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Regularity of sets with constant horizontal normal
in the Engel group

COSTANTE BELLETTINI AND ENRICO LE DONNE

In the Engel group with its Carnot group structure, we study
subsets of locally finite subRiemannian perimeter and possessing
constant subRiemannian normal. We prove the rectifiability of such
sets: more precisely we show that, in some specific coordinates, they
are upper-graphs of entire Lipschitz functions (with respect to the
Euclidean distance). However we find that, when they are written
as intrinsic horizontal upper-graphs with respect to the direction
of the normal, then the function defining the set might even fail to
be continuous. Nevertheless, we can prove that one can always find
other horizontal directions for which the set is the intrinsic hori-
zontal upper-graph of a function that is Lipschitz-continuous with
respect to the intrinsic subRiemannian cones (and in particular
locally Hoélder-continuous for the Euclidean distance). We further
discuss a partial differential equation characterization of the class
of all sets with constant horizontal normal. Finally, we show that
our rectifiability argument extends to the case of filiform groups of
the first kind.

1. Introduction

Recent years have witnessed an increasing interest in Geometric Analysis
of Metric Spaces. A particular role has been played by the class of Carnot
groups endowed with subRiemannian distances. In this setting, both
translations and dilations are present, hence the theory of differentiation
generalizes. Many notions from Analysis and Geometry have been investi-
gated in subRiemannian Carnot groups. Function Theory has been a fruitful
study. There have been several fundamental results in the study of maps such
as Lipschitz, Sobolev, quasiconformal, and bounded variation. Another sub-
ject of large interest has been Geometric Measure Theory. Minimal surfaces,
sets with finite perimeter, currents, and rectifiable sets have received par-
ticular attention. As a source of reference, we point out to [8, 20, 25], and
references therein.
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A theorem of basic importance in the study of Euclidean sets of finite
perimeter is that reduced boundaries admit a unique tangent space almost
everywhere, in other words they are rectifiable. The tangent is obtained via
a blow-up analysis: dilating the set about almost any point on the reduced
boundary, one obtains in the limit a uniquely defined half-space [10-12]). The
analogous analysis in the subRiemannian setting only yields that the limiting
object (after a blow up has been performed) must be a set with constant
horizontal normal. The analysis of sets with constant horizontal normal in
Carnot groups becomes consequently a matter of primary importance.

Let us shortly describe the state of the art. In Carnot groups of step
two, the work of Franchi et al. [14] reveals that such sets are precisely
vertical half-spaces. This result has played a key role both in the subse-
quent development of geometric measure theory in Carnot groups as well
as in more far-flung applications, for example the work by Cheeger and
Kleiner [9] on the biLipschitz non-embeddability of the Heisenberg group
into L'. Already in [14], however the authors observed the existence, in
step three Carnot groups, of sets with constant horizontal normal that fail
to be half-spaces. The complete understanding of sets with constant hor-
izontal normal turns out to be rather hard in full generality and in the
present work we aim to give a contribution in this direction by focusing
on the simplest Carnot group of step three, the so-called Engel group. The
focus on the Engel group is justified by the fact that it allows us to see
already the difficulties arising in groups of step at least three, but at the
same time the controlled algebraic complexity of the Lie algebra allows us
to state precise results on the structure of sets with constant horizontal
normal.

After the understanding of sets with constant horizontal normal has
become deeper, it is conceivable to go back to the blow-up analysis of sets of
finite perimeter, where it is known that any limit must be a set with constant
horizontal normal, and face the further-reaching investigation: is any such
limit uniquely determined? Remark that, if it is so, then it must be a half-
space by the result of [2]. In the uniqueness issue, the precise knowledge of
what possible tangents can arise can play an important role.

The importance of sets with constant horizontal normal goes beyond
the fact that they appear as tangents of sets with locally-finite horizontal
perimeter. Indeed, their boundaries are examples of minimal hyper-surfaces
that can be written as entire graphs with respect to the group structure. Such
parameterizations are called horizontal intrinsic graphs. Their importance
in the theory of rectifiable subsets of Carnot groups has been addressed
in [3-7, 15, 16, 19, 22], where they have been extensively studied.
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In step higher than 2, no regularity result is known for sets of constant
horizontal normal. Actually, no Euclidean rectifiability is expected. It is not
clear whether an intrinsic-rectifiability result can be expected to hold for
sets with constant horizontal normal in general Carnot groups. Nor we have
examples of finite-perimeter sets for which it fails that, at almost every point
of the boundary, the tangent is a half-space.

The aim of this paper is to show that in low step (namely, step 3) we have
an intermediate situation. We are going to focus on the lower-dimensional
Carnot group of step 3, the Engel group, and provide a collection of results
that address the problem of regularity for sets with constant horizontal
normal from several points of view.

We shall show a structural geometric property, to wit, any such set is
Lebesgue equivalent to a Euclidean Lipschitz domain. In particular, such
sets are rectifiable (even in the Euclidean sense).

We shall then give a more concrete and precise regularity result by using
the model of the Engel group corresponding to the so-called exponential
coordinates of the second kind. Namely, in this model we are able to: (i)
describe any set with constant horizontal normal as the upper-graph of an
entire Lipschitz function and (ii) reformulate the constant horizontal normal
condition as a distributional partial differential inequality.

We shall analyse the problem of whether it is possible to express any
given set with constant horizontal normal as an intrinsic horizontal upper-
graph with respect to specific horizontal vectors and what regularity to
expect for such a graph. In fact, there are examples of sets with constant
horizontal normal such that, if one writes the set as an intrinsic horizon-
tal upper-graph in the direction of the normal, the function giving the
graph is not even continuous. However, all constant normal sets are intrinsic
Lipschitz upper-graphs in other horizontal directions. This last feature is
peculiar to the Engel group. In a subsequent work we prove that in general
Carnot groups sets with constant horizontal normal might fail to be intrinsic
Lipschitz upper-graphs in every horizontal direction.

1.1. Main setting, terminology, and previous contributions

Let G be a Carnot group (see [2] for definitions). Let g be the Lie algebra of
the left-invariant vector fields in G. By definition, g is stratified. We denote
by Vi the first stratum (also known as horizontal layer).

A subset E of a Carnot group is said to have locally finite horizontal
perimeter if, for any X € Vi, the distribution X1g is a Radon measure.
Caccioppoli and De Giorgi introduced these sets (in the Euclidean space)
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for the study of minimal hyper-surfaces. The reason for doing so is the
good behaviour of the perimeter, which is the total mass of the vector-
valued measure whose components are obtained by differentiating 15 in the
directions of a fixed basis of V. In fact, the perimeter is lower semicontinuous
and induces a locally compact topology on the class of finite-perimeter sets.
Hence, it becomes easy to show existence of minimal surfaces.

A set F in a Carnot group G is said to have constant horizontal normal
if there exists a horizontal left-invariant vector field X on G and there exists
a decomposition RX & Vf of V; with the following property:

e the distributional derivative X 1g of the characteristic function 1g of
F in the direction of X is a positive Radon measure;

e forallY € VlT, the distribution Y1y vanishes.

One should notice that the space VlT is uniquely defined by F, unlike the
vector X. However, if we fix a scalar product on V; and require that X is a
unit vector orthogonal to VIT, then X is unique and it is called the normal
of E.

In [14], the three authors extended a result of De Giorgi by proving rec-
tifiability of sets with locally finite horizontal perimeter in Carnot groups
of step 2. Following De Giorgi’s strategy, they obtained this result, by
showing that almost every tangent is a set of constant normal and that
constant-normal sets are in fact half-spaces. Alas, they noticed that this
latter fact does not hold in higher-step Carnot groups. In fact, in [14,
Example 3.2], they gave the first explicit example of a subset of the Engel
group with constant normal that is not a half-space. More examples have
then been given in [2] and we will be adding some more in the present
work.

