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Reduction of β-integrable 2-Segre structures

Thomas Mettler

We show that locally every β-integrable (2, n)-Segre structure can
be reduced to a torsion-free S1 · GL(n, R)-structure. This is done
by observing that such reductions correspond to sections with holo-
morphic image of a certain ‘twistor bundle’. For the homogeneous
(2, n)-Segre structure on the oriented 2-plane Grassmannian, the
reductions are shown to be in one-to-one correspondence with the
smooth quadrics Q ⊂ CP

n+1 without real points.

1. Introduction

We study the problem of reducing the G-structure associated to a certain
type of Segre structure to a torsion-free substructure.

Segre — or closely related structures and their counterparts in the cat-
egory of complex manifolds were studied under various names, including
tensor product structure [13], generalized conformal structure [11], complex
paraconformal structure [3], (almost) Grassmann structure [1, 9, 14, 16],
Segre structure [6, 12], and in [4] as an example of a class of structures
called almost symmetric hermitian manifolds.

Here, by an (m, n)-Segre structure on a manifold M we mean a smoothly
varying family of cones Sp ⊂ TpM in the tangent spaces of M , each linearly
isomorphic to the Segre cone of linear maps R

m → R
n of rank one. The

tangent planes to M which are contained in some Segre cone Sp come in
two types, called α- and β-planes. An immersed submanifold Σ ⊂ M whose
tangent planes are all β-planes and which is maximal in the sense of inclusion
is called a β-surface. A Segre structure is called β-integrable, if every β-plane
is tangent to a unique β-surface.

In [12] Grossman showed that the space of paths of a certain class of
geodesically simple path geometries, which he calls torsion-free, inherits a
Segre structure. Bryant observed in [8] that the space of oriented geodesics Λ
of a geodesically simple Finsler structure of constant flag curvature (cfc) 1
inherits a Kähler structure and a torsion-free S1 · GL(n, R)-structure

331



332 Thomas Mettler

satisfying a certain positivity condition. Conversely, he shows that every
torsion-free S1 · GL(n, R)-structure satisfying the positivity condition (and
an integrability condition for n = 2) arises via a (generalized) cfc 1 Finsler
structure.

The main result of the article is that locally every β-integrable
(2, n)-Segre structure S can be reduced to a torsion-free S1 · GL(n, R)-
structure. It follows with Bryant’s result, that locally every β-integrable
(2, n)-Segre structure admitting a S1 · GL(n, R)-reduction satisfying the
positivity condition of [8] arises via a (generalized) cfc 1 Finsler
structure.

Note that an S1 · GL(n, R)-reduction of a β-integrable (2, n)-Segre struc-
ture S equips the underlying manifold with an integrable almost complex
structure, which preserves S and for which the β-surfaces are totally real.

This paper is organized as follows. In Section 2, we review the con-
struction of a ‘twistor bundle’ ρ : XS → M over a manifold M which is
equipped with a β-integrable (2, n)-Segre structure and show in Section 3
that ρ-sections having holomorphic image are in one-to-one correspondence
with reductions of S to torsion-free S1 · GL(n, R)-structures on M . It fol-
lows that locally every β-integrable (2, n)-Segre structure can be reduced
to a torsion-free S1 · GL(n, R) structure. In Section 4 we show that for
the homogeneous (2, n)-Segre structure on the oriented 2-plane Grassman-
nian M = G+

2 (Rn+2), the reductions are in one-to-one correspondence with
the smooth quadrics Q ⊂ CP

n+1 without real points.

Remark 1.1. Before this work begun Robert Bryant informed the author
about his private notes regarding the generality of positive cfc Finsler
structures on the n-sphere. He shows that a positive cfc Finsler struc-
ture on the n-sphere all of whose geodesics are closed and of the same
length gives rise to a D2-bundle ρ : X → Λ, fibering over the space of ori-
ented geodesics Λ, whose total space is a complex manifold. This bundle
is isomorphic to ρ0 : CP

n+1 \ RP
n+1 → G+

2 (Rn+2) in the case of a rectilin-
ear Finsler structure. In addition, the Finsler structure induces a ρ-section
having holomorphic image (isomorphic to a quadric in the rectilinear case)
and conversely every such section satisfying a certain convexity condition
gives rise to a Finsler structure on Sn sharing the same geodesics. Using
Kodaira deformation theory this allows Bryant to determine the general-
ity of such Finsler structures sharing the same unparametrized geodesics.
Although being related, the results in this paper were arrived at indepen-
dently.
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2. 2-Segre structures

2.1. Definitions and examples

Let m, n ≥ 2 be integers. A vector v ∈ R
m ⊗ R

n is called decomposable or
simple if there exists x ∈ R

m and y ∈ R
n such that v = x ⊗ y. Let X = (Xα)

be linear coordinates on R
m and Y = (Y k) on R

n. Writing Zk
α = Xα ⊗ Y k,

the set of simple vectors in R
m ⊗ R

n is the zero locus of the homogeneous
quadratic equations

(2.1) Zi
αZk

β − Zi
βZk

α = 0

and thus is a cone. A subset S in a real vector space V is called an (m, n)-
Segre cone, if there exists an isomorphism V � R

m ⊗ R
n which yields a bijec-

tion between S and the cone of simple vectors in R
m ⊗ R

n.
Let S ⊂ V be a Segre cone. Clearly, the isomorphism V � R

m ⊗ R
n is

unique up to composition with an element of the group G(m, n), the sub-
group of GL(Rm ⊗ R

n) consisting of maps preserving the cone of simple
vectors. Let H(m, n) = GL(m, R) ⊗ GL(n, R) and Z2 ⊂ G(n, n) be the sub-
group generated by the involution x ⊗ y �→ y ⊗ x for x, y ∈ R

n. Then we
have an isomorphism of Lie groups1

(2.2) G(m, n) �
{

H(m, n) n 	= m,

H(n, n) � Z2 n = m.

Definition 2.1. An (m, n)-Segre structure S on a smooth mn-manifold M
is a choice of an (m, n)-Segre cone Sp ⊂ TpM in each tangent space of M
which varies smoothly from point to point.

