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Explicit Dehn filling and Heegaard splittings

David Futer and Jessica S. Purcell

We prove an explicit, quantitative criterion that ensures the
Heegaard surfaces in Dehn fillings behave “as expected.” Given a
cusped hyperbolic 3-manifold X, and a Dehn filling whose merid-
ian and longitude curves are longer than 2π(2g − 1), we show that
every genus g Heegaard splitting of the filled manifold is isotopic
to a splitting of the original manifold X. The analogous statement
holds for fillings of multiple boundary tori. This gives an effective
version of a theorem of Moriah–Rubinstein and Rieck–Sedgwick.

1. Introduction

In 1997, Moriah and Rubinstein investigated the relationship between
Heegaard splittings of a cusped hyperbolic 3-manifold and the Heegaard
splittings of its Dehn fillings [16]. They showed that if one imposes a bound
on the genus of the surfaces and excludes finitely many Dehn filling slopes,
then every irreducible Heegaard surface in the filled manifold is isotopic to
one of a finite collection of surfaces in the original manifold. In 2001, Rieck
and Sedgwick used topological ideas to show that any Dehn filling slope that
results in a smaller genus Heegaard surface must lie on one of a finite num-
ber of so-called “bad” slopes and “destabilization lines” in Dehn surgery
space [20]. Rieck showed that the number of bad slopes is bounded by a
quadratic function of the genus [18], while Rieck and Sedgwick showed that
this number is finite in general, independent of genus [19].

Due to this previous work, we know that if we exclude a finite number of
Dehn filling slopes, and a finite number of destabilization lines in the Dehn
surgery space, any bounded–genus Heegaard surface in a Dehn filling will
be a Heegaard surface in the original manifold. However, there has not been
an effective characterization of which slopes and destabilization lines must
be excluded. As a consequence, it has been difficult to use these results to
prove explicit bounds, such as those needed in a recent paper of the authors
with Cooper [6].

In this paper, we make these constraints explicit. In particular, we show
the following.
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Theorem 1.1. Let X be a cusped, orientable hyperbolic 3-manifold. Choose
disjoint horospherical neighborhoods C1, . . . , Ck about some subset of the
cusps, and let si be a Dehn filling slope on each torus ∂Ci. Let Σ be a Hee-
gaard surface of genus g ≥ 1 for the Dehn filled manifold M = X(s1, . . . , sk).
Then we have the following.

1) If the length �(si) satisfies �(si) > 2π(2g − 1) for every i, then each
core curve γi for the filling solid torus is isotopic into Σ (although
these cores may not be simultaneously isotopic into Σ).

2) If, in addition, the shortest longitude λi for each si satisfies �(λi) >
6(2g − 3), the surface Σ can be isotoped into M�(γ1 ∪ . . . ∪ γk) ∼= X,
and forms a Heegaard surface for X.

A longitude for si in item (2) is defined to be a slope λi on ∂Ci that
intersects si once. The shortest longitude is a longitude whose length is
smallest among all longitudes for si. Here the lengths of si and λi are the
lengths of geodesic representatives on the horospherical torus ∂Ci, in the
metric induced by the hyperbolic metric on X.

The slopes on ∂Ci that fail conclusion (1) of the theorem, i.e., those
slopes whose core of the Dehn filling solid torus is not isotopic into Σ, are
exactly the “bad” slopes studied by Rieck and Sedgwick [18–20]. Thus part
(1) of Theorem 1.1 gives an explicit finite list of candidates for bad slopes.
Similarly, for each slope λi of length less than 6(2g − 3), the primitive integer
coordinates of the meridians that intersect λi once lie on a single line in R

2;
this line is exactly the “destabilization line” corresponding to λi. Thus part
(2) of Theorem 1.1 gives an explicit finite list of candidates for destabilization
lines.

We note that because g ≥ 1, the hypotheses of the theorem always
require that the Dehn filling slopes satisfy �(si) > 2π. As a result, the
2π–Theorem of Gromov and Thurston [2] implies that the manifold M = X
(s1, . . . , sk) has a negatively curved metric. (Thus, in fact, the case g = 1 is
vacuous.)

Our main tool in proving Theorem 1.1 is geometry: we obtain our con-
clusions from area considerations in the negatively curved metric on M . This
geometric viewpoint follows the lead of Moriah and Rubinstein’s paper [16].
We also follow their lead in using a theorem of Pitts and Rubinstein [17, 21]
that relates Heegaard surfaces to minimal surfaces in M (see Lemma 3.8
below). The Pitts–Rubinstein result has been used in a number of applica-
tions (e.g., [3, 12, 14, 16]), but unfortunately a complete proof of this result
does not appear in the literature. De Lellis and Pellandini have proved an
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important step, namely that the “minimax method” produces a minimal sur-
face of the appropriate genus [7]. In addition, a survey paper by Souto [28]
contains a discussion of the status of the proof, including what remains to
be done after the work of De Lellis and Pellandini. Souto claims in [28] to
have worked out the remainder of the proof, although his argument has not
yet appeared. In this work, we shall assume the Pitts–Rubinstein result, in
anticipation of a full proof.

In addition to methods used by Moriah and Rubinstein, our argument
takes advantage of several other tools, some of which were unavailable in
1997.

First, we will use an effective version of the 2π-Theorem, due to the
authors and Kalfagianni [9, Theorem 2.1], to get explicit estimates on cur-
vature and area in M . This result, described in Section 2, will give us much
more effective control over surfaces.

Second, we will use the notion of generalized Heegaard splittings, devel-
oped by Scharlemann and Thompson [25], to reduce the crux of the argument
to the case where Σ is strongly irreducible. We review the relevant ideas in
Section 3.

Third, our proof relies on the argument in a recent paper by Breslin [3].
In fact, we obtain a generalization of his theorem, which is likely to be of
independent interest. To simplify the statement of our generalization, we
use the following definition.

Definition 1.2. Let V be a solid torus, with a prescribed Riemannian
metric. We say the metric on V is submersible if, after lifting the metric
to the universal cover Ṽ ∼= D × R, there is a Riemannian submersion from
Ṽ to its cross-sectional disc D. Recall that a smooth map f : Ṽ → D is
called a Riemannian submersion if its differential df : TpṼ → Tf(p)D is an
orthogonal projection at each point.

We note that if M has a hyperbolic metric and V ⊂ M is a fixed-radius
tube about a closed geodesic, then the metric on V is submersible. In addi-
tion, we will see in Section 2 that the negatively curved solid tori constructed
using the 2π-Theorem are also submersible. Thus the hypothesis of sub-
mersibility is relatively mild.

