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Hawking mass and local rigidity of minimal

two-spheres in three-manifolds

Davi Máximo and Ivaldo Nunes

We study rigidity of minimal two-spheres Σ that locally maximize
the Hawking mass on a Riemannian three-manifold with a positive
lower bound on its scalar curvature. After assuming strict stability
of Σ, we prove that a neighborhood of it in M is isometric to one
of the deSitter–Schwarzschild metrics on (−ε, ε) × Σ. We also show
that if Σ is a critical point for the Hawking mass on the deSitter–
Schwarzschild manifold R × S

2 and can be written as a graph over
a slice Σr = {r} × S

2, then Σ itself must be a slice, and moreover
that slices are indeed local maxima amongst competitors that are
graphs with small C2-norm.

1. Introduction

In the last decades, stable minimal surfaces have proven to be a very impor-
tant tool in studying Riemannian three-manifolds (M, g) with scalar
curvature bounded from below.

It was Schoen and Yau who first observed in [17] that the second vari-
ation formula of area provides an interesting interplay between the scalar
curvature of a three-manifold (M, g) and the total curvature of a stable
minimal surface Σ ⊂M , which in turn is related to the topology of Σ. As a
consequence, they proved that if (M, g) has non-negative scalar curvature
and Σ is two-sided and compact, then either Σ is a two-sphere or a totally
geodesic flat two-torus.

Motivated by the above result of Schoen and Yau, Cai and Galloway [7]
later showed that if (M, g) is a three-manifold with non-negative scalar cur-
vature and Σ is an embedded two-torus which is locally of least area (which
is a condition stronger than stability), then Σ is flat and totally geodesic,
and M splits isometrically as a product (−ε, ε) × Σ in a neighborhood of
Σ. Recently, the corresponding rigidity result in the case where Σ is either
a two-sphere or a compact Riemann surface of genus greater than 1 were
proved by Bray et al. [4] and by the second author [15], respectively. We note
that Micallef and Moraru [13] later found an alternative argument to prove
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these splitting results. Moreover, a similar rigidity result for area-minimizing
projective planes was obtained in [3].

Perhaps one of the most important uses of the above relation between
the scalar curvature of a three-manifold (M, g) and the total curvature of a
stable minimal surface Σ ⊂M was in the proof of the positive mass theorem
given by Schoen and Yau [16]. The positive mass theorem is a fundamental
result which relates Riemannian geometry and general relativity. It states
that the ADM mass of a complete asymptotically flat three-manifold (M, g)
with non-negative scalar curvature is always non-negative and is only zero
when M is isometric to the flat Euclidean space R

3. Later, Witten [18] gave
an independent proof of the positive mass theorem using spin methods.

Another important result in the context of general relativity which
involves minimal surfaces and scalar curvature is the Penrose inequality
proved by Huisken and Ilmanen [10], and independently, by Bray [2]. It
states that if (M, g) is a complete asymptotically flat three-manifold with
non-negative scalar curvature and boundary Σ = ∂M �= ∅ being an outer-
most minimal two-sphere, then the ADM mass of M is greater than or equal
to the Hawking mass of Σ, with equality attained if, and only if, M is iso-
metric to the one-half of the Schwarzschild metric on R

3\{0}. We recall that
the Hawking mass of a compact surface Σ ⊂ (M, g), denoted by mH(Σ), is
defined as

(1.1) mH(Σ) =
( |Σ|

16π

)1/2 (
1 − 1

16π

∫
Σ
H2 dσ − Λ

24π
|Σ|

)
,

where H is the mean curvature of Σ and Λ = infM R.
The Schwarzschild metrics on R

3\{0} can be seen as complete rotation-
ally symmetric metrics on R × S

2 with zero scalar curvature and the slice
Σ0 = {0} × S

2 being the outermost minimal two-sphere. Each Schwarzschild
metric is determined by the Hawking mass of Σ0. These metrics appear as
spacelike slices of the Schwarzschild vacuum spacetime in general relativity.

Another class of metrics on R × S
2 is the deSitter–Schwarzschild met-

rics. These metrics are complete periodic rotationally symmetric met-
rics on R × S

2 with constant positive scalar curvature, and have Σ0 =
{0} × S

2 as a strictly stable minimal two-sphere. They appear as space-
like slices of the deSitter–Schwarzschild spacetime, which is a solution to
the vacuum Einstein equation with a positive cosmological constant. The
deSitter–Schwarzschild metrics constitute a one-parameter family of met-
rics {ga}a∈(0,1) and, in this work, we scale each ga to have scalar curvature
equal to 2 (see Section 2 for a more detailed description).
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In the present paper, we prove some results concerning the deSitter–
Schwarzschild metrics ga on R × S

2.
We begin by considering the general situation of a two-sided closed sur-

face Σ which is a critical point of the Hawking mass on a three-manifold
(M, g) with R � 2. By writing the Euler–Lagrange equation of the mass
(see Proposition A.1 of the Appendix), we prove that whenever Σ has non-
negative mean curvature then it must be minimal or umbilic with R = 2 and
constant Gauss curvature along Σ.

In particular, whenever M is the deSitter–Schwarzschild manifold (R ×
S

2, ga), the above says that critical points of the Hawking mass are either
minimal surfaces or slices {r} × S

2.

Remark 1.1. To the best of our knowledge, there is no complete classi-
fication of minimal surfaces in (R × S

2, ga) to be found in the literature.
However, when the minimal surface Σ can be written as a graph over a
slice Σr, then a result of Montiel [14] says that Σ must itself be a slice. See
also [5].

