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Polar orbitopes

Leonardo Biliotti, Alessandro Ghigi and Peter Heinzner

We study polar orbitopes, i.e., convex hulls of orbits of a polar
representation of a compact Lie group. They are given by repre-
sentations of K on p, where K is a maximal compact subgroup
of a real semisimple Lie group G with Lie algebra g = k⊕ p. The
face structure is studied by means of the gradient momentum map
and it is shown that every face is exposed and is again a polar
orbitope. Up to conjugation the faces are completely determined
by the momentum polytope. There is a tight relation with parabolic
subgroups: the set of extreme points of a face is the closed orbit
of a parabolic subgroup of G and for any parabolic subgroup the
closed orbit is of this form.
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1. Introduction

If K is a compact group and K → Gl(V ) is a real representation, the convex
hull of a K-orbit is called an orbitope [22]. If V is provided with a K-
invariant scalar product, the representation is said to be polar if there is a
linear subspace S ⊂ V that intersects perpendicularly all the orbits of K. An
important class of examples is given by the adjoint representations of com-
pact Lie groups. In [2] we studied the orbitopes of these actions. They are
equivariantly isomorphic to Satake–Furstenberg compactifications of sym-
metric spaces of type KC/K. One homeomorphism has been described in
algebraic terms in [17]. Another homeomorphism has been constructed in [1]
(in the case of an integral orbit) using integration of the momentum map on
a flag manifold. This geometric construction was developed by Bourguignon,
Li and Yau in the case of Pn.

In the present paper we study the orbitopes of a polar representation
of a compact group. Let G be a real connected semisimple Lie group and
let g = k⊕ p be a Cartan decomposition of its Lie algebra. Let K be a
maximal compact subgroup with Lie algebra k. Then the adjoint action of
K preserves p and its restriction to p is a polar representation. By a theorem
of Dadok [5, Prop. 6] if V is any polar representation of a group K1, there is
a semisimple Lie group G such that V can be identified with p so that the
orbits of K1 coincide with the orbits of AdK on p. Therefore to understand
the orbitopes of polar representations it is sufficient to study theK-orbitopes
on p.

The study of these orbitopes is also needed in order to generalize the
results in [1] to general symmetric spaces and this is one of the motivations
for our work.

Our set up is the following. Let U be compact Lie group and let UC be
its complexification. A closed subgroup G ⊂ UC is called compatible if G =
K · exp p where K := G ∩ U and p := g ∩ iu. It follows that K is a maximal
compact subgroup of G and that g = k⊕ p. K acts on g by the adjoint action
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and p is invariant. Therefore we get an action of K on p. The objects that we
wish to study are the orbits of this action and their convex hulls. It is easy
to see that one can reduce to the case in which U and G are semisimple (see
Section 3.2). If O ⊂ p is a K-orbit, we denote by Ô its convex hull. We will
assume throughout the paper that G is connected. It is a fundamental fact
that the action of K on O extends to an action of G, see, e.g., [12, Prop. 6].
If a ⊂ p is a maximal subalgebra, then by Kostant convexity theorem [18],
the orthogonal projection of O onto a is a convex polytope P given by the
convex hull of a Weyl group orbit. In particular the Weyl group acts on the
set F (P ) of faces of P and similarly K acts on the set F (Ô) of faces of Ô.

Our main result is the following.

Theorem 1.1. Let P ⊂ a be the momentum polytope associated to O. If σ
is a face of P and Kσ⊥

is the centralizer of the normal space σ⊥ ⊂ a, then
Kσ⊥ · σ is a face of Ô. Moreover the map σ �→ Kσ⊥ · σ induces a bijection
between F (P )/W and F (Ô)/K.

The correspondence between F (Ô)/K and F (P )/W holds for a general
polar representation, see Remark 3.1 at p. 602. Applied to the case G = UC

this theorem gives the results proven in [2]. The setting of the present paper
is more general than the one considered there. The pairs (G,K) with G
compatible contain all Riemannian symmetric pairs of non-compact type,
while the pairs (UC, U) correspond to symmetric pairs of type IV [13, p.
516]. The particular cases U = SU(n), G = SL(n,R) and U = SO(n), G =
SO(n,C) have been considered in [22]. The case where O can be realized
as the Shilov boundary of a Hermitian symmetric domain has been studied
in [4, Prop. 2.1].

We outline the main steps of the proof.
Among the faces of a convex set are the exposed faces (see Section 2.1).

In the case of Ô the study of these faces is equivalent to the understanding
of the height functions on O (Section 3.1). This is a classical subject, going
back to the paper [6] by Duistermaat et al. and to Heckman’s thesis [8]. The
results are very efficiently described in the language of the gradient momen-
tum map (which is recalled in Section 2.4). The set of extreme points extF
of an exposed face F is connected and is an orbit of a centralizer Kβ ⊂ K,
where β is an element of p (Proposition 3.1). In general the group Kβ is not
connected. An inductive argument shows that any face F ⊂ Ô (not neces-
sarily exposed) is an orbitope of the centralizer Ks of some subalgebra s ⊂ p

(Proposition 3.4). If a ⊂ p is a maximal subalgebra containing s, we show
that F ∩ a is a face of the momentum polytope and that F ∩ a determines
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F (Proposition 3.6). Here we use in an essential way the Kostant convexity
theorem.

An important conclusion is that all faces of Ô are exposed (Theorem 3.2).
This answers Question 1 of [22] for polar orbitopes. Next recall that the K-
action on O extends to an action of the group G (see Section 2.5 below). We
analyze the influence of the G-action on the geometry of the extreme points
of the faces (Section 3.3). It turns out that there is a strong link between the
parabolic subgroups of G and the faces of Ô. In 3.3 we show the following.

Theorem 1.2. The set {extF : F a non-empty face of Ô} coincides with
the set of all closed orbits of parabolic subgroups of G.

Using these results we finally set up the correspondence between the
faces of Ô and the faces of P and prove Theorem 1.1 (Section 3.4).

In the final section we briefly explain how the boundary of Ô is stratified
by face type and how the Satake combinatorics can be used to describe the
faces of the orbitope in terms of root data.

2. Preliminaries

2.1. Convex geometry

It is useful to recall a few definitions and results regarding convex sets (see,
e.g., [24] and [2, Section 1]). Let V be a real vector space with a scalar
product 〈 , 〉 and let E ⊂ V be a compact convex subset. The relative interior
of E, denoted relintE, is the interior of E in its affine hull. A face F of
E is a convex subset F ⊂ E with the following property: if x, y ∈ E and
relint[x, y] ∩ F 
= ∅, then [x, y] ⊂ F . The extreme points of E are the points
x ∈ E such that {x} is a face. Since E is compact the faces are closed [24, p.
62]. A face distinct from E and ∅ will be called a proper face. The support
function of E is the function hE : V → R, hE(u) = maxx∈E〈x, u〉. If u 
= 0,
the hyperplane H(E, u) := {x ∈ E : 〈x, u〉 = hE(u)} is called the supporting
hyperplane of E for u. The set

(2.1) Fu(E) := E ∩H(E, u)

is a face and it is called the exposed face of E defined by u. In general not
all faces of a convex subset are exposed. A simple example is given by the
convex hull of a closed disc and a point outside the disc: the resulting convex
set is the union of the disc and a triangle. The two vertices of the triangle
that lie on the boundary of the disc are non-exposed 0-faces.
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Lemma 2.1 [2, Lemma 3]. If F is a face of a convex set E, then extF =
F ∩ extE.

Lemma 2.2. If G is a compact group and V is a representation space of
G define

ρ : V → V G ρ(v) :=
∫

G
gx dg

where dg denotes the Haar measure on G. Then V = V G ⊕ ker ρ. If x ∈ V
and x = x0 + x1 in this decomposition, then

(a) G · x = x0 +G · x1;

(b) conv(G · x) = x0 + conv(G · x1);

(c) x0 is the unique fixed point of G contained in conv(G · x);
(d) x0 ∈ relint conv(G · x).

