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Second-order renormalization group flow of

three-dimensional homogeneous geometries

Karsten Gimre, Christine Guenther and James Isenberg

We study the behavior of the second order Renormalization Group
flow on locally homogeneous metrics on closed three-manifolds. In
the cases R

3 and SO(3) × R, the flow is qualitatively the same as
the Ricci flow. In the cases H(3) and H(2) × R, if the curvature is
small, then the flow expands as in the Ricci flow case, while if the
curvature is large, then the flow contracts and forms a singularity
in finite time. The main focus of the paper is the flow on the SU(2),
Nil, Sol, and SL(2, R) 3-geometries, with two of the three principal
directions set equal. The configuration spaces for these geometries
are two dimensional, and we can consequently apply phase plane
techniques to the study. For the SU(2) case, the flow is everywhere
qualitatively the same as Ricci flow. For the Nil, Sol, and SL(2, R)
cases, we show that the configuration space is partitioned into two
regions which are delineated by a solution curve of the flow that
depends on the coupling parameter: in one of the regions, the flow
develops cigar or pancake singularities characteristic of the Ricci
flow, while in the other both directions shrink. In the Nil case we
obtain a characterization of the full three-dimensional flow.

1. Introduction

The Ricci flow for a family of metrics g on a manifold Mn is well-known to
be the first-order approximation to the Renormalization Group (RG) flow
corresponding to perturbative analyses of nonlinear sigma model quantum
field theories from a world sheet into (Mn, g) [1, 4, 5]:

∂tgij = −αRij − α2

2
RiklmRklm

j + O(α3).

Here, we use the parameter α to denote the (positive) coupling constant
for such quantum field theories. If we carry out appropriate rescalings of
the deformation parameter t for the RG flow, then the partial differential
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equation (PDE) generating the second-order approximation (in α) to the
RG flow can be written as

(1.1) ∂tgij = −2Rij − α

2
Riklm Rklm

j ,

where Rij and Ri
klm are the Ricci and the Riemann curvature tensors corre-

sponding to the (evolving) metric gij(t), and indices are lowered and raised
using gij(t) and its inverse gkl(t).

There is no consensus among researchers concerning whether it is physi-
cally useful to consider the second-order terms in the RG flow while ignoring
the influence of higher order terms (which involve cubic and higher order
products of the curvature). Whether or not this turns out to be the case,
the flow equation (1.1) is mathematically interesting as a (non-linear) defor-
mation of the Ricci flow (whose governing equation is obtained from (1.1)
by setting α = 0), and accordingly some of the mathematical features of its
flow have been studied in recent years [7, 10].

In this work, we continue the study of the flow generated by (1.1) (which
we label as the “RG-2 flow equation”), focusing on the following issue: If we
fix a family of geometries (preserved by both the Ricci flow and the RG-2
flow) and fix a value of the parameter α, does the RG-2 flow have asymptotic
behavior similar to that of the Ricci flow? Further, how does the asymptotic
behavior of the RG-2 flow depend on α?

To study this issue, we have chosen to work with sets of geometries for
which the behavior of Ricci flow is well understood: families of 3-dimensional
geometries which are locally homogeneous. Since we are not concerned here
with the topology of M3, and since every locally homogeneous geometry
(Mn, g) lifts to a homogeneous geometry on the universal cover of Mn,
we assume that the geometries (M3, g) of interest are all homogeneous.1

The full range of 3-dimensional homogeneous geometries, and the behav-
ior of the Ricci flow on these geometries, is discussed elsewhere (see [6, 8,
9]2). Throughout most of this paper we are concerned in particular with

1A Riemannian geometry (M, g) is defined to be locally homogeneous if, for every
pair of points p, q ∈ M , there exist neighborhoods Up of p and Vq of q such that
there is an isometry Ψpq mapping (Up, g|Up

) to (Vq, g|Vq
) with Ψpq(p) = q. Generally,

these local isometries do not extend to isometries of the whole space (M, g). If they
do, then the geometry is homogeneous, which means that for every pair of points
p, q ∈ M , there is exists an isometry Φpq of (M, g) that maps p to q. In this case,
the isometry group of the geometry acts transitively on M .

2Note that in some of these references, volume-normalized Ricci flow rather than
standard Ricci flow is considered.
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comparing the two flows on the SU(2), Nil, Sol, and SL(2, R) families of
locally homogeneous 3-geometries with two of the three principal directions
set equal. While this extra condition (which is sometimes known as local
rotational symmetry, or “LRS” to those who study spatially homogeneous
relativistic cosmologies [11]) is not always preserved by the RG-2 flow, in
the cases that we study here, it is.

A naive comparison of the RG-2 equation (1.1) with the Ricci flow equa-
tion ∂tgij = −2Rij suggests that the second term in equation (1.1) becomes
important — and can lead to differences in asymptotic behavior of the two
flows — if (roughly speaking) the product of α times the curvature is com-
parable to unity either initially or at some time along the flow. Our analysis
below of the flows for the Nil, Sol, SL(2, R), and H(3) families of geometries
bears this out. On the other hand, we find that for the R

3, SO(3) × R and
SU(2) cases, the magnitude of α× curvature does not affect the qualitative
asymptotic behavior of RG-2 flow, since, as seen below, in these cases both
terms in equation (1.1) have the same sign for all geometries.

For the SU(2) family of homogeneous symmetric 3-geometries, we find
that for both the RG-2 flow and the Ricci flow, if we start at any initial
geometry, then all three directions eventually contract (“shrinker asymp-
totics”) and approach isotropy, with a curvature singularity reached in finite
time. We note that for both of these flows, the phase plane divides into two
regions: If we denote by (A, B, C) the diagonal components of the metric in
the Milnor frame, and if we choose B = C, then the two regions are divided
by the solution trajectory A = B.

For Nil, the Ricci flow for all initial geometries is “immortal” (non-
singular for all future time) and is characterized by two expanding directions
and one shrinking direction (“pancake asymptotics”). In the RG-2 flow case,
however, again setting B = C, we find that the phase plane is partitioned
into two regions of differing behavior, this time with the boundary given by
the curve A = 2

3αB2. For initial geometries with A0 < 2
3αB2

0 , we have tmax =
∞ and A(t) → 0, B(t) → ∞ as t → tmax (here tmax is defined so that [0, tmax)
is the maximal interval of existence of the flow); this behavior matches that
of the Ricci flow. For initial geometries with A0 ≥ 2

3αB2
0 , one has tmax < ∞

and A(t), B(t) → 0 as t → tmax. For the Nil family of geometries, unlike the
others, we find that the full three-dimensional system of ordinary differential
equation (ODEs) can be reduced to the symmetric case, and so we have the
following complete description of the RG-2 flow for all Nil geometries: Given
A0, B0, and C0, if α ≥ 2B0C0

3A0
then tmax < ∞, and A(t), B(t), C(t) → 0 as

t → tmax. If, on the other hand, α < 2B0C0
3A0

, then tmax = ∞ and A(t) → 0,
while B(t), C(t) → ∞ as t → ∞.
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The Ricci flow for all (three-dimensional, symmetric) Sol initial geome-
tries is immortal and is characterized by “cigar asymptotics” (one expand-
ing direction and two shrinking directions for volume-normalized flow; one
expanding and two unchanging directions for unnormalized flow). For the
RG-2 flow with the condition A = C, the phase plane is partitioned into two
regions by the line B = 2α. For initial geometries with B0 ≥ 2α cigar asymp-
totics develop with tmax = ∞, while for those such that B0 < 2α, shrinker
asymptotics occur, with tmax < ∞.

For SL(2, R), the behavior is similar to the Nil case: The Ricci flow for all
(symmetric) initial geometries is immortal and is characterized by pancake
asymptotics. For the RG-2 flow, this time with B = A, the phase plane is
partitioned into two regions by a solution curve ϕ that converges to C = 0,
A = 2α. Solutions with initial conditions (C0, A0) that satisfy A0 > ϕ(C0)
develop pancake asymptotics with tmax = ∞, while those with A0 ≤ ϕ(C0)
either develop shrinker asymptotics with tmax < ∞, or converge to (0, 2α).

What happens to the dichotomous behavior of the RG-2 flow on the Nil,
Sol, SL(2, R), and H(3) geometries if one varies the parameter α? In accord
with the assessment that the magnitude of α×curvature plays a key role in
determining if RG-2 flow differs qualitatively from Ricci flow, we find that
varying α simply results in a uniform shift of the boundary between those
initial geometries whose RG-2 flow is like Ricci flow (with pancake or cigar
asymptotics), and those whose RG-2 flow has shrinking asymptotics (unlike
Ricci flow). We emphasize that for every positive value of α, no matter how
small, the same dichotomous behavior is found to occur.