An isomorphism f : TpM → R
m ⊗ R

n will be called a Segre coframe at
p if it maps Sp to the cone of simple vectors in R

m ⊗ R
n.

The set of Segre coframes at p will be denoted by (FS)p and is the fiber
of a principal right G(m, n)-bundle π : FS → M , with right action given by
Rg(f) = g−1 ◦ f for g ∈ G(m, n). The tautological 1-form ζ is defined by
requiring that ζf = f ◦ π′

f : TfFS → R
m ⊗ R

n for f ∈ FS . It satisfies R∗
gζ =

g−1 ◦ ζ for g ∈ G(m, n).
A linear subspace Π ⊂ Sp is called simple. The simple linear subspaces

which are of the form Π � R
m ⊗ y for some y ∈ R

n are called α-planes and
the simple linear subspaces which are of the form Π � x ⊗ R

n for some x ∈
1For a proof, see the appendix.
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R
m are called β-planes.2 Note that α- and β-planes are not well defined for

n = m unless the Segre structure has been reduced to an H(n, n)-structure.
An immersed connected manifold Σ → M for which TpΣ is a β-plane for
every point p ∈ Σ is called a proto β-surface. If, in addition, Σ → M is
maximal in the sense of inclusion, then Σ is called a β-surface. A Segre
structure S is called β-integrable if every β-plane Π is tangent to a unique
β-surface Σ → M . The notion of a (proto) α-surface and α-integrability
are defined analogously. The necessary and sufficient conditions for a Segre
structure of type (m, n) to be α- or β-integrable were given in [2, 16] (see
also [3] for the complex case).

Example 2.1. Recall that a pseudo-Riemannian metric g on a smooth
4-manifold M with signature (+, +,−,−) is said to have split-signature.
Locally g may be written as

(2.3) g = ε1
1 � ε2

2 − ε1
2 � ε2

1

for some linearly independent 1-forms εi
j . A vector v ∈ TM is called null

if g(v, v) = 0. It follows with (2.3) that the g-null vectors give rise to a (2,2)-
Segre structure on M and conversely it can be shown that every (2,2)-Segre
structure on a 4-manifold M gives rise to a unique conformal structure of
split-signature on M .

Closely related to Segre structures is the notion of an almost Grassmann
structure.

Definition 2.2. A smooth mn-manifold M is said to carry an almost
Grassmann structure if there exist smooth vector bundles Em → M and
En → M of rank m, n respectively together with an isomorphism TM �
Em ⊗ En.

Remark 2.1. Clearly, an almost Grassmann structure on M induces a
unique Segre structure on M , but the existence of a Segre structure S on M
is in general not sufficient for the existence of an almost Grassmann structure
inducing S. The two definitions are however equivalent when m + n is odd
(see the appendix).

Example 2.2. The prototypical example of a manifold carrying an almost
Grassmann structure is the Grassmannian of m-planes in R

m+n (see for

2The reader is warned that often the opposite convention regarding α- and
β-planes is used. The convention used here is chosen to be consistent with [15].
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instance [16] for details). We will construct the associated Segre structure
in Section 4 for the case m = 2.

2.2. The structure equations of a 2-Segre structure

We will henceforth restrict our attention to H(2, n)-structures π : FS →
M and simply speak of 2-Segre structures, thus implicitly assuming that
(2, 2)-Segre structures have been reduced to H(2, 2)-structures. We think of
H(2, n) as a subgroup of GL(2n, R) via the Kronecker product and conse-
quently of π : FS → M as a reduction with structure group H(2, n) of the full
coframe bundle F → M whose fiber at p ∈ M consists of all isomorphisms
TpM → R

2n.
A linear connection θ on F → M is said to be adapted to the 2-Segre

structure π : FS → M , if θ pulls-back to FS to become a principal H(2, n)-
connection. A 2-Segre structure is called torsion-free, if it admits an adapted
connection θ with vanishing torsion τ = dζ + θ ∧ ζ.

Write H = H(2, n) and h ⊂ gl(2, R) ⊗ gl(n, R) for the Lie algebra of H.
For computational purposes it is convenient to introduce the matrices

a =
(

0 −1
1 0

)
, b1 =

(
0 1
0 0

)
, b2 =

(
0 0
0 1

)
,

and write ei
k for the (n × n)-matrix whose entry is 1 at the position (k, i)

and 0 otherwise. Using this notation an h-basis is given by

a ⊗ In, b1 ⊗ In, b2 ⊗ In, I2 ⊗ ei
k,

and a principal H-connection θ on FS may be written as

(2.4) θ = χ ⊗ In + I2 ⊗ φ

with χ = ωa + 2ξ1b1 + 2ξ2b2 and φ = φi
ke

k
i for some linearly independent

1-forms ω, ξ1, ξ2, φ
i
k on FS . Let ξ = ξ1 + iξ2. Straightforward computations

show that we may linearly identify R
2n with C

n in such a way that we can
write the first structure equation in complex form:

Proposition 2.1. The connection form (ω, ξ, φ) of an FS-adapted con-
nection θ satisfies

(2.5) dζ = −(
i (ω − ξ) In + φ

) ∧ ζ − i ξ In ∧ ζ̄ + τ.
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Proof. Omitted. �
Here, the forms ζ and τ are thought to be C

n-valued and ζ̄ denotes the C
n-

valued 1-form on FS which is obtained by complex conjugation of the entries
of ζ.

We have the curvature forms

(2.6)
Ω = dω + ω ∧ i (ξ − ξ̄),
Ξ = dξ + ξ ∧ i

(
ξ̄ − 2ω

)
,

Φ = dφ + φ ∧ φ − ω ∧ (
ξ + ξ̄

)
In.

Differentiating the structure equation (2.5) gives the Bianchi-identity

(2.7) dτ =
(
i (Ω − Ξ) In + Φ

) ∧ ζ + i Ξ In ∧ ζ̄.