The above considerations are evidence that local maxima of the Hawking
mass in (R × S

2, ga) must be slices. In our first main result we show that
slices are indeed local maxima in the following sense:

Theorem 1.2. Let Σr = {r} × S
2 be a slice of the deSitter–Schwarszchild

manifold (R × S
2, ga). Then there exists an ε = ε(r) > 0 such that if Σ ⊂

R × S
2 is an embedded two-sphere, which is a normal graph over Σr given

by ϕ ∈ C2(Σr) with ‖ϕ‖C2(Σr) < ε, one has

(i) either mH(Σ) < mH(Σr);

(ii) or Σ is a slice Σs for some s.

The proof follows by showing that the second variation of the mass at
each slice is strictly negative, unless the variation has constant speed, and
using this to argue minimality among surfaces that are graphs with small
C2 norm over the slice Σr.

Remark 1.3. A general formula for the second variation on an arbitrary
three-manifold is given in Proposition A.3 of the Appendix.

Our second result is a local rigidity for the deSitter–Schwarzschild mani-
fold (R × S

2, ga), which involves strictly stable minimal surfaces and the
Hawking mass. We prove:
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Theorem 1.4. Let (M, g) be a Riemannian three-manifold with scalar cur-
vature R � 2. If Σ ⊂M is an embedded strictly stable minimal two-sphere
which locally maximizes the Hawking mass, then the Gauss curvature of Σ is
constant equal to 1/a2 for some a ∈ (0, 1) and a neighborhood of Σ in (M, g)
is isometric to the deSitter–Schwarzschild metric ((−ε, ε) × Σ, ga) for some
ε > 0.

The idea of the proof goes as follows. Let λ1(Σ) denote the first eigen-
value of the Jacobi operator. The first step is to prove an infinitesimal rigidity
along Σ which is obtained as follows. Using the fact that Σ is strictly stable
we get an upper bound of the form

(1.2) (1 + λ1(Σ))|Σ| � 4π.

On the other hand, the fact that Σ locally maximizes the Hawking mass
implies (1.2) with opposite inequality sign. Therefore equality is achieved
and from it the infinitesimal rigidity is attained.

From this infinitesimal rigidity we next are able to construct a constant
mean curvature (CMC) foliation of a neighborhood of Σ by embedded two-
spheres {Σ(t) ⊂M}t∈(−ε,ε), where Σ0 = Σ. Finally, by using the properties of
the CMC foliation Σ(t) we obtain, decreasing ε if necessary, a monotonicity of
the Hawking mass along Σ(t). In particular, we get that mH(Σ(t)) � mH(Σ)
for all t ∈ (−ε, ε). The rigidity result then follows from this.

Some remarks are now in order. First we point out that the upper
bound (1.2) involving λ1(Σ) is sharp and is achieved on strictly minimal
slices in the deSitter–Schwarzschild manifold (R × S

2, ga). In case Σ is sta-
ble with λ1(L) = 0, (1.2) is the area bound that appear in [4], which is
attained on slices of the standard cylinder (R × S

2, dr2 + gS2).
Moreover, we note that ga tends to dr2 + gS2 when a→ 1, so it is inter-

esting to ask whether the rigidity statement in [4] can be proven under
the same hypothesis of Theorem 1.4 but with strict stability replaced by
stability. It turns out this is not the case as one can construct examples
of three-manifolds with scalar curvature R ≥ 2 that are not the standard
cylinder and that contain a minimal two-sphere Σ with area equal to 4π;
see, e.g., page 2 of [13]. It is then straightforward to check that a minimal
two-sphere with area 4π is a global maximum of the Hawking mass.

Remark 1.5. The use of a CMC foliation in the proof above is inspired by
the work in [1, 4] (see also [13, 15]).



Hawking mass and rigidity of minimal two-spheres 413

2. Preliminaries

In this section, we start defining the deSitter–Schwarzschild manifold. The
deSitter–Schwarzschild metric with mass m > 0 and scalar curvature equal
to 2 is the metric (

1 − r2

3
− 2m

r

)−1

dr2 + r2gS2

defined on (a0, b0) × S
2, where (a0, b0) = {r > 0 : 1 − r2

3 − 2 m
r > 0} and gS2

is the standard metric on S
2 with constant Gauss curvature equal to 1.

The deSitter–Schwarzschild metric above extends to a smooth metric
g on [a0, b0] × S

2 and the boundary components {a0} × S
2 and {b0} × S

2

are totally geodesic two-spheres with respect to the metric g. Thus, after
reflection along {a0} × S

2, we find a smooth metric g on [c0, b0] × S
2,

where c0 = 2a0 − b0. Since {c0} × S
2 and {b0} × S

2 are totally geodesic two-
spheres, we can use the metric g on [c0, b0] × S

2 to define, by reflection, a
complete periodic rotationally symmetric metric on R × S

2 with scalar cur-
vature equal to 2. This metric is called the deSitter–Schwarszchild metric
with mass m > 0 and scalar curvature equal to 2 on R × S

2.
In order to deal with this metric in our paper, we will use the warped

product notation. More precisely, consider the warped product metric g =
dr2 + u(r)2gS2 on R × S

2, where u(r) is a positive real function. If we assume
that g has constant scalar curvature equal to 2, then u solves the following
second-order differential equation

(2.1) u′′(r) =
1
2

(
1 − u′(r)2

u(r)

)
− u(r)

2
.

Considering only positive solutions u(r) to (2.1) which are defined for
all r ∈ R, we get a one-parameter family of periodic rotationally symmet-
ric metrics ga = dr2 + ua(r)2gS2 with constant scalar curvature equal to 2,
where a ∈ (0, 1) and ua(r) satisfies ua(0) = a = minu and u′a(0) = 0. These
metrics are precisely the deSitter–Schwarzschild metrics on R × S

2 defined
above.