Proof. That V = V G ⊕ ker ρ follows from the fact that Im ρ = V G and ρ2 =
ρ. (a) and (b) are immediate. Since x0 = ρ(x), it follows from the definition
of ρ that x0 ∈ conv(G · x). If y ∈ conv(G · x) is another fixed point, then
y0 = x0 and y1 ∈ ker ρ ∩ V G. Hence y1 = 0 and y = x0. This proves (c). By
Theorem 2.1 there is a unique face F ⊂ conv(G · x) such that x0 ∈ relintF .
Since conv(G · x) is G-invariant and x0 is fixed by G, also F is G-invariant,
and hence also extF . Since extF ⊂ ext(conv(G · x)) = G · x, it follows that
extF = G · x and hence that F = conv(G · x). �

Lemma 2.3 [2, Prop. 5]. If F ⊂ E is an exposed face, the set CF := {u ∈
V : F = Fu(E)} is a convex cone. If G is a compact subgroup of O(V ) that
preserves both E and F , then CF contains a fixed point of G.

Theorem 2.1 [24, p. 62]. If E is a compact convex set and F1, F2 are
distinct faces of E, then relintF1 ∩ relintF2 = ∅. If G is a non-empty convex
subset of E which is open in its affine hull, then G ⊂ relintF for some
face F of E. Therefore E is the disjoint union of the relative interiors of
its faces.

Lemma 2.4 [2, Lemma 7]. If E is a compact convex set and F � E is a
face, then dimF < dimE.

Lemma 2.5 [2, Lemma 8]. If E is a compact convex set and F ⊂ E is
a face, then there is a chain of faces F0 = F � F1 � · · · � Fk = E which is
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maximal, in the sense that for any i there is no face of E strictly contained
between Fi−1 and Fi.

Lemma 2.6 [2, Lemma 9]. If E is a convex subset of Rn, M ⊂ Rn is an
affine subspace and F ⊂ E is a face, then F ∩M is a face of E ∩M .

2.2. Compatible subgroups

(See [10, 11].) If G is a Lie group with Lie algebra g and E,F ⊂ g, we set

EF := {η ∈ E : [η, ξ] = 0,∀ξ ∈ F},
GF = {g ∈ G : Ad g(ξ) = ξ,∀ξ ∈ F}.

If F = {β} we write simply Eβ and Gβ . Let U be compact Lie group. Let
UC be its universal complexification which is a linear reductive complex
algebraic group. We denote by θ both the conjugation map θ : uC → uC and
the corresponding group isomorphism θ : UC → UC. Let f : U × iu → UC be
the diffeomorphism f(g, ξ) = g exp ξ. Let G ⊂ UC be a closed subgroup. Set
K := G ∩ U and p := g ∩ iu. We say that G is compatible if f(K × p) = G.
The restriction of f to K × p is then a diffeomorphism onto G. It follows
that K is a maximal compact subgroup of G and that g = k⊕ p. Note that
G has finitely many connected components. Since U can be embedded in
Gl(N,C) for some N , and any such embedding induces a closed embedding
of UC, any compatible subgroup is a closed linear group. Moreover g is a
real reductive Lie algebra, hence g = z(g)⊕ [g, g]. Denote by Gss the ana-
lytic subgroup tangent to [g, g]. Then Gss is closed and G = Z(G)0 ·Gss

[16, p. 442].

Lemma 2.7. (a) If G ⊂ UC is a compatible subgroup, and H ⊂ G is closed
and θ-invariant, then H is compatible if and only if H has only finitely
many connected components.

(b) If G ⊂ UC is a connected compatible subgroup, then Gss is compatible.

(c) If G ⊂ UC is a compatible subgroup, and E ⊂ p is any subset, then GE

is compatible.

Proof. This follows from the more general observation that a closed θ-
invariant subgroup G ⊂ UC is compatible if and only if it has finitely many
connected components. This is proven in Lemma 1.1.3 in [19, p.14]. For
the reader’s convenience we recall the argument. If G is compatible, then it
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retracts onto K, which is compact and therefore has finitely many connected
components. Conversely assume that G/G0 be finite. Since G is closed,
f(K × p) is a closed subset of G. Since G is θ-invariant, f(K × p) has the
same dimension as G and is therefore also open. Therefore it contains G0 and
is a union of connected components of G. Given g ∈ G write g = u exp ξ with
u ∈ U and ξ ∈ iu. Then gθ(g−1) = exp(2 Ad(u)ξ) and since G/G0 is finite
there is a natural number N > 0 such that

(
gθ(g−1)

)N = exp(2N Ad(u)ξ) ∈
G0. Hence Ad(u)ξ ∈ p, u = exp(−Ad(u)ξ)g ∈ G ∩ U = K and ξ ∈ p. (b).
Since [g, g] is θ-invariant and Gss is connected, Gss is θ-invariant. Since it is
also closed, it is compatible by (a). (c) see [16, Proposition 7.25 p. 452]. �

Let 〈 , 〉 be a fixed U -invariant scalar product on u. We use it to identifiy
u ∼= u∗. We also denote by 〈 , 〉 the scalar product on iu such that multipli-
cation by i be an isometry of u onto iu. One can define an R-bilinear form B
on uC by imposing B(u, iu) = 0, B = −〈 , 〉 on u and B = 〈 , 〉 on iu. Then
B is AdUC-invariant and non-degenerate.

2.3. Parabolic subgroups

(See, e.g., [3, p. 28ff], [16].) If G ⊂ UC is compatible, g = k⊕ p is reductive.
A subalgebra q ⊂ g is parabolic if qC is a parabolic subalgebra of gC. One way
to describe the parabolic subalgebras of g is by means of restricted roots.
If a ⊂ p is a maximal subalgebra, let Δ(g, a) be the (restricted) roots of g

with respect to a, let gλ denote the root space corresponding to λ and let
g0 = m⊕ a, where m = zk(a). Let Π ⊂ Δ(g, a) be a base and let Δ+ be the
set of positive roots. If I ⊂ Π set ΔI := span(I) ∩Δ. Then

(2.2) qI := g0 ⊕
⊕

λ∈ΔI∪Δ+

gλ

is a parabolic subalgebra. Conversely, if q ⊂ g is a parabolic subalgebra, then
there are a maximal subalgebra a ⊂ p contained in q, a base Π ⊂ Δ(g, a) and
a subset I ⊂ Π such that q = qI . We can further introduce

aI :=
⋂
λ∈I

kerλ aI := a⊥I ,(2.3)

nI =
⊕

λ∈Δ+−ΔI

gλ mI := m⊕ aI ⊕
⊕
λ∈ΔI

gλ.

Then qI = mI ⊕ aI ⊕ nI . Since θgλ = g−λ, it follows that qI ∩ θqI = aI ⊕mI .
This latter Lie algebra coincides with the centralizer of aI in g. It is a Levi
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factor of qI and

(2.4) aI = z(qI ∩ θqI) ∩ p.

Another way to describe parabolic subalgebras of g is the following. If β ∈ p,
the endomorphism adβ ∈ End g is diagonalizable over R. Denote by Vλ(adβ)
the eigenspace of adβ corresponding to the eigenvalue λ. Set

gβ+ :=
⊕
λ≥0

Vλ(adβ).

Lemma 2.8. For any β in p, gβ+ is a parabolic subalgebra of g. If q ⊂ g

is a parabolic subalgebra, there is some vector β ∈ p such that q = gβ+. The
set of all such vectors is an open convex cone in z(q ∩ θq) ∩ p.

Proof. Given β choose a maximal subalgebra a containing β and a base Π ⊂
Δ(g, a) such that β lies in the closure of the positive Weyl chamber. Then
gβ+ = qI with I := {λ ∈ Π : λ(β) = 0}. This proves the first assertion. To
prove the second fix a parabolic subalgebra q and set Ω := {β ∈ p : gβ+ = q}.
Let a be any maximal subalgebra of p contained in q. Then q = qI for some
I ⊂ Π and

(2.5) Ω ∩ a = {β ∈ aI : λ(β) > 0 for λ ∈ Π− I}.

