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C-essential surfaces in (3-manifold, graph) pairs

Scott A. Taylor and Maggy Tomova

Let T be a graph in a compact, orientable 3-manifold M and let Γ
be a subgraph. T can be placed in bridge position with respect to
a Heegaard surface H. We show that if H is what we call (T,Γ)-c-
weakly reducible in the complement of T then either a “degenerate”
situation occurs or H can be untelescoped and consolidated into a
collection of “thick surfaces” and “thin surfaces”. The thin surfaces
are c-essential (c-incompressible and essential) in the graph exterior
and each thick surface is a strongly irreducible bridge surface in
the complement of the thin surfaces. This strengthens and extends
previous results of Hayashi-Shimokawa and Tomova to graphs in
3-manifolds that may have non-empty boundary.

1. Introduction

Thin position has been an important tool in knot theory and 3-manifold
topology. Gabai [5] defined thin position for a knot in S3 in his solution
of the Poenaru Conjecture; it was also put to good use by Gordon and
Luecke [7] in their solution of the knot complement problem. Thin position
was extended to graphs in S3 by Scharlemann and Thompson [16] who used
it to give a new proof of Waldhausen’s classification of Heegaard splittings of
S3. Goda et al. [6] also used thin position for graphs in S3 to prove that an
unknotting tunnel for a tunnel number one knot in minimal bridge position
can be slid and isotoped to lie in the bridge surface. They used this fact
to give a new proof of the classification of unknotting tunnels for 2-bridge
knots. Goda et al.’s result is also foundational to Cho and McCullough’s [3]
recent important work on tunnel number one knots.

In tandem with their development of thin position for knots and graphs
in S3, Scharlemann and Thompson [16] described a very different thin posi-
tion for 3–manifolds (based on earlier work of Casson and Gordon [2]). In this
type of thin position, a 3-manifold is decomposed along incompressible sur-
faces (called “thin surfaces”) into codimension 0 submanifolds each of which
contains a strongly irreducible Heegaard surface (called a “thick surface”).
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A locally thin position for a 3-manifold can be obtained by “untelescoping”
a Heegaard surface for the 3-manifold into thin and thick surfaces. In prac-
tice, a strongly irreducible Heegaard surface functions very much like an
incompressible surface. Part of the power of thin position for a 3-manifold
comes from the fact that an irreducible Heegaard surface in a 3-manifold
is either strongly irreducible, or can be untelescoped into a collection of
incompressible surfaces and strongly irreducible surfaces. In either case, we
have surfaces that function like incompressible surfaces. This aspect of thin
position for 3-manifolds has been used, for example, in work on the virtual
Haken conjecture [12, 13]. The virtual Haken conjecture was recently proven
by Agol et al. [1].

Hayashi and Shimokawa [9] found a way of uniting (at least in spirit) the
notions of thin position for a knot and thin position for a 3-manifold. Their
version of thin position involves placing a properly embedded 1-manifold in
a 3-manifold into bridge position with respect to a Heegaard surface for the
3-manifold and then untelescoping the Heegaard surface using compressing
disks and bridge disks. Coward [4] used Hayashi and Shimokawa’s thin posi-
tion to find an algorithm for determining the bridge number of a hyperbolic
knot in S3.

Tomova [22] strengthened Hayashi and Shimokawa’s untelescoping oper-
ation by weakening the hypotheses on the sort of disks used in the untele-
scoping operation: she used so-called “c-disks”. Tomova [21] used this new
version of thin position in her work on the relationship between multiple
bridge surfaces for a given knot, producing a version of the “alternate Hee-
gaard genus bounds distance” theorem of Scharlemann and Tomova [18].
Scharlemann and Tomova [17] also use this version of thin position to show
that 2-bridge knots have essentially unique bridge surfaces. Tomova’s
version of thin position, however, requires that the 3-manifold be
boundary-less.

In the present work, we show that (except in a few degenerate situa-
tions) a bridge surface for a graph in a 3-manifold, possibly with bound-
ary, can be transformed using untelescoping-like operations into a type of
thin position for the graph where the thin surfaces are essential in the
graph complement and the thick surfaces are strongly irreducible bridge
surfaces in the complement of the thin surfaces. The union of thin and
thick surfaces is called a “multiple Heegaard splitting” for the graph in the
3-manifold.

In the thin position of Hayashi-Shimokawa and Tomova the proof that
thin surfaces are not parallel to a component of the link relies on the difficult
classification of certain bridge surfaces [10, 11]. So in our situation, proving
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that thin surfaces are essential relies on the classification of bridge surfaces
for certain graphs in compressionbodies [20]. (See Theorem 3.4.)

Since in the past it has been helpful to be able to untelescope a bridge
surface for a knot along c-disks (and not just compressing disks), we prove a
relative version of the theorem. The set up is as follows: We have a compact
orientable 3-manifold M , a Heegaard surface H ⊂ M and a graph T ⊂ M
in bridge position with respect to H. Inside T we specify a subgraph Γ that
contains no vertices of T , and when we untelescope, we will use compressing
disks for H − T and so-called “cut disks” that intersect Γ. If M is a closed
3-manifold and T is a link then if Γ is chosen to equal T , we obtain Tomova’s
thin position, although our conclusion that the thin surfaces are c-essential
is stronger than her conclusion. If M is a 3-manifold and T is a properly
embedded 1-manifold, then choosing Γ = ∅ gives Hayashi and Shimokawa’s
thin position. We note that, even in this case, if ∂M �= ∅ our conclusion that
the thin surfaces are essential (i.e., incompressible and not boundary paral-
lel) in the exterior of the graph is stronger than Hayashi and Shimokawa’s
conclusion that the thin surfaces are incompressible in the complement of
the graph and not “T -parallel” to a component of ∂M .

We prove

Corollary 9.4 (Rephrased). Let M be a compact, orientable 3-manifold
containing a properly embedded graph T and let Γ be a subgraph of T disjoint
from the vertices of T − ∂T . Furthermore, assume that M − T is irreducible
and that no sphere in M intersects T exactly once. Suppose K is a bridge
surface for (M, T, Γ) such that no circle or edge component of Γ is isotopi-
cally core with respect to K. Then one of the following holds:

• there is a multiple Γ-Heegaard splitting H for (M, T, Γ) so that each
thin surface is T -essential and each thick surface is (T, Γ)-c-strongly
irreducible in the component of M −H− containing it. Furthermore,
H is obtained by applying “untelescoping-like” operations to K.

• K contains a generalized stabilization.

• K is perturbed.

• K has a removable path.

All of the terms are defined in the next section.
In a forthcoming paper, we will demonstrate how this result can be used

to show that certain edges in a Heegaard spine can be made level with
respect to a bridge surface.
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Figure 1: The five types of components in a Γ-compressionbody. From left
to right we have: bridge arc, vertical pod, vertical arc, pod, ghost arc. The
red disc is a cut disc for the ghost arc.

2. Definitions

2.1. Surfaces in (M, T )

Let T be a finite graph. Unless otherwise specified we assume that T has
no valence 2 vertices as such vertices can generally be deleted and their
adjacent edges amalgamated. T may contain closed loops without vertices.
We say that T is properly embedded in a 3-manifold M if T ∩ ∂M is the set
of all valence 1 vertices of T . We will denote the pair (M, T ).

Suppose that F ⊂ M is a surface such that ∂F ⊂ (∂M ∪ T ). Then F is
T–compressible if there exists a compressing disk for F − T in M − T . If
F is not T–compressible, it is T–incompressible. F is T–∂–compressible if
there exists a disk D ⊂ M − T with interior disjoint from F such that ∂D
is the endpoint union of an arc γ in F and an arc δ in ∂M . We require
that γ not be parallel in F − T to an arc of ∂F − T . If F is not T–∂–
compressible, it is T–∂–incompressible. Finally suppose Γ is some subgraph
of T . We will say that F is Γ-cut-compressible, if there exists a disk Dc

that only intersects F it its boundary, the boundary is essential in F − T ,
so that |Dc ∩ T | = 1 and that point of intersection is contained in Γ. We
also require that ∂Dc is not parallel in F − T to a puncture T ∩ F . We call
Dc a Γ-cut-disk. A Γ-c-disk will be either a T -compressing disk or a Γ-cut-
disk. If Γ is understood, we refer to it as simply a c-disk. Figure 1 depicts,
among other things, a cut disk. A surface F in M is called T -parallel if F is
boundary parallel in M − η̊(T ) and T -essential if it is T -incompressible and
not T -parallel. The surface F will be called T -c-essential if it is essential and
cut-incompressible.
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2.2. Trivially embedded graphs in compressionbodies

Let C be a compressionbody and T be a properly embedded graph in C.
A connected component τ of T is trivial in C if it is one of four types (see
figure 1):

(1) Bridge arc: a single edge with both endpoints in ∂+C which is parallel
to an arc in ∂+C. The disk of parallelism is called a bridge disk.