Remark 2.1. Note that when a tends to 1, the metric ga tends to the
standard product metric dr2 + gS2 on R × S

2. Moreover, observe that Σ0 =
{0} × S

2 is a strictly stable minimal (in fact, totally geodesic) two-sphere of
area 4πa2 in (R × S

2, ga), for each a ∈ (0, 1), but in the standard product
metric dr2 + gS2 on R × S

2, i.e, in the limit as a→ 1, Σ0 is only stable and
not strictly so.
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Remark 2.2. For a positive periodic solution ua(r) of (2.1) as above, it is
not difficult to check that u′a(r)2 < 1, for all r ∈ R. Indeed, if r0 is either a
maximum or a minimum point for u′a, we must have u′′a(r0) = 0 and hence,
by (2.1), we end up with 1

2(1 − u′(r0)2) = u(r0)2

2 > 0. This will be useful in
the proof of Proposition 3.3.

Remark 2.3. It follows from the first variation formula of the Hawking
mass (see Appendix) that if a two-sphere Σ ⊂M is umbilic and has constant
Gauss curvature and M has constant scalar curvature equal to 2 along Σ,
then Σ is a critical point of the Hawking mass.

Denote by Σr the slice {r} × S
2. By Remark 2.3, Σr is a critical point for

the Hawking mass in (R × S
2, ga), for all r ∈ R and a ∈ (0, 1). Moreover, we

note that the Hawking mass of Σr ⊂ (R × S
2, ga) is constant for all r ∈ R.

It follows by a straightforward computation:

d

dr
mH(Σr) =

1
2
u′(r)(1 − u′(r) − u(r)2 − 2u(r)u′′(r)),

which is zero once u(r) solves (2.1), we obtain therefore that mH(Σr) is
constant equal to mH(Σ0). We will denote by ma this constant value. Thus,
in what follows, ga is the deSitter–Schwarzschild metric with mass ma and
scalar curvature equal to 2 on R × S

2.

3. Proof of Theorem 1.2

We establish the following proposition before going into the proof of Theo-
rem 1.2.

Proposition 3.1. Let (M, g) be a Riemannian three-manifold with scalar
curvature R � 2. If a two-sided closed surface Σ ⊂M with non-negative
mean curvature is a critical point of the Hawking mass, then Σ is minimal
or Σ is umbilic, R = 2 along Σ, and Σ has constant Gauss curvature.

Proof. Let H be the mean curvature of Σ. By Proposition A.1, the Euler–
Lagrange equation for the Hawking mass functional is

(3.1) ΔΣH +QH = 0,

where

Q =
4π
|Σ| −KΣ +

1
2
(R− 2) +

1
4

(
2|A|2 − 1

|Σ|
∫

Σ
H2 dσ

)
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and satisfies the condition:
∫

Σ
Qdσ � 0,

with equality if, and only if, Σ is umbilic.
Since H � 0, we can apply the maximum principle to (3.1) to obtain

that either H ≡ 0 or H > 0.
Now, suppose that H > 0. In this case, by (3.1), we have that

1
H

ΔΣH +Q = 0,

which we integrate by parts and get

0 =
∫

Σ

|∇H|2
H2

dσ +
∫

Σ
Qdσ � 0.

Thus,
∫
ΣQdσ = 0 which implies that Σ is umbilic and R is constant

equal to 2 along Σ. Moreover, we also get that H is a constant function. So,
we conclude that Q = 0. Since Σ is umbilic and R is constant along Σ, we
also obtain that Gauss curvature of Σ is constant equal 4π

|Σ| . �

As a immediate consequence of the above proposition we have:

Corollary 3.2. A two-sided closed surface with non-negative mean curva-
ture in the deSitter–Schwarzshild manifold (R × S

2, ga) is a critical point of
the Hawking mass if and only if is minimal or is a slice {r} × S

2.

We now turn to prove Theorem 1.2. First we prove

Proposition 3.3. Let (R × S
2, ga) be the deSitter–Schwarzschild manifold

with mass ma and let Σr = {r} × S
2. Then, there exists a constant C =

C(Σr) > 0 such that for all smooth normal variation Σ(t) of Σr

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) � −C
∫

Σr

(ϕ− ϕ)2 dσr,

where ϕ ∈ C∞(Σr) is the function which gives the variation and ϕ =
1

|Σr|
∫
Σr
ϕdσ.
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Proof. First, we have (see Appendix):

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) = − |Σ|1/2

32π3/2

∫
Σr

(Δϕ)2 dσr

+
1

4π1/2|Σ|1/2

∫
Σr

|∇ϕ|2 dσ − 3ma

2|Σr|
∫

Σr

|∇ϕ|2 dσr

+
3ma

4|Σr|H
2

∫
Σr

(ϕ− ϕ)2 dσr,

where H is the mean curvature of Σr and the gradients and Laplacians are
computed on Σr.

Next, by the Böchner–Weitzenböck identity applied on Σr

1
2
Δ|∇ϕ|2 = |Hessϕ|2 + 〈∇Δϕ,∇ϕ〉 + Ric(∇ϕ,∇ϕ)

� 1
2
(Δϕ)2 + 〈∇Δϕ,∇ϕ〉 +KΣr

|∇ϕ|2

=
1
2
(Δϕ)2 + 〈∇Δϕ,∇ϕ〉 +

4π
|Σr| |∇ϕ|

2,

which once we integrate over Σr we have

−1
2

∫
Σr

(Δϕ)2 dσr � − 4π
|Σr|

∫
Σr

|∇ϕ|2 dσr.

This in turn imply

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) � −3
2
ma

|Σr|
∫

Σr

|∇ϕ|2 dσr +
3
4
ma

|Σr|H
2

∫
Σr

(ϕ− ϕ)2 dσr.