Thus Ω ∩ a is a non-empty open convex cone in aI . Therefore Ω 
= ∅, which
proves the second assertion. By (2.4) aI = z(q ∩ θq) ∩ p, so Ω ∩ a is an open
convex cone in z(q ∩ θq) ∩ p. Moreover for any β ∈ Ω, a ⊂ q ∩ θ(q) = gβ .
Thus [β, a] = 0, hence β ∈ a. So Ω ⊂ a, i.e., Ω = Ω ∩ a. �

A parabolic subgroup of G is a subgroup of the form Q = NG(q) where
q is a parabolic subalgebra of g. Equivalently, a parabolic subgroup of G is
a subgroup of the form P ∩G, where P is parabolic subgroup of GC and p

is the complexification of a subspace q ⊂ g. If β ∈ p set

Gβ+ :=
{
g ∈ G : lim

t→−∞ exp(tβ)g exp(−tβ) exists
}

Rβ+ :=
{
g ∈ G : lim

t→−∞ exp(tβ)g exp(−tβ) = e

}
rβ+ :=

⊕
λ>0

Vλ(adβ).

Note that gβ+ = gβ ⊕ rβ+.
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Lemma 2.9. Gβ+ is a parabolic subgroup of G with Lie algebra gβ+. Every
parabolic subgroup of G equals Gβ+ for some β ∈ p. Rβ+ is the unipotent
radical of Gβ+ and Gβ is a Levi factor.

Proof. It is easy to check that Gβ+ is a subgroup and that Gβ+ = (GC)β+ ∩
G. Therefore it is enough to prove that (GC)β+ is parabolic. In other words
we can assume that G is a complex reductive group. If X ∈ g, then

exp(tβ) expX exp(−tβ) = exp(Ad(exp(tβ)) ·X) = exp(etadβ ·X)

where etadβ denotes the exponential in End(g). Let Ω ⊂ g be a neighborhood
of 0 such that exp is a diffeomorphism on Ω. If X ∈ Ω, then expX ∈ Rβ+

if and only if limt→−∞ etadβ ·X = 0 if and only if X ∈ rβ+. This shows that
Rβ+ is locally closed, hence closed [13, Prop. 2.11 p. 119]. Next observe that
if g ∈ Gβ+, and

a := lim
t→−∞ exp(tβ)g exp(−tβ),

then a ∈ Gβ ⊂ Gβ+ and a−1g ∈ Rβ+. Therefore Gβ+ is the product of the
two closed subgroups Gβ and Rβ+ and Gβ ∩Rβ+ = {e}. It follows that Gβ+

is a Lie subgroup of G tangent to gβ+. Since we are now assuming that G
is complex, then it is well-known that Gβ+ is closed and parabolic since its
Lie algebra is parabolic. �

2.4. Gradient momentum map

Let (Z, ω) be a Kähler manifold. Assume that UC acts holomorphically on
Z, that U preserves ω and that there is a momentum map μ : Z → u. If
ξ ∈ u we denote by ξZ the induced vector field on Z and we let μξ ∈ C∞(Z)
be the function μξ(z) := 〈μ(z), ξ〉. That μ is the momentum map means that
it is U -equivariant and that dμξ = iξZ

ω.
Let G ⊂ UC be compatible. If z ∈ Z, let μp(z) ∈ p denote −i times the

component of μ(z) in the direction of ip. In other words we require that
〈μp(z), β〉 = −〈μ(z), iβ〉 for any β ∈ p. (Recall that multiplication by i is an
isometry of u onto iu.) We have thus defined the gradient momentum map

μp : Z → p.

Let μβ
p ∈ C∞(Z) be the function μβ

p(z) = 〈μp(z), β〉 = μ−iβ(z). Let ( , ) be
the Kähler metric associated to ω, i.e., (v, w) = ω(v, Jw). Then βZ is the
gradient of μβ

p. If X ⊂ Z is a locally closed G-invariant submanifold, then
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βX is the gradient of μβ
p|X with respect to the induced Riemannian structure

on X.

Theorem 2.2 (Slice Theorem [10, Thm. 3.1]). If x ∈ X and μp(x) = 0,
there are a Gx-invariant decomposition TxX = g · x⊕W , open Gx-invariant
subsets S ⊂W , Ω ⊂ X and a G-equivariant diffeomorphism Ψ : G×Gx S →
Ω, such that 0 ∈ S, x ∈ Ω and Ψ([e, 0]) = x.

Here G×Gx S denotes the associated bundle with principal bundle G→
G/Gx.

Corollary 2.1. If x ∈ X and μp(x) = β, there are a Gβ-invariant decom-
position TxX = gβ · x ⊕W , open Gβ-invariant subsets S ⊂W , Ω ⊂ X and
a Gβ-equivariant diffeomorphism Ψ : Gβ ×Gx S → Ω, such that 0 ∈ S, x ∈ Ω
and Ψ([e, 0]) = x.

This follows applying the previous theorem to the action of Gβ with the
momentum map μ̂uβ := μuβ − iβ, where μuβ denotes the projection of μ onto
μuβ . See [10, p. 169] for more details.

If β ∈ p, then βX is a vector field on X, i.e., a section of TX. For
x ∈ X, the differential is a map TxX → TβX(x)(TX). If βX(x) = 0, there is
a canonical splitting TβX(x)(TX) = TxX ⊕ TxX. Accordingly dβX(x) splits
into a horizontal and a vertical part. The horizontal part is the identity
map. We denote the vertical part by dβX(x). It belongs to End(TxX). Let
{ϕt = exp(tβ)} be the flow of βX . There is a corresponding flow on TX.
Since ϕt(x) = x, the flow on TX preserves TxX and there it is given by
dϕt(x) ∈ Gl(TxX). Thus we get a linear R-action on TxX with infinitesimal
generator dβX(x).

Corollary 2.2. If β ∈ p and x ∈ X is a critical point of μβ
p, then there are

open invariant neighborhoods S ⊂ TxX and Ω ⊂ X and an R-equivariant
diffeomorphism Ψ : S → Ω, such that 0 ∈ S, x ∈ Ω, Ψ(0) = x. (Here t ∈ R

acts as dϕt(x) on S and as ϕt on Ω.)

Proof. The subgroup H := exp(Rβ) is compatible. It is enough to apply the
previous corollary to the H-action at x. �

Assume now that β ∈ p and that x ∈ Crit(μβ
p). Let D2μβ

p(x) denote the
Hessian, which is a symmetric operator on TxX such that

(D2μβ
p(x)v, v) =

d2

dt2
(μβ

p ◦ γ)(0)
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where γ is a smooth curve, γ(0) = x and γ̇(0) = v. Denote by V− (respec-
tively V+) the sum of the eigenspaces of the Hessian of μβ

p corresponding
to negative (resp. positive) eigenvalues. Denote by V0 the kernel. Since the
Hessian is symmetric we get an orthogonal decomposition

(2.6) TxX = V− ⊕ V0 ⊕ V+.

Let α : G→ X be the orbit map: α(g) := gx. The differential dαe is the map
ξ �→ ξX(x).

Proposition 2.1. If β ∈ p and x ∈ Crit(μβ
p) then

D2μβ
p(x) = dβX(x).

Moreover, dαe(rβ±) ⊂ V± and dαe(gβ) ⊂ V0. If X is G-homogeneous these
are equalities.

Proof. The first statement is proved in [10, Prop. 2.5]. Denote by ρ : Gx →
TxX the isotropy representation: ρ(g) = dgx. Observe that α is Gx-
equivariant where Gx acts on G by conjugation, hence dαe is Gx-equivariant,
where Gx acts on g by the adjoint representation and on TxX by the
isotropy representation. Since βX(x) = 0, exp(tβ) ∈ Gx for any t and dαe is
R-equivariant. Therefore it interchanges the infinitesimal generators of the
R-actions, i.e., dαe ◦ adβ = dβX = D2μβ

p(x). The required inclusions follow.
If G acts transitively on X we must have TxX = dαe(g). Hence the three
inclusions must be equalities. �

Corollary 2.3. For every β ∈ p, μβ
p is a Morse–Bott function.