Theorem 1.3. Let M be an orientable Riemannian 3-manifold whose non-
compact ends (if any) are isometric to horospherical cusp neighborhoods, and
whose boundary (if any) consists of minimal surfaces. Suppose the sectional
curvatures of M are bounded above by κmax < 0. Let Σ be a Heegaard surface
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for M . Let V be a solid torus in M , such that the metric on V is submersible
and its cross-sectional disc D satisfies

(1.1) area(D) > 2πχ(Σ)/κmax.

Then the core curve γ of V is isotopic into Σ. Here χ(Σ) denotes Euler
characteristic.

Theorem 1.3 generalizes Breslin’s theorem in several ways. First, it does
not require Σ to be strongly irreducible. Second, it allows M to have cusps
and/or boundary. Third, it allows the metric on M to have variable cur-
vature. Finally, the explicit hypothesis of Equation (1.1) may be easier to
check in applications than Breslin’s hypothesis on the length of γ. These
improvements are obtained by modifications of Breslin’s original argument;
we describe them in Section 4.

With all of this work in hand, part (1) of Theorem 1.1 will follow imme-
diately by applying Theorem 1.3 to the negatively curved metric described
in Theorem 2.1. Part (2) of Theorem 1.1 will follow by another geometric
argument, which is given in Section 5.

2. A negatively curved metric on the filled manifold

In this section, we begin with a cusped hyperbolic manifold X, and recall
an explicit construction of a negatively curved metric on a Dehn filling
M = X(s1, . . . , sk). Following results of the the authors and Kalfagianni
in [9, Section 2], we will obtain explicit estimates on curvature and areas in
the negatively curved metric on M . These estimates are designed to plug
into Equation (1.1), which will give us control over Heegaard surfaces in M .

Theorem 2.1. Let X be a complete, finite-volume hyperbolic manifold with
cusps. Suppose C1, . . . , Ck are disjoint horoball neighborhoods of some (pos-
sibly all) of the cusps. Let s1, . . . , sk be slopes on ∂C1, . . . , ∂Ck, each with
length greater than 2π. Denote the minimal slope length by �min.

Then, for every ζ ∈ (0, 1), the Dehn filled manifold M = X(s1, . . . , sk)
admits a Riemannian metric, in which the cusp Ci is replaced by a negatively
curved solid torus Vi. This metric has the following properties:

1) The metric on M�
⋃

i Vi agrees with the hyperbolic metric on
X�

⋃
i Ci.

2) The sectional curvatures of M are bounded above by ζ

((
2π

�min

)2− 1
)

< 0.
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3) The metric on each Vi is submersible, as in Definition 1.2.

4) The cross-sectional disc of Vi has area at least ζ

(
�min

2

�min + 2π

)
.

Proof. To construct a Riemannian metric on M satisfying (1), it suffices to
construct a negatively curved metric on each solid torus Vi, such that in a
collar neighborhood of ∂Vi, it agrees with the hyperbolic metric in a collar
neighborhood of ∂Ci. This is precisely what is done in [9, Theorem 2.1].
Thus the cusp neighborhoods Ci can be replaced by solid tori Vi, obtaining
(1). In addition, we showed in [9, Lemma 2.3 and Theorem 2.5] that the
curvatures of the resulting metric on M are bounded as claimed in (2).

For the rest of the argument, we focus on one solid torus V = Vi, and
drop the subscripts for convenience. We describe the metric on V that was
constructed in [9, Theorem 2.1]. Let tlim = 1− (2π/�(si))2, and choose a
parameter t ∈ (0, tlim). For fixed t, the metric on V can be described in
cylindrical coordinates by the equation

(2.1) ds2 = dr2 + (ft(r))2 dμ2 + (gt(r))2 dλ2,

Here, ft and gt are functions obtained by solving a certain ODE. The coor-
dinate 0 ≤ μ ≤ 1 is measured around each meridional circle, while 0 ≤ λ ≤ 1
is measured perpendicular to μ in the longitudinal direction. Furthermore,
r0(t) ≤ r ≤ 0 is radial distance, where r = 0 on the boundary torus ∂V and
r0(t) < 0 is the unique root of the function ft(r). The radial value r = r0(t)
corresponds to the core of the solid torus V .

Observe that the expression for the metric in Equation (2.1) is already
diagonalized, with the three coordinate vectors mutually orthogonal.
Furthermore, if we lift the metric to the universal cover Ṽ , the μ and λ
coordinates are globally defined. Thus the projection from Ṽ ∼= D × R to
the cross-sectional disc D, defined by (r, μ, λ) 	→ (r, μ), is a Riemannian sub-
mersion, as claimed in (3).

To prove the theorem, it remains to compute the area of a meridian disc
D. Since the coordinate λ is constant over a meridian disc, the area for fixed
t will be given by

∫ 1

0

∫ 0

r0(t)
ft(r) dr dμ =

∫ 0

r0(t)
ft(r) dr.
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By [9, Theorem 5.4 and Equation (4)], we know that as t → tlim, the
functions ft converge uniformly to

ftlim(r) =
�(si)

√
1− tlim√
tlim

sinh(
√

tlim(r − r0)),

where

r0 = − tanh−1(
√

tlim)/
√

tlim.

Thus, as t → tlim, the area of the meridian disc limits to

lim
t→tlim

∫ 0

r0(t)
ft(r) dr =

∫ 0

r0

ftlim(r) dr

=
∫ 0

r0

�(si)
√
1− tlim√
tlim

sinh
(√

tlim(r − r0)
)
dr

=
�(si)

√
1− tlim

tlim

(
cosh(

√
tlim(−r0))− 1

)
=

�(si)
√
1− tlim

tlim

(
cosh(tanh−1(

√
tlim))− 1

)
=

�(si)
√
1− tlim

tlim

(
1√

1− tlim
− 1

)

=
�(si) · 2π/�(si)
1− (2π/�(si))2

(
�(si)
2π

− 1
)

=
�(si)2

�(si) + 2π
.

Therefore, for t sufficiently close to tlim, we obtain item (4). �

3. Sweepouts and generalized Heegaard splittings

In this section, we review the definitions of strongly irreducible Heegaard
splittings, and untelescoping for weakly reducible Heegaard splittings.
We recall the definition of a sweepout, as well as bounded area sweepouts.
For strongly irreducible Heegaard splittings, the existence of bounded area
sweepouts follows from results announced by Pitts and Rubinstein [17].
When the Heegaard splitting is not strongly irreducible, we still obtain a
bounded area sweepout after untelescoping.