Moreover, since g|Σr
= u(r)2gS2 , we have by the Poincaré inequality

∫
Σr

|∇ϕ|2 dσr � 2
u(r)2

∫
Σr

(ϕ− ϕ)2 dσr

=
8π
|Σr|

∫
Σr

(ϕ− ϕ)2 dσr,

and therefore we have

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) � −12π
ma

|Σr|2
∫

Σr

(ϕ− ϕ)2 dσr +
3
4
ma

|Σr|H
2

∫
Σr

(ϕ− ϕ)2 dσr.
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Finally, we note that since H2 = 4u′(r)2

u(r)2 and u′(r)2 < 1 (see Remark 2.2),

we have that H2 =
16π
|Σr| − C, where C = C(Σr) > 0 is a positive constant,

and thus

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) � −C
∫

Σr

(ϕ− ϕ)2 dσr.

�

Proof of Theorem 1.2. To prove Theorem 1.2 we will use an argument adap-
ted from [6, 9]. Suppose Σ is a graph over a slice Σr given by a function
ϕ ∈ C2(Σr). Assume the average ϕ̄ of ϕ is zero and let L be the operator
given by the second variation of the Hawking mass:

〈Lϕ,ϕ〉 = −|Σr|1/2

32π3/2

∫
Σr

(Δϕ)2 dσr +
1

4π1/2|Σr|1/2

∫
Σr

|∇ϕ|2 dσr

− 3
2
ma

|Σr|
∫

Σr

|∇ϕ|2 dσr +
3
4
ma

|Σr|H
2

∫
Σr

ϕ2 dσr,

By the computation following Proposition A.3, we deduce

(3.2) mH(Σ) −mH(Σr) =
1
2
〈Lϕ,ϕ〉 +O(‖ϕ‖C2‖ϕ‖2

W 2,2),

where the constant in the Big-O notation is uniform in ϕ, i.e., depends only
on the slice Σ, and W k,p is usual notation for the Sobolev spaces.

We next claim that there must exist a constant C > 0 such that for any
function h of zero average:

(3.3) |〈Lh, h〉| ≥ C‖h‖2
W 2,2 .

We prove the above by contradiction: assuming the contrary, there will exist
a sequence of functions hn such that

‖hn‖2
W 2,2 = 1, |〈Lhn, hn〉| < 1

n
.

By the Rellich–Kondrachov theorem, up to subsequence, hn must converge
in W 1,2 to a limit h with zero average. We would like to conclude that
|〈Lh, h〉| = 0, but for that we would need h ∈W 2,2. So we argue as follows.
First, by Proposition A.3, we note that |〈L·, ·〉| controls the L2-norm, and
since |〈Lhn, hn〉| → 0, we have that hn converges to zero in L2, and therefore
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h must equal to zero. Finally, by the definition of L, we observe that because
there exists positive constants C1, C2 independent of n such that:

|〈Lhn, hn〉| ≥ C1‖Δhn‖2
L2 − C2‖hn‖W 1,2 ,

so Δhn must converge to zero in L2, and therefore by elliptic regularity
‖hn‖W 2,2 → 0, which is a contradiction since ‖hn‖W 2,2 = 1, and the claim
follows.

Hence, combining (3.2) and (3.3), we have for functions ϕ of zero average
and sufficiently small C2-norm that

mH(Σ) −mH(Σr) ≥ C

4
‖ϕ‖2

W 2,2 .

Similarly, we have more generally that for any ϕ with sufficiently small
C2-norm:

(3.4) mH(Σ) −mH(Σr) =
1
2
〈Lϕ,ϕ〉 +O(‖ϕ‖C2‖ϕ− ϕ̄‖2

W 2,2),

where 〈Lϕ,ϕ〉 is now given by:

〈Lϕ,ϕ〉 = −|Σr|1/2

32π3/2

∫
Σr

(Δϕ)2 dσr +
1

4π1/2|Σr|1/2

∫
Σr

|∇ϕ|2 dσr

− 3
2
ma

|Σr|
∫

Σr

|∇ϕ|2 dσr +
3
4
ma

|Σr|H
2

∫
Σr

(ϕ− ϕ̄)2 dσr.

As before, this yields to

mH(Σ) −mH(Σr) ≥ C

4
‖ϕ− ϕ̄‖2

W 2,2 ,

which concludes our proof. �

4. Stability and second variation of the Hawking mass

Given a surface Σ in a three-manifold (M, g), the Jacobi operator of Σ,
denoted by LΣ, or just by L if there is no ambiguity, is defined to be

L = ΔΣ + Ric(ν, ν) + |A|2,

where ν and A denote the unit normal vector field along Σ and the second
fundamental form of Σ, respectively. We denote by λ1(L) the first eigenvalue
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of L. Our convention for the eigenvalue problem is the following:

λ ∈ R is an eigenvalue of L⇔ ∃ϕ ∈ C∞(Σ) such that Lϕ+ λϕ = 0.

We start by proving a sharp upper bound involving λ1(L) for the area of a
stable minimal two-sphere Σ on a three-manifold (M, g) with R � 2, which
is slightly more general then the area bound that appeared in [4]. Note that
for λ1(Σ) > 0, the bound below is achieved on strictly minimal slices of the
deSitter–Schwarzschild manifold (R × S

2, ga).

Proposition 4.1. Let (M, g) be a Riemannian three-manifold with scalar
curvature R � 2. If Σ ⊂M is a stable minimal two-sphere, then

(4.1) |Σ| � 4π
λ1(L) + 1

.