The proofs of our results here rely strongly on the tools of phase plane
analysis for 2-dimensional dynamical systems. These tools are applicable
because, first of all, if either Ricci flow or RG-2 flow is restricted to a family
of locally homogeneous geometries, the flow PDEs become systems of ordi-
nary differential equations (see Section 6). Further, for three-dimensional
geometries, both flows preserve the diagonality of the metric (in the Mil-
nor frame), so without loss of generality one may reduce the number of
dynamical variables from six to three. For Ricci flow, volume-normalized
flow is easily implemented, further reducing the number of free functions
to two [8]. Volume normalization is not, however, readily implemented for
RG-2 flow, so in our studies here we generally add an extra restriction: that
two of the metric coefficients are initially equal. In the cases studied, this
condition is preserved by both flows. Hence for these cases, both flows may
be treated as two-dimensional dynamical systems.

Before carrying out the analyses of the flows for these families of geome-
tries, we briefly review some of the results obtained in earlier studies of RG-2
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flow (see Section 2), and also (in Sections 3 and 4) examine the behavior of
RG-2 flow for constant curvature geometries and for geometries which are
the direct product of R with two-dimensional constant curvature geometries.
We next, in Section 5, write out the RG-2 equations for locally homogeneous
3-geometries generally. Finally, in Section 6 we state and prove our main
results.

We note that there is some overlap of our study with the largely numer-
ical work of Das et al. [3].

2. Previous results for RG-2 flow

The primary focus of this paper is on ways in which the RG-2 flow differs
from the Ricci flow. Concerning this difference, one of the striking features of
the RG-2 flow equation (1.1) is that if one writes it out as a PDE system for
the metric coefficients (with respect to a coordinate basis), one finds that it
is generally not parabolic, even if one adds a DeTurck-type diffeomorphism
term (effectively choosing a coordinate gauge). Hence, in contrast to the
situation for Ricci flow, the RG-2 initial value problem on closed manifolds
(or otherwise) is not generally well-posed. One of the simpler manifestations
of this feature is seen if one considers the RG-2 flow on a two-dimensional
manifold M2, in which case the flow preserves the conformal class of the
initial metric3, and one can write the flow equation as a PDE for the con-
formal factor, eu (the metric on M2 is chosen to be eug̃, with g̃ fixed). If,
further (following Oliynyk [10]), one writes the equation for the conformal
factor in linearized form, setting u = u∗ + v, one has

(2.1) ∂tv = e−u∗
(
1 +

α

2
R∗

)
Δ̃v + F∗v,

where R∗ is the scalar curvature of the metric eu∗ g̃ about which the lin-
earization is being done, Δ̃ is the Laplacian of the metric g̃, and F∗ is some
function depending on g̃ and u∗. Clearly from (2.1), one sees that if the
evolving metric eu∗ g̃ is such that (1 + α

2 R∗) > 0, then the flow equation is
(at that moment) parabolic, while otherwise the flow is not.

Another aspect of RG-2 flow, which has been studied is the stability
of flat solutions under this flow. Using techniques (i.e., maximal regularity
theory) similar to those used to prove the stability of flat solutions on the

3In two dimensions, since the curvature tensor satisfies the identity Rijkl =
R
2 (gilgjk − gikgjl) the RG-2 flow takes the form ∂tgij = −Rgij − α

4 R2gij ; it imme-
diately follows that the RG-2 flow preserves the conformal class of the metric.
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torus (in any dimension) under Ricci flow, Guenther and Oliynyk [7] have
proven that these same solutions are stable under RG-2 flow. They also prove
stability of constant negative curvature geometries under a flow related to
RG-2 by the addition of terms which generate homothetic rescalings and
diffeomorphisms of the geometries.

3. RG-2 flow for constant curvature geometries

Geometrically, the simplest class of locally homogeneous geometries consists
of those with constant curvature; i.e., those for which the Riemann curvature
tensor satisfies the condition

Rijkl = K(gilgjk − gikgjl)

for some constant K. Letting Rm2
ij := RiklmRklm

j denote the quadratic cur-
vature term in the RG-2 flow equation, one readily verifies that the constant
curvature condition implies (for dimension n)

Rm2
ij = 2K2(n − 1)gij ,

Rij = K(n − 1)gij ,

from which it follows that if g(t) evolves via the RG-2 flow equation (1.1)
and if g(0) = g0 has constant curvature, then g(t) preserves its conformal
class, and we may write g(t) = ϕ(t)g0. Since RG-2 flow preserves isometries,
we may also presume that ϕ(t) is a spatial constant. Noting that Rij [ϕg] =
Rij [g] and Rm2

ij [ϕg] = 1
ϕRm2

ij [g], we find that the evolution equation for ϕ
corresponding to the RG-2 flow of constant curvature geometries is

(3.1) ∂tϕ(t) = −2K(n − 1) − α

ϕ(t)
K2(n − 1).

In the Ricci flow case (α = 0), one easily integrates equation (3.1) to
obtain (with ϕ(0) = 1)

g(t) = (1 − 2K(n − 1)t)g0.

With α nonzero, equation (3.1) is more difficult to integrate; however,
one does obtain the following implicit solution for ϕ(t):

(3.2) ϕ(t) = −2K(n − 1)t + 1 +
αK

2
ln

∣∣∣∣
2ϕ(t) + αK

2 + αK

∣∣∣∣ .

In the case of positive curvature K, we see from the evolution
equation (3.1) that for every value of K and of α, ϕ monotonically decreases,
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and we see from the implicit solution (3.2) that ϕ(T ) = 0 for

T =
1

2K(n − 1)
+

α

4(n − 1)
ln

∣∣∣∣
αK

2 + αK

∣∣∣∣ .

Hence for positive constant curvature, the RG-2 flow is qualitatively the
same as the Ricci flow. We note that since (for α > 0)

αK

2 + αK
< 1,

in fact RG-2 flow shortens the time to reach the singularity.
For negative curvature K, the asymptotic behavior of RG-2 flow does

depend on the values of K and α. Indeed, inspecting equation (3.1) at t = 0
with ϕ(0) = 1, one finds that for a fixed value of α, those constant negative
curvature geometries with |K| < 2

α initially expand under RG-2 flow (as
with Ricci flow); but if |K| > 2

α , the RG-2 flow initially contracts. Moreover,
those geometries which initially expand continue to do so, and those which
initially contract continue to do so as well. Furthermore the geometries which
expand are immortal, while those which contract collapse in finite time. We
note that for any choice of constant negative curvature K, there are choices
of α for which the RG-2 flow behaves like Ricci flow, and others for which
it behaves very differently.

Since all metrics on H(3) are constant curvature metrics, the above cal-
culations give a complete description of the RG-2 flow in this case.

For R
3 the geometries are all flat, so all are clearly fixed points of the

RG-2 flow.

4. RG-2 flow for SO(3) × R, and H(2) × R.

While the homogeneous simple direct product geometries on SO(3) × R, and
H(2) × R do not have constant curvature, the behavior of their RG-2 flows
follows immediately from the calculations done above in Section 3. In the
case of SO(3) × R, the metrics take the product form

g = DgR + EγS2 ,

where D and E are spatial constants, gR is the metric on R, and γS2 is the
round metric on the sphere. The calculations of Section 3 imply that under
the RG-2 flow, the round sphere shrinks to a point. The metric is flat in the
R direction, and therefore as for the Ricci flow (discussed in [8]), a curvature
singularity forms in finite time.
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For H(2) × R, we also have a product metric of the form

g = DgR + EγH(2),

where γH(2) is the constant curvature metric on the hyperbolic plane, and
D and E are spatial constants. Again it follows from the calculations in
the above section that if |K| > 2

α the flow contracts in the H(2) direction,
developing a singularity in finite time, while if |K| < 2

α then the flow expands
for all time.

5. The RG-2 flow equations for SU(2), Nil, Sol, and SL(2, R)

In this section, we focus on four families: those characterized by the (uni-
modular) transitive isometry groups SU(2), Nil, Sol, and SL(2, R). As geo-
metrically defined flows, both Ricci flow and RG-2 flow preserve isometries,
and hence preserve these families.