(2) Vertical edge: a single edge with one endpoint in ∂+C and one endpoint
in ∂−C that is isotopic to {point} × I.

(3) Pod: a graph with a single vertex in the interior of C and with all
valence 1 vertices lying in ∂+C so that there is a disk D with ∂D ⊂ ∂+C
inessential in ∂+C and so that τ ⊂ D. The disk D is called a pod disk.
Each of the components of D − τ will be called a bridge disk as these
components play the same role as bridge disks for bridge arcs.

(4) Vertical pod: a graph with a single vertex in the interior of C and with
one valence 1 vertex lying in ∂−C and all other valence 1 vertices in ∂+C
so that if the edge adjacent to ∂−C is removed the resulting graph is a
pod and if instead all but one of the edges adjacent to ∂+C are removed,
the result is a vertical edge with a valence 2 vertex in its interior. The
edges that have one endpoint in ∂+C are called pod legs and the other
edge is called a pod handle.

If all components of T are simultaneously trivially embedded, then we
say that T is trivially embedded in C.

2.3. Trivially embedded graphs in Γ-compressionbodies

Definition 2.1. Let C be a compressionbody containing a properly embed-
ded graph T and let Γ be a subgraph of T . Suppose that there is a collection
of (T, Γ)-cut-disks, Dc, such that:

(1) for each edge of Γ there is at most one disk in Dc intersecting it,

(2) each edge of Γ intersected by Dc has both endpoints on ∂−C,

(3) boundary reducing C along all cut-disks Dc produces a union of com-
pressionbodies C1, . . . , Cn,

(4) for each i the graph Ci ∩ T is trivially embedded in Ci.
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Then we call the triple of the compressionbody and the graphs a Γ-
compressionbody containing a trivially embedded graph T − Γ and denote it
(C, T, Γ).

Note that if Γ = ∅ then (C, T, Γ) = (C, T ) is a compressionbody contain-
ing a trivially embedded graph.

If (C, T, Γ) is a Γ-compressionbody and γ is an arc of Γ in (C, T, Γ) that
has both of its endpoint in ∂−C and contains no vertices, then γ is called a
ghost arc. Each ghost arc intersects a Γ-cut disk in C.

2.4. Heegaard surfaces and Γ-Heegaard surfaces

Let (M, T ) be a (3-manifold, graph) pair. A Heegaard splitting for (M, T ) is a
decomposition of M into two compressionbodies, C1 and C2, such that Ti =
T ∩ Ci is trivially embedded in Ci for i ∈ {1, 2}. The surface H = ∂+C1 =
∂+C2 is called a Heegaard surface for (M, T ). We will also say that T is
in bridge position with respect to H and that H is a bridge splitting
of (M, T ).

Suppose now that Γ is a subgraph of T and H is a surface in (M, T )
transverse to T so that H splits M into compressionbodies C1 and C2 such
that (Ci, Ti, Γi) is a Γi-compressionbody containing a trivially embedded
graph Ti − Γi for i ∈ {1, 2}. In this case we say H is Γ-Heegaard surface
or a Γ-bridge surface for (M, T, Γ). If Γ = ∅ then H is simply a Heegaard
surface.

Suppose H is a Γ-Heegaard surface for (M, T, Γ) splitting it
into triples (C1, T1, Γ1) and (C2, T2, Γ2). We will say that H is
T -reducible if there exists a sphere S disjoint from T such that S ∩ H is
a single curve essential in H − T , otherwise H is T -irreducible. We will say
that H is T -weakly reducible if H has T -compressing disks on opposite sides
with disjoint boundaries. Otherwise H is said to be T -strongly irreducible.
We will say that H is (T, Γ)-c-weakly reducible if H has Γ-c-disks on opposite
sides with disjoint boundaries. Otherwise H is said to be (T, Γ)-c-strongly
irreducible.

2.5. Multiple bridge splittings

To prove our main theorem we will extend to graphs the definition of multiple
bridge splittings for the pair (3-manifold, 1-manifold) introduced by Hayashi
and Shimokawa in [11] and generalized by Tomova in [22].
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Definition 2.2. Suppose M is a 3-manifold containing a properly embed-
ded graph T and let Γ be a subgraph of T . A disjoint union of surfaces H is
a multiple Γ-Heegaard splitting for (M, T, Γ) if:

• the closure of each component of (M, T ) −H is a Γ-compressionbody
Ci containing a trivially embedded graph Ti = (T − Γ) ∩ Ci,

• for each i, ∂+Ci is attached to some ∂+Cj and each component of
∂−Ci is either contained in ∂M or is attached to a component of some
∂−Ck with i �= k.

Let H+ = ∪∂+Ci and H− = ∪∂−Ci. The components of H+ and H− are
called thick and thin surfaces respectively.

Note that in our definition each thick surface is separating in the com-
plement of the thin surfaces.

2.6. Generalized stabilizations, perturbations and
removable paths

Several geometric operations can be used to produce new Γ-bridge surfaces
from old ones. These are generalizations of stabilizations for Heegaard
splittings of manifolds and usually we work with bridge surfaces that are
not obtained from others via these operations. A more detailed discussion
of these operations can be found in [10, 17, 20]. A Γ-bridge surface H for
(M, T, Γ) will be called stabilized if there is a pair of T -compressing disks
on opposite sides of H that intersect in a single point. The Γ-bridge surface
is meridionally stabilized if there is a (T, Γ)-cut-disk and a T -compressing
disk on opposite sides of H that intersect in a single point.

As we are considering manifolds with boundary there are two other geo-
metric operations that can be used to obtain a new bridge surface from
an old one. Suppose H is a Γ-Heegaard splitting for (M, T, Γ) decom-
posing M into compressionbodies C1 and C2. Let F be a component of
∂−C1 ⊂ ∂M and let T ′ be a collection of vertical edges in F × [−1, 0] so
that T ′ ∩ (F × {0}) = T ∩ F . Let H ′ be a minimal genus Heegaard sur-
face for (F × [−1, 0], T ′) which does not separate F × {−1} andF × {0} and
which intersects each edge in T ′ exactly twice. H ′ can be formed by tub-
ing two parallel copies of F along a vertical arc not in T ′. We can form a
Γ-Heegaard surface H ′′ for M ∪ (F × [−1, 0]) by amalgamating H and H ′.
This is simply the usual notion of amalgamation of Heegaard splittings
(see [19]). In fact, H ′′ is a Γ-Heegaard surface for (M ∪ (F × [−1, 0]), T ∪ T ′).
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Since (M ∪ (F × [−1, 0]), T ∪ T ′) is homeomorphic to (M, T ), we may con-
sider H ′′ to be a Γ-Heegaard surface for (M, T, Γ). H ′′ is called a bound-
ary stabilization of H. A similar construction can be used to obtain a new
Γ-Heegaard splitting of (M, T, Γ) by tubing two parallel copies of F along a
vertical arc that does lie in T ′ ∩ Γ. In this case H ′′ will be called meridionally
boundary stabilized.

If a Γ-bridge surface is stabilized, boundary stabilized, meridionally sta-
bilized, or meridionally boundary stabilized we will say that it contains a
generalized stabilization.

A Γ-bridge surface is called cancellable if there is a pair of bridge disks
Di on opposite sides of H such that ∅ �= (∂D1 ∩ ∂D2) ⊂ (H ∩ T ). If |∂D1 ∩
∂D2| = 1 we will call the bridge surface perturbed. Unlike the case when T is a
1-manifold, a perturbed bridge surface cannot necessarily be unperturbed by
an isotopy as that may result in edges that are no longer trivially embedded.
The pair {D1, D2} is called the associated cancelling pair of disks.

Suppose that ζ ⊂ T is a 1-manifold which is the the union of edges in T
(possibly a closed loop with zero or more vertices of T ). We say that ζ is a
removable path if the following hold:

(1) Either the endpoints of ζ lie in ∂M or ζ is a cycle in T .

(2) ζ intersects H exactly twice,

(3) If ζ is a cycle, there exists a cancelling pair of disks {D1, D2} for ζ with
Dj ⊂ Cj . Furthermore, there exists a compressing disk E for H such that
|E ∩ T | = 1 and if E ⊂ Cj then |∂E ∩ ∂Dj+1| = 1 (indices run mod 2)
and E is otherwise disjoint from a complete collection of bridge disks
for T − H containing D1 ∪ D2.

(4) If the endpoints of ζ lie in ∂M , there exists a bridge disk D for the
bridge arc component of ζ − H such that D − T is disjoint from a com-
plete collection of bridge disks Δ for T − H. Furthermore, there exists
a compressing disk E for H on the opposite side of H from D such that
|E ∩ D| = 1 and E is disjoint from Δ.