In [4], the three authors showed that sets with constant horizontal nor-
mal are calibrated sets: the calibration that they used is the scalar product
with the normal. This calibration method implies that, in any Carnot group,
boundaries of sets with constant horizontal normal are minimal surfaces, just
as it happens in the Euclidean framework. Guided by the Euclidean expe-
rience, one could expect fairly good results on the smoothness of calibrated
sets: the classical regularity theory for minimal sets in R” indeed argues, in
its key steps, as follows. First write the set, locally around a point where
we have a tangent plane, as a graph on the tangent plane; then prove that
the normal is Hoélder continuous. It is now crucial the fact that, in this
Euclidean setting, one can further improve regularity to C'* (for the original
proofs see [12, 17]).
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Going back to the subRiemannian framework, one can write any
constant-normal set as an intrinsic upper-graph in the direction of the normal.
Such graphs have been considered in [3-7, 15, 16, 19, 22] and give canonical
parameterizations. The result of [23] suggested that sets that are upper-
graphs of functions with controlled normal (e.g., constant) should admit
some regularity. This behaviour occurs indeed in the Euclidean case, as pre-
viously indicated. We shall give examples in the Engel group of sets with
constant horizontal normal where the function is not even continuous. Here
the choice of a specific normal direction (namely, of a scalar product on V7)
will be crucial; indeed we can on the other hand prove that, by choosing other
horizontal directions, we can express the set as upper-graph of a function
taking values in the new direction, and this function is intrinsically Lipschitz
continuous, i.e., Lipschitz with respect to cones in the intrinsic subRieman-
nian geometry, in particular it is locally Euclidean Holder continuous.

1.2. Overview of results

We recall now the definition of the Carnot group of interest to us, the Engel
group. The Engel algebra is the Lie algebra generated, as vector space, by
four vectors X7, Xo, X3, X4, with relations

(11) [Xl, XQ] = X3 and [Xl,Xg] = X4,
(X1, X4] = [Xo, X4] = [Xa, X3] = [X3, X4] = 0.

Such an algebra is nilpotent of step 3 and stratified by the strata
Vi =RX;i®RX,, Vo:=RX3, V3:=RXy4.
The Engel group is defined as the unique connected and simply connected
Lie group with the Engel algebra as Lie algebra. Through the paper we
denote by G such a group.
We endow the Engel group G with some Haar measure volg. Given a
measurable set £ C G and a left-invariant vector field X € Lie(G), we write

XIIEZO (I“eSp.X]lE:O)

if, for all ¢ € C°(G) with ¢ > 0,

—/Xgi)dvoleO ( resp. /ng)dVOl(G:O).
E E
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Since the flow of a left-invariant vector field is a right translation, then
the flow of such a vector field preserves the Haar measure, which on a nilpo-
tent group is always biinvariant. In other words, any element of the Lie
algebra is a divergence-free vector field on the manifold G, endowed with a
Haar measure volg.

Definition 1.2 (Constant horizontal normal). Let V; be the first stra-
tum of Lie(G). Fix a scalar product (-|-) on Vi. A set E C G is said to have
constant horizontal normal X € Lie(G) if X € V1, X1g > 0, and

Y eV, <X‘Y>:O:>Y1E:0.

A direction X such that X1 > 0 will be referred to as a monotone direction
for the set E.

Regarding the next definition, recall that, being connected, simply con-
nected, and nilpotent, the Engel group G is diffeomorphic to Lie(G), via the
exponential map, and so is diffeomorphic to R? .

Definition 1.3 (Euclidean Lipschitz domain). A set £ C G is called
an Euclidean Lipschitz domain if, for one (and thus for all) diffeomorphisms
f:G — R4, the set f(E) is a Lipschitz domain of R*. Namely, f(E) is an
open set and any point on the boundary has a neighbourhood in which the
set can be described as the upper-graph of a Lipschitz map of three variables.

Our first result is the following.

Theorem 1.4. If E is a subset of the Engel group G that has constant
horizontal normal, then there exists an BEuclidean Lipschitz domain E C G
that is equivalent to E, i.e., it is such that Vol(EAE) = 0. In the particular
case that the normal is X1, then E is equivalent more precisely to a vertical
half-space.

We give now a sketch of the proof, referring for the intermediate steps
to subsequent subsections of the paper. Let Y7 = X be the normal of E.
Take Y, € V; with (X|Y2) = 0. Hence Yi1g > 0 and Yo1p = 0. A result of
[2, Proposition 4.7] allows us to obtain two extra monotone directions for
E, namely we get (see Section 2.1) Y3,Yy € Lie(G) such that Y1,Ys,Y3, Yy
form a basis, Y31g > 0, and Y;1 g > 0. Take the Lebesgue representative E
of E (Section 2.2). The set E will have the property that, for all p € F and
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for all Z = 2?21 a;Y; with a; > 0, one has that
{teR : pexp(tZ) € E} = (0,400).

In other words, the “cone”
4
Cp := { pexp Zanj ca; >0
j=1

does not intersect E. Finally, a standard cone criterion gives the Lipschitz
regularity of OF.

We remark that Theorem 1.4 is an intrinsic structural statement for F,
i.e., it only depends on the differentiable structure of G and not on the spe-
cific choice of a coordinate system. However, from the proof just sketched
we shall draw a more precise characterization of any set with constant hor-
izontal normal when we use the model of the Engel group corresponding to
the use of exponential coordinates of the second kind (see the beginning of
Section 3.1 for the definition). Observe that the cone C), is a left translation
of Cy, for p,q € OE. We show that in exponential coordinates of second kind
there exists an Euclidean cone C' such that the set C, contains the translated
cone p + C. Thus we conclude that OF is an entire Lipschitz graph:

Theorem 1.5. Let G be the Engel group. Let ¥ : R* — G be the exponential
coordinates of the second kind. For all horizontal vector X, exists a basis
wi, ..., ws € R with the following property. If E C G is any subset that has
constant horizontal normal X, then there exists a 1-Lipschitz map h : R? —
R such that E is equivalent to

{U(aqwi + -+ + aqwy) : ai,a2,a3 € R,aq > h(ay,az,as)}.

The rectifiability argument of Theorem 1.4 can be extended almost ver-
batim to all “filiform groups of the first kind”. See Section 5 for a discussion
on filiform group and the proof of the result.

To complete the description of sets with constant horizontal normal in
the Engel group in exponential coordinates of second kind we shall give an
analytic characterization of any such set as upper-graph of a function that
satisfies a partial differential inequality. Recall from Theorem 1.4 that the
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only non-trivial case to address is the one of constant normal different from
Xj. Roughly speaking we show:

Theorem (See Theorem 3.17). For any X # X, there is a suitable
choice of exponential coordinates (x1,x2,x3,x4) of the second kind such that
the following holds. A set has finite perimeter and constant horizontal nor-
mal X if and only if it is of the form {xe > G(x3,24)} for a BV function
G:R? - R ={-00} URU{+oc} that satisfies the following partial differ-
ential inequality: for all h € C°(G) such that h > 0, it holds

(1.6) ((03G, h))? + 2(04G, h)(L* h) < 0.

Here L? denotes the Lebesque measure on R? and (, ) denotes the pairing of
distributions and smooth test functions.

The statement of the result requires a suitable notion of BV-function
taking values into the extended real line R and would be a bit too technical
for this introduction: the precise features of G and the meaning of the par-
tial differential inequality (1.6) are therefore postponed to Theorem 3.17.
Minimal graphs of functions that also assume the values +0o0 and —oo have
already appeared in the Euclidean setting. For example, Miranda consid-
ered them in the solution of the Dirichlet’s problem for the minimal surfaces
equation; see [21] and [17, Chapter 16].

It should be noted that the ‘Euclidean Lipschitz continuity’ obtained
in Theorem 1.5, as well as the analytic characterization just given, require
the expression of F as an upper-graph with respect to a non-horizontal
direction. We thus now turn our attention to the expression of F as an
“algebraically intrinsic horizontal graph” (see Section 4). This means that we
express F as union of half-flow-lines in a horizontal left-invariant direction.
More precisely:

Definition 1.7 (Intrinsic horizontal upper-graph). Given a Carnot
group G, let X € Lie(G) be a horizontal direction. Let W be a subgroup
that is complementary to exp(RX). Let T': W — R be any function. We say
that a set F C G is an intrinsic horizontal upper-graph in the direction X if

(1.8) E={wexp(tX):weW,t>T(w)}.

One should observe that the point wexp(tX) is the flow from w for
time t in the direction X. We will express any set with constant horizontal
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normal E as an intrinsic horizontal upper-graph as in (1.8). Understanding
the regularity of T is then our next task.

The most natural horizontal direction to use would seem to be the direc-
tion of the normal. Nevertheless we will find, in Section 4:

Theorem (See Theorem 4.1). For any X # X, we can provide an
example of subset E C G with constant horizontal normal X and with the
property that, when E is expressed as intrinsic horizontal upper-graph in the
direction of X, the function for which it is upper-graph is not continuous.

