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It is interesting to know the existence of the Kähler–Ricci flow on
complete non-compact Kähler manifolds with non-negative holo-
morphic bisectional curvature. In this paper, we study U(n)-
invariant Kähler–Ricci flow on C

n with non-negative curvature.
Motivated by the recent work of Wu and the second named author
[37], we also study examples of U(n)-invariant complete Kähler
metrics on C

n with positive and unbounded curvature.
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1. Introduction

One of the central questions around the study of complete non-compact pos-
itively curved Kähler manifolds is the uniformization conjecture whose most
general form is due to Yau [41]. The conjecture states that any complete non-
compact Kähler manifolds with positive holomorphic bisectional curvature
is biholomorphic to complex Euclidean space. Some related questions are
also asked by Greene and Wu [16] and Siu [36]. While this conjecture itself
is still wide open, there are many progress in the past decades; see [7–9,
11, 12, 16, 22, 24, 33, 34] and references therein. In particular, the Ricci
flow, introduced by Hamilton [17] in 1982, proves to be a powerful tool to
study the uniformization problem since Shi’s work [33, 34]. The best results
obtained to date is the theorem of Chau and Tam [7] which says that a com-
plete non-compact Kähler manifold with non-negative bisectional curvature
is biholomorphic to complex Euclidean space if it has bounded curvature and
Euclidean volume growth. All the important progress along the uniformiza-
tion problem via the Ricci flow approach assume upper bounds of curvatures
since they all rely on the long-time existence theorem of Kähler–Ricci flow
proved by Shi [33, 34], which in turn is based on Shi’s short-time existence
result of Ricci flow on complete manifolds with bounded curvatures [32].

So far, all the available examples of complete Kähler metrics with pos-
itive bisectional curvature are constructed on C

n with U(n)-symmetry, see
[4, 5, 21, 37]. In particular, it was observed by Wu and the second named
author [37] that there are many examples of Kähler metrics with positive
but unbounded bisectional curvature. In general, it is unknown whether one
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can prove an existence theorem of Kähler–Ricci flow on any complete Kähler
manifold with positive holomorphic bisectional curvature (without assuming
boundedness of the curvature). Such a result, if exists, could be very help-
ful to study uniformization problem for Kähler manifolds with positive but
unbounded curvature. For the Riemannian Ricci flow, the recent exciting
work of Cabezas–Rivas and Wilking [3] proved a short-time existence the-
orem for any complete non-compact manifold with non-negative complex
sectional curvature.

Those examples of Kähler metrics with positive bisectional curvature on
C
n with U(n)-symmetry motivate us to consider the following question:

Question 1.1. Starting with any complete U(n)-invariant Kähler met-
ric on C

n with non-negative holomorphic bisectional curvature, does there
always exist a complete solution to the Kähler–Ricci flow with U(n)-
symmetry?

In view of Cabezas–Rivas and Wilking’s theorem [3], which assumes the
non-negative complex sectional curvature, it is also interesting to understand
U(n)-invariant Kähler metrics on C

n with different levels of non-negativity
of curvatures. (E.g., non-negative complex sectional curvature, non-negative
complex curvature operator.) The recent work of Wu and the second named
author [37] developed a systematic way to construct U(n)-invariant complete
Kähler metrics on C

n with positive bisectional curvature. In particular, they
obtain some sufficient and necessary algebraic conditions on curvatures to
characterize different levels of positive curvatures. The first result of our
paper is a further development of their theory. We use a perturbation method
to demonstrate that one can perturb some U(n)-invariant Kähler metrics
on C

n with positive sectional curvature along any sequence going to infinity
to obtain Kähler metrics with unbounded curvature while preserving the
positivity of sectional curvatures. In particular, we show:

Proposition 1.2. Fix n > 2, for any integer 1 < k ≤ n, there exists a com-
plete Kähler metric with positive and unbounded sectional curvature on C

n

with r−2n+2k
∫
B(O,r) σk unbounded when r tends to infinity. Here with σk is

the kth elementary symmetric function of the Riemannian Ricci tensor and
B(O, r) is the geodesic ball of radius r centered at some fixed point O.

It is interesting to compare it with the following result of Petrunin [30].
In fact, Proposition 1.2 is related to a question of Yau (See p. 278, Problem 9,
[40]).
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Theorem 1.3 Petrunin [30]. Let (Mn, g) be a complete Riemannian
manifold with non-negative sectional curvature, then for any O ∈M and
r > 0, there exists a constant c(n) which depends only on n such that

r2−n
∫

B(O,r)
R dVol(g) ≤ c(n),

where R is the scalar curvature of (Mn, g).

Recall that Chen [10] proved that the non-negativity of the scalar cur-
vature is preserved for any complete solution to the Ricci flow. Motivated
by the new cut-off techniques developed in [10], we show that any com-
plete Kähler–Ricci flow on C

n with U(n)-symmetry preserves various levels
of non-negative curvatures. In general it is known that Kähler–Ricci flow
preserves non-negativity of holomorphic bisectional curvature on compact
manifolds [1, 23] or complete manifolds with bounded curvature [33]. The
point here is that by assuming the U(n)-symmetry we do not require any
upper bounds on curvatures.

Theorem 1.4. Let g(t) be a complete solution of Kähler–Ricci flow on C
n

with U(n)-symmetry for t ∈ [0, T ], if the holomorphic bisectional curvature
(sectional curvature, or complex curvature operator) of the initial metric g(0)
is non-negative, so is that of g(t) for any t ∈ [0, T ]. Furthermore, if g(0) has
holomorphic bisectional curvature (sectional curvature, or complex curvature
operator) positive somewhere, then g(t) has positive bisectional curvature
(sectional curvature, or complex curvature operator) on C

n × (0, T ].

In fact, our method shows that any non-negative curvature conditions
which lies between non-negative sectional curvature and non-negative com-
plex curvature operator is always preserved by complete Kähler–Ricci flow
on C

n with U(n)-symmetry. It is worth noting that in general, the non-
negative sectional curvature may not be preserved by Ricci flow on non-
compact manifolds [25]. This motivates us to prove the following theorem.
(See Section 2.4 for our definition on positive (non-negative) complex sec-
tional curvature on general Kähler manifolds.)

Theorem 1.5. Let g be a complete U(n)-invariant Kähler metric on C
n.

If g has positive (non-negative) sectional curvature everywhere, then it will
have positive (non-negative) complex sectional curvature everywhere.

Recall that it was shown in [28] that non-negative complex sectional cur-
vature is preserved along Ricci flow on closed manifolds. Such an invariant
curvature condition under Ricci flow is useful in the proof of the differentiable
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sphere theorem due to Brendle and Schoen [2]. Also Theorem 1.5 demon-
strates a somewhat surprising rigidity phenomenon for U(n)-invariant
Kähler metrics on C

n with positive curvature.
The asymptotic volume ratio (AVR) is another interesting quantity

whose invariance under the Ricci flow was first studied by Hamilton [19].
There has been various generalizations of Hamilton’s result in the context
of Ricci flow and Kähler–Ricci flow, see [11, 12, 27, 31, 33, 42].

Theorem 1.6. Let g(t) be a complete U(n)-invariant Kähler–Ricci flow on
C
n × [0, T ] where g(0) is of non-negative holomorphic bisectional curvature,

then AVR of (Cn, g(t)) is constant on [0, T ]. In fact, for any t ∈ [0, T ]

lim
s→+∞

Vt(Bt(O, s))
V0(B0(O, s))

= 1,

where Bt(O, s) denotes the geodesic ball of radius s for the metric g(t) cen-
tered at the origin.

Of course it is desirable if one can answer Question 1.1 affirmatively.
Kähler–Ricci flow equation on C

n with U(n)-symmetry can be reduced to
a non-linear equation of fast diffusion type. In the case of n = 1 such equa-
tions have been studied extensively in the context of partial differential
equations, and we refer the readers to check the review paper [20] and refer-
ence therein. However, in higher dimensions it seems very hard to solve such
equations directly due to the high non-liearities involved. In the last part of
the paper we study the Riemannian Ricci flow constructed by Cabezas–Rivas
and Wilking [3] with the initial metric being a U(n)-invariant Kähler metric
with non-negative complex sectional curvature on C

n. Note that by Theo-
rem 1.5 we only need to assume non-negative sectional curvature. Recall that
Cabezas–Rivas and Wilking constructed such a Ricci flow after obtaining
some delicate estimates on curvature evolution of the Ricci flows emanating
from a sequence of double covers which converges to the original manifold
in the sense of Cheeger–Gromov. Such double covers, obtained by gluing
two copies of geodesic balls in the original manifold with increasing radii
after identifying the boundary and perturbing the inner region nearby, are
topologically spheres. Moreover, they are endowed with metrics with non-
negative complex sectional curvature. Ricci flows on those closed manifolds
instantaneously evolve their curvatures into positive complex sectional cur-
vatures (p. 6 in [3]), thus destroy the Kähler structures even when the initial
metrics are Kähler on some open sets. Apriori it is not clear if one can get
a complete Kähler–Ricci flow after taking limits on those closed Ricci flows.
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In the last section of this paper, we are able to show Cabezas–Rivas and
Wilking’s Ricci flow is indeed a Kähler–Ricci flow under some extra techni-
cal assumptions. We believe that those assumptions could be improved by
more refined analysis on the curvature evolution for the Ricci flow on those
double covers. We plan to study the existence of complete Kähler–Ricci flow
with positive curvature in a general context in future works.

The paper is organized as follows: In Section 2, we use a perturbation
method to construct examples of Kähler metrics with positive sectional cur-
vature and unbounded curvature. Various levels of positivity on the cur-
vature for U(n)-invariant Kähler metrics are discussed in Section 2.4. In
particular, we prove Theorem 1.5. In Section 3 we prove that any complete
Kähler–Ricci flow on C

n with U(n)-symmetry preserves non-negativity of
various levels of curvature and the AVR. In the last section, we discuss the
Ricci flow constructed by Cabezas–Rivas and Wilking [3] with the initial
metric being U(n)-invariant Kähler metrics with non-negative sectional cur-
vature on C

n. We end up with an existence theorem for Kähler–Ricci flow
with U(n)-symmetry under extra assumptions.