See figure 2 for an example of a removable path.
If T has a removable path ζ, ζ can be isotoped to lie in a spine for one of

the compressionbodies C1 or C2. A condition weaker than being removable
is the following: A circle or edge component γ of T is isotopically core if it
can be isotoped in M − (T − γ) to lie in the 1-dimensional portion of a spine
of one of the compressionbodies C1 or C2. (Recall that the spine of a com-
pressionbody is the union of the negative boundary of the compressionbody
with a 1–complex such that the exterior of the spine is a product region.)
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Figure 2: An example of a removable path.

Figure 3: The conversion of a ghost edge into a removable edge.

2.7. Γ-c-Heegaard surfaces and removable edges

This section presents a technical result that sometimes allows a Γ-c-Heegaard
surface to be converted into a Heegaard surface with removable edges.

Suppose that H is a Γ-Heegaard surface for (M, T, Γ) and that e ⊂ Γ is
an edge disjoint from H with both endpoints in ∂M . Let E be a cut disk
intersecting e whose boundary is in H. By isotoping e so that e ∩ E moves
through ∂E to the other side, we convert e into a removable path e′. Let T ′

be the new graph. Let H ′ be the new Γ-Heegaard surface for (M, T ′). Let
D be the bridge disk for the bridge arc component of e′ − H ′. See figure 3.

Lemma 2.3. If H ′ is stabilized or meridionally stabilized then so is H. If
H ′ is boundary-stabilized or meridionally boundary stabilized, so is H and
the stabilization is along the same component of ∂M . If H ′ is perturbed then
so is H. If T ′ contains a removable path other than e′ then either that path
is removable in T or H is meridionally stabilized.
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Proof. Case 1: Suppose that H ′ is stabilized or meridionally stabilized by
disks D1 and D2 on opposite sides of H ′ which intersect once. Out of all such
pairs of stabilizing or meridionally stabilizing pairs, choose D1 and D2 so
that |(D1 ∪ D2) ∩ (D ∪ E)| is minimal. The next claim shows that (D1, D2)
also stabilizes or meridionally stabilizes H.

Claim: |(D1 ∪ D2) ∩ e| ≤ 1.
Since (D1, D2) (meridionally) stabilize H ′, |(D1 ∪ D2) ∩ e′| ≤ 1. Without

loss of generality, choose the labelling so that D1 is on the same side of H
as D. Then D1 ∩ e = ∅, and so (D1 ∪ D2) ∩ e = D2 ∩ e. If D2 is disjoint
from and not parallel to E, then clearly |e ∩ D2| ≤ 1. If D2 is parallel to
E, then |D2 ∩ e| = |E ∩ e| = 1. If D2 is not disjoint from E, then by the
minimality of |(D1 ∪ D2) ∩ (E ∪ D)| it follows that D2 ∩ E is a collection of
arcs. After possibly a small isotopy, we may assume that D ∩ E is disjoint
from D2 ∩ E. Then using D to isotope e′ back to e guarantees that e is
disjoint from D2. �(Claim)

Case 2: Suppose that H ′ is boundary stabilized or meridionally bound-
ary stabilized. In this case there exists a Γ-c-disk D′ for H such that com-
pressing H ′ along D′ produces surfaces H1 and H2 and the surface H2

bounds a product region with ∂M containing only vertical arcs of T while
the surface H1 is a Γ-Heegaard surface for (M, T, Γ).

If D′ is disjoint from or parallel to E then it is clear that H is boundary
stabilized or meridionally boundary stabilized. Suppose, therefore that D′

intersects E. We may assume that D′ was chosen so as to minimize D′ ∩ E.
This implies that D′ ∩ E is a non-empty collection of arcs. Then, as in Case
1, isotoping e′ back to e shows that e ∩ D′ = ∅. Hence, H is boundary
stabilized or meridionally boundary stabilized and the stabilization is along
the same component as that of H ′.

Case 3: Suppose that (D1, D2) are a perturbing pair of disks for H ′

such that D1 is on the same side of H as D. Notice that ∂D1 ∪ ∂D2 is
disjoint from e′ since two components of e′ − H ′ are vertical arcs in the
compressionbody containing them. Thus, unless e ∩ D2 �= ∅, (D1, D2) is a
perturbing pair for H. If D2 ∩ e �= ∅, then D2 intersects the neighbourhood
of E used to push e to e′. An argument similar to that of Cases 1 and 2
shows that ∂D can be assumed to be disjoint from ∂D2, and so e is disjoint
from D2, as desired.

Case 4: Suppose that T ′ contains a removable path ζ �= e. An argument
similar to the previous cases shows that ζ is a removable path in T , unless ζ
is not a cycle and the compressing disk E from condition (4) of the definition
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of removable path is equal to the present disk E. Suppose, therefore, that
this is the case. By the definition of removable path, there is a bridge disk
D′ for e′ − H ′ which is disjoint from E. A small isotopy of D ∪ D′ creates
a compressing disk E′ for H ′ − T ′ intersected once by E. The pair (E, E′)
therefore, shows that H ′ is stabilized. Since ∂E′ is non-separating on H ′

and therefore on H, E′ is a compressing disk for H disjoint from T . The
boundary of E′ intersects E exactly once and E ∩ T = E ∩ e and so H is
meridionally stabilized. �

3. Properties of compressionbodies containing properly
embedded graphs

In this section, we will generalize many of the well-known results for compres-
sionbodies to the case when the compressionbody contains a graph embedded
in a specific way.

Lemma 3.1. Suppose C is a Γ-compressionbody containing a trivially
embedded graph T − Γ. Compressing or cut-compressing C results in a union
of Γ-compressionbodies each containing a trivially embedded graph.

Proof. Given any Γ-c-disk Dc for (C, T, Γ) we can always find a collection of
pairwise disjoint Γ-c-disks Dc containing Dc so that (C, T, Γ) c-compressed
along Dc is a collection 3-balls and components homeomorphic to G × I
where G is a component of ∂−C. Both types of components may contain
trivially embedded graphs. The result follows. �

The next lemma shows that the negative boundary of a Γ-
compressionbody is Γ-c-incompressible.

Lemma 3.2. Let (C, T, Γ) be a Γ-compressionbody containing a trivially
embedded graph T − Γ. Assume that no component of ∂−C is a 2–sphere
intersecting T one or fewer times. Then C − T is irreducible, no sphere in
C intersects T exactly once, and ∂−C is Γ-c-incompressible.

Proof. Suppose that S ⊂ C is either a sphere intersecting T transversally one
or fewer times and which does not bound a ball in C − T or a Γ-compressing
disk for ∂−C. An innermost disk argument shows that we may choose S
so that it is disjoint from all the Γ-c-disks for ∂+C. Let Δ be a maximal
collection of Γ-c-disks for ∂+C, chosen so that each disk of Δ intersecting
T intersects a unique ghost arc of T exactly once and so that each ghost
arc of T intersects Δ exactly once. Boundary-reducing C along Δ creates a
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Γ-compressionbody (C ′, T ′, Γ′) that is possibly disconnected. C ′ is the union
of trivial compressionbodies and S ⊂ C ′. No component of T ′ is a ghost arc
since every ghost arc intersects a disk in Δ. In a trivial compressionbody,
there are no essential spheres or disks. Hence, if S is a sphere, it either
bounds a 3–ball in C ′ or is boundary parallel in C ′.

If S is a sphere bounding a 3-ball in C ′, then since every component of T ′

is adjacent to ∂+C ′, S bounds a 3-ball in C ′ − T ′. Hence if S bounds a 3-ball
in C ′ it also bounds one in C − T , a contradiction. Thus, if S is a sphere, then
it is in a component C ′′ of C ′ homeomorphic to S2 × [0, 1] and is boundary-
parallel. At least two components of T ∩ C ′′ are adjacent to ∂−C ∩ C ′′ and
these components are also adjacent to ∂C ′′ − ∂−C. Hence these components
also intersect S and so S intersects T twice, a contradiction.

If S is a disk, then ∂S bounds a disk E ⊂ ∂−C = ∂−C ′. If S is a com-
pressing disk, then E is adjacent to at least one component of T ′ and if S is
a cut disk, then E is adjacent to at least two components of T ′. The union
S ∪ E is a sphere in C ′ which either bounds a 3–ball in C ′ or is boundary-
parallel. If the sphere bounds a 3-ball, then each intersection point of T ′ ∩ E
is joined in T ′ to an intersection point of T ′ ∩ S, implying that S intersects
T ′ at least once if it is a compressing disk and at least twice if it is a cut
disk. This contradicts the definition of compressing disk and cut disk, respec-
tively. Suppose the sphere is parallel to a boundary component P of C ′. If
P ⊂ ∂+C ′, then E is a subset of a sphere component P ′ of ∂−C ′. The disk
E′ = P − E must intersect T ′ once or twice (corresponding to S being a
compressing or cut disk). Since the positive boundary of a connected com-
pressionbody is connected, the sphere S ∪ E′ bounds a 3-ball in C ′. This
gives rise to a contradiction as before. Hence, P ⊂ ∂−C ′. Since no compo-
nent of T ′ is adjacent to two components of ∂−C ′, each intersection point
of T ′ ∩ E corresponds to an intersection point of T ′ ∩ S. Hence, D can be
neither a compressing or a cut disk, a contradiction. �

The next lemma does not concern bridge surfaces per se, but will be
useful in the proof of the main theorem when we try to show that the thin
surfaces are not T -parallel. We use it to guarantee that if there is a thin
surface that is not T -parallel, then we can find an innermost such surface.