Theorem (See Theorem 4.6). Let E C G be an arbitrary set having con-
stant horizontal normal X. Whenever E is written as intrinsic horizontal
upper-graph using a horizontal direction Y with (X,Y) # 0 and X not paral-
lel to Y, then the function for which it is upper-graph is Lipschitz continuous
with respect to intrinsic cones in G (see Definition 4.5). In particular, the
function is locally Hélder continuous for the Fuclidean distance.

Such intrinsic cones are cones with respect to the intrinsic subRieman-
nian geometry. The above result confirms that the natural notion (intro-
duced by Franchi et al. in [15], see also [16]) of intrinsic Lipschitz continuity
to be used for intrinsic horizontal graphs in the subRiemannian context is
the one with respect to the intrinsic Carnot—Caratheodory distance.

2. Proof of Theorem 1.4
2.1. Getting more monotone directions

Let F be a subset of the Engel group G that has constant horizontal normal
X € Lie(G). Let Y be a vector in V; that is orthogonal to X. Note that the
line RY is independent from the scalar product chosen on Vi. Now we face
a dichotomy: either Y is parallel to the vector X of the definition of the Lie
algebra representation (1.1) of Lie(G), or not. In the second case, we show
that we can change the basis of Lie(G) and assume that Y = X;.

The case Y = X3 is easy to handle and in fact we show that E is (equiv-
alent to) a half-space. In the case Y = X instead, it is not necessarily true
that E is a half-space. Examples to this effect were first given in [14].

In both cases, we are going to make use of the following property of
stability of monotone directions.

Proposition 2.1 (see [2, Proposition 4.7]). Let X,Y € Lie(G) and
E C G. Assume that X1 =0 and Y1g > 0. Then (Adexp(X)Y)IlE > 0.
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Recall that
1
Adexp(x)Y = €Y =Y + [X, Y] + S [X, [X, Y]],

in a 3-step group.

Easy case: sets with normal X;.

Let G be the Engel group whose Lie algebra is generated by X1, Xo, X3,
X4 with relations (1.1).

Lemma 2.2. Let E C G. Assume that X11g > 0 and Xolg = 0. Then E
s a vertical half-space.

For the definition and other characterization of half-spaces see [2].

Proof of Lemma 2.2. Applying Proposition 2.1 with X =tX,, Y = X7, and
t € R, we get that the vector field

1
Z = Adexp(th)Xl =X+ [tXQ,Xl] + i[tXQ, [tXQ,Xl]] =X —tX3

is such that Z1g > 0, for all ¢ € R. Letting t — +00 and t — —o0, respec-
tively, we get that both —X31p > 0 and X3lp > 0. Hence X31g = 0. Apply
again the proposition with X =¢X3, Y = X1, and ¢ € R. Thus, the vector

Z" = Adexpxy) X1 = X1 + [tX5, X1] = X1 — Xy

is such that Z'1g > 0, for all ¢t € R. Arguing as before, we conclude that
X41p =0. By the BV characterization of vertical half-spaces, see
[2, Proposition 4.4], we are done. O

Hard case: sets with normal X5.
We first argue that if the normal is not X; then we can assume that the
normal is Xs.

Lemma 2.3. Let g be the Engel algebra with basis X1, Xa, X3, X4 and rela-
tions (1.1). Let X = aXy + X, with a, 3 € R and o # 0. Then there exists

a Lie algebra strata-preserving endomorphism 1 of g such that
X, = X.
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Proof. Define v : g — g by the property
X1 =aX;+8Xs and ¥Xp = Xy,

and
X3 =aXz and X4 = a’Xy.
It is straightforward! to check that such a 1) is an isomorphism. O

By the above lemma, the following fact is immediate.

Corollary 2.4. Let E be a subset of the Engel group G. Let X, Y € V| C
Lie(G) linearly independent. Assume X1gp >0 and Y1g =0. Then there
exists a basis X1, Xo, X3, X4 of Lie(G) with relations (1.1) such that

e cither X11g >0 and Xolg =0,
e or X11g =0 and X1 > 0.

In other words, we only need to study the cases where either E has
normal X7 or it has normal Xs. Since we already solved the first case, let
us focus now on the second.

If one applies Proposition 2.1 to the case of constant normal equal to
Xo, one obtains the following.

Lemma 2.5. Let E C G. Assume that Xolg > 0 and X11g = 0. Then, for
all t € R, the vector
2
Zyp = Xo +tX3+ §X4

18 such that Z;1g > 0. In particular,

X41g >0 and (X2 + 2X3 +2X4)11E > 0.

2.2. Sets with constant horizontal normal are Euclidean
Lipschitz domains

In this section we will prove Theorem 1.4 by showing that the Lebesgue
representative E of a set F having constant horizontal normal X5 satisfies a
“cone criterion” and is therefore an Euclidean Lipschitz domain. Recall that
we have already shown that the case of constant horizontal normal X is

Here is the calculation: 9[X1, Xa] = ¥ X3 = aX3 = a[X1, X2] = [/ X1,9X3] and
Y[X1, X3] = v Xy = o? Xy = o?[ X7, X3] = [ X1, 0 X3].



480 Costante Bellettini and Enrico Le Donne

easy to handle (Lemma 2.2), so we only need to focus on the case of normal
X2 (by Lemma 2.3).
One should note at this point that the four vectors

Yi = Xl; }/2 = X23 ng = )(47 Y4 = X2+2X3+2X4

obtained in Lemma 2.5 form a basis of Lie(G). Moreover, for all j = 1,...,4,
we proved that Y;1g > 0. These facts will permit us to conclude the proof
of Theorem 1.4. Since there is nothing special about the fact that we have a
Lie algebra of dimension 4, we state in full generality the proposition which
yields the desired conclusion.

Proposition 2.6. Let G be any Carnot group. Let E C G. Let Y1,...,Y,
be a basis of Lie(G). Assume that Y;1g >0, for all j =1,...,n. Then E is
equivalent to an Fuclidean Lipschitz domain.

For the proof of Proposition 2.6, we need to choose a good representative
for the set E. In fact, we want to have an equivalent set E for which all line
flows of Y;, j =1,...,n, meet F in a half-line. Such a fact will also be useful
for Section 3.1, where we will write OF as a graph.

The good representative that we need is the Lebesgue representative of
our original set: it allows us to obtain monotonicity along every flow line on
every direction Y. Subsequently, we show that the topological boundary of
this new set is locally a Lipschitz graph.

Recall that if X is a left-invariant vector field in a Lie group G, i.e.,
X € Lie(G), then its flow is a right translation. Namely,

Px(p,t) =pexp(tX), VpeG.

Lemma 2.7. Let G be any Carnot group. Let E C G. Let X € Lie(G).
Assume that X1g > 0. Then, for anyt > 0, we have that (almost everywhere)
it holds 1 < 1g o ®x(-,t). In particular, it is true that a.e.

]]-Eexp(X) < lg.

Proof. Since X is a divergence free vector field on the manifold G, endowed
with a Haar measure volg, we can prove that: if u € Ll (G) satisfies Xu > 0
in the sense of distributions, then, for all t > 0, u o ®x(+,t) > u volg-a.e. in
G. The statement of the lemma then follows immediately.

What we need to show is that, for any non-negative g € C}(G), the map

t— fG gu o ®x(+,t) dvolg is increasing in ¢. Indeed, the semigroup property
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of the flow, and the fact that X is divergence-free yield
/ guo®x(-,t+ s)dvolg — / guo®x(-,t)dvolg
G G

—/ugo@X(-,—t—s)dvol@,—/ugo@x(-,—t)dvolg
G G

2/ugoq)X((I)X(~,—S),—t)dVOl(G,—/ugo(I)X(-,—t)dVOIG
G G
= —s/uX(goCDX(-,—t))dvolq;,—i—o(s)
G
=5 [ (go0x(, 1) Xudvolg +ofs),
G

which, recalling that Xwu >0, yields that t+— [;guo®x(-,t)dvolg is
(weakly) increasing in t. O

Lemma 2.8. Let G be any Carnot group. Let E C G. Let Yi,...,Y €
Lie(G). Assume that Y;1g >0, for all j=1,...,k. Then there exists E
such that vol((;,(EAE) =0 and, for allpe G and j =1,...,k, there exists
T € [—00, +00] such that

{tc R : pexp(tY;) € E}
equals (T, 400) or [T, +00).

