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Convergence of mean curvature flows with surgery

JOSEPH LAUER

Huisken and Sinestrari [9] have recently defined a surgery process
for mean curvature flow when the initial data are a two-convex
hypersurface in R"*! (n > 3). The process depends on a parameter
H. Tts role is to initiate a surgery when the maximum of the mean
curvature of the evolving hypersurface becomes H, and to control
the scale at which each surgery is performed. We prove that as
H — oo the surgery process converges to level set flow [1, 2].

1. Introduction

Huisken and Sinestrari [9] have recently defined a mean curvature flow with
surgery when the initial data are a two-convex hypersurface in R"*! when
n > 3. The process depends on a parameter H (Hj in the notation of [9]),
which controls both the maximal mean curvature and the scale at which
each surgery is performed. In this note we investigate to what extent the
process depends on this parameter.

Recall that a smooth one-parameter family of hypersurface immersions
F, : M — R™! is a solution to mean curvature flow if

O (1) = H(P(2,1),

where H is the mean curvature vector. The first results were obtained by
Huisken [8] who proved that if the initial data are convex and n > 2, then
the mean curvature flow shrinks the hypersurface to a round point. The
analogous result for curves in the plane (n = 1) was proved by Gage and
Hamilton [3], and shortly after Grayson [4] showed that any embedded curve
in the plane evolves to become convex. This means that the classification
of singularities is particularly simple for embedded plane curves. However,
when n > 1 Grayson’s Theorem no longer holds and singularities other than
round points may occur. The existence of such a singularity was first proved
rigourously by Grayson [5], who gave the example of a barbell-like surface
which develops a neck-pinch.
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As an evolving hypersurface becomes singular the maximum of the mean
curvature is unbounded, and hence constructing a surgery procedure requires
detailed information about the geometry of the hypersurface in regions of
high curvature. In the two-convex case Huisken and Sinestrari prove that
such regions are diffeomorphic to S™ or S”~! x S, and are discarded during
surgery, or are neck-like regions in which the surgery replaces a topological
cylinder by a pair of convex disks. As the parameter H increases the surg-
eries are performed closer to the singular time and on quantitatively thinner
necks. The detailed estimates in [9] controlling the length and width of the
necks allow us to prove:

Theorem 1.1. Huisken—Sinestrari surgery converges to the level set flow
as H — oo.

Since the limit is unique this result can be interpreted as a stability
theorem for level set flow. Our approach is to use a barrier argument: we
prove that for any € > 0 there exists H > 0, so that the mean curvature flow
with surgery performed with parameter H is disjoint (in space-time) from
the level set flow of the initial hypersurface shifted backwards in time by e.

This result has also been obtained independently by J. Head [7] using
new integral estimates for mean curvature and a careful consideration of
the number of surgery times. While the proof here is a quicker route to
Theorem 1.1, the methods of [7] provide bounds for the rate of convergence.

Since the Ricci flow with surgery constructed for 3-manifolds (see [11,
12]) also depends on a parameter, it is possible to consider the same question
there. One obstacle in this direction is that there is not such a natural
candidate for the limiting object.

2. Weak notions of mean curvature flow

In this section we recall (see [9, 10, 13]) two ways in which the evolution of
a smooth hypersurface can be extended beyond a singularity: Level set flow
and mean curvature flow with surgery.

Definition 2.1 Weak Set Flow. Let K C R""! be closed, and let {K;};>0
be a one-parameter family of closed sets with initial condition Ky = K such
that the space-time track U(K; x {t}) C R"*2 is closed. Then {K;};>o is
weak set flow for K if for every smooth mean curvature flow ¥; defined on
[a, b] we have

K,NY=0= K;N% =10

for each t € [a, b].
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It is essentially the definition that weak set flows avoid smooth mean cur-
vature flows when the initial conditions are disjoint but a stronger statement
is true: The distance between a weak set flow and a smooth mean curvature
flow is nondecreasing in ¢. Otherwise, one could translate the initial data in
space and obtain a contradiction to the definition of a weak set flow.