Lemma 3.3. Suppose that C is a compressionbody with F = ∂+C. Let T ⊂
C be a properly embedded graph such that F − η̊(T ) is parallel to ∂(C −
η̊(T )) − F . Let G ⊂ C be a T -incompressible surface disjoint from F and
transverse to T . Then each component of G − η̊(T ) is parallel to ∂(C −
η̊(T )) − F .
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Proof. Let N = C − η̊(T ). Then N is homeomorphic to (F − η̊(T )) × I with
the homeomorphism taking F − η̊(T ) to (F − η̊(T )) × {0}. The boundary of
G − η̊(T ) is contained in (F − η̊(T )) × {1}. Since G is T -incompressible,
by [24, Corollary 3.2], each component of G − η̊(T ) is parallel to (F −
η̊(T )) × {1}. Hence, each component of G − η̊(T ) is parallel to ∂(C −
η̊(T )) − F . �

Finally we recall the classification of Heegaard splittings of pairs
(M, T ) where M is a compressionbody and ∂+M − η̊(T ) is parallel
to ∂(M − η̊(T )) − ∂+M , [20]. This result is key to proving our main
theorem.

Theorem 3.4. [Theorem 3.1, 20] Let M be a compressionbody and T be
a properly embedded graph so that ∂+M − η̊(T ) is parallel to ∂(M − η̊(T )) −
∂+M . Let H be a Heegaard surface for (M, T ). Assume that T contains at
least one edge. Then one of the following occurs:

(1) H is stabilized;

(2) H is boundary stabilized;

(3) H is perturbed;

(4) T has a removable path disjoint from ∂+M ;

(5) M is a 3–ball, T is a tree with a single interior vertex (possibly of valence
2), and H − η̊(T ) is parallel to ∂M − η̊(T ) in M − η̊(T );

(6) M = ∂−M × I, H is isotopic in M − η̊(T ) to ∂+M − η̊(T ).

For our purposes we need to strengthen the second conclusion of the
above theorem:

Theorem 3.5. Let M be a compressionbody and T be a properly embedded
graph so that ∂+M − η̊(T ) is parallel to ∂(M − η̊(T )) − ∂+M . Let H be a
Heegaard surface for (M, T ). Assume that T contains at least one edge. Then
one of the following occurs:

(1) H is stabilized;

(2) H is boundary stabilized along ∂−M ;

(3) H is perturbed;

(4) T has a removable path disjoint from ∂+M ;
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(5) M is a 3–ball, T is a tree with a single interior vertex (possibly of valence
2), and H − η̊(T ) is parallel to ∂M − η̊(T ) in M − η̊(T );

(6) M = ∂−M × I, H is isotopic in M − η̊(T ) to ∂+M − η̊(T ).

Proof. Suppose H is boundary stabilized along ∂+M . Then H is obtained by
amalgamating a minimal genus Heegaard surface for ∂+M × [−1, 0] which
does not separate ∂+M × {−1} and ∂+M × {0} and which intersects each
edge in T ∩ (∂+M × [−1, 0]) exactly twice, together with a Heegaard surface
H̃ for M . Without loss of generality we will assume that H is obtained from
H̃ after a single boundary stabilization along ∂+M .

By Theorem 3.4, H̃ satisfies one of six possible conclusions. If H̃ is sta-
bilized, perturbed or if T has a removable path disjoint from ∂+M then the
same is true for H as boundary stabilizations preserve all of these properties.
If H̃ is boundary stabilized, the stabilization must be along ∂−M , and so
the same is true for H.

Suppose that M is a 3–ball, T is a tree with a single interior vertex,
and H − η̊(T ) is parallel to ∂M − η̊(T ) in M − η̊(T ). Let A and B be the
components of M − H̃ so that B is a ball and let κ be one of the edges of
T ∩ M . Then H can be recovered from H̃ by tubing H to the boundary
of a collar of ∂M along a vertical tube τ in A. We can choose τ to be
arbitrarily close to κ ∩ A; in particular, we may assume that the disk of
parallelism between τ and κ intersects some bridge disk that contains κ ∩ B
in its boundary only in the point κ ∩ H̃. We conclude that H is perturbed.

Suppose then that M = ∂−M × I and H is isotopic in M − η̊(T ) to
∂+M − η̊(T ). Let A and B be the components of M − H̃ so that A contains
∂+M . The argument in this case is identical to the one above as long as
there is at least one bridge disk in B. If T ∩ B is a product, then T ∩ M is
a collection of vertical arcs and thus H can be obtained from the Heegaard
surface H̃ by stabilizing along ∂−M . �

4. Haken’s lemma

Let H be a Γ-bridge surface for (M, T, Γ) and suppose D is a T -compressing
disk for some component G of ∂M . It is a classic result of Haken [8] that in
the case T = ∅, there is a compressing disk D′ for G so that D′ intersects
H in a unique essential curve. This result was extended to the case where
T is a 1-manifold and Γ = ∅ in [11] and to the case where T is a 1-manifold
and Γ = T in [22]. This result implies that, in most cases, if ∂M has a
compressing disk, then H is weakly reducible.
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Here we will use a generalization of this result to cut-disks. We are
grateful to Jesse Johnson for showing us a proof of the following theorem.

Theorem 4.1. Suppose M is a compact orientable manifold, T is a prop-
erly embedded graph in M and Γ is a subgraph of T . Assume that M − T
is irreducible and that no sphere in M intersects T exactly once transver-
sally. Suppose H is a Γ-Heegaard splitting for (M, T, Γ) such that there is a
Γ-c-disk for H on each side. If there exists a Γ-c-disk for some component
of ∂M then H is Γ-c-weakly reducible.

Proof. Let D∗ be a Γ-c disk for ∂M .
By Lemma 3.2, the negative boundary of a Γ-c-compressionbody is

(T, Γ)-c-incomressible so D∗ must intersect H. Let Da and Db be c-disks
for H above and below it. Let Ha be isotopic to H but with the c-disk Da

shrunk to a small disk neighbourhood of a point. In particular in Ha we may
assume that Da is disjoint from D∗. Furthermore we may assume that Ha

is isotoped so that no curve of D∗ ∩ Ha bounds a disk in Ha − T . As Ha

and D∗ must intersect, an innermost in D∗ circle of intersection bounds a
Γ-c-disk Δa for Ha. The disk Δa is disjoint from Da and therefore either we
are done, or Δa is on the same side of Ha as Da. Similarly there is a surface
Hb isotopic to H so that an innermost curve of intersection between Hb and
D∗ bounds a c-disk for Hb on the same side as Db.

Now consider the isotopy ρ between Ha and Hb. The surface Ha =
ρ−1(−1), intersects D∗ in a simple closed curve which gives a Γ c-disk for
H on one side and the surface Hb = ρ−1(1), intersects D∗ in a simple closed
curve which gives a Γ c-disk for H on the opposite side. As ρ−1(t) always
intersects D∗ in at least one essential curve there are two cases to consider:

(1) There is some regular value r where ρ−1(r) intersects D∗ in two disjoint
essential curves σa and σb so that the interiors of the disks these curves
bound on D∗ intersect ρ−1(r) only in inessential curves and near their
boundaries these disks lie on opposite sides of H.

(2) There is a critical point c so that ρ−1(c − ε) ∩ D∗ contains an essential
curve with the properties of σa and ρ−1(c + ε) ∩ D∗ contains an essential
curve with the properties of σb.

As the curves of intersection in ρ−1(c − ε) ∩ D∗ are disjoint from the
curves ρ−1(c + ε) ∩ D∗ in either case after an isotopy of D∗ to remove any
inessential circles of intersection we can obtain c-disks Da and Db with
disjoint boundaries σa and σb that lie on opposite sides of H as desired. �
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5. Multiple Γ-bridge splittings of (M, T, Γ)

5.1. Complexity

We define a complexity on the thick surfaces H+ of a multiple Γ-Heegaard
splitting of (M, T, Γ).

Definition 5.1. Let X be a set with an order ≤. Let Y and Z be
two finite multisets of elements of X. Write Y = (y1, y2, . . . , yn) and Z =
(z1, z2, . . . , zm) so that for all i, yi ≥ yi+1 and zi ≥ zi+1. We say that Y < Z
if and only if one of the following occurs:

• There exists j ≤ min(n, m) so that for all i < j, yi = zi and yj < zj .

• n < m and for all i ≤ n, yi = zi.

Definition 5.2. Let S be a closed connected surface embedded in M
transverse to a properly embedded graph T ⊂ M . The complexity of S is
c(S) = 4g(S) + |S ∩ T |.