Proof. In a Carnot group, such as G, Haar measures are both left- and
right-invariant. In this proof we will make use of the fact that volg is right-
invariant. Flows of left-invariant vector fields are right translations, thus
isometries for any right-invariant distance. The balls B, considered in this
proof are to be understood with respect to a fixed right-invariant Riemannian
metric.
Let E be the Lebesgue representative of F, i.e., the set of points having
density 1:
z € E < lim volg(Br (z) N B)
r—0 VOIG(BT ($))

By the Lebesgue-Besicovitch Differentiation Theorem, E and E agree
volg-a.e. We claim that E fulfils the requirements of Lemma 2.8. Indeed,
what we need to prove is: let p € E, X a left-invariant vector field such that
X1z > 0: then for any ¢ > 0 the point y = pexp(tX) belongs to E.

The vector field X is smooth and the flow ®x(-,t) is an isometry for
the right-invariant metric, so it sends balls to balls of the same size. In the

=1.
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following denote by y the point ®x(-,t)(p). We assume p € E, so lim,_
% = 1. By the invariance of volg along the flow we have
volg(B,(p) N E) = volg(B,(y) N Eexp(X)) and volg(B,(p)) = volg(Br(y)).
With the aid of Lemma 2.7, we then have volg (B, (p) N E) < volg(B,(y) N

E). Altogether we can write

volg (B:(y) N E) > volg (B, (p) N E)
VOIG(BT‘ (y)) B VOIG(Br(p))

Therefore we have

volg (B, (p) N E) volg (B, (y) N E)

lim =1 = lim =1,
r—0  volg(B,(p)) r—0  volg(B;(y))
and the lemma is proved. ]

Remark 2.9. IfY7,..., Y} form a basis of Lie(G), then the set F is actually
open. Indeed, let ¢ be a point on the topological boundary of E and let
us show that the upper density of E at ¢ is strictly less than one. Any
direction in the convex envelope of some given monotone directions is in turn
monotone, thus the whole cone Y obtained as convex envelope of Y7,...,Y;
is made of monotone directions. Under the assumption that Y7,..., Y} form
a basis of Lie(G), this cone has non-empty interior. The complement of E is
also a set with constant horizontal normal and contains a sequence of points
qn converging to q.

By means of Lemma 2.8, the cone g, exp(—Y’) is all contained in the com-
plement of E. Hence, since ¢, — ¢, we have that the interior of qexp(—f/)
is in the complement of E. Since Y is an Euclidean cone with non-empty
interior, the density of qexp(—f/) at ¢ is strictly positive. Therefore, the
upper density of F at ¢ must be strictly less than 1.

Hence, by Lemma 2.5, every set in the Engel group that has normal X5
has a representative that is open and satisfies the conclusion of Lemma 2.8.

Proof of Proposition 2.6. By Lemma 2.8 and the remark right after it, we

can assume the following: let £ C G, where G is a Lie group, let Y7,...,Y,

be a basis of Lie(G) such that for all p € OF and j = 1,..., k, we have that
{te R : pexp(tY;) € E} = (0, +00).

We want to show that JF is locally a Lipschitz graph.
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Fix pg € OF. For all p € G consider the open set
n
Cp == { pexp Zanj ca; >0
j=1

Fix a (smooth) coordinate chart ¢ : U — R™ from a compact neighbourhood
of po. Since ¢ is smooth and C)}, change smoothly in p, then, for all p € U,
the set ¢(C)) changes smoothly. Thus one can find a fixed Euclidean cone
C C R" of the form

n
C = Zajvj:aj>0 ,
=1

for some basis v1, ..., v, of R™, such that
P(OE)N(z+C) =0, Vxe ¢(OF).

Note that consequently we also have that ¢(OFE) N (z — C) = (. By a stan-
dard argument, e.g., see [1, Theorem 2.61, page 82|, one can write ¢(OF) as
a graph in any direction v € C' with respect to any hyperplane Il such that

InCcu-ac)=0. O

Observation 2.10. As a byproduct we get of course that the set E has
rectifiable boundary.

3. Further regularity in a model of the Engel group

3.1. Theorem 1.5: entire Lipschitz graphs in coordinates of the
second kind

We devote this section to the proof of Theorem 1.5, which states that a
set with constant horizontal normal is, after a suitable choice of exponen-
tial coordinates of the second kind, the upper-graph of an entire Lipschitz
function. Recall that, by Lemma 2.2, if the normal is X; we have a vertical
half-space, hence Theorem 1.5 is immediate in this case. We are thus left
with the harder case of normal X # X;. By Lemma 2.3 we can assume, up
to a Lie algebra isomorphism, that the normal is X5. After this endomor-
phism has been performed, we choose exponential coordinates of the second
kind as we are about to describe.
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On R* with coordinates 1, x2, 3, x4, we consider the following vector

fields:

Xl - 617
g
(3.1) Xo =0y + 7105 + 334,
X3 = 03+ 7104,
X4 = 04.

Such vector fields form a Lie algebra which is 4-dimensional. Their only
non-trivial brackets are

(3.2) (X1, Xo] = X3, [X3,X3] = Xy,

Therefore, such an algebra is isomorphic to the Engel Lie algebra. Using the
general theory of (nilpotent) Lie groups one can prove that there exists a
(unique) product on R* for which the vector fields X1, X, X3, X4 are left-
invariant (and therefore a basis of the Lie algebra).

The coordinates for the Engel group that we are using are called the
exponential coordinates of the second kind. Namely, if X1, X5, X3, X4 are a
basis of the Lie algebra that satisfies (3.2), then the map

(x1,22,x3,24) — exp(x4Xy4) exp(x3X3) exp(zeXa) exp(z1X1)

is a diffeomorphism between R* and the Engel group. Moreover, the vectors
X1, X2, X3, X4 are pulled back to R* to the vector fields as defined in (3.1).

Recall that in a Lie group G there is a differential geometric interpreta-
tion for the product between an element p € G with the image exp(tX) of a
multiple of a left-invariant vector field X via the exponential map. Indeed,
one has the formula

(3.3) p-exp(tX) = @ (p),

where ®% (p) denotes the flow of X after time ¢ starting from p.

With the discussion at the beginning of this subsection in mind, the
aim is now to study those sets (in the model (3.1)) that are invariant in the
direction of X; and are monotone in the direction of X». Namely, let £ C R*
be an open set (we always take the Lebesgue representative), we say that E
is Xo-calibrated if the following two properties holds:

Xi-invariance: if p € E then, for any t € R, pexp(tX;) € E;
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Xos-monotonicity: for all p € R*, the set {t € R: pexp(tX3) € E} is an
open half-line of the form (7, 4+00) for some T' € {—oco} UR U {+0o0}.

Therefore, if E is an Xs-calibrated set then F has constant normal
equal to Xo, i.e., Xolp > 0 and X315 = 0. Vice versa, by Lemma 2.8 and
Remark 2.9, any set E with normal X5 admits an Xs-calibrated set E that
is equivalent to E.

By formula (3.3), we can calculate a product p - exp(tX) without know-
ing an explicit formula for the product. Let us consider the two cases when
X is X or Xy as above.

Regarding the flow of X7, we need to solve the ODE

3.0 {w<o> =,
Y1) = (X1)qt)-

Writing v = (71, Y2, 73, 74) and using the definition of X7, the second inequal-
ity becomes (%1 (t),2(t),¥3(t),Y4(t)) = 01 = (1,0,0,0). Integrating, we have

yi(t) =p1+t, v(t) =p2, 3t) =p3, 7a(t) = pa.

Thus,
p-exp(tX1) = (p1 +¢,p2, p3, pa)-
Regarding the flow of X5, we consider the ODE

(55) {7(0) =,
Ht) = (Xa)agy = (0,1, m(8), (n(1)*/2)

Integrating, we have

() =p1, Y(t)=p2+t, v3(t)=ps+pit, Ylt)=ps+pit/2.
Thus,
(3.6) p-exp(tXs) = (p1,p2 +t,p3 + pit, ps + pit/2).

Thus, we replace the previous definition:

Definition 3.7 (Xs-calibration). An open set E CR* is called X»-
calibrated if

(i): if p € E then, for any t € R, p+ (¢,0,0,0) € E;
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(ii): for all p € R* there exists T' € {—00} URU {+00} such that
{t eR:p+ (0,1, pat, pit/2) € E} = (T, +00).

Since the set E is assumed to be open, condition ii) is equivalent to the
following condition:

(if"):
pE E,t >0 = Pt =p-—+ (Oatap1t7p%t/2) €k

Example 3.8. Let g : R — R be a non-increasing and upper semicontinu-
ous function. Consider the set

E:={zeR': 2y > g(z4)}.