Proof. Let Xβ := {x ∈ X : βX(x) = 0}. Corollary 2.2 implies that Xβ is a
smooth submanifold. Since TxX

β = V0 for x ∈ Xβ , the first statement of
Proposition 2.1 shows that the Hessian is non-degenerate in the normal
directions. �

2.5. Coadjoint orbits

Let U be a compact connected semisimple Lie group. Fix a scalar product
〈 , 〉 on u and identify u∗ ∼= u. Let z ∈ u and let Z := U · z (adjoint action). Z
is a (co)adjoint orbit, hence it is provided with the Kostant–Kirillov–Souriau
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symplectic form which is defined by

ωz(vZ , wZ) := 〈x, [v, w]〉 v, w ∈ k.

(See, e.g., [15, p. 5].) The inclusion Z ↪→ u is the momentum map for the
U -action on Z. Set Q := (UC)z+. Then Q is a parabolic subgroup of UC and
TzZ ∼= uC/q. This endows Z with an invariant complex structure J such
that ω is an invariant Kähler form. Such a structure is in fact unique. The
action of U on Z extends to a holomorphic action of UC.

To study K-orbits on p it is convenient to identify p with ip by multiply-
ing by i. A K-orbit O = K · x ⊂ p is mapped to K · ix ⊂ Z := U · ix. Since
G ⊂ UC, G acts on Z and we have G · ix = K · ix, see [11, Lemma 5] for
the case GC = UC and [12, Prop. 6] for the general case. Therefore the data
G,K,U, Z,X are like in the previous setting. And identifying O ∼= K · ix,
the gradient momentum becomes the inclusion O ⊂ p.

3. Face structure

3.1. Faces as orbitopes

Let U be a compact Lie group and let G ⊂ UC be a compatible connected
subgroup.

Definition 3.1. An orbitope of G is the convex envelope of a K-orbit in p.
If O ⊂ p is the K-orbit in p, Ô denotes the corresponding orbitope.

Lemma 3.1. We have ext Ô = O and extF = F ∩ O for any face F of Ô.

Proof. This fact is common to all orbitopes, see [22, Prop. 2.2] or [2, Lemma
14]. �

We start the analysis of the structure of the faces of Ô by considering
the exposed faces. At the end of Section 3.2 we will prove that in fact all
faces of Ô are exposed. Let β be a non-zero vector in p. Since μp is the
inclusion O ↪→ p, the function μβ

p is μβ
p(x) := 〈x, β〉. Set

Max(β) := {x ∈ O : μβ
p(x) = max

O
μβ

p}.

The main result about this set is the following.

Proposition 3.1. The set Max(β) is a connected Kβ-orbit. In particular
it is a (Kβ)0-orbit.
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This theorem goes back to [6, 8]. Since it is basic we repeat the proof in
our context. If a ⊂ p is a maximal subalgebra, we denote by W = W (k, a)
the Weyl group of a in K.

Lemma 3.2. Let g be a real semisimple Lie algebra with Cartan decom-
position g = k⊕ p and let a ⊂ p be a maximal subalgebra. If x, y ∈ a then
there is a Weyl chamber C such that C contains both x and y if and only if
λ(x)λ(y) ≥ 0 for every restricted root λ.

Proof (see [8, p. 11]). A Weyl chamber is a connected component of the set
where all roots are non-zero. Given such a component C, let Δ+ be the set
of roots that are positive on C. Then Δ = Δ+ � (−Δ+). From this follows
the “only if” part. To prove the “if” part we can assume that x and y are
different. Let z := (x+ y)/2 and let C be a Weyl chamber with z ∈ C. By
assumption, no root changes its sign on the segment [x, y]. Therefore λ(z) >
0 implies that λ(x) ≥ 0 and λ(y) ≥ 0. If λ(z) = 0, then λ(x) = λ(y) = 0.
Therefore x and y belong to C. We thank the referee for pointing out this
short argument. �

Lemma 3.3. Let C ⊂ a be a Weyl chamber and let x, y ∈ C. If x′ ∈W · x,
then there is a Weyl chamber C ′ such that x′, y ∈ C ′ if and only if there is
w ∈W such that w · x = x′ and w · y = y.

Proof. The “if” part follows from the definition of a Weyl chamber. Assume
the existence of a Weyl chamber C ′ such that x′, y ∈ C ′. Then x′ = σx
for some σ ∈W . Let w ∈W be such that w(C) = C ′. The points w−1x′ =
w−1σx ∈ and x belong to C and to the same Weyl orbit. Hence w−1x′ =
w−1σx = x [14, p. 52], i.e., x′ = wx. Also w−1y and y belong to C. Hence
also wy = y. This concludes the proof. �

Proposition 3.2. Let G be a real connected semisimple Lie group. Let
β ∈ p.

(a) If a ⊂ pβ is a maximal subalgebra, then

pβ =
⋃

k∈(Kβ)0

Ad(k)a.

(b) Let W β := {w ∈W : wβ = β}. Then for any w ∈W β there is a k ∈
(Kβ)0 such that Ad(k)a = a and Ad(k)x = w · x for every x ∈ a.

For a proof see for example [16, p. 378–379, 383, 455–457]).
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Lemma 3.4. Crit(μβ
p) = O ∩ pβ.

Proof. Let Z be the U -orbit containing O as in Section 2.5. As observed in
Section 2.4 gradμβ

p = βZ |O. So the set of critical points of μβ
p on O is the

set of zeros of βZ on Z intersected with O. Since (iβ)Z(x) = [iβ, x], we have
Crit(μβ

p) = O ∩ pβ. �

Lemma 3.5. Let G be semisimple. Fix x ∈ Crit(μβ
p). Let a ⊂ p be a maxi-

mal subalgebra containing both x and β. Then

Crit(μβ
p) =

⋃
w∈W

(Kβ)0 · w · x = (Kβ)0 ·NK(a) · x,

where W = W (k, a) is the Weyl group.

Proof. Let z ∈ Crit(μβ
p) = O ∩ pβ. By Proposition 3.2 there is k ∈ (Kβ)0

such that k · z ∈ a. But k · z ∈ O and O ∩ a = W · x. �

Proposition 3.3. Let G be semisimple. Assume that x ∈ O ∩ a and β ∈ a.
Then x is a local maximum of μβ

p if and only if there exists a Weyl chamber
C ⊂ a such that x, β ∈ C.

Proof. Let Δ be the set of restricted roots of (g, a) and let ξ = ξ0 +
∑

λ∈Δ ξλ
with ξλ ∈ gλ. Fix a set of positive roots Δ+ such that λ(x) ≥ 0 for every
λ ∈ Δ+. We have

k = zk(a)⊕
⊕

λ∈Δ+

(
gλ ⊕ g−λ

) ∩ k.

(See, e.g., [16, p. 370].) Since TxO = k · x = [k, x] and [x, gλ] = gλ if λ(x) 
= 0
and [x, gλ] = 0 otherwise, we have

TxO =
⊕

λ(x)>0

(
gλ ⊕ g−λ

) ∩ p.

If w ∈ TxO, choose ξ ∈ k such that w = ξO(x) = [ξ, x] and set γ(t) :=
Ad(exp(tξ)) · x. Then γ(0) = x, γ̇(t) = [ξ, γ(t)], γ̈(0) = [ξ, [ξ, x]] and

D2μβ
p(x)(w,w) =

d

dt

∣∣∣∣
t=0

μβ
p(γ(t)) = 〈γ̈(0), β〉 = −〈[ξ, x], [ξ, β]〉.

We can assume that ξ =
∑

λ(x)>0 ξλ with ξλ ∈ gλ. This determines ξ
uniquely. Then

[x, ξ] =
∑

λ(x)>0

λ(x)zλ
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where zλ = ξλ − ξ−λ. Since ξ ∈ k, θ(ξλ) = ξ−λ and zλ ∈ p. Moreover the
vectors zλ are orthogonal to each other. Similarly [β, ξ] =

∑
λ∈Δ+

λ(β)zλ.
So

D2μβ
p(x)(w,w) = −

∑
λ(x)>0

λ(x)λ(β)|zλ|2.