None of the results in this section are original. However, since the ideas
described here are gathered from many sources, we found it helpful to write
down a unified exposition.
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Definition 3.1. A compression body C is constructed by taking a closed,
oriented (possibly disconnected) surface S with no S2 components, thicken-
ing it to S × [0, 1], and attaching a finite number of 1–handles to S × {1}
in a way that makes the result connected. The negative boundary of C is
∂−C := S × {0}, and the positive boundary is ∂+C := ∂C�∂−C.

A handlebody of genus g, constructed by attaching g 1-handles to a
3-ball, is also considered a compression body. Its negative boundary is empty,
and its positive boundary is the genus g surface ∂C.

The spine of a compression body C consists of the negative boundary
∂−C, along with the core arcs of the attached 1-handles. In the special case
where C is a handlebody, a spine is any graph whose regular neighborhood is
C. In either case, a compression body C deformation retracts to its spine, and
in fact, the complement of the spine in C is homeomorphic to ∂+C × (0, 1).

Definition 3.2. A Heegaard splitting of a compact orientable 3-manifold
M is an expression M = C1 ∪ C2, where C1 and C2 are compression bodies
glued along their positive boundaries. The surface

Σ = C1 ∩ C2 = ∂+C1 = ∂+C2.

is called the Heegaard surface of the splitting M = C1 ∪ C2. We often speak
of the Heegaard splitting and its surface interchangeably, as one determines
the other.

A Heegaard splitting M = C1 ∪ C2 defines a sweepout. This is a map
f : M → [−1, 1], such that:
• f−1(−1) is a spine of C1 and f−1(1) is a spine of C2.

• For each t ∈ (−1, 1), f−1(t) is a surface isotopic to Σ = ∂+C1 = ∂+C2.

Writing Σt = f−1(t), we obtain a 1–parameter family of surfaces isotopic to
Σ, interpolating between the two spines.

Definition 3.3. A Heegaard splitting M = C1 ∪ C2 is called reducible if
there are properly embedded discs Di ⊂ Ci that are essential (i.e., ∂Di ⊂
∂+Ci is non-trivial on ∂+Ci) and such that ∂D1 = ∂D2 ⊂ Σ. If M is irre-
ducible, the sphere D1 ∪D2 must bound a 3–ball, hence Σ is obtained by
adding extra handles inside the 3-ball, a process called stabilization. Other-
wise, if the splitting is not reducible, it is called irreducible.

Following Casson and Gordon [4], we say a Heegaard splitting is weakly
reducible if there exist essential compression discs Di ⊂ Ci such that ∂D1 ∩
∂D2 = ∅. It is strongly irreducible otherwise.
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Casson and Gordon showed that an irreducible manifold M with a non-
stabilized weakly reducible splitting must contain an incompressible sur-
face [4]. Scharlemann and Thompson showed that in this setting, we may
always cut M along incompressible surfaces and obtain a strongly irreducible
generalized Heegaard splitting [25]. Our description of these splittings follows
Lackenby’s paraphrase [13].

Definition 3.4. A generalized Heegaard splitting of a compact orientable
3-manifold M is a decomposition of M into submanifolds W1, . . . , Wm, for
an even m, where each Wi is a disjoint union of compression bodies, glued
along their boundaries as follows. For each 0 < i < m/2, we have

∂−W2i ∩M◦ = ∂−W2i+1 ∩M◦, and ∂+W2i = ∂+W2i−1.

(Here, the notation M◦ indicates the interior of M .) The surface Fi = Wi ∩
Wi+1 is called an even or odd surface, depending on the parity of i. By
construction, each component of the odd surface F2i−1 is a Heegaard surface
of the corresponding component of (W2i−1 ∪W2i).

Using the work of Casson and Gordon [4], Scharlemann and Thompson
proved that one may start with a 3-manifold M and an irreducible split-
ting Σ, and construct a generalized Heegaard splitting with the following
properties:

1) Every component of every odd surface F2i−1 is a strongly irreducible
Heegaard surface for the component of (W2i−1 ∪W2i) that contains it.

2) Every even surface F2i is incompressible, with no 2–sphere compo-
nents.

3) Every Fi satisfies χ(Σ) ≤ χ(Fi) ≤ 0.

A generalized Heegaard splitting with these properties is called thin.
The process of constructing a generalized Heegaard splitting is called

untelescoping, and the inverse process (which recovers Σ) is called amalga-
mation. We describe the amalgamation process briefly, since we will need it
below.

Choose an even surface in the generalized splitting, say F2. By Defini-
tion 3.4, a component S2 ⊂ F2 is the negative boundary of a compression
body C2 ⊂ W2 and a compression body C3 ⊂ W3. By Definition 3.1, C2 is
constructed by attaching 1-handles to a surface S × {1}, which is paral-
lel to S2 = S × {0}. Extend these 1-handles through S × [0, 1], and attach
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them directly to S2. Similarly, extend the 1-handles of the compression body
C3 ⊂ W3, to attach them directly to S2 ⊂ F2. This can be done while keep-
ing the attaching discs disjoint from the attaching discs of the 1–handles in
C2. See [13, Figure 12].

If we perform this construction for every component of F2, the resulting
surface F ′2, obtained from F2 by attaching annuli, is now a Heegaard surface
of W1 ∪ · · · ∪W4. In other words, we have obtained a generalized Heegaard
splitting with fewer pieces. Continuing in this manner, we amalgamate all
the pieces and obtain a Heegaard surface for M . Although there are various
choices involved this procedure (choosing handle structures on the compres-
sion bodies, choosing an order in which to amalgamate), amalgamation is
guaranteed to recover the original Heegaard surface Σ ⊂M . See [13, Propo-
sition 3.1].

Our goal is to work with generalized Heegaard splittings in the context
of a negatively curved metric, as constructed in Section 2.

Definition 3.5. Let M be an orientable Riemannian 3-manifold. An
orientable surface F ⊂M is called almost minimal if F is either a mini-
mal surface, or is the boundary of an ε–neighborhood of a non-orientable
minimal surface F ′.

We will use the following result on essential surfaces and minimal sur-
faces; see [8, 15, 26].

Lemma 3.6. Let M be a negatively curved Riemannian 3-manifold, whose
boundary (if any) consists of minimal surfaces. Then

1) A connected, orientable, essential surface F ⊂ M is isotopic to an
almost minimal surface, as in Definition 3.5.

2) If F and G are disjoint, connected, non-parallel essential surfaces, then
their almost–minimal representatives are also disjoint.