Since ¢ is assumed upper semicontinuous, then E is an open set. Then
we claim that the set F is Xs-calibrated. Indeed, such a fact can be seen
as a consequence of Theorem 3.17 from next section in which we give a
characterization of sets with constant normal. However, we present here a
direct and detailed proof of such a claim. Property (i) is obvious, for such
an F, since in the definition of E the variable x; does not appear.

Let us show property (ii’). If p € E, then py > g(p4). Now, if t > 0, we
have that ps + ¢ > po and g(p4 + p?t) < g(p4), being g non-increasing. Thus,
P2+t —g(pa + pit) > p2 — g(pa) > 0 and so p + (0,¢,p1t, pit) € E. QED

Now we provide some intermediate steps that will be needed to complete
the proof of Theorem 1.5.

Lemma 3.9. Consider R* endowed with the vector fields (3.1). Let E C R*
be an open Xo-calibrated set. Denote by R the extended real line, i.e., R :=
{=o0} URU {+00}. Then there exists an upper semicontinuous function G :
R? — R such that

E={zcR": 13> G(x3,24)}.

Proof. For each z3,x4 € R, define G(x3,x4) := inf{zy : (0,29, x3,24) € E}.
Here inf{()} = 400. Whenever such an infimum is finite, then it is not
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realized, since E is open. Since E is Xg-monotone and (0, z2,x3,24)
exp(tXsy) = (0,22 + t,x3,24), we have that

EnN ({0} X R x {1‘3} X {x4}) = {O} X (G($3,$4), +OO) X {.Tg} X {$4}
For any = € R*, since E is Xi-invariant, we have that
x€FE < (0,z9,23,74) € E <= 2 > G(x3,24).
The upper semicontinuity of G follows because F is open. O
Lemma 3.10. Let G be the Engel group in exponential coordinates of sec-
ond kind with Lie algebra as in (3.1). Let E C G be an open Xs-calibrated
set. Assume that there exists p € E such that p+ (0,R,0,0) € E. Then

{zx € R* : z3 # Py, 24 > pu} C E.

Proof. Let x € R* gvith x3 # p3 and x4 > pg. Set s := x3 — P, which is non-

zero, and t := —, which is positive. By the particular assumption on

p, we have T

(P1, %2 — t,P3,P4) € E.
By Xj-invariance,

(s/t,m2 —t,p3,Ps) € E.

By Xs-monotonicity,
s . s 8
E,$2*t+tvp3+gtap4+t*2t € FE.

Explicitly,

S - - 52 s - . o T4 — P4
¥»$2,p3+8,p4+7 = ¥,$27p3+$3—p3,p4+8 2

S
= (E7m2al’37$4) ek

By Xj-invariance,

(21,22, 23,24) € E.
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Observation 3.11. The previous lemma is saying that the function G
describing E has the property that the closure of the level set G~1(—00) is
a half-space orthogonal to x4. With an analogous argument we can actually
prove the stronger statement: if (pi,p%,p)) — (p1,p3,p4) as n — oo and
G(pY, vy, p}) — —oo then on the half-space {4 > ps4} the function G must
take the value —oo. We skip the proof of this statement, since it will easily
follow from the properties of the set C described in Example 3.31.

Definition 3.12 (Partially Lipschitz map). Let G : RF — R, v € R¥,
and L > 0. We say that G is partially L-Lipschitz along v if, for all £ > 0
and z € R¥, one has

G(x +tv) < Lt + G(x).

Note that in the above definition we only have a condition for positive
t and also for the difference G(z + tv) — G(x), not for the absolute value.
Example of partially Lipschitz maps are the monotone maps. Indeed, every
non-increasing function G : R — R is partially L-Lipschitz along v, for all
L >0 and all v > 0.

Lemma 3.13. Let G :R%2 — R be such that the set E = {z € R*: 29 >
G(z3,x4)} is Xo-monotone. Then G is partially 1-Lipschitz along any vector
(a,a?/2), with a € R.

Proof. Fix x3,x4 € R. Assume G(z3,24) # +00, otherwise there is nothing
to prove. Take x9 > G(x3,24). Thus (a,x2,x3,24) € E. Since E is
Xo-monotone, we have that, for all ¢ > 0,

a2
<a,:r2 +t,x3 + at, vy + 2t> e FE.

So xo +t > G(x3 + at, x4 + a®t/2), for all t > 0. Letting x5 — G(x3,24), we
get

G(x3,14) +t > G(x3 + at, x4 + a’t/2),
which ends the proof. O
As a consequence we get the following corollary, which concludes the

proof of Theorem 1.5. Indeed, recall that (as discussed in the beginning of
this subsection) the case of normal X = X is easily handled, while for the
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case of normal X # X; we have chosen coordinates of the second kind (3.1)
in such a way that the normal is Xs.

Corollary 3.14. There exist coordinates in which the set E of constant
normal Xo can be expressed as upper-graph of a globally Lipschitz function
of R3.

Proof. From the previous lemma, for any direction v = (v1,v2) in R%B,m
with |v] =1 and vy > 0, the function G is % partially Lipschitz along
v. So at every point y on the graph of G there is a cone-shaped domain
y+ {(x1, 29,23, 24) : 4 > 0, 29 > %\/xg + x4} that is contained in the
upper-graph of G.

Remark that the cone is independent of the point y on the graph of G, it
is just moved via (Euclidean) translations. By suitably rotating coordinates,
we can make therefore £ to be the upper-graph of a globally Lipschitz
function: namely we have to choose a graphing direction that lies in the

2
interior of the set {(z1,x2,x3,24) : ©4 > 0, T2 > %Vw% + 23} O

3.2. Analytic characterization and examples of sets with
normal X-

We present in this subsection a characterization (as well as some examples)
of sets with normal Xy in the model (3.1) of the Engel group that we have
used above. Recall again that there is no loss of generality in restricting to
this particular case, since any set with constant horizontal normal X # X3
can be brought to this case (while for sets with normal X; we have a much
easier characterization, since they are half-spaces by Lemma 2.2).

We recall a few facts on BV functions, with reference to [18, pages 354—
379].

Let u be an LllOC function on R™; the subgraph SU of u, i.e., the set
{(z,y) e R" xR :y < u(z)}, is a set of locally finite (Euclidean) perimeter
if and only if u is BVo. (Thm. 1 page 371).

Let u:R™ — R be Llloc. Define the approximate limsup and liminf at
x € R" respectively as follows, where for any ¢t € R we use the notation
Ui :={x € R" :u(x) >t} and Ly, = {z € R" : u(x) < t}:

uy (x) ;= sup{t € R : the n-dim. density of the set L;, at = is 0},
u_(z) := inf{t € R : the n-dim. density of the set Uy, at z is 0}.
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When vy (z) = u_(x) we say that = is a point of “approximate conti-
nuity” for u. The set J of points where the strict inequality uy(x) > u_(z)
holds is the “jump set” of u. Then we have (see [18, pages 355]): the set J
is H"!-measurable and countably H" !-rectifiable.

The term “jump set” is justified by the result we are about to recall.
Denote, for z € R” and v, € S !, the half-space {y € R": (y — z,v) > 0}
by E*(z,v). Analogously denote the half space {y € R" : (y — x,v) < 0} by
E~(z,v).

For H"!-a.e. x in J there exists a (unique) v, € S"~! such that it holds:

aplim, . vcpr (o) u(y) =us(z) and aplimy ., cp- (. u(y) =u—(2).

The notion of approximate limit here (see [18, pages 210]) is meant as follows:

for all € > 0 the set {y € E*(z,v) : |u(y) — us(z)| > €} has n-dim. den-
sity 0 at the point x. Analogously for all € >0 the set {y € E~(z,v):
|u(y) — u—(z)| > €} has n-dim. density 0 at the point x.

Then we can improve our knowledge of J with the following statement
([18, pages 355]): the set J is H" l-measurable and countably H" 1-
rectifiable; moreover on J we have that the approximate tangent space (in
the sense of geometric measure theory) exists for H" !-a.e.  and is given
by the orthogonal to v,.