If there is λ ∈ Δ+ such that λ(x)λ(β) < 0, then x is not a local maximum
point. Otherwise the Hessian is negative semidefinite andD2μβ

p(x)(w,w) = 0
if and only if zλ 
= 0 ⇒ λ(β) = 0. This means that the kernel of D2μβ

p(x) is
kβ · x = Tx Crit(μβ

p). So the Hessian is degenerate only along the critical
submanifold and is negative definite in the transverse direction. It follows
that x is a local maximum point. Summing up we have shown that x is a
local maximum point of μβ

p if and only if λ(x)λ(β) ≥ 0 for every λ ∈ Δ. By
Lemma 3.2 this is equivalent to the condition that x and β lie in the closure
of some Weyl chamber. The result follows. �
Proof of Proposition 3.1. We start assuming that G is semisimple. Let E be
the set of all local maxima of μβ

p. Since the function μβ
p is Kβ-invariant,

the sets E and Max(β) are Kβ-invariant. Since O is compact there is at
least a point x ∈ Max(β). Let a ⊂ p be a maximal subalgebra contain-
ing x and β. If y ∈ E, then by Lemma 3.5 there are a ∈ (Kβ)0 and w̃ ∈
W (g, a), such that y = a · w̃ · x. Since y ∈ E, also w̃ · x ∈ E. By Proposi-
tion 3.3 there are Weyl chambers C,C ′ ⊂ a such that x, β ∈ C and w · x, β ∈
C ′. By Lemma 3.3 there is w ∈W such that w · x = w̃ · x and w · β = β.
By Proposition 3.2 there is k ∈ (Kβ)0 such that w · x = k · x. It follows that
y ∈ (Kβ)0 · x. So E ⊂ (Kβ)0 · x. Since (Kβ)0 · x ⊂ Max(β) ⊂ E we conclude
that E = Max(β) = (Kβ)0 · x. In particular Max(β) is connected because
it is an orbit of a connected group. Since Max(β) is Kβ-stable we also
have Max(β) = Kβ · x. If G is not semisimple, then split g = z⊕ [g, g] with
z = z(g). Accordingly p = z ∩ p⊕ pss, k = k ∩ z⊕ kss. Since K is connected,
K =

(
Z(G) ∩K)0 ·Kss. If O = K · x split x = x0 + x1 with x0 ∈ z ∩ p and

x1 ∈ pss. Then O = x0 +O1 where O1 = Kss · x1. If β ∈ p, split β = β0 + β1

with β0 ∈ p ∩ z and β1 ∈ pss. Then Max(β) = x0 + Max(β1). By Lemma 2.7
(b) Gss is a semisimple compatible subgroup of UC and O1 is a Kss-orbit
in pss. Therefore we know that Max(β1) is connected and that it is an orbit
of both (Kβ1

ss )0 and Kβ1
ss . Since Kβ =

(
Z(G) ∩K) ·Kβ1

ss , we conclude that
Max(β) is a connected orbit of Kβ . Therefore it is also an orbit of (Kβ)0. �

Corollary 3.1. Let β be a non-zero vector in p and let Fβ(Ô) be the exposed
face of Ô defined by β, see (2.1). Then extFβ(Ô) = Max(β), Fβ(Ô) ⊂ pβ

and extFβ(Ô) is both a Kβ and a (Kβ)0-orbit.
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Proof. By Lemma 3.1 extFβ(Ô) = O ∩ Fβ(Ô) = Max(β). Since Crit(μβ
p) =

O ∩ pβ , we see that Fβ(Ô) ⊂ pβ. By Proposition 3.1 extFβ(Ô) = Max(β) is
an orbit of (Kβ)0. �

Proposition 3.4. Let F be a non-empty face of Ô. Then there is an abelian
subalgebra s ⊂ p such that F is an orbitope of (Gs)0, i.e., F ⊂ zp(s) and extF
is an orbit of (Ks)0. If F is proper, then s 
= {0}.
Proof. Fix a chain of faces F = F0 � F1 � · · · � Fk = Ô, such that for any
i there is no face strictly contained between Fi−1 and Fi. This is possible by
Lemma 2.5. We will prove the result by induction on k. If k = 0, then F = Ô,
so it is enough to set s = {0}. Let k > 1 and assume that the theorem is
proved for faces contained in a maximal chain of length k − 1. Fix F with a
maximal chain as above of length k. By the inductive hypothesis the theorem
holds for F1, so there is a non-trivial abelian subalgebra s1 ⊂ p such that
F1 ⊂ ps1 and extF1 is an orbit of (Ks1)0. In other words F1 is an orbitope
of (Gs1)0, which is a compatible subgroup by Lemma 2.7 (c). Since F is a
maximal face of F1, it is exposed. There is β ∈ ps1 such that F = Fβ(F1).
Set s = s1 ⊕ Rβ. By Corollary 3.1 F ⊂ (ps)β = ps and extF is an orbit of
((Ks1)β)0 = (Ks)0. Thus, the inductive step is completed. If s = {0}, then
(Ks)0 = K, extF = O and F = Ô. So for proper faces s 
= {0}. �

3.2. All faces are exposed

LetG ⊂ UC be a compatible subgroup and letO be aK-orbit in p. In general
dim Ô might be less than dim p and there might be some normal subgroup
of K that acts trivially on O. We wish to describe a decomposition of G
that is useful in dealing with this degeneracy. Let A be the affine hull of
O. This is an affine subspace of p and we can write A = x0 + p1, where
p1 ⊂ p is a linear subspace and x0 ∈ p. If we impose that x0 ⊥ p1, then x0

is uniquely determined. It follows that x0 is fixed by K. Hence by Lemma
2.2 x0 ∈ relint Ô. Set also

k1 := [p1, p1] p0 = p⊥1 k0 = k⊥1 g1 := k1 ⊕ p1 g0 := k0 ⊕ p0.

Thus k = k0 ⊕ k1 and p = p0 ⊕ p1 and g = g0 ⊕ g1.

Proposition 3.5. g1 is a semisimple ideal of g and g0 is a reductive ideal.
If G1, K0, K1 are the corresponding analytic (connected) subgroups, then
G1 is compatible with UC and K0 = K0 ·K1. If x ∈ O, then x = x0 + x1 for
some x1 ∈ p1 and O = x0 +K1 · x1.
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Proof. Since O is a K-orbit, its affine hull is K-invariant. Therefore x0 is
fixed by K and [k, p1] ⊂ p1. It follows that [k, k1] = [k, [p1, p1]] = [p1, [p1, k]] ⊂
[p1, p1] = k1. Since [k, p1] ⊂ p1 and [k, k1] ⊂ k1 also [k, p0] ⊂ p0 and [k, k0] ⊂ k0.
Moreover 〈[p1, p0], k〉 = B([p1, p0], k) = B(p0, [k, p1]) ⊂ B(p0, p1) = 〈p0, p1〉 =
0. (B is the bilinear form defined at the end of Section 2.2.) Since [p1, p0] ⊂ k

this means that [p1, p0] = 0. Using the Jacobi identity we get also [p0, k1] =
[p0, [p1, p1]] = [p1, [p1, p0]] = 0. Set g1 := k1 ⊕ p1. We have just showed that
g1 is an ideal of g. Since it is θ-invariant, g1 is a reductive subalgebra. We
claim that it is semisimple. k1 ⊂ [g1, g1], so z(g1) ⊂ p1. Pick x ∈ O. We can
split x = x0 + x1 + x2 where x0 is as above, x2 ∈ z(g1) ∩ p1, x1 ∈ p1 and
x1 ⊥ z(g1). It follows that O = x0 + x2 +K · x1, so the affine hull of O is
x0 + x2 + p1 ∩ z(g1)⊥. Therefore x2 = 0 and p1 ∩ z(g1)⊥ = p1, i.e., z(g1) =
{0}. This proves that g1 is semisimple. Let G1 ⊂ G the (connected) analytic
subgroup tangent to g1. It is normal, closed [16, p. 440] and compatible by
Lemma 2.7 (c). The B-orthogonal complement of g1 is k0 ⊕ p0, which is also
an ideal. So K = K0 ·K1 where K1 = G1 ∩ U and K0 is the analytic sub-
group of K tangent to k0. Since K0 and K1 are normal commuting subgroups
K0 acts trivially on p1. Hence, O = x0 +K1 · x1. �

This decomposition can be further refined by setting g2 := [g0, g0] and
g3 := z(g) = z(g0). They are both θ-invariant ideals of g, g2 is semisimple
and

(3.1) g = g1

⊥⊕ g2

⊥⊕ g3.

