)]

dω(x) dπ2(y, z)

is a coupling of μ̂r and μt. Hence, we find

W2(μ̂r, μt)2 ≤
∫

M×M
dg(x, z)2 dπ1(x, z) +

∫
M×M

{dg(y, z) + r}2 dπ2(y, z)
(8.7)

≤
∫

M×M
dg(x, z)2 dπ(x, z) + {2 diamM + r}rπ2[M ×M ]

≤W2(μδ, μt)2 + {3 diamM · r}μs[M ].

Next, observe that∫
M
hϕ(ρ̂r) dω =

∫
M
hϕ

(∫
M

{
ρ(x)
μs[M ]

+
χB(y,r)(x)
ω[B(y, r)]

}
dμs(y)

)
dω(x).

As hϕ is convex, Jensen’s inequality shows

hϕ

(∫
M

{
ρ(x)
μs[M ]

+
χB(y,r)(x)
ω[B(y, r)]

}
dμs(y)

)
≤ 1
μs[M ]

∫
M
hϕ

(
ρ(x) +

χB(y,r)(x)
ω[B(y, r)]

μs[M ]
)
dμs(y).

Since hϕ is non-increasing, we deduce from the Fubini theorem that∫
M
hϕ(ρ̂r) dω

≤ 1
μs[M ]

∫
M

{∫
M\B(y,r)

hϕ(ρ) dω +
∫

B(y,r)
hϕ

(
μs[M ]

ω[B(y, r)]

)
dω

}
dμs(y)

≤
∫

M
hϕ(ρ) dω −

1
μs[M ]

∫
M

(∫
B(y,r)

hϕ(ρ) dω
)
dμs(y)

+ sup
y∈M

{
ω[B(y, r)] · hϕ

(
μs[M ]

ω[B(y, r)]

)}
.



Displacement convexity of generalized relative entropies. II 753

By virtue of the compactness of M , there are constants 0 < C1 ≤ C2 such
that

C1r
n ≤ ω[B(y, r)] ≤ C2r

n

for all y ∈M and small r > 0. Hence we have, as hϕ is non-increasing and
non-positive,

sup
y∈M

{
ω[B(y, r)] · hϕ

(
μs[M ]

ω[B(y, r)]

)}
≤ C1r

nhϕ

(
μs[M ]
C2rn

)
.

We find, by the monotonicity of lnϕ, Lemma 2.9 and Nϕ = (θϕ − 1)−1,

lim sup
r↓0

rNϕ−1hϕ(r−Nϕ) = lim sup
r↓0

{
rNϕ−1

∫ r−Nϕ

0
lnϕ(s) ds− r−1Lϕ

}

≤ lim sup
r↓0

{
r−1 lnϕ(r−Nϕ)− r−1Lϕ

}
= − lim inf

r↓0

∫ ∞

r−Nϕ

1
rϕ(s)

ds

≤ − lim
r↓0

∫ ∞

r−Nϕ

s−θϕ

r
ds = lim

r↓0
rNϕ(θϕ−1)

(1− θϕ)r
=

1
1− θϕ

< 0.

Hence we obtain, since n < Nϕ <∞,

rn−1hϕ(r−n) = r(n−Nϕ)/Nϕ · (rn/Nϕ)Nϕ−1hϕ

(
(rn/Nϕ)−Nϕ

)
→ −∞

as r ↓ 0 (here we need the hypothesis θϕ < (n+ 1)/n). Finally, for all y ∈
suppμs, the convexity of hϕ yields∫

B(y,r)
hϕ(ρ) dω ≥

∫
B(y,r)

{hϕ(σ) + h′ϕ(σ)(ρ− σ)} dω

=
∫

B(y,r)
{hϕ(σ)− h′ϕ(σ)σ} dω +

∫
B(y,r)

h′ϕ(σ) dμ.

We therefore obtain

1
r

{∫
M
hϕ(ρ̂r) dω −

∫
M
hϕ(ρ) dω

}
≤ −1

r
inf

y∈M

[ ∫
B(y,r)

{hϕ(σ)− h′ϕ(σ)σ} dω +
∫

B(y,r)
h′ϕ(σ) dμ

]
+ C1r

n−1hϕ

(
μs[M ]
C2rn

)
→ −∞
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as r ↓ 0. Combining this with (8.6) and (8.7), we conclude that

lim
r↓0

1
r

{
Hϕ(μ̂r) +

W2(μ̂r, μt)2

2δ
−Hϕ(μδ)− W2(μδ, μt)2

2δ

}
= −∞.

This contradicts the choice of μδ as a minimizer of (8.4), so that it holds
μs[M ] = 0.

(ii) By the choice of μδ, we have

Hϕ(μδ) +
W2(μδ, μt)2

2δ
≤ Hϕ(μt).

Together with Hϕ(μδ) ≥ Hϕ(ν) (Lemma 5.5), we immediately observe

lim
δ↓0

W2(μδ, μt)2 ≤ lim
δ↓0

2δ{Hϕ(μt)−Hϕ(ν)} = 0.

Thus μδ converges to μt weakly, and hence

lim sup
δ↓0

W2(μδ, μt)2

2δ
≤ Hϕ(μt)− lim inf

δ↓0
Hϕ(μδ) ≤ 0

by the lower semi-continuity of Hϕ (Lemma 5.6). These further yield

Hϕ(μt) ≤ lim inf
δ↓0

Hϕ(μδ) ≤ lim sup
δ↓0

Hϕ(μδ) ≤ Hϕ(μt).

(iii) This is a consequence of the following lemma.

Lemma 8.11. Assume that θϕ ∈ (0, 2) and

Cϕ := lim
s↑∞

sθϕ

ϕ(s)
<∞.

If a sequence {μi}i∈N ⊂ Pac(M,ω) converges to μ ∈ Pac(M,ω) weakly and
satisfies limi→∞Hϕ(μi) = Hϕ(μ) <∞, then, by setting μi = ρiω and μ =
ρω, the function hϕ(ρi)− ρih

′
ϕ(ρi) converges to hϕ(ρ)− ρh′ϕ(ρ) in L1(M,ω).

Proof. We first show the following claim by using θϕ < 2.

Claim 8.12. For any C > 0, it holds

lim
i→∞

‖min{ρ, C} −min{ρi, C}‖L2(M,ω) = 0.
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Proof. Assume the contrary, that is, there are some constants C, ε > 0 such
that, taking a subsequence of {ρi}i∈N if necessary, we have

(8.8) ‖min{ρ, C} −min{ρi, C}‖L2(M,ω) ≥ ε

for all i. Now, since h′′ϕ(s) = ϕ(s)−1 is positive and non-increasing, we find

hϕ

(
ρ+ ρi

2

)
≤ hϕ(ρ) + hϕ(ρi)

2
− |ρ− ρi|2
8max{ϕ(ρ), ϕ(ρi)}

.

We shall further deduce from θϕ < 2 that

(8.9)
|ρ− ρi|2

max{ϕ(ρ), ϕ(ρi)}
≥ |min{ρ, C} −min{ρi, C}|2

ϕ(C)
.

This is clear if max{ρ, ρi} ≤ C or min{ρ, ρi} ≥ C. Otherwise, (8.9) is
reduced to

(τ − ε)2
ϕ(τ)

≥ (C − ε)2
ϕ(C)

, ε ≤ C ≤ τ,

and to the monotonicity of the function s �→ (s− ε)2/ϕ(s) for s > ε. This
monotonicity is easily seen by Lemma 2.9, since θϕ < 2 and

(s− ε)2
ϕ(s)

=
sθϕ

ϕ(s)
· s2−θϕ ·

(
s− ε
s

)2
.

Thus, we obtain from the hypothesis (8.8) that∫
M
hϕ

(
ρ+ ρi

2

)
dω

≤
∫

M

hϕ(ρ) + hϕ(ρi)
2

dω − 1
8ϕ(C)

‖min{ρ, C} −min{ρi, C}‖2L2(M,ω)

≤ 1
2

∫
M
hϕ(ρ) dω +

1
2

∫
M
hϕ(ρi) dω −

1
8ϕ(C)

ε2.