Regarding the distributional derivative Du of the BVj,. function w :
R™ — R, we know that it is a locally finite vector-valued measure (by def-
inition). Its components will be denoted by 0u, ..., dyu. Setting DUy =
DulJ and Du := Du — DWuy we are going to use the splitting Du = Du +
DUy, The measures D@y and Du are mutually singular. For the par-
tial derivatives, i.e., the components of the vector Du, we will make use
of the corresponding notations DWWy = <8§j)u, e ,&(Zj)u) and Du =

(51u, el 5nu) There exists (see [1, 18]) a further splitting of Du into an
absolutely continuous (w.r.t. Lebesgue measure) part and a “Cantor part,”
but we are not going to need it for our purposes. The measure D@y is just
(uy (&) — u_ (@) (KL J) @ v

By recalling Theorems 2 and 3 on page 375 of [18] we will now see how
to express the distributional derivative D 1gy of the characteristic function
1sy, for u € BV, in terms of Du.

We split

D1y = DY 1gy + D™ 14y,

where D(]) HSU =D HSU |_(J X R) and D(cont) HSU =D HSU — D(]) HSU'
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Let (x,y) denote the coordinates for R™ x R. Then it holds, for
(cont) lgy:

(D™ 150 ) (@lw,y)) = | la,up (@)D for any ¢ € CX(R" x R)
R\ J
and i € {1,2,...n},

(3.15)

(DS 1s0) (6(a) = = | élw,us@))dr for any ¢ € CE(R” x R).

Rn

Regarding the jump part we have that in R” x R
(3.16) DY) 1gy = (H"LV) @ (v, 0),

where V = {(z,y) e R" xR:z € Jyu_(z) <y < uy(x)} and the vector v,
is the normal to J in R™.

We are now ready to state the analytic characterization of constant
normal sets in the Engel group:

Theorem 3.17. In our model of the Engel group (3.1) a set has finite
perimeter and constant horizontal normal Xo if and only if it is of the form
{xg > G(z3,74)} for an upper semicontinuous function G : R? — R with the
following properties:

(1): the closure of {(x3,24) : G(x3,24) = —00} is a half-space of the form
{(x3,14) : 24 > b} for some b € R;

(ii): the restriction of G to the open set
G =R\ {(z3,24) : 24 > b} \ {(w3,74): G(3,24) = +00} is BVioe(9);

(iii): G satisfies the following partial differential inequality on G: for all
h € C°(G) such that h > 0, it holds

(3.18) (893G, h))? 4 2(04G, ) (L2, h) < 0.

Here L? denotes the Lebesgue measure on R? and {, ) denotes the pair-
ing of distributions and smooth test functions.

Observation 3.19. The inequality (3.18) can be equivalently expressed by
requiring that, for any h € C2°(G) such that h > 0 and [ h =1, it holds

oh\? oh
. _ < _
(3.20) (/gGax3> —2/gGax4
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Observation 3.21. The partial differential inequality (3.18) is the distri-
butional analogue of the inequality (93G)? 4 20,G < 0 in the case that G is
a smooth function. Indeed, assuming (93G)? + 20,G < 0, for any h € C°(G)
such that h > 0 and [ h =1, we have

/(83G)2h + 2/84Gh <0.

Jensen’s inequality applied with respect to the measure of unit mass h d£?

yields
(/63Gh>2 < /(agG)Zh.

On the other hand, by assuming (3.18) and using it on a sequence of test
functions h, having unit integral and converging to the Dirac delta at a
point, we pointwise obtain the inequality (03G)? 4 20,G < 0.

Before proving Theorem 3.17, we first show the following result.

Lemma 3.22. Let G:G C R2 = R be as in Theorem 3.17 and be J C R?
its jump part. We take G to be a function of the variables x3 and x4 and we
will denote by O3 (resp. O4) the partial derivative, which is a Radon measure,
with respect to the variable x3 (resp. x4).

The partial differential inequality (3.18) splits into (and actually is equiv-
alent to)

(3.23) (DG, h))2 + 204G, b)Y (L2, h)y <0, G =0,

where we are using the notation d and 89 introduced before and h is any
non-negative test function. The second equation in (3.23) is equivalent to
saying that J has normal v, that is parallel to the x4-direction for H'-a.e.
reJ.

Proof of Lemma 3.22. We shall prove that (3.18) yields the two inequalities
in (3.23).

By definition of H"!-rectifiable we have J = U, fi(K;), where the K;’s
are compact sets in R and f;’s are Lipschitz functions from R to G. We can
assume the union U3, f;(K;) to be disjoint. Fix any € > 0: for each N we
can find an open neighbourhood Ay of the compact set UY ; f;(K;) such
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that £2(An.) < e. This is achieved by taking neighbourhoods of each f;(K;)
having measure at most 3; and taking their union from i =1 to i = N. The
fact that we can find an open neighbourhood of f;(K;) having arbitrarily
small area is a consequence of the fact that f;(K;) has finite H!-measure.

Choose now, for N and e fixed, a smooth bump function ¢ that is
identically 1 on the compact set U2, fi(K;), identically 0 outside of Apn .
and takes values between 0 and 1.

Choose any h € C°(G). The partial differential inequality (3.18) used
on the function hy . := hi)y . reads

(3.24) (D3G, hive) + OV G,y )2 + 204G v (L2, hive)
+ 200G hn L2 by ) < 0.
Keeping N fixed and letting e — 0, we get that

953G (An.e) — 035G (UL, fi(K;)) = 0,

where the convergence holds since Ui]\il Ji(KG) = Ne>0AN e, 095G is a Radon
measure, and the sets Ay . are bounded. This, together with an analogous
convergence for 9,G and £2, gives that for N fixed and € — 0:

(03G, he) — 0, (04G hne) — 0, (L% hy.) — 0.

Let us now look at the remaining terms in (3.24), namely those involv-
ing the “jump parts”. Denote by v3 y the measure 8§])Gl_ (Uf\ilfz(Kz)) In
the same fashion let vy n := aij)uL (Uf\;lfl(Kz)) Remark that v3 y — a?(j)G
and vg y — @Ej)G, as N — oo.

Moreover, for a fixed N, we get (recall that ¥, =1 on UY, fi(K;))
that, as € — 0:

OG, hi.e) — (an ), (09G hne) — (van.h).
So we can send (3.24) to the limit for ¢ — 0 and get
(3.25) (v, )2 <0,
which holds for every h > 0. Using the convergence of measures v3 y —

Oéj)G, as N — oo, we obtain that 8§j)G =0, as in (3.23). This equivalently
means that J has a normal v always parallel to the x4 direction.
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In order to get the first inequality in (3.23) we can use an analogous
argument, this time using 1 — ¢y instead of ¥ . O

Observation 3.26. The condition on the shape of J is actually equiva-
lent to

HY(J\ UL, B;) =0,

where each B; is a Borel subset of a line parallel to 3.

Observation 3.27. It is easily seen that, for G € BVj,., equations (3.23)
are actually equivalent to (3.18).

Proof of Theorem 3.17. As we saw in Lemma 3.9, every set having locally
finite horizontal perimeter and constant horizontal normal equal to X5 is
the upper-graph of a function G : R? — R of the variables (z3,z4). Such G
is upper semicontinuous and by Lemma 3.10 the closure of the level set at
—o0 is a (closed) half-space in the direction z4. Such a G will then be L.
on the open set G (see Observation 3.11).

We have moreover seen that E has Lipschitz boundary (in the Euclidean
sense) when we choose suitable coordinates (Lemma 3.13). This makes it a
set of locally finite Euclidean perimeter. Thus, since being of locally finite
Euclidean perimeter is a notion that is independent of coordinates, going
back to the original coordinates the function G must be BV}, on G.

We thus need to prove that, for G as in assumptions (i) and (ii), the set
E:={x €R* : 29 > G(z3,74)} is Xo-monotone if and only if G satisfies
(3.18).

Regarding Xs-monotonicity, we split the derivatives 0, 1g in the
“approximately continuous part” and the “jump part”.

We can compute, on the “approximately continuous part” (R§17x37x4 \
(Rz, x J)) x R,,, the horizontal normal to 1 as follows: for any non-
negative h € C2°(R%) it holds (from (3.15))

2 cont
(824—9:1834—3;184) 15| (h)

(328) = / h(l‘l,G($3,$4),$3,x4)
RS ogoq \Ray XJ)

J)Q

X |:1 — $1(83G)($3,I‘4) -t

5 (04G)(x3,24)] -
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We now consider J x R and (recall (3.16)) here we have d21p = 0. Let
further (a,b) be the vector (931, d41g). Then

(3.29)
ot

5 (ut —u™)b(HLJ).