Set pi := gi ∩ p and ki := gi ∩ k. At the group level K0 = K1 ·K2 ·K3, where
Ki are the corresponding analytic (connected) subgroups. Since K · x0 = x0,
x0 ∈ g3.

Let a ⊂ p be a maximal subalgebra. Let π : p → a denote the orthogonal
projection. Set

P := π(O).

The following convexity theorem of Kostant [18] is the basic ingredient in
the whole theory.

Theorem 3.1 (Kostant). Let x ∈ a ∩ O. Then P = conv(W · x). In par-
ticular, P is a convex polytope, extP = O ∩ a and extP is a W -orbit.

The original proof of Kostant assumes that G is semisimple. One eas-
ily reduces to that case using Proposition 3.5. The theorem can be proved
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within the framework of the gradient momentum map [9, Rmk. 5.4]. Another
approach is by observing that the orbits of polar representations are isopara-
metric submanifolds. Terng [25] has proved a convexity theorem for isopara-
metric submanifolds, which in the case of polar orbits gives the original
statement by Kostant. See also [21]. The following lemma is a consequence
of Kostant convexity theorem. See [7, Lemma 7] for a proof.

Lemma 3.6. (i) If E ⊂ p is a K-invariant convex subset, then E ∩ a =
π(E). (ii) If A ⊂ a is a W -invariant convex subset, then K ·A is convex
and π(K ·A) = A.

Proposition 3.6. Let F be a face of Ô. Choose a subalgebra s ⊂ p such
that F be an orbitope of (Gs)0. Let a be a maximal subalgebra of p containing
s. Set σ := π(extF ). Then σ = π(F ) = F ∩ a and σ is a non-empty face of
the polytope P . If F is proper, then σ is proper. F is an orbitope of (Gσ⊥

)0,
where σ⊥ ⊂ a denotes the orthogonal to the tangent space of σ. Moreover
extF is an orbit of Kσ⊥

and F = Kσ⊥ · σ.

Proof. The set extF is an orbit of (Ks)0 and a ⊂ gs. By Kostant theo-
rem π(extF ) = conv(extF ∩ a) and extF ∩ a is an orbit of the Weyl group
W = W (gs, a). So σ is convex. Fix x ∈ extF ∩ a. Since π is linear, π(F ) ⊂
conv(π(extF )) = σ. On the other hand extσ ⊂W · x = (extF ) ∩ a. Hence
σ ⊂ F ∩ a. And obviously F ∩ a ⊂ π(F ). Summing up π(F ) ⊂ σ ⊂ F ∩ a ⊂
π(F ). The first assertion is proved. That σ is a face of P follows directly
from Lemma 2.6, while σ = π(F ) 
= ∅ since F 
= ∅. To check the other asser-
tions observe that extF is an orbit of (Ks)0, so that we can apply Propo-
sition 3.5 to this orbit. We get a semisimple normal subgroup G1 of (Gs)0,
a decomposition gs = g1 ⊕ g2 ⊕ g3 like (3.1) and compact subgroups K1,
K2, K3 = Z(Ks)0 such that (Ks)0 = K1 ·K2 ·K3. It follows that a = a1 ⊕
a2 ⊕ p3, where ai := a ∩ gi is a maximal subalgebra of pi for i = 1, 2. More-
over extF = x0 +K1 · x1, the affine hull of F is x0 + p1 and x0 ∈ relintF .
The restriction of π to p1 is the orthogonal projection p1 → a1 and the
affine hull of σ is x0 + a1. Hence σ⊥ = a2 ⊕ p3. g1 is semisimple and central-
izes. Thus s ⊂ σ⊥, Kσ⊥ ⊂ Ks and (Kσ⊥

)0 = K1 ·K3. So K1 ⊂ Kσ⊥ ⊂ Ks

and K1 · x ⊂ Kσ⊥ · x ⊂ Ks · x. Since K1 · x = Ks · x = extF we get that
extF is an orbit of Kσ⊥

. But extF is connected, so it is also an orbit
of (Kσ⊥

)0. Since σ⊥ = a2 ⊕ p3, x0 + p1 ⊂ p3 ⊕ p1 = pσ⊥
. This shows that

F is an orbitope of (Gσ⊥
)0. We have to prove that F = Kσ⊥ · σ. Since K2

acts trivially on x0 + p1, Kσ⊥ · σ = Ks · σ. Since F is Ks-invariant, we get
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Kσ⊥ · σ ⊂ F . On the other hand, extF ⊂ Ks · σ. Since σ is W -invariant
we can apply Lemma 3.6 (with K = Ks and p = ps) to get that Ks · σ is
convex. Therefore we get F = Ks · σ = Kσ⊥ · σ. It remains to prove that σ
is proper, when F is proper. Assume first that the affine hull Ô is p. Then
the affine hull of P is a. If F is proper, then s 
= {0}, so a1 � a and σ � P .
In the general case, we have to apply Proposition 3.5 this time to O rather
than extF . Ô turns out to be a translate of an orbitope of a semisimple
subgroup of G by an element of the center of g. a splits into the center of g

and a maximal subalgebra of the semisimple subgroup. With this we easily
reduce to the case we have just considered. �

Corollary 3.2. Let F1, F2 be proper faces of Ô, and let s1, s2 ⊂ p be sub-
algebras such that Fi is a (Gsi)0-orbitope. Assume that a ⊂ p is a maximal
subalgebra containing both s1 and s2. If F1 ∩ a = F2 ∩ a, then F1 = F2.

Proof. If σ := Fi ∩ a, then F1 = Kσ⊥ · σ = F2. �

Theorem 3.2. All proper faces of Ô are exposed.

Proof. Given a proper face F ⊂ Ô choose a subalgebra s ⊂ p such that F be
a (Gs)0-orbitope and choose a maximal subalgebra a ⊂ p containing s. By
Proposition 3.6 σ := F ∩ a is a proper face of P . Since all faces of a polytope
are exposed [24, p. 95], there is a vector β ∈ a such that σ = Fβ(P ). Since
β ∈ a and P = π(O), hP (β) = maxx∈O〈β, x〉 = hÔ(β). Set F ′ := Fβ(Ô). We
wish to show that F = F ′. The inclusion F ⊂ F ′ is immediate: if x ∈ F , then
π(x) ∈ σ, so 〈x, β〉 = hP (β) = hÔ(β). It is also immediate that F ′ ∩ a = σ.
So we have two faces F and F ′ with F ∩ a = F ′ ∩ a = σ. Set s′ := Rβ ⊂ a.
By Corollary 3.1 F ′ is an orbitope of (Gs′)0. Applying Corollary 3.2 we get
F = F ′ = Fβ(Ô). �

Corollary 3.3. If O′ ⊂ O is a smooth submanifold, then conv(O′) is a face
of Ô if and only if there is a vector β such that O′ = Max(β).

Proof. Set F = conv(O′). From the fact that O is contained in a sphere,
it follows as in Lemma 3.1 that extF = O′. Therefore the statement fol-
lows immediately from the fact that every face of Ô is exposed and from
Lemma 3.1. �
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3.3. Faces and parabolic subgroups

In this section, we prove Theorem 1.2, which follows from Propositions 3.8
and 3.9 below. Given a face F ⊂ Ô set

HF := {g ∈ K : gF = F} = {g ∈ K : g · extF = extF}
QF := {g ∈ G : g · extF = extF}
CF := {β ∈ p : F = Fβ(Ô)}.