However, as limi→∞Hϕ(μi) = Hϕ(μ) by assumption, this means that μ̄i :=
{(ρ+ ρi)/2}ω satisfies

lim sup
i→∞

Hϕ(μ̄i) ≤ Hϕ(μ)−
1

8ϕ(C)
ε2.

This contradicts the lower semi-continuity of Hϕ (Lemma 5.6) and we com-
plete the proof of Claim 8.12. �
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Observe that

hϕ(r)− rh′ϕ(r) =
∫ r

0
{ln(s)− ln(r)} ds = −

∫ r

0

∫ r

s

1
ϕ(t)

dt ds

= −
∫ r

0

t

ϕ(t)
dt.

Combining this with Lemma 2.9, we have for any r, s > 0

|hϕ(r)− rh′ϕ(r)− hϕ(s)− sh′ϕ(s)| =
∣∣∣∣∫ r

s

t

ϕ(t)
dt

∣∣∣∣ ≤ Cϕ

∣∣∣∣∫ r

s
t1−θϕ dt

∣∣∣∣
=

Cϕ

2− θϕ
|rm − sm|,

where we set m = 2− θϕ > 0. Thus, we deduce that
(8.10)∫

M

∣∣hϕ(ρi)− ρih
′
ϕ(ρi)− hϕ(ρ)− ρh′ϕ(ρ)

∣∣ dω ≤ Cϕ

2− θϕ

∫
M
|ρm

i − ρm| dω.

We are done if the right hand side tends to zero as i→∞.

Claim 8.13. For m = 2− θϕ ∈ (0, 2), we have

ρ, ρi ∈ Lm(M,ω), lim
i→∞

‖ρi − ρ‖Lm(M,ω) = 0.

Proof. The first assertion is clear whenm ≤ 1. Form > 1, it is a consequence
of hϕ(ρ), hϕ(ρi) ∈ L1(M,ω) (guaranteed byHϕ(μ), Hϕ(μi) <∞). Indeed, by
Lemma 2.9 and (2.9), we have on {x ∈M | ρ(x) ≥ C} for any C > 0

uϕ(ρ)− uϕ(C) =
∫ ρ

C
lnϕ(s) ds ≥

∫ ρ

C
�m(s) ds =

ρm − Cm −m(ρ− C)
m(m− 1)

,

which implies max{ρ, C} ∈ Lm(M,ω) since m− 1 > 0, uϕ(ρ)− uϕ(C) ≥ 0
and uϕ(ρ) ∈ L1(M,ω). Thus we obtain ρ ∈ Lm(M,ω) and ρi ∈ Lm(M,ω)
similarly. We remark that, as limi→∞Hϕ(μi) = Hϕ(μ) by assumption, we
have limi→∞

∫
M uϕ(ρi) dω =

∫
M uϕ(ρ) dω so that

∫
M ρm

i dω is uniformly
bounded in i.

As for the second estimate, thanks to Claim 8.12 and m < 2, it suffices
to show that ρi −min{ρi, C} converges to ρ−min{ρ, C} in Lm(M,ω) for
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some (arbitrarily fixed) C > 0. Note first that

|(ρi −min{ρi, C})− (ρ−min{ρ, C})| = |max{ρi, C} −max{ρ, C}|.

We put ρC
i := max{ρi, C} and ρC := max{ρ, C} for brevity. By the same

argumentation as Claim 8.12, limi→∞Hϕ(μi) = Hϕ(μ) yields

lim
i→∞

∫
M

|ρi − ρ|2
max{ϕ(ρi), ϕ(ρ)}

dω = 0.

Since ϕ is positive and non-decreasing, it holds

∫
M

|ρi − ρ|2
max{ϕ(ρi), ϕ(ρ)}

dω ≥
∫

M

|ρC
i − ρC |2

ϕ(ρC
i ) + ϕ(ρC)

dω.

It follows from the Hölder inequality that

‖ρC
i − ρC‖m

Lm(M,ω)

≤
(∫

M

|ρC
i − ρC |2

ϕ(ρC
i ) + ϕ(ρC)

dω

)m/2(∫
M
{ϕ(ρC

i ) + ϕ(ρC)}m/θϕ dω

)θϕ/2

.

Observe that

{ϕ(ρC
i ) + ϕ(ρC)}m/θϕ ≤

{
ϕ(ρC

i )
m/θϕ + ϕ(ρC)m/θϕ , for m ≤ 1,

2m/θϕ−1{ϕ(ρC
i )

m/θϕ + ϕ(ρC)m/θϕ}, for m > 1.

We deduce from Lemma 2.9 that

ϕ(ρC
i )

m/θϕ + ϕ(ρC)m/θϕ ≤ ϕ(C)m/θϕ

Cm
{(ρC

i )
m + (ρC)m}.

Since
∫
M (ρC

i )
m dω is uniformly bounded in i, we find

lim sup
i→∞

∫
M
{ϕ(ρC

i ) + ϕ(ρC)}m/θϕ dω <∞,

and hence limi→∞ ‖ρC
i − ρC‖Lm(M,ω) = 0. �
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Now we obtain, for m ≤ 1,∫
M
|ρm

i − ρm| dω ≤
∫

M
|ρi − ρ|m dω → 0 (i→∞)

with the help of Claim 8.13. Similarly, it holds for m > 1 that∫
M
|ρm

i − ρm| dω ≤ m

∫
M
|ρi − ρ|max{ρi, ρ}m−1 dω

≤ m

(∫
M
|ρi − ρ|m dω

)1/m(∫
M
(ρi + ρ)m dω

)(m−1)/m

→ 0 (i→∞). �
We remark that, in Lemma 8.11 and hence in Theorem 8.7, the assump-

tions θϕ ∈ (0, 2) and Cϕ <∞ can be replaced with

δϕ ∈ (0, 2), Dϕ := lim
s↓0

sδϕ

ϕ(s)
<∞, dϕ := lim

s↑∞
sδϕ

ϕ(s)
> 0.

Indeed, then we have
sδϕ

Dϕ
≤ ϕ(s) ≤ sδϕ

dϕ

for all s > 0, and (8.10) becomes∫
M

∣∣hϕ(ρi)− ρih
′
ϕ(ρi)− hϕ(ρ)− ρh′ϕ(ρ)

∣∣ dω ≤ Dϕ

2− δϕ

∫
M
|ρm

i − ρm| dω

for m := 2− δϕ. With this m ∈ (0, 2), Claim 8.13 follows from Proposi-
tion 2.13 and ϕ(s) ≤ sδϕ/dϕ (Claim 8.12 is unnecessary in this case since
we can treat ρ and ρi themselves instead of ρC and ρC

i ).
Note that Cϕ = Dϕ = dϕ = 1 <∞ for ϕm(s) = s2−m. For

ϕ(s) :=

{√
s for 0 < s < 1,

s for s ≥ 1,

we have θϕ = 1, δϕ = 1/2, Cϕ = Dϕ = 1 and dϕ = 0. An example of ϕ with
Cϕ =∞ is

ϕ(s) :=

⎧⎪⎨⎪⎩
√
s for 0 < s < 1,

s for 1 ≤ s ≤ 2,√
2s for s > 2,

for which θϕ = 1, δϕ = 1/2, Dϕ = 1 and dϕ = 1/
√
2.
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9. Gradient flow of Hϕ: non-compact case

We continue to study gradient flows in the Wasserstein space (P2(M),W2).
For non-compact M , we can not follow the intrinsic argument in Subsec-
tion 8.1 since Theorem 8.1 is unavailable. We can nevertheless introduce a
Riemannian structure of P2(M) using the underlying Riemannian structure
of M . Then gradient flows in P2(M) are also formulated with the help of
the underlying Riemannian/differentiable structure of M . In order to see
that the analogue of Theorem 8.7 holds true, we follow the argumentation
in [5, 22] and [69, Chapter 23]. We refer to [5] for the further deep theory of
gradient flows.