If H is a Γ-multiple bridge splitting for (M, T, Γ), let the complexity of H,
denoted c(H), be the multiset {c(S)|S ∈ H+}. If H and H′ are two multiple
Γ-Heegaard splittings for (M, T, Γ), their complexities will be compared as
in Definition 5.1.

The next lemma is immediate from the definition of complexity.

Lemma 5.3. Suppose that H is a multiple Γ-Heegaard splitting of (M, T, Γ)
and suppose that J is a multiple Γ-Heegaard splitting of (M, T, Γ) such that
J + is a proper subset of H+. Then the complexity of J is strictly less than
the complexity of H.

Next, we will show that c-compressing a surface always decreases its
complexity

Lemma 5.4. Suppose S is meridional surface in (M, T ) of non-positive
euler characteristic. If S′ is a component of the surface obtained from S by
compressing along a c-disk, then c(S) > c(S′).

Proof. Suppose S′ is obtained from S after a single c-compression along
a c-disk D∗. If D∗ is non-separating then g(S′) = g(S) − 1 and |S ∩
T | ≥ |S′ ∩ T | − 2 so c(S) ≥ c(S′) − 2 and thus the complexity has strictly
decreased. If D∗ is separating then S′ has two components, S′

1 and S′
2, and
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g(S′) = g(S′
1) + g(S′

1) and |S ∩ T | ≥ |S′
1 ∩ T | + |S′

2 ∩ T | − 2. As D∗ is a c-
disk each of S′

1 and S′
2 must either have positive genus or at least 4 punc-

tures. Therefore each of S′
1 and S′

2 either has genus strictly less than g(S) or
has at least 2 fewer punctures than S. In either case we can conclude that
c(S) > c(S′

1) and c(S) > c(S′
2) as desired. �

Remark 5.5. In place of c(S), we can use any complexity function that
strictly decreases when a surface is c-compressed or when the number of
intersections between the graph and the surface is decreased. For example,
Tomova’s complexity in [22] can also be used.

6. Untelescoping

We are interested in obtaining a multiple Γ-Heegaard splitting of (M, T, Γ)
with the property that every thin surface is Γ-c-incompressible. The follow-
ing lemma will be useful and follows directly from Theorem 4.1.

Lemma 6.1. Suppose that H is a multiple Γ-Heegaard splitting of
(M, T, Γ). If some component of H− is Γ-c-compressible in M then one
of the following occurs:

• Some component of H+ is a (T, Γ)-c-weakly reducible Γ-Heegaard split-
ting of the component of M −H− containing it; or

• Some component of M −H is a product compressionbody with one
boundary component in H− and the other in H+. The graph T inter-
sects this component in vertical arcs and vertical pods with pod handles
in T − Γ.

In the first case one can reduce the complexity of the splitting by
c-compressing some thick surface along a pair of disjoint c-disks on oppo-
site sides. This operation is called untelescoping and was first introduced
by Scharlemann and Thompson in [16] in the context of 3-manifolds. The
concept was generalized to weakly reducible bridge surfaces for a manifold
containing a properly embedded tangle in [11] and then to (τ, τ)-c-weakly
reducible τ -bridge surfaces for a manifold containing a properly embedded
tangle τ in [22]. In the following definition, we extend the construction to
(T, Γ)-c-weakly reducible Γ-bridge surfaces for (M, T, Γ) where T is a prop-
erly embedded graph.

Let H be a (T, Γ)-c-weakly reducible Γ-bridge splitting of (M, T, Γ) and
let D1 and D2 be collections of pairwise disjoint Γ-c-disks above and below
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H such that D1 ∩ D2 = ∅. Then we can obtain a multiple Γ-bridge splitting
for (M, T ) with one thin surface obtained from H by (T, Γ)-c-compressing it
along D1 ∪ D2 and two thick surfaces, obtained by (T, Γ)-c-compressing H
along D1 and D2 respectively. Although this operation is similar to the one
described in [22] we include the details here with the modifications required.

Let (A, A ∩ T ) and (B, B ∩ T ) be the two Γ-compressionbodies into
which H decomposes (M, T, Γ) and let DA ⊂ A and DB ⊂ B be collections
of pairwise disjoint Γ-c-disks such that DA ∩ DB = ∅. Let A′ = A − η̊(DA)
and B′ = B − η̊(DB). Then by Lemma 3.1 A′ and B′ are each the disjoint
union of Γ-compressionbodies containing trivial graphs A′ ∩ T and B′ ∩ T ,
respectively.

Take small collars η(∂+A′) of ∂+A′ and η(∂+B′) of ∂+B′. Let C1 =
cl(A′ − η(∂+A′)), C2 = η(∂+A′) ∪ η(DB), C3 = η(∂+B′) ∪ η(DA) and C4 =
cl(B′ − η(∂+B′)). Note that C1 and C4 are Γ-compressionbodies contain-
ing trivial graphs because they are homeomorphic to A′ and B′ respec-
tively. C2 and C3 are obtained by taking surface × I containing vertical arcs
and attaching 2-handles, some of which may contain segments of Γ as their
cores. Therefore C2 and C3 are also Γ-compressionbodies containing trivial
graphs. We conclude that we have obtained a multiple Γ-bridge splitting
H of (M, T, Γ) with thick surfaces ∂+C1 and ∂+C2 that can be obtained
from H by Γ-c-compressing along DA and DB respectively and a thin sur-
face ∂−C2 = ∂−C3 obtained from H by Γ-c-compressing along both sets of
c-disks. We say that H is obtained by untelescoping H using Γ-c-disks. The
next remark follows directly from Lemma 5.4.

Remark 6.2. Suppose H′ is a multiple Γ-bridge splitting of (M, T, Γ)
obtained from another multiple Γ-bridge splitting H of (M, T, Γ) via unte-
lescoping. Then c(H′) < c(H).

Suppose that H is a multiple Γ-Heegaard splitting for (M, T, Γ) with
a thick surface that can be untelescoped to become a multiple Γ-Heegaard
splitting H for (M, T, Γ). It is natural to ask: If H contains a generalized
stabilization must H contain a generalized stabilization? If H contains a
perturbed thick surface must H also be perturbed? If T has a path which
is removable with respect to H, is that path removable with respect to H?
The answer is positive in all cases.

Lemma 6.3. Let H be a (multiple) Γ-Heegaard splitting for the triple
(M, T, Γ) obtained by amalgamating the multiple Γ-Heegaard splitting H for
(M, T, Γ). (We assume that the amalgamation actually produces a (multiple)
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Γ-Heegaard splitting which is not necessarily the case). Then the follow-
ing hold

(1) Suppose the Γ-Heegaard splitting induced by H+ on some component of
(M, T, Γ) −H− contains a generalized stabilization. Furthermore sup-
pose that if the generalized stabilization is a (meridional) boundary sta-
bilization, then it is along a component of ∂M . Then H contains a gen-
eralized stabilization of the same type and if the generalized stabilization
is a (meridional) boundary stabilization then it must also be along a
component of ∂ M .

(2) If the Γ-Heegaard splitting induced by H+ on some component of
(M, T, Γ) −H− is perturbed, then so is H.

(3) If the Γ-Heegaard splitting induced by H+ on some component of
(M, T, Γ) −H− contains a removable path so that the path is either a
cycle or both of its endpoints are contained in ∂M , then so does H.

(4) If T contains a circle or edge component γ that is isotopic into the spine
of one of the components of M −H, then γ is isotopic into the spine of
one of the compressionbodies of M − H.

Proof. Without the loss of much generality, we may assume that H is
obtained from H by a single amalgamation (i.e., we can obtain H from
H by untelescopying in one step). The last observation is the easiest to
deal with: as H is obtained from H by an amalgamation, the spine of a
compressionbody after amalgamation can be obtained by gluing together
the 1–complexes forming the spines of two compressionbodies before amal-
gamation. Thus, a loop in one of those spines remains in a spine after
amalgamation.

We now proceed to prove the other observations. Suppose that H decom-
poses (M, T ) into compressionbodies A and B. Let Ni for i = 1, 2 be the
closure of the components of M −H− on either side of H−. Let Hi be the
Γ-Heegaard surface of Ni induced by H+. Assume that H1 contains a gen-
eralized stabilization, or is perturbed, or that T ∩ N1 contains a removable
path satisfying the hypotheses of (3).

Consider a collar H− × [−1, 1] of H− where H− = H− × {0}. Recall
that H1 can be obtained from H− × [0, 1] by attaching handles (possi-
bly with cores running along the knot) to H− × {1}. Similarly, H2 can
be obtained from H− × [−1, 0] by attaching handles to H− × {−1}. The
Heegaard surface H can be obtained by extending the handles of H1 through
H− × [−1, 1] and attaching them to H2.
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Figure 4: If H1 is stabilized, so is H.