2.3. A quasiholomorphic fiber bundle

Let P = S1 · GL(n, R) ⊂ H(2, n) be the closed subgroup consisting of ele-
ments of the form

eiϕ · b =
(

cos ϕ − sinϕ
sinϕ cos ϕ

)
⊗ b,

for some real number ϕ and b ∈ GL(n, R). Equip the quotient XS = FS/P
with its canonical smooth structure so that the quotient projection ν :
FS → XS is a smooth surjective submersion. Note that the 1-forms ηk are
ν-semibasic since they are π-semibasic. Moreover, since θ = (ω, ξ, φ) is a
principal H-connection, it follows with (2.4) that ξ is ν-semibasic as well.
Therefore the forms ηk together with ξ1 and ξ2 span the ν-semibasic 1-forms
on FS .

Lemma 2.1. Let π : FS → M2n be a 2-Segre structure and θ = (ω, ξ, φ) an
adapted connection. Then there exists a unique almost complex structure J

on XS such that a complex-valued 1-form on XS is a (1,0)-form for J if and
only if its ν-pullback is a linear combination of {ζ1, . . . , ζn, ξ} with coeffi-
cients in C∞(FS , C).

Proof. Denote by ∂
∂ηl ,

∂
∂ξ1

, ∂
∂ξ2

, ∂
∂ω , ∂

∂φi
k
, the vector fields dual to the cofram-

ing (ηl, ξ1, ξ2, ω, φi
k). Define the map J̃ : TFS → TXS by

J̃(v) = ν ′
(
−η2k(v)

∂

∂η2k−1
+ η2k−1(v)

∂

∂η2k
− ξ2(v)

∂

∂ξ1
+ ξ1(v)

∂

∂ξ2

)
.
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The 1-forms ηl, ξ1, ξ2 are ν-semibasic and thus we have J̃(v + w) = J̃(v) for
every v ∈ TFS and w ∈ TFS tangent to the ν-fibers. Since θ is a princi-
pal H-connection, the equivariance (Rh)∗θ = h−1θh for h ∈ H together with
a short computation gives

(2.8) (Reiϕ·b)
∗ ξ = e−2iϕξ,

for eiϕ · b ∈ S1 · GL(n, R). Moreover we have

(2.9) (Rh)∗η = h−1η

for every h ∈ H. Identifying GL(n, C) with the subgroup of GL(2n, R)
commuting with a ⊗ In and using the fact that S1 · GL(n, R) ⊂ GL(n, C)
together with (2.8, 2.9) implies J̃ ◦ (Reiα·b)′ = J̃. In other words there exists
an almost complex structure J : TXS → TXS such that J̃ = J ◦ ν ′. Clearly, J

has the desired properties and these properties uniquely characterize J. �

It is natural to ask when two FS -adapted connections induce the same almost
complex structure. We have:

Lemma 2.2. The FS-adapted connections θ = (φ, ω, ξ) and θ′ = (φ′, ω′, ξ′)
induce the same almost complex structure on XS if and only if ξ − ξ′ = λkζ

k

for some smooth functions λk : FS → C. In particular any two FS-adapted
connections with the same torsion induce the same almost complex structure.

Proof. Let Jθ, Jθ′ denote the almost complex structures with respect to the
connections θ, θ′ and suppose ξ′ = ξ + λkζ

k for some smooth functions λk :
FS → C. Let α be a (1,0)-form for Jθ. Then we may write

ν∗α = akζ
k + aξ = akζ

k + a
(
ξ′ − λkζ

k
)

= (ak − λk) ζk + aξ′

for some smooth functions a, ak : FS → C, thus showing that α is a (1,0)-
form for Jθ′ . Conversely suppose Jθ = Jθ′ . Note that ξ − ξ′ is π-semibasic
and may thus be written as

ξ − ξ′ = λkζ
k + λ′

kζ̄
k

for some smooth functions λk, λ
′
k : FS → C. Let α be a (1,0)-form for Jθ.

Then we may write

ν∗α = akζ
k + aξ = a′kζ

k + a′ξ′ = a′kζ
k + a′

(
ξ − λkζ

k − λ′
kζ̄

k
)
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for some smooth functions a, a′, ak, a
′
k : FS → C. Thus, it follows

(a − a′)ξ +
(
ak − a′k + a′λk

)
ζk + a′λ′

kζ̄
k = 0

which can hold for an arbitrary (1,0)-form α if and only if λ′
k = 0. Finally

it is easy to check that if (ω, ξ, φ) and (ω′, ξ′, φ′) are two FS -adapted con-
nections with the same torsion, then there exist n smooth complex-valued
functions ak on FS such that

(2.10)

ω′ − ω = Re(ak) Im(ζk),

ξ′ − ξ =
1
2i

ākζ
k,(

φ′)i

k
− φi

k = Re(akζ
i) + δi

k Re(al) Re(ζ l).
�

Denote by A1,0
S and A0,1

S the complex-valued π-semibasic 1-forms on FS
which can be written as akζ

k and akζ̄
k respectively. Here ak are smooth

complex-valued functions on FS . Furthermore set

Ap,q
S = Λp

(
A1,0

S
)
⊗ Λq

(
A0,1

S
)

,

so that the complex-valued π-semibasic k-forms Ak
S on FS decompose as

Ak
S =

⊕
p+q=k

Ap,q
S .

Proposition 2.2. The almost complex structure J is integrable if and only
if Ξ and the torsion components τ i lie in A2,0

S ⊕A1,1
S . In particular for n ≥ 3

every torsion-free FS-adapted connection gives rise to an integrable J.

Remark 2.2. The integrability conditions for the almost complex struc-
ture J can also be obtained by applying [18, Theorem 4]. We we will instead
use Proposition 2.1.