9.1. Riemannian structure of (P2(M), W2)

Recall that minimal geodesics in P2(M) emanating from absolutely con-
tinuous measures are described by the gradient vector fields of appropriate
functions (Theorem 2.6). This leads the following definitions due to Otto [52]
of the tangent spaces and the Riemannian structure.

Definition 9.1 (Otto’s Riemannian structure). We set

T̂P := {Φ = ∇φ |φ ∈ C∞c (M)}

and define the tangent space (TμP2, 〈·, ·〉μ) of P2(M) at μ ∈ P2(M) as the
completion of T̂P with respect to the norm ‖ · ‖μ induced from the inner
product

〈Φ1,Φ2〉μ :=
∫

M
〈Φ1,Φ2〉 dμ, Φ1,Φ2 ∈ T̂P.

Note that 〈·, ·〉μ is extended to the whole space TμP2 as the limit, and
(TμP2, 〈·, ·〉μ) is a Hilbert space. We next introduce the class of “differen-
tiable curves” in a purely metric way (cf. [5, Section 1.1]).

Definition 9.2 (Absolutely continuous curves). For p ∈ [1,∞], a curve
(μt)t∈I ⊂ P2(M) on an open interval I ⊂ R is said to be p-absolutely con-
tinuous if there is some η ∈ Lp

loc(I) such that

(9.1) W2(μs, μt) ≤
∫ t

s
η(r) dr

holds for all s, t ∈ I with s < t.
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Note that p-absolutely continuous curves are continuous. We will con-
sider only 2-absolutely continuous curves, so that we simply call them abso-
lutely continuous curves. For any absolutely continuous curve (μt)t∈I ⊂
P2(M), the metric derivative

|μ̇t| := lim
s→t

W2(μs, μt)
|t− s|

exists for a.e. t ∈ I, and η(t) = |μ̇t| is a minimal function satisfying (9.1)
(cf. [5, Theorem 1.1.2]). We can associate a one-parameter family of vector
fields onM with an absolutely continuous curve in P2(M) via the continuity
equation on M .

Proposition 9.3 [5, Theorem 8.3], [22, Proposition 2.5]. Given an
absolutely continuous curve (μt)t∈I ⊂ P2(M), there exists a Borel vector
field Φ : I ×M −→ TM (with Φt(x) := Φ(t, x) ∈ TxM) satisfying Φt ∈
Tμt
P2 for a.e. t ∈ I as well as the continuity equation

∂μt

∂t
+ div(Φtμt) = 0

in the weak sense that

(9.2)
∫

I

∫
M

{
∂wt

∂t
+ 〈Φt,∇wt〉

}
dμt dt = 0

holds for all w ∈ C∞c (I ×M). Such a vector field Φ (satisfying Φt ∈ Tμt
P2

and (9.2)) is uniquely determined up to a difference on a null measure set
with respect to dμtdt, and we have ‖Φt‖μt

= |μ̇t| for a.e. t ∈ I.
Conversely, if a curve (μt)t∈I ⊂ P2(M) admits a Borel vector field Φ :

I ×M −→ TM satisfying (9.2) and
∫ t1
t0
‖Φt‖2μt

dt <∞ for all t0, t1 ∈ I with
t0 < t1, then (μt)t∈I is absolutely continuous and |μ̇t| ≤ ‖Φt‖μt

at a.e. t ∈ I.

Definition 9.4 (Tangent vector fields). We say that the vector field Φ
as in Proposition 9.3 is the tangent vector field of the absolutely continuous
curve (μt)t∈I , and write μ̇t = Φt (for a.e. t ∈ I).

It is guaranteed by the following Benamou–Brenier formula [11] that
Otto’s Riemannian structure is compatible with the W2-structure,

W2(μ0, μ1) = inf
(μt)t∈[0,1]

(∫ 1

0
‖μ̇t‖2μt

dt

)1/2
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for any μ0, μ1 ∈ P2(M), where the infimum is taken over all absolutely con-
tinuous curves (μt)t∈[0,1] ⊂ P2(M) from μ0 to μ1.

9.2. Gradient flow of Hϕ

Using the Riemannian structure of P2(M) in the previous subsection, we can
formulate gradient curves (trajectories of gradient flow) in a way different
from the previous section. We first define gradient vectors.

Definition 9.5 (Gradient vectors). Given a functional H : P2(M) −→
(−∞,∞] and μ ∈ P2ac(M) with H(μ) <∞, we say that H is differentiable
at μ if there is Φ ∈ TμP2 such that

lim sup
t↓0

H(μt)−H(μ)
t

≤
∫

M
〈Φ,∇φ〉 dμ

along all minimal geodesics (μt)t∈[0,1] ⊂ P2(M) with μ0 = μ, where μt =
(Tt)�μ with Tt(x) = expx(t∇φ(x)), and if equality holds for φ ∈ C∞c (M)
(with limt↓0 in place of lim supt↓0). Such Φ is unique if it exists, so that
we will write ∇WH(μ) = Φ.

Note that |∇−(−H)|(μ) ≤ ‖∇WH(μ)‖μ holds by the Cauchy–Schwarz
inequality. A gradient curve of the ϕ-relative entropy Hϕ should be under-
stood as a solution to μ̇t = ∇W [−Hϕ](μt). Compare the next proposition
with Proposition 8.6.

Proposition 9.6. Let (M,ω, ϕ,Ψ) be admissible, assume RicNϕ
≥ 0 and

HessΨ ≥ K on MΨ
ϕ for some K ∈ R (K > 0 if M is non-compact and θϕ <

1). Fix μ = ρω ∈ P2ac(M,ω) with μ[MΨ
ϕ ] = 1, Hϕ(μ) <∞ and with |∇Ψ| ∈

L2(M,μ). Then the following are equivalent:

(I) |∇−Hϕ|(μ) <∞,

(II) ρ ∈ H1
loc(M) and

∇ρ
ϕ(ρ)

+∇Ψ = −Φ

holds μ-a.e. for some Φ ∈ TμP2.

Moreover, then we have Φ = ∇W [−Hϕ](μ) and ‖Φ‖μ = |∇−Hϕ|(μ).
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Proof. (I) ⇒ (II): Note that, by the calculation (before the integration by
parts) in the proof of Proposition 6.1,∣∣∣∣ ∫

M

[
{h′ϕ(ρ)ρ− hϕ(ρ)}divω V − 〈ρ∇Ψ, V 〉

]
dω

∣∣∣∣
= lim

t↓0

{
Hϕ(μ)−Hϕ(μt)

W2(μ, μt)
W2(μ, μt)

t

}
≤ |∇−Hϕ|(μ)‖V ‖μ

for all C∞-vector fields V of compact support, where we put μt = (Tt)�μ with
Tt(x) = expx(tV (x)). Hence the hypothesis (I) together with Ψ ∈ H1

loc(M)
ensures that the function h′ϕ(ρ)ρ− hϕ(ρ) is weakly differentiable. Since the
function s �−→ h′ϕ(s)s− hϕ(s) is differentiable and increasing in s > 0, this
implies ρ ∈ H1

loc(M), and we observe

∇[h′ϕ(ρ)ρ− hϕ(ρ)] =
ρ

ϕ(ρ)
∇ρ.