2. Examples of U(n)-invariant Kähler metrics with positive
curvature

2.1. Introduction

Let Mn (Nn, Kn) denote the space of all U(n)-invariant complete Kähler
metrics on C

n with positive bisectional curvature (positive sectional curva-
ture, positive complex curvature operator). See Section 2.4 for the definition
of complex curvature operator on Kähler manifolds. We will show the fol-
lowing theorems.

Proposition 2.1. There are examples in Nn and Kn with unbounded
curvature.

It is shown in [37] that examples of metrics with unbounded curvature
in Mn can be easily constructed. In fact, their results implies that one can
perturb any metric in Mn such that the new one has its scalar curvature
blowing up with any given rate along a prescribed sequence along the infinity.
However, if we require stronger restrictions on the positivity of the curvature,
more careful analysis on the perturbation are needed. In fact, we construct
examples in Proposition 2.1 by perturbing a particularly chosen metric in
Kn, although we believe that such a choice should not be essential.
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As an application of the perturbation argument developed in the proof
of Proposition 2.1, we prove

Proposition 2.2. Fix any n > 2. For any integer 2 ≤ k ≤ n, there exists
a complete Kähler metric in Nn such that r−2n+2k

∫
B(O,r) σk is unbounded

when r tends to infinity. Here σk denotes the kth elementary symmetric
function of the eigenvalues of the Ricci tensor and B(O, r) is the geodesic
ball of radius r centered at a fixed point O.

This problem is related to a question raised by Yau [40] (see p. 278,
Problem 9) as a generalization of the Cohn–Vossen inequality in high dimen-
sions. Originally it is stated for manifolds with non-negative Ricci curvature.
Recently Yau (see [39]) suggested that the original conjecture should be
modified by assuming Riemannnian manifolds with non-negative sectional
curvature and Kähler manifolds with non-negative bisectional curvature (In
the latter case, the Ricci form of the Kähler metric is used instead). Note
that, if one only requires non-negative Ricci curvature as in Yau’s original
question, then Proposition 2.2 can be proved by applying the characteri-
zation of Kähler metrics in Mn developed in [37], see [39] for details. In
Section 2.3, we are able to construct examples in Nn satisfying the conclu-
sion of Proposition 2.2 with a perturbation argument. The essential reason
is that we can perturb some metric from Nn to adjust the radial curvature
along a sequence of points tending to the infinity. Note that each eigenvalue
of the Ricci tensor of a Kähler manifold is of multiplicity 2, and when k > 1,
one of summands of σk contains the square of radial curvature. A careful
choice of the perturbation function will allow us to prescribe σk and get
r−n+2k

∫
B(r) σk unbounded when r is large.

2.2. The results of Wu and the second named author

In this section, we collect the main results from the recent work of Wu
and the second author [37] where a systematic treatment of U(n)-invariant
complete Kähler metrics on C

n with positive bisectional curvature was
developed.

We will follow the notations in [37]. Let z = (z1, . . . , zn) be the standard
coordinate on C

n and r = |z|2. A U(n)-invariant Kähler metric on C
n has

the Kähler form

(2.1) ω =
√−1

2
∂∂ P (r),
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where P ∈ C∞[0,+∞). Under the local coordinates, the metric has
components:

(2.2) gij = f(r)δij + f ′(r)zizj .

We further denote:

(2.3) f(r) = P ′(r), h(r) = (rf)′.

It can be checked that the from ω will give a complete Kähler metric on C
n

if and only if

(2.4) f > 0, h > 0,
∫ +∞

0

√
h√
r
dr = +∞.

Now if we compute the components of the curvature tensor at (z1, 0, . . . ,
0) under the orthonormal frame {e1 = 1√

h
∂z1 , e2 = 1√

f
∂z2 , . . . , en = 1√

f
∂zn

},
then denote by A,B,C, respectively:

A = R1111 = −1
h

(
rh′

h

)′
, B = R11ii =

f ′

f2
− h′

hf
,(2.5)

C = Riiii = 2Riijj = −2f ′

f2
,

where we assume 2 ≤ i �= j ≤ n. It is easy to check that all other components
of the curvature tensor are zero.

Theorem 2.3 Characterizing Mn, Nn, and Kn by ABCD func-
tions [37]. Suppose n ≥ 2 and h is a smooth positive function on [0,+∞)
satisfying (2.4), then(2.1) gives a complete Kähler metric in Mn if and only
if A,B,C are positive. Moreover, it is in Nn iff D

.= AC −B2 > 0, and in
Kn iff Dn

.= n
2(n−1)AC −B2 > 0.

If we define a smooth function ξ on [0,+∞) by

(2.6) ξ(r) = −rh
′(r)
h

,

then h determines ξ uniquely. On the other hand, note that ξ determines
h by h(r) = h(0)e

∫ r

0
ξ(t)

t
dt. Hence ξ determines ω up to a constant multiple.

The following observation in [37] reveals that the space Mn is actually quite
large.
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Theorem 2.4 Characterizing Mn by the ξ function [37]. Suppose
n ≥ 2 and h is a smooth positive function on [0,+∞), then the form defined
by (2.1) gives a complete Kähler metric with positive bisectional curvature
on C

n if and only if ξ defined by (2.6) satisfying

(2.7) ξ(0) = 0, ξ′ > 0, ξ < 1.

Wu and Zheng [37] also introduced another function F in the following
way: First let x =

√
rh, and define a non-negative function y of r by

(2.8) y(0) = 0, x′2 + y′2 =
h

4r
, y′ > 0.

One can check that x(r) is strictly increasing, so we get a smooth function
F on [0, x0) by y = F (x). Here, x0 ≤ ∞ is determined by

(2.9) x2
0 = lim

r→+∞ rh = h(1) e
∫ +∞
1

1−ξ

r
dr.

Extending F to (−x0, x0) by letting F (x) = F (−x), one can check that F
is a smooth, even function on |x| < x0. Starting with such an F satisfy-
ing certain conditions, one can recover the metric ω in a geometric way.
See Section 5 in [37] for details. This result is summarized as the following
theorem.

Theorem 2.5 Characterizing Mn by the F function [37]. For any
n ≥ 1, there is a one one correspondence between the set Mn and the set F
of smooth, even function F (x) defined on (−x0, x0) satisfying

(2.10) F (0) = 0, F ′′ > 0, lim
x→x0

F (x) = +∞.

All the above results can be generalized to the case of U(n)-invariant
complete Kähler metrics on C

n with non-negative bisectional curvature [39].

2.3. Proof of Propositions 2.1 and 2.2

2.3.1. Step 1: Set up and the generating function p(x). Now assume
F : [0, x0) → [0,∞) is a smooth strictly convex function where
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0 < x0 ≤ +∞, F (0) = F ′(0) = 0, and F (x0) = +∞. Write

p(x) =
√

1 + (F ′(x))2, v(x) =
∫ x

0
2τp(τ) dτ.

We will call p(x) the generating function for the metric in Mn. One can
rewrite ABC in terms of p(x):

A =
F ′F ′′

2x(1 + (F ′)2)2
=

p′

2x p3
.(2.11)

B =
1
v2

(

x2 − v
√

1 + (F ′(x))2

)

=
1
v2

(

x2 − v

p

)

.(2.12)

C =
2
v2

(v − x2).(2.13)

The problem of characterizing the space Nn or Kn can be reduced to the
following problem:

Question 2.6. Let 0 < x0 ≤ ∞, and let p(x) be a smooth strictly increas-
ing function on [0, x0) with p(0) = 1, p′(0) = 0, p′′(0) > 0 and

∫ x0

0 p(τ)dτ =
+∞. Can we find p(x) such that

(2.14)
p′v2

xp3
(v − x2) >

(

x2 − v

p

)2

or
n

2n− 2
p′v2

xp3
(v − x2) >

(

x2 − v

p

)2

holds for all x ∈ (0, x0)? Here v(x) =
∫ x
0 2τp(τ)dτ . Note that Nn and Kn

are the same when n = 2. In general the second named author [43] proved
that any complete Kähler surface with positive sectional curvature must have
positive complex curvature operator, See Section 2.4 for more discussion.

2.3.2. Step 2: Perturbation on p(x) and estimates on D. First we
recall the following examples in [37].

Example 2.7 [37]. ξ = cr
1+r where r ∈ [0,+∞). Then for any 0 < c < 1 the

corresponding metric lies in Mn and has maximal volume growth; it lies in
Kn if 0 < c ≤ 1

2 while it dose not have positive sectional curvature for any
1
2 < c < 1.
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Let us fix c = 1
2 . A routine calculation shows:

A =
1

2(1 + r)
3
2

, B =
1

4(1 + r)
, C =

1
2
√

1 + r
, D =

3
16(1 + r)2

.

(2.15)

s =
∫ r

0

1

2
√
r(1 + r)

1
2

dr ∼ r
1
4 .(2.16)

p =
1 + r

1 + r
2

, p′(x) =
r

1
2 (1 + r)

5
4

(1 + r
2)3

, v = 2(
√

1 + r − 1).(2.17)

x2 =
r√

1 + r
, r =

x4 +
√
x8 + 4x4

2
(2.18)

Our goal is to perturb the function p(x) to produce a Kähler metric in
Nn with unbounded curvature along a sequence of points tending to infinity.

Define

(2.19) p̃ = p+ Φ, E =
∫ x

0
2τΦ(τ) dτ.

Here we assume that Φ is non-negative non-decreasing function on [0,+∞)
and vanishes in a small neighborhood of 0. These conditions ensure that the
new function p̃(x) will be a generating function for some metric in Mn. Note
that we have ṽ =

∫ x
0 2τ p̃(τ)dτ = v + E, so it is straightforward to get the

curvature components of the new metric generated by p̃ :

Ã =
p̃′

2x p̃3
=
p′(x) + Φ′(x)
2x (p+ Φ)3

.(2.20)

B̃ =
1
ṽ2

(

x2 − ṽ

p̃

)

=
x2

(v + E)2
− 1

(v + E)(p+ Φ)
.(2.21)

C̃ =
2
ṽ2

(ṽ − x2) =
2

v + E
− 2x2

(v + E)2
.(2.22)

The point of Step 2 is to estimate D̃
.= ÃC̃ − B̃2 via the following

lemma.