In particular, if {W1, . . . , Wm} form a thin generalized Heegaard splitting
for M , one may isotope the Wj into a position where each piece
Mi = W2i−1 ∪W2i has minimal boundary. A boundary surface of Mi may
be part of the original boundary of M , or it may result from cutting along a
minimal surface corresponding to an even Fi, as in Lemma 3.6. (Note that if
Fi is isotopic to the orientable double cover of a non-orientable minimal sur-
face F ′i , then cutting along F ′i is equivalent to cutting along Fi, and produces
orientable, minimal boundary.)
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Every minimal surface in M satisfies an upper bound on area, related
to its curvature.

Lemma 3.7. Let M be an orientable Riemannian 3-manifold whose sec-
tional curvatures are bounded above by κmax < 0. Let S ⊂ M be a minimal
surface. Then

(3.1) area(S) ≤ 2πχ(S)/κmax.

Proof. This follows from the Gauss–Bonnet theorem, combined with the
properties of minimal surfaces. Let λ1, λ2 denote the principal normal cur-
vatures at a point x ∈ S, let Kx denote the sectional curvature of M along S,
and let κ denote the Gaussian curvature of S at x ∈ S. Then the minimality
of S implies that λ1 = −λ2 hence

κ = Kx + λ1λ2 ≤ Kx ≤ κmax.

Integrating over S, we obtain

κmax area(S) =
∫

S
κmax dA ≥

∫
S

κ dA = 2π χ(S),

where the last equality is the Gauss–Bonnet theorem. Dividing the previous
equation by κmax gives the desired statement. �

Note that if F is the orientable double cover of a non-orientable min-
imal surface F ′, as in Definition 3.5, then choosing a sufficiently small
ε-neighborhood ensures that area(F ) satisfies a bound arbitrarily close to
(3.1). This will be useful for Heegaard surfaces.

The following lemma is essentially a reformulation of an announced result
by Pitts and Rubinstein [17]. As mentioned in the introduction, a complete
proof of their result has not yet appeared.

Lemma 3.8. Let M be an orientable Riemannian 3-manifold whose non-
compact ends (if any) are isometric to horospherical cusp neighborhoods, and
whose boundary (if any) consists of minimal surfaces. Suppose the sectional
curvatures of M are bounded above by κmax < 0. Let Σ be a strongly irre-
ducible Heegaard surface for M . Then, for any ζ ∈ (0, 1), there is a sweepout
of M corresponding to Σ, such that every level surface Σt satisfies

area(Σt) ≤ 2πχ(Σ)
ζ κmax

.
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Proof. As described in Definition 3.2, the Heegaard surface Σ specifies a
sweepout of M . In any choice of sweepout, there is a surface Σt of maximal
area. Let A be the infimum of these maximal areas, over all sweepouts
corresponding to Σ. The number A is called a minimax value.

The work of Pitts and Rubinstein implies that there is a minimal surface
F ⊂ N whose area is the minimax value A if F is orientable, or A/2 if F
is non-orientable [17]. Furthermore, Σ is constructed by taking an almost
minimal surface corresponding to F , and then possibly attaching a single
tube. Both of these operations (taking the boundary of an ε-neighborhood,
attaching a tube) can be achieved while increasing the area A by an arbi-
trarily small amount. Thus, Lemma 3.7 guarantees that for any ζ ∈ (0, 1),
there is a sweepout whose level surfaces satisfy

area(Σt) ≤ 2πχ(Σ)/ζ κmax,

as desired. �

4. Core of Dehn filling and Heegaard surfaces

The goal of this section is to prove Theorem 1.3, which was stated in the
introduction. Most of the work here goes into proving the following, slightly
simpler statement.

Theorem 4.1. Let M be an orientable Riemannian 3-manifold whose non-
compact ends (if any) are isometric to horospherical cusp neighborhoods, and
whose boundary (if any) consists of minimal surfaces. Suppose the sectional
curvatures of M are bounded above by κmax < 0. Let {W1, . . . , Wm} be a
thin generalized Heegaard splitting of M , with separating surfaces Fi = Wi ∩
Wi+1.

Let V be a solid torus in M , such that the metric on V is submersible.
If a cross-sectional disc D of V satisfies

(4.1) area(D) >
2π χ(Fi)

κmax
∀i,

then the core curve γ of V is isotopic into one of the odd surfaces Fi.

The statement of Theorem 4.1 is similar to Theorem 1.3, with the single
difference that a Heegaard surface Σ has been replaced by a thin generalized
Heegaard splitting. In our applications, this will be the generalized splitting
obtained by untelescoping Σ. Furthermore, by amalgamating the generalized
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splitting to recover Σ, we will see that Theorem 1.3 follows quickly from this
statement.

For the remainder of the section, we will use the definitions and notation
of Theorem 4.1. In particular, M will denote a negatively curved 3-manifold,
with a generalized Heegaard splitting {W1, . . . , Wm}. As in the theorem, V
will denote a submersible solid torus inM , whose cross-sectional disc satisfies
(4.1).

The proof of Theorem 4.1 is essentially due to Breslin, and follows the
same line of argument as in his paper [3]. We need to make slight modifica-
tions to his argument to accommodate manifolds with boundary, generalized
Heegaard splittings, and the metric of variable negative curvature. However,
the spirit of the argument is the same. Where our argument differs from his,
we walk through the details carefully.

The proof breaks down into the following claims:

(1) The core curve γ of V is isotopic into the complement of the even
surfaces. This means that we can work with a single odd surface
S = Fi, which is strongly irreducible in its component. We will show
this in Lemma 4.3.

(2) The Heegaard surface S = Fi contains a simple loop homotopic to γn

for some n. The geometric proof of this claim, based on [3, Lemma 2],
appears in Lemma 4.4.

(3) There is an embedded annulus A ⊂ M , such that one component of
∂A is on S and the other component of ∂A is on ∂N(γ), a tubular
neighborhood of γ. The argument is nearly the same as that of [3,
Lemma 1], and is recalled in Lemma 4.6.

(4) The loop ∂A ∩ ∂N(γ) is isotopic to γ, hence γ is isotopic into S
through A. The proof is identical to [3, Lemma 5], which we restate in
Lemma 4.7.

The following lemma is useful for both incompressible surfaces and
strongly irreducible Heegaard surfaces. The proof is inspired by [3, Claim 1].

Lemma 4.2. Let M and V be as in Theorem 4.1. Suppose that F is a
compact, orientable surface embedded in M , such that

area(F ) < area(D),

where D is the cross-sectional disc in V . Then V �F contains a closed curve
that is essential in V .
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Proof. If F ∩ V contains a closed curve that is essential in V , we may homo-
tope this curve to one side of F , into V �F , satisfying the conclusion of
the lemma. Thus, we may assume that F ∩ V does not contain an essential
curve.