Case 1a: H1 is stabilized or meridionally stabilized. Let D and E be the
(T, Γ)-c-disks with boundary on H1 defining the (meridional) stabilization.
We may assume that the handles attached to H− × {1} include one that
has ∂D as a core. The intersection of ∂E with H− × {1} then consists of
a single arc. The possibly once punctured disk E′ = E ∪ (∂E × [−1, 1]) is
then a c-disk with boundary on H. The c-disks E′ and D intersect exactly
once and define a (meridional) stabilization of H. See figure 4.

Case 1b: H1 is boundary stabilized or meridionally boundary stabilized.
Let C+

1 and C+
2 be the two Γ-compressionbodies into which H1 divides

N1. Without loss of generality in this case C+
1 contains some component

G ⊂ ∂N and a c-disk D so that removing η(D) from C+
1 decomposes it

into a compressionbody C ′+
1 and a component R homeomorphic to G × I

and adding R to C+
2 results in a compressionbody C ′+

2 . Let H̃1 = ∂+C ′+
1 =

∂+C ′+
2 . Amalgamating the multiple bridge splitting with thick surfaces H̃1

and H1 gives a bridge splitting for N with bridge surface H̃ which can
be obtained from H by c-compressing along the disk D. Therefore H is
boundary stabilized or meridionally boundary stabilized.

Case 2: H1 is perturbed. Let D and E be the two bridge disks for H1

that intersect in one or two points and these points lie in T . Both disks are
completely disjoint from H− × {1} so in particular extending the 1-handles
from H1 across H− × [−1, 1] has no effect on these disks. Therefore H is
also perturbed.

Case 3: Suppose ζ is a removable path in N1 and suppose first that ζ
is a cycle. Let C1 and C2 be the two Γ-compressionbodies cl(N1 − H1). As
ζ is a removable cycle there exists a cancelling pair of disks {D1, D2} for ζ
with Dj ⊂ Cj . These disks are both completely disjoint from H− × {1} so in
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Figure 5: Removing the parallel thick and thin surfaces that form the bound-
ary of V destroys bridge position. Note the presence of a pod handle and a
ghost arc.

particular extending the 1-handles from H1 across H− × [−1, 1] has no effect
on these disks. As ζ is a removable cycle there exists a compressing disk E in
C1, say, so that |E ∩ T | = 1 and |∂E ∩ ∂D2| = 1 and E is otherwise disjoint
from a complete collection of bridge disks for (T ∩ N1) − H1 containing D1 ∪
D2. We may assume that the handles attached to H− × {1} include one
that has ∂E as a core. Therefore E satisfies all the desired properties as a
compressing disk for H.

Suppose then that ζ is a path. Again we may assume that the handles
attached to H− × {1} include one that has ∂E as a core. The bridge disk
for the component of ζ − H1 is also a bridge disk for ζ − H satisfying all of
the required properties. �

7. Consolidation

We now return to the second conclusion of Lemma 6.1. Scharlemann and
Thompson in [16] encounter a similar situation and are able to simply
remove the two parallel surfaces from the collection of surfaces compris-
ing the multiple Heegaard splitting. In the context of a 3-manifold without
an embedded graph this results in a new multiple Heegaard splitting. When
there is a graph present though, it is possible that after the removal of the
two surfaces the collection of the remaining surfaces is no longer a multiple
Γ-Heegaard surface; see figure 5 for an example. Thus, we will need to anal-
yse this situation very carefully. We begin by introducing some additional
definitions.
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7.1. Parallelism and consolidation

Suppose that H is a multiple Γ-Heegaard splitting and that V is the closure
of a component of M −H such that (V, T ∩ V ) is homeomorphic to (F ×
I, points × I) for a component F ⊂ ∂V . We allow the possibility that T ∩
V = ∅. We say that V is a product region of H. A product region is a
parallelism of H if it is disjoint from ∂M . If H is a multiple Γ-Heegaard
splitting with a parallelism V , we say that H′ = H− (H ∩ V ) is obtained
from H by consolidating V . We also say that H′ is obtained from H by
consolidation. In what follows we develop criteria to guarantee that H′ is
also a multiple Γ-Heegaard splitting.

If V is a parallelism, let V± be the closure of the components of M −H
not in V that are adjacent to H± ∩ V respectively. Notice that each of V±
has exactly one component. Let T± = T ∩ V±.

We say that V satisfies the consolidation criteria if all of the follow-
ing hold:

(C1) No circle component of T is contained entirely in V− ∪ V ∪ V+.

(C2) No edge of T with endpoints at vertices of T is contained entirely in
V− ∪ V ∪ V+.

(C3) If v ∈ T+ is a vertex adjacent to a handle, then there does not exist a
ghost arc τ in T− connected in V− ∪ V ∪ V+ to v.

(C4) If v is a vertex of T+ then there is at most one edge of T ∩ (V− ∪ V ∪
V+) with one endpoint at v and one at ∂−V+.

Lemma 7.1. Suppose that H is a multiple Γ-Heegaard splitting of (M, T, Γ)
and that V is a parallelism of H satisfying the consolidation criteria. Let H′

be obtained by consolidating V . Then H′ is a multiple Γ-Heegaard splitting
of (M, T ).

Proof. The multiple Γ-Heegaard splitting H defines a cobordism from ∂+V−
to ∂−V+, with only 2-handles and 3-handles. We can attach all the 2-handles
before all the 3-handles and so H′ is a multiple Heegaard splitting of M .

Let W = V− ∪ V ∪ V+. Suppose that D is a disk in V+ with ∂D the
union of two arcs, one running along T and the other running along ∂+V+.
Using the product structure of V and the fact that T− is trivially embedded
in V−, ∂D ∩ ∂+V+ can be extended through V and V− to be a disk whose
boundary is the union of an arc on T and an arc on ∂+V−. Thus, by (C1)
and (C2), T ∩ W is trivially embedded if and only if each vertex of T ∩ W
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is joined by at most a single edge to ∂−V+ and if any such edge is disjoint
from a complete collection of Γ-c-disks in W for ∂+V−. Conditions (C3) and
(C4) ensure that this occurs. �

Lemma 7.2. Let V be a parallelism of H satisfying the consolidation cri-
teria. Let H′ be the multiple Γ-Heegaard splitting obtained by consolidating
V . Then W = V− ∪ V ∪ V+ is a product region of H′ if and only if V− and
V+ are product regions of H.

Proof. The “if” direction is obvious, so we prove only the “only if” direction.
Suppose that W is a product region of H′ and let W± be the closure of the
component of M −H′ adjacent to H′± ∩ V . Notice that W− and W+ are
also closures of components of M −H.

Let e be a component of T ∩ W . Since W is a product region, e con-
tains no vertices and joins ∂−V+ to ∂+V−. Since those two surfaces are the
boundary of W , they are parallel. Hence, there are no ghost arcs in V− or
V+. Thus, e intersects each component of H− ∩ W exactly once. Since V
is a product region, e intersects each component of H ∩ W exactly once.
Hence, e is the union of vertical arcs in V−, V+, and V , and so V− and V+

are product regions. �

Finally, we note the following:

Lemma 7.3. Suppose that H is a multiple Γ-c-Heegaard surface for
(M, T, Γ). Suppose that no pod handle of T is adjacent to H− and that K is
obtained by consolidating a parallelism V of H. If T −K has an edge joining
a vertex of T to K− or an edge joining two vertices of T , then T ∩ V+ has
a vertex joined in T to a ghost arc of T ∩ V−.

Proof. Suppose that e is an edge of T −K that either joins two vertices of
T or that joins a vertex to K−. Since no pod handle of T is adjacent to H−,
e must intersect V . It does so in vertical arcs since V is a parallelism. Each
component of T ∩ V− adjacent to ∂−V is either a vertical arc, a ghost arc,
or a vertical pod. In fact, it must be a ghost arc or vertical arc since no pod
handle of T is adjacent to a thin surface of H. Each vertical arc in V− has
an endpoint on the thick surface K+ ∩ V−, so e ∩ V− must contain a ghost
arc and does not contain a vertex of T . Hence T ∩ V+ has a vertex joined in
T to a ghost arc of T ∩ V−. �
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Corollary 7.4. Suppose that H is a multiple Γ-c-Heegaard splitting of
(M, T, Γ) and that V is a parallelism of H satisfying the following:

• No pod handle of T is adjacent to H−,

• No vertex of T ∩ V+ is adjacent in T to a ghost arc of T ∩ V−.

Then V satisfies consolidation criteria (C2), (C3), and (C4).