There are two different ways to study geometric flows on families of
homogeneous geometries. In both approaches, one works with a frame field
that is left-invariant under the group action. Since the groups being consid-
ered here are unimodular, one may choose the frame field so that the metric
is diagonal. Such a choice is useful since, in terms of such a frame field basis,
one verifies that both terms on the right hand side of equation (1.1) are
diagonal; thus diagonality is preserved by the RG-2 flow. In the first of the
two approaches, one fixes the chosen frame field {fi}3

i=1. Hence the frame
field commutators [fi, fj ] = ck

ijfk do not evolve in time, but the diagonal
components of the metric — which we label A, B, and C — do evolve. In
the second approach, one allows the frame field, and therefore the commuta-
tors, to evolve, but one requires the frame field to be orthonormal; hence the
metric coefficients do not evolve. While both methods are useful4, here we
use the first, which facilitates comparison with the Ricci flow results in [8].

For convenience of reference, we use the notation of [2], page 169. Thus
we set λ := c1

23, μ := c2
31, and ν := c3

12. The frame field {ei}3
i=1 defined by

e1 = A−1/2f1, e2 = B−1/2f2, and e3 = C−1/2f3 is orthonormal. Calculating
the curvatures for geometries specified by {λ, μ, ν} (which identify the isom-
etry family) and by {A, B, C} (which specify the metric in that family), one

4Both methods are also used in the study of the dynamics of spatially homoge-
neous cosmologies satisfying the Einstein gravitational field equations.
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obtains sectional curvatures (see e.g., section 7 of chapter 4 in [2])

K(e2 ∧ e3) =
(μB − νC)2

4ABC
+ λ

2μB + 2νC − 3λA

4BC
,

K(e3 ∧ e1) =
(νC − λA)2

4ABC
+ μ

2νC + 2λA − 3μB

4AC
,

K(e1 ∧ e2) =
(λA − μB)2

4ABC
+ ν

2λA + 2μB − 3νC

4AB
.

In the original frame field {fi}, one computes from this

K12 = K(f1 ∧ f2) = (AB)K(e1 ∧ e2),
K23 = K(f2 ∧ f3) = (BC)K(e2 ∧ e3),
K31 = K(f3 ∧ f1) = (AC)K(e3 ∧ e1).

We can easily calculate the Ricci curvatures using the orthonormal frame
field, then converting to the {fi} frame field, and thereby obtaining

R11 = Rc(f1 ∧ f1) =
(λA)2 − (μB − νC)2

2BC
,

R22 = Rc(f2 ∧ f2) =
(μB)2 − (νC − λA)2

2AC
,

R33 = Rc(f3 ∧ f3) =
(νC)2 − (λA − μB)2

2AB
.

Similarly, we find

Rm2
11 = Rm2(f1 ∧ f1) =

2
AB2

K2
12 +

2
AC2

K2
31,

Rm2
22 = Rm2(f2 ∧ f2) =

2
A2B

K2
12 +

2
C2B

K2
23,

Rm2
33 = Rm2(f3 ∧ f3) =

2
A2C

K2
31 +

2
B2C

K2
23.

Substituting these calculations into equation (1.1), we obtain an ODE
system for the evolution of the metric coefficients {A, B, C} under RG-2 flow:

dA

dt
=

(μB − νC)2 − (λA)2

BC
− αA

[(
(λA − μB)2

4ABC
+ ν

2λA + 2μB − 3νC

4AB

)2
(5.1)

+

(
(νC − λA)2

4ABC
+ μ

2νC + 2λA − 3μB

4AC

)2
]

,
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dB

dt
=

(νC − λA)2 − (μB)2

AC
− αB

[(
(λA − μB)2

4ABC
+ ν

2λA + 2μB − 3νC

4AB

)2
(5.2)

+

(
(μB − νC)2

4ABC
+ λ

2μB + 2νC − 3λA

4BC

)2
]

,

dC

dt
=

(λA − μB)2 − (νC)2

AB
− αC

[(
(νC − λA)2

4ABC
+ μ

2νC + 2λA − 3μB

4AC

)2
(5.3)

+

(
(μB − νC)2

4ABC
+ λ

2μB + 2νC − 3λA

4BC

)2
]

.

As noted above, our analysis here relies on imposing a symmetry con-
dition, which sets two of the three metric coefficients {A, B, C} equal. Such
a condition leads to a useful reduction of the analysis only if the evolu-
tion equations preserve that equality. Below, for each of the four isometry
families we consider, we do find that there is a symmetry equality which is
preserved.

6. Analysis of RG-2 flow for four families of locally
homogeneous geometries

In this section, we consider four families of locally homogeneous geometries–
SU(2), Nil, Sol, and SL(2, R) –each of them identified by a particular choice
of the constants {λ, μ, ν}. For each family, we first write out the evolution
equations, we next impose a symmetry condition and write out the result-
ing reduced ODE system, and finally we state and prove a theorem which
characterizes the asymptotic behavior of the RG-2 flow for that family.

As we mentioned above and as we show below, for SU(2) we find that
the asymptotic behavior of the RG-2 flow is essentially the same as that of
the Ricci flow, for all initial geometries. For each of the other cases, there is
a region in the phase plane in which the two flows behave in a qualitatively
similar way, and a region in which the RG-2 flow and the Ricci flow behave
qualitatively very differently.

Before stating these results more precisely and proving them, we note
some general features of the phase plane analysis which we use here for all
four families of geometries. For each of these families, the evolution equations
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take the form of a system of two ODEs

dM

dt
= F (M, N),(6.1)

dN

dt
= G(M, N),(6.2)

to be solved for M(t) > 0 and N(t) > 0, with F (M, N) and G(M, N) a pair
of specified rational functions. Two special features of these equations (true
for all four families) strongly restrict the allowed behavior of the solutions.
First, the denominators of the rational functions F (M, N) and G(M, N) are
simple monomials in the metric functions M and N . Hence, so long as M
and N are positive, the right hand sides of (6.1) and (6.2) are well-behaved,
and consequently, the solutions continue (for all positive values of t) so long
as M and N stay bounded and non-zero. Second, in all cases, we find that
one or the other of these evolution equations–let us say, without loss of
generality, the first–has a negative definite right hand side (for positive M
and N). This has the important consequence that there are no equilibrium
solutions, and further that all bounded solution trajectories must approach
one or the other (or both) of the axes. This property also allows us to replace
the evolution parameter t by M (keeping the reversed direction of the flow
in mind), and then work with the orbit flow equation

(6.3)
dN

dM
=

F (M, N)
G(M, N)

,

obtained from the above system. Keeping in mind the above-noted prop-
erties, we derive (below) the salient features of the orbits of the flow in
the (M > 0, N > 0) (quarter) phase plane for each family of geometries by
studying the behavior of solutions of (6.3), emphasizing their behavior as M
decreases (and t increases). To determine whether the solutions are immor-
tal, we return to the ODE system (6.1)–(6.2).

6.1. SU(2) geometries

For the homogeneous geometries with SU(2) symmetry, one has λ = μ =
ν = −2, so then the RG-2 evolution equations (5.1)–(5.3) take the form

dA

dt
=

4(C − B)2 − 4A2

BC
− α

AB2

[
(B − A)2

C
+ 2A + 2B − 3C

]2

− α

AC2

[
(A − C)2

B
+ 2C + 2A − 3B

]2

,
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dB

dt
=

4(A − C)2 − 4B2

AC
− α

A2B

[
(B − A)2

C
+ 2A + 2B − 3C

]2

− α

C2B

[
(C − B)2

A
+ 2B + 2C − 3A

]2

,

dC

dt
=

4(B − A)2 − 4C2

AB
− α

A2C

[
(A − C)2

B
+ 2C + 2A − 3B

]2

− α

B2C

[
(C − B)2

A
+ 2B + 2C − 3A

]2

.

One readily verifies in these equations that if one sets A = B in the first
two of them, then d

dtA = d
dtB; hence the condition A = B is preserved by the

RG-2 flow. Similarly, for these geometries, conditions B = C and A = C are
also preserved by the RG-2 flow. We choose here (without loss of generality)
to set B = C; consequently we work with the reduced system

dA

dt
= −4A2B2 + 2αA3

B4
,(6.4)

dB

dt
=

4AB2 − 8B3 − 10αA2 − 16αB2 + 24αAB

B3
.(6.5)

It is immediate from (6.4) that for all non-negative values of the coupling
constant α (including α = 0, which corresponds to Ricci flow) and for all
values of the evolving metric coefficients A and B, the metric coefficient A
decreases monotonically in time. The behavior of B (and equivalently C) is
not so immediately apparent.