Proof. By the stability inequality we have that

λ1(L)
∫

Σ
ϕ2 dσ +

∫
Σ
(Ric(ν, ν) + |A|2)ϕ2 dσ �

∫
Σ
|∇Σϕ|2 dσ

for all ϕ ∈ C∞(Σ), where dσ denotes the area element of Σ, and λ1(L) � 0.
Choosing ϕ = 1, we get

λ1(L)|Σ| +
∫

Σ
(Ric(ν, ν) + |A|2) dσ � 0,(4.2)

where |Σ| is the area of Σ. The Gauss equation implies

Ric(ν, ν) =
R

2
−KΣ − |A|2

2
,(4.3)

where KΣ is the Gauss curvature of Σ. Substituting (4.3) into (4.2):

λ1(L)|Σ| + 1
2

∫
Σ
(R+ |A|2) dσ �

∫
Σ
KΣ dσ = 4π,(4.4)

and using in (4.4) that R � 2, we finally obtain

|Σ| � 4π
λ1(L) + 1

.
�

As a corollary of the proof above, we have that if the upper area bound
is achieved then we get an infinitesimal rigidity over Σ.
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Corollary 4.2. If we have equality in the above proposition, then on Σ we
must have A = 0, R = 2, Ric(ν, ν) = −λ1(L), KΣ = 4π/|Σ| and Ker(L+
λ1(L)) are the constant functions.

Our next proposition gives a relation between strict stability and the
Hawking mass. More precisely, it tells us that if the second variation of the
Hawking mass of a strictly stable minimal two-sphere Σ is non-positive for
all smooth normal variations Σ(t) of Σ, then we get the reverse inequality in
(4.1). We therefore get equality in (4.1) and the conclusions of Corollary 4.2
follows in this case.

Recall that, by definition, Σ is strictly stable when λ1(L) > 0.

Proposition 4.3. Let (M, g) be a Riemannian three-manifold with scalar
curvature R � 2 and let Σ ⊂M be a minimal two-sphere. If Σ is strictly
stable and the second variation of the Hawking mass of Σ is non-positive,
then

(4.5) |Σ| � 4π
λ1(L) + 1

.

Proof. Let Σ(t) ⊂M be a smooth normal variation of Σ given by a vector
field X = ϕν, where ϕ ∈ C∞(Σ). Since Σ is a minimal surface, a direct
computation gives (please see Appendix for calculations):

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) = − 1
128π3/2|Σ|1/2

∫
Σ
ϕLϕdσ

(
16π − 4

3
|Σ|

)

+
|Σ|1/2

64π3/2

(
−2

∫
Σ
(Lϕ)2 dσ +

4
3

∫
Σ
ϕLϕdσ

)
,

and, because d2

dt2

∣∣∣
t=0

mH(Σ(t)) � 0, we get that

(4.6) (8π − 2|Σ|)
(
−

∫
Σ
ϕLϕdσ

)
� 2|Σ|

∫
Σ
(Lϕ)2 dσ.

Furthermore, if we apply in (4.6) an eigenfunction of λ1(L) satisfying∫
Σ ϕ

2 dσ = 1, we obtain

(8π − 2|Σ|)λ1(L) � 2|Σ|λ1(L)2,
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and, since λ1(L) > 0, this in turn imply

(8π − 2|Σ|) � 2|Σ|λ1(L),

and the result follows. �

Remark 4.4. When a minimal two-sphere is stable but not strictly so,
i.e., in case λ1(L) = 0, one cannot use the hypothesis of Proposition 4.3 to
conclude the infinitesimal rigidity of Corollary 4.2. In this case, the correct
assumption to make in order to have rigidity is the one made in [4], that is,
to bypass Proposition 4.3 and assume directly that Σ is an area-minimizing
two-sphere satisfying |Σ| = 4π, and in this case Σ is in fact a global maximum
of the Hawking mass.

5. Proof of Theorem 1.4

Let (M, g) be a Riemannian three-manifold and consider a two-sided com-
pact surface Σ ⊂M . If Σ is a strictly stable minimal surface we can
always use the implicit function theorem to find a smooth function w :
(−ε, ε) × Σ −→ R with w(0, x) = 0, ∀x ∈ Σ, such that the surfaces

Σ(t) = {expx(w(t, x)ν(x)) : x ∈ Σ}, t ∈ (−ε, ε),

have CMC, where ν is the unit normal vector field along Σ and exp is the
exponential map of M . However, if we do not have any other information
on Σ, we cannot conclude that the one-parameter family Σ(t) of surfaces
defined above gives a foliation of a neighborhood of Σ in M because ∂w

∂t (0, ·)
may change sign.

Now suppose that (M, g) has scalar curvature R � 2 and that Σ ⊂M is
an embedded strictly stable minimal two-sphere. In addition, suppose that
the second variation at t = 0 of the Hawking mass of all smooth normal
variations Σ(t) of Σ is non-positive. Then, in this case, from Propositions 4.1
and 4.3, we have the infinitesimal rigidity, i.e.,

|Σ| =
4π

λ1(L) + 1
,

and the conclusions of Corollary 4.2 holds. It will follow from this that we can
construct a one-parameter family Σ(t) as described above, with the function
w satisfying ∂w

∂t (0, ·) = 1, and the family Σ(t) defined using this function w
giving a foliation of a neighborhood of Σ by CMC embedded two-spheres.
This is proved in the next proposition.
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Proposition 5.1. Let (M, g) be a Riemannian three-manifold with scalar
curvature R � 2. If Σ ⊂M is an embedded strictly stable minimal two-sphere
such that

|Σ| =
4π

λ1(L) + 1
,

then there exist ε > 0 and a smooth function w : (−ε, ε) × Σ −→ R satisfying
the following conditions:

• For each t ∈ (−ε, ε), Σ(t) = {expx(w(t, x)ν(x)) : x ∈ Σ} is an embed-
ded two-sphere with CMC.

• w(0, x) = 0,
∂w

∂t
(0, x) = 1 and

∫
Σ(w(t, ·) − t) dσ = 0.

Proof. The proof follows along the same lines as the proof of Proposition 2
in [15]. We use the same notations used there.