Moreover, the above estimate shows that the function

T̂P � ∇φ �−→
∫

M
〈∇[h′ϕ(ρ)ρ− hϕ(ρ)] + ρ∇Ψ,∇φ〉 dω

=
∫

M

〈 ∇ρ
ϕ(ρ)

+∇Ψ,∇φ
〉
dμ

is extended to a bounded linear operator on the closure TμP2. Therefore the
Riesz representation theorem shows that there exists Φ ∈ TμP2 with

(9.3) ‖Φ‖μ ≤ |∇−Hϕ|(μ),
∫

M

〈 ∇ρ
ϕ(ρ)

+∇Ψ,Ξ
〉
dμ =

∫
M
〈−Φ,Ξ〉 dμ

for all Ξ ∈ TμP2. Thus, we have ∇ρ/ϕ(ρ) +∇Ψ = −Φ μ-a.e.
(II)⇒ (I): We remark that the conditionK > 0 for θϕ < 1 makes Propo-

sition 6.1 applicable. Thus we obtain

(9.4) lim sup
t↓0

Hϕ(μ)−Hϕ(μt)
t

≤
∫

M
〈Φ,∇φ〉 dμ

along every minimal geodesic (μt)t∈[0,1] ⊂ P2(M) with μ0 = μ, where μt =
(Tt)�μ and Tt(x) = expx(t∇φ(x)), and equality holds if φ ∈ C∞c (M). Hence
|∇−Hϕ|(μ) <∞ follows from the hypothesis Φ ∈ TμP2, and we find Φ =
∇W [−Hϕ](μ) in the sense of Definition 9.5. We have ‖Φ‖μ ≤ |∇−Hϕ|(μ) by
(9.3), and |∇−Hϕ|(μ) ≤ ‖Φ‖μ by (9.4), so that ‖Φ‖μ = |∇−Hϕ|(μ) holds. �
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Now, we are ready to show the main result of the section. We remark
that the roles of the conditions RicNϕ

≥ 0 and HessΨ ≥ K are implicit at
this stage, whereas they were necessary for applying Proposition 6.1.

Theorem 9.7 (Gradient flow of Hϕ). Suppose that (M,ω, ϕ,Ψ) is admis-
sible and satisfies RicNϕ

≥ 0 as well as HessΨ ≥ K on MΨ
ϕ for some K ∈ R

(K > 0 if M is non-compact and θϕ < 1). Let (μt)t∈[0,∞) ⊂ P2ac(M,ω) be a
continuous curve such that μt[MΨ

ϕ ] = 1, Hϕ(μt) <∞ and |∇Ψ| ∈ L2(M,μt)
for all t > 0. Then (μt)t∈(0,∞) is an absolutely continuous curve satisfying

μ̇t = ∇W [−Hϕ](μt) ∈ Tμt
P2

at a.e. t ∈ (0,∞) if and only if (ρt)t∈[0,∞) is a weak solution to the
ϕ-heat equation (8.2) with

∫ t1
t0
|∇ρt/ϕ(ρt)|2 dμt dt <∞ for all 0 < t0 < t1 <

∞, where μt = ρtω.

Proof. Suppose μ̇t = ∇W [−Hϕ](μt) a.e. t. Since we have |∇−Hϕ|(μt) ≤
‖∇W [−Hϕ](μt)‖μt

<∞ by definition, Proposition 9.6 yields

μ̇t = −
( ∇ρt

ϕ(ρt)
+∇Ψ

)
∈ Tμt

P2 a.e. t.

Then it follows from the continuity equation (9.2) that∫ ∞

0

∫
M

∂wt

∂t
dμt dt =

∫ ∞

0

∫
M

〈 ∇ρt

ϕ(ρt)
+∇Ψ,∇wt

〉
dμt dt

for all w ∈ C∞c ((0,∞)×M). Therefore ρt weakly solves (8.2).
Conversely, if ρt is a weak solution to (8.2) with

∫ t1
t0
|∇ρt/ϕ(ρt)|2 dμt dt <

∞, then the same calculation implies that

Φt = −
( ∇ρt

ϕ(ρt)
+∇Ψ

)
satisfies the continuity equation (9.2), and hence (μt)t∈(0,∞) is absolutely
continuous by Proposition 9.3. As Proposition 6.1 guarantees |∇−Hϕ|(μt) ≤
‖Φt‖μt

<∞ a.e. t (by (9.4)), Proposition 9.6 shows Φt = ∇W [−Hϕ](μt) ∈
Tμt
P2 and then the uniqueness of a solution to the continuity equation

(Proposition 9.3) yields μ̇t = Φt = ∇W [−Hϕ](μt) a.e. t. �
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9.3. Remarks on construction and contraction

We can construct the gradient flow of Hϕ along the line of [22, Section 5],
provided thatM is compact. Precisely, we need the compactness for applying
Lemma 5.6, Claim 8.8(i) and Lemma 8.11.

Now, let us assume that (M,ω, ϕ,Ψ) satisfies the hypothesis in Theo-
rem 9.7, and take an absolutely continuous curve (μt)t∈[0,∞) ⊂ P2ac(M,ω)
with μt = ρtω such that μt[MΨ

ϕ ] = 1, Hϕ(μt) <∞, |∇Ψ| ∈ L2(M,μt) for all
t > 0,

∫ t1
t0
|∇ρt/ϕ(ρt)|2 dμtdt <∞ for all 0 < t0 < t1 <∞, and that, at a.e.

t > 0,

(9.5)
d

dt

[∫
M
w dμt

]
= −

∫
M

〈 ∇ρt

ϕ(ρt)
+∇Ψ,∇w

〉
dμt

holds for all w ∈ C∞c (M).

Proposition 9.8 (Evolution variational inequality). In the above sit-
uation, for any μ̄ ∈ P2(M),

(9.6)
d

dt

[
W2(μt, μ̄)2

2

]
+
K

2
W2(μt, μ̄)2 +Hϕ(μt) ≤ Hϕ(μ̄)

holds for a.e. t > 0.

Proof. Assume Hϕ(μ̄) <∞ without loss of generality. Fix t > 0 where (9.5)
holds andW2(μt, μ̄) is differentiable. Let φ be a Kantorovich potential induc-
ing the optimal transport from μt to μ̄ as in Theorem 2.6. Then it follows
from the Kantorovich duality (see, e.g., [5, 69]) and (9.5) that, for small
ε > 0,

W2(μt, μ̄)2 −W2(μt−ε, μ̄)2

2ε
≤ 1
ε

{
−
∫

M
φdμt +

∫
M
φdμt−ε

}
→
∫

M

〈 ∇ρt

ϕ(ρt)
+∇Ψ,∇φ

〉
dμt

as ε ↓ 0. Putting α(s) := [exp(s∇φ)]�μt for s ∈ [0, 1], we obtain from Propo-
sition 6.1 and the K-convexity of Hϕ that∫

M

〈 ∇ρt

ϕ(ρt)
+∇Ψ,∇φ

〉
dμt ≤ lim inf

s↓0
Hϕ(α(s))−Hϕ(μt)

s

≤ Hϕ(μ̄)−Hϕ(μt)−
K

2
W2(μt, μ̄)2.

This completes the proof. �
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The above evolution variational inequality (9.6) readily derives the K-
contraction property as follows. For two curves (μt)t∈[0,∞), (μ̄t)t∈[0,∞) satis-
fying (9.6), fix t > 0 and take the midpoint μ̂ between μt and μ̄t. Then (9.6)
and the K-convexity of Hϕ yield

lim sup
ε↓0

W2(μt+ε, μ̄t+ε)2 −W2(μt, μ̄t)2

2ε

≤ lim sup
ε↓0

W2(μt+ε, μ̂)2 +W2(μ̂, μ̄t+ε)2 −W2(μt, μ̂)2 −W2(μ̂, μ̄t)2

ε

≤ −K{W2(μt, μ̂)2 +W2(μ̂, μ̄t)2}+ 2{2Hϕ(μ̂)−Hϕ(μt)−Hϕ(μ̄t)}
≤ −KW2(μt, μ̄t)2.

Therefore we have W2(μt, μ̄t) ≤ e−KtW2(μ0, μ̄0) for all t > 0. The
K-contraction property in particular implies the uniqueness of the gradi-
ent flow. Thus, in the compact case, the gradient flow of Hϕ constructed in
Theorem 8.7 coincides with the (unique) gradient flow in Theorem 9.7.

We also mention an interesting contribution due to Gigli [25], he showed
the unique existence of the gradient flow of the relative entropy in a quite
general situation without relying on the contractivity. As mentioned at the
end of [25], however, his technique uses some special properties of the gen-
erating function uϕ1(s) = s log s− s and is not applicable to all ϕ’s in our
consideration (e.g., ϕm for m < 1 is excluded).

10. Finsler case

Most results in this article are extended to Finsler manifolds according to
the theory of Ricci curvature developed in [45, 48] (see also a survey [46]).
A Finsler manifold is a differentiable manifold equipped with a (Minkowski)
norm on each tangent space. Restricting these norms to those coming from
inner products, we have the family of Riemannian manifolds as a subclass.
We refer to [10] and [60] for the basics of Finsler geometry.