Lemma 2.8. There exists δ0 > 0 and two constants C(δ0) and x0 both only
depending on δ0 such that for any 0 < δ ≤ δ0 and any smooth increasing
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function Φ(x) defined on [0,+∞) with Φ = 0 in a small neighborhood of 0
and

(2.23) lim
x→+∞Φ(x) = δ,

∫ +∞

0
Φ′(τ)τ2dτ ≤ C(δ0)δ,

we always have D̃ > 0 for any x > x0.

Assume that we have proved Lemma 2.8, then we pick any 0 < δ < δ0
and any function Φ satisfying the assumption in Lemma 2.8. Consider D̃
inside the ball with 0 ≤ x ≤ 2x0. Since D̃ converges to D > 0 uniformly on
compact sets B(O, 2x0) as δ → 0, shrinking δ if necessary, we conclude that
there exists a function Φ(x) defined on [0,+∞) such that

(2.24) lim
x→+∞Φ(x) = δ,

∫ +∞

0
Φ′(τ)τ2dτ ≤ C(δ0)δ,

such D̃ > 0 for this particular Φ(x) inside the ball with 0 ≤ x ≤ 2x0. There-
fore, D̃ > 0 everywhere and p̃(x) generates a metric with positive sectional
curvature.

Proof of Lemma 2.8. Note that:

D̃ −D = (A+ Ã−A)(C + C̃ − C) − (B + B̃ −B)2 − (AC −B2)(2.25)

= (Ã−A)C + (C̃ − C)A+ (Ã−A)(C̃ − C)

− 2B(B̃ −B) − (B̃ −B)2.

Step 1 of Proof of Lemma 2.8: estimating Ã−A.
It follows from (2.11) and (2.20) that

(2.26) Ã−A =
Φ′

2x(p+ Φ)3
− p′(3p2Φ + 3pΦ2 + Φ3)

2xp3(p+ Φ)3
.

Then we know Ã−A ≥ 0 at points where

(2.27) Φ′(x) ≥ Φ
p′(x)
p3

(Φ2 + 3Φp+ 3p2).

Otherwise, we have

(2.28) −p
′(x)

2xp6
(δ3 + 6δ2 + 12δ) ≤ Ã−A ≤ 0,

where we use 1 ≤ p ≤ 2.
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Note that P ′(x)
2xp3 ∼ O

(
1

r
3
2

)
. we conclude that there exists x0 and c(δ)

only depends on δ such that

(2.29) If Ã−A ≤ 0, then − c(δ)

r
3
2

≤ Ã−A ≤ 0 whenever x ≥ x0.

Step 2 of Proof of Lemma 2.8: estimating C̃ − C.
It follows from (2.13) and (2.22) that

(2.30) C̃ − C =
−2E

v(v + E)
+ 2x2 E

2 + 2vE
v2(v + E)2

.

Note that v ≤ 2
√
r and x2 ≤ √

r.

(2.31)
2E

v(v + E)
+ x2 E

2 + 2vE
v2(v + E)2

≤ δ

2
√
r

+
2δ + δ2

4
√
r
.

Similarly we conclude that there exists c(δ) only depends on δ such that

(2.32) |C̃ − C| ≤ c(δ)√
r
.

Step 3 of Proof of Lemma 2.8: estimating B̃ −B.
It follows from (2.12) and (2.21) that

(2.33) B̃ −B = −x2 E
2 + 2Ev

(v + E)2v2
+

Ep+ EΦ + vΦ
vp(v + E)(p+ Φ)

.

Now plug in v = 2(
√

1 + r − 1), x2 = r√
r+1

and p = 1+r
1+ r

2
. Denote B̃ −

B = I1 − I2 where

I1 =
r√
r + 1

E2 + 2E · 2(
√
r + 1 − 1)

[2(
√

1 + r − 1) + E]2[2(
√
r + 1 − 1)]2

,(2.34)

I2 =
E
(

1+r
1+ r

2

)
+ EΦ + 2(

√
r + 1 − 1)Φ

2(
√
r + 1 − 1)[2(

√
r + 1 − 1) + E]

(
1+r
1+ r

2

) [
1+r
1+ r

2
+ Φ

] .(2.35)

The following claim is crucial in Step 3 of Proof of Lemma 2.8.
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Claim 2.9.

lim
r→+∞

√
rI1 = lim

r→+∞
√
rI2 =

δ2 + 4δ
4(2 + δ)2

,(2.36)

r|I1 − I2| ≤ c(δ),(2.37)

for constant c(δ) and x ≥ x0 where x0 only depends on δ.

Proof of Claim 2.9. (2.36) is straightforward if we note

(2.38) lim
r→+∞

E√
r

= lim
x→+∞Φ(x) = δ.

Introduce:

I3
.= r[E2 + 2E · 2(

√
r + 1 − 1)]2(

√
r + 1 − 1)

(
1 + r

1 + r
2

)

(2.39)

× [2(
√
r + 1 − 1) + E]

[
1 + r

1 + r
2

+ Φ
]

,

I4
.=
√

1 + r[E + 2(
√
r + 1 − 1)]2[2(

√
r + 1 − 1)]2(2.40)

×
[

E

(
1 + r

1 + r
2

)

+ EΦ + 2(
√
r + 1 − 1)Φ

]

.

To prove (2.37) we will show there exists constants c(δ) and x0 which
only depends on δ

(2.41)
|I3 − I4|
r

5
2

≤ c(δ),

for any x ≥ x0.
Note the fact that

√
r + 1 − 1 =

√
r − C1, 1+r

1+ r

2
= 2 − C2

r , and
√

1 + r −√
r = C3√

r
, where C1, C2 and C3 are bounded functions of r.

I3 = r[E2 + 4E
√
r − 2C1E][2

√
r − 2C1](2.42)

×
[

2 − C2

r

]
[
2
√
r + E − 2C1

]
[

2 + Φ − C2

r

]

,

I4 =
[√

r +
C3√
r

]

[E + 2
√
r − 2C1]2[2

√
r − 2C1]2

×
[

2E + EΦ + 2
√
rΦ − C2

r
E − 2C1Φ

]

.
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It is straightforward to check that:

(2.43)
|I3 − I4|
r

5
2

= 16(δ + 2)(E −√
rΦ) + c(δ),

where c(δ) only depends on δ.
A further integration of parts shows:

E −√
rΦ =

∫ x

0
2τΦ(τ)dτ −√

rΦ(2.44)

= x2Φ(x) −
∫ x

0
Φ′(x)τ2dτ −√

rΦ.

= O

(
1√
r

)

Φ(x) −
∫ x

0
Φ′(τ)τ2 dτ.

To sum up, we need

(2.45)
∫ +∞

0
Φ′(τ)τ2dτ ≤ c(δ)

to ensure that |B̃ −B| ≤ C(δ)
r for r large. Claim 2.9 is proved. �

To sum up, we proved Lemma 2.8. �

Now we are ready to prove both Propositions 2.1 and 2.2 by the pertur-
bation method established above.

Proof of Proposition 2.1. Now that Lemma 2.8 is proved, it is easy to pre-
scribe a suitable perturbation function Φ(x) to prove Proposition 2.1.

Define the following function η on [0,+∞) with α and β to be deter-
mined.

(2.46) η(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2α x ∈ [2, 2 + (1
2)β ]

3α x ∈ [3, 3 + (1
3)β ]

...
...

0 x ∈ [0,+∞) \ (∪l≥2[l, l + (1
l )
β ]).

Set α > 1 and β > α+ 3, then it is easy to check.

(2.47)
∫ +∞

0
η(τ)dτ <∞,

∫ x

0
η(τ)τ2dτ <∞,
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After a suitable smoothing of η, still denoted by η for simplicity, choose

(2.48) Φ′(x) = δ
η(x)

∫ +∞
0 η(τ)dτ

.

Here we choose a sufficiently small δ ≤ δ0 where δ0 is defined in Lemma 2.8.
Note that

Ã =
p′(x) + Φ′(x)
2x (p+ Φ)3

.

will be unbounded along a sequence going to infinity. This will produce a
metric in Nn with unbounded curvature. The proof of Proposition 2.1 is
done since a similar perturbation estimates on Dn works. �
Proof of Proposition 2.2. Fix any fixed 2 ≤ k ≤ n, it suffices to show that
we can find p(x) defined in Question 2.6 with x0 = +∞ such that both (2.14)
and the following hold.

(2.49) lim sup
x→+∞

1
x2n−2k

∫ x

0

p2

p2 − 1
[p′(τ)]2τ2(n−k)+1dτ = +∞.

Compare with the proof to Proposition 2.1, we only need to show: Fix
any fixed n > 2 and 2 ≤ k ≤ n, we can find a smooth increasing function
Φ(x) defined on [0,+∞) with Φ = 0 at a small neighborhood of 0. such that
there exists a constant δ small enough and C independent of δ:

lim
x→+∞Φ(x) = δ,

∫ +∞

0
Φ′(τ)τ2dτ ≤ Cδ,(2.50)

lim sup
x→+∞

1
x2n−2k

∫ x

0
[Φ′(τ)]2τ2(n−k)+1dτ = +∞.(2.51)

That could be done by assuming α+ 3 < β < 2α+ 2 on the function η
defined in the proof of Proposition 2.1. �

2.4. Various levels of positivity on the curvature

In this subsection, we will discuss the different levels of positivity for metrics
in Mn.

Start with an arbitrary Kähler manifold (Mn, g) of complex dimension
n. At any p ∈M , the complexified tangent space T = TpM ⊗R C splits as
V ⊕ V , with V ∼= C

n the space of all type (1, 0) tangent vectors. Extend
the Riemannian curvature tensor R of g linearly over C. The Kählerness
of g implies that the curvature operator of g, as a symmetric bilinear form
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on Λ2T = Λ2V ⊕ (V ⊗ V ) ⊕ Λ2V , vanishes on the first and the third compo-
nents of the right-hand side. It can be identified with the following Hermitian
bilinear form Q on V ⊗ V defined by:

Q(ξ, η) =
n∑

i,j,k,l=1

Rij̄kl̄ξij̄ηlk̄ ,

where Rij̄kl̄ are the components of R under a unitary basis {e1, . . . , en} of V ,
and with ξ =

∑
ξij̄ei ⊗ ej and η =

∑
ηij̄ei ⊗ ej . We will call Q the complex

curvature operator of g.
For any 1 ≤ k ≤ n, we will say that (Mn, g) have k-positive curvature, or

Q is k-positive, if Q(ξ, ξ̄) > 0 for any 0 �= ξ ∈ V ⊗ V with rank(ξ) ≤ k. Here
the rank of ξ is defined to be the rank of the matrix (ξij̄) under any basis e
of V . Similarly, one can define the notion of k-non-negative, k-negative, or
k-non-positive.