Denote by CHF

F the vectors of CF that are fixed by HF .

Proposition 3.7. For any face F the set extF is an orbit of HF . If F is
proper, then CHF

F 
= ∅. For any β ∈ CHF

F , HF = Kβ and F ⊂ pβ.

Proof. The group HF is compact. By Proposition 3.4 extF is an orbit of
some subgroup K ′ ⊂ K. Hence K ′ ⊂ HF and extF is an orbit also of HF . It
follows that HF preserves both Ô and F , so by Lemma 2.3 there is a vector
β ∈ CF that is fixed by HF . This proves that CHF

F 
= ∅. On the other hand
given any β ∈ CHF

F , we have HF ⊂ Kβ and F = Fβ(Ô). By Lemma 3.1,
F ⊂ pβ and extF = Kβ · x. It follows that Kβ ⊂ HF , hence HF = Kβ . �

Lemma 3.7. Let q1, q2 be subalgebras of g. Assume that q1 is parabolic,
that q1 ⊂ q2 and that q1 ∩ k = q2 ∩ k. Then q1 = q2.

Proof. Assume that q1 = gβ+ for some β ∈ p. Then q1 ∩ k = kβ . Denote by
Vλ the eigenspace of adβ with eigenvalue λ. Then q1 =

⊕
λ∈J Vλ where J

is the set of non-negative eigenvalues of adβ. Since β ∈ q1 ⊂ q2, q2 is adβ-
stable. We have

q2 =
⊕
λ∈I

(
Vλ ∩ q2

)
for some set of eigenvalues I and we can assume that Vλ ∩ q2 
= {0} for every
λ ∈ I. We wish to prove that I ⊂ [0,∞). If not, there would be some nega-
tive λ ∈ I. Pick a non-zero ξ ∈ Vλ ∩ q2. Then θ(ξ) ∈ V−λ ⊂ q1 ⊂ q2. So ξ +
θ(ξ) ∈ q2 ∩ k. By assumption q2 ∩ k = q1 ∩ k = gβ+ ∩ k = kβ . So we should
have [β, ξ + θ(ξ)] = 0, while [β, ξ + θ(ξ)] = λ(ξ − θ(ξ)) 
= 0. The
contradiction shows that I ⊂ [0,∞). So I ⊂ J and q2 ⊂ q1. �

Proposition 3.8. If F ⊂ Ô is a proper face, and β ∈ CHF

F , then QF =
Gβ+.
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Proof. We prove first that Gβ+ ⊂ QF , i.e., that Gβ+ preserves extF . Since
β ∈ CHF

F ,HF = Kβ . In general Gβ+ will not be connected. NeverthelessK ∩
Gβ+ = Kβ meets all components of Gβ+. By Proposition 3.7 Kβ = HF ⊂
QF . So it is enough to prove that (Gβ+)0 ⊂ QF . This amounts to showing
that for any ξ ∈ gβ+ the vector field ξO is tangent to extF . Fix an arbi-
trary x ∈ extF . Since F = Fβ(Ô), extF = Max(β), so x is a maximum point
of μβ

p. Hence V+ = {0} in (2.6). By Proposition 2.1 dαe(gβ+) = dαe(gβ) +
dαe(r

β
+) ⊂ V0 + V+ = V0. Hence for any ξ ∈ gβ+, ξO(x) = dαe(ξ) ∈ V0 =

Tx extF . Thus we proved that Gβ+ ⊂ QF . We also know that Gβ+ ∩K =
Kβ = HF = QF ∩K. Also, QF ⊂ G is a closed subgroup, hence a Lie sub-
group. Thus we can apply Lemma 3.7 to the Lie algebras of Gβ+ and QF ,
respectively, and we obtain gβ+ = qF . Therefore QF ⊂ NG(qF ) = Gβ+. And
thus the theorem is proved. �

Proposition 3.9. The set {extF : F a non-empty face of Ô} coincides
with the set of all closed orbits of parabolic subgroups of G. Any parabolic
subgroup Q ⊂ G has a unique closed orbit, which equals the set of extreme
points of a unique face of F ⊂ Ô. If Q = Gβ+, then F = Fβ(Ô).

Proof. Let Q ⊂ G be parabolic. There is at least one closed orbit since the
action is algebraic. Choose β ∈ p such that Q = Gβ+. Then Kβ = Q ∩K.
Let O′ be any closed orbit of Q and let x ∈ O′ be a maximum point of
μβ

p over O′. Since the gradient of μβ
p at x is βO(x) and β ∈ gβ+, we get

βO(x) = 0. By Proposition 2.1 dαe(gβ+) = V0 ⊕ V+, so V+ ⊂ Tx(Gβ+ · x) =
TxO′. Since x is a maximum point of μβ

p over O′, we conclude that V+ = {0}.
Thus, x is a local maximum point of μβ

p and Rβ+ acts trivially on O′. But
μβ

p has only global maxima; hence x ∈ Max(β) and O′ = Gβ · x = Kβ · x =
Max(β). Set F = Fβ(Ô). Then O′ = extF . This proves that the closed orbit
is unique. �

Corollary 3.4. For any face F we have CHF

F = {β ∈ p : Gβ+ = QF }.

Proof. By Proposition 3.8 the set on the left is included in the set on the
right. Conversely, if β is in the set on the right, then β ∈ CF with F = Fβ(Ô),
by the previous Theorem. Since HF = QF ∩K = Gβ+ ∩K = Kβ , β is also
fixed by HF . �

If F is a proper face set

(3.2) sF := span(CHF

F ) GF := QF ∩ θ(QF ).
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If β ∈ CHF

F , then GF := Gβ .

Corollary 3.5. sF is an abelian subalgebra of p and sF = z(gF ) ∩ p.

Proof. sF is the span of CHF

F and gF = qF ∩ θqF . Thus, the result follows
from Corollary 3.4 and Lemma 2.8. �

Corollary 3.6. HF = KsF and GF = GsF .

Proof. It follows from the discussion in the proof of Lemma 2.8, that the
vectors of CHF

F are regular in sF = aI , i.e., if a root vanishes on β ∈ CHF

F ,
then it vanishes on the whole of sF . Thus, KsF = Kβ and GsF = Gβ . �

Corollary 3.7. The face F is an orbitope of G0
F .

Proof. If β ∈ CHF

F , then F is a (Gβ)0-orbitope by Corollary 3.1. �

Corollary 3.8. Let F be a face and let a ⊂ p be a maximal subalgebra.
Then CHF

F ∩ a 
= ∅ if and only if CHF

F ⊂ a if and only if a ⊂ gF .

Proof. If β ∈ CHF

F ∩ a, then [β, a] = 0. Since β is regular in sF , we get sF ⊂ a.
Conversely, if sF ⊂ a, then CHF

F ⊂ a. Since gF = gsF the condition sF ⊂ a is
equivalent to a ⊂ gF . �

3.4. Proof of Theorem 1.1

Fix a maximal subalgebra a ⊂ p. Denote by F (Ô) the set of proper faces
of O and by F (P ) the set of proper faces of the polytope P . If F is a face
of O and a ∈ K, then a · F is still a face, so K acts on F (Ô). Similarly
W = W (g, a) acts on F (P ). We wish to show that F (Ô)/K ∼= F (P )/W .

Lemma 3.8. For every face of Ô there is a ∈ K such that sa·F ⊂ a. The
face a · F is unique up to NK(a).