10.1. Finsler manifolds

LetM be a connected n-dimensional C∞-manifold without boundary. Given
a local coordinate (xi)ni=1 on an open set U ⊂M , we will always use the
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coordinate (xi,vj)ni,j=1 of TU such that

v =
n∑

j=1

vj ∂

∂xj

∣∣∣
x
∈ TxM, x ∈ U.

Definition 10.1 (Finsler structures). We say that a non-negative func-
tion F : TM −→ [0,∞) is a C∞-Finsler structure ofM if the following three
conditions hold:

(1) (Regularity) F is C∞ on TM \ 0, where 0 ⊂ TM stands for the zero
section.

(2) (Positive 1-homogeneity) It holds F (cv) = cF (v) for all v ∈ TM and
c > 0.

(3) (Strong convexity) The n× n symmetric matrix

(10.1)
(
gij(v)

)n
i,j=1

:=
(
1
2
∂2(F 2)
∂vi∂vj

(v)
)n

i,j=1

is positive-definite for all v ∈ TxM \ 0.

We call such a pair (M,F ) a C∞-Finsler manifold.

In other words, F provides a C∞-Minkowski norm (see Example 10.2(a)
below) on each tangent space TxM which varies smoothly also in the hor-
izontal direction. For x, y ∈M , we define the distance from x to y in a
natural way by dF (x, y) := infγ

∫ 1
0 F

(
γ̇(t)

)
dt, where the infimum is taken

over all C1-curves γ : [0, 1] −→M such that γ(0) = x and γ(1) = y. Note
that dF is not necessarily symmetric, namely dF (y, x) 	= dF (x, y) can hap-
pen, since F is only positively homogeneous. A C∞-curve γ on M is called
a geodesic if it is locally distance minimizing and has a constant speed (i.e.,
F (γ̇) is constant). We remark that t �−→ γ(1− t) may not be a geodesic.
Given v ∈ TxM , if there is a geodesic γ : [0, 1] −→M with γ̇(0) = v, then
we define the exponential map by expx(v) := γ(1). We say that (M,F ) is
forward complete if the exponential map is defined on whole TM . Then
the Hopf–Rinow theorem ensures that any pair of points is connected by a
minimal geodesic (cf. [10, Theorem 6.6.1]).

We define the K-convexity of a function Ψ :M −→ R in the weak sense
similarly to the case of symmetric distances (Definition 4.1), i.e., for any
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x, y ∈M there is a minimal geodesic γ : [0, 1] −→M from x to y such that

Ψ
(
γ(t)

)
≤ (1− t)Ψ(x) + tΨ(y)− K

2
(1− t)tdF (x, y)2

for all t ∈ [0, 1].
For each v ∈ TxM \ 0, the positive-definite matrix (gij(v))ni,j=1 in (10.1)

induces the Riemannian structure gv of TxM via

(10.2) gv

⎛⎝ n∑
i=1

ai
∂

∂xi

∣∣∣
x
,

n∑
j=1

bj
∂

∂xj

∣∣∣
x

⎞⎠ :=
n∑

i,j=1

gij(v)aibj .

This is regarded as the best Riemannian approximation of F |TxM in the
direction v. In fact, the unit sphere of gv is tangent to that of F |TxM at
v/F (v) up to the second order. In particular, we have gv(v,v) = F (v)2.

Let us denote by L∗ : T ∗M −→ TM the Legendre transform. Precisely,
L∗ is sending α ∈ T ∗xM to the unique element v ∈ TxM such that α(v) =
F ∗(α)2 and F (v) = F ∗(α), where F ∗ stands for the dual norm of F . Note
that L∗|T ∗

x M is a linear operator only when F |TxM comes from an inner
product. For a differentiable function ρ :M −→ R, the gradient vector of ρ
at x is defined as the Legendre transform of the derivative of ρ,

∇ρ(x) := L∗
(
Dρ(x)

)
∈ TxM.

If Dρ(x) = 0, then clearly ∇ρ(x) = 0. If Dρ(x) 	= 0, then we can write in
coordinates

∇ρ =
n∑

i,j=1

gij(∇ρ) ∂ρ
∂xj

∂

∂xi
,

where (gij) stands for the inverse matrix of (gij). We must be careful when
Dρ(x) = 0, because gij(∇ρ(x)) is not defined as well as the Legendre trans-
form L∗ being only continuous at the zero section. We also remark that the
gradient ∇ is a non-linear operator (i.e., ∇(ρ1 + ρ2)(x) 	= ∇ρ1(x) +∇ρ2(x)
and ∇(−ρ)(x) 	= −∇ρ(x) in general), since the Legendre transform is non-
linear unless F happens to be Riemannian.

We mention some of basic examples of non-Riemannian Finsler mani-
folds.

Example 10.2. (a) (Minkowski spaces) A Minkowski norm | · | on R
n

is a non-negative function on R
n satisfying the conditions in Defini-

tion 10.1. Note that the unit ball of | · | is a strictly convex (but not
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necessarily symmetric to the origin) domain containing the origin in
its interior. A Minkowski norm induces a Finsler structure in a natural
way through the identification between TxR

n and R
n. Then (Rn, | · |)

has the flat flag curvature (the flag curvature is a generalization of the
sectional curvature).

(b) (Randers spaces) A Randers space (M,F ) is a special kind of Finsler
manifold given by F (v) =

√
g(v,v) + β(v) for some Riemannian met-

ric g and a one-form β, where we suppose |β(v)|2 < g(v,v) unless
v = 0, for F being positive on TM \ 0. Randers spaces are important
in applications and reasonable for concrete calculations. Sometimes β
is regarded as the effect of wind blowing on the Riemannian manifold
(M, g).

(c) (Hilbert geometry) Let D ⊂ R
n be a bounded open set with smooth

boundary such that its closureD is strictly convex. Then the associated
Hilbert distance function is defined by

dH(x1, x2) := log
( |x1 − x′2| · |x2 − x′1|
|x1 − x′1| · |x2 − x′2|

)

for distinct x1, x2 ∈ D, where | · | is the standard Euclidean norm and
x′1, x

′
2 are intersections of ∂D and the line passing through x1, x2 such

that x′i is on the side of xi. Hilbert geometry is known to be realized
by a Finsler structure with constant negative flag curvature, and gives
the Klein model of hyperbolic space if D is an ellipsoid.

(d) (Teichmüller space) Teichmüller metric on Teichmüller space is
arguably one of the most famous Finsler structures in differential geom-
etry. It is known to be complete, while, e.g., the Weil–Petersson metric
is incomplete and Riemannian.

10.2. Weighted Ricci curvature and non-linear Laplacian

Different from the Riemannian situation, one can not choose a unique canon-
ical measure on a Finsler manifold. There are several constructive measures,
such as the Busemann–Hausdorff measure and the Holmes–Thompson mea-
sure, which are canonical in their own ways (see, e.g., [2]). Thus we will fix
an arbitrary positive C∞-measure ω on M as our base measure, like the
theory of weighted Riemannian manifolds.
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The Ricci curvature (as the trace of the flag curvature) on a Finsler
manifold is defined by using the Chern connection (there are other connec-
tions but the flag and Ricci curvatures are in fact independent of the choice
of connection). Instead of giving a precise definition in coordinates, here we
explain a useful interpretation due to Shen [60, Section 6.2]. Given a unit
vector v ∈ TxM ∩ F−1(1), we extend it to a C∞-vector field V on a neigh-
borhood of x in such a way that every integral curve of V is geodesic, and
consider the Riemannian structure gV induced from (10.2). Then the Ricci
curvature Ric(v) of v with respect to F coincides with the Ricci curvature
of v with respect to gV (in particular, it is independent of the choice of V ).

Inspired by the above interpretation of the Ricci curvature as well as the
theory of weighted Riemannian manifolds, the weighted Ricci curvature for
(M,F, ω) was introduced in [45] as follows.