So 1-positive means that g has positive bisectional curvature, and
n-positive means that g has positive complex curvature operator. We point
out that Kähler manifold (Mn, g) has 2-positive curvature means exactly
that g has positive complex sectional curvature, namely, for any non-zero
element σ ∈ V ⊗ V , it holds that −R(σ, σ) > 0.

When g has 2-positive (2-non-negative) curvature, its sectional curvature
must be positive (or non-negative), but the converse may not be true in
general, when the complex dimension n > 2. (For n = 2 it is proved in [43]
that the positivity of sectional curvature is equivalent to the positivity of
the complex curvature operator).

For our metric in Mn, however, we will show that the 2-positivity is
always equivalent to the positivity of the sectional curvature of g. In other
words, any metric in Nn will have positive complex sectional curvature. This
result gives an intuitive explanation why we are able to prove that non-
negative sectional curvature is preserved under U(n)-invariant Kähler-Ricci
flow C

n in Section 3.2.

Theorem 2.10. Let g be a complete U(n)-invariant Kähler metric on C
n.

If g has positive (non-negative) sectional curvature everywhere, then it will
have 2-positive (2-non-negative) curvature everywhere.

Proof of Theorem 2.10. Let us use the notations discussed in the early part
of this section. Let g ∈ Nn, we have D = AC −B2 > 0 everywhere. Fix a
point z = (z1, 0, . . . , 0). We want to show that Q(ξ, ξ̄) > 0 for any ξ �= 0 with
rank at most 2. Under the unitary tangent frame {e1, . . . , en} at z, the only
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non-zero components of the curvature tensor are Rīijj̄ . Denote it by Pij ,
then P11 = A, P1i = B, Pii = C, and Pij = 1

2C for any 2 ≤ i �= j ≤ n.
For convenience, let us choose a new frame ẽ1 = ρe1, ẽi = ei for 2 ≤ i ≤

n, where ρ =
√
C√
2B

. Then under the new frame ẽ, the only non-zero compo-
nents of the curvature tensor are R̃īijj̄ = P̃ij , where

P̃ij =
C

2
(1 + δij) + δi1δj1

C

2

(
AC

2B2
− 2

)

.

Now write ξ =
∑n

i,j=1 ξij̄ ẽiẽj . We have

2
C
Q(ξ, ξ̄) =

2
C

n∑

i,j=1

P̃ijξīiξjj̄ +
2
C

∑

i�=j
P̃ij |ξīi|2(2.52)

=
(
AC

2B2
− 2

)

|ξ11̄|2 +

∣
∣
∣
∣
∣

n∑

i=1

ξīi

∣
∣
∣
∣
∣

2

+
n∑

i,j=1

|ξij̄ |2

In particular, when ξ11̄ = 0 and ξ �= 0, we have Q(ξ, ξ̄) > 0. So scale ξ if
necessary, we may assume from now on that ξ11̄ = 1. Notice that any unitary
change on the subframe {ẽ2, . . . , ẽn} will not affect the components of the
curvature tensor, so we may assume that the lower right (n− 1) × (n− 1)
block of the matrix (ξij̄) only have non-zero entries in its first two rows. In
particular, only the first three elements on the diagonal line of (ξij̄) might
be non-zero. Let us denote the upper left 3 × 3 corner of (ξij̄) by

(2.53) E =

⎛

⎝
1 v1 v2
u1 x z
u2 0 y

⎞

⎠ .

Note that by performing a unitary change of {e2, e3} if necessary, we could
make the (3, 2)-entry zero. Since the trace of the matrix (ξij̄) is 1 + x+ y,
we have

2
C
Q(ξ, ξ̄) ≥

(
AC

2B2
− 2

)

+ 1 + |u|2 + |v|2 + |x|2 + |y|2 + |z|2 + |1 + x+ y|2
(2.54)

=
(
AC

2B2
− 2

)

+ 1 + f

=
1
2

(
AC

B2
− 1

)

− 1
2

+ f > −1
2

+ f,
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sinceD = AC −B2 > 0. Here we wrote |u|2 = |u1|2 + |u2|2 and |v|2 = |v1|2 +
|v2|2. Since the rank of ξ is at most 2, we have

(2.55) detE = xy + zu2v1 − xu2v2 − yu1v1 = 0.

Our goal is to show that f ≥ 1
2 for any w = (u, v, x, y, z) ∈ C

7 with detE =
0. Assume the contrary, namely, inf f = c < 1

2 . Take a sequence of points
{wk} in V = {detE = 0} ⊂ C

7 such that f(wk) → a. Since f dominates the
square of the Euclidean distance of C

7, {wk} is bounded, thus having a
subsequence converging a point w ∈ V . We have f(w) = c < 1

2 . Let us fix
such a point w, and we will derive a contradiction from this.

First notice that x �= 0, since otherwise f ≥ |y|2 + |1 + y|2 ≥ 1
2 . Simi-

larly, y �= 0. Next, notice that when u2 = 0, we have x = u1v1, thus |u|2 +
|v|2 ≥ 2|u1v1| = 2|x|, which leads to

f ≥ 2|x| + |x|2 + |y|2 + |1 + x+ y|2(2.56)

≥ 2|x| + |x|2 +
1
2
|1 + x|2 ≥ 1

2
,

contradicting with the assumption that f(w) < 1
2 . So we must have u2 �= 0,

and similarly, v1 �= 0. Near the point w, V is the smooth hypersurface in C
7

given by the graph of

z = x
v2
v1

+ y
u1

u2
− xy

u2v1
,

and w is a local minimum point of the function f , now viewed as a function
of (u, v, x, y). The first order derivatives of f are all zero at w, from these
equations we get

v1v̄2 = −xz̄, u2ū1 = −yz̄,(2.57)

|u2|2 − |v2|2 = |v1|2 − |u1|2 = |z|2,(2.58)

2|x|2 + x(1 + ȳ) + |z|2 + |u1|2 = 0,(2.59)

2|y|2 + y(1 + x̄) + |z|2 + |v2|2 = 0.(2.60)

If z = 0, then by (2.57), we have v2 = u1 = 0, so u2 = v1 = 0 by (2.58), a
contradiction. So z �= 0 at w. So again by (2.57) we know that u1v2 �= 0 at w
as well. Let us write α = v1v̄2 and β = u2ū1. Then we have x = −α

z̄ and y =
−β
z̄ . Plug them into (2.59) and (2.60) in the above, and write a = |u2

v2
|2 > 1
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and b = | v1u1
|2 > 1, note that (2.58) we get

(2.61) z = (a+ 1)ᾱ+ β̄ = ᾱ+ (b+ 1)β̄.

Thus, aᾱ = bβ̄, which is just α = β since (2.57). Hence a = b.
Let us write |u1|2 = |v2|2 = ρ > 0. Then we have |u2|2 = |u1|2 = aρ, and

|z|2 = (a− 1)ρ > 0. Since z = (a+ 2)ᾱ, we get (a− 1)ρ = (a+ 2)2aρ2, so

(2.62) ρ =
a− 1

a(a+ 2)2
> 0.

We also have x = y = − 1
a+2 . So at w, we have

f = 2ρ+ 2aρ+ (a− 1)ρ+
2

(a+ 2)2
+
(

1 − 2
a+ 2

)2

=
a3 + 3a2 − 1
a (a+ 2)2

.

(2.63)

On the other hand, since w is on V = {detE = 0}, we have

(a+ 2)ᾱ = − 2
a+ 2

(
ᾱ

aρ

)

− 1
(a+ 2)2

1
u2v1

.

Therefore,
[

(a+ 2) +
2

aρ(a+ 2)

]

= − 1
(a+ 2)2aρv2u2

.

So u2v2 = −|u2v2| = −√
aρ, and we get

(2.64) ρ =
1√

a(a+ 1)(a+ 2)
.

Compare (2.64) with (2.62), we obtain

a2 − 1 =
√
a(a+ 2).

Since a > 1, we have

2(a3 + 3a2 − 1) − a(a+ 2)2 = a(a2 − 1) + 2(a2 − 1) − 3a

=
√
a(a+ 2)2 − 3a > (a+ 2)2 − 3a > 0.

Thus, f(w) > 1
2 by (2.63), a contradiction. Thus we proved Theorem 2.10.

�
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Remark 2.11. In view of the proof of Theorem 2.3 and 2.10, it is possible
that for any U(n)-invariant Kähler metric on C

n the necessary condition
for k-positive complex curvature operator (2 < k < n) k

2(k−1)AC −B2 > 0
is also sufficient.

3. U(n)-invariant Kähler–Ricci flow on C
n with

non-negative curvature

3.1. The U(n)-invariant Kähler–Ricci flow equation

Throughout this section we will follow the notation from the Section 1. Pick
any metric in Mn, at the point (z1, 0, . . . , 0) on C

n, under the orthonormal
frame {e1 = 1√

h
∂z1 , e2 = 1√

f
∂z2 , . . . , en = 1√

f
∂zn

}, the non-zero components
of the Ricci curvature are:

(3.1) Ric(e1, ē1) = A+ (n− 1)B; Ric(ei, ēi) = B +
n

2
C;

where 2 ≤ i ≤ n.
Assume that there exists a complete solution to the Ricci flow with

U(n)-symmetry with initial metric in Mn, we have:

(3.2)

⎧
⎪⎪⎨

⎪⎪⎩

∂h(z, t)
∂t

= −(A+ (n− 1)B)h(z, t),

∂f(z, t)
∂t

= −
(
B +

n

2
C
)
f(z, t).

Recall (2.5) and (2.6), we can simplify (3.2).

(3.3)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂h(r, t)
∂t

=
∂

∂r

(
r ∂h∂r
h

)

− (n− 1)
(
h2

rf2
− h(1 − ξ)

rf

)

;

∂f(r, t)
∂t

= −ξ
r
− n− 1

r
+ (n− 1)

h

rf
.

It is easy to see that the first equation in (3.3) can be derived from the
second. To sum up, to get a complete Ricci flow with U(n)-symmetry it
suffices to solve f(r, t) on [0,+∞) × [0, T ) such that.