2\ 0)
<82+£C1(93+x2184) ]lE::cl(qu—u’)a(Hll_J)—F

Altogether, summing the two expressions in (3.28) and (3.29), we get the
expression for the Xo-derivative of 1. The condition of Xs-monotonicity,
i.e.,

2
|:(82 + 2103 + ?84) ]lE:| (h) >0,

for any h > 0 and for any x1, is fulfilled if and only if,? for any h > 0, the
polynomial in z;

2
1

/hd£2 1 ((05C) 3, 24), ) — (OO s, ), )

is always positive and

2
<:E1a + x;b) > 0.

The first is in turn equivalent, since such a polynomial has value 1 for
r1 = 0, to the discriminant (93G(h))? + 204G(h){L?, h) being non-positive.
The second is satisfied if and only if a = 0,b > 0. The vector (a,b) is,
on the other hand, the normal v to the jump set J C R? of G: so the
Xs-monotonicity is equivalent to J being a countably H!-rectifiable set with
constant normal in the direction x4, as in the assumptions. U

We give now some explicit examples of sets having locally finite horizon-
tal perimeter and constant horizontal normal equal to X5 in our model of
the Engel group. The first one is a generalization of Example 3.8.

’Indeed the two measures in (3.28) and (3.29) are mutually singular

and the inequality [(824—3:1834—2184) ]IE} (h) splits in the two corre-

2 cont
sponding inequalities for the two measures (32+x183+z2184) 1r and

2 (&)}
Oy + 1103 + ?184 1g. This is proved using bump functions as done in the

proof of Lemma 3.22.
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Example 3.30. Let g : R — R be a non-increasing and upper semicontin-
uous function. Take K € (0,00) and a non-decreasing function f:R — R
Lipschitz continuous with Lipschitz constant < % The set

E:={zcR':zy> f(Kxs —x4) +g(z4)}

is Xo-calibrated. We can easily see this fact as a consequence of Theorem
3.17 by computing

((03G) (w3, 74))* = K*(f' (K3 — 24))?,
(84G)(J}3, J}4) = —f’(K$3 — .7}4) =+ 649(.%4)

so that

((03G) (w3, 74))? + 2(04G) (w3, 74)
= (K*f'(Kxs — x4) — 2) f'(Kxg — x4) + 2049(x4)
< 284g($4) <0

by the condition on the Lipschitz constant of f and by the monotonicity of g.

Example 3.31. The set

2
C .= {$€R4:$2>0,$4>0,l‘2>$3}
21y

is Xo-calibrated. In this case we have G = +oo for z4 < 0 and G = % for
xq > 0.
Again, making use of Theorem 3.17, we can compute, for x4 > O:

(95G) (w3, 74))° + 2D G) (w3, 04) = 3 — 23 — ),
Ty Ty

We remark here that we get 0 because C' is a sort of “extreme case”, in
the sense that, taken any Xs-calibrated set E, if p € OF then we shall prove
that p + C must lie in the interior of E. This fact will be discussed in detail
and play an important role in a subsequent work.

Let us prove the previous claim. Assume that E is Xi-invariant and
Xo-monotone and let p = (p1, p2, p3, p4) € E. Then the whole line £ = {(p; +
a, p2,p3,pa) : a € R}, belongs to E. Now the Xs-monotonicity means that
we can flow from any point in £ for positive times ¢ along X5 and we remain
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in E. Writing this down explicitly we get
+a)?
(p1 + a,p2,p3,pa) + (0,757 (p1 +a)t, (m2)t> €L foranyt>0,acR.

By using X;i-invariance again we get that

2
(p17p2ap37p4) + <Oat7 (pl + a)ta m—;a)t) € E for any t> 0,(1 € R.

The points (t, (p1 + a)t, Mt) with ¢ > 0 and a € R describe the surface

{222 =y?*:2 > 0,2 >0} in R3. This means that whenever E contains p
then it must contain the surface p 4+ {(z1, 22, z3,24) : T2 = %, To > 0,24 >
0}. However, recalling that E is an upper-graph in the direction of the
xg-coordinate we get that F contains the whole p + {(z1, z2, z3,24) : 2 >
;—i,mg > 0,24 > 0}, which is exactly p + C. QED

Remark 3.32. The same argument of the previous example shows that if
E is a Xo-calibrated set and p € JF then the p- C must lie in the interior
of E. Indeed, also the set p~!- E is a Xo-calibrated set. By the argument
above, we have that C C p~! - E and we are done. Note that p - C is the left
translation (with respect to the group structure) of E at p. Also note that,
since we are in exponential coordinates, we have C~! = —C'. In addition, if
E is a Xo-calibrated set, then the set R* \ (—FE) is Xo-calibrated. Therefore,
for p € OF, we have the p - (—C) lies in the interior of the complement of F.

4. Sets with constant horizontal normal as intrinsic
horizontal upper-graphs

In this section we look at the expression of E (a set with constant normal
X) as upper-graph of a function when we use as “graphing direction” the
flow lines of an horizontal vector field, i.e., we want to describe E as intrinsic
horizontal upper-graph in the sense of Definition 1.7 and study the regularity
of the graphing function T'. A natural choice is to use the flow of X as
“graphing direction”. As we are about to explain in the next subsection,
this choice might lead to a surprising lack of regularity for 7'

Recall that, in view of Lemma 2.2, the only interesting case is when the
normal is not X;. Moreover, by Lemma 2.3, we can in that case assume
without loss of generality that the normal is Xs.
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4.1. Intrinsic horizontal upper-graphs in the direction of the
normal

Let W C R?* be the set of points with second component equal to zero,
W= {pecR': py=0}.

One can show that W is a subgroup of R* with respect to the Engel struc-
ture given by (3.1). Indeed, to see this, it is enough to observe the following
two facts. First, the vector space spanned by the vector fields X7, X3, X4
form a Lie sub-algebra. The second fact to notice is that the span of such
vectors is tangent to W. Thus W is a subgroup whose Lie algebra has basis
X1, X3, Xy. From the algebraic viewpoint, the subgroup W is a complemen-
tary subgroup of the one-parameter subgroup tangent to the vector field Xo.
From the geometric viewpoint, for each p € R?, the three-dimensional plane
W intersects the line ¢t — pexp(tXs) in one and only one point. Indeed, by
(3.6) the second coordinate of pexp(tX2) is pa + ¢, which is zero when (and
only when) t = —py. We conclude that the space R* can be parameterized
by the following map

U:W xR —R?
(p,t) — pexp(tXy).

Assume now that £ C R?* is a Xs-calibrated set. We plan to write F as an
upper-graph of a function. By the definition of X-calibration there exists a
map p — T(p) from R* to R such that

{t: pexp(tX3)) € E} = (T(p), +00).
Restricting such a map T to W. We get that

E={Y(pt):peW,t>T(p)}
={V(p,T(p)+1) :p€ W,t>0}.
= {(p1,t,p3 + pit, pa + P3t/2) i p € W,t > T(p)}.

Let us study the map p — T'(p) from W to R, in the examples Example
3.8 where E := {x € R* : 25 + g(x4) > 0}, with g non-decreasing and upper
semicontinuous. The value T'(p) is the lower value T' such that

T + g(ps + piT) > 0,
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since on W we have pa = 0. Restrict the map 7" to W N {p; = 0}, so

T(p) = —g(pa).

In conclusion, 7T': W — R is as much non-regular as g is. In particular,
there are examples of non-continuous function 7. We can summarize the
last discussion in the following fact.

Theorem 4.1. For any X # X there are examples of sets E with con-
stant horizontal normal X and with the property that, when they are written
as intrinsic horizontal upper-graphs in the direction of X, the function for
which they are upper-graphs is not continuous.

4.2. Graphs in other horizontal directions

For a set E with constant normal X5, the previous example has shown that
there can be a lack of continuity for the intrinsic graph representing the
boundary of E when we choose the flow lines of Xy as graphing directions.

We might however still look at what happens when the boundary of
FE is represented as an intrinsic graph using different horizontal flow lines
as graphing direction: namely let us observe the flow lines of aX; + X5 for
a > 0.

First of all we need to write down, analogously to what was done in
(3.5), the flow of aX; + X2 in the model of the Engel group considered so
far. What we get is that the flow line starting at (p1,p2,ps,psa) is

(4.2)

2 2
a a a
(I)(pat) = <p1 + at,p? + tap3 +P1t + 5752’]94 + %t + %tQ + 6t3> .
We are going to show now that this intrinsic graph might fail to be
Euclidean Lipschitz. To see this, we will consider the set in Example 3.31.