Proof of Proposition 2.2. Using the characterization of J provided in
Lemma 2.1, the first statement is an immediate consequence of the struc-
ture equation (2.5), the definition of the curvature form Ξ in (2.6), and the
Newlander–Nirenberg theorem. In order to prove the second statement we
need to show that for n ≥ 3 the condition τ = 0 implies Ξ ∈ A2,0

S ⊕A1,1
S .
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Since the curvature form Ξ is a π-semibasic 2-form we may write

(2.11) Ξ = xklζ
k ∧ ζ l + x̃klζ̄

k ∧ ζ l + x̂klζ̄
k ∧ ζ̄ l

for some smooth complex-valued functions xkl, x̃kl, x̂kl on FS . Writing out
the Bianchi-identity (2.7) in components for τ = 0 gives

0 = (i(Ω − Ξ)δi
k + Φi

k) ∧ ζk + i Ξ ∧ ζ̄i,

replacing Ξ with the expansion (2.11) we get

0 = · · · + ix̂klζ̄
k ∧ ζ̄ l ∧ ζ̄i

where the unwritten summands do not contain forms in A0,3
S . If n ≥ 3 there

is for every choice of indices k, l an index i 	= k, i 	= l so that the Bianchi-
identity can hold if and only if x̂kl = 0, which is equivalent to Ξ lying
in A2,0

S ⊕A1,1
S . �

Remark 2.3. Recall that H(2, 2)-structures π : FS → M correspond to
oriented conformal structures of split-signature and thus are always torsion-
free. In fact, the logical value of the curvature condition Ξ ∈ A2,0

S ⊕A1,1
S does

not depend on the choice of a particular adapted torsion-free connection, but
only on FS . We leave it to the reader to check that this curvature condition
corresponds to self-duality3 of the associated oriented conformal 4-manifold
of split-signature.

In fact, it can be shown that for n = 2 the almost complex structure J

is integrable if and only if θ is torsion-free and the associated split-signature
conformal structure is self-dual. For n ≥ 3, the almost complex structure J

is integrable if and only if θ is torsion-free.

Suppose J is integrable, so that the total space of the bundle ρ : XS → M
is a complex (n + 1)-manifold. By construction the ρ-fibers are smoothly
embedded submanifolds of XS diffeomorphic to GL(2, R)/GL(1, C). We
will argue next, that (XS , J) is a quasiholomorphic fiber bundle with fiber
CP

1\RP
1.

3As in the case of (4, 0)-signature, a split-signature metric is called self-dual if its
Weyl curvature tensor, considered as a bundle-valued 2-form, is its own Hodge-star.
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Definition 2.3. Let π : B → M be a fiber bundle with fiber F and J an
almost complex structure on B. Then (B, J) is called quasiholomorphic if

(i) the almost complex structure J is integrable,

(ii) there exists a complex structure I on F ,

(iii) each π-fiber Bp = π−1(p) admits a complex structure with respect
to which it is biholomorphic to (F, I) and with respect to which
the inclusion Bp ↪→ B is a holomorphic embedding.

Pulling back ξ with a local section s of ν : FS → XS gives a complex-
valued 1-form which pulls back to the ρ-fibers to be non-vanishing and
which depends on s only up to complex multiples. It follows that the
fibers of ρ : XS → M are holomorphically embedded Riemann surfaces with
respect to the complex structure induced by ξ. Using the Maurer–Cartan
form of GL(2, R), it is easy to see that fibers are biholomorphic to CP

1\RP
1.

In [2, 16] it was shown that for n ≥ 3 a 2-Segre structure is β-integrable if
and only if it is torsion-free and for n = 2 if and only if it is self-dual. Sum-
marizing we have:

Theorem 2.1. Let π : FS → M be a β-integrable 2-Segre structure. Then
there exists a canonical almost complex structure J on XS , so that (XS , J)
is a quasiholomorphic fiber bundle with fiber CP

1 \ RP
1.

Proof. We pick an FS -adapted connection without torsion and let J be
the associated almost complex structure on XS whose existence is guar-
anteed by Lemma 2.1. Then by Proposition 2.2 and the above remarks, the
almost complex structure J is integrable and (XS , J) is a quasiholomorphic
fiber bundle with fiber CP

1 \ RP
1. Finally, by Lemma 2.2, any other FS -

adapted torsion-free connection gives rise to the same almost complex
structure J. �

3. Reductions of β-integrable 2-Segre structures

We will henceforth consider the β-integrable case and assume ρ : XS → M
to be equipped with its canonical integrable almost complex structure J

with respect to which (XS , J) is a quasiholomorphic fiber bundle. By con-
struction the sections of the bundle ρ : XS → M correspond to reductions
of the principal H-bundle π : FS → M with structure group S1 · GL(n, R).
Note that an S1 · GL(n, R)-reduction of a β-integrable (2, n)-Segre struc-
ture π : FS → M equips M with an almost complex structure preserving
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the Segre cones Sp and for which the β-planes are totally real. In this sec-
tion we will show that the torsion-free S1 · GL(n, R)-reductions of FS are in
one-to-one correspondence with the sections σ : M → XS having holomor-
phic image σ(M) ⊂ XS . This will done using exterior differential systems
(eds). The notation and terminology for eds are chosen to be consistent
with [5].

A basis for the Lie algebra of S1 · GL(n, R) is given by

a ⊗ In, I2 ⊗ ei
k.

Suppose R → M is a torsion-free S1 · GL(n, R)-structure with adapted con-
nection θ. Write

θ = aα ⊗ In + I2 ⊗ β,

for some 1-form α and some gl(n, R)-valued 1-form β on R. Let ζ denote
the pullback of the canonical C

n-valued 1-form to R, then ζ satisfies

(3.1) dζ = − (iα In + β) ∧ ζ,

as was already observed in [8].
We will need the following Lemma whose proof is straightforward and

thus omitted:

Lemma 3.1. Let (X, J) be a complex (n + 1)-manifold, (μ1, . . . , μn, κ) ∈
A1(X, C) a basis for the (1,0)-forms of J and f : Σ → X a 2n-submanifold
with

(3.2) f∗ (
iμ1 ∧ μ̄1 ∧ · · · ∧ iμn ∧ μ̄n

) 	= 0.

Then (f, Σ) is a complex submanifold if and only if

f∗ (
κ ∧ μ1 ∧ · · · ∧ μn

)
= 0.

Moreover through every point p ∈ X passes such a complex submanifold.

On FS define the eds

I = 〈ξ ∧ ζ1 ∧ · · · ∧ ζn〉

together with the independence condition

Z = iζ1 ∧ ζ̄1 ∧ · · · ∧ iζn ∧ ζ̄n.