Definition 10.3 (Weighted Ricci curvature). Given a unit vector v ∈
TxM , let γ : (−ε, ε) −→M be the geodesic such that γ̇(0) = v. We decom-
pose ω as ω = e−f volγ̇ along γ, where volγ̇ is the volume form of gγ̇ . Define

(1) Ricn(v) :=

{
Ric(v) + (f ◦ γ)′′(0) if (f ◦ γ)′(0) = 0,
−∞ otherwise,

(2) RicN (v) := Ric(v)+ (f ◦ γ)′′(0)− (f ◦ γ)′(0)2
N − n forN ∈ (−∞, 0)∪ (n,∞),

(3) Ric∞(v) := Ric(v) + (f ◦ γ)′′(0).

For c ≥ 0, we set RicN (cv) := c2RicN (v).

It is established in [45, Theorem 1.2] that, for K ∈ R and N ∈ [n,∞],
the bound RicN (v) ≥ KF (v)2 is equivalent to the curvature-dimension con-
dition CD(K,N) (note that (M,dF ) is non-branching and thus Sturm’s and
Lott–Villani’s conditions are equivalent). This extends the corresponding
result on weighted Riemannian manifolds (Theorems 5.1 and 5.2). There
are further applications of RicN beyond the curvature-dimension condition,
e.g., a Bochner-type formula and gradient estimates [50].

Remark 10.4. For a Riemannian manifold (M, g, volg) endowed with the
Riemannian volume measure, clearly we have f ≡ 0 and hence RicN = Ric
for all N . It is also known that, for Finsler manifolds of Berwald type, the
Busemann–Hausdorff measure satisfies (f ◦ γ)′ ≡ 0 (in other words, Shen’s
S-curvature vanishes, see [60, Section 7.3]). In general, however, there may
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not exist any measure ω of vanishing S-curvature, see [47] for such an exam-
ple. This means that, on a general Finsler manifold, there is no measure as
good as the Riemannian volume measure. This is a reason why we began
with an arbitrary measure ω.

Define the divergence of a differentiable vector field V onM with respect
to the base measure ω by

divω V :=
n∑

i=1

(
∂Vi

∂xi
+ Vi

∂η

∂xi

)
,

where we decompose ω in coordinates as dω = eη dx1dx2 · · · dxn. Similarly
to the Riemannian case, this can be rewritten (and extended to weakly
differentiable vector fields) in the weak form as∫

M
w divω V dω = −

∫
M
Dw(V ) dω

for all w ∈ C∞c (M). Then we define the corresponding Laplacian of ρ ∈
H1
loc(M) by Δωρ := divω(∇ρ) in the distributional sense that∫

M
wΔωρ dω := −

∫
M
Dw(∇ρ) dω

for w ∈ C∞c (M). We remark that H1
loc(M) is defined solely in terms of the

differentiable structure ofM . It is established in [48, 50] that this non-linear
Laplacian works quite well with the weighted Ricci curvature.

For later convenience, we introduce the following notations.

Definition 10.5 (Reverse Finsler structure). Define the reverse Finsler
structure

←−
F of F by

←−
F (v) := F (−v). We will put arrows← on those quan-

tities associated with
←−
F , for example,

←−
dF (x, y) = dF (y, x),

←−∇ρ = −∇(−ρ)
and

←−
RicN (v) = RicN (−v).

10.3. Displacement convexity of Hϕ and applications

From now on, we consider only compact Finsler manifolds for simplicity. We
remark that all compact Finsler manifolds are forward complete.

Let us consider an admissible space (M,ω, ϕ,Ψ) in the sense of Defini-
tion 4.3 similarly to the Riemannian case. Then the analogue of Theorem 5.7
is demonstrated along the same line as the Riemannian case (see [45] for
details).
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We can show the functional inequalities in Theorem 6.3 also in the same
way by using the directional derivative of Hϕ (see (6.2)) modified into

lim inf
t↓0

Hϕ(μt)−Hϕ(μ)
t

≥
∫

M

(
Dρ

ϕ(ρ)
+DΨ

)
(∇φ) dμ.

Precisely, the ϕ-relative Fisher information of μ = ρω ∈ Pac(M,ω) is defined
by

Iϕ(μ) :=
∫

M
F (∇[− lnϕ(ρ) + lnϕ(σ)])2 dμ =

∫
M
F ∗

(
− Dρ

ϕ(ρ)
−DΨ

)2
dμ,

and the ϕ-global Poincaré inequality means

∫
MΨ

ϕ

w2σ

ϕ(σ)
dν ≤ 1

K

∫
MΨ

ϕ

F ∗
(
−D

(
wσ

ϕ(σ)

))2
dν.

We also remark that W2(μ, ν) in (i) of Theorem 6.3 can be replaced with
W2(ν, μ) since the curvature bound RicN ≥ K for F is equivalent to that for
its reverse

←−
F . The above ϕ-Talagrand inequality shows the concentration of

measures as in Section 7, where the open ball B(A, r) in the definition of
the concentration function α(r) is replaced with

B+(A, r) :=
{
y ∈M

∣∣∣ inf
x∈A

dF (x, y) < r
}
or

B−(A, r) :=
{
y ∈M

∣∣∣ inf
x∈A

dF (y, x) < r
}
.

10.4. Gradient flow of Hϕ

As for the gradient flow of Hϕ, due to the lack of the analogue of The-
orem 8.1, the argument in Section 8 is unavailable. Nonetheless, one can
apply the discussion in Section 9 using a (formal) Finsler structure of the
Wasserstein space, and obtain a result corresponding to Theorem 9.7. We
remark that, however, the K-contraction property (8.1) essentially depends
on the Riemannian structure and can not be expected in the Finsler setting
(see [49] for details).

Let (M,F ) be compact again. We introduce a Finsler structure of (P(M),
W2) similarly to Section 9. Given μ ∈ P(M), define the tangent space (TμP,
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Fμ) at μ by

Fμ(∇φ) :=
(∫

M
F (∇φ)2 dμ

)1/2
, for φ ∈ C∞(M),

TμP := {∇φ |φ ∈ C∞(M)},

where the closure was taken with respect to the (Minkowski) norm Fμ. Then
we can follow the line of Section 9 up to some computational differences.
We denote by L := (L∗)−1 : TM −→ T ∗M the Legendre transform in the
reverse direction.

Definition 10.6 (Gradient vectors). Given a functional H : P(M) −→
(−∞,∞] and μ ∈ P(M) with H(μ) <∞, we say that H is differentiable at
μ if there is Φ ∈ TμP such that

lim sup
t↓0

H(μt)−H(μ)
t

≤
∫

M
L(Φ)(∇φ) dμ

along all minimal geodesics (μt)t∈[0,1] ⊂ P(M) with μ0 = μ, where μt =
(Tt)�μ and Tt(x) := expx(t∇φ(x)), and if equality holds for φ ∈ C∞(M)
(with limt↓0 in place of lim supt↓0). Such Φ is unique if it exists, and then
we write ∇WH(μ) = Φ.

Proposition 10.7. Let (M,ω, ϕ,Ψ) be a compact admissible space sat-
isfying RicNϕ

≥ 0 and HessΨ ≥ K on MΨ
ϕ for some K ∈ R, and fix μ =

ρω ∈ Pac(M,ω) with μ[MΨ
ϕ ] = 1 and Hϕ(μ) <∞. Then the following are

equivalent:

(I) |∇−Hϕ|(μ) <∞,

(II) ρ ∈ H1(M) and

Φ = L∗
(
− Dρ

ϕ(ρ)
−DΨ

)
μ-a.e.

for some Φ ∈ TμP.

Moreover, then we have Φ = ∇W [−Hϕ](μ) and Fμ(Φ) = |∇−Hϕ|(μ).