Proof. (C3) is satisfied by hypothesis. Let K be the result of consolidating
V . If (C2) were not satisfied, then we would have an edge of T −K joining
two vertices of T , contradicting Lemma 7.3. If (C4) were not satisfied, then
we would have an edge of T −K joining a vertex to a component of K−,
also contradicting Lemma 7.3. �

8. Combining untelescoping and consolidation

We will usually use consolidation in conjunction with untelescoping. When
the untelescoping operation is performed along a single pair of Γ-c-disks
both thin and thick surfaces are produced. There are two possibilities for a
parallelism to arise: either one of the new thick surfaces is parallel to one
of the new thin surfaces or a new thick surface is parallel to a thin surfaces
that existed before the untelescoping. In order to consider these possibilities
in more detail we introduce the following terminology:

Definition 8.1. Suppose that H is a Γ-c-weakly reducible Γ-c-Heegaard
splitting of (M, T, Γ). A pair of disjoint Γ-c-disks D1, D2 on opposite sides
of H are called maximally separated if whenever {i, j} = {1, 2} the following
is true:

If E is a Γ-c-disk for H on the same side of H as Di such that ∂Di

separates ∂E from ∂Dj , then ∂E is parallel in H − T to ∂Di.

Notice that if D1 and D2 are both non-separating then they are auto-
matically maximally separated, because the condition is vacuously true. It
is clear that if H is Γ-c-weakly reducible then there exist a maximally sep-
arated pair of Γ-c-disks on opposite sides of H.

Lemma 8.2. Let M be connected. Suppose that D1 and D2 are a pair of
maximally separated Γ-c-disks for a Γ-c-Heegaard surface H for (M, T, Γ).
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Assume that Γ is disjoint from the vertices of T − ∂T . Let H be the result
of untelescoping H using D1 ∪ D2. Then the following hold:

(1) H has at most two parallelisms and each satisfies the consolidation cri-
teria.

(2) After consolidating those parallelisms, the resulting multiple Γ-Heegaard
surface has no new pod handles.

(3) Suppose that V+ is a component of M −H adjacent to a parallelism V .
Then V+ is one of the following:
• A 3-ball containing a single pod and the adjacent disk of D1 ∪ D2 is

not a cut disk.
• A 3-ball containing a single arc and the adjacent disk of D1 ∪ D2 is

not a cut disk.
• A product compressionbody that is either disjoint from T or which

intersects T in vertical arcs and vertical pods.

Proof. Untelescoping does not produce pod handles, so H has no new pod
handles. Since Γ is disjoint from the vertices of T − ∂T , if either D1 or D2

is a cut disk, it does not intersect a pod or vertical pod of T . If D1 and D2

are non-separating then after the untelescoping there cannot be any regions
of parallelism as the resulting thin surface has complexity strictly less than
the complexity of either of the thick surfaces. Therefore we only need to
consider the case where at least one of the disks is separating.

Let Hi be the union of the components of H+ obtained by compressing
H along Di. Since Di is a single c-disk, each Hi contains at most two com-
ponents. The thin surface H− is obtained by compressing H along D1 ∪ D2

and so contains at most three components. Let C±
i be the closures of the

components of M −H adjacent to Hi with C−
i adjacent to H−. Notice that

T ∩ C−
i consists of vertical arcs and at most one ghost arc. Since Γ is disjoint

from the vertices of T − ∂T , the ghost arc does not join up to a vertex of
T − ∂T . See figure 6.

One component of Hi is compressible in C−
i and so C−

i contains at most
one product region and if it contains such a product region then it is not
connected, i.e., the c-disk Di is separating. Thus H− contains at most two
parallelisms and such a parallelism is adjacent to exactly one of D1 or D2.
The two parallelisms are shaded in figure 7.

Since T ∩ C−
i consists of vertical arcs and at most one ghost arc and since

that ghost arc, if it exists, joins distinct components of H−, it is straightfor-
ward to verify that each parallelism of H satisfies the consolidation criteria.
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Figure 6: Untelescoping a Heegaard splitting using two disks.

Figure 7: V1 and V2 are the two possible parallelisms.

Furthermore, consolidating one of the parallelisms does not alter the other
region or the components of M −H on either side of it and so it will continue
to satisfy the consolidation criteria and therefore can also be consolidated.

Let V be a parallelism of H. Without loss of generality, assume that
V ⊂ C−

1 . Note that this implies that D1 is separating and that ∂D2 is on
the side of ∂D1 not adjacent to V . Let H ′

1 = H+ ∩ V+. If H ′
1 had a Γ-c-disk

then its boundary could be extended through V to lie on H. The boundary
of this extended disk is on the inside of D1 with respect to D2 and does not
have boundary parallel to ∂D1. This contradicts the choice of D1.

Notice that V+ cannot be a 3-ball disjoint from T , since D1 and D2 were
c-disks. Since H ′

1 does not have any Γ-c-disk in V+, if there exists a bridge arc
of T ∩ V+, then V+ is a 3-ball and τ = T ∩ V+ is connected. Furthermore,
if D1 intersected T (i.e., was a cut disk), then ∂D1 would bound a once-
punctured disk in H, since ∂V+ is a 2-sphere. This contradicts the definition
of cut disk, so D1 is not a cut disk.
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Similarly, if T ∩ V+ contains a bridge pod, V+ must be a 3-ball and
T ∩ V+ is connected. D1 is not a cut disk since Γ is disjoint from the ver-
tices of T − ∂T . Thus, we may assume that T ∩ V+ consists of vertical arcs
and vertical pods. Since H ′

1 is incompressible in V+, V+ must be a product
compressionbody. �

Lemma 8.3. Suppose that (M, T ) is a (3-manifold, graph) pair. Let K be
a multiple Γ-Heegaard splitting for (M, T, Γ) such that the following hold:

(1) Γ is disjoint from the vertices of T − ∂T and no pod handle of T −K is
adjacent to a component of K−.

(2) K does not have any parallelisms.

(3) No circle component of Γ is isotopically core for K.

If some component H of K+ is Γ-c-weakly reducible in M −K− then there
is a non-empty sequence of untelescopings and consolidations of K con-
verting it into a multiple Γ-Heegaard splitting J for (M, T ) satisfying
(1), (2), and (3).

Proof. Let H be obtained by untelescoping H ⊂ K using a pair of maximally
separated Γ-c-disks D1 and D2. By Lemma 8.2, no pod handle of T −H is
adjacent to a component of H−. Since Γ is disjoint from the vertices of
T − ∂T , no vertex of H is connected in T to a ghost arc of T −H. Conse-
quently, all parallelisms of H satisfy consolidation criteria (C2), (C3), and
(C4). Furthermore, we are guaranteed that consolidating a parallelism sat-
isfying (C1)–(C4) produces a multiple Γ-bridge surface for (M, T, Γ) where
all parallelisms continue to satisfy (C2)–(C4).

Let N be the component of M −K− containing H. Any parallelism of
H is contained in N and by Lemma 7.2, consolidating any such parallelisms
does not create additional parallelisms. Thus, it suffices to show that each
parallelism of H ∩ N satisfies consolidation criterion (C1) and if V and W
are two such parallelisms then consolidating one of them does not cause the
other to stop satisfying (C1).

We observe, first, that the component F of H− ∩ N adjacent to both D1

and D2 is not parallel to either component of H+ ∩ N since the complexity of
F differs from the complexity of each of those surfaces. Thus, the component
F will never lie in the boundary of a parallelism of H. Consequently, it
suffices to consider only the situation in which all parallelisms of H lie on
the same side of F in N . There can be at most two such parallelisms. Let
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Figure 8: The shaded regions denote product regions of H. V is a parallelism
and W is adjacent to ∂N .

V be the parallelism of H ∩ N adjacent to H− − ∂N , if such exists. Let W
be the parallelism of H ∩ N adjacent to ∂N , if such exists. See figure 8.

Since each compressionbody of N −H adjacent to H− intersects T only
in vertical arcs and at most one ghost arc, the parallelism V satisfies (C1).
If V = ∅, then W+ is a compressionbody of N −H adjacent to H−. The
ghost arc in such a compressionbody, if it exists, is disjoint from ∂W . Hence,
if V = ∅ the parallelism W satisfies the consolidation criteria. Suppose,
therefore, that V �= ∅ and W �= ∅. Let H′ be the result of consolidating V
in H.

Assume that W does not satisfy (C1) and let τ ⊂ (W− ∪ W ∪ W+) be a
circle component of T . Since τ ∩ W consists of vertical arcs, τ ∩ W+ must
have a bridge arc. By Lemma 8.2, such a bridge arc intersects V+. By that
lemma, V+ is a 3–ball, the component of D1 ∪ D2 adjacent to it is a not a
cut-disk and T ∩ V+ consists only of a single bridge arc. Thus, τ ∩ W ∪ W+

consists of a single arc. Hence, τ ∩ W− consists of a single arc with both
endpoints on ∂N ∩ K−. Such an arc is a ghost arc in W− and so must belong
to Γ. Hence τ ⊂ Γ. See figure 9. Since τ is the union of a ghost arc in τ−
with an arc in W ∪ W+ that is isotopic into ∂−W−. Thus, τ can be isotoped
to lie in the spine of the compressionbody W−. Hence, by Lemma 6.3, τ is
isotopically core with respect to K, a contradiction. �
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Figure 9: The circle τ .