(3.4)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂f(r, t)
∂t

=
2fr + rfrr
f + rfr

+ (n− 1)
fr
f
.

f(r, t) > 0, f + rfr > 0,
∫ +∞
0

√
f + rfr√

r
dr = +∞.
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When n = 1, (3.4) is reduced to the rotationally symmetric Ricci flow
equation on R

2. In general, the Ricci flow equation on R
2 is related to a fast

diffusion equation which was first studied by Wu [38] (see [20] and reference
therein for further developments). It follows from the recent works [3, 15]
that there always exists a complete solution to the Ricci flow with long
time existence starting from a non-negatively curved R

2 and its curvature
becomes bounded instantaneously. In particular, Wu’s result [38] implies
that, assuming rotational symmetry, such a flow converges after modified
by diffeomorphisms on R

2. It was further proved in [38] that the limiting
metric is Hamilton’s cigar soliton if circumference at infinity of the ini-
tial metric is finite and it is the standard flat metric on R

2 if the AVR is
positive.

In higher dimensions, Fan [14] studied the uniqueness and convergence of
U(n)-invariant Kähler–Ricci flow on C

n with positive bisectional curvature.
However, his result assumes upper bounds on curvatures and relies on the
short time existence theorem of Shi [34] and some earlier convergence results
of Chau and Tam [6].

3.2. Non-negativity of curvature is preserved

Theorem 3.1. Let g(t) t ∈ [0, T ] be a complete solution of the Kähler–Ricci
flow on C

n with U(n)-symmetry, if the holomorphic bisectional curvature of
the initial metric g(0) is non-negative, so is that of g(t) for any t ∈ [0, T ].
Moreover, if g(0) has positive holomorphic bisectional curvature somewhere,
then g(t) has positive holomorphic bisectional curvature on C

n × (0, T ].

Proof of Theorem 3.1. We only need to prove that the non-negativity of
the bisectional curvature is preserved, since the strong maximum principle
is a local result and its proof is standard (see [18] and p. 193–195 of [13]).
Given any complete U(n)-invariant Kähler–Ricci flow solution g(t) on C

n, we
have a time-dependent orthonormal moving frame {e1(t) = 1√

h(t)
∂z1 , e2(t) =

1√
f(t)

∂z2 , . . . , en(t) = 1√
f(t)

∂zn
} at the point z = (z1, 0, . . . , 0). Denote

A(z, t) = Rmg(t)(e1(t), ē1(t), e1(t), ē1(t)),(3.5)

B(z, t) = Rmg(t)(e1(t), ēi(t), e1(t), ēi(t)),

C(z, t) = Rmg(t)(ei(t), ēi(t), ei(t), ēi(t)),
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where 2 ≤ i ≤ n. We have the evolution equation for bisectional curvature
tensor

(3.6)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂

∂t
− Δ

)

A = A2 + 2(n− 1)B2,

(
∂

∂t
− Δ

)

B = −B2 +AB +
n

2
BC,

(
∂

∂t
− Δ

)

C =
n

2
C2 + 2B2.

Based on the following lemma, it suffices to show that A(t) ≥ 0 is pre-
served along g(t).

Lemma 3.2 Theorem 2, p. 525 in [37], see also Proposition 3.1
in [39]. For any complete Kähler metric ω on C

n with U(n)-symmetry, the
bisectional curvature of ω is non-negative if and only if A ≥ 0 everywhere.

Chen [10] proved that the non-negativity of the scalar curvature is always
preserved along any complete solution to the Ricci flow (without assuming
upper bounds on curvatures). The method is to apply the maximum prin-
ciple for u = ϕ

(
dt(x,x0)
ar0

)
R(x, t) where ϕ is a suitable cut-off function and

a > 0 is a sufficiently large constant. Recall that the scalar curvatures evolves
by

(
∂
∂t − Δ

)
R = 2|Ric|2 ≥ 2

nR
2, which is very similar to the evolution equa-

tion of A in (3.6). Therefore, we can prove that A ≥ 0 is preserved by the
same method in [10]. �
Recall that Theorem 2.3 gives a characterization of non-negativity of vari-
ous curvatures via A, B, and C. In particular, any complete U(n)-invariant
Kähler metric with non-negative bisectional curvature has non-negative sec-
tional curvature (non-negative complex curvature operator) if and only if
D = AC −B2 ≥ 0 (Dn = n

2(n−1)AC −B2 ≥ 0).

Theorem 3.3. Let g(t) be a complete solution of the Kähler–Ricci flow
on C

n with U(n)-symmetry for t ∈ [0, T ]. If the sectional curvature (com-
plex curvature operator) of the initial metric g(0) is non-negative, so is that
of g(t) for any t ∈ (0, T ]. Moreover, if g(0) has sectional curvature (com-
plex curvature operator) positive somewhere, then g(t) has positive sectional
curvature (complex curvature operator) on C

n × (0, T ].

Proof of Theorem 3.3. First we will prove that the non-negativity of sec-
tional curvature is preserved. Suppose there is a point (z0, t0), where 0 < t0 ≤
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T , where the sectional curvature is negative along some real 2-plane, then
D(z0, t0) = AC −B2 < 0. By picking r0 > 0 small enough, we may assume
that Ric(z, t) ≤ n−1

r20
for any z ∈ Bt0(z0, r0), where Bt0(z0, r0) is with respect

to g(t0).

(
∂

∂t
− Δ

)

(AC −B2)(3.7)

=
[(

∂

∂t
− Δ

)

A

]

C +
[(

∂

∂t
− Δ

)

C

]

A

− 2B
[(

∂

∂t
− Δ

)

B

]

− 2∇A · ∇C + 2|∇B|2

= A2C + (n− 2)B2C +
n

2
C2A+ 2B3 − 2∇A · ∇C + 2|∇B|2.

Let ϕ is a fixed smooth cut-off non-increasing function such that ϕ = 1 on
(−∞, 1] and ϕ = 0 on [2,+∞). Moreover,

(3.8) −2 < ϕ′ ≤ 0, |ϕ′′| + (ϕ′)2

ϕ
≤ 32.

Define u(z, t) � ϕ
(
dt(z,z0)
ar0

)
D(z, t), where a > 0 will be a sufficiently large

number.
(
∂

∂t
− Δ

)

u = ϕ′ 1
ar0

[(
∂

∂t
− Δ

)

dt

]

D + ϕ

[(
∂

∂t
− Δ

)

D

]

(3.9)

− 2∇ϕ · ∇D − ϕ′′ D

(ar0)2
.

Denote umin(t) = minz∈Cnu(z, t), so umin(t0) ≤ u(z0, t0) < 0. Assume
that there exists (z1, t1) such that u(z1, t1) = mint∈[0,T ] umin(t) < 0. Now we
compute the right-hand side of (3.9) at the space-time point (z1, t1). For
simplicity, let us call it Q(z1, t1).

First of all, Lemma 8.3 from Perelman [29] implies:

(3.10)
(
∂

∂t
− Δ

)

dt1(z, z0) ≥ −5(n− 1)
3r0

,

whenever dt1(z, z0) > r0.
The definition of (z1, t1) implies ∇u(z1, t1) = 0. Therefore, ∇D = −∇ϕ

ϕ D

and ∇A = 1
C (∇D + 2B∇B −A∇C).
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It follows from (2.11), (2.12), and (2.13) and a straightforward calcula-
tion that

∇sB =
2x
v

(A− 2B), ∇sC =
2x
v

(2B − C).

(3.11)

Q(x1, t1) ≥ ϕ
{
A2C + (n− 2)B2C +

n

2
C2A+ 2B3 − 2∇A · ∇C + 2|∇B|2

}(3.12)

− 10(n− 1)ϕ′

3ar20
D +

2(ϕ′)2

(ar0)2
D − ϕ′′D

(ar0)2

= ϕ
[
A2C + (n− 2)B2C +

n

2
C2A+ 2B3

]

+ ϕ

[

− 2
C
∇D · ∇C − 4B

C
∇B · ∇C +

2A
C

|∇C|2 + 2|∇B|2
]

− 10(n− 1)ϕ′

3ar20
D +

2(ϕ′)2

(ar0)2
D − ϕ′′D

(ar0)2

≥ ϕ
[
A2C + (n− 2)B2C +

n

2
C2A+ 2B3

]

+ ϕ
4x2

v2

2
C

[
A2C +AC2 + 8B3 − 6ABC

]

− ϕ′
ϕ

1
ar0

2x
Cv

|2B − C|D − 10(n− 1)ϕ′

3ar20
D +

2(ϕ′)2

(ar0)2
D − ϕ′′D

(ar0)2
.

Claim 3.4. At the point (z1, t1)

A2C + (n− 2)B2C +
n

2
C2A+ 2B3 ≥ [B2 −AC]

3
2 = |D| 32 ,(3.13)

A2C +AC2 + 8B3 − 6ABC ≥ 0.(3.14)

Proof of Claim 3.4. Note that B2 > AC at the point (z1, t1), (3.13) can be
verified by a straightforward calculation. Equation (3.14) simply follows from
the the arithmetic and geometric mean inequality. �

It follows from (3.12) that

(3.15)
d−umin(t)

dt
|t=t1 ≥ |u| 32 +

[

− ϕ′

ar0
C1 − ϕ′

ar20
C2 +

(ϕ′)2C3

ϕ(ar0)2
+

|ϕ′′|
(ar0)2

]

u,

where C1, C2 and C3 are all constants depending only on the g(t) restricted
to a compact subset C

n × [0, T ].
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On the other hand, the choice of the point (z1, x1) implies d−umin(t)
dt ≤ 0.

We conclude that
√|u(x1, t1)| ≤ C5

ar0
+ C6

(ar0)2
. Therefore, we have

(3.16) D(x0, t0) ≥ u(x1, t1) ≥ −
[
C5

ar0
+

C6

(ar0)2

]2

.

Now let a goes to infinity, we get D(z0, t0) ≥ 0, which contradicts to the
choice of (z0, t0). Therefore, the first part of Theorem 3.3 is proved.

It remains to show that the condition Dn = n
2(n−1)AC −B2 ≥ 0 is pre-

served. Let us write Dλ = λAC −B2. We will next prove that, for any λ ∈
[12 , 1], the condition Dλ ≥ 0 is preserved under the U(n)-invariant Kähler–
Ricci flow. We show it by using a successive approximation on λ.