We consider the map Ψ : (−ε, ε) ×B(0, δ) −→ Y defined by

Ψ(t, u) = HΣu+t
− 1

|Σ|
∫

Σ
HΣu+t

dσ,

and we notice that Ψ(0, 0), because Σ0 = Σ. By Corollary 4.2, we have that
the Jacobi operator of Σ is given by

L = ΔΣ − λ1(L).

Thus, obtain for v ∈ X that

DΨ(0, 0) · v =
d

ds

∣∣∣∣
s=0

Ψ(0, s)

=
d

ds

∣∣∣∣
s=0

(
HΣsv

− 1
|Σ|

∫
Σ
Hsv dσ

)

= Lv +
λ1(L)
|Σ|

∫
Σ
v dσ

= Lv,

and since L : X −→ Y is a linear isomorphism, we can use the implicit func-
tion theorem to find the function w : (−ε, ε) × Σ −→ R as in [15].
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Moreover, it is easy to see that w satisfies w(0, ·) = 0 and
∫
Σ(w(t, ·) −

t) dσ = 0, and that the latter implies

∫
Σ

∂w

∂t
(0, ·) dσ = |Σ|.

Furthermore, sinceHΣw(t·) = 1
|Σ|

∫
ΣHΣw(t,·) dσ, ∀t ∈ (−ε, ε), we have after dif-

ferentiating at t = 0 that

L

(
∂w

∂t
(0, ·)

)
=

1
|Σ|

∫
Σ
L

(
∂w

∂t
(0, ·)

)
dσ

= −λ1(L)
|Σ|

∫
Σ

∂w

∂t
(0, ·) dσ

= −λ1(L)
= L(1),

and we thus conclude that ∂w
∂t (0, ·) = 1, for the strict stability of Σ implies

that L is injective. �

We are now interested in properties of the CMC foliation constructed
above. We will say that a CMC surface Σ in a three-manifold (M, g) is weakly
stable if ∫

Σ
|∇Σϕ|2 − (Ric(ν, ν) + |AΣ|2)ϕ2 dσ � 0,

for all ϕ ∈ C∞(Σ) such that
∫
Σ ϕdσ = 0. Inspired by Lemma 3.3 of [4], we

next prove that, decreasing ε if necessary, all surfaces Σ(t) in the foliation
of Proposition 5.1 are weakly stable.

Lemma 5.2. Consider (M, g), Σ and Σ(t) as in Proposition 5.1. Then,
there exists 0 < δ < ε such that: if t ∈ (−δ, δ) and u is a function on the
two-sphere with

∫
Σ(t) u dσt = 0, then

∫
Σ(t)

|∇Σ(t)u|2 dσt −
∫

Σ(t)
(Ric(νt, νt) + |AΣ(t)|2)u2 dσt � λ1(LΣ)

∫
Σ(t)

u2 dσt,

where νt is the unit normal vector field along Σ(t) with ν0 = ν.
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Proof. We start by noting that a uniform constant C > 0 can be chosen such
that the Poincaré inequality

∫
Σ(t)

|∇Σ(t)u|2 dσt � C

∫
Σ(t)

u2 dσt

holds for each t ∈ (−ε, ε) and any smooth function function u : S
2 −→ R

such that
∫
Σ(t) u dσt = 0. In addition, when t = 0 we know by assumption

that Σ(t) satisfies the hypothesis of Corollary 4.2 and thus

sup
Σ(t)

(Ric(νt, νt) + |AΣ(t)|2 + λ1(LΣ)) → 0

as t→ 0. These two facts together produce the desired δ. �

Again, let (M, g), Σ and Σ(t) as in Proposition 5.1. We introduce some
notation. Let f(t, x) = expx(w(t, x)ν(x)), (t, x) ∈ (−δ, δ) × Σ, where δ > 0
is given by Lemma 5.2. Consider the lapse function

ρt(x) =
〈
∂f

∂t
(t, x), νt(x)

〉
, (t, x) ∈ (−δ, δ) × Σ.

Since ρ0 = 1, we can assume, decreasing δ > 0 if necessary, that ρt > 0.
Finally, denote by Ht the mean curvature of Σ(t) with respect to νt and
let ρt = 1

|Σ(t)|
∫
Σ(t) ρt dσt.

Now, we are in a position to state and prove our next lemma.

Lemma 5.3. For each t ∈ (δ, δ), we have

∫
Σ(t)

(Ric(ν(t), ν(t)) + |AΣ(t)|2) ρt dσt

� λ1(LΣ)
ρt

∫
Σ(t)

(ρt − ρt)2 dσt + ρt

∫
Σ(t)

(Ric(ν(t), ν(t)) + |AΣ(t)|2) dσt.

Proof. The result follows from the fact that d
dtHt = LΣ(t)ρt together with

the weak stability inequality of Lemma 5.2. In fact, since ρt − ρt has zero



Hawking mass and rigidity of minimal two-spheres 425

average on Σ(t), we have for each t ∈ (−δ, δ) that

λ1(LΣ)
∫

Σ(t)
(ρt − ρt)2 dσt � −

∫
Σ(t)

(ρt − ρt)LΣ(t)(ρt − ρt) dσt

= − d

dt
Ht

∫
Σ(t)

(ρt − ρt)dσt +
∫

Σ
(ρt − ρt)LΣ(t)ρt dσt

=
∫

Σ(t)
(ρt − ρt) (Ric(νt, νt) + |AΣ(t)|2) ρt dσ

and this proves the lemma. �

The proof of Theorem 1.4 is now mostly a matter of putting these facts
together.

Proof of Theorem 1.4. Let (M, g) and Σ = S
2 ⊂M satisfying our assump-

tions. Since Σ is a local maximum for the Hawking mass, we have:

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) � 0,

for all smooth normal variations Σ(t) of Σ, and by Corollary 4.2:

|Σ| =
4π

λ1(L) + 1
.