Consider lifts of F ∩ V in Ṽ , the universal cover of V . Since F ∩ V does
not contain an essential curve, there is a lift F̃ of F ∩ V in Ṽ that is isometric
to F ∩ V . Because Ṽ is a ball, any connected component of F̃ must separate
Ṽ . We want to show that the two ends of Ṽ are contained in the same
component of Ṽ �F̃ .

Let D be a cross-sectional disc of Ṽ . By Definition 1.2, there is a Rie-
mannian submersion f : Ṽ → D. Because Riemannian submersions reduce
area, and area(F ∩ V ) < area(D), the projection of F̃ must miss some point
x ∈ D. Then the fiber {x} × R ⊂ Ṽ is disjoint from F̃ , hence no component
of F̃ can separate the ends of Ṽ .

The lift of a meridian disc to Ṽ consists of a disjoint family of discsDj , for
j ∈ Z, where a deck transformation maps Dj to Dj+1. For a natural number
n, let R = Rn be the component of Ṽ �(D−n ∪Dn) that has compact closure.
Because F is compact, there are finitely many lifts F̃1, . . . , F̃k of F ∩ V that
intersect the closure of R. Each component F̃i splits R into two pieces, one
of which does not separate the ends of Ṽ . Thus the set Ṽ �(F̃1 ∪ · · · ∪ F̃k)
contains a component that intersects both D−n and Dn. In other words,
there is a path from D−n to Dn that is disjoint from the complete preimage
of F ∩ V . Since n was arbitrary, it follows that some component of the
preimage of V �F in Ṽ has non-compact closure. The projection of this
component to V must contain a non-trivial curve. �

Using Lemma 4.2, we can show that the core curve γ of V is disjoint
from the even, incompressible surfaces in the generalized Heegaard splitting.

Lemma 4.3. Let M and V be as in Theorem 4.1. Let F = F2 ∪ F4 ∪ · · · ∪
Fm−2 be the union of the even surfaces in the generalized Heegaard split-
ting of M , and suppose (following Lemma 3.6) that each even Fi has been
isotoped to be almost minimal in M . Suppose that the cross-sectional disc of
V satisfies

area(D) > 2π χ(Fi)/κmax ∀i.

Then some component V ′ of V �F is a solid torus, isotopic in M to V
itself. Furthermore, each component of V �V ′ is a trivial I-bundle over a
subsurface of ∂V .
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Proof. By Lemma 3.6, each even Fi is isotopic to a minimal surface, or is the
boundary of an ε-neighborhood of a non-orientable minimal surface. Then
Lemma 3.7 implies that for sufficiently small ε, we can ensure the area of Fi

is bounded above by 2πχ(Fi)/κmax + δ, for arbitrarily small δ. In particular,
we have

area(Fi) < area(D).

Consider the curves of intersection F ∩ ∂V . If one of these curves is a
meridian of V , it must bound a disc in some Fi, because Fi is incompress-
ible. Pass to an innermost disc in Fi, among all discs whose boundary is
a meridian curve on ∂V . This disc must be a meridian of V , because M
is negatively curved, hence irreducible. However, then V �F cannot contain
a curve that is essential in V , contradicting Lemma 4.2. Therefore, every
curve of F ∩ ∂V is either trivial in ∂V , or else essential in V .

As a preliminary step for the proof, we isotope trivial curves of F ∩ ∂V
off V , through balls, as follows. If any curve of F ∩ ∂V is trivial in ∂V , at
least one such trivial curve must be innermost in F . This curve must bound
a disc D0 ⊂ F and a disjoint disc D1 ⊂ ∂V . Because M is irreducible, we
may isotope D0 past D1, to remove this curve of intersection. If any trivial
curves remain, repeat this procedure with another innermost curve. After
this sequence of isotopies, any remaining curves of F ∩ ∂V are essential in V .

Now, consider a component A0 of F ∩ V (if any). Since each component
of F is essential in M , and every curve of ∂A0 is essential in V , the com-
ponent A0 must itself be incompressible in V . Since π1(A0) ↪→ π1(V ) ∼= Z

and F is 2-sided, this means A0 is an annulus. As all annuli in a solid torus
are boundary-parallel, F ∩ V consists entirely of boundary–parallel annuli.
Each boundary-parallel annulus A0 cuts off a boundary-parallel solid torus
in V .

After removing all of these boundary-parallel pieces (if any), we find a
component V ′ of V �F that is isotopic to V itself. Now, undo the isotopies
through balls that removed the trivial curves of intersection of F ∩ ∂V in the
preliminary step of the proof. Each of these isotopies modifies V ′ by pushing
a disc on the boundary into or out of V ′. In particular, these isotopies
preserve the property that the component V ′ of V �F is isotopic to V itself.
They also preserve the property that each component of V �V ′ is boundary-
parallel. �

Recall the thin generalized splitting {W1, . . . , Wm} of M , with surfaces
Fi = Wi ∩Wi+1. By Lemma 4.3, we know that there is a solid torus V ′ ⊂ V ,
which is isotopic to V itself, and is disjoint from every even surface F2i.
This means that V ′ is contained in some submanifold W2i−1 ∪W2i, in the
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complement of the even surfaces. For the rest of this section, we take W to
be the connected component of W2i−1 ∪W2i containing V ′.

The following lemma, and its proof, was inspired by [3, Lemma 2].

Lemma 4.4. Let M and V be as in Theorem 4.1, and let V ′ be as in
Lemma 4.3. Let S ⊂ F2i−1 be a strongly irreducible Heegaard surface for the
submanifold W that contains V ′. Then, after an isotopy of S, there is a
simple closed curve δ ⊂ S ∩ V ′ that is essential in V ′.

Proof. By Equation (4.1), the cross-sectional disc D of V satisfies the strict
inequality area(D) > 2πχ(S)/κmax. Thus, for some ζ ∈ (0, 1) near 1, we have

area(D) > 2πχ(S)/(ζκmax).

For this value of ζ, Lemma 3.8 implies that there exists a sweepout f : W →
[−1, 1] corresponding to S, such that every level surface St satisfies

(4.2) area(St) ≤ 2πχ(Σ)/(ζκmax) < area(D).

Let V ′ ⊂ V ∩W be the solid torus guaranteed by Lemma 4.3, which is
isotopic to V .

Claim 4.5. For every t ∈ (−1, 1), some component of V ′�St contains a
closed curve that is essential in V ′.