The eds (I, Z) is of interest because of the following:
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Lemma 3.2. Let σ : M → XS be an S1 · GL(n, R)-reduction of FS and σ̃ :
U → FS a local coframing covering σ. Then σ̃ is an integral manifold
of (I, Z) if and only if σ|U : U → XS is a complex submanifold.

Proof. Let s : ρ−1(U) → FS be a local section of the bundle ν : FS → XS
and let μi = s∗ζi for i = 1, . . . , n and κ = s∗ξ be a local basis for the (1,0)-
forms on ρ−1(U). Then

ν∗μi = (s ◦ ν)∗ζi = (Rt)∗ζi,

ν∗κ = (s ◦ ν)∗ξ = (Rt)∗ξ,

for some smooth function t : π−1(U) → S1 · GL(n, R). Recall that for eiϕ ·
b ∈ S1 · GL(n, R) we have

(
Reiϕ·b

)∗
ξ = e−2iϕξ,(

Reiϕ·b
)∗

ζ =
(
e−iϕ · b−1

)
ζ.

This yields

ν∗ (
iμ1 ∧ μ̄1 ∧ · · · ∧ iμn ∧ μ̄n

)
= (det b)−2 Z 	= 0

for some smooth map b : π−1(U) → GL(n, R) and

ν∗κ = e−2iϕξ

for some smooth function ϕ : π−1(U) → R. Hence we get

(σ|U )∗
(
iμ1 ∧ μ̄1 ∧ · · · ∧ iμn ∧ μ̄n

)
=

(
(det b)−2 ◦ σ̃

)
σ̃∗Z

which vanishes nowhere since σ̃ is a π-section. Therefore according to
Lemma 3.1, σ|U : U → XS is a complex submanifold if and only if

(σ|U )∗
(
κ ∧ μ1 ∧ · · · ∧ μn

)
=

((
e−(n+2)iϕ

det b

)
◦ σ̃

)
σ̃∗ (

ξ ∧ ζ1 ∧ · · · ∧ ζn
)

= 0.

�

Recall that S1 · GL(n, R) ⊂ GL(n, C) and we can thus look for reduc-
tions σ : M → XS whose associated almost complex structure Jσ is
integrable.
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Proposition 3.1. Let σ : M → XS be an S1 · GL(n, R)-reduction of π :
FS → M . Then the following two statements are equivalent:

(i) The almost complex structure Jσ is integrable.

(ii) Any local coframing σ̃ : U → FS covering σ is an integral manifold
of (I, Z).

Proof. Since σ̃ is a π-section we have σ̃∗Z 	= 0. Write χi = σ̃∗ζi. The
local coframing σ̃ is adapted to the S1 · GL(n, R)-reduction σ and thus
the forms χi are a local basis of the (1,0)-forms of Jσ. By Newlander–
Nirenberg Jσ is integrable if and only if there exist complex-valued
1-forms πi

k such that

dχi = πi
k ∧ χk.

Using the structure equation (2.5) we get

(3.3) dχi = σ̃∗dζi = π̃i
k ∧ χk − iσ̃∗ξ ∧ χ̄i

for some complex-valued 1-forms π̃i
k. Write

σ̃∗ξ = xkχ
k + ykχ̄

k

for some smooth complex-valued functions xk, yk on U . Then (3.3) implies
that Jσ is integrable on U if and only if the functions yk all vanish. This
condition is equivalent to σ̃ being an integral manifold of (I, Z). �

We are now ready to prove:

Theorem 3.1. Let π : FS → M be a β-integrable 2-Segre structure. Then
an S1 · GL(n, R)-reduction R ⊂ FS is torsion-free if and only if ν(R) ⊂ XS
is a complex submanifold.

Proof. Let ν(R) = σ(M) for some ρ-section σ : M → XS which has
holomorphic image, then by Lemma 3.2 and Proposition 3.1, the almost com-
plex structure Jσ is integrable. This is equivalent to ξ satisfying ξ = xkζ

k for
some smooth complex-valued functions xk on R. Pulling back the structure
Equation (2.5) to R ⊂ FS gives

(3.4) dζ = −(
i
(
ω − xkζ

k
)

In + φ
) ∧ ζ − i xkζ

k In ∧ ζ̄.
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Define
α = ω − Im(xk) Im(ζk),

βj
l = φj

l − Re(ix̄lζ
j) − δj

l Im(xk) Re(ζk),

then the 1-form θ = aα ⊗ In + I2 ⊗ β is a linear connection on R which sat-
isfies

(3.5) dζ = − (iαIn + β) ∧ ζ,

thus R is torsion-free. Conversely suppose the reduction σ : M → XS is
torsion-free, so that on R = (ν−1 ◦ σ)(M) there exists a linear connec-
tion θ = aα ⊗ In + I2 ⊗ β satisfying (3.5). Pulling back (ω, ξ, φ) to R gives

(3.6)

ω = α + ak

(
ζk + ζ̄k

)
+ iãk

(
ζk − ζ̄k

)
ξ = xkζ

k + x̃kζ̄
k

φi
k = βi

k + f i
kl

(
ζk + ζ̄k

)
+ if̄ i

kl

(
ζk − ζ̄k

)

for some smooth complex-valued functions ak, ãk, xk, x̃k, f
i
kl, f̃

i
kl on R. Sub-

tracting (3.4) from (3.5) and using (3.6) gives in components

(3.7) 0 = · · · + i
(
xkζ

k + x̃kζ̄
k
)
∧ ζ̄i

where the unwritten summands are not of the form ζ̄k ∧ ζ̄i. It follows that
(3.7) can hold for every i = 1, . . . , n if and only if x̃k = 0. �

Corollary 3.1. Locally every β-integrable 2-Segre structure π : FS → M
can be reduced to a torsion-free S1 · GL(n, R)-structure.

Proof. For a given point p ∈ M , choose q ∈ XS with ρ(q) = p and a coordi-
nate neighborhood Up. Let μi, i = 1, . . . , n and κ be a basis for the (1,0)-
forms on ρ−1(Up) as constructed in Lemma 3.2. Using Lemma 3.1 there exists
a complex 2n-submanifold f : Σ → ρ−1(Up) passing through q for which

f∗ (
iμ1 ∧ μ̄1 ∧ · · · ∧ iμn ∧ μ̄n

) 	= 0.