By Proposition 5.1, we can construct a CMC foliation of a neighborhood
of Σ in M by embedded two-spheres Σ(t) ⊂M , with t ∈ (−ε, ε).

Noting that

d

dt

∣∣∣∣
t=0

Ht = L(1) = −λ1(LΣ) < 0,

and decreasing ε > 0 if necessary, we can assume that Ht < 0 for t ∈ (0, ε)
and that Ht > 0 for t ∈ (−ε, 0). Since Σ is a local maximum for the Hawking
mass, we have mH(Σ) � mH(Σ(t)) for t ∈ (−ε, ε).

Now, let δ > 0 be given by Lemma 5.2 so that for each t ∈ (−δ, δ), Σ(t) ⊂
M is a weakly stable CMC two-sphere. In what follows, we will see that this
implies, using Lemma 5.3, monotonicity of the Hawking mass along the
foliation Σ(t).
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In fact, we have

d

dt
mH(Σ(t)) = −|Σ(t)|1/2

32π3/2
Ht

[∫
Σ(t)

(
Ric(νt, νt) + |AΣ(t)|2

)
ρt dσt

+ 4πρt − 3
4
H2

t

∫
Σ(t)

ρt dσt −
∫

Σ(t)
ρt dσt

]

� −|Σ(t)|1/2

32π3/2
Ht

[
λ1(LΣ)
ρt

∫
Σ(t)

(ρt − ρt)
2 dσt

+ ρt

∫
Σ(t)

(
Ric(νt, νt) + |AΣ(t)|2

)
dσt + 4πρt

− 3
4
H2

t

∫
Σ(t)

ρt dσt −
∫

Σ(t)
ρt dσt

]
,

where the inequality follows by Lemma 5.3, and moreover, using the Gauss
equation:

d

dt
mH(Σ(t)) � −|Σ(t)|1/2

32π3/2
Ht

[
ρt

2

∫
Σ(t)

(
|AΣ(t)|2 −

H2
t

2

)
+ (R− 2) dσt

+
λ1(LΣ)
ρt

∫
Σ(t)

(ρt − ρt)
2 dσt

]
.

Thus, by the formula above, we obtain that d
dtmH(Σ(t)) � 0, for t ∈ [0, δ)

and d
dtmH(Σ(t)) � 0 for t ∈ (−δ, 0]. This implies that

mH(Σ) � mH(Σ(t)),

for all t ∈ (−δ, δ). Since mH(Σ) � mH(Σ(t)), we conclude that mH(Σ(t)) ≡
mH(Σ) and so d

dtmH(Σ(t)) ≡ 0, and from this, using the formulae above, we
have for all t ∈ (−δ, δ) that

• Σ(t) is umbilic;

• R = 2 on Σ(t);

• ρt ≡ ρt.

Moreover, using that ρt ≡ ρt, it is not difficult to show that

w(t, x) = t, ∀(t, x) ∈ (−δ, δ) × Σ.
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Finally, denote by gΣ(t) the induced metric on Σ(t). Since Σ(t) is umbilic
and Ht is constant, we have

∂

∂t
gΣ(t) = v(t)gΣ(t), ∀t ∈ (−δ, δ),

where v is a real function. Thus, we get for all t ∈ (−δ, δ) that

gΣ(t) = e
∫ t

0 v(s) ds gΣ

= u(t)2 gS2 ,

where u(t) = a e
∫ t

0 v(s) ds with a2 = |Σ|/4π ∈ (0, 1).
Therefore, we conclude that the metric g on (−δ, δ) × Σ induced by

f(t, x) = expx(tν(x)), (t, x) ∈ (−δ, δ) × Σ, is equal to dt2 + u(t)2gS2 . Since
this metric has scalar curvature equal to 2, we have, by unicity of solutions
to (2.1), that g is precisely the deSitter–Schwarzschild metric with mass ma

on (−δ, δ) × Σ. This completes the proof. �
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Appendix A

Let (M, g) be a three-manifold and consider a two-sided compact surface
Σ ⊂M . Our goal in this section is to provide the first and second varia-
tion formulae of the Hawking mass at Σ. Recall that the Hawking mass is
defined by

mH(Σ) =
( |Σ|

16π

)1/2 (
1 − 1

16π

∫
Σ
H2 dσ − Λ

24π
|Σ|

)
,

where Λ = inf R.
Choose a unit normal vector field ν along Σ and let Σ(t) ⊂M be

a smooth normal variation of Σ, that is, Σ(t) = {f(t, x) : x ∈ Σ} where
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f : (−ε, ε) × Σ −→M is a smooth function satisfying:

• ft = f(t, ·) : Σ −→M is an immersion for each t ∈ (−ε, ε);
• f(0, x) = x for each x ∈ Σ;

• ∂f
∂t (0, x) = ϕ(x)ν(x) for each x ∈ Σ, where ϕ ∈ C∞(Σ).

For such a given variation, we have:

Proposition A.1 First variation of the Hawking mass.

d

dt
mH(Σ(t))

∣∣∣∣
t=0

= − 2|Σ|1/2

(16π)3/2

∫
Σ
ϕΔΣH dσ +

|Σ|1/2

(16π)3/2

×
∫

Σ

[
2KΣ − 8π

|Σ| +
(

1
2|Σ|

∫
Σ
H2 dσ − |A|2

)]
Hϕdσ

+
|Σ|1/2

(16π)3/2

∫
Σ
(Λ −R)Hϕdσ.