Theorem 4.3. When the set C := {:L’ ER*: 29> 0,24 > 0,29 > %} 18
represented as intrinsic upper-graph in any horizontal direction a X, + Xo,
the function for which it is upper-graph is not Euclidean Lipschitz.

Proof of Theorem /4.3. The intrinsic function T'(p) yielding the upper-graph
is a function T : W — R, where W := {p € R* : py = 0} as before. The value
T'(p) is the infimum of the times ¢ for which the flow line starting at p is
inside C.
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Let us restrict the attention to points in W with p; = p3 = 0. The flow
lines are then (at,t, %tZ, ps + %2t3> and we must see when the flow line

enters the set C'. The value T'(p) for py > 0 is clearly 0, while for py < 0 it
is the solution of the following equation in ¢

CLQ CL2
2 ) = ¢t
<p4 + 6 ) 4 )

with the constraint that py + “—;t?’ > 0.

Solving this equation we get ‘f—;t?’ = 2|p4|, i.e., t =y 24(}'{,"“, which fulfils

the constraint pg + %t?’ > 0. So we have that, restricting to p; =p3 =0

in W, the function for which C is upper-graph is ¢, % for p4 < 0 and

identically 0 for psy > 0, so it is not Lipschitz continuous for the Euclidean
distance. O

It is therefore necessary to use non-horizontal directions as “graphing
direction” (as done in Corollary 3.14) in order to see the Euclidean Lipschitz
continuity of the function describing the boundary of a set with constant
horizontal normal.

The previous proof leaves however still open the possibility for the intrin-
sic graph in the direction a X7 + X2 to be Lipschitz with respect to the intrin-
sic subRiemannian geometry of G, as we are about to discuss. In particular,
we shall obtain Holder continuity of the graphing function with respect to
the Euclidean distance.

Let us recall the notion of intrinsic cones and intrinsic Lipschitz reg-
ularity for graphs in Carnot groups. Given a group G and two subgroups
W,H C G, we say that W and H are two complementary subgroups if
G=W-H and WNH = {1}. Given a function f: W — H between two
subgroups, its graph is the set

Iy:={w- f(w) : we W} CG.

Definition 4.4 (Intrinsic cones). Let G be a group admitting dilations
Oy, for all A € R. Let H C G be a subgroup of G. An open set C C G is
called intrinsic open cone with axis H if C' = §,(C), for all A € R, and H C
{1}ucC.

Definition 4.5 (Intrinsic Lipschitz graphs). Let W, H C G be two
complementary subgroups of a group G admitting dilations. Then a func-
tion f: W — H is called intrinsic Lipschitz (or Lipschitz in the sense of



Sets with constant normal in the Engel group 501

Franchi-Serapioni—Serra Cassano) if there exists an intrinsic open cone with
axis H such that

Ffﬂ(p-O):(ﬁ, Vpely

The above definition has been introduced by Franchi et al., see [15, 16].
We phrased the definition a little bit differently, however, it is easy to see
that it is equivalent.

Theorem 4.6. When a set E with constant horizontal normal Xa is repre-
sented as intrinsic horizontal upper-graph in any horizontal direction a X1 +
Xo, with a # 0, the function for which it is upper-graph is intrinsically
Lipschitz-continuous.

Proof of Theorem 4.6. In order to prove the theorem, we show the intrinsic
cone in the coordinates given by (3.1):

C = {2z9my > 23}
It is clear that C' is open and invariant under the group dilations:
(z1, T2, T3, 24) — (Ax1, Ax2, N2x3, A32y).

By (4.2), we have that

2
exp(t(aXi + Xo)) = ®(0,1) = (at,t, th, Cgt?’) .

If ¢ # 0, then such a point is in C, since

2 2 2 9
a a a a
205(0,)94(0,1) = 204 = St > Tpt = (542)7 = @3(0,0)”.
2(0,)84(0,1) = 251 = Tt > Tt = (5 3(0,1)
Hence, if H := exp(R(aX; + X»)), we have H C {1} U C. So C is an intrinsic
open cone with axis H. 3
It is important that we notice that C' is the cone obtained as the previous
set C' of Example 3.31 together with its reflection:

C=Ccu(-C)=Ccuc

Let E be a set with normal Xs. Up to replacing it by its Lebesgue
representative (see Section 2.2), we may assume that F is Xs-calibrated (see
Definition 3.7). By Remark 3.32, we know that if p € OF, then p-C C FE
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and similarly p- (C~!) C R*\ E. Now let W be, as before, the set {p € R*:
p2 = 0}. Let f : W — H be the function for which I'y = OF. Then, if p € 'y,
we have Ty N (p- C) = 0. O

The above proof showed that the cone C' has the property of containing
the direction a X7 + X5 in its interior, when a # 0. Since such a cone is an
intrinsic cone, hence invariant under inhomogeneous dilations, we can find
a cusp of the form

Q:={zx e R': (x,v) € (0,1),dist(x, Rv) < K({z,v))?},

for some K > 0 and v = aey + e2, contained in C. Since the intrinsic graph
in the direction aX; + X5 avoid the cusp, we can conclude that it is Holder.
Hence, we showed the following corollary.

Lemma 4.7. When a Xy-calibrated set E is represented as intrinsic upper-
graph in any horizontal direction aX1 + Xo, with a # 0, the function for
which it is upper-graph is locally Euclidean Holder-continuous.

We remark that the fact that intrinsic Lipschitz graphs are locally
Holder-continuous holds in complete generality in any stratified group. One
can easily generalize our geometric reasoning given above. A more analytic
proof will be contained in [13].

5. Regularity in filiform groups

A stratified group G is said to be a filiform group if the strata V; of the
stratification

Lie(G) =Vi® - &V,

of the Lie algebra Lie(G) are such that dimV; =2 and dimV; =1, for
j=2,...,s. Here s is the step of the group.

One can easily show that there exists a basis Xo,..., X of Lie(G) by
vectors with the following property: Xo, X1 € V1, X; € Vj, for j =2,...,s,
and

(51) [XOan—l] :Xj, fOI‘j :2,...,8.

In general there might be other non-null brackets of elements of this basis.
In [24], Vergne gave a classification of all stratified filiform groups. In fact,
in [24, Corollary 1, page 93], Vergne showed that, in the case the step s is
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even (so the dimension of the group is odd), then there is only one stratified
group of step s and it admits a basis for which the brackets are all null,
except those in (5.1). In case s is odd (and the dimension is even), then
there are only two different filiform groups: one where, a part from (5.1),
all other brackets are null and a second one where the only other non-null
bracket relation is

(X7, Xo] = (-1)'X,, forl=1,...,5s—1.

We refer to this two groups as the filiform group of the first kind and the
filiform group of the second kind, respectively.

We shall show how the argument for proving the regularity of constant-
normal sets in the Engel group can be extended to any filiform group of the
first kind.

Theorem 5.2. Let G be any filiform group of the first kind. Let E C G be
a set with horizontal constant normal. Then E is a Lipschitz domain.

Proof. Let Xy, ... X, be a basis of Lie(G) satisfying (5.1). As for the Engel
group, we can assume that either Xgolp = 0 or X;1g = 0. Consider first the
case Xolg = 0. By Proposition 2.1, the vector Adey,¢x,)X1 is a monotone
direction. Explicitly, by (5.1), we have

t2 tsfl
Adexp(tX )Xl = 6ad(tXO))(l =X +tXo+ X3+ +
’ 2 s—1

Xs.
Pick s distinct numbers t1, ..., ts. Consider the vectors
Y}' = Adexp(tJXo)le forj = 1, e, S

We claim that the vectors Y are linearly independent. Indeed, it is enough
to show that the matrix

-1
oy H A
2 s—1
1 ¢ t? tzil
S

PR
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has full rank. Equivalently, we need

1t t3 ... 5!

det |1 1 1 . | #0
5
We observe that we are considering a Vandermonde Matrix. Hence such a
determinant is IT;<;<j<s(t; — t;), which is non-zero, since the ¢;’s have been
chosen to be distinct. Since we found a basis of monotone directions, as for
the Engel group, we conclude that the set E is (equivalent) to a Lipschitz
domain.

Let us consider now the case X11g = 0. Applying Proposition 2.1, we
get that the vector field

Adexpex,)Xo = Xo — tXo

is a monotone direction, for all ¢ € R. Thus Xy1p = 0. Iterating the use
of Proposition 2.1 and using (5.1), we get that all vectors X,..., X, are
invariant directions. Hence, F is half-space. O
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