Since the π : FS → M pullback of a volume form on M is a nowhere van-
ishing multiple of Z = iμ1 ∧ μ̄1 ∧ · · · ∧ iμn ∧ μ̄n, the ρ pullback of a volume
form on Up is a nowhere vanishing multiple of Z and hence ρ ◦ f : Σ → Up

is a local diffeomorphism. Composing f with the locally available inverse
of this local diffeomorphism one gets a local ρ-section, which is defined
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in a neighborhood of p and which is a complex submanifold. Applying
Theorem 3.1 it follows that π : FS → M locally has an underlying torsion-
free S1 · GL(n, R)-structure. �

4. The flat case

In this section we apply the obtained results to the Grassmannian of ori-
ented 2-planes in R

n+2 which carries a 2-oriented torsion-free 2-Segre struc-
ture together with an adapted connection of vanishing curvature.

Here a 2-Segre structure π : FS → M is called 2-oriented if the structure
group H(2, n) has been reduced to H+(2, n) = GL+(2, R) ⊗ GL(n, R).

Using Theorem 2.1 we also get: If FS → M is a β-integrable 2-oriented
2-Segre structure, then ρ : XS = FS/(S1 · GL(n, R)) → M together with its
canonical almost complex structure J is a quasiholomorphic fiber bundle
with fiber GL+(2, R)/GL(1, C) � D2, the open unit disk in C.

4.1. The Grassmannian of oriented 2-planes

The projective linear group PL(n + 2, R) = GL(n + 2, R)/Z acts transitively
from the left on the Grassmannian G+

2 (Rn+2) of oriented 2-planes in R
n+2

and the stabilizer subgroup of any element Π ∈ G+
2 (Rn+2) may be identified

with the subgroup S consisting of elements of the form

[
a b
0 c

]

where a ∈ GL+(2, R), c ∈ GL(n, R) and b ∈ MR(2, n) is a real (2 × n)-
matrix. Let μ : PL(n + 2, R) → G+

2 (Rn+2) � PL(n + 2, R)/S be the quo-
tient projection and write

θ̃ =
(

α β
η γ

)

for the Maurer–Cartan form of PL(n + 2, R). The real matrix-valued 1-forms
α, β, γ, η have sizes according to the block decomposition of the Lie group S
and satisfy Tr(α) + Tr(γ) = 0. Let H i

k denote the vector fields dual to the
forms η with respect to the coframing θ̃. Let N ⊂ PL(n + 2, R) be the closed
normal subgroup given by

N =
{[

I2 b
0 In

] ∣∣∣∣ b ∈ MR(2, n)
}

,
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whose elements will be denoted by [b]. The quotient Lie group S/N is iso-
morphic to H+(2, n) and thus PL(n + 2, R)/N is the total space of a right
principal H+(2, n)-bundle over G+

2 (Rn+2). Consider the smooth map

ϕi
k : PL(n + 2, R) → TG+

2 (Rn+2), p �→ μ′
p(H

i
k(p)).

The Maurer–Cartan equation dθ̃ + θ̃ ∧ θ̃ = 0 implies that the form η is basic
for the quotient projection PL(n + 2, R) → PL(n + 2, R)/N . Therefore the
maps ϕi

k are invariant under the right action of N and thus descend to
smooth maps PL(n + 2, R)/N → TG+

2 (Rn+2). The images ϕi
k(p) for a given

point p ∈ PL(n + 2, R) are linearly independent and thus induce a map ϕ
into the coframe bundle of G+

2 (Rn+2). The maps ϕi
k can be arranged so

that the induced map ϕ from PL(n + 2, R)/N into the coframe bundle
of G+

2 (Rn+2) pulls back the components of the canonical C
n-valued 1-form

to i(ηk
1 + iηk

2 ). It follows again with the Maurer–Cartan equation that ϕ
embeds PL(n + 2, R)/N as a smooth right principal H+(2, n)-subbundle of
the coframe bundle of G+

2 (Rn+2). This subbundle will be denoted by π0 :
F0 → G+

2 (Rn+2) and the projection PL(n + 2, R) → F0 by υ. Write

ω̃ = α2
1,

2 ξ̃ =
(
α1

2 + α2
1

)
+ i

(
α2

2 − α1
1

)
,

φ̃ = γ − Inα2
2,

ζi = i(ηi
1 + iηi

2).

Then straightforward computations show that the forms (ω̃, ξ̃, φ̃) transform
under the right action of H+(2, n) as the connection forms of an S0-adapted
connection do. Moreover, we have

dζ = −
(
i
(
ω̃ − ξ̃

)
In + φ̃

)
∧ ζ − iξ̃In ∧ ζ̄.

This implies that there exists an adapted torsion-free connection (ω, ξ, φ)
on F0 such that

(4.1) υ∗(ω, ξ, φ) = (ω̃, ξ̃, φ̃), mod η,

i.e., (4.1) holds up to linear combinations of the elements of η. Further-
more the Maurer–Cartan equation implies that the curvature forms of this
connection all vanish. Summarizing we have proved:
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Proposition 4.1. The Grassmannian of oriented 2-planes in R
n+2 admits

a 2-oriented 2-Segre structure S0 together with an adapted, torsion-free, flat
connection (ω, ξ, φ) such that υ∗(ω, ξ, φ) = (ω̃, ξ̃, φ̃), mod η, holds.

Let ρ : X0 → G+
2 (Rn+2) be the D2-bundle associated to the 2-oriented

torsion-free 2-Segre structure π0 : F0 → G+
2 (Rn+2) and J0 its canonical

almost complex structure which makes (X0, J0) into a quasiholomorphic
fiber bundle with fiber D2. Its total space X0 can be identified with the
quotient PL(n + 2, R)/P̃ where P̃ is the closed Lie subgroup

P̃ =
{[

a b
0 c

] ∣∣∣∣ a ∈ GL(1, C), b ∈ MR(2, n), c ∈ GL(n, R)
}

.