Proof. This is a direct computation using the first variation formula of area
and the following identities:

(i) d
dtHt

∣∣
t=0

= ΔΣϕ+ Ric(ν, ν)ϕ+ |A|2ϕ;

(ii) d
dt(dσt)

∣∣
t=0

= −ϕHdσ.

and the Gauss equation 2Ric(ν, ν) = R− 2KΣ +H2 − |A|2. For identities
(i) and (ii) see [11]. �

Now, denote by νt the unit normal vector along Σ(t) with ν0 = ν and
let Ht be the mean curvature of Σ(t) with respect to νt. Consider the lapse
function

ρt(x) =
〈
∂f

∂t
(t, x), νt(x)

〉
.

Notice that ρ0 = ϕ. Also, it is a well-known fact that

(A.1)
d

dt
Ht = L(t)ρt,

where

L(t) = ΔΣ(t) + Ric(νt, νt) + |AΣ(t)|2
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is the Jacobi operator of Σ(t). By (A.1), we have the second variation formula
of the mean curvature Ht at t = 0 as a consequence of the next proposition.

Proposition A.2 First variation of the Jacobi operator. For each
function ψ ∈ C∞(Σ), we have:

L′(0)ψ = 2ϕ 〈A,Hessψ〉 + 2ψ 〈A,Hessϕ〉 − 2ϕω(∇ψ) − 2ψ ω(∇ϕ)
+ ϕ 〈∇H,∇ψ〉 −H 〈∇ϕ,∇ψ〉 + 2A(∇ϕ,∇ψ) − ψ divΣ(divΣ ω)

+ ϕψRiννj Aij + ϕψHRic(ν, ν) + ϕψH|A|2 + ϕψAij Aik Ajk

− ϕψHKΣ,

where ω is the 1-form on Σ defined by ω(X) = Ric(X, ν).

Proof. Using the Gauss equation, we can rewrite L(t) as

L(t) = ΔΣ(t) +
R

2
−KΣ(t) +

H2
t

2
− |AΣ(t)|2

2
.

Now, the formula follows by a straightforward computation using the
following identities. The first one is

d

dt
KΣ(t)

∣∣∣∣
t=0

= −〈A,Hessϕ〉 +H Δϕ+ 2ω(∇ϕ)

+ divΣ(divΣ ω)ϕ+HKΣ ϕ,

which can be derived directly from Lemma 3.7 of [8] with hij = −2ϕAij .
The other ones are

(
d

dt
ΔΣ(t)

∣∣∣∣
t=0

)
ψ = 2ϕ 〈A,Hessψ〉 + 2A(∇ϕ,∇ψ) + ϕ 〈∇H,∇ψ〉

−H 〈∇ϕ,∇ψ〉 − 2ϕω(∇ψ),

and

d

dt
|AΣ(t)|2

∣∣∣∣
t=0

= 2 〈A,Hessϕ〉 + 2Riννj Aij ϕ+ 2Aij Aik Ajk ϕ,

whose proof can be found in detail at [12]. �

Next, we have the second variation of the Hawking mass.
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Proposition A.3 Second variation of the Hawking mass. If Σ ⊂M
is a critical point of the Hawking mass, then

d2

dt2
mH(Σ(t))

∣∣∣∣
t=0

= − 2|Σ|1/2

(16π)3/2

∫
Σ
(Lϕ)2 dσ +

4|Σ|1/2

(16π)3/2

∫
Σ
H2ϕLϕdσ

+
mH(Σ)
2|Σ|

∫
Σ
|∇ϕ|2dσ − |Σ|1/2

(16π)3/2

∫
Σ

(
H2 +

2Λ
3

)
|∇ϕ|2dσ

− mH(Σ)
2|Σ|

∫
Σ

(
Ric(ν, ν) + |A|2 −H2

)
ϕ2 dσ

+
|Σ|1/2

(16π)3/2

∫
Σ

(
H2 +

2Λ
3

) (
Ric(ν, ν) + |A|2 −H2

)
ϕ2 dσ

− 3mH(Σ)
2|Σ|2

(∫
Σ
Hϕdσ

)2

− 2|Σ|1/2

(16π)3/2

∫
Σ
HL′(0)ϕdσ,

where L = L(0) and L′(0) is given in the proposition above.

Proof. Once establishing (A.1), the above follows after a direct computation
using the second variation formula of the area element:

d2

dt2
(dσt)

∣∣∣∣
t=0

=
[|∇ϕ|2 − (Ric(ν, ν) + |A|2)ϕ2 +H2ϕ2 + divΣ(∇XX)

]
dσ,

where X(x) = ∂f
∂t (0, x). �

To complete this section, we will consider the particular case where
(M, g) is the deSitter–Schwarzschild manifold (R × S

2, ga) and Σ ⊂M is
some slice {r} × S

2. In this case, we have:

• R is constant equal to 2;

• Σ is totally umbilic and has constant Gauss curvature;

• ω = 0 (recall definition in Proposition A.2).

Therefore, we have by (A.2) that

L′(0)ϕ = 2HϕΔϕ+
3
2
H

(
Ric(ν, ν) +

H2

2

)
ϕ2 − 4π

|Σ|Hϕ
2.
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Thus, since

Ric(ν, ν) +
H2

2
=

8π
|Σ| − (16π)3/2 3

4
mH(Σ)
|Σ|3/2

,

we have after a direct but long computation using (A.3)

d2

dt2

∣∣∣∣
t=0

mH(Σ(t)) = − |Σ|1/2

32π3/2

∫
Σ
(Δϕ)2 dσ +

1
4π1/2|Σ|1/2

∫
Σ
|∇ϕ|2 dσ

− 3mH(Σ)
2|Σ|

∫
Σ
|∇ϕ|2 dσ +

3mH(Σ)
4|Σ| H2

∫
Σ
(ϕ− ϕ)2 dσ,

where ϕ = 1
|Σ|

∫
Σ ϕdσ and we have used in the above that

∫
Σ

(ϕ− ϕ)2 dσ =
∫

Σ
ϕ2 dσ − 1

|Σ|
(∫

Σ
ϕdσ

)2

.
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