Proof of Claim. By Equation (4.2) and Lemma 4.2, we know that some com-
ponent of V �St contains a closed curve that is essential in V . What needs
to be shown is that this curve can be taken to lie in V ′.

Let Gt = St ∩ V ′. Since ∂V ′ consists of sub-surfaces of ∂V and
sub-surfaces of F = F2 ∪ F4 ∪ · · · ∪ Fm−2, and since St is disjoint from F ,
we know that ∂Gt ⊂ ∂V , i.e., Gt is properly embedded in V .

Since V contains an essential closed curve in the complement of St, it
also contains such a curve in the complement of Gt. Furthermore, by Lemma
4.3, V �V ′ consists of trivial I-bundles over subsurfaces of ∂V . Thus, we may
homotope the essential closed curve through the interior of V , away from
these boundary-parallel pieces and into V ′. �

For each t ∈ (−1, 1), let Ht = f(S × [−1, t)) ⊂ W and Jt = f(S ×
(t, 1]) ⊂ W . Note the closure of Ht is the compression body below St, and
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the closure of Jt is the compression body above St. Define

EH := {t∈ (−1, 1) : Ht ∩ V ◦ contains a closed curve that is essential in V ′},
EJ := {t∈ (−1, 1) : Jt ∩ V ◦ contains a closed curve that is essential in V ′}.

By Claim 4.5, we know that every t ∈ (−1, 1) is contained in either EH

or EJ .
Since each of Ht ∩ V ◦ and Jt ∩ V ◦ is open in W , we know that both EH

and EJ are open sets. Furthermore, for t close to −1, Ht is a small regular
neighborhood of a spine of W2i−1; hence these values of t must be contained
in EJ . Similarly, for t close to 1, Jt is a small regular neighborhood of a
spine of W2i, hence these values of t must be contained in EH . Since both
EH and EJ are open and non-empty, and their union (−1, 1) is connected,
it follows that EH ∩ EJ �= ∅.

Let r ∈ EH ∩ EJ . Then, by construction, Hr ∩ V ◦ contains an essential
loop that we call αH , and Jr ∩ V ◦ contains an essential loop that we call
αJ . There exist integers n, m so that (αH)n is homotopic to (αJ)m in V ,
and thus there is an immersed annulus A in V ′ with boundary components
(αH)n and (αJ)m. This implies that some loop A ∩ Sr is non-trivial in A, and
hence, by taking a sub-loop, if necessary, there exists an embedded essential
loop in A ∩ Sr, which must therefore be essential in V ′. Since the sweepout
surface Sr is isotopic to S, we are done. �

The rest of the proof follows from two lemmas, whose topological proofs
are due to Breslin. We need only check that his proofs carry through in our
setting. The first is [3, Lemma 1].

Lemma 4.6. Let the submanifold W and the Heegaard surface S ⊂ F2i−1

be as in Lemma 4.4. Let γ be the core curve of V , as in Theorem 4.1.
Then, possibly after isotoping γ, there is a regular neighborhood N(γ) and
an embedded annulus A in W�N(γ) with ∂A = α ∪ α′, where α is a simple
essential non-meridional loop in the boundary of N(γ) and α′ ⊂ S.

Proof. By Lemma 4.4, we may isotope S so that S ∩ V ′ contains a simple
loop α that is essential in V ′, where V ′ ⊂ V is the solid torus of Lemma 4.3.
Recall the sweepout f : W → [−1, 1], which was constructed in the proof
of Lemma 4.4. This map has the property that f−1(t) = St is isotopic to S
for each t ∈ (−1, 1), while the sets f−1(±1) consist of the spines of the two
compression bodies.

The next step is to use the Rubinstein–Scharlemann graphic. For closed
manifolds, the graphic is defined in [22]. However, we need to use the
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Rubinstein–Scharlemann graphic for manifolds with boundary, as in [23].
In particular, one modification is that we only consider the part of the
sweepout that runs from S−1+ε to S(1−ε), for some ε > 0 sufficiently small.
This way, we avoid problems as the sweepout meets the boundary of W .

Let g : V ′ → [0, 1] be a smooth function that gives a sweepout of the
solid torus. That is, for all s ∈ (0, 1), g−1(s) is a surface isotopic to ∂V ′,
while g−1(1) = ∂V ′, and g−1(0) is a closed curve isotopic to γ, the core of
V . Isotope γ to be g−1(0). We will consider the function gt = g|St∩V ′ , and
apply work of Cerf [5] to isotope f and g so that gt is Morse for all but
finitely many t, and near–Morse otherwise. The Rubinstein–Scharlemann
graphic G is the set of points (t, s) ∈ [−1, 1]× [0, 1] such that s is a critical
value of gt. While care must be taken for applications of the graphic for
manifolds with boundary (compare [22, 23]), to apply Breslin’s proof we
only need the result from Cerf theory that if (t1, s1) and (t2, s2) are in
the same component of ([−1 + ε, 1− ε]× [0, 1])�G, then the surface St1 is
isotopic to St2 via an isotopy that takes the loops in g−1

t1 (s1) to the loops in
g−1
t2 (s2).
Using the graphic described above, we obtain [3, Lemma 4]. According

to that lemma, one of two conclusions must hold for some t ∈ (−1, 1):

1) St ∩ ∂V ′ contains a loop that is essential and non-meridional on ∂V ′,
or

2) St ∩ V ′ does not contain an essential loop of St.

The proof of [3, Lemma 4] works verbatim with the slight modification
to the sweepout that was mentioned above. In addition to the Rubinstein–
Scharlemann graphic, it uses Scharlemann’s No Nesting Lemma [24]. Note
that this lemma applies equally well to 3–manifolds with and without
boundary.

In case (1) above, we are essentially done with the proof of Lemma 4.6,
as follows. Let N(γ) = g−1[0, 1− ε] be a solid torus slightly inside V ′. Let
α′ ⊂ St ∩ g−1(1) be the loop guaranteed by conclusion (1), and let α be the
projection of α′ to ∂N(γ) = g−1(1− ε). Then the product annulus between
α and α′ satisfies the lemma.