Follow the proof above for the preservation of the condition D1 ≥ 0, a
similar computation shows:

(
∂

∂t
− Δ

)[

ϕ

(
dt(z, z0)
ar0

)

Dλ(z, t)
](3.17)

≥ ϕ

[

λA2C + (2λ(n− 1) − n)B2C +
λn

2
C2A+ 2B3 − 2(1 − λ)AB2

]

+ ϕ
4x2

v2

2
C

[
λA2C +AC2 + 8B3 − (2 + 4λ)ABC − (4 − 4λ)AB2

]

− ϕ′
ϕ

1
ar0

2x
Cv

|2B − C|Dλ − 10(n− 1)ϕ′

3ar20
Dλ +

2(ϕ′)2

(ar0)2
Dλ − ϕ′′Dλ

(ar0)2
.

Denote

I1(λ) = λA2C + (2λ(n− 1) − n)B2C +
λn

2
C2A+ 2B3 − 2(1 − λ)AB2

I2(λ) = A2C +AC2 + 8B3 − (2 + 4λ)ABC − (4 − 4λ)AB2.

The key observation is that:

Lemma 3.5. There exists a decreasing sequence {λk} with the following
property:

(1) λ0 = 1 and 1
2 < λk < 1 for any k > 1.

(2) Assume λk+1AC < B2 ≤ λkAC at the point (z1, t1), then:

I1(λk+1) ≥ [B2 − λk+1AC]
3
2 = |Dλk+1 |

3
2 ,(3.18)

I2(λk+1) ≥ 0.(3.19)
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Proof of Lemma 3.5. Denote K � AC
B2 , where 1

λk
≤ K < 1

λk+1
.

I2(λk+1)

(3.20)

= A2C +AC2 + 8B3 − (2 + 4λk+1)ABC − (4 − 4λk+1)AB2

= AB2

{

λk+1K
2

(
B

A

)2

+ [8 − (2 + 4λk+1)K]
B

A
+K − 4(1 − λk+1)

}

.

To ensure that I2(λk+1) is non-negative, it suffices to have 1
λk

≥ 4(1 −
λk+1) and λk+1 ≥ 1

2 . This motivates us to define the sequence {λk} recur-
sively by λk+1 = 1 − 1

4λk
with λ1 = 1. In fact, it is easy to check that λk =

k+1
2k .

I1(λk+1) = λk+1A
2C + (2λk+1(n− 1) − n)B2C(3.21)

+
λk+1n

2
C2A+ 2B3 − 2(1 − λk+1)AB2

= AB2

{[

2λk+1(n− 1) − n+
λn

2
K

]

K

(
B

A

)2

+ 2
B

A
+ λk+1K − 2(1 − λk+1)

}

and

(3.22) [B2 − λk+1AC]
3
2 = (1 − λk+1K)B3.

It follows from (3.21) and (3.22) that λk+1

λk
≥ 2 − 2λk+1 ≥ 0 and 2λk+1

(n− 1) − n+ n
2
λk+1

λk
≥ 0 will suffice to prove (3.18). It is straightforward to

check that those two inequalities are satisfies if we let λk = k+1
2k . �

From Lemma 3.5 and the proof of the preservation of the condition D1 ≥
0, we can argue inductively to show that Dλ ≥ 0 is preserved for any 1

2 <
λ ≤ 1. Thus, we have proved that Dn = n

2(n−1)AC −B2 is preserved along
the Ricci flow with U(n)-symmetry. To sum up, we have shown that any
non-negative curvature condition which lies between non-negative sectional
curvature and non-negative complex curvature operator is preserved along
any complete solution to Kähler–Ricci flow on C

n with U(n)-symmetry. �
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3.3. The asymptotic volume ratio is preserved

Recall that the AVR of a complete non-compact Riemannian manifold
(Nn, h) is defined by

(3.23) AVR(h) � lim
s→∞

VolB(p, s)
ωnsn

,

provided that the limit exists. (E.g., when (Nn, h) has non-negative Ricci
curvature.) Here, B(p, s) denotes the geodesic ball in N with radius r and
centered at p, and ωn is the volume of the unit Euclidean n-ball.

Hamilton [19] proved that AVR is constant on any complete Ricci flow
with bounded non-negative Ricci curvature if the Riemannian curvature
decays pointwisely to zero along infinity on each time slice. In the case of
Kähler–Ricci flow, Shi [33] proved that the maximal volume growth is pre-
served for a complete Kähler–Ricci flow with bounded bisectional curvature
in the space time and with the scalar curvature of the initial metric having
average quadratic decay. Shi’s result was improved by weaker assumptions
on the scalar curvature decay in more recent works; see Chen and Zhu [12],
Chen et al. [11] and Ni and Tam [27], for example. There are also simi-
lar results for the Ricci flow on Riemannian manifolds with non-negative
bounded curvature operator (Yokota [42] and Schulze and Simon [31]). In
particular, Ni and Tam [27] proved that the order of volume growth of
geodesics balls in each time slice keeps constant on complete Kähler–Ricci
flow with bounded non-negative bisectional curvature in space-time. Our
main result in this subsection is to remove the upper bound of curvature
with the help of U(n)-symmetry.

Theorem 3.6. Let g(t), t ∈ [0, T ], be a complete solution to the Kähler–
Ricci flow on C

n with U(n)-symmetry. Assume that the bisectional curvature
of g(t) is non-negative for any t ∈ [0, T ]. Then for any t ∈ [0, T ]

(3.24) lim
s→+∞

Vt(Bt(O, s))
V0(B0(O, s))

= 1,

where Bt(O, s) denotes the geodesic ball of radius s for the metric g(t) cen-
tered at the origin. In particular, the AVR of (Cn, g(t)) is constant for any
t ∈ [0, T ].

Recall that for any fixed metric g0 in Mn, at the point z = (z1,
0, . . . , 0) on C

n, under the orthonormal frame {e1 = 1√
h
∂z1 , e2 = 1√

f
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∂z2 , . . . , en = 1√
f
∂zn

}:

(3.25) Ric(e1, ē1) = A+ (n− 1)B,

and the distance between the origin and a point z is given by

(3.26) s =
∫ r

0

√
h

2
√
r
dr,

where r = |z|2. The following lemma gives an integral bound for the Ricci
curvature along the radial geodesic. It further implies a lower bound on the
radial distance function along U(n)-invariant Kähler–Ricci flow.

Lemma 3.7. There exists a constant C0 that only depends on g0 restricted
on the fixed coordinate ball such that

(3.27)
∫ s

0
Ric

(
∂

∂s
,
∂

∂s

)

ds ≤ C0.

Proof of Lemma 3.7.

(3.28)
∫ s

0
Ric(e1, ē1)ds =

∫ r

0

[A+ (n− 1)B]
√
h

2
√
r

dr.

Recall (2.11),(2.12), and (2.13) and let a =
√
h(1) > 0.

∫ r

1

A
√
h

2
√
r
dr =

∫ x

a

F ′F ′′

2τ [1 + F ′(τ)2]
3
2

dτ

(3.29)

=
∫ x

a

1
2τ

⎛

⎝ −1
√

1 + F ′(τ)2

⎞

⎠

′

dτ

≤ 1
2a

− 1
2x
√

1 + F ′(x)2
−
∫ x

a

1

2τ2

√
1 + F ′(τ)2

dτ

≤ 1
2a
,
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∫ r

1

B
√
h

2
√
r
dr =

∫ x

a

1
v2

⎛

⎝τ2 − v
√

1 + F ′(τ)2

⎞

⎠
√

1 + F ′(τ)2dτ

(3.30)

≤ 1
2

a

v(a)
+

1
2

∫ x

a

1
v

[

−1 +
v

τ2
√

1 + F ′2 − v

τ

(
1√

1 + F ′2

)′]
dτ

≤ 1
2

a

v(a)
+

1
2

(∫ x

a

2
τ2
dτ +

1
a

)

≤ 1
2

a

v(a)
+

3
2a
.

�

As in the work of Shi [34], we define

(3.31) F (x, t) = log
(

det g(x, t)
det g(x, 0)

)

.

and Let Δt and dVt denote the Laplacian operator and the volume element
with respect to g(t).

Lemma 3.8. Let g(t), t ∈ [0, T ], be a complete solution to the Kähler–
Ricci flow on C

n with U(n)-symmetry and non-negative bisectional curva-
ture. Then for any fixed t ∈ (0, T ], there exists a constant C0 which only
depends on n and g(t) restricted to a compact set of C

n × [0, t], such that:

−
∫

B0(O,s)
(1 − eF (x,t))dV0 ≤ C0t

s2

[∫ 10s

0

[

s−
∫

B0(O,s)
R(x, 0)dV0

]

ds+ s

]

.

(3.32)

Proof of Lemma 3.8. It will follows from a slight modification of the method
in Theorem 2.2 on p. 132 of Ni and Tam [27]. In particular we need their esti-
mate (3.38) whose proof is also included for the convenience of the reader.
In [27] the result was stated under the assumption that g(t) has bounded
curvature along [0, T ]; here we are able to remove the assumption on curva-
ture bounds with aid of the U(n)-symmetry.

First we have the following inequality from Shi [34]:

(3.33) Δ0F (x, t) ≤ R(x, 0) + eF
∂F (x, t)
∂t

.
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Let Gs(x, y) be the positive Green’s function on B0(O, s) with zero
boundary value. Integrate (3.33) over B0(O, s) × [0, t], we get for B0 =
B0(O, s) that:

∫

B0

Gs(O, x)(1 − eF (x, t))dV0(3.34)

≤ t

∫

B0

Gs(O, x)R(x, 0)dV0 −
∫ t

0

∫

B0

Gs(O, x)Δ0F (x, τ)dV0 dτ

= t

∫

B0

Gs(O, x)R(x, 0)dV0

+
∫ t

0

[

F (O, τ) +
∫

∂B0

F (x, τ)
∂Gs(O, x)

∂s
dA0

]

dτ

≤ t

[∫

B0

Gs(O, x)R(x, 0)dV0 − F (x, t)|∂B0

]

,

where dA0 is the area element for ∂B0.
Note that in (3.34) we used the Green’s formula and the facts that

F (x, t) ≤ 0 is non-increasing and
∫
∂B0(O,s)

∂Gs(O,x)
∂s dA0 = −1.