Note that

Φ = L∗
(
− Dρ

ϕ(ρ)
−DΨ

)
= L∗

(
D[− lnϕ(ρ)−Ψ]

)
= ∇[− lnϕ(ρ)−Ψ].
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Theorem 10.8 (Gradient flow of Hϕ). Let us suppose that (M,ω, ϕ,Ψ)
is compact, admissible and satisfies RicNϕ

≥ 0 as well as HessΨ ≥ K on
MΨ

ϕ for some K ∈ R, and let (μt)t∈[0,∞) ⊂ Pac(M,ω) be a continuous curve
such that μt[MΨ

ϕ ] = 1 and Hϕ(μt) <∞ for all t > 0. Then (μt)t∈(0,∞) is an
absolutely continuous curve satisfying

μ̇t = ∇W [−Hϕ](μt) ∈ Tμt
P

at a.e. t ∈ (0,∞) if and only if (ρt)t∈[0,∞) is a weak solution to the reverse
ϕ-heat equation of the form

(10.3)
∂ρ

∂t
= −divω

(
ρ∇[− lnϕ(ρ)−Ψ]

)
with

∫ t1
t0
F (∇[− lnϕ(ρt)])2 dμtdt <∞ for all 0 < t0 < t1 <∞, where

μt = ρtω.

Proof. If μ̇t = ∇W [−Hϕ](μt) a.e. t, then Proposition 10.7 yields μ̇t =
∇[− lnϕ(ρt)−Ψ] ∈ Tμt

P a.e. t. Thus, it follows from the continuity equation
(9.2) that∫ ∞

0

∫
M

∂wt

∂t
dμt dt = −

∫ ∞

0

∫
M
Dwt

(
∇[− lnϕ(ρ)−Ψ]

)
dμt dt

for all w ∈ C∞c ((0,∞)×M), and hence ρt weakly solves (10.3). Conversely, if
ρt is a weak solution to (10.3), then the same calculation implies that Φt =
∇[− lnϕ(ρt)−Ψ] satisfies the continuity equation (9.2), and (μt)t∈(0,∞) is
absolutely continuous. Therefore Proposition 10.7 shows μ̇t = Φt =
∇W [−Hϕ](μt) a.e. t. �

We meant by the reverse ϕ-heat equation the equation with respect to
the reverse Finsler structure

←−
F (v) = F (−v). Since the gradient vector for←−

F is written as
←−∇ρ = −∇(−ρ), (10.3) is indeed rewritten as

∂ρ

∂t
= divω

(
ρ
←−∇ [lnϕ(ρ) + Ψ]

)
.

A. Appendix: Measure concentration via uϕ-entropy
inequality

Let us go back to the Riemannian situation. In Section 6, we introduced the
ϕ-logarithmic Sobolev inequality (6.5) by generalizing the relative entropy
to the ϕ-relative entropy associated with the Bregman divergence. Precisely,
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the classical logarithmic Sobolev inequality (corresponding to ϕ1(s) = s) of
the form

Entν(μ)− Entν(ν) ≤
2
K

∫
M

∣∣∣∣∇(√ρ

σ

)∣∣∣∣2 dν = 1
2K

∫
M

∣∣∣∣∇ρρ − ∇σ
σ

∣∣∣∣2 dμ
is generalized to

Hϕ(μ)−Hϕ(ν) ≤
1
2K

∫
M

∣∣∇[lnϕ(ρ)− lnϕ(σ)]
∣∣2 dμ,

where μ = ρω, ν = σω and K is a positive constant.
The logarithmic Sobolev inequality has the alternative form∫

M
w ln(w) dν −

(∫
M
w dν

)
ln
(∫

M
w dν

)
≤ 1
2K

∫
M

|∇w|2
w

dν

for non-negative measurable functions w :M −→ [0,∞). Then the inequality∫
M
uϕ(w) dν − uϕ

(∫
M
w dν

)
≤ 1
2K

∫
M
u′′ϕ(w)|∇w|2 dν

=
1
2K

∫
M

|∇w|2
ϕ(w)

dν

obtained by replacing the function r �−→ r ln r (generating the relative
entropy) with uϕ is called the uϕ-entropy inequality, which provides a gener-
alization of the logarithmic Sobolev inequality different from our
ϕ-logarithmic Sobolev inequality. The function ϕ is usually imposed to be
concave, that is equivalent to the convexity of the function

(s, t) �−→ dϕ(s+ t, t) := uϕ(s+ t)− uϕ(t)− lnϕ(t)s.

Note that dϕ coincides with the density function of the Bregman divergence
Dϕ. We refer to [16, 17] for details, where instead of uϕ it is treated C2-
strictly convex functions Φ such that 1/Φ′′ is concave.

We demonstrated in Section 7 that the ϕ-Talagrand inequality leads the
m(ϕ)-normal concentration of measures. In the classical case of ϕ1(s) = s,
it is known that the normal concentration also follows from the logarithmic
Sobolev inequality by the Herbst argument (see, e.g., [32, Chapter 5]). In the
same spirit, we can deduce from the uϕ-entropy inequality the corresponding
ϕ-normal concentration of measures. We first recall a kind of Chebyshev’s
inequality for later use.
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Lemma A.1 (Chebyshev’s inequality). Let w be a measurable func-
tion on a measure space (X,μ). Then for any non-negative, non-decreasing,
measurable function v on R,

μ [{x ∈ X |w(x) ≥ t}] ≤ 1
v(t)

∫
X
v(w) dμ

holds for any t > 0 with v(t) > 0.

We next show an auxiliary lemma. We will normalize ϕ as ϕ(1) = 1 for
simplicity, recall that such a normalization does not change the value of θϕ

(Remark 2.10).

Lemma A.2. Let ϕ : (0,∞) −→ (0,∞) be a positive concave function with
ϕ(1) = 1. Then we have θϕ ≤ 1 and

uϕ(s) + aϕs ≥ aϕϕ(s) lnϕ(s)

for any s > 0, where we set aϕ := −uϕ(1) > 0.

Proof. It follows from the concavity of ϕ that

ϕ(s+ t)− ϕ(s)
t

≤ ϕ(s)− ϕ(ε)
s− ε <

ϕ(s)
s− ε

for any 0 < ε < s < s+ t. Letting ε ↓ 0 and then t ↓ 0, we find

s

ϕ(s)
· lim sup

t↓0

ϕ(s+ t)− ϕ(s)
t

≤ 1.

Since s > 0 is arbitrary, we obtain θϕ ≤ 1.
Set A(s) := uϕ(s) + aϕs− aϕϕ(s) lnϕ(s) and observe A(1) = 0 by the

choice of aϕ. Proposition 2.13 implies

0 ≥ lim
s↓0

ϕ(s) lnϕ(s) ≥ lim
s↓0

sδϕ�2−δϕ
(s) = 0,

so that lims↓0 ϕ(s) lnϕ(s) = 0 and we can put A(0) := 0. Since the concavity
of ϕ ensures that the right derivative

ϕ′+(s) := lim
ε↓0

ϕ(s+ ε)− ϕ(s)
ε

∈
[
0,
ϕ(s)
s
θϕ

]
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is well-defined and non-increasing on (0,∞), a direct computation yields

A′+(s) := lim
ε↓0

A(s+ ε)−A(s)
ε

= lnϕ(s)
{
1− aϕϕ

′
+(s)

}
.

Note that (2.9) shows

1− aϕϕ
′
+(1) ≥ 1− aϕθϕ = 1 + θϕ

∫ 1

0
lnϕ(t) dt ≥ 1 + θϕ

∫ 1

0
�2−θϕ

(t) dt

= 1− θϕ

2− θϕ
≥ 0.

For s ≥ 1, we deduce from lnϕ(s) ≥ lnϕ(1) = 0 and ϕ′+(s) ≤ ϕ′+(1) that
A′+(s) ≥ 0. Hence we have A(s) ≥ A(1) = 0. On (0, 1), since lnϕ < 0, A(0) =
A(1) = 0 and ϕ′+ is non-increasing, A is identically zero or there is some
s0 ∈ (0, 1) such that A′+ ≥ 0 on (0, s0) and that A′+ ≤ 0 on (s0, 1). Therefore,
we conclude that A ≥ 0 on (0, 1). �

Remark A.3. The condition θϕ ≤ 1 does not imply the concavity of ϕ.
For instance, let

ϕ(s) :=

{√
s for 0 < s < 1,

s for s ≥ 1.