Since our goal is to show that for both Ricci flow and RG-2 flow, in
fact B does eventually become a monotonically decreasing function which
asymptotically approaches A, it is useful to calculate the evolution of the
quantity A − B; we obtain

d(A − B)
dt

= −4A2

B2
− 2αA3

B4
+ 8 − 4A

B
(6.6)

+ 2α

[
5
B

(
A

B
− 1

)2

+
(

3
B

− 2A

B2

)]
.
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Setting A = B in (6.6), we find that the right hand side vanishes5. It follows
that for both Ricci flow and RG-2 flow, full isotropy A = B = C is preserved.
From the point of view of our (A, B)-parametrized phase portrait, this tells
us that the diagonal line A = B consists of orbits of the flows. Noting that,
for A = B, equation (6.4) takes the form dA

dt = −4 − α
A , we see that all of

these solutions approach the A = 0 = B origin in finite time.
This feature of the A = B diagonal line plays a crucial role in our phase

portrait analysis of the RG-2 flow and Ricci flow for symmetric SU(2) geome-
tries. Since the line A = B corresponds to solution curves that partition the
plane, orbits on a given side of the A = B diagonal at any given time must
stay on that side for all time, as a consequence of the uniqueness of solutions.
Hence, if we define μ := B − A, the phase portrait analyses for μ > 0 and
for μ < 0 can be carried out completely independently.

Before examining the RG-2 flow for the symmetric SU(2) geometries,
we focus on the Ricci flow for these geometries. Starting with either μ > 0
or μ < 0, we show that along every flow line, this quantity approaches zero,
signaling that A and B approach each other, and the geometries approach
isotropy.

Following our treatment of the Ricci flow for symmetric SU(2) geome-
tries, we prove essentially the same results for the RG-2 flow for these
geometries.
6.1.1. Ricci flow case. As noted above, for all values of α and for all of
these geometries (A > 0 and B > 0), one has dA

dt < 0. Hence, for the purposes
of phase portrait study, we can replace the parameter t by A, and work with
B(A), or equivalently μ(A). In carrying out these studies, it is important
to keep in mind that increasing t corresponds to decreasing A. Therefore,
asymptotic (future) Ricci flow behavior is studied by examining orbits with
decreasing values of A.

For the Ricci flow case (α = 0), we calculate from equation (6.6) the
following evolution equation:

dμ

dA
=

μ(3A + 2μ)
A2

,

which has the explicit (general) solution

(6.7) μ(A) =
−A3

A2 − k
,

5This vanishing does not immediately follow from fact that, if we set A = B in
the original SU(2) system above, we obtain d

dtA = d
dtB, since we are working now

with the (B = C) reduced system (6.4)–(6.5).
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where k is any constant. We see from (6.7) that if for some value A = A0

one has μ(A0) > 0, then we must have k > A2
0. It then follows that as A

decreases toward zero, μ(A) stays positive but decreases to zero, with limA→0

μ(A) = 0.
If, on the other hand, μ(A0) < 0, then we must have k < A2

0. Recalling
the definition μ := B − A and the requirement that both B and A be pos-
itive, we must have −A0 < μ(A0) < 0, from which it follows that k < 0 in
expression (6.7). We then have

μ(A) = −A
A2

A2 + (−k)
> −A

for all A < A0. It follows in this case that as A decreases toward zero, μ(A)
stays negative but increases to zero, with (again) limA→0 μ(A) = 0.

Once it has been determined (as above) that the orbits of the Ricci flow
on the (A > 0, B > 0) plane (for symmetric SU(2) geometries) all proceed
to the point (0, 0), it remains to show that the solutions of the system (6.4)–
(6.5) (with α = 0) do indeed all approach this point (without any prior
singularities halting the flow). This follows immediately as an application
of the general statement made above: so long as A and B are positive and
finite, the flow continues to (0, 0).

We may in fact show that the solutions all reach (0, 0) (and become
singular) in finite time. The key to showing this is the Ricci flow equation

(6.8)
dA

dt
= −4

A2

B2
.

For those solutions initially (and therefore always) below the A = B line, it
follows from (6.8) that dA

dt < −4, so A → 0 in finite time. For those solutions
above the A = B line, it is useful to calculate

d

dt

(
A

B

)
= 8

A

B2

(
1 − A

B

)
;

combining this with the presumption that A
B < 1, we have d

dt(
A
B ) > 0. Hence

dA
dt < −4(A0

B0
)2, which again implies that a singularity is reached, with A → 0,

in finite time.

6.1.2. RG-2 case. In this case, we have

dμ

dt
= −4μ

(
3A + 2μ

(A + μ)2

)
− 2αμ

(5A2 + 12Aμ + 8μ2)
(A + μ)4

,
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and we calculate

dμ

dA
=

2μ(A + μ)2(3A + 2μ) + μα(5A2 + 12Aμ + 8μ2)
2A2(A + μ)2 + αA3

=
6μA3 + 16A2μ2 + 5αA2μ + 14Aμ3 + 12αAμ2 + 8αμ3 + 4μ4

2A4 + 4A3μ + 2A2μ2 + A3
.

We see immediately from this equation that if μ > 0, then dμ
dA > 0. Hence,

in this case, as A decreases toward zero, μ decreases as well. It follows
from this, together with our determination above that all bounded trajecto-
ries must approach the axes, that any solution trajectory with μ > 0 must
approach a point on the A = 0 axis, with a finite value of B. We seek
(below) to show that in fact all of these trajectories approach the origin
(0, 0).

If, on the other hand, a solution trajectory has μ < 0, then we infer
from the discussion above that the trajectory must approach the B = 0
axis. In this case as well, we show that the trajectories all approach the
origin.

We focus first on the trajectories below the A = B line: those with μ <
0. We presume, for the sake of contradiction, that there is a trajectory
which approaches the B = 0 axis at some finite A = A1 > 0. To show that
this presumption leads to a contradiction, it is not useful to examine the
system (6.4)–(6.5) directly, since while the right hand sides of both equations
blow up as (A, B) → (A1, 0), such behavior is in principle consistent. Rather,
we note that (since dA

dt < 0) the trajectory of a solution of (6.4)–(6.5) must
everywhere satisfy the trajectory ODE

(6.9)
dB

dA
=

4B4 − 2AB3 + α(5A2B − 12AB2 + 8B3)
2A2B2 + αA3

.

Further, if there were a solution trajectory which approached (A1, 0), since
the right hand side of (6.9) is well-behaved at and near (A1, 0), then it would
follow from standard ODE theory that indeed this trajectory (everywhere
along its path satisfying (6.9)) must intersect and pass through (A1, 0).

The contradiction arises because ODE theory guarantees that the solu-
tions of (6.9) in a neighborhood of the point (A1, 0) are unique, and we
readily verify that B(A) = 0 is a solution. Hence there are no solutions
intersecting the B = 0 axis uniquely at (A1, 0). This implies that there are
no solutions of the system (6.4)–(6.5) which approach (A1, 0). We note that
this argument breaks down at the origin, since the right hand side of equa-
tion (6.9) is not well behaved at the origin.
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We can make a similar argument for the portion of the phase plane
that is above the line A = B, with μ > 0. Again, the issue is to show that
the solutions in this region, which we have determined are bounded with
decreasing μ, do not asymptotically approach the A = 0 axis, except at the
origin. To argue this, we first note from equation (6.5) that for B > A, B(t)
monotonically decreases. Hence in a neighborhood of the A = 0 axis, the
trajectory of a solution of (6.4)–(6.5) may be studied as a function A(B),
satisfying the trajectory ODE

(6.10)
dA

dB
=

A2(2B2 + αA)
B(4B3 + 8αB2 − 2AB2 − 12αAB + 5αA2)

.

We now assume that there is a solution trajectory which approaches (B1, 0),
with B1 > 0. Then as argued above, since the right-hand side of (6.10) is
well-behaved in a neighborhood (B1, 0), such a solution passes through this
point, and is the only one which does so. However, A(B) = 0 is also a solution
of this ODE which passes through (B1, 0), leading to a contradiction. We
have thus determined that all of the RG-2 solutions for symmetric SU(2)
geometries approach the origin.

Finally, we argue that these solutions reach the origin in finite time. As
for the Ricci flow solutions, we rely on the equation for the metric coefficient
A–equation (6.4), for the general RG-2 case. If A > B, then it follows easily
from (6.4) that dA

dt < −4, so A → 0 in finite time. If A < B, then since

d

dt

(
A

B

)
= 8

A

B2

(
1 − A

B

)
+ 8α

A

B3
(1 − A

B
)(2 − A

B
),

we have A
B increasing. Therefore dA

dt < −4(A0
B0

)2, and we have A collapsing
to zero in finite time.