As in [12, 27, 34], considering C
n × C

2, we may assume that (Cn, g(0))
admits a minimal positive Green’s function such that

(3.35) α
d2(x, y)

V (x, d(x, y))
≤ G(x, y) ≤ 1

α

d2(x, y)
V (x, d(x, y))

,

for some α > 0, which depends only on n.
Then we can apply the mean value inequality in [26] (see the proof of

Theorem 1.1 and Theorem 2.1 on p. 345–348 of [26]) to conclude that

∫

B0(O,s)
Gs(O, x)R(x, 0)dV0(3.36)

≤
∫

B0(O,s)
G(O, x)R(x, 0)dV0

≤ c(n, α)
∫ 2s

0

[

s−
∫

B0(O,s)
R(x, 0)dV0

]

dτ,

s2−
∫

B0(O,s)
(1 − eF (x,t))dV0(3.37)

≤ c(n, α)
∫

B0(O, 5s)
Gs(O, x)(1 − eF (x, t))dV0.
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Now (3.34) becomes

s2−
∫

B0(O,s)
(1 − eF (x,t))dV0(3.38)

≤ c(n) t

[∫ 10s

0

[

s−
∫

B0(O,s)
R(x, t)dV0

]

ds− F (x, t)

]

.

We remark that similar estimates as (3.38) have been used in [11, 12, 33].
The proof of Lemma 3.8 will be done if we can prove

(3.39) −F (x, t)|∂B0(0,s) ≤ C0s,

for a constant C0 which depends only on g(t) restricted to a compact set in
C
n.

Since (Cn, g(t)) has U(n)-symmetry and positive curvature, we have for
any r ≥ 1

(3.40) s =
∫ r

0

1
2

√
h(r)
r
dt ≥

√
h(1)
2

log r.

Recall the definition of F in (3.31),

F = log h(x, t) + (n− 1) log f(x, t) − log h(x, 0) − (n− 1) log f(x, 0),

(3.41)

−rFr ≤ −rhr(x, t)
h(x, t)

+ (n− 1)
−rfr(x, t)
f(x, t)

≤ ξ(+∞, t) +
f(r, t) − h(r, t)

f(r, t)
≤ n.

(3.42)

Now from (3.42) and (3.40) we have

(3.43) −F (r, t) ≤ n log r − F (1, t) ≤ C0s,

which completes the proof of Lemma 3.8. �

Proof of Theorem 3.6. Theorem 3.6 can be proved by arguing similarly as
the proof of Theorem 2.2 in [27]. First note that Lemma 3.7 and the volume
comparison theorem will imply that the AVR of g(t) is non-increasing on
[0, T ].
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As in [12, 27], we have

Vt(Bt(O, s)) ≥
∫

B0(O,s)
dVt ≥ V0(Bt(O, s)) −

∫

B0(O,s)
(1 − eF (x,t))dV0.

(3.44)

Recall that we have decay estimates of the average scalar curvature
for U(n)-invariant Kähler metrics on C

n with non-negative curvature, see
Theorem 7 in [37] or Proposition 3.3 in [39]). We conclude from Lemma 3.8
that the AVR of g(t) is non-decreasing on [0, T ]. Hence it must be constant
for any t ∈ [0, T ]. In fact, the proof shows that the precise order of volume
growth of (Cn, g(t)) is constant on [0, T ], i.e., (3.24) must hold. �

4. Discussions on the existence of U(n)-invariant
Kähler–Ricci flow

4.1. Theorem of Cabezas-Rivas and Wilking

Let us recall the following result by Cabezas-Rivas and Wilking. [3]:

Theorem 4.1 Cabezas-Rivas and Wilking [3]. Let (Mn, g) be an open
manifold with non-negative complex sectional curvature. Then there exists a
constant T > 0 which depends on n and g such that there exists a complete
solution of Ricci flow g(t) with non-negative complex sectional curvature
starting from g on [0, T ]. In addition, if we assume

(4.1) inf{VolgBg(p, 1) : p ∈M} = v0 > 0,

then T can be chosen as T (n, v0) and the scalar curvature of (M, g(t)) is
bounded by c(n,v0)

t on (0, T (n, v0)].

4.2. Ricci flow on double covers with rotational symmetry

Let us consider (Cn, g0), where g0 is a complete U(n)-invariant Kähler
metric with non-negative complex sectional curvature. In fact, by Theo-
rem 1.5 we only need to assume that g0 has non-negative sectional cur-
vature. Let B(O, i) denote the geodesic ball with radius i centered at the
origin. The double cover Di is a closed manifold obtained by gluing two
copies of B(O, i) after identifying the boundary and perturbing the inner
region nearby. To be more precise, define a smooth function φi: (−∞, i) → R

with φi = 0 on (−∞, i− ε] and φi(i) = 1, φ′i, φ
′′
i > 0 on (i− ε, i), and φi is
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left continuous at i and left derivatives of its inverse vanishes at 1. Then
define Fi : Di → C

n × R by Fi(z) = (z, φi(s(z))) on one copy of B(O, i) and
Fi(z) = (z, 2 − φi(s(z))) on the other. It can be checked that this will realize
Di as a closed smooth hypersurface in C

n × R. The induced metric of Di

from the product metric of C
n × R, denoted by gi, has non-negative complex

sectional curvature. It follows from Proposition 4.1 in [3] that (Di, gi, O) con-
verges to (Cn, g0, O) smoothly in the sense of Cheeger–Gromove convergence
(see [3] p. 7–8 for the details of the results mentioned above).

The general Theorem 4.1 is proved by Cabezas-Rivas and Wilking by
establishing some delicate curvature estimates on the closed Ricci flow
evolved from those double covers. In this section, under the extra assump-
tion of the rotational symmetry of (Cn, g0), we will compute the curvatures
of (Di, gi) and its evolution under the Ricci flow more explicitly.

Fix a point p = (x1, . . . , x2n) on (Di, gi) where xk = 0 for 2 ≤ k ≤ 2n.

Define r =
∑2n

k=1 |xk|2 and the function s(r) =
∫ r
0

√
h(r)

2
√
r
dr. Note that s(r)

is the distance function only inside the ball B(O, i− ε). Under the local
coordinates {x1, . . . , x2n}, the metric (Di, gi) has components:

gi

(
∂

∂x1
,
∂

∂x1

)

= h(2 + (φ′i(s))
2), gi

(
∂

∂xn+1
,

∂

∂xn+1

)

= 2h.(4.2)

gi

(
∂

∂xk
,
∂

∂xk

)

= gi

(
∂

∂xn+k
,

∂

∂xn+k

)

= 2f. (2 ≤ k ≤ n)

gi

(
∂

∂xp
,
∂

∂xq

)

= 0 (p �= q).

At the same point, we calculate the non-zero components of the second
fundamental form of (Di, gi) with respect to C

n × R. Note that we abuse
the notations again by denoting ∂

∂xk
for dFi

(
∂
∂xk

)
.

Π
(

∂

∂x1
,
∂

∂x1

)

=
√

2φ′′i (s)√
2 + (φ′i)2

h(4.3)

Π
(

∂

∂xn+1
,

∂

∂xn+1

)

=
√

2φ′i(s)√
2 + (φ′i)2

(√
h

r
−
√
r

h
hr

)

,

Π
(

∂

∂xk
,
∂

∂xk

)

= Π
(

∂

∂xn+k
,

∂

∂xn+k

)

=
√

2φ′i(s)√
2 + (φ′i)2

√
h

r
.

The Gauss equation gives the curvature of (Di, gi) under the complex-
ified local coordinates zk = xk +

√−1xn+k. We should caution here that
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these zk are only holomorphic inside the ball B(O, i− ε) ⊂ Di. We list all
the non-zero curvature components below.

R11̄11̄ = h2A+ Π2
11̄ − |Π11|2, R11̄kk̄ = hfB,(4.4)

Rkk̄kk̄ = f2C + Π2
kk̄, Rkk̄ll̄ =

1
2
f2C,

Rk̄1̄1k = Πkk̄Π11̄, Rk̄11k = Πkk̄Π11.

Under the orthonormal frame e1 = 1√
h(2+(φ′

i(s))
2)
∂x1 , e2 = 1√

2f
∂x2 , . . .,

en+1 = 1√
2h
∂zn+1 , . . ., en+2 = 1√

2f
∂xn+2 , . . ., e2n = 1√

2f
∂x2n

and its corres-

ponding complexification (ω1, . . . , ωn) with ωk = 1√
2
(ek −

√−1en+k), it is
easy to see that

(4.5) gi(ωk, ω̄l) = δkl, gi(ωk, ωl) = 0.

It is easy to derive the formula for the curvature components of (Di, gi) under
the orthonormal frame ωk. It has similar type of non-zero components as
that under the coordinates zk as in (4.4).

To simplify the computation of the curvature evolution of the Ricci flow
on the double cover, we use the Uhlenbeck trick to evolve the above com-
plexified orthonormal frame ωk to get a time-dependent orthonormal frame
(ω1(t), . . . , ωn(t)) with the property that (4.5) holds for any t.

Lemma 4.2. The complete Ricci flow (Cn, g(t)) constructed in Theorem
4.1 is a Kähler–Ricci flow on C

n with U(n)-symmetry if RABγδ(g(t)) = 0
everywhere under the time-dependent orthonormal frame (ω1(t), . . . , ωn(t)).
Here A,B are any indices either barred or unbarred while γ and δ are
unbarred from 1 to n.

Proof of Lemma 4.2. The fact that g(t) being Kähler is proved by Shi (See
p. 138–142 [34]). Here the U(n)-symmetry follows from the rotational sym-
metry of (Cn, g0) and (Di, gi(t)). �

4.3. Conditions that ensure the existence of Kähler–Ricci flow

From now on we focus our discussion in the complex dimension n = 2, we
emphasize that it is purely for the sake of convenience and all results men-
tioned below can be generalized to higher dimensions.

The following two results study the curvature evolution of the closed
Ricci flow (Di, gi(t)) under the time-dependent orthnormal frame
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(ω1(t), ω2(t)). Note that the only non-vanishing curvature components of
the initial metric (Di, gi(0)) are R11̄11̄, R11̄22̄, R22̄22̄, R2̄112, and R2̄1̄12.

Lemma 4.3. The curvatures of (Di, gi(t)) satisfy:

(4.6) R11̄12 = R11̄21̄ = R22̄12̄ = R22̄21 = 0.