Definition 2.2 level set flow. The level set flow of a compact set K C
R™*! is the maximal weak set flow. . That is, a one-parameter family of closed
sets Ky with Ko = K such that if Kt is any weak set flow with Ky = K then
Kt C K for each t > 0.

The existence of a maximal weak set flow is verified by taking the closure
of the union of all weak set flows with a given initial data. If K; is the level
set flow of K, we denote by K by the space-time track swept out by K.
That is,

K =] K¢ x {t} cR"™2.
>0

The level set flow was introduced independently by Evans and Spruck [2]
and Chen et al. [1]. It was first formulated in terms of viscosity solutions
of partial differential equations whereas the geometric definition above was
first used by Ilmanen [10].

Another approach to constructing weak solutions to geometric evolution
equations has been to use a surgery procedure. This idea was first used by
Hamilton [6] to avoid the development of singularities in Ricci flow.

Definition 2.3 surgery [9]. A mean curvature flow with surgery consists
of the following data:

(1) An initial smooth hypersurface ¥ C R**1,
(2) Constants w; < wg <1 and H > 0.

(3) A finite collection of times 0 < t; < ta... < t,, called surgery times
(let to = O)

(4) A collection of mean curvature flows 3¢ on [t;,;11], with 3 = X, such
that for each ¢ the maximum mean curvature on ¥} is H and is achieved
only when t = ¢;41.

(5) A surgery algorithm that consists of two steps:
(i) At each surgery time a finite number of necks with mean curvature
greater than wyH are removed from ZIZ;M and replaced with con-
vex caps with mean curvature bounded by wsH. The operation of
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replacing a single neck with two convex caps is called a standard
surgery.

(ii) Finitely many components of the hypersurface constructed in (i)
are removed. These components are recognized as being diffeomor-
phic to either S~ x S! or S™.

The result of the surgery algorithm is a smooth hypersurface Zitll with
mean curvature bounded by wo H.

We denote by Xy C R™"2 the space-time track swept-out by the hyper-
surfaces, and say that Xy is a mean curvature flow with surgery performed
with parameter H.

The main result of [9] is that a mean curvature flow with surgery can be
constructed when the initial data are a closed immersed two-convex hyper-
surface of dimension at least three. Recall that a hypersurface ¥ c R*t!
is two-convex if the sum of the two smallest principal curvatures is every-
where non-negative. It is proved that for any such initial data there exist wy,
wo and Hg > 0, so that the surgery may be performed with any parameter
H > Hp. In particular, wy and ws can be fixed independently of H. It is also
shown that if the initial data are embedded then the hypersurface remains
embedded even after a surgery time.

In this paper, we consider only embedded initial data since otherwise
the level set flow will not coincide with the evolving hypersurface for small
t>0.

It will be convenient to work with the regions bounded by the evolv-
ing hypersurface. Let K C R"™! be a compact domain such that K is a
smooth two-convex hypersurface. Then if 0Ky is a mean curvature flow
with surgery we define Kz C R"*2 to be the region of space-time such that
the t =T time-slice of Ky is the compact domain bounded by (0Kpg)r.
The hypersurface (0K ); may not be connected after the first surgery time.
However, the domains bounded by the connected components of (0K )¢
will be disjoint so that (Kp); is well defined. Thus Ky is an evolution of
a union of domains whose boundary is a mean curvature flow with surgery
performed with parameter H in the sense defined above. We will also refer
to Ky as a mean curvature flow with surgery.

Notation 2.4. If Ky is a mean curvature flow with surgery, and T is a
surgery time, then we use (9Kpy); and (OKp)j to refer to the pre- and
post-surgery hypersurfaces at time T, and (Kp)7 and (K )7 to refer to the
regions they bound.
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If K is a compact domain and Ky is a mean curvature flow with surgery
constructed in [9], then the cutting portion of the standard surgery algorithm
only removes points in (K ),. That is, the solid necks along which a stan-
dard surgery is performed are contained in the evolving domain. It follows
that Ky is a weak set flow for K. Note that this is not true if we consider
only the evolving hypersurfaces, i.e., Ky is not a weak set flow of K.