9. Untelescoping and essential surfaces

In this section, we put together the previous results on untelescoping and
consolidation and prove the main theorem. We begin by naming the main
properties we seek.

Definition 9.1. Suppose that K and H are multiple Γ-c-Heegaard split-
ting for (M, T, Γ). If H is obtained from K by a sequence of untelescop-
ings and consolidations, then we say that H is obtained by thinning K.
If H has the property that each component of H+ is Γ-c-irreducible in
M −H−, each component of H− is Γ-c-incompressible, and no component
of H− bounds a parallelism with a component of H+, then we say that H
is slim. If H is slim and if each component of H− is T -essential, then H is
locally thin.

We begin with Theorem 9.2 that shows that we can obtain slim multiple
Heegaard splittings. Theorem 9.3 will strengthen this to produce locally thin
multiple Heegaard splittings.
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Theorem 9.2. Let M be a compact, orientable 3-manifold containing a
properly embedded graph T and let Γ be a subgraph of T disjoint from the
vertices of T − ∂T . Furthermore assume that M − T is irreducible and that
no sphere in M intersects T exactly once. Suppose K is a Γ-bridge surface
for (M, T, Γ) such that the following hold:

• K has no parallelisms,

• no pod handle of T −K is adjacent to K−,

• no component of Γ is isotopically core with respect to K.

Then there is a slim multiple Γ-bridge splitting H for (M, T, Γ) obtained by
thinning K.

Proof. We define a sequence (Hi) of multiple Γ-c-Heegaard splittings such
that each Hi satisfies the hypotheses of the theorem and so that for all i,
Hi+1 is obtained from Hi by a sequence of untelescopings using Γ-c-disks
and consolidations. Assume that such an Hi does not satisfy the conclusions
of the theorem. Since Hi has no parallelisms, if a component of H−

i is Γ-c-
compressible, then by Lemma 6.1, there is a component of H+

i that is Γ-c-
weakly reducible in M −H−

i . Hence, if Hi does not satisfy the conclusions
of the theorem, some component of H+

i is Γ-c-weakly reducible in M −H−
i .

We define (Hi) inductively as follows. Let H1 = K. Assume that Hi has
been defined. If Hi satisfies the conclusions of the theorem, let Hi+1 = Hi. If
Hi does not satisfy the conclusions of the theorem, let Hi+1 be the multiple
Γ-c-Heegaard splitting of (M, T, Γ) obtained by applying Lemma 8.3 to Hi.
By that lemma, Hi+1 is obtained from Hi by a sequence of untelescopings
using Γ-c-disks and consolidations and it satisfies the hypotheses of the
theorem. Hence, we obtain a sequence (Hi) as desired.

Since both untelescoping and consolidation strictly reduce complexity,
this sequence is eventually constant at a Γ-multiple Heegaard splitting H of
(M, T, Γ) satisfying the conclusions of the theorem. �

We can now prove our main theorem.

Theorem 9.3. Let M be a compact, orientable 3-manifold containing a
properly embedded graph T and let Γ be a subgraph of T disjoint from the
vertices of T − ∂T . Furthermore assume that M − T is irreducible and that
no sphere in M intersects T exactly once. Suppose K is a multiple Γ-bridge
surface for (M, T, Γ) such

• K has no parallelisms,
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• no pod handle of T −K is adjacent to K−,

• no circle or edge component of Γ is isotopically core with respect to K.

Then there is a multiple Γ-Heegaard splitting H for (M, T, Γ) obtained by
thinning K such that one of the following holds:

• H is locally thin, or

• some component of H+ contains a generalized stabilization in M −
H−, or

• some component of H+ is perturbed in M −H−, or

• T has a removable path.

Proof. Let H be the multiple Γ-Heegaard splitting of (M, T, Γ) obtained
by applying Theorem 9.2 to K. By that theorem, each component of
H+ is Γ-c-weakly reducible in M −H−, each component of H− is Γ-c-
incompressible, and no component of H− bounds a parallelisms with a
component of H+.

Suppose that a component F of H− is T -parallel. Let CF be the com-
pressionbody so that F = ∂+CF is parallel to the boundary of a regular
neighbourhood of some components of ∂M together with some subset of T .
By Lemma 3.3 we may assume that F is innermost, i.e., CF does not contain
any other thin surfaces. Let HCF

be the Γ-Heegaard splitting for CF given
by the unique thick surface of H contained in CF .

Case 1: T ∩ CF = ∅.
Recall that F is not parallel to HCF

. If ∂−CF = ∅, then by [23], H is
stabilized. If ∂−CF �= ∅, by [15] HCF

is stabilized or boundary stabilized
along ∂−CF . See also [14].

Case 2: HCF
is a Heegaard splitting.

Since no thin surface is parallel to a thick surface, by Theorem 3.5 one
of the following occurs:

• HCF
has a generalized stabilization and if this is a boundary stabiliza-

tion, it is along a component of ∂M ;

• HCF
is perturbed; or

• T ∩ CF has a removable path disjoint from F .

All of these conclusions are possible conclusions in the theorem at hand.
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Case 3: HCF
is a Γ-Heegaard splitting but not a Heegaard

splitting.
Let A and B be the two compressionbodies into which HCF

divides CF .
Since HCF

is a Γ-Heegaard splitting but not a Heegaard splitting, there
exists an edge e ⊂ Γ in either A or B which is disjoint from HCF

and which
has both endpoints on ∂CF .

Case 3a: ∂e ⊂ F .
Since F is parallel to ∂M ∪ T and since e ⊂ T is an edge with both

endpoints on F , T = e and F = S2. Then by [10, Lemma 2.1] and [9, Theo-
rem 1.1], either HCF

is stabilized, meridionally stabilized, or perturbed. See
Case 2 of the proof of [22, Lemma 5.2] for details.

Case 3b: ∂e ⊂ ∂M
In this case e is disjoint not only from HCF

but also from H. Then e is
an edge of Γ with both endpoints on ∂M which is disjoint from H. Hence e
is isotopically core with respect to K, a contradiction.

Case 3c: One endpoint of e is on F and one endpoint of e is
on ∂M .

We may assume that the hypotheses of cases (3a) and (3b) do not apply.
Let e1, . . . , en be the union of edges of T ∩ CF with one endpoint on F , one
endpoint on ∂M , and which are disjoint from HCF

. Perform a slight isotopy
of each of them to convert T into a graph T ′ and each edge ei into e′i so
that each e′i is a removable edge of T ′ as in Lemma 2.3. Let H ′

CF
be the

new Γ-Heegaard surface and notice that H ′
CF

is, in fact, a Heegaard surface
for CF . Since F is not parallel to HCF

, by Theorem 3.5 one of the following
occurs:

• H ′
CF

has a generalized stabilization and if this is a boundary stabiliza-
tion, it is along a component of ∂M ;

• H ′
CF

is perturbed; or

• T ∩ CF has a removable path with both endpoints in ∂M .

Note that if the last option occurs the removable path is not equal to any
of the e′i since each of those edges has one endpoint on F . By Lemma 2.3
one of the following occurs:

• HCF
has a generalized stabilization and if this is a boundary stabiliza-

tion, it is along a component of ∂M ;

• HCF
is perturbed; or
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• T ∩ CF has a removable path disjoint from F .

All of these are conclusions for the theorem at hand. �

Combining the above result with Lemma 6.3 gives us an almost imme-
diate corollary for bridge surfaces:

Corollary 9.4. Let M be a compact, orientable 3-manifold containing a
properly embedded graph T and let Γ be a subgraph of T disjoint from the
vertices of T − ∂T . Furthermore assume that M − T is irreducible and that
no sphere in M intersects T exactly once. Suppose K is a bridge surface
for (M, T, Γ) such no circle or edge component of Γ is isotopically core with
respect to K. Then one of the following holds:

• there is a slim multiple Γ-Heegaard splitting H for (M, T, Γ) obtained
by thinning K. Furthermore, if K is not thin, then H− �= ∅.

• K contains a generalized stabilization,

• K is perturbed, or

• K has a removable path.

Proof. By Theorem 9.3, either T has a removable path or there is a multiple
Γ-Heegaard splitting H for (M, T, Γ) obtained by thinning K such that one
of the following holds:

• H is locally thin, or

• some component of H+ contains a generalized stabilization in M −
H−, or

• some component of H+ is perturbed in M −H−.

Note that K can be recovered from H by a sequence of amalgamations so
by Lemma 6.3 if H+ contains a generalized stabilization or perturbation in
M −H− so does K. Thus the only statement we need to verify is that if
K is not thin, then H− �= ∅. To see this, notice that when a bridge sur-
face is untelescoped using a pair of maximally separated disks, the thin
surface adjacent to both disks is never adjacent to one of the parallelisms
that is possibly created by the untelescoping. Thus it cannot be consoli-
dated until it is adjacent to a thick surface that is untelescoped to create a
thick surface parallel to it. Thus, throughout the thinning process there is
always a thin surface, although the thin surface may change as the sequence
progresses. �
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