Proof of Lemma 4.3. We have the following curvature evolution equations
via the Uhlenbeck trick.

(
∂

∂t
− Δ

)

R11̄21 = −R11̄EGRĒḠ21 + 2RE1G1RĒ1̄Ḡ2 −RE1G2RĒ1̄Ḡ1(4.7)

= Q1(R11̄21, R11̄12̄, R12̄21).

Similarly:
(
∂

∂t
− Δ

)

R11̄12̄ = Q2(R11̄21, R11̄12̄, R22̄12̄, R22̄12),(4.8)
(
∂

∂t
− Δ

)

R22̄12 = Q3 (R11̄21, R11̄12̄, R22̄12̄, R22̄12) ,(4.9)
(
∂

∂t
− Δ

)

R22̄21̄ = Q4(R11̄21, R11̄12̄, R22̄12̄, R22̄12).(4.10)

Note that R11̄12 = R11̄21̄ = R22̄12̄ = R22̄21 = 0 holds at t = 0, so the
lemma follows from the maximum principle for solutions to parabolic equa-
tions on closed manifolds. �

Similarly, we can prove the following lemma.

Lemma 4.4. The curvatures of (Di, gi(t)) satisfy:

(4.11) R1221 = R21̄21 = R21̄21̄ = 0.

After passing the time-dependent orthnormal frame (ω1(t), ω2(t)) on
(Di, gi(t)) to the limit Ricci flow (C2, g(t)), we have a time-dependent orth-
normal frame on (C2, g(t)). Let (ω1(t), ω2(t)) still denote the frame (C2, g(t))
for simplicity, the above lemmas show that all curvatures components of the
type RABγδ(g(t)) of (C2, g(t)) vanish except R2̄112 and R2̄1̄12.

Theorem 4.5. Assume (C2, g0) is a complete U(2)-invariant Kähler mani-
fold with non-negative sectional curvature. Moreover, assume that the
condition (4.1) holds.(e.g., (4.1) is satisfied when (C2, g0) has Euclidean
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volume growth.) Then Cabezas-Rivas and Wilking Ricci flow in Theorem
4.1 satisfies either

(4.12) R2̄112 = R2̄1̄12 = 0,

everywhere on C
2 × [0, T (2, v0)] or P (x, t) > 0 everywhere and

(4.13) lim inf
r0→+∞,t0→0

infBt0 (O,r0) P (x, t0)
supBt(O,r0)×(0,t0] P (x, t)

= 0,

where P (x, t) .=
√|R2̄112|2 + |R2̄1̄12|2.

Proof of Theorem 4.5. The proof is motivated by a result of Chen (Theorem
3.1 on p. 371 [10]), where an important interior estimate for the Ricci flow
was proved. See also Simon [35] for related works.

First, note that R2̄1̄12 ≥ 0 since (C2, g(t)) has non-negative complex sec-
tional curvature. If R2̄1̄12 = 0 at one point (x, t), then by the strong maxi-
mum principle it vanishes everywhere, which further implies R2̄112 = 0 from
the evolution equation of R2̄1̄12. Now assume that P (x, t) > 0 everywhere
and there exists a constant ε0 > 0 such that

(4.14) lim inf
r0→+∞,t0→0

infBt0 (O,r0) P (x, t0)
supBt(O,r0)×(0,t0] P (x, t)

≥ ε0.

We will show that there exists a constant C independent of r0 such that

(4.15) P (x, t) ≤ C

r20
,

whenever 0 < t ≤ T (n, v0) and dt(x,O) ≤ r0
2 .

Assume that (4.15) is not true. Then there will exist a sequence {rn}
tending to infinity and a sequence of points (xn, tn) with P (xn, tn) ≥ 4n

r2n
where tn → 0 and dtn(xn, O) ≤ rn

2 .
It follows from a point-picking technique of Perelman [29] (see also p.

372 of [10]) that for any fixed B > 0, picking n large enough if neces-
sary, we can choose (x̄n, t̄n) such that 0 < t̄n ≤ tn, dt̄n(x̄n, O) ≤ 3

4rn, and
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Q̄n
.= R(x̄n, t̄n) ≥ 4n

r2n
, Moreover,

(4.16) 0 ≤ R(x, t) ≤ 4Q̄n,

wherever 0 < t̄n ≤ tn and dt(x,O) ≤ d t̄n(x̄n, O) +BQ̄
− 1

2
n .

As in p. 372 of [10], construct a smooth function ψ : R → [0, 1] such that
ψ= 1 on (−∞, d t̄n(x̄n, O) + B

2 Q̄
− 1

2
n ] and ψ=0 on [d t̄n(x̄n, O) +BQ̄

− 1
2

n ,+∞),

Moreover, one can assume that |ψ′| ≤ 4 Q̄
1
2
n

B and |ψ′′| + |ψ′|2
ψ ≤ 32 Q̄n

B2 .
Denote by u(x, t) = ψ(dt(x,O))(|R2̄112|2 + |R2̄1̄12|2). We have

(4.17)
(
∂

∂t
− Δ

)

u =
{

ψ′
[(

∂

∂t
− Δ

)

dt

]

+
( |ψ′|2

ψ
− ψ′′

)}

(|R2̄112|2 + |R2̄1̄12|2)

+ 2ψ[|R2̄112|2(2R2̄1̄12 +R11̄22̄ −R11̄22̄ +R22̄22̄)]

+ 2ψ[R2̄1̄12
3 +R2̄1̄12|R2̄112|2

+R2̄1̄12
2(2R11̄22̄ +R11̄22̄ +R22̄22̄)]

− 2ψ(|∇R2̄1̄12|2 + |∇R2̄1̄12|2),

d+umax(t)
dt

≤
(

16
Q̄n
B

+ 32
Q̄n
B2

)

P (x, t) + 32umax(t)Q̄n.

(4.18)

In the above we used, by (4.16), that ( ∂∂t − Δ)dt ≥ −4Q̄
1
2
n when dt(x,O) ≥

Q̄
1
2
n , from Lemma 8.3 on p. 20 of [29].

It follows from (4.18) that:

(4.19)
d+

dt
(e−32Q̄ntumax(t)) ≤ 64

Q̄n
B

e−32Q̄nt supBt(O,r0)×(0,t̄n] P (x, t),

where we use d(x, t) ≤ d t̄n(x̄n, O) +BQ̄
− 1

2
n ≤ r0 for n large.

Note that Theorem 4.1 guarantees that t̄Q̄ ≤ c(2, v0), so (4.19) implies
that

(4.20) umax(t̄) ≤ 2
e32c(2,v0) − 1

B
supBt(O,r0)×(0,t̄n] P (x, t).

However, since B can be chosen to be arbitrarily large, we get a con-
tradiction with the assumption (4.14). Such a contradiction implies that
(4.15) must be true. However (4.15) again contradicts to the assumption
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P (x, t) > 0 after taking r0 approaching to the infinity. To sum up, we have
completed the proof of Theorem 4.5. �

Note that that the constant c(n, v0) in Theorem 4.1 will be 0 if v0 is
the volume of a standard unit ball in Euclidean space. Indeed, starting from
a standard flat metric on R

n, it is easy to see that (from Theorem 3.1
of [10] for example) that Cabezas-Rivas and Wilking’s Ricci flow is a flat
one. Intuitively it is reasonable to expect that c(n, v0) is close to zero if v0
is close to the volume of a unit Euclidean ball.

Assume that (C2, g(t)) is a Kähler–Ricci flow with U(n)-symmetry. Then
we certainly have R2̄112 = R2̄1̄12 = 0. In addition, by Lemma 3.7, we know
that the term

∫ r
0 Ric( ∂∂s ,

∂
∂s , t)ds is bounded in the spacetime. The follow-

ing proposition shows that conversely the boundedness of R2̄112, R2̄1̄12, and∫ r
0 Ric( ∂∂s ,

∂
∂s , t)ds in spacetime will be sufficient to ensure the existence of

a Kähler–Ricci flow, provided that c(2, v0) is suitably small.

Proposition 4.6. Under the same assumption as in Theorem 4.5, assume
that the constant (4.1) satisfies c(2, v0) ≤ 1

32 , and there exists a constant t1
such that R2̄1̄12 and R2̄112 are bounded on C

2 × (0, t1]. In addition, assume
that there exists a constant C1 which depends on g(t) for t ∈ (0, t1]
such that

(4.21)
∫ r

0
Ric

(
∂

∂s
,
∂

∂s
, t

)

ds ≤ C1

holds for all r > 0 and t ∈ (0, t1]. Then the Ricci flow (C2, g(t)) constructed
by Cabezas-Rivas et al. is a U(n)-invariant Kähler–Ricci flow as long as it
exists.

Proof of Proposition 4.6. Under the assumption (4.21), tracing the proof of
Lemma 8.3 on p. 20 of [29], we will get that, for any t ∈ (0, t1], the distance
function dt(x,O) satisfies the following estimates:

(4.22)
(
∂

∂t
− Δt)dt(x,O) ≥ −4(C1 +

1
r0

)

,

whenever dt(x,O) > r0.
Define v(x, t) = ηP (x, t) = η

(
dt(x,O)
r0

)
(|R2̄112|2 + |R2̄1̄12|2), where η is a

cut-off function with η = 1 on (−∞, 1], η = 0 on [2,+∞), and |η′| + |η′′| +
|η′|2
η ≤ 16.
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A similar computation shows that there exists a constant C2 > 0 such
that

(4.23)
d+vmax(t)

dt
≤ 32

c(2, v0)
t

vmax(t) +
(

32
r20

+
4C1

r0

)

C2,

where we use the boundedness of P (x, t).
Note that we have assumed that 32c(2, v0) < 1. Integrating (4.23) on

[0, t1], we will arrive at:

(4.24) vmax(t1) ≤ t1
1 − 32c(2, v0)

(
32
r20

+
4C1

r0

)

C2.

By taking r0 → +∞, we get P (x, t) = 0 everywhere. Now the Proposition
4.6 follows from Lemma 4.2. �

Remark 4.7. We believe that a more refined analysis on curvature evo-
lution on the double covers will imply that either (4.21) is automatically
true or (4.13) contradicts to P (x, t) > 0 on the limit flow (C2, g(t)). We will
study the existence of complete Kähler–Ricci flow in a more general context
in future works.
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