3. Convergence

In this section, we prove the convergence to level set flow. Theorem 3.1 is a
more precise statement of Theorem 1.1 from the Introduction. Recall that
K denotes the space-time track of the level set flow of K.

Theorem 3.1. Let K C R", n >3, be a compact domain with 0K a
smooth embedded two-convex hypersurface. For H sufficiently large let K C
R"*2 be the result of the Huisken—Sinestrari surgery performed with para-
meter H, and initial condition (K)o = K. Then

lim Ky =K.

— 00
Remark 3.2. Convergence is with respect to the Hausdorff topology on
closed sets in R"™+2,

Theorem 3.1 follows from the following lemma regarding the surgery
procedure, and a barrier argument. As usual, B.(z) C R"*! represents the
ball of radius € centered at .

Lemma 3.3. Given € > 0 there exists Hy > 0, such that if H > Hy, T is a
surgery time, and v € R"*!, then

Be(z) C (Kn)7 = Be(z) C (Kn)+.

The proof of Lemma 3.3 requires geometric information regarding the
necks along which a surgery is performed. The parameter H here corre-
sponds to Hj in [9], and wy,ws are the constants appearing in Definition 2.3.
Define Hy = w1 H and Hy = we H. Furthermore, €, k, A are defined in [9] and
depend only on the initial hypersurface.

Proof of Lemma 3.3. Consider Ky for H > Hy where Hy is a constant to
be defined below.
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Since T is a surgery time the algorithm defined in [9] identifies a finite
collection of subsets, {4;}1", which cover the regions of (0K ), with mean
curvature greater than Hs. There are three possibilities for the structure of
the A;’s depending on whether each has 0, 1 or 2 boundary components.

If 0A; # () then for each component of 0A; a standard surgery is per-
formed. According to [9] there exists an embedding N : S"~1 x [a,b] — 4;
with strong geometric properties. In particular, ¥, = N(S"~! x 2) has con-
stant mean curvature in the image of V. We note that if 0A; consists of two
connected components then the map N is a diffeomorphism. In general, 0 A;
contains at least one of Y, or ¥ and the mean curvature on 9A; is %

Suppose %, C 0A;. We consider the standard surgery corresponding to
Y. Let zg € [a, b] be the point closest to a such that the mean curvature on
Y., is Hy. The slice X, is sufficiently far from 0A; in the sense that a < 2y —
4A < zg 4+ 4A < b, where A > 10. For simplicity, we will assume that zg = 0.
The map N can be extended (after first restricting it to S"~1 x [—4A, 4A])
to a local diffeomorphism

G : B x [—4A,4A] — R™

which is €g-close in the C**l-norm to the standard isometric embedding of
some tube B" x [—4A,4A] in R™™! [[9], Prop. 3.25]. The standard surgery
removes N (S"1 x [-3A,3A]) and replaces it by two convex caps contained
in G(B} x [-3A,3A]), and the result is again a smooth embedded hyper-
surface [[9], Thm. 3.26]. By the Jordan-Brouwer Separation Theorem for
hypersurfaces it follows that if v € (Kg), \ G(BY x [=3A,3A]) then x will
remain in the interior of the hypersurface after the standard surgery.

Since G is €p-close to a standard tube and A > 10 is sufficiently large
compared to €y we can choose Hy large enough (and hence the radius of the
tube small enough), so that

B.(z) C (Kp)7 = B.(x) N G(B} x [-3A,3A]) = 0.

With this choice of Hy, we have that any B(x) C (Ky); remains in
the interior of the hypersurface after a standard surgery. Note that at each
surgery time a finite number of standard surgeries may be performed. How-
ever, the solid tubes associated to the surgeries are disjoint and so the surg-
eries do not interact.

It remains to verify that components discarded by 5)ii) of Definition 2.3
do not bound a ball of radius e. There are three ways in which such a
component can arise:

(1) If 0A; =0 then A; is diffeomorphic to S™ or S" ! x S! and is
discarded.
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(2) If OA; consists of a single component then A; is homeomorphic to
a ball. This corresponds to the case where the curvature does not
decrease significantly in one direction along the neck. In this case only
one standard surgery is performed. After the standard surgery, the end
of the cylinder with high curvature will have become diffeomorphic to
S™ and will be discarded.