In case (2) above, there is a t ∈ (−1, 1) so that St ∩ V ′ does not con-
tain an essential loop of St, and thus each loop in St ∩ ∂V ′ bounds a disc
in St. By Lemma 4.4, another sweepout surface Sr has the property that
Sr ∩ V ′ contains a simple loop αr that is essential in V ′. Since Sr and St

are isotopic, there is an embedded annulus A with one boundary component
equal to αr ⊂ Sr and the other equal to some αt ⊂ St.
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Because all loops of St ∩ ∂V ′ bound discs on St, we may isotope A to
avoid these discs, hence αt is disjoint from St ∩ ∂V ′. The loop αt must there-
fore be contained in the interior of V ′ or disjoint from V ′. Because St ∩ V ′

contains no essential loop of St, and because αt is isotopic to the essential
loop αr, we must have αt in W�V ′. Isotope A slightly, if necessary, so that
αr is contained in the interior of V ′. Then A is an annulus embedded in W
with ∂A = αr ∪ αt with αr ⊂ V ′ and αt ⊂ (W�V ′). Thus A meets ∂V ′ in an
essential loop α′t. Use the embedded annulus bounded by αt and α′t to iso-
tope St so that St ∩ V ′ contains a loop that is essential and non-meridional
in ∂V ′. This puts us back into case (1), hence the proof is complete. �

We have seen that there is an embedded annulus in W with one bound-
ary component on a neighborhood of γ and one on our Heegaard surface
S = F2i−1. This annulus must wrap around some power of γ. The final step
toward proving Theorem 4.1 is to show that in fact, we may take the annulus
to wrap exactly once around γ.

Lemma 4.7. Let W be a 3-manifold with Heegaard surface S, and let γ be
a simple loop in W with regular neighborhood N(γ). Let α be an essential
non-meridional loop in N(γ), and α′ a loop in S. If there is an embedded
annulus A ⊂W disjoint from N(γ), with boundary α ∪ α′, then γ is isotopic
into S.

Proof. This is [3, Lemma 5], and Breslin’s proof goes through verbatim.
We note that his proof uses a thin position argument of Schultens [27], mod-
ified slightly by Breslin. The argument holds for manifolds with or without
boundary, and indeed Schultens’ original application concerned manifolds
with boundary. Hence, we refer the reader to [3, Lemma 5] for the proof. �

The referee informs us that Lemma 4.7 can also be proved via a straight-
forward application of the Daisy Lemma [10].

Proof of Theorem 4.1. Recall that S ⊂ F2i−1 is a component of one of the
odd surfaces in a generalized Heegaard splitting of M . Now, the theorem
follows by Lemmas 4.6 and 4.7. �

The above results also give a quick proof of Theorem 1.3, which was
stated in the introduction.

Proof of Theorem 1.3. Let Σ be a genus g Heegaard surface of M . If Σ is
irreducible, then, as described in Section 3, we may untelescope Σ to a thin
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generalized Heegaard splitting {W1, . . . , Wm}. By property (3) of thinness,
the cross-sectional disc D of the submersible solid torus V satisfies

area(D) >
2πχ(Σ)
κmax

≥ 2π χ(Fi)
κmax

∀i.

Thus, by Theorem 4.1, the core curve γ of V is isotopic into some odd surface
F2i−1.

Now, we assume γ ⊂ F2i−1, and amalgamate the generalized Heegaard
splitting to recover Σ. At certain times during the amalgamation process, we
will need to attach handles to a partially amalgamated surface containing γ.
Each time we do this, a small isotopy ensures that γ is disjoint from the discs
along which we attach handles. Thus, after the amalgamation is complete,
we have γ ⊂ Σ.

Meanwhile, if Σ is reducible, then we destabilize Σ to an irreducible
Heegaard surface Σ′ of genus h < g, apply the above argument to Σ′, and
then stabilize back to genus g. Since stabilizations are unique, this approach
recovers the desired result for Σ. �

5. Assembling the pieces

In this section, we complete the proof of Theorem 1.1. The following lemma
will permit us to apply the results of Section 4.

Lemma 5.1. Let C1, . . . , Ck be disjoint cusp neighborhoods of a hyperbolic
3–manifold X, and let si be a slope on cusp Ci. Suppose that the shortest
slope length is �min > 2π(2g − 1), for some g ≥ 2. Then the Dehn filling
M = X(s1, . . . , sk) admits a negatively curved metric as in Theorem 2.1,
with curvatures bounded by κmax < 0, such that the area of a cross–sectional
disc of every Dehn filling solid torus satisfies

area(D) >
2π(2g − 2)
|κmax| .

Proof. If �min > 2π(2g − 1), then Theorem 2.1 implies that for every
ζ ∈ (0, 1), the Dehn filled manifold M admits a Riemannian metric with
sectional curvatures bounded by κmax = ζ(4π2/�min

2 − 1), and with cross-
sectional discs of area at least ζ�min

2/(�min + 2π), where

�min > 2π(2g − 1).
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Since the above inequality is strict, we may find ζ near 1 such that �min >
(2π/ζ2)(2g − 2 + ζ2). Select this value of ζ for the application of
Theorem 2.1.

Then for any cross-sectional disc D,

area(D) ≥ ζ�min
2

�min + 2π
=

ζ(�min − 2π)
1− 4π2/�min

2 ≥
ζ2(�min − 2π)

|κmax|

>
ζ2

(
2π
ζ2 (2g − 2 + ζ2)− 2π

)
|κmax| =

2π(2g − 2)
|κmax| . �

Proof of Theorem 1.1. Let Σ be a Heegaard surface of genus g for the Dehn
filled manifold M = X(s1, . . . , sk). By Theorem 2.1, M admits a metric with
sectional curvatures bounded by κmax < 0, which means g ≥ 2. By Lemma
5.1, the area of a cross-sectional disc of each Dehn filling solid torus satisfies
area(D) > 2πχ(Σ)/κmax. Note that the solid tori constructed in Theorem 2.1
are submersible, as desired. Thus, by Theorem 1.3, we conclude that each
core γi of the ith solid torus is isotopic into Σ, as required for conclusion (1).

We will prove conclusion (2) by induction on k. That is, let Σ be a
Heegaard surface for M = X(s1, . . . , sk). In the following argument, we will
show that the core γk of the kth solid torus can be isotoped off Σ in such a
way that Σ becomes a Heegaard surface for M�γk

∼= X(s1, . . . , sk−1). This
argument works for arbitrary k. Hence by induction, Σ becomes a Heegaard
surface for X.

In the following argument, we may also assume without loss of generality
that Σ is irreducible. Otherwise, as in the proof of Theorem 1.3, we simply
destabilize Σ to an irreducible surface Σ′, apply the argument to Σ′, and
stabilize at the end to recover Σ.