Proof. By Theorem 3.2 F = Fγ(Ô) and HF = Kγ for some γ ∈ p. Choose
a ∈ K such that Ad(a)γ ∈ a. Then a · F = FAd(a)γ(Ô). Therefore Ad(a)γ
belongs to CHa·F

a·F and also to a. By Corollary 3.6 sa·F ⊂ a. To prove the
second statement it is enough to show that if F = Fγ(Ô) with γ ∈ a and
Ad(a)γ ∈ a, then there is g ∈ NK(a) such that g · F = a · F . Since γ ∈ a ∩
Ad(a−1)a, both a and Ad(a−1)a are maximal subalgebras in pγ . Hence there
is g ∈ Kγ = HF such that Ad(a−1)a = Ad(g)a. Therefore w := ag ∈ NK(a)
and a · F = ag · F = w · F . �
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Define a map

ϕ : F (Ô)/K → F (P )/W

by the following rule: given a class in F (Ô)/K choose a representative
F such that sF ⊂ a and set ϕ([F ]) := [F ∩ a]. By Proposition 3.6 F ∩ a is
indeed a face of the polytope and by Lemma 3.8 a different choice of the
representative will yield the same class in F (P )/W , so that the map ϕ is
well-defined.

Now fix a face F with sF ⊂ a. F is an orbitope of G0
F . Applying Propo-

sition 3.5 we get a decomposition gF = g1 ⊕ g2 ⊕ g3 like (3.1). Here g3 =
z(gF ). Accordingly a = a1 ⊕ a2 ⊕ sF , where ai := a ∩ gi is a maximal sub-
algebra of pi for i = 1, 2. We have used the fact that p3 = z(gF ) ∩ p = sF

by Corollary (3.5). Denote by W1 and W2 the Weyl groups of (g1, a1) and
(g2, a2). They can be considered as subgroups of W = W (g, a). They com-
mute and have the following sets of invariant vectors:

aW1 = a2 ⊕ sF aW2 = a1 ⊕ sF aW1×W2 = sF .

Lemma 3.9. Let F ⊂ Ô be a non-empty face with sF ⊂ a. Set σ := F ∩ a.
Then W1 ×W2 preserves σ.

Proof. Recall from Proposition 3.5 that extF = x0 +K1 · x1. By Kostant
theorem σ = π(extF ) = x0 + conv(W1 · x1) = conv(W1 · x). Hence W1

preserves σ. Moreover σ ⊂ sF ⊕ a1 hence W2 fixes σ pointwise and the
statement follows. �

If σ is a face of P set Gσ := {g ∈W : g(σ) = σ}.

Lemma 3.10. If σ ∈ F (P ) there is a vector β ∈ a that is fixed by Gσ

and such that σ = Fβ(P ). If β is any such vector and F := Fβ(Ô), then
F ∩ a = σ, Gσ = W1 ×W2, sF = aGσ and F depends only on σ, not on the
choice of β.

Proof. The existence of aGσ-invariant β such that Fβ(P ) = σ follows directly
from Lemma 2.3. If F := Fβ(Ô) it follows immediately that F ∩ a = σ.
By Lemma 3.9 W1 ×W2 ⊂ Gσ, so β ∈ aGσ ⊂ aW1×W2 = sF . It follows that
HF = Kβ . The subgroup of W that fixes β is the Weyl group of (gβ , a), i.e.,
W1 ×W2. Hence W1 ×W2 = Gσ and sF = aGσ . So sF depends only on σ,
not on the choice of β. The same holds for HF = KsF and for extF , which
is equal to the HF -orbit through a point in extσ. �
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Define a map ψ : F (P )/W → F (Ô)/K by the following rule: given σ,
fix β ∈ aGσ such that σ = Fβ(P ) and set ψ([σ]) := [Fβ(Ô)]. By the previous
lemma Fβ(Ô) depends only on σ, not on β. It is clear that ψ is well-defined
on equivalence classes.

Theorem 1.1. The maps ψ and ϕ are inverse to each other. Therefore
F (P )/W and F (Ô)/K are in bijective correspondence.

Proof. Let σ be a face of P . Choose β ∈ aGσ such that σ = Fβ(P ). If F :=
Fβ(Ô), then sF ⊂ a. So ϕ ◦ ψ([σ]) = ϕ([F ]) = [F ∩ a] = [σ] and ϕ ◦ ψ is the
identity. Thus ϕ is surjective. It is enough to show that ϕ is injective. Let
F1, F2 ⊂ Ô be faces such that ϕ([F1]) = ϕ([F2]). Acting with K we can
assume that both sF1 and sF2 are contained in a. Acting with W we can
also assume that F1 ∩ a = F2 ∩ a. By Corollary 3.2, we get F1 = F2. By
Proposition 3.6 the map between F (P )/W and F (Ô)/K is the one stated
in the introduction. �

Remark 3.1. Let K1 → O(V ) be a polar representation. By Dadok’s theo-
rem there is a semisimple Lie group G with Cartan decomposition g = k⊕ p

such that V = p and the orbits of K1 coincide with the orbit of AdK.
A maximal subalgebra a ⊂ p is a section for both actions. Denote by W
the Weyl group of (g, a) and by W1 the Weyl group of the polar repre-
sentation of K1. If x ∈ a, then W · x = K · x ∩ a = K1 · x ∩ a = W1 · x. We
claim that F (Ô)/K1 = F (Ô)/K and F (P )/W1 = F (P )/W . Indeed let
F ∈ F (Ô) and k ∈ K. Fix a point x ∈ relintF . There is some k1 ∈ K1 such
that k1x = kx. Then kx belongs both to relint kF and to relint k1F . Hence
kF = k1F by Theorem 2.1. This shows that the K-orbit through F is con-
tained in the K1-orbit through F . Interchanging K and K1 we get the oppo-
site inclusion. Thus F (Ô)/K1 = F (Ô)/K. In the same way one proves that
F (P )/W1 = F (P )/W . From this it follows that Theorem 1.1 holds for any
polar representation.

4. Final remarks

It follows from the results in the previous section that there are a finite
number of K-orbits on the set F (Ô). Given such an orbit, we denote by S
the union of the faces in the orbit. Therefore S equals K · F for some face
F ∈ F (Ô). We call S the stratum corresponding to the face F . Arguing as
in the case of coadjoint orbitopes [2, Section 5] one proves the following.



Polar orbitopes 603

Theorem 4.1. The strata give a partition of ∂Ô. They are smooth embed-
ded submanifolds of p and are locally closed in ∂Ô. For any stratum S the
boundary S − S is the disjoint union of strata of lower dimension.

The computation of the dimension of the strata is trickier in this case.
Nevertheless the bound in the statement follows easily from the following
argument. If E is an n-dimensional convex body, then ∂E has Hausdorff
dimension n− 1. If F is an n-dimensional face, the boundary of the stratum
S := K · F is a fiber bundle over a compact base with fibers isometric to
∂F . Therefore, its Hausdorff dimension is strictly smaller than the dimen-
sion of S.

Also the description of the faces of Ô and of the momentum polytope in
terms of root data is just as in the case of coadjoint orbitopes (see Section 6
in [2]). We briefly state the result.

Fix a maximal subalgebra a of p and a system of simple roots Π ⊂ Δ =
Δ(g, a). A subset E ⊂ a is connected if there is no pair of disjoint subsets
D,C ⊂ E such that D � C = E, and 〈x, y〉 = 0 for any x ∈ D and for any
y ∈ C. (A thorough discussion of connected subsets can be found in [23], [20,
Section 5].) Connected components are defined as usual. If x is a non-zero
vector of a, a subset I ⊂ Π is called x-connected if I ∪ {x} is connected.
Equivalently, I ⊂ Π is x-connected if and only if every connected component
of I contains at least one root α such that α(x) 
= 0. If I ⊂ Π is x-connected,
denote by I ′ the collection of all simple roots orthogonal to {x} ∪ I. The set
J := I ∪ I ′ is called the x-saturation of I. The largest x-connected subset
contained in J is I. So J is determined by I and I is determined by J .
Given a subset I ⊂ Π we will denote by QI the parabolic subgroup with Lie
algebra qI as defined in (2.2).

Theorem 4.2. Let O ⊂ p be a K-orbit and let x be the unique point in
O ∩ C.

(a) If I ⊂ Π is x-connected and J is its x-saturation, then QI · x = QJ · x
and F := conv(QJ · x) is a face of Ô. If β ∈ aJ and λ(β) > 0 for any
λ ∈ Π− J , then F = Fβ(Ô). Moreover QF = QJ .

(b) Any face of Ô is conjugate to one of the faces constructed in (a).
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