Write an element [g] ∈ PL(n + 2, R) as [g1, . . . , gn+2] where the elements gk

are column-vectors well defined up to a common non-zero factor. Consider
the smooth map

λ : PL(n + 2, R) → CP
n+1\RP

n+1, [g1, g2, . . . , gn+2] �→ [g1 + ig2].

Clearly λ is a surjective submersion whose fibers are the P̃ -orbits and thus
induces a diffeomorphism ϕ : X0 → CP

n+1\RP
n+1. Therefore ρ0 = ρ ◦ ϕ−1 :

CP
n+1 \ RP

n+1 → G+
2 (Rn+2) is a bundle with fiber D2. Explicitly ρ0 is given

by [z] �→ R{Re(z), Im(z)} and the 2-plane R{Re(z), Im(z)} is oriented by
declaring Re(z), Im(z) to be a positively oriented basis.

Proposition 4.2. There exists a biholomorphic fiber bundle isomor-
phism ϕ : (X0, J0) → CP

n+1\RP
n+1 covering the identity on G+

2 (Rn+2).

Proof. Using Lemma 2.1 and Proposition 4.1 it sufficient to show that λ
pulls-back the (1,0)-forms of CP

n+1 \ RP
n+1 to linear combinations of the

forms ζ1, . . . , ζn, ξ̃. This is a computation that causes no difficulties and so
we omit it. �

4.2. Smooth quadrics without real points

If V is a real vector space, VC = V ⊗ C will denote its complexification
and P(VC) = (VC\{0})/C

∗ its complex projectivization. An element [z] ∈
P(VC) for which z is a simple vector is called a real point.

The aim of this subsection is to show that the smooth quadrics Q ⊂
CP

n+1 = P(Rn+2
C

) without real points are in one-to-one correspondence with



348 Thomas Mettler

the sections of the bundle ρ0 : CP
n+1 \ RP

n+1 → G+
2 (Rn+2) having holomor-

phic image. This is done by reducing the problem to the case n = 1 which
was shown to be true in [17, Corollary 2] (see also [7, Theorem 9]).

Let Π ⊂ R
n+2 be a 3-dimensional linear subspace. Choosing an iso-

morphism R
3 � Π induces an embedding of the 2-sphere S2 � G+

2 (R3) ↪→
G+

2 (Rn+2). Clearly the image of this embedding and its induced smooth
structure do not depend on the chosen isomorphism and thus Π deter-
mines a smoothly embedded 2-sphere in G+

2 (Rn+2) which will be denoted
by SΠ. Moreover the isomorphism R

3 � Π induces a holomorphic embed-
ding CP

2 � P(ΠC) ↪→ CP
n+1 and thus an embedding CP

2\RP
2 ↪→ CP

n+1 \
RP

n+1. Again the image of this embedding and its induced complex structure
do not depend on the chosen isomorphism and thus Π determines a holo-
morphically embedded submanifold YΠ ⊂ CP

n+1 \ RP
n+1. Restricting the

base point projection ρ0 : CP
n+1 \ RP

n+1 → G+
2 (Rn+2) to YΠ gives a D2-

bundle ρΠ : YΠ → SΠ which is isomorphic to the bundle ρ2
0 : CP

2\RP
2 →

G+
2 (R3), [z] �→ R{Re(z), Im(z)}.

Recall that for a smooth algebraic hypersurface X ⊂ P(VC), the Gauss
map GX : X → Gn−1(VC) sends a point x ∈ X to the tangent hyperplane
of X at x. The dual variety X∗ is now defined to be the image of X under
the Gauss map. Usually GX is assumed to take values in P(V ∗

C
) = P((VC)∗) �

Gn−1(VC). Note that if Q ⊂ P(VC) a smooth quadric without real points.
Then the dual of Q is a smooth quadric without real points in P(V ∗

C
). It

follows that the intersection of a smooth quadric without real points with a
real k-plane Π of dimension at least 2 gives again a smooth quadric without
real points in P(ΠC).

Theorem 4.1. The sections of the disk bundle ρ0 : CP
n+1 \ RP

n+1 →
G+

2 (Rn+2) having holomorphic image are in one-to-one correspondence with
the smooth quadrics Q ⊂ CP

n+1 without real points.

Proof. Let σ : G+
2 (Rn+2) → CP

n+1 \ RP
n+1 be a ρ0-section with holo-

morphic image Q = imσ. Let Π ⊂ R
n+2 be a 3-dimensional linear sub-

space and ιΠ : SΠ → G+
2 (Rn+2), ι̃Π : YΠ → CP

n+1 \ RP
n+1 the correspond-

ing embedded submanifolds. Then the map σ ◦ ιΠ : SΠ → CP
n+1 \ RP

n+1 is
smooth and takes values in YΠ. Consequently the induced map σΠ : SΠ → YΠ

is an injective immersion and thus, since SΠ is compact, a smooth embed-
ding. Set QΠ = Q ∩ YΠ = σΠ(SΠ), then QΠ ⊂ YΠ is a smoothly embedded
submanifold. Now Chow’s theorem implies that Q is a smooth algebraic
hypersurface. Suppose P : C

n+2 → C is a homogeneous polynomial defin-
ing Q and let PΠ : C

3 → C denote the homogeneous polynomial obtained
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by pulling back P to ΠC � C
3. The map PΠ is a homogeneous polynomial

of the same degree as P which has no real points, since P has no real points.
Under the identification YΠ � CP

2\RP
2, QΠ becomes a smoothly embed-

ded submanifold of CP
2\RP

2 defined by the zero locus of the homogeneous
polynomial PΠ. Since QΠ is diffeomorphic to the 2-sphere, the genus of QΠ

is 0 and thus by the degree-genus formula for smooth plane algebraic curves
g = (d − 1)(d − 2)/2, the degree of PΠ must be 1 or 2. However since QΠ

has no real points the degree of PΠ and thus the degree of P must be 2.
Conversely let Q ⊂ CP

n+1 be a smooth quadric without real points.
Let {Πι}ι∈I be a family of 3-dimensional linear subspaces of R

n+2 so that
the submanifolds SΠι cover G+

2 (Rn+2). Let QΠι denote the intersection of Q
with P(Πι

C
) which is a smooth quadric without real points. According to [17,

Corollary 2] each such quadric is the image of a unique section σι : SΠι →
XΠι . Now for any two Πι1 , Πι2 the spheres SΠι1 and SΠι2 are either disjoint
or intersect in exactly two points. Since for a given QΠι the section σι is
unique, it follows that QΠι intersects each ρΠι-fiber in exactly one point.
This implies that the sections σι1 and σι2 agree on intersection points and
thus the family {σι}ι∈I gives rise to a unique global section σ : G+

2 (Rn+2) →
CP

n+1 \ RP
n+1 with image Q. �

Corollary 4.1. The torsion-free S1 · GL(n, R)-reductions R ⊂ F0 are in
one-to-one correspondence with the smooth quadrics Q ⊂ CP

n+1 without real
points.