With these preliminaries out of the way, we assume that Σ is irreducible
in X(s1, . . . , sk), and untelescope Σ to a thin generalized Heegaard splitting
{W1, . . . , Wm}. Let V = Vk be the kth Dehn filling solid torus, with the
negatively curved metric of Theorem 2.1. By Lemma 5.1, the cross-sectional
disc D of V satisfies

area(D) >
2πχ(Σ)
κmax

≥ 2π χ(Fi)
κmax

,

for each surface Fi of the generalized splitting. Thus, by Theorem 4.1, the
core curve γk of V = Vk is isotopic into some odd surface F2i−1. Recall
that S = F2i−1 is a strongly irreducible Heegaard surface of the submanifold
W = W2i−1 ∪W2i.
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After γk has been isotoped into S, consider the surface S�N(γk) ⊂W ,
where N(γk) is a small tubular neighborhood of γk contained in W . Let
{D1, . . . , Dn} be a collection of disjoint, non-parallel compression discs for
S�N(γk) in W , which is maximal with respect to inclusion. Since S is
strongly irreducible, all of theDj must be contained in the same compression
body, say W2i−1. Let S′ ⊂ W2i−1 be the surface obtained after compressing
S�N(γk) along all of the Dj .

Claim 5.2. Each component of S′ is either a sphere, a closed surface
parallel to ∂−W2i−1, or an annulus parallel to N(γk).

Proof of claim. First, suppose that a component of S′ is closed and not a
2–sphere. Since we have compressed S�N(γk) along a maximal collection of
discs, this component must be incompressible in W2i−1. However, the only
incompressible surfaces in a compression body are parallel to the negative
boundary ∂−W2i−1.

Next, suppose that a component of S′ is a surface with boundary, and call
this component R. Since ∂(S�N(γk)) consists of two curves, both parallel
to γk, ∂R must be a union of one or two curves parallel to γk. Since the
surface S has genus at most g, and we obtained R by cutting S along γk

and then compressing, the genus of R is at most g − 1.
Suppose, for a contradiction, that R is an essential surface in W�N(γk):

that is, not an annulus parallel to N(γk). Then, since ∂W = F2i−2 ∪ F2i is
a union of incompressible surfaces, the component R must also be essen-
tial in X(s1, . . . , sk−1). Isotope the cores γ1, . . . , γk−1 until they intersect R
minimally, and let R◦ = R�(γ1 ∪ · · · ∪ γk−1).

We claim that R◦ must be incompressible in the original cusped hyper-
bolic manifoldX. To see this, suppose that an essential curve α ⊂ R◦ bounds
a compression disc D0 ⊂ X. By passing to an innermost sub-disc if needed,
we may assume that the interior of D0 is disjoint from R. However, R is
incompressible in X(s1, . . . , sk−1), hence α also bounds a disc D1 ⊂ R. Since
α = ∂D1 is an essential curve in R◦, the disc D1 must be punctured two
or more times by the γi. On the other hand, D0 is disjoint from all the
cores γi, and has the same boundary as D1. Isotoping these cores through
the ball co-bounded by D0 and D1, past D1, will reduce the intersection
number between R and γ1 ∪ · · · ∪ γk−1, contradicting the construction of
R◦. Therefore, R◦ is incompressible in X.

Recall that by construction, R◦ has a boundary component on N(γk).
Thus, if R◦ is a boundary-parallel annulus, then so is R, a contradiction.
Thus R◦ is incompressible and boundary–incompressible in X.
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Now, remove the horospherical cusps C1, . . . , Ck from both X and R◦,
and consider ∂R◦, which is a union of b closed curves on ∂C1, . . . , ∂Ck. The
curves of ∂R, which run parallel to γk, must be one or two longitudes of the
filling slope sk. Meanwhile, every other curve of ∂R◦ is a meridian of some
γj (for 1 ≤ j ≤ k − 1), hence is in the isotopy class of the filling slope sj .

By the hypotheses of Theorem 1.1, the shortest longitude of sk has length
�(λk) > 6(2g − 3). Each filling slope sj for 1 ≤ j ≤ k − 1 also has length

�(sj) > 2π(2g − 1) > 6(2g − 1) > 6(2g − 3).

We conclude that the total length �(∂R◦) of all the curves of ∂R◦ must
satisfy

b · 6(2g − 3) < �(∂R◦) ≤ 6|χ(R◦)| ≤ 6 (2(g − 1) + b− 2) = 6(2g + b− 4),

where the second inequality is a theorem of Agol [1, Theorem 5.1] and Lack-
enby [11, Lemma 3.3]. Comparing the first and last terms, we obtain

b · (2g − 3) < 2g + b− 4,
2gb− 2g − 4b+ 4 < 0,
2(g − 2)(b− 1) < 0,

which is a contradiction since g ≥ 2 and b ≥ 1. This contradiction proves the
claim. �

Recall that we obtained S′ from S by compressing along a maximal
collection of discs {D1, . . . , Dn}. By strong irreducibility of S, all of these
discs are contained in the same compression body W2i−1. Because all of these
discs are disjoint from γk, we may isotope N(γk) into W2i−1 while staying
disjoint from {D1, . . . , Dn}.

We claim that W2i−1�N(γk) is itself a compression body. This can
be seen by building the compression body “downward” from its positive
boundary S = ∂+W2i−1. We thicken the surface S into S × [0, 1] ⊂W2i−1,
and attach a 2-handle along each curve on S × {0} corresponding to ∂Dj

for each j. After attaching the 2-handles, the resulting negative boundary
is exactly the surface S′, with its two boundary curves joined together.
By Claim 5.2, the surface obtained after attaching 2-handles consists of
spheres, closed surfaces parallel to ∂−W2i−1, and a single torus isotopic to
∂N(γk). Thus, after capping off each 2-sphere with a 3–ball, we obtain a
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compression body W ′
2i−1, satisfying

∂+W ′
2i−1 = ∂+W2i−1 = S, ∂−W ′

2i−1 = ∂−W2i−1 ∪ ∂N(γk).

We have just shown that the core curve γk may be isotoped off the
generalized splitting surface, intoW2i−1, in such a way that the submanifolds

{W1, . . . , W2i, W
′
2i−1, W2i+2, . . . , Wm}

form a thin generalized Heegaard splitting ofM�γk = X(s1, . . . , sk−1). After
amalgamating this generalized splitting, we obtain a Heegaard surface Σ′ ⊂
M�γk.

Recall that, by [13, Proposition 3.1], amalgamation produces a unique
Heegaard surface. Thus Σ′ is isotopic in M = X(s1, . . . , sk) to the surface Σ
obtained by amalgamating the splitting {W1, . . . , Wm}. In other words, we
have isotoped Σ into X(s1, . . . , sk−1), in such a way that it is still a Heegaard
surface. Repeating the above argument for the core γk−1 ⊂ X(s1, . . . , sk−1),
and so on, completes the proof of Theorem 1.1. �
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