Then we have θϕ = 1, whereas ϕ is clearly not concave.

Now we prove that the uϕ-entropy inequality implies the ϕ-normal con-
centration for ϕ as in Lemma A.2.

Theorem A.4 (ϕ-normal concentration from uϕ-entropy inequal-
ity). Take a positive concave function ϕ : (0,∞) −→ (0,∞) such that
ϕ(1) = 1. For a Riemannian manifold (M, g) and ν ∈ P(M), assume that
there is a positive constant K such that the uϕ-entropy inequality

(A.1)
∫

M
uϕ(w) dν − uϕ

(∫
M
w dν

)
≤ 1
2K

∫
M
u′′ϕ(w)|∇w|2 dν

holds for every non-negative measurable function w ∈ L1(M,ν) satisfying
u′′ϕ(w)|∇w|2 ∈ L1(M,ν). Then for any r > 0 we have

α(r)−1 ≥ expϕ

(
−uϕ(1)K

8
r2
)
,

where α stands for the concentration function of (M,ν).



Displacement convexity of generalized relative entropies. II 777

Proof. Fix arbitrary A ⊂M with ν[A] ≥ 1/2 and r > 0. Putting B :=M \
B(A, r), we also assume ν[B] > 0 since we have α(r) = 0 if ν[B] = 0 for all
such A. Set Fr(x) := min{dg(x,A), r} for x ∈M , and observe that Fr is
1-Lipschitz. Note also that the function

Gr(x) := Fr(x)−
∫

M
Fr dν

satisfies Gr(x) ≥ r/2 for any x ∈ B since
∫
M Fr dν ≤ r · ν[M \A] ≤ r/2.

Applying Chebyshev’s inequality (Lemma A.1) to the non-negative, non-
decreasing function

vs(t) := expϕ

(
st− s2

2aϕK

)

with s > 0 and aϕ := −uϕ(1) > 0, we have

(A.2) ν[B] ≤ ν
[{
x ∈M

∣∣∣ Gr(x) ≥
r

2

}]
≤ 1
vs(r/2)

∫
M
vs(Gr) dν.

We shall show that I(s) :=
∫
M vs(Gr) dν ≥

∫
B vs(r/2) dν > 0 is bounded

above by 1.
Set

ws(x) := vs

(
Gr(x)

)
= expϕ

(
sGr(x)−

s2

2aϕK

)
,

Xs :=
{
x ∈M

∣∣∣∣ sGr(x)−
s2

2aϕK
> lϕ

}
.

For s ∈ (0, aϕKr) and any x ∈ B, we have

sGr(x)−
s2

2aϕK
≥ rs

2
− s2

2aϕK

= − 1
2aϕK

(
s− aϕKr

2

)2
+
aϕKr

2

8
≥ 0 > lϕ,

proving B ⊂ Xs. Let us introduce the strictly convex function Φϕ(t) :=
uϕ(t) + aϕt on [0,∞), and observe that Φϕ ≤ 0 on [0, 1] and Φϕ > 0 on
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(1,∞). Then the inequality (A.1) applied to w = ws can be rewritten as∫
Xs

Φϕ(ws) dν −
1
2K

∫
Xs

Φ′′ϕ(ws)|∇ws|2 dν ≤ Φϕ

(∫
Xs

ws dν

)
.

Note that ws is bounded since Gr is bounded by definition, and hence ws ∈
L1(M,ν). Moreover, u′′ϕ(ws)|∇ws|2 ∈ L1(M,ν) is seen by∫

Xs

Φ′′ϕ(ws)|∇ws|2 dν =
∫

Xs

s2ϕ(ws)|∇Gr|2 dν < s2
∫

Xs

ϕ(ws) dν

for s ∈ (0, aϕKr), where we used the fact that |∇Gr| ≤ 1 on whole M and
|∇Gr| ≡ 0 on B. It follows from Lemma A.2 that∫

Xs

(
Φϕ(ws)−

s2

2K
ϕ(ws)

)
dν ≥

∫
Xs

(
aϕϕ(ws) lnϕ(ws)−

s2

2K
ϕ(ws)

)
dν

=
∫

Xs

ϕ(ws)
(
saϕGr −

s2

K

)
dν

= saϕ
d

ds

(∫
Xs

ws dν

)
.

These together imply, as
∫
Xs
ws dν =

∫
M ws dν = I(s),

(A.3) saϕI
′(s) < Φϕ

(
I(s)

)
for s ∈ (0, aϕKr).

For s0 ∈ (0, aϕKr) chosen later, set

P (s) := exp
(
1
aϕ

∫ s

s0

Φ′ϕ(I(t))
t

dt

)
, Q(s) :=

Φϕ(I(s))
P (s)

for s ∈ (0, s0], and observe

Q′(s) =
Φ′ϕ(I(s))
P (s)

{
I ′(s)− Φϕ(I(s))

saϕ

}
.

Then we deduce from (A.3) that Q′(s) = 0, if and only if Φ′ϕ(I(s)) = 0.
Assume that sups∈(0,aϕKr) I(s) > I(0) = 1 and choose s0 ∈ (0, aϕKr)

such that I(s0) > 1 and

c := sup
s∈(0,s0]

Φ′ϕ
(
I(s)

)
∈ (aϕ, 2aϕ)

(note that Φ′ϕ(I(0)) = aϕ). Then we have

(A.4) P (s) ≥ exp
(
c

aϕ

∫ s

s0

1
t
dt

)
=
(
s

s0

)c/aϕ

, s ∈ (0, s0].
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Moreover, since the convexity of Φϕ and Φϕ(0) = 0 imply I(s)Φ′ϕ(I(s)) ≥
Φϕ(I(s)), we find Φ′ϕ(I(s0)) > 0 and hence Q′(s0) < 0. Note that there does
not exist s ∈ (0, s0) such that Q′ ≤ 0 on (s, s0) as well as Q′(s) = 0, since
then I(s)Φ′ϕ(I(s)) = 0 ≥ Φϕ(I(s)) and Q(s0) ≤ Q(s) ≤ 0, which contradicts
I(s0) > 1. Thus, Q′ < 0 on (0, s0), and by (A.4)

Q(s0) ≤ lim sup
s↓0

Q(s) ≤ s
c/aϕ

0 lim sup
s↓0

Φϕ(I(s))
sc/aϕ

.

Now, since

I ′(0) =
∫

M
Gr dν = 0, Φϕ

(
I(s)

)
= Φϕ(1) + sΦ′ϕ(1)I

′(0) +O(s2) = O(s2)

and c < 2aϕ, it holds lims↓0 s−c/aϕΦϕ(I(s)) = 0. This means Q(s0) ≤ 0 and
hence I(s0) ≤ 1, which is a contradiction. We therefore obtain I(s) ≤ I(0) =
1 for any s ∈ (0, aϕKr) as desired.

Hence, we deduce from (A.2) that ν[B] ≤ vs(r/2)−1 for any s ∈ (0,
aϕKr). Choosing s = aϕKr/2 and taking the supremum in A, we conclude
that

α(r) ≤ 1
expϕ(aϕKr2/8)

.

�

Remark A.5. Bolley and Gentil [12] showed that if a probability mea-
sure on R

n satisfies CD(K,∞) with K > 0, then it satisfies the uϕ-entropy
inequality (A.1) with the same constant K. We remark that the condi-
tion CD(K,∞) leads the normal concentration which is stronger than the
ϕ-normal concentration for θϕ < 1 (since expϕ(r)−1 ≥ e2−θϕ

(r)−1 ≥ e−r by
(2.10)), whereas there exists a probability measure which satisfies (A.1)
and does not satisfy CD(K,∞). See [31, Theorem 2] for details, where they
proved that the probability measure on R

n of the form

dμa(x) :=
(

a

2Γ(1/a)

)n

exp(−|x|a) dLn(x)

with a ∈ [1, 2) satisfies the uϕm
-entropy inequality for m ∈ (1, 2], while the

concentration function α(r) of μa is dominated by exp(−r2/3) (resp.
exp(−ra/3)) for r < 1 (resp. r > 1).
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