(3) If 0A; consists of two components then a standard surgery is performed
for each boundary component and the result is two capped cylinders
and a component diffeomorphic to S2. The S? component is discarded.

In each case the construction in [9] guarantees that the mean curvature of
the component being removed is bounded from below by % Suppose %
is such a hypersurface, that x lies in the region bounded by ¥ and that
d=d(z,¥) > e If y € X realizes d(x,X) then the mean curvature at y is
not more than % <2 since ¥ N int(By(x)) = 0. This is a contradiction as

long as Hy > 2% ]

€Wl :
Proof of Theorem 3.1. Given € > 0 sufficiently small let ¢, > 0 be the time
such that

d(0K,0K;,) = e.

Such a time exists because 0K is two-convex. Let Q. C R"2 be the level
set flow of K;_. Equivalently, Q. is the level set flow of K shifted backwards
in time by ¢, (ignoring t < 0).

Let Hy = Hy(€) be chosen as in Lemma 3.3.

Claim: Q. C Ky for all H > H,.

Let T be the first surgery time of K. Since 0K is a smooth mean
curvature flow on [0,7) and Q. is weak set flow the distance between the
two is nondecreasing on that interval, which implies

d((Qe)r, (0KH)7) > €.

Applying Lemma 3.3 we conclude that
d(Q)r, (0KH)T) > e

Since (0K H); is a smooth hypersurface the argument can be repeated
for each of the subsequent surgery times. This proves the claim.

Since lim._0 2 = K, the claim implies that K C limy_... Ky as the
limit of closed sets is closed. Note that the limit on the right-hand side
exists since Hy < Hy implies Ky, C Kp,. Finally, si/pce Ky is a weak set
flow for K the limit is also and thus limyg_,. Ky C K. O



362 Joseph Lauer

Acknowledgements

The author wishes to thank Bruce Kleiner for suggesting the problem, and
for his help and guidance during work on this project.

References

[1] Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity
solutions of generalized mean curvature flow equations, J. Differential
Geom. 33(3) (1991), 749-786.

[2] L.C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J.
Differential Geom. 33(3) (1991), 635-681.

[3] M. Gage and R. Hamilton, The heat equation shrinking convex plane
curves, J. Differential Geom. 23 (1986), 69-96.

[4] M. Grayson, The heat equation shrinks embedded plane curves to round
points, J. Differential Geom. 26 (1987), 285-314.

[5] M. Grayson, A short note on the evolution of a surface by its mean
curvature, Duke Math. J. 58(3) (1989), 555-558.

[6] R. Hamilton, Four-manifolds with positive isotropic curvature, Comm.
Anal. Geom. 5 (1997), 1-92.

[7] J. Head, The surgery and level-set approaches to mean curvature
flow, PhD Thesis, (2011), http://www.diss.fu-berlin.de/diss/receive/
FUDISS _thesis_000000024660.

[8] G. Huisken, Shrinking convex spheres by their mean curvature, J. Dif-
ferential Geom. 20 (1984), 237-266.

[9] G. Huisken and C. Sinestrari, Mean curvature with surgery for two-
convez hypersurfaces, Invent. Math. 175 (2009), 137-221.

[10] T. Ilmanen, Elliptic reqularization and partial reqularity for motion by
mean curvature, Mem. Amer. Math. Soc. 108(520) (1994), x+90.

[11] B. Kleiner and J. Lott, Notes on Perelman’s papers, Geom. Topol. 12(5)
(2008), 2587-2855.

[12] G. Perelman, Ricci flow with surgery on three-manifolds, arxiv:
math.DG/0303109.



Convergence of mean curvature flows with surgery 363

[13] B. White, The size of the singular set in mean curvature flow of mean-

convex sets, J. Amer. Math. Soc. 13(3) (2000), 665-695.

DEPARTMENT OF MATHEMATICS
YALE UNIVERSITY

NEwW HAVEN

CT 06510

FE-mail address: lauer@math.mit.edu

RECEIVED MARCH 30, 2011