Proof. This follows immediately from Theorems 3.1 and 4.1. �

Remark 4.1. For n = 2, the case of conformal 4-manifolds of split-
signature, Corollary 4.1 can also be deduced by applying results from [15].
One could also look for S1 · GL(2, R)-reductions whose associated almost
complex structure is not only integrable, but for which the corresponding
conformal structure [g] also contains a Kähler-metric. This, and the related
problem in (4,0)-signature has been studied in [10] (see also [15, Theorem
D]). Moreover for n = 2, Theorem 3.1 has an analogue in (4,0)-signature due
to Salamon [19].
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Appendix A

A.1. The structure group

We provide a proof for the existence of the isomorphism claimed in (2.2).

Lemma A.1. Let g ∈ G(m, n) and v ∈ V . Then precisely one of the two
statements holds:

(i) There exists v0 ∈ V and bv ∈ Isom(W, W ) such that for all w ∈ W

g(v ⊗ w) = v0 ⊗ bv(w).

(ii) There exists w0 ∈ W and av ∈ Isom(W, V ) such that for all w ∈ W .

g(v ⊗ w) = av(w) ⊗ w0.

Moreover if (i) (or (ii)) is true for some v ∈ V , then for all v ∈ V .

Proof. For v = 0 the statement is obvious so let us assume v 	= 0. Let
w1, w2 ∈ W be linearly independent, write g(v ⊗ w1) = v1 ⊗ u1 and g(v ⊗
w2) = v2 ⊗ u2 for some vectors v1, v2 ∈ V and u1, u2 ∈ W all non-zero. Then
g ∈ G(m, n) implies that one of the two following cases occurs:

(I) v1 ∧ v2 = 0 and u1 ∧ u2 	= 0,

(II) v1 ∧ v2 	= 0 and u1 ∧ u2 = 0.

Assume (I) holds and fix v0 	= 0 with v0 ∧ v1 = 0. It follows again with g ∈
G(m, n), that for every w ∈ W , there exists a unique element bv(w) ∈ W
such that g(v ⊗ w) = v0 ⊗ bv(w). The assignment w �→ bv(w) is invertible
and linear, thus (i) follows. Assuming (II) holds we conclude similarly that
(ii) follows.

Suppose case (i) occurs for some v ∈ V and case (ii) for some v′ ∈ V .
Let bv and av′ be the associated isomorphisms. Since g ∈ G(m, n) either bv

or av′ must have rank 1, thus contradicting the fact that both maps are
isomorphisms. �
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We can now show:

Proposition A.1. We have an isomorphism

G(m, n) �
{

H(m, n) n 	= m,

H(n, n) � Z2 n = m.

Proof. Let g ∈ G(m, n). Assume case (i) of Lemma A.1 holds for some and
hence all v ∈ V . Let v̂, ṽ ∈ V , then by Lemma A.1 there exists v̂0, ṽ0 ∈ V
and bv̂, bṽ ∈ Isom(W, W ) such that for all w ∈ W we have

g(v̂ ⊗ w) = v̂0 ⊗ bv̂(w), ϕ(ṽ ⊗ w) = ṽ0 ⊗ bṽ(w).

On the other hand for some w̃ ∈ W there must exist w̃0 ∈ W and aw̃ ∈
Isom(V, V ) such that for all v ∈ V

g(v ⊗ w̃) = aw̃(v) ⊗ w̃0.

We thus get

g(v̂ ⊗ w̃) = aw̃(v̂) ⊗ w̃0 = v̂0 ⊗ bv̂(w̃)

and

g(ṽ ⊗ w̃) = aw̃(ṽ) ⊗ w̃0 = ṽ0 ⊗ bṽ(w̃).

Since this holds for any w̃ ∈ W , the map bṽ must be a (non-zero) constant
multiple of the map bv̂. It follows that there exists a ∈ Isom(V, V ) and b ∈
Isom(W, W ) such that g(v ⊗ w) = a(v) ⊗ b(w) for all v ∈ V and w ∈ W . If
the case (ii) of Lemma A.1 holds, we can conclude similarly that there exists
a ∈ Isom(W, V ) and b ∈ Isom(V, W ) and such that g(v ⊗ w) = a(w) ⊗ b(v)
for all v ∈ V and w ∈ W . From this the claim follows easily. �

A.2. Segre and almost Grassmann structures

Finally, we show that for n + m odd, an (m, n)-Segre structure π : FS → M
is the same as an almost Grassmann structure. Let S(m, n) denote the
subgroup of GL(m, R) × GL(n, R) consisting of pairs (am, an) satisfying
det am det an = 1. Clearly for n + m odd, the map

ρ : S(m, n) → GL(m, R) ⊗ GL(n, R), (am, an) �→ am ⊗ an
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is a Lie group isomorphism. For k = m, n let χk : S(m, n) → Aut(Rk) be the
representation defined by

χk ((am, an)) (v) = akv.

for v ∈ R
k. The reader will recall that any (real or complex) representation

χ : H(m, n) � S(m, n) → Aut(V ) defines a vector bundle (FS)χ = FS ×χ V
over M . Let Ek → M denote the rank k vector bundle obtained via the
representation χk. By construction, the vector bundle associated to the rep-
resentation χm ⊗ χn is the tangent bundle of M and we thus obtain an
isomorphism

TM � Em ⊗ En

inducing the Segre structure π : FS → M .
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