Combining these results with those established above, we have proven
the following:

Theorem 1 RG-2 flow for symmetric SU(2) Geometries. Every solu-
tion of the system (6.4)–(6.5) becomes singular in finite time, with (A(t), B(t))
approaching (0, 0) at the singularity.

It follows from this theorem that for these geometries, RG-2 flow is qual-
itatively the same as Ricci flow, with all solutions having shrinker asymp-
totics, and with all solutions approaching isotropy.
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6.2. Nil geometries

For the homogeneous Nil geometries, we have λ = −2, and μ = ν = 0; hence
the ODEs (5.1), (5.2), and (5.3) take the form

dA

dt
=

−4A2

BC
− α

AB2

(
A2

C

)2

− α

AC2

(
A2

B

)2

,(6.11)

dB

dt
=

4A

C
− 10α

A2

BC2
,(6.12)

dC

dt
=

4A

B
− 10α

A2

B2C
.(6.13)

As in the case of SU(2), one easily verifies that if one sets B = C in the
first two equations, then d

dtB = d
dtC; it follows that the condition B = C is

preserved by the RG-2 flow. We now set B = C and work with the reduced
system

dA

dt
= −4A2

B2
− 2α

A3

B4
(6.14)

dB

dt
=

4A

B
− 10α

A2

B3
.(6.15)

We note that for the Nil geometries (unlike the SU(2) geometries), we cannot
choose A = C or A = B as symmetry conditions; B = C is the only one
that works.

As for the SU(2) geometries, regardless of the (non-negative) value of
α, the right hand side of the evolution equation (6.14) is negative definite.
Hence we can carry out much of our study of the RG-2 flow for Nil geome-
tries working with trajectory functions B(A), which satisfy the trajectory
equation

(6.16)
dB

dA
=

B(5αA − 2B2)
A(2B2 + αA)

.

We start by considering the Ricci flow (α = 0) case.

6.2.1. Ricci flow case For α = 0, the system of ODEs takes the simple
form

dA

dt
= −4A2

B2

dB

dt
=

4A

B
,
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and we readily verify that for any initial data (A0, B0), this system has the
explicit solution

A(t) =
k1

12
(k1t + k2)−1/3

B(t) = (k1t + k2)1/3,

where k1 := (12A0)2

B0
and k2 = ( B0

12A0
)3. One can see immediately that A(t) →

0 and B(t) → ∞ as t → tmax = ∞. Recalling that we have presumed that
B = C, we see that all of these Nil solutions are immortal, and all have
pancake asymptotics.

In fact, one can argue that all Ricci flow solutions for Nil (symmetric
or not) have this same behavior. To see this, we first note that the general
Nil ODE system (6.11)–(6.13) implies that d

dt(
B
C ) = 0. Consequently, for any

solution with initial data (A0, B0, C0), we have C(t) = C0
B0

B(t), which allows
the general system (6.11)–(6.13) to be essentially reduced to the system
(6.14)–(6.15). The symmetric Ricci flow behavior thus holds for the general
Ricci flow behavior for Nil geometries.

6.2.2. RG-2 case To analyze the behavior of the RG-2 flow, we start by
seeking explicit solutions of the trajectory equation (6.16). Motivated by the
form of the right hand side of (6.16), we find that

B =

√
3α

2
A

1
2

is indeed a solution. Substituting this relation into the evolution equation
(6.14), we obtain dA

dt = − 32
9αA. It follows that the solutions of the system

(6.14)–(6.15) lying on this parabolic orbit (which we label πNil are immortal,
decaying exponentially to the origin (0, 0).

The trajectory πNil partitions the phase plane, and as a consequence
of the well-posedness of the ODE initial value problem associated to (6.16)
for positive A and B, it cannot be crossed by any other trajectory. As we
see below, those RG-2 flow solutions lying above πNil (with B0 >

√
3α
2 A

1
2
0 )

behave much like the Ricci flow solutions, while those lying below πNil (with
B0 <

√
3α
2 A

1
2
0 ) behave very differently.

The symmetric Nil solutions below πNil in fact behave to an extent
like the symmetric SU(2) solutions below the A = B line, and the argu-
ments to show this are similar: We first note that any solution B = ϕ(A) of
the trajectory equation (6.16) which lies below πNil satisfies the condition
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5αA − 2[ϕ(A)]2 > 0, from which it follows that dϕ
dA > 0. Thus B(t), along

with A(t), monotonically decreases along a solution with a trajectory below
πNil. Earlier considerations guarantee that these solutions continue so long
as B is positive, and the regularity of the right hand side of (6.16) for B > 0
implies (as argued for the SU(2) geometries) that they approach the origin
rather than a point on the B = 0 axis. Hence, geometrically, these solutions
all exhibit shrinker asymptotics.

We would like to show that these solutions (below πNil) become singular
in finite time. To do this, we work with (6.14), the evolution equation for
A(t), which for convenience we write in the form dA

dt = ξ, with ξ := −4A2

B2 −
2αA3

B4 . Noting that ξ is negative for all solutions, we see that if we can show
that ξ is a decreasing quantity along any solution below πNil then it follows
that, for such a solution, dA

dt ≤ −ξ0, where ξ0 is calculated from initial data.
Finite time singularities for these solutions would then follow. Calculating
the time derivative of ξ, we obtain

(6.17)
dξ

dt
=

8A3

B8
(8B4 − αB2A − 34α2A2).

Noting that the only positive zeroes for the right hand side of (6.17) are
given by A = 8

17αB2, we readily determine that indeed, for solutions below
πNil (i.e., those with A

B2 > 2
3α), dξ

dt is negative. It follows that (A, B) reaches
(0, 0) in finite time

We proceed now to consider those solutions above πNil. The partition
of the phase plane requires that these solutions (all of which have decreas-
ing A(t)) either (i) approach the origin; (ii) approach the A = 0 axis at a
finite value of B, say B1; (iii) approach the A = 0 axis with B → ∞; or (iv)
approach B → ∞ at a finite value of A, say A1.

To rule out the first possibility, we consider a trajectory B = ϕ(A) which
satisfies (6.16) and lies above πNil and compare it to the trajectory πNil itself,
which satisfies B = πNil(A) =

√
3α
2 A

1
2 . Writing the right hand side of (6.16)

abstractly as a function f : (0,∞) × (0,∞) → R which takes the form

f(x, y) =
y(5αx − 2y2)
x(αx + 2y2)

,

we calculate

∂f

∂y
(x, y) =

5α2x2 − 16αxy2 − 4y4

x(αx + 2y2)2
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and determine that if x
y2 > 3α

2 , then ∂f
∂y (x, y) < 0. This implies that dϕ

dA(A) <
dπNil
dA (A) for all A in the domain of ϕ, from which it follows that limA→0 ϕ(A)

cannot equal zero.
To rule out possibility (iv), we suppose for the purpose of contradiction

that there exists A1 > 0 such that ϕ(A) approaches ∞ as A → A1. To work
effectively with infinite values of B, it is useful to define B̃ := e−1/B and
ϕ̃ := e−1/ϕ, for which the corresponding trajectory ODE is

(6.18)
dB̃

dA
=

B̃ ln B̃(2 − 5αA(ln B̃)2)

A(2 + αA(ln B̃)2)
.

In terms of these variables, we have ϕ̃(A) → 1 as A → A1. Observing that
the trajectory ODE (6.18) is well behaved for all positive values of A and
B̃, we see that the solution ϕ̃(A) can be extended to a neighborhood of A1.
But this leads to a contradiction, since ϕ̂(A) = 1 is also a solution of (6.18)
which passes through the point (A1, 1), and is not equal to ϕ̃(A).

With possibility (iv) ruled out, we have established that for all solu-
tions, A(t) approaches zero. We now argue that in all cases (above πNil),
B(t) approaches infinity. We first note, from (6.16), that the parabola B =√

5α
2 A

1
2 partitions the phase plane into a region (above this parabola, and

along the A = 0 axis) in which dB
dA is negative, and a region in which this

quantity is negative. Both regions intersect the region of solutions we are
now considering–those above πNil. In view of the form of these regions, and
since we know (with (i) ruled out) that these solutions do not approach
the origin, we see that in all cases, for A sufficiently close to 0, we must
have B = ϕ(A) satisfying dB

dA < 0. Thus (recalling that A(t) monotonically
decreases) we have B monotonically increasing with time, and increasing as
A approaches zero. It therefore must reach a limit, finite or infinite.

To show that in fact, this limit for B is infinite, we presume for the
purpose of contradiction that there exists B1 < 0 such that limA→0 ϕ(A) =
B1. In view of the monotonicity of ϕ(A) near A = 0, we may invert ϕ and
consider ϕ−1(B) as a solution of

(6.19)
dA

dB
=

A(2B2 + αA)
B(5αA − 2B2)

.

Noting the regularity of the right hand side of this equation in the neigh-
borhood of the point (0, B1), we use the now familiar argument based on
the well-posedness of the ODE initial value problem for (6.19) to reach a
contradiction. It follows that limA→0 ϕ(A) = ∞ for any solution above πNil.
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Thus these solutions all have pancake asymptotics, like the Ricci flow
solutions.

To further show that, as for the Ricci flow solutions, these RG-2 solutions
with pancake asymptotics are immortal, we again work with the evolution
equation for B(t). If it were the case that B(t) approaches infinity in finite
time tmax, then it would have to be true that for t sufficiently close to tmax,
we have d2B

dt2 positive. However, d2B
dt2 along a solution is given by the right

hand side of (6.17), and we readily determine that for B large and A small,
this is always negative. Immortality follows.

Combining all of these results, we have proven the following:

Theorem 2 RG-2 Flow for symmetric Nil geometries. Let (A(t), B(t))
be a solution of (6.14) and (6.15).

1) If α ≥ 2
3A−1

0 B2
0 then the solution becomes singular in finite time, with

(A(t), B(t)) approaching (0, 0) at the singularity.

2) If α < 2
3A−1

0 B2
0 then the solution is immortal, with limt→∞(A(t),

B(t)) = (0,∞).

Just as for Ricci flow for Nil geometries, we find that the results we
have obtained for the RG-2 flow of symmetric Nil geometries holds for Nil
geometries without the symmetry condition being imposed. The argument
for this is the same as for Ricci flow: based on equations (6.12) and (6.13),
we easily verify that d

dt(
B
C ) = 0. Thus, for any solution with initial data

(A0, B0, C0), we have C(t) = C0
B0

B(t). If we set κ := B0
C0

, then the system
(6.11)–(6.13) reduces to

dA

dt̃
= −4A2

B2
− 2ακA3

B4
,

dB

dt̃
=

4A

B
− 10ακA2

B3
,

where we have defined t̃ := κt. Comparing these equations with (6.14)–
(6.15), we see that it follows that the analysis done above for the symmetric
solutions applies to all solutions. We obtain the following corollary:

Corollary. Let (A(t), B(t), C(t)) be a solution of (6.11)–(6.13).

1) If α ≥ 2B0C0
3A0

then the solution becomes singular in finite time, with
(A(t), B(t), C(t)) approaching (0, 0, 0) at the singularity.

2) If α < 2B0C0
3A0

, then the solution is immortal, with limt→∞(A(t), B(t),
C(t)) = (0,∞,∞).
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6.3. Sol geometries

In this case we have λ = −2, μ = 0 and ν = 2, and the ODE system takes
the following form:

dA

dt
= −4

(A2 − C2)
BC

− 2α
(A + C)2(A2 − 2AC + 5C2)

AB2C2
,

dB

dt
= 4

(A + C)2

AC
− 2α

(A + C)2(5A2 − 6AC + 5C2)
A2BC2

,

dC

dt
= −4

(C2 − A2)
AB

− 2α
(C + A)2(C2 − 2AC + 5A2)

A2B2C
.

We again verify that if we set A = C in the equations above, then d
dtA =

d
dtC; hence the condition A = C is preserved by the RG-2 flow. Setting
A = C we obtain the (quite simple) reduced system of equations

dA

dt
= −16α

A

B2
,(6.20)

dB

dt
= 8 − 16α

1
B

.(6.21)

This ODE system is semi-decoupled (in that the second equation (6.21)
involves only B) and can be solved explicitly if α = 0, and implicitly if
α > 0.

6.3.1. Ricci flow case Setting α = 0, we have dA
dt = 0 and dB

dt = 8. Hence
the Ricci flow solutions for symmetric Sol geometries take the explicit form

A = A0,

B = 8t + B0,

for constants A0 and B0. Clearly these solutions exist for all future time,
and since the imposed symmetry condition sets C = A, the solutions all have
cigar asymptotics.

6.3.2. RG-2 case: It follows from a straightforward phase plane anal-
ysis that for the symmetric Sol geometries, the phase plane splits into two
regions: In one of these regions (B ≥ 2α), RG-2 flow solutions have cigar
asymptotics, just like Ricci flow, while in the other (B ≤ 2α), RG-2 flow
solutions have shrinker asymptotics, unlike Ricci flow. We can more easily
obtain this result by using implicit solutions of (6.20)–(6.21), as follows.
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As noted above (see also [3]), the symmetric Sol RG-2 evolution equa-
tions (6.20)–(6.21) admit an implicit general solution, which (for initial data
(A(0), B(0)) = (A0, B0)) takes the following form

(6.22) A(t) = A0e
−4t/α and B(t) = 2α

or

A(t)
(

1 − 2α

B(t)

)
= A0

(
1 − 2α

B0

)
and(6.23)

B(t) − B0 + 2α ln
∣∣∣∣
B(t) − 2α

B0 − 2α

∣∣∣∣ = 8t,

depending on whether or not B0 = 2α.
If B0 = 2α then it follows from (6.22) that the flow is immortal, with

A(t) decreasing to zero and B(t) constant as t → ∞.
Now suppose that B0 > 2α. We see from the second part of (6.23) that

for positive t, we must have B(t) > B0. Moreover, translating t, we see sim-
ilarly that for any pair t2 > t1, we must have B(t2) > B(t1); hence B(t)
monotonically increases. It then immediately follows from the first part of
(6.23) that A(t) monotonically decreases. This same equation also tells us
that, since its right hand side is constant, A(t) → 0 as t → tmax if and only
if 1 − 2α

B(t) → ∞ as t → tmax. This cannot happen, so A(t) must converge to
some Ā > 0; we write limt→tmax A(t) = Ā, for some tmax, which may or may
not be finite.

If we presume that tmax is finite, then it must be true that
limt→tmax B(t) = ∞. However, this limit is inconsistent with the second part
of (6.23), so we must in fact have tmax = ∞. It then follows from the second
part of (6.23) that indeed limt→∞ B(t) = ∞. Combining this with the first
part of (6.23), we determine that

Ā = A0

(
1 − 2α

B0

)
,

thereby relating the asymptotic value of A to the initial data (A0, B0).
We suppose now instead that B0 < 2α. Just as the second part of (6.23)

implies that B(t) monotonically increases if B0 > 2, it implies that B(t)
monotonically decreases if B0 < 2α. It then follows that there must exist
some B̄ ∈ [0, B0) and some tmax (possibly infinite) such that limt→tmax B(t) =
B̄. Since B̄ is finite, it follows from the second part of (6.23) that tmax is
finite as well; so these solutions go singular in finite time. This can happen
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only if either A(t) or B(t) or both go to zero as t → tmax. Now if B̄ > 0, then
we must have limt→∞ A(t) = 0; however this (and B̄ > 0) are inconsistent
with the first part of (6.23). Therefore we must have B̄ = 0. However, then
it follows from the first part of (6.23) that indeed it must be true that
limt→∞ A(t) = 0. We conclude that these solutions go singular in finite time,
and have shrinkers asymptotics.

Combining all of these results, we obtain the following theorem:

Theorem 3. [RG-2 Flow for Symmetric Sol Geometries] Let (A(t), B(t))
be a solution of (6.20), (6.21) with initial data (A0, B0).

1) If B0 > 2α, then tmax = ∞ and B(t) → ∞ and A(t) → A0(1 − 2α
B0

) as
t → ∞.

2) If B0 = 2α, then tmax = ∞ and B(t) = 2α for all t > 0, and A(t) → 0
as t → ∞.

3) If B0 < 2α, then tmax < ∞ and A(t), B(t) → 0 as t → tmax.

It follows from these results that for the symmetric Sol geometries, the
phase plane splits into two regions: In one of these regions (B ≥ 2α), RG-2
flow solutions have cigar asymptotics, just like Ricci flow, while in the other
(B ≤ 2α), RG-2 flow solutions have shrinker asymptotics, unlike Ricci flow.

6.4. SL(2, R) geometries

As in the Nil and Sol cases, we find that for symmetric SL(2, R) geome-
tries the phase plane is partitioned into two regions, one which exhibits
behavior similar to the Ricci flow, and one in which the behavior differs.
Interestingly, solutions whose initial values start in the non-Ricci flow region
in this case can have two distinct behaviors: either (C(t), A(t)) → (0, 0) or
(C(t), A(t)) → (0, 2α). Finding the curve that partitions the space is also
more involved; instead of directly specifying a solution of the trajectory
equation (6.32), we define a sequence of solutions of (6.32) that converges
to a limit solution whose graph partitions the phase plane.

For the SL(2, R) geometries, one has λ = μ = −2, and ν = 2, so the
evolution equations take the form

dA

dt
=

(2B + 2C)2 − 4A2

BC
− α

B2C2A
[2(A4 + 2A2(B + C)2(6.24)

− 8A(B − C)(B + C)2) − 2(B + C)2(5B2 − 6BC + 5C2)],
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dB

dt
=

(2C + 2A)2 − 4B2

AC
− α

A2C2B
[2(5A4 + 4AC(B + C)2(6.25)

+ A3(−8B + 4C) − 2(2A2(B2 − 4BC − C2)

+ (B + C)2(B2 − 2BC + 5C2))],

dC

dt
=

(−2A + 2B)2 − 4C2

AB
− α

A2B2C
[2(5A4 − 4A3(B − 2C)(6.26)

− 4AB(B + C)2 − 2(−2A2(B2 + 4BC − C2)

+ (B + C)2(5B2 − 2BC + C2)].

If we set A = B in equations (6.24) and (6.25) we find that d
dt(A − B) =

0. Thus the condition A = B is preserved for SL(2, R) geometries, and we
work with the reduced ODE system

dC

dt
=

−4C2

A2
− 2α

C3

A4
,(6.27)

dA

dt
= 8 + 4

C

A
− α

(16A2 + 24AC + 10C2)
A3

.(6.28)

6.4.1. Ricci flow case It is immediately clear from this set of equations
that if we set α = 0, then A(t) monotonically increases, while C(t) monoton-
ically decreases. We now show that along every solution, A(t) increases to
infinity, and there exists a positive constant C̄ (generally different from one
solution to another) such that C(t) → C̄. The (reduced) Ricci flow equations
take the form

dC

dt
=

−4C2

A2
,(6.29)

dA

dt
= 8 + 4

C

A
;(6.30)

consequently we have dA
dt = 8 + 4C

A > 8, from which it follows that A(t) →
∞. Next, using (6.30) and (6.29) we form the trajectory ODE

dA

dC
=

−2A2 − AC

C2
,

which has the explicit solution

A(C) =
C

kC2 − 1
,
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for some constant k. Substituting in the (arbitrary) initial data
(C(0), A(0)) = (C0, A0), we solve for k and obtain

(6.31) A(C) =
C2

0A0C

C2(A0 + C0) − C2
0A0

.

At and near the initial geometry (C0, A0), the denominator C2(A0 + C0) −
C2

0A0 is positive. Indeed, formally inverting (6.31), we find that as A → ∞,
C decreases to the (initial data dependent) value C̄ = ( C2

0A0

A0+C0
)1/2. Since

B = A, we see that these flows have pancake asymptotics. We also readily
verify that these solutions are immortal.

6.4.2. RG-2 case: Choosing α positive, we see immediately from equa-
tion (6.27) that C(t) monotonically decreases for any data, while (6.28) indi-
cates no general monotonicity for A(t). The monotonicity of C(t) allows us
to work with trajectories of the form A(C), which satisfy the trajectory ODE

(6.32)
dA

dC
= −A(4A3 + 2A2C − 8αA2 − 12αAC − 5αC2)

C2(2A2 + αC)
=: f(A, C).

Finding the curve which partitions the symmetric SL(2, R) phase plane
into a region in which the RG-2 flow has the same asymptotics as the Ricci
flow, and a region in which this is not the case, is not as simple as in the Nil
and Sol cases. To do it, we specify a sequence of solutions of the trajectory
ODE which have their initial values contained on the zero level set of the
function f(A, C), and then show that this sequence converges to a curve
which solves the trajectory ODE but has its initial point off the level set
of f(A, C) (with both numerator and denominator of f approaching zero).
More specifically, we proceed as follows: 1) We establish that the zero level
set {f(A, C) = 0} is the graph of a smooth, strictly increasing function A =
g(C). 2) We show that for any solution Φ(C) of (6.32), defined on a maximum
interval (C−

Φ , C+
Φ ), limC→C−

Φ
Φ(C) exists (possibly infinite). 3) We specify a

sequence of solutions ϕn of (6.32) and prove that they converge to a solution
ϕ whose graph partitions the phase plane. After carrying through these three
steps, we determine the asymptotics of solutions which lie on either side of
ϕ, verifying that indeed those on one side match the asymptotics of the Ricci
flow, and those on the other side do not.

We now carry out the details of these steps. We start with the following
result concerning the zero level set of f(A, C):
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Lemma 4. For A, C ∈ (0,∞), the set {f(A, C) = 0} is the graph of a
smooth strictly increasing function A = g(C) which is defined on (0,∞),
and has limC→0 g(C) = 2α.

Proof. From (6.32) we see that f(A, C) = 0 if and only if

(6.33) 4A3 + 2A2C − 8αA2 − 12αAC − 5αC2 = 0.

This expression is quadratic in C; it is satisfied if and only if C = A
5α(A −

6α ± √
(A − 6α)2 + 20α(A − 2α)). Only the positive root is consistent with

the requirement that A > 0 and C > 0, since if we choose the negative root,
then C > 0 implies that we must have

A − 6α >
√

(A − 6α)2 + 20α(A − 2α) > 0,

from which it follows that A > 6α > 2α; then

A − 6α >
√

(A − 6α)2 + 20α(A − 2α) > A − 6α,

which is a contradiction. Consequently f(A, C) = 0 and A, C > 0 if and
only if

C =
A

5α

(
A − 6α +

√
(A − 6α)2 + 20α(A − 2α)

)
=: h(A).(6.34)

Calculating the derivative of h(A), we obtain

h′(A) =
h(A)

A
+

A

5α

(
1 +

A + 4α√
(A − 6α)2 + 20α(A − 2α)

)
,

which we readily verify is positive so long as A and h(A) are positive. Con-
sequently, it follows from the inverse function theorem that the function
g := h−1 exists, and moreover it is smooth and strictly increasing. Noting
that the range of h is (0,∞), we see that the domain of g(C) is (0,∞) as
well. Further, since we readily verify that h(2α) = 0, we see that the (0, 2α)
is a limit point of the graph of g(C). �

The next step is to show that any solution of (6.32) converges as C
decreases. The proof of this uses the results we have just established for
g(C).
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Lemma 5. Let Φ(C) be a solution of (6.32), defined on a maximal inter-
val with infimum C−

Φ . Then Φ(C) converges to some value (possibly ∞) as
C → C−

Φ .

Proof. We first consider solutions Φ which do not intersect g, the graph of
the zero level set of f(A, C). Since the domain of g is (0,∞), the graph
of g partitions the phase plane; it follows that Φ is either bounded above
or below g, which implies that either Φ′ > 0 or Φ′ < 0. In either case, Φ is
monotonic, so convergence as C → C−

Φ follows.
We now consider solutions which do intersect g(C); so there exists c such

that Φ(c) = g(c). We first show that there is at most one such c, and then
show that the limit as C → C−

Φ exists. Since (by definition of g) Φ′(c) = 0
and since (as shown in the proof of Lemma 5) g′(c) > 0, we determine that
Φ(C) > g(C) for C ∈ (c − ε, c) for some ε > 0. Now say there exists c̃ < c
such that Φ(c̃) = g(c̃), and choose the largest such c̃. Then since Φ′(c̃) = 0
and since g′(c̃) > 0 it follows that Φ(C) < g(C) for C ∈ (c̃, c̃ + ε̃) for some
ε̃ > 0. Since Φ(C) > g(C) on (c − ε, c), it follows from the intermediate value
theorem that there exists some ĉ with Φ(ĉ) = 0 and c̃ < ĉ < c, which contra-
dicts the assumption that c̃ is the largest such value. We conclude that such
a c̃ cannot exist. Consequently Φ(C) > g(C) for all C < c, which implies
that Φ′(C) < 0 for C < c. The existence of limC→C−

Φ
Φ (possibly infinite)

then follows. �
We now define the sequence ϕn of solutions (designed to converge to

the partitioning solution ϕ) by specifying their initial data as a sequence of
points along the graph of g:

Definition 6. For each n ∈ N, ϕn is the solution of (6.32) such that

ϕn

(
1
n

)
= g

(
1
n

)
.

It is clear from (6.32) that the solution ϕn exists on some interval sur-
rounding 1

n . We wish to show that in fact, the maximal domain of ϕn is
(C−

n ,∞), with 0 ≤ C−
n < 1

n , and with limC→C−
n

ϕn = ∞. We do this in two
steps, via the following two lemmas:

Lemma 7. The maximal domain of the function ϕn (as defined in Defini-
tion 7) includes [ 1

n ,∞).

Proof. Labeling the maximal domain of ϕn as (C−
n , C+

n ), for 1
n ∈ (C−

n , C+
n ),

our task in proving this lemma is to show that C+
n = ∞. To show this,
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we argue by contradiction. Supposing that C+
n < ∞, we have either (i)

limC→C+
n

ϕn(C) = 0, or (ii) limC→C+
n

ϕn(C) = ∞.
To rule out the first possibility, we use the familiar argument that since

the right hand side of the trajectory ODE (6.32) is well-behaved in the
neighborhood of any hypothesized limit point (C+

n , 0), and since A = 0 is a
solution of (6.32) which passes through that point, then it follows from the
well-posedness of the initial value problem for (6.32) near (C+

n , 0) that there
can be no other solution with this limit point.

We now suppose that (ii) holds. We know from the definition of ϕn that
ϕ′

n(1/n) = 0 and we know from Lemma 4 that g′(1/n) > 0; hence it follows
that ϕn(C) < g(C) on some interval ( 1

n , 1
n + ε). Since the domain of g(C) is

(0,∞) and since we are assuming that ϕn(C) → ∞ as C → C+
n < ∞, there

must exist a value c̃ with 1
n < c̃ < C+

n such that ϕn(c̃) = g(c̃). However,
as argued in the proof of Lemma 5, there cannot be two values of c with
ϕn(c) = g(c), so we consequently have a contradiction. This rules out case
ii), and we conclude that C+

n = ∞. �

Lemma 8. The maximal domain of the function ϕn is (C−
n ,∞) for 0 ≤

C−
n < 1

n , with limC→C−
n

ϕn(C) = ∞.

Proof. The tasks here are to show that C−
n ≥ 0, and to verify the indicated

limit.
To show that negative values for C are not contained in the maximal

(connected) domain of the solution ϕn, we observe that for 0 < C < 1
n , one

has ϕn(C) > g(C) > 2α and ϕ′
n(C) < 0. It follows that f(ϕn(C), C) is badly

behaved for C → 0, and consequently C−
n ≥ 0.

We now verify that ϕn(C) → ∞ as C → C−
n . From Lemma 5 we know

that ϕn(C) does indeed converge to some value (possibly ∞) as C → C−
n .

If C−
n > 0 this value must be ∞, since otherwise f(C−

n , ϕn(C−
n )) would be

well defined and the solution ϕn could be extended beyond that point. If
C−

n = 0, the fact that we cannot have ϕn(C) → Ā < ∞ as C → 0 follows by
our usual argument, relying in this case on dC/dA, which is given by the
inverse of the right-hand side of (6.32). �

With the above results established for the solutions ϕn : (C−
n ,∞) → R

+,
we now show that the sequence (ϕn) converges to a function ϕ : (0,∞) → R+
which is a solution of the trajectory ODE, and which splits the phase plane
for the symmetric SL(2,R) geometries into two regions of differing behavior
for the RG-2 flow.
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Proposition 9. The sequence of solutions (ϕn) converges to a solution ϕ
of (6.32) with domain (0,∞). Furthermore, given any solution Φ of (6.32),

(i) if Φ(c) > ϕ(c) for some c > 0, then there exists C−
Φ ≥ 0 such that

Φ → ∞ as C → C−
Φ .

(ii) if Φ(c) ≤ ϕ(c) for some c > 0, then Φ(C) converges to either 0 or
2α as C → C−

Φ .

Proof. It follows from the proof of Lemma 5 that ϕn(C) > g(C) for C < 1
n .

In particular, we have ϕn( 1
n+1) > g( 1

n+1) = ϕn+1( 1
n+1), so that (as a con-

sequence of the uniqueness of solutions to the trajectory ODE) ϕn > ϕn+1

everywhere. Relying on this monotonicity property, we verify that the point-
wise limit ϕ(C) := limn→∞ ϕn(C) exists for all C ∈ (0,∞).

To show that this function ϕ is a solution of (6.32), we consider any pair
of points Ĉ > C > 0, and calculate

ϕn(Ĉ) = ϕn(C) +
∫ Ĉ

C
f
(
ϕn(c), c

)
dc,

from which it follows that

ϕ(Ĉ) = ϕ(C) + lim
n→∞

∫ Ĉ

C
f
(
ϕn(c), c

)
dc.

We verify that the function f(C, A) is bounded on the set {(c, a) : c ∈
[C, C ′], a ∈ [g(c), ϕk(C)(c)]}, since f is continuous and since this set is com-
pact (here k(C) is any element of N ∩ ( 1

C ,∞) such that ϕk is defined for any
c ∈ [C, C ′]). We may therefore use the dominated convergence theorem to
show that

ϕ(C ′) = ϕ(C) +
∫ C′

C
f(ϕ(c), c) dc.

It follows immediately that ϕ is a solution of (6.32). Furthermore, since
ϕn( 1

n) = g( 1
n) and since g(C) → 2α as C → 0, we have ϕ(C) → 2α as C → 0.

Since the domain of ϕ is (0,∞), the graph of this solution clearly par-
titions the phase space. Uniqueness of solutions guarantees that solutions
cannot cross ϕ, and therefore must remain either above or below its graph.
It readily follows that if a solution Φ satisfies the inequality Φ(c) > ϕ(c) for
some c, then there exists some n ∈ N such that ϕn(c) < Φ(c). Then since
ϕn(C) → ∞ as C → C−

n , it follows that there exists some C−
Φ ≥ C−

n such
that Φ(C) → ∞ as C → C−

Φ . If instead a solution Φ satisfies the inequality
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Φ(c) ≤ ϕ(c) for some c > 0, then one verifies that Φ(C) converges either to
0 or to 2α as C → 0. �

While this proposition describes the asymptotic behavior of the two
classes of solutions, it says nothing about their life spans. We determine
these now. For those solutions (C(t), A(t)) of (6.27) and (6.28) which satisfy
the initial data inequality A0 > ϕ(C0), it follows from Proposition 9 that
A(t) (and B(t) as well) become infinite, while C(t) converges to a constant
(pancake asymptotics). Examining the evolution equation for A, we have

dA

dt
≤ 8 + 4

C0

A
,

with A → ∞. This implies that these solutions are immortal.
For the solutions with initial data (C0, A0) satisfying the inequality A0 ≤

ϕ(C0), Proposition 9 together with the usual axis-avoiding arguments shows
that these solutions all converge to either the origin, or to the point (C, A) =
(0, 2α). We have not determined the life span of those converging to (0, 2α),
but we argue as follows that those converging to the origin do so in finite
time. Using equations (6.27) and (6.28), we calculate

d

dt

(
A

C2

)
=

8
C2

(
1 − 2α

A

)
+

12
CA

(
1 − 2α

A

)
− 6α

A3
.

Since A converges to zero, there exists a time t1 such that A < 2α for all
subsequent times. It follows that d

dt(
A
C2 ) < 0 for t > t1, and consequently

−C2

A < −C2
1

A1
where C1 = C(t1), and A1 = A(t1). Assuming also that A < 1,

we have −C2

A2 < −C2
1

A1
. Using these inequalities, we determine that (for t > t1)

dC

dt
= −4

C2

A2
− 2α

C3

A4
(6.35)

< −4
C2

1

A1
.(6.36)

It follows that these solutions have a finite extinction time.
Combining these results concerning solution life span with the results of

Proposition 9, we obtain the following theorem, which shows that, as with
the Nil and Sol geometries, there is a solution which partitions the phase
plane into a region in which the RG-2 and the Ricci flow are very similar
asymptotically, and another in which they are very different.



466 Karsten Gimre, Christine Guenther and James Isenberg

Theorem 10 RG-2 Flow for Symmetric SL(2, R) Geometries. Let
(A(t), C(t)) be solutions of (6.27) and (6.28) with (C0, A0) = (C(0), A(0)),
and let ϕ be the limit solution determined in Proposition 9.

1) If A0 > ϕ(C0) then the solution is immortal with A(t) → ∞, and
C(t) → C ≥ 0 as t → ∞.

2) If A0 ≤ ϕ(C0) then either the solution converges to (0, 0) in finite time,
or the solution converges to (0, 2α).
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