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The geometry of SO(p) × SO(q)-invariant special

Lagrangian cones

Mark Haskins and Nikolaos Kapouleas

SO(p) × SO(q)-invariant special Lagrangian cones in C
p+q

(equivalently, SO(p) × SO(q)-invariant special Legendrians in
S

2(p+q)−1) are an important family of special Lagrangians (SL)
whose basic features were studied in our previous paper [13]. In
some ways, they play a role analogous to that of Delaunay sur-
faces in the geometry of CMC surfaces in R

3; in particular, they
are natural building blocks for our gluing constructions of higher-
dimensional SL cones [9, 10, 12]. In this article, we study in detail
their geometry paying special attention to features needed in our
gluing constructions. In particular, we classify them up to con-
gruence; we determine their full group of symmetries (including
various discrete symmetries) in all cases; we prove that many of
them are closed and embedded; and finally understand the limit-
ing singular geometry with detailed asymptotics. In understanding
the detailed asymptotics a fundamental role is played by a certain
conserved quantity (a component of the torque) considered in [13].

1. Introduction

Special Lagrangian (SL) n-folds in Calabi–Yau manifolds have been stud-
ied intensively over the past 15 years, thanks in part to their role in Mir-
ror Symmetry [24]. Degenerations of families of smooth special Lagrangians
and more general singular special Lagrangians play a crucial role, but in
dimensions 3 and higher are still relatively poorly understood. SL cones
in C

n with isolated singularities (or equivalently special Legendrians in
S

2n−1) form the simplest class of singular special Lagrangians, and signifi-
cant progress on understanding SL cones has been made in the last 10 years.
In particular, the situation in dimension three has been clarified consider-
ably [3, 6, 8, 11, 15, 21]. By comparison the situation in higher dimensions
is more complicated and less systematically explored.

In the current paper, we present a detailed study of the geometry of
SO(p) × SO(q)-invariant special Legendrians in C

p+q building on our pre-
vious work in [13]. They are some of the most basic special Legendrians
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and play a role similar to that of Delaunay surfaces in the geometry of
CMC surfaces in R

3. Like Delaunay surfaces, SO(p) × SO(q)-invariant spe-
cial Legendrians are cohomogeneity one objects and are therefore governed
by an appropriate system of ODEs. For (p, q) = (1, 2) the SO(p) × SO(q)-
invariant special Legendrians are precisely the SO(2)-invariant ones studied
previously in [6, 8, 11] and used as building blocks in our gluing construc-
tion of higher genus special Legendrian surfaces [11]. To our knowledge, for
general (p, q), SO(p) × SO(q)-invariant special Legendrians were first stud-
ied by Castro–Li–Urbano [4]. We pay particular attention to the following
geometric features:

(i) the description of all SO(p) × SO(q)-invariant special Legendrian
immersions and their classification up to congruence;

(ii) the full isometry group of the induced metric for any SO(p) × SO(q)-
invariant special Legendrian immersion and its action on the domain;

(iii) the full group of symmetries (including various discrete symmetries)
of any SO(p) × SO(q)-invariant special Legendrian immersion;

(iv) the existence of sufficiently many closed embedded SO(p) × SO(q)-
invariant special Legendrians;

(v) the geometry and detailed asymptotics of the family of SO(p) × SO(q)-
invariant special Legendrians close to the equatorial sphere limit where
the family degenerates.

These features play an essential role in the use of SO(p) × SO(q)-invariant
special Legendrians as building blocks in our higher-dimensional gluing con-
structions [9, 10, 12].

Many features of the SO(2)-invariant special Legendrians in S
5 have

analogues for SO(p) × SO(q)-invariant special Legendrians in S
2(p+q)−1. For

instance, for each (p, q) there is a real 1-parameter family of distinct SO(p) ×
SO(q)-invariant special Legendrian cylinders Xτ : R × S

p−1 × S
q−1 →

S
2(p+q)−1 depending real analytically on τ (see Proposition 3.30). The param-

eter τ can be identified with the value of some appropriately defined con-
served quantity (a component of the torque). Geometrically, the parameter
τ controls the size of the smallest orbit and hence the maximum of the
absolute value of the curvature that occurs on the cylinder Xτ ; this value
tends to infinity as τ → 0 and hence the family Xτ must degenerate in some
way as τ → 0. In all our cases as τ → 0, Xτ approaches a necklace of equa-
torial n− 1 spheres. In this sense, our building blocks are reminiscent of
building blocks used in other gluing constructions—Delaunay surfaces in
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the construction of CMC surfaces in R
3 [16–19] and Delaunay/Fowler met-

rics in the construction of constant scalar curvature metrics [22]. The fact
that the family Xτ degenerates to a union of very simple geometric objects
is fundamental to our gluing constructions in [9, 11, 12].

For a given value of p+ q = n, but different values of p and q, the
SO(p) × SO(q)-invariant special Legendrian submanifolds all approach a
necklace of equatorial n− 1 spheres as τ → 0. For different values of (p, q)
these give rise to different kinds of spherical necklaces, in which the geom-
etry of the transition regions that connects two adjacent almost spheri-
cal regions, and thus the relative positioning of adjacent almost spherical
regions, changes. For SO(n− 1)-invariant special Legendrians each limit-
ing equatorial sphere has two identical transition regions, which localize
on two antipodal points of the equatorial sphere. Suitably enlarged the
core of each of these transition regions resembles a Lagrangian catenoid as
τ → 0. If p > 1, the geometry of the transition regions of the SO(p) × SO(q)-
invariant special Legendrians is more complicated. In this case, there are
two different kinds of transition regions: one which localizes on a (p− 1)-
dimensional equatorial subsphere and another which localizes on a (q − 1)-
dimensional equatorial subsphere. In the former case, the core of the
transition region resembles the product of a unit p− 1 sphere with a small
q-dimensional Lagrangian catenoid, and in the latter case the product of a
small p-dimensional Lagrangian catenoid with a unit q − 1 sphere. In the
special case p = q, these two kinds of transition regions are isometric and
there exist discrete symmetries that exchange the two kinds of transition
regions; these symmetries cannot exist in the case p �= q. The geometry of
the almost spherical regions and the different kinds of transition regions are
described in detail in Section 6.

The immersions Xτ give us special Legendrian immersions of the gen-
eralized cylinder R × S

p−1 × S
q−1. Let gτ := X∗

τ gS2n−1 denote the metric
induced on the cylinder R × S

p−1 × S
q−1 by Xτ . When τ = 0 X0 gives a

diffeomorphism from the generalized cylinder R × S
p−1 × S

q−1 onto the stan-
dard real special Legendrian sphere S

p+q−1 ⊂ S
2(p+q)−1 minus the union of

the two equatorial subspheres (Sp−1, 0) ∪ (0,Sq−1) ⊂ R
p × R

q; in this case
g0 is isometric to the restriction of the standard metric on S

p+q−1. When
|τ | = τmax, the induced metric gτ has a continuous translational symme-
try and the immersion Xτ is not only SO(p) × SO(q)-invariant but actually
S

1 × SO(p) × SO(q)-invariant. In particular,X±τmax is homogeneous whereas
the generic Xτ is only cohomogeneity one.

For 0 < |τ | < τmax the metric gτ induced on the cylinder is periodic
of period 2pτ . Translation by the period 2pτ induces a rotation of Xτ by
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some element ˜T2p̂τ
∈ SU(p+ q) which we call the rotational period of Xτ . In

particular (as in the SO(2)-invariant case), the angular period p̂τ (defined
precisely in (4.23)) determines when Xτ factors through a closed special
Legendrian embedding and hence gives rise to a SL cone in C

n with closed
link. As τ → 0 the period 2pτ of the induced metric gτ goes to infinity. In the
τ → 0 limit, we see only a single “bead” (equatorial sphere) of the spherical
necklace; the other beads of the necklace get pushed “beyond the horizon”.

By studying the dependence of p̂τ on τ (see Proposition 7.41) and using
the fact that we understand the limiting geometries when τ = 0 and τ =
τmax, we prove that for a dense set of τ ,Xτ factors as above. The behaviour of
the angular period p̂τ and its derivative dp̂τ

dτ as τ → 0 is needed to understand
quantitively how the geometry of Xτ changes when we make a small change
in τ (and τ itself is also small). Understanding this behaviour is crucial to
the gluing applications in [9–12].

The angular period p̂τ can be expressed as an integral, which for SO(2)-
invariant SL cones is an elliptic integral [11, Equation (3.34) & Appendix A].
In [11] we exploited results about elliptic integrals to prove our small τ
asymptotics for dp̂τ

dτ [11, 3.30]. In higher dimensions p̂τ has an expression
in terms of hyperelliptic rather than elliptic integrals. In this paper, rather
than studying the hyperelliptic integrals directly we adopt a more geomet-
ric approach that we expect will find application in other similar problems:
every minimal submanifold of S

m−1 has an associated homological invari-
ant called the torque that arises directly from the First Variation Formula
applied to Killing fields o(m) of S

m−1. We show that the torque detects the
difference between the Xτ for different values of τ .

Using the Legendrian neighbourhood theorem any Legendrian subman-
ifold C1-close to a given initial Legendrian submanifold L can be described
in terms of the 1-jet of some function f on L; we denote this perturbed Leg-
endrian submanifold Lf . The condition that a Legendrian submanifold L be
special Legendrian can be expressed in terms of the Legendrian angle θL,
i.e., θL ≡ 0. Given an initial Legendrian immersion L with Legendrian angle
θ0, if the function f is small then the Legendrian angle of the perturbed
Legendrian Lf has Legendrian angle θ0 + Lf + h.o.t. where

Lf = (Δ + 2n)f.

We refer to Lf as the linearized operator. By studying the linearization of (a
suitable component of) the torque for small rotationally invariant perturba-
tions of Xτ we derive an exact formula for the derivative dp̂τ

dτ in terms of the
values of a distinguished rotationally invariant solution Q to the linearized
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equation Lf = 0. This formula is valid for all values of τ not just small τ
and may itself be useful for other purposes. By studying the behaviour of
the distinguished solution Q for small τ , we are able to prove our result on
the small τ asymptotics of dp̂τ

dτ and p̂τ .
Since the present paper builds on our previous work [13] some overlap

with that paper is unavoidable. To make the current paper as self-contained
as possible while minimizing overlap, we will state a number of results from
[13] without proof; we will however introduce all necessary notation and
terminology in the current paper, so that the reader need only consult [13]
to see the proofs of these quoted results as necessary.

Organization of the paper. The paper is organized in seven sections.
Section 1 consists of the introduction, this section and some remarks on
notation. Section 2 contains some preliminary material of a more general
nature related to symmetry groups of special Legendrian immersions. In
Section 3, we recall some of the basic results about SO(p) × SO(q)-invariant
special Legendrians in S

2p+2q−1 proved previously in [13]. These include
the basic ODEs satisfied by (appropriately parameterized) SO(p) × SO(q)-
invariant special Legendrians (see (3.8)) and the 1-parameter family Xτ of
SO(p) × SO(q)-invariant special Legendrian immersions (see (3.29)); every
SO(p) × SO(q)-invariant special Legendrian is congruent to some Xτ . Xτ

is defined in terms of a 1-parameter family of solutions wτ to (3.8) which
are described in (3.23). Section 4 studies the discrete symmetries of this
1-parameter family wτ of solutions of (3.8). We also introduce the peri-
ods and half-periods of wτ ; the periods of wτ control when wτ forms a
closed curve in S

3, while the half-periods control when the curve of isotropic
SO(p) × SO(q) orbits associated with wτ is closed. The half-periods of wτ

also control the embedding properties of Xτ (see Proposition 4.44). The dis-
crete symmetries of wτ give rise to discrete symmetries of Xτ beyond the
SO(p) × SO(q) symmetry implicit in the construction of Xτ . Section 5 gives
a complete analysis of all symmetries enjoyed by the 1-parameter family of
SO(p) × SO(q)-invariant special Legendrian immersions Xτ . A symmetry of
Xτ : Cylp,q → S

2n−1 is a pair (M, ˜M) ∈ Diff(Cylp,q) × O(2n) such that

˜M ◦Xτ = Xτ ◦ M.

If (M, ˜M) is any symmetry of Xτ then M ∈ Isom(Cylp,q, gτ ), where gτ :=
X∗
τ g S2n−1 is the pullback metric on Cylp,q induced by the immersion Xτ

(see Remark 2.11). Proposition 5.6 determines the structure of the group
Isom(Cylp,q, gτ ). Subsequently, we show that in fact every element of
Isom(Cylp,q, gτ ) gives rise to a symmetry of Xτ .
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Section 6 studies the geometry of Xτ in detail. The first part of the
section introduces subsets of Cylp,q called the waists and bulges of Xτ and
associates to each bulge an equatorial n− 1 sphere in S

2n−1 called its approx-
imating sphere. We study the action of Sym(Xτ ) on the waists and bulges of
Xτ and the action of ˜Sym(Xτ ) on the approximating spheres ofXτ (see Lem-
mas 6.8 and 6.13). The second part of the section studies the geometry of Xτ

as τ → 0. We define subsets of the bulges, called almost spherical regions, and
show that as τ → 0 the image of an almost spherical region under Xτ is close
to its associated approximating sphere, thereby justifying the terminology.
We also study the geometry of the necks of Xτ—the core of the transition
regions connecting two adjacent almost spherical regions centred around one
of the waists—and show that as τ → 0 the necks approach a limiting geom-
etry: if p = 1 the necks all resemble small (n− 1)-dimensional Lagrangian
catenoids, while if p > 1 there are two kinds of necks both of which resem-
ble the product of a unit sphere with a small Lagrangian catenoid of the
appropriate dimensions.

Section 7 studies the asymptotics of the angular period p̂τ as τ → 0
refining the results we already proved in [13, Section 7]. To prove the small τ
asymptotics of dp̂τ

dτ we need Lemma 7.9, which calculates the linearization of
the torque ofXτ when perturbed by a small rotationally invariant function φ.
Lemma 7.9 is a key ingredient of Lemma 7.24, which gives a precise formula
for dp̂τ

dτ valid for any 0 < τ < τmax, in terms of the values of a particular
solution to the rotationally invariant linearized operator (7.11). The small
τ asymptotics of p̂τ and dp̂τ

dτ are easy consequences of this formula (see
7.41). As a corollary of the refined asymptotics of p̂τ as τ → 0, we prove
the existence of a countable dense set of τ for which Xτ factors through an
embedding of a closed special Legendrian manifold (see 7.44).

Notation and conventions. Throughout the paper we use the following
notation to express elements of Isom(R), the isometries of the real line. We
denote by Tx, translation by x, t 	→ t+ x. We denote by T reflection in the
origin t 	→ −t and reflection in x, t 	→ 2x− t by Tx.

2. Preliminaries

We assume the reader is familiar with the basic facts about SL geometry in
C
n, SL cones in C

n and special Legendrian submanifolds in S
2n−1. For the

reader unfamiliar with these facts we refer them to [11, Section 2] for a brief
introduction.
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The following elementary group theory is used in several parts of the
paper to describe the group structure of symmetry groups of our special Leg-
endrian immersions; it appears below in our description of the Lagrangian
and SL isometries of C

n.

Direct, central and semidirect products of groups. Let K,N ⊂ G
be any two subsets of a group G. We write

KN = {kn | k ∈ K,n ∈ N} ⊂ G.

Sometimes we will also use the notation K ·N . If both K and N are sub-
groups of G, then KN is a subgroup if and only if KN = NK [14, p. 22].
Moreover, N is a normal subgroup of KN if and only if kNk−1 = N for all
k ∈ K and similarly for K.

In particular, if N centralizes K, i.e., every element of N commutes with
every element of K, then clearly KN = NK and both K and N are normal
subgroups of the group H = KN . In this case we have K ∩N ⊆ Z(H),
where Z(H) denotes the centre of H, and we say that KN is an (internal)
central product ofK andN identifyingK ∩N [5, p. 29]. If in factK ∩N = 1,
then KN is the (internal) direct product of K and N , and KN is isomorphic
to the (external) direct product K ×N .

If K is a normal subgroup of KN then conjugation by any element of N
gives a homomorphism ρ : N → AutK and the kernel of ρ is the centralizer
of K in KN . If K is a normal subgroup of KN and K ∩N = 1, then KN is
the semidirect product of K by N , K �N . To make explicit the conjugation
action of N on K we often write, K �ρ N and write down the twisting
homomorphism ρ : N → AutK explicitly.

Special Lagrangian isometries of C
n. We recall some basic results

on the structure of the subgroup of O(2n) that maps the set of all SL n-
planes in C

n to itself (possibly reversing the orientation of the plane). Let
Lag denote the Grassmannian of unoriented Lagrangian n-planes in C

n, SL
denote the Grassmannian of (necessarily oriented) SL n-planes in C

n and
define ±SL := {Π | ± Π ∈ SL}.

Definition 2.1 (Lagrangian and SL isometries).

(i) Define IsomLag := {A∈O(2n) |A(Π)∈ Lag for all Π∈ Lag}. Elements
of IsomLag we call Lagrangian isometries.

(ii) Define IsomSL := {A∈O(2n) |A(Π) ∈ SL for all Π ∈ SL}. Elements
of IsomSL we call SL isometries.
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(iii) Define Isom±SL := {A∈O(2n) |A(Π)∈ ± SL for all Π∈ SL}. Elements
of Isom±SL we call ±-SL isometries and elements of Isom±SL \ IsomSL

we call anti-SL isometries.

Note we do not assume a priori that IsomSL ⊂ IsomLag, but from our defi-
nitions we do have IsomSL ⊂ Isom±SL.

Define C ∈ O(2n) by

(2.2) C(z) = z, where z ∈ C
n.

Since C satisfies

C∗J = −J, C∗ω = −ω, C∗Ω = Ω,

we see in particular that C belongs to both IsomLag and IsomSL.
We need the following result on the structure of IsomLag and IsomSL to

discuss the full symmetry group of SO(p) × SO(p)-invariant special Legen-
drians.

Lemma 2.3 (Structure of IsomLag, IsomSL and Isom±SL).

(i) IsomLag = U(n) · 〈C〉 ∼= U(n) �ρ Z2 where the twisting homomorphism
ρ : Z2 → AutU(n) is determined by ρ(1)U = U for any U ∈ U(n).

(ii) For n > 2, we have

IsomSL = SU(n) · 〈C〉 ∼= SU(n) �ρ Z2,

Isom±SL = SU(n)± · 〈C〉 ∼= SU(n)± �ρ Z2,

where

SU(n)± := {U ∈ U(n) | detCU = ±1} ∼= SU(n) � Z2,

and ρ is the restriction of the twisting homomorphism defined in (i) to
SU(n)±. In particular, IsomSL and Isom±SL are subgroups of IsomLag.

(iii) IsomSL(2) = UI(2) and Isom±SL = UI(2) · 〈R1〉 ∼= UI(2) �ρ Z2 where
UI(2) denotes the unitary group of C

2 with respect to the complex
structure I on C

2 defined by right multiplication by the imaginary
quaternion I ∈ Im H, R1(z1, z2) := (−z1, z2) and ρ : Z2 → UI(2) is the
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homomorphism defined by ρ(1)U = R1UR1. UI(2) satisfies

UI(2) ∩ U(2) = SU(2),

where U(2) and SU(2) are the unitary and special unitary groups with
respect to the standard complex structure J on C

2 (defined by right
multiplication by J ∈ Im H). In particular, there exist SL isometries
of C

2 which are not Lagrangian isometries.

We omit the proof. In fact, the following stronger version of Lemma 2.3
holds: if n > 2 any diffeomorphism of C

n which preserves the SL differential
ideal I generated by ω and Im Ω is a product of a dilation with some element
of Isom±SL [2].

In relation to (iii) we remark that using the standard basis e1 = 1, e2 =
I, e3 = J and e4 = K for the quaternions H ∼= C

2, the standard complex
structure J on C

2 can be represented by the action of right multiplication
by the unit imaginary quaternion J ∈ Im(H). With respect to the complex
structure I defined by right multiplication by the unit imaginary quaternion
I we have ωI := g(·, I·) = Re ΩJ . Hence, the SL 2-planes of (C2, J, ωJ ,ΩJ)
are exactly the I-complex lines in C

2.

Corollary 2.4. If n > 2 then any SL isometry L ∈ IsomSL satisfies

L∗ω = ω, L∗Ω = Ω, or L∗ω = −ω, L∗Ω = Ω,

while any anti-SL isometry L ∈ Isom±SL \ IsomSL satisfies

L∗ω = ω, L∗Ω = −Ω, or L∗ω = −ω, L∗Ω = −Ω.

Corollary 2.4 implies that every ±-SL isometry of C
n sends the complex

structure J to ±J . In other words, every ±-SL isometry of C
n is either a

holomorphic or anti-holomorphic isometry of C
n. Hence, we may also define

another subgroup of Isom±SL by

IsomJ
±SL := {A ∈ Isom±SL |AJ = JA}

where J denotes the standard complex structure on C
n. 2.3 implies that

(2.5) IsomJ
±SL = Isom±SL ∩U(n) = SU(n)±.

Corollary 2.4 also implies that every SL isometry of C
n preserves the cali-

bration Re Ω and that every anti-SL isometry of C
n sends Re Ω to −Re Ω.
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Symmetry groups and equivariance of special Legendrian immer-
sions. For any special Legendrian immersion X : M → S

2n−1 we define a
symmetry of X to be a pair (˜M,M) ∈ O(2n) × Diff(M) such that

(2.6) ˜M ◦X = X ◦ M.

Note at this stage we only assume ˜M ∈ O(2n); however, in the cases of
interest to us in the present paper we will see that ˜M ∈ Isom±SL ⊂ O(2n).
The set of all symmetries of a special Legendrian immersion X forms a group
with the obvious multiplication. Rather than thinking of the symmetries of
X : M → S

2n−1 as a subgroup of O(2n) × Diff(M) we often prefer to work
with subgroups of the domain or target separately; this is helpful for example
in finding all the symmetries of a given special Legendrian immersion X.

To this end we define a subgroup of Diff(M)

(2.7) Sym(X) := {M ∈ Diff(M) | ∃ ˜M ∈ O(2n) s.t. ˜M ◦X = X ◦ M},

and the subgroup Per(X) ⊂ Sym(X) by

(2.8) Per(X) := {M ∈ Diff(M) | X ◦ M = X}.

It follows that if M ∈ Per(X) then M must be orientation-preserving.
We also define a subgroup ˜Sym(X) ⊂ Isom(S2n−1) = O(2n) by

(2.9) ˜Sym(X) := {˜M ∈ O(2n) | ˜M ◦X = X ◦ M for some M ∈ Sym(X)}.

The three groups Sym(X), Per(X) and ˜Sym(X) are related by the following.

Lemma 2.10. If X : M → S
2n−1 is a Legendrian immersion that is not

totally geodesic then there exists a canonical surjective homomorphism ρ̃ :
Sym(X) → ˜Sym(X) induced by sending M ∈ Sym(X) to the (unique) ˜M ∈
˜Sym(X) such that ˜M ◦X = X ◦ M. ker ρ̃ = Per(X) and hence Per(X) is a
normal subgroup of Sym(X) and

˜Sym(X) ∼= Sym(X)/Per(X).

Proof. Using the fact that any Legendrian submanifold of S
2n−1 that is

not totally geodesic is linearly full [7, Lemma 3.13], one can see that if
˜M1, ˜M2 ∈ O(2n) and ˜M1 ◦Xτ = ˜M2 ◦Xτ for some τ �= 0, then ˜M1 = ˜M2.
Hence, by the definitions of Sym(Xτ ) and ˜Sym(Xτ ), given any M ∈ Sym(Xτ )
there exists a unique element ˜M ∈ O(2n) such that ˜M ◦Xτ = Xτ ◦ M. We
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define the map ρ̃ : Sym(Xτ ) → ˜Sym(Xτ ) by M 	→ ˜M. ρ̃ is readily seen to
be a homomorphism, which by the definitions of Sym(Xτ ) and ˜Sym(Xτ )
is surjective. It follows immediately from the definition of Per(Xτ ) that
ker ρ̃ = Per(Xτ ). �

Remark 2.11. For any M ∈ Sym(X) we observe that

M∗(X∗ g S2n−1) = (X ◦ M)∗g S2n−1 = (˜M ◦X)∗g S2n−1 = X∗ ◦ ˜M∗g S2n−1

= X∗g S2n−1 .

Therefore any M ∈ Sym(X) is an isometry of the pullback metric gX :=
X∗ g S2n−1 on M and hence Sym(X) is always a subgroup of Isom(M, gX);
determining Isom(M, gX) is thus a key step in determining Sym(X). For
the cases of interest in this paper, we will see that in fact we always have
Sym(X) ∼= Isom(M, gX).

We have a monomorphism ρ : Sym(X) → Diff(M) given by inclusion and
a homomorphism (not necessarily injective) ρ̃ : Sym(X) → O(2n) given by
M 	→ ˜M as in 2.10. Then by the definition of a symmetry of X the immersion
X is (ρ, ρ̃)-equivariant, i.e.,

(2.12) ρ̃(γ) ◦X = X ◦ ρ(γ) for all γ ∈ Sym(X).

We can talk about a G-equivariant immersion X : M → S
2n−1 whenever

we have a pair of homomorphisms ρ : G→ Diff(M) and ρ̃ : G→ O(2n) by
requiring that (2.12) hold for all γ ∈ G. For special Legendrian immersions
it is natural to assume further that the homomorphism ρ̃ satisfies ρ̃ : G→
Isom±SL ⊂ O(2n); this will always turn out to be the case for the symmetry
groups considered in the current paper. In this case by 2.4 every element γ̃
acts either holomorphically or anti-holomorphically on C

n.

Remark 2.13.

(i) For any ˜M ∈ Isom±SL and any special Legendrian immersion X : M →
S

2n−1 we can reposition X using ˜M, i.e., (with an appropriate choice of
orientation) ˜M ◦X : M → S

2n−1 is another special Legendrian immer-
sion. If additionally X is G-equivariant and ˜M commutes with G
then ˜M ◦X is still G-equivariant. For this reason the centralizer of G,
C(G) ⊂ Isom±SL plays an important role in controlling the geometry
of G-equivariant special Legendrians.
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(ii) If we assume G ⊂ SU(n)± ⊂ Isom±
SL then clearly the centre ZSU(n)± =

〈eiπ/n Id〉 ∼= Z2n of SU(n)± commutes with G and hence can be used
to give G-equivariant repositionings of any G-equivariant special Leg-
endrian.

(iii) If we further assume G ⊂ O(n) ⊂ SU(n)± then C (defined in (2.2))
also commutes with G (recall that conjugating by C acts on GL(n,C)
by M 	→ M). Moreover conjugation by C acts on ZSU(n)±

∼= Z2n by
eπki/n Id 	→ e−πki/n Id and hence the group generated by ZSU(n)±

∼= Z2n

and the involution C is isomorphic to the dihedral group D2n.

3. SO(p) × SO(q)-invariant special Legendrian submanifolds

Given a pair of integers p and q satisfying 1 ≤ p ≤ q and q ≥ 2 (we call such
a pair (p, q) admissible) we set n = p+ q and define cylinders of type (p, q),
Cylp,qI , by

(3.1) Cylp,qI :=

{

I × S
p−1 × S

q−1, if p > 1;
I × S

n−2, if p = 1,

where I ⊂ R is an interval, which we omit in the notation when I = R and
meridians Merp,q by

(3.2) Merp,q :=

{

S
p−1 × S

q−1, if p > 1;
S
n−2, if p = 1,

so that Cylp,q = R × Merp,q, i.e., Merp,q is the cross section of Cylp,q.
SO(p) × SO(q) acts via isometries on C

p+q ∼= C
p × C

q via the product
of the standard complex linear actions of SO(p) and SO(q) on the C

p and
C
q factors respectively. Since SO(p) × SO(q) ⊂ SO(p+ q) ⊂ SU(p+ q) we

can look for SO(p) × SO(q)-invariant special Lagrangians in C
p+q and in

particular for SL cones or equivalently special Legendrian submanifolds of
S

2(p+q)−1 invariant under SO(p) × SO(q).
If a Legendrian submanifold of S

2n−1 is a union of orbits then each orbit
O must be γ-isotropic, i.e., γ|O = 0 where γ denotes the standard contact
form on S

2n−1.
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Lemma 3.3 (Isotropic orbits of SO(p) × SO(q)).

(i) If p ≥ 2, q ≥ 2 then any γ-isotropic SO(p) × SO(q) orbit O ⊂ S
2(p+q)−1

has the form

(3.4) Ow = (w1 · S
p−1, w2 · S

q−1)

for some w = (w1, w2) ∈ S
3. Moreover, if w and w′ ∈ S

3 then Ow =
Ow′ if and only if w′ = ρjkw for some (j, k) ∈ Z2 × Z2 where ρ : Z2 ×
Z2 → O(2) ⊂ U(2) is the homomorphism defined by

(j, k) 	→ ρjk :=
(

(−1)j 0
0 (−1)k

)

.

In particular, spherical isotropic SO(p) × SO(q) orbits are in one-to-
one correspondence with points in S

3/Z2 × Z2.

(ii) Similarly, for n ≥ 3 any γ-isotropic SO(n− 1) orbit O ⊂ S
2n−1 has

the form

(3.5) Ow = (w1, w2 · S
n−2)

for some w = (w1, w2) ∈ S
3. Moreover, if w and w′ ∈ S

3 then Ow =
Ow′ if and only if w′ = ρjkw for (j, k) ∈ 〈(+−)〉 ∼= Z2 � Z2 × Z2. In
particular, isotropic SO(n− 1) orbits in S

2n−1 are in one-to-one cor-
respondence with points in S

3/Z2, where Z2 = 〈ρ+−〉.

Proof. See [13, Lemma 3.1]. �

By Lemma 3.3 the generic γ-isotropic orbit of SO(p) × SO(q) has dimension
n− 2 and therefore we can look for SO(p) × SO(q)-invariant special Legen-
drians that are curves of SO(p) × SO(q) orbits; these curves will satisfy a
first order system of ODEs on the space of (generic) isotropic orbits and
by 3.3 the space of all isotropic orbits can be identified with S

3/Z2 if p = 1
or S

3/Z2 × Z2 if p > 1. Locally one has existence and uniqueness for these
ODEs but problems may develop if we run into singular orbits. To study
the global geometry of the SO(p) × SO(q)-invariant special Legendrians one
needs to understand the possible singular orbits and how solutions to the
ODEs behave on approach to these orbits.
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Remark 3.6.

(i) Recall from 2.13 the importance of the centralizer C(G) ⊂ Isom±
SL of

the group G ⊂ Isom±
SL for the geometry of G-invariant special Legen-

drians. Of particular importance for the case G = SO(p) × SO(q) ⊂
SO(n) is the existence of the following 1-parameter subgroup {˜Tx} ⊂
SU(n) commuting with SO(p) × SO(q):

(3.7) ˜Tx =
(

eix/p Idp 0
0 e−ix/q Idq

)

.

The 1-parameter subgroup {˜Tx} plays a central role in governing the
geometry of SO(p) × SO(q)-invariant special Legendrians. In many
ways it serves as an analogue of translations along the axis for the
group SO(2) ⊂ Isom E

3 of rotations around a fixed axis in E
3. For this

reason, we will often call repositioning an SO(p) × SO(q)-invariant spe-
cial Legendrian X by some element ˜Tx, “sliding” X along its axis.

(ii) The function ft : C
p+q → R defined by

ft(z, w) =
1
2p

|z|2 − 1
2q

|w|2,

where (z, w) ∈ C
p × C

q ∼= C
p+q, is the Hamiltonian function for the 1-

parameter subgroup {˜Tx}. Since {˜Tx} commutes with SO(p) × SO(q)
the function ft generating {˜Tx} is SO(p) × SO(q)-invariant, i.e., satis-
fies f ◦ O = f for any O ∈ SO(p) × SO(q). Hence ft is constant on any
SO(p) × SO(q)-orbit.

(iii) The standard special Legendrian equatorial sphere S
n−1 ⊂ R

n ⊂ C
n is

clearly O(n)-invariant and also therefore O(p) × O(q)-invariant. S
n−1

is locally rigid as an O(n)-invariant special Legendrian (although we
can use the action of the centre ZSU(n)± to generate the other O(n)-
invariant special Legendrian equatorial spheres). However, as an O(p)×
O(q)-invariant special Legendrian S

n−1 is not rigid because we can
reposition it using {˜Tx}, or “slide S

n−1 along the axis of {˜Tx}”. Namely,
˜Tx(Sn−1) is a 1-parameter family of O(p) × O(q)-invariant special Leg-
endrian equatorial n− 1-spheres. The corresponding infinitesimal
deformation of S

n−1

d

dx

∣

∣

∣

∣

x=0

˜Tx ◦ S
n−1
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gives rise to a solution to the linearized equation Lf = (Δ + 2n)f = 0,
i.e., corresponds to a second harmonic f on S

n−1 which, since we
are deforming through a 1-parameter family of O(p) × O(q)-invariant
special Legendrians must be O(p) × O(q)-invariant. This O(p) × O(q)-
invariant second harmonic on S

n−1 is f(x, y) = 1
px

2 − 1
qy

2 where
(x, y) ∈ S

p+q−1 ⊂ R
p × R

q, which is the restriction to S
n−1 of the

O(p) × O(q)-invariant function ft defined above.

With an appropriate parametrization the ODEs describing SO(p)×
SO(q)-invariant special Legendrians are

(3.8)
ẇ1 = wp−1

1 wq2,

ẇ2 = −wp1 wq−1
2 .

In [13] we called solutions to (3.8) (p, q)-twisted SL curves in S
3. For any p

and q the (p, q)-twisted SL ODEs (3.8) have six obvious types of symmetry:

(1) Time translation invariance w 	→ w ◦ Tt0 for any t0 ∈ R.

(2) Multiplication by an nth root of unity w 	→ zw, where zn = 1.

(3) w 	→ T̂x ◦ w where T̂x ∈ U(1) × U(1) ⊂ U(2) is the 1-parameter
subgroup

(3.9) T̂x =
(

eix/p 0
0 e−ix/q

)

.

(4) Complex conjugation w 	→ w.

(5) For any nth root of unity z the simultaneous time reflection and spatial
rotation given by

t 	→ −t, w 	→ zw.

(6) The simultaneous time and spatial rescaling given by

t 	→ λ1−2/nt, w 	→ λ1/nw, for any λ > 0.

More precisely, w is a solution of (3.8) if and only if wλ(t) :=
λ1/nw(λ1−2/nt) is.
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Finally, in the special case p = q (3.8) is also invariant under

t 	→ −t, (w1, w2) 	→ (w2, w1).

Symmetries (2–5) are manifestations of the symmetries of SO(p) × SO(q)-
invariant special Legendrians exhibited in Remarks 2.13 and 3.6.

The following result gives basic facts about solutions to the (p, q)-twisted
SL ODEs.

Proposition 3.10.

(i) Solutions to the (p, q)-twisted SL ODEs (3.8) admit two conserved
quantities

I1(w) := |w|2 and I2(w) := Im(wp1w
q
2).

The symmetries (1–3) preserve both conserved quantities I1 and I2.
Symmetries (4) and (5) preserve I1 but send I2 	→ −I2. Symmetry (6)
sends (I1, I2) 	→ (λ2/nI1, λI2). Hence if w is a solution of (3.8) with
I1(w) �= 0 then we may rescale using symmetry (6) to obtain another
solution of (3.8) with I1(w) = 1. For any solution with I1(w) = 1, the
possible range of values of I2 = Im(wp1w

q
2) is [−2τmax , 2τmax], where

(3.11) 2τmax =

√

ppqq

nn
.

(ii) The stationary points of (3.8) are C × {0} ∪ {0} × C if p > 1 or C ×
{0} if p = 1.

(iii) The initial value problem for (3.8) with any initial data w(0) ∈ C
2 has

a unique real analytic solution w : R → C
2 defined for all t ∈ R, which

depends real analytically on the initial data.

(iv) For any solution of (3.8) with I1(w) = 1 and I2(w) = Im(wp1w
q
2) =

−2τ (and hence by part (i) τ ∈ [−τmax, τmax]) the function y := |w2|2 :
R → [0, 1] satisfies the equation

(3.12)
1
2
ẏ + 2iτ = −wp1wq2.

Therefore y satisfies the energy conservation equation

(3.13) ẏ2 = 4(f(y) − 4τ2) = 4yq(1 − y)p − 16τ2,
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and hence also the second-order ODE

(3.14) ÿ = 2f ′(y) = 2yq−1(1 − y)p−1(q − ny),

where we define the function f : R → R by

(3.15) f(y) = yq(1 − y)p.

(v) Any solution w of (3.8) satisfies

(3.16) |ẇ| = |w1|p−1|w2|q−1.

Proof. See [13, 4.7]. �

Remark 3.17. The difference between the stationary points of (3.8) in
the case p > 1 and the case p = 1 reflects the difference in the geometry
of the nongeneric isotropic orbits of SO(p) × SO(q) and SO(n− 1) respec-
tively. For p > 1 the nongeneric isotropic orbits of SO(p) × SO(q) have the
form (w1 · S

p−1, 0) and (0, w2 · S
q−1). For p = 1 the only nongeneric iso-

tropic orbits are of the form (w1, 0). In particular, the orbits of the form
(0, w2 · S

n−2) are generic provided w2 �= 0.

We need the following auxiliary result about solutions of (3.13).

Lemma 3.18. Let w be any solution of (3.8) with I1(w) = 1 and I2(w) =
Im(wp1w

q
2) = −2τ and let y := |w2|2 : R → [0, 1] be the associated solution of

(3.13).

(i) If 0 < |τ | < τmax, the following holds:
(a) y is periodic of period 2pτ > 0 and hence any two solutions of (3.13)

with the same value of τ differ only by a time translation. Moreover,
the period pτ satisfies

(3.19) lim
τ→τmax

2pτ =
π

τmax

√

pq

2n3
.

(b) The range of y is [ymin , ymax], where 0 < ymin <
q
n < ymax < 1 are

the only two solutions of the degree n polynomial equation

(3.20) f(y) = yq(1 − y)p = 4τ2,

that lie in the interval [0, 1].
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(c) As τ → 0 we have

(3.21) ymin = (2τ)2/q(1 +O(τ2/q)), ymax = 1 − (2τ)2/p(1 +O(τ2/p)).

(ii) If |τ | = τmax, then y ≡ q
n .

(iii) If τ = 0 and p > 1 then one of the following holds:
(a) y ≡ 0,
(b) y ≡ 1,
(c) y is strictly monotone and satisfies,

y =

{

y0 ◦ Tt0 some t0 ∈ R; if y is decreasing,
y0 ◦ Tt0 ◦ T some t0 ∈ R; if y is increasing,

where y0 : R → (0, 1) denotes the unique (decreasing) solution to
the initial value problem

ẏ = −2
√

f(y), y(0) =
q

n
.

Alternatively, y0 can be characterized as the unique solution to
(3.14) with initial conditions

y(0) =
q

n
, ẏ(0) = −4τmax.

Moreover, y0 satisfies limt→−∞ y0(t) = 1 and limt→∞ y0(t) = 0.

(iv) If τ = 0 and p = 1 then one of the following holds:
(a) y ≡ 0,
(b) y = y0 ◦ Tt0 for some t0 ∈ R, where y0 : R → (0, 1] is the unique

solution to (3.14) with initial conditions y(0) = 1, ẏ(0) = 0.
Moreover, y0 is even, increasing on (−∞, 0) and satisfies
limt→±∞ y0(t) = 0.

Proof. See [13, Lemma 4.19]. �

We have the following normal forms for solutions of (3.8).

Proposition 3.22. Fix a pair of admissible integers p and q and let w be
any solution of (3.8) with I1(w) = 1 and I2(w) = −2τ with 0 ≤ |τ | ≤ τmax.

(i) If p > 1 and 0 < |τ | ≤ τmax then w is equivalent under symmetries
(1)–(3) to wτ : R → S

3 defined as the unique solution to (3.8) with
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initial value

wτ (0) =
(√

p

n
eiατ/2p,

√

q

n
eiατ/2q

)

,

where ατ ∈ [−π
2 ,

π
2 ] is defined by

ατ := arcsin
(

− τ

τmax

)

.

(ii) If p > 1 and τ = 0 then w is equivalent under symmetries (1)–(3)
to the unique solution of (3.8) with one of the following four initial
conditions:
(a) w(0) = (1, 0), (b) w(0) = (0, 1),

(c) w(0) =
(√

p
n ,
√

q
n

)

, (d) w(0) =
(

eiπ/2p
√

p
n , e

iπ/2q
√

q
n

)

.

(iii) If p = 1 and 0 < |τ | ≤ τmax then w is equivalent under symmetries
(1)–(3) to wτ : R → S

3 defined as the unique solution to (3.8) with
initial value

wτ (0) = (−i sgn τ
√

1 − ymax,
√
ymax).

(iv) If p = 1 and τ = 0 then w is equivalent under symmetries (1)–(3)
to the unique solution of (3.8) with one of the following two initial
conditions:
(a) w(0) = (1, 0), (b) w(0) = (0, 1).

Proof. See [13, Prop 4.26] �

wτ and the SO(p) × SO(q)-invariant special Legendrian immer-
sions Xτ . We now define the particular 1-parameter family of
(p, q)-twisted SL curves we will use throughout the rest of the paper by spec-
ifying initial data wτ (0) as in the normal form given in 3.22. Associated to
the 1-parameter family wτ is the 1-parameter family Xτ of SO(p) × SO(q)-
invariant special Legendrians. Proposition 3.22 implies that any SO(p) ×
SO(q)-invariant special Legendrian in S

2(p+q)−1 is congruent toXτ for some τ .

Proposition 3.23. Fix a pair of admissible integers p and q and choose
any τ ∈ [−τmax, τmax]. Define wτ : R → S

3 as the unique solution of (3.8)
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with initial data

(3.24) wτ (0) =
(√

p

n
eiατ/2p,

√

q

n
eiατ/2q

)

if p > 1;

where ατ ∈ [−π
2 ,

π
2 ] is defined by

(3.25) ατ := arcsin
(

− τ

τmax

)

,

or

(3.26) wτ (0) = (−i sgn τ
√

1 − ymax,
√
ymax) if p = 1.

Then wτ depends real analytically on τ ∈ (−τmax, τmax) and satisfies w−τ =
wτ . In particular, w0 : R → S

3 ⊂ C
2 is contained in R

2 ⊂ C
2.

Proof. See [13, Prop 5.1]. �

The associated function yτ := |w2|2 and its initial value characteri-
zation. For the solution wτ defined in (3.23), define yτ := |w2|2. By (3.10)
yτ satisfies equations (3.13) and (3.14). Analytic dependence of yτ on τ ∈
(−τmax, τmax) follows immediately from analytic dependence of wτ .

For p = 1, yτ is the unique solution of (3.14) satisfying the initial
conditions

(3.27) y(0) = ymax, ẏ(0) = 0.

In particular, y0 is the unique solution of (3.14) satisfying y(0) = 1, ẏ(0) = 0
introduced in 3.18.iv.b.

Similarly, for p > 1, yτ is the unique solution of (3.14) satisfying the
initial conditions

(3.28) y(0) =
q

n
, ẏ(0) = −4τmax cosατ = −4

√

τ2
max − τ2.

y0 coincides with the solution of (3.14) satisfying y(0) = q/n, ẏ(0) = −4τmax

introduced in 3.18.iii.c.
For both p = 1 and p > 1 it follows from these initial value characteriza-

tions of yτ that y−τ = yτ , which is consistent with the fact that w−τ = wτ .
We now define the family of special Legendrian immersionsXτ : Cylp,q →

S
2(p+q)−1 using the (p, q)-twisted SL curves wτ defined in Proposition 3.23,

where Cylp,q denotes the cylinder of type (p, q) defined in (3.1).
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Definition 3.29. For τ ∈ [−τmax, τmax] define an immersion Xτ : Cylp,q →
S

2(p+q)−1 by

Xτ (t, σ1, σ2) = (w1(t) · σ1, w2(t) · σ2), for p > 1;
Xτ (t, σ) = (w1(t), w2(t) · σ), for p = 1,

where t ∈ R, σ1 ∈ S
p−1, σ2 ∈ S

q−1, σ ∈ S
n−2 and wτ = (w1, w2) is the unique

solution to (3.8) specified in Proposition 3.23.

We now state the basic properties of Xτ .

Proposition 3.30. For τ ∈ [−τmax, τmax] the immersion Xτ : Cylp,q →
S

2(p+q)−1 defined in (3.29) has the following properties:

(i) Xτ is a smooth special Legendrian immersion depending analytically
on τ for τ ∈ (−τmax, τmax), and satisfies X−τ = Xτ . In particular, X0

is contained in S
p+q−1 ⊂ R

p+q ⊂ C
p+q.

(ii) For p > 1, the metric gτ on Cylp,q induced by Xτ is

|ẇ|2dt2 + |w1|2gSp−1 + |w2|2gSq−1

= yq−1(1 − y)p−1dt2 + (1 − y)gSp−1 + y gSq−1 .

For p = 1, the induced metric gτ on Cyl1,n−1 is

|ẇ|2dt2 + |w2|2gSn−2 = yn−2dt2 + y gSn−2 .

(iii) Xτ is SO(p) × SO(q)-equivariant, i.e., for any O = (O1,O2) ∈ SO(p) ×
SO(q) we have

˜O ◦Xτ = Xτ ◦ O,

where O = (O1,O2) acts on Cylp,q by O · (t, σ1, σ2) = (t,O1σ1,O2σ2),
and

˜O =
(

O1 0
0 O2

)

∈ SO(p) × SO(q) ⊂ SO(p+ q) ⊂ SU(p+ q).

(iv) When τ = 0 we have

X0(Cylp,q) =

{

S
p+q−1 \ (Sp−1, 0) ∪ (0,Sq−1), for p > 1;

S
n−1 \ (±1, 0) ∈ R ⊕ R

n−1, for p = 1.
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(v) When τ = τmax, we have

Xτmax
(t, σ) =

(

−i
√

1
n
e2inτt,

√

n− 1
n

e−2inτt/(n−1) σ

)

, for p = 1;

(3.31a)

Xτmax
(t, σ1, σ2) =

(√

p

n
e−iπ/(4p)e2niτt/p σ1,

√

q

n
e−iπ/(4q)e−2niτt/q σ2

)

,

(3.31b)

for p > 1.

(vi) If X : Cylp,q → S
2(p+q)−1 is any non totally geodesic SO(p) × SO(q)-

invariant special Legendrian immersion then X = eiω
˜Tx ◦Xτ ◦ Ty for

some x, y ∈ R, 0 < |τ | < τmax and nth root of unity ω ∈ S
1 with ˜Tx ∈

SU(n) as defined in (3.7).

Proof. See [13, Prop 5.9]. �

Torques of Xτ . The value of the conserved quantity I2(wτ ) = −2τ on the
solution wτ has a natural geometric interpretation in terms of the value of
a torque associated with the special Legendrian Xτ ; torques are certain con-
served quantities defined for any special Legendrian (in fact for any minimal
submanifold of a round sphere) and associated with the rotational symme-
tries of the sphere. Torques will play an important role in Section 7, where
we use them to understand in a quantitative way how the geometry of Xτ

changes when τ is sufficiently close to 0 and we make a small (relative to
the size of τ) change in τ : see 7.9, 7.24 and 7.41.

Suppose M is an oriented m-dimensional submanifold of the ambient
manifold (M, g) and k ∈ iso(M, g) is a Killing field on (M, g). Given any
oriented hypersurface Σ ⊂M we define the k-flux through Σ by

(3.32) Fk(Σ) :=
∫

Σ
g(k, η)dvΣ,

where η is the unit conormal to Σ, chosen so that the orientation defined
by Σ and η agrees with that of M . An immediate consequence of the First
Variation of Volume formula [23, 7.6] is

Lemma 3.33. If M is an oriented m-dimensional minimal submanifold of
(M, g), Σ is an oriented hypersurface of M and k ∈ iso(M, g) then the k-flux
through Σ, Fk(Σ), depends only on the homology class [Σ] ∈ Hm−1(M,R).
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In other words, when M is a minimal submanifold of (M, g) the k-flux
map defined in (3.32) induces a linear map F : Hm−1(M,R) → iso(M, g)∗.

If (M, g) = (S2n−1, gstd) then iso(M, g) = o(2n) and we call the map
F : Hm−1(M,R) → o(2n)∗ the torque of M . For special Legendrian sub-
manifolds of S

2n−1 it is also convenient to define the restricted torque of
M , which is the restriction of the torque to the subalgebra su(n) ⊂ o(2n).

Proposition 3.34. For p > 1 the su(n) restricted torque of the SO(p) ×
SO(q)-invariant special Legendrian immersion Xτ : Cylp,q → S

2(p+q)−1 is
given by

Fk(Xτ ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2τ

(

1
p

p
∑

i=1
λi − 1

q

q
∑

j=1
μj

)

Vol(Sp−1) Vol(Sq−1)

if k = idiag(λ1, . . . , λp, μ1, . . . , μq);
0 if k ∈ su(n) is off-diagonal,

(3.35)

where we implicitly use the homology class of any meridian in Cylp,q.
For p = 1 the su(n) restricted torque of the SO(n− 1)-invariant special

Legendrian immersion Xτ : Cyl1,n−1 → S
2n−1 is given by

Fk(Xτ ) =

⎧

⎪

⎨

⎪

⎩

2τ

(

λ− 1
n− 1

n−1
∑

j=1
μj

)

Vol(Sn−2) k = idiag(λ, μ1, . . . , μn−1);

0 k ∈ su(n) is off-diagonal.

(3.36)

In particular, if we take k = t to be the generator of the 1-parameter sub-
group {˜Tx} (defined in (3.7)) then we obtain

Ft(Xτ ) =

{

2τ n
pq Vol(Sp−1) Vol(Sq−1), if p > 1;

2τ n
n−1 Vol(Sn−2), if p = 1;

and hence the value of the torque Ft gives another characterization of the
parameter τ .

Proof. See [13, Prop 5.14]. �

4. Discrete symmetries of wτ

In this section, we study the discrete symmetries of wτ and the conditions
under which wτ corresponds to a closed curve of SO(p) × SO(q) orbits. We
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Figure 1: Profile of yτ := |w2|2 for p = 1.

will use these results in the following section to study the full group of
symmetries of Xτ .

Symmetries of yτ . We begin by describing the symmetries of yτ := |w2|2.
To state these results we need to introduce some notation to describe the
basic properties of yτ . For p > 1, recall from (3.28) that yτ satisfies the initial
conditions

y(0) =
q

n
, ẏ(0) = −4τmax cosατ = −4

√

τ2
max − τ2,

whereas for p = 1 from (3.27) it satisfies

y(0) = ymax, ẏ(0) = 0.

The different initial conditions for yτ affect where the 2pτ -periodic function
yτ attains its maxima and minima in the cases p = 1 and p > 1. In the case
p > 1 the choice of initial data for yτ implies that there exist unique real
numbers p+

τ , p
−
τ ∈ (0, pτ ) satisfying

(4.1) yτ (−p−τ ) = ymax, yτ (p+
τ ) = ymin,

and so that yτ is strictly decreasing on (−p−τ , p+
τ ). We call these two numbers

the partial-periods of yτ , since

(4.2) 2pτ = 2p+
τ + 2p−τ .

In general, p+
τ and p−τ are not related except when p = q when we will

prove shortly that they are equal. Illustrative plots of yτ are shown in fig-
ures 1 and 2 for p = 1 and p > 1, p �= q, respectively.

Throughout the following lemma we assume 0 < |τ | < τmax and discuss
the exceptional cases τ = 0 and |τ | = τmax in Remark 4.12 below. Recall, also
the notation for elements in Isom(R) introduced in Section 1 in Notation
and Conventions.
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Figure 2: Profile of yτ = |w2|2 for p > 1.

Lemma 4.3 (Symmetries of yτ).

(i) For p = 1, q = n− 1 the symmetries of yτ = |w2|2 are generated by

(4.4) yτ ◦ T2pτ
= yτ and yτ ◦ T = yτ .

That is, yτ is an even 2pτ -periodic function. Moreover, we have

(4.5) yτ (0) = ymax and yτ (pτ ) = ymin.

(ii) For p > 1 and p �= q the symmetries of yτ are generated by

(4.6) yτ ◦ T2pτ
= yτ , yτ ◦ Tp+

τ
= yτ and yτ ◦ T−p−

τ
= yτ .

(iii) For p > 1 and p = q the symmetries of yτ are generated by

yτ ◦ T2pτ
= yτ , yτ ◦ Tpτ/2 = yτ , yτ ◦ T−pτ/2 = yτ and(4.7)

yτ ◦ T = 1 − yτ ,

and the partial-periods defined in (4.2) satisfy

(4.8) p+
τ = p−τ =

1
2
pτ and yτ

(

1
2pτ
)

= ymin, yτ
(−1

2pτ
)

= ymax.

Proof. See [13, Lemma 6.3]. �

Remark 4.9. It follows from the partial-period relation (4.2) that the
reflections Tp+

τ
and T−p−

τ
satisfy

(4.10) T−p−
τ
◦ Tp+

τ
= T−2pτ

, Tp+
τ
◦ T−p−

τ
= T2pτ

.

Hence, the first symmetry of yτ in (4.6) is a consequence of the second and
third symmetries.
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Similarly, it is straightforward to check that T ◦ Tpτ/2 ◦ T = T−pτ/2. It
follows that the two symmetries T and Tpτ/2 are sufficient to generate all
four symmetries in (4.7). The fourth symmetry in (4.7) implies that for p = q
we have

(4.11) ymin + ymax = 1.

Remark 4.12. For τ = 0, yτ is no longer periodic (the period 2pτ → ∞ as
τ → 0). For p = 1, we have already seen in 3.18.iv.b that y0 is still even. For
p = q, y0(0) is invariant under y 	→ 1 − y, and hence y0 retains the reflec-
tional symmetry

y0 ◦ T = 1 − y0.

When |τ | = τmax, yτ is the constant function q/n, as noted in Proposi-
tion 3.18.

Corollary 4.13. The discrete subgroup D of Isom(R) generated by the
symmetries of yτ is

D =

⎧

⎪

⎨

⎪

⎩

〈T ,T2pτ
〉 if p = 1;

〈Tp+
τ
,T−p−

τ
〉 if p > 1, p �= q;

〈T ,Tpτ/2〉 if p > 1, p = q.

In all three cases D ∼= D∞ the infinite dihedral group.

Proof. Recall the two standard presentations for the infinite dihedral group
D∞

〈r, f | f2 = 1, frf = r−1〉, and 〈s, t | s2 = 1, t2 = 1〉.
The commutation relation

(4.14) T ◦ Tx ◦ T = T−x

together with the first presentation of D∞ shows that D ∼= D∞ in the case
p = 1. The commutation relations (4.10) for the reflection symmetries Tp+

τ

and T−p−
τ

together with the second presentation of D∞ yield the result
for p > 1 and p �= q. Similarly, for p = q, D is a group generated by two
independent reflections s and t with no relation of the form (st)k = 1, hence
isomorphic to D∞. �
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Symmetries of wτ . In this subsection we study the symmetries of wτ .
Since Xτ is determined by wτ these symmetries are intimately connected to
the extrinsic geometry of Xτ . The symmetries of wτ are themselves closely
related to the symmetries of yτ studied in the previous section. Since by
Propositions 3.23 and 3.30.i, w−τ = wτ and X−τ = Xτ , it suffices to con-
sider only τ ≥ 0.

It follows from (3.8) and the fact that I2(wτ ) = Imwp1w
q
2 = −2τ that

Im(w1ẇ1) = − Im(w2ẇ2) = 2τ.

If wτ = (w1, w2), yτ = |w2|2 and ψ1 and ψ2 denote the arguments of w1 and
w2 respectively then the previous equations are equivalent to

(4.15) (1 − yτ )ψ̇1 = 2τ, yτ ψ̇2 = −2τ.

To study the symmetries of wτ it is convenient to write wτ in the form

w1(t) =

{

sgn t
√

1 − y0(t), for τ = 0;
−i√1 − yτ (t)eiψ1 , for τ > 0;

(4.16)

w2(t) =

{

√

y0(t), for τ = 0;
√

yτ (t)eiψ2 , for τ > 0;

if p = 1 and

w1(t) =

{

√

1 − y0(t), for τ = 0;
√

1 − yτ (t)eiατ/2peiψ1 , for τ > 0;
(4.17)

w2(t) =

{

√

y0(t), for τ = 0;
√

yτ (t)eiατ/2qeiψ2 , for τ > 0;

if p > 1, where ατ ∈ [−π/2, π/2] was defined in (3.25) and where in both
cases for 0 < τ ≤ τmax, ψ1, ψ2 : R → R are the unique solutions of (4.15)
with initial conditions

(4.18) ψ1(0) = ψ2(0) = 0.

The slightly different forms the above wi take in the cases p = 1 and p >
1 stem from the fact that we have chosen the initial data w(0) for wτ

differently in these two cases (recall (3.24) and (3.26)).
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Define the function Ψ by

(4.19) Ψ := pψ1 + qψ2.

Written in terms of y and Ψ the real and imaginary parts of equation (3.12)
are equivalent to

ẏτ = −2
√

f(y) sin Ψ,(4.20a)

2τ =
√

f(y) cos Ψ,(4.20b)

for p = 1 and to

ẏτ = −2
√

f(y) cos(Ψ + ατ ),(4.21a)

−2τ =
√

f(y) sin(Ψ + ατ ),(4.21b)

for p > 1 with ατ as defined in (3.25).

Definition 4.22. For any τ with 0 < |τ | < τmax we define the angular
period p̂τ in terms of ψ1 by

(4.23) 2p̂τ := pψ1(2pτ ).

In [13, Prop 7.7] we proved that the angular period 2p̂τ is a nonconstant
analytic function of τ for 0 < |τ | < τmax that satisfies

(4.24) lim
τ→0

p̂τ =
π

2
.

More precise asymptotics for p̂τ as τ → 0 will be important in our subsequent
gluing constructions and will be established in Section 7.

Lemma 4.25 (Discrete symmetries of wτ for p = 1). For p = 1, q =
n− 1 and 0 < τ < τmax the angular period p̂τ defined in (4.23) satisfies

(4.26) 2p̂τ := ψ1(2pτ ) = 2ψ1(pτ ) = −2(n− 1)ψ2(pτ ) = −(n− 1)ψ2(2pτ ).

wτ has the following symmetries:

wτ ◦ T2pτ
= T̂2p̂τ

◦ wτ , wτ ◦ T = T̂ ◦ wτ , wτ ◦ Tpτ
= T̂2p̂τ

◦ T̂ ◦ wτ ,

(4.27)

where T̂x ∈ U(2) was defined in (3.9) and T̂ ∈ O(4) is defined by

T̂(w1, w2) = (−w1, w2).



The geometry of SO(p) × SO(q)-invariant special Lagrangian cones 199

Using the fact that wτ = −wτ the symmetries of wτ for τ < 0 can be inferred
immediately from the symmetries in the case τ > 0.

We have the following analogue of Lemma 4.25 for p > 1.

Lemma 4.28 (Discrete symmetries of wτ for p > 1). Fix a pair of
admissible integers p and q with p > 1, then for 0 < τ < τmax, the angular
period p̂τ satisfies

2p̂τ := pψ1(2pτ ) = 2p(ψ1(p+
τ ) − ψ1(−p−τ ))(4.29)

= −2q(ψ2(p+
τ ) − ψ2(−p−τ )) = −qψ2(2pτ ).

wτ has the following symmetries:

wτ ◦ T2pτ
= T̂2p̂τ

◦ wτ , wτ ◦ Tp+
τ

= T̂+ ◦ wτ , wτ ◦ T−p−
τ

= T̂− ◦ wτ ,

(4.30)

where T̂x ∈ U(2) was defined in (3.9) and T̂+, T̂− ∈ O(4) are defined by

T̂+(w1, w2) = (eiατ/p eiψ1(2p+
τ )w1, eiατ/q eiψ2(2p+

τ )w2),

T̂−(w1, w2) = (eiατ/p eiψ1(−2p−
τ )w1, eiατ/q eiψ2(−2p−

τ )w2).

When p = q, wτ has the following extra symmetry:

(4.31) w1 ◦ T = w2 and w2 ◦ T = w1.

Hence ψ1 and ψ2 have the following additional symmetries:

ψ1 ◦ T = ψ2, ψ2 ◦ T = ψ1, ψ1 ◦ Tpτ
= −ψ2 + ψ1(pτ ),(4.32)

ψ2 ◦ Tpτ
= −ψ1 + ψ2(pτ ).

The angular period p̂τ satisfies

(4.33) 2p̂τ := pψ1(2pτ ) = p(ψ1(pτ ) − ψ1(−pτ )) = −pψ2(2pτ ).

The proofs of Lemmas 4.25 and 4.28 are very similar. First, we establish
symmetries of ψi using the symmetries of yτ from Lemma 4.3 together with
the definitions of ψi in terms of yτ (recall (4.15)). The symmetries of wτ

then follow by using the definition of wτ in terms of yτ and ψi and their
symmetries. For completeness, we give details in each case.
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Proof of Lemma 4.25. Proof of (4.26) and (4.27): The discrete symmetries
of yτ given in (4.4) and the definition of ψi in terms of yτ given in (4.15)
imply the following symmetries for ψi (i = 1, 2)

ψi ◦ T2pτ
= ψi + ψi(2pτ ), ψi ◦ T = −ψi, ψi ◦ Tpτ

= −ψi + ψi(2pτ ).
(4.34)

Proof of (4.26): ψi(2pτ ) = 2ψi(pτ ) for i = 1, 2 follows from the third
symmetry of (4.34) when t = pτ . It remains to prove that Ψ(pτ ) = ψ1(pτ ) +
(n− 1)ψ2(pτ ) = 0. Since Ψ(0) = 0 and

√

f(y)(t) is continuous in t and posi-
tive, (4.20b) implies that Ψ(t) ∈ (−π

2 ,
π
2 ) for all t ∈ R. Then since ẏ(pτ ) = 0,

from (3.13) it follows that
√

f(y)(pτ ) = 2τ and hence from (4.20b) that
cos(Ψ)(pτ ) = 1 as required.

The symmetries of ψi given in (4.34), together with the fact that
Ψ(2pτ ) = 2Ψ(pτ ) = 0, imply the following simpler symmetries for Ψ

(4.35) Ψ ◦ T2pτ
= Ψ, Ψ ◦ T = −Ψ, Ψ ◦ Tpτ

= −Ψ.

In other words (unlike ψ1 or ψ2 individually), Ψ is an odd periodic function
of t of period 2pτ .
Proof of (4.27): The symmetries of wτ claimed in (4.27) follow from (4.4),
(4.26) and (4.34) and the expression (4.16) for wτ in terms of yτ , ψ1 and ψ2.

�

Proof of Lemma 4.28. Symmetries of ψi: the symmetries of yτ given in (4.6)
and the definition of ψi in terms of yτ given in (4.15) imply the following
symmetries for ψi (i = 1, 2) :

ψi ◦ Tp+
τ

= −ψi + ψi(2p+
τ ), ψi ◦ T−p−

τ
= −ψi + ψi(−2p−τ ),(4.36)

ψi ◦ T2pτ
= ψi + ψi(2pτ ).

Proof of (4.29): the first two symmetries of ψi in (4.36) imply that ψi(2p+
τ ) =

2ψi(p+
τ ) and ψi(−2p−τ ) = 2ψi(−p−τ ). The third symmetry of (4.36) with t =

−2p−τ implies that

2p̂τ = pψ1(2pτ ) = p(ψ1(2p+
τ ) − ψ1(−2p−τ )) = 2p(ψ1(p+

τ ) − ψ1(−p−τ )).

It remains to prove the last equality of (4.29). By the equalities on the pre-
vious line it suffices to prove that Ψ(2pτ ) = pψ1(2pτ ) + qψ2(2pτ ) = 0. Since
τ > 0, ατ ∈ [−π

2 , 0). Now since Ψ(0) = 0 and
√

f(y)(t) is continuous in t
and positive, (4.21b) implies that Ψ(t) + ατ ∈ (−π, 0) holds for all t ∈ R. At
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t = 2pτ , we have f(y) = fmax = 4τ2
max and ẏ = −4τmax cosατ . Hence, (4.21a)

and (4.21b) imply that ei(Ψ+ατ ) = eiατ holds at t = 2pτ . Hence Ψ(2pτ ) = 0,
since Ψ + ατ ∈ (−π, 0).
Proof of (4.30): The symmetries of wτ claimed in (4.30) follow from (4.6),
(4.29) and (4.36) and the expression (4.17) for wτ in terms of yτ , ψ1 and
ψ2.
Extra symmetries for case p = q: Define z : R→ S

3 by z = (w2 ◦T, w1 ◦T).
Since p = q, we see that z also satisfies (3.8). Moreover, since p = q the initial
data wτ (0) (recall (3.24)) is invariant under exchange of w1 and w2, and
therefore z(0) = wτ (0). Hence by uniqueness of the initial value problem z
coincides with wτ as claimed.

The first two symmetries of (4.32) follow from (4.31) and the relation
between wi and ψi, given in (4.17). The final two symmetries of (4.32) follow
from the first two and the existing symmetry ψi ◦ Tpτ/2 = −ψi + ψi(pτ ) for
i = 1, 2 (obtained from (4.36) using the fact that p+

τ = 1
2pτ ). �

Periods and half-periods of wτ . To understand the extrinsic geometry
ofXτ and in particular whenXτ factors through a closed embedding we need
to understand when wτ gives rise to a closed curve in the space of isotropic
SO(p) × SO(q) orbits (recall 3.3). To this end we define the periods and half-
periods of wτ . The periods and half-periods of wτ control when the curve
of isotropic orbits Owτ

determined by wτ is a closed curve in the space of
SO(p) × SO(q) orbits. As in 3.3, for any w ∈ S

3 let Ow ⊂ S
2(p+q)−1 denote

the associated isotropic SO(p) × SO(q) orbit.

Definition 4.37. Fix a pair of admissible integers p and q and let wτ be
any of the (p, q)-twisted SL curves defined in 3.23.

(i) We define the periods of wτ by

(4.38) Per(wτ ) := {x ∈ R |wτ ◦ Tx = wτ}.
(ii) We define the half-periods of wτ by

(4.39) Per 1
2
(wτ ) := {x ∈ R | Owτ◦Tx(t) = Owτ (t) ∀ t ∈ R},

where as previously Ow ⊂ S
2(p+q)−1 denotes the isotropic SO(p) ×

SO(q) orbit associated with any point w ∈ S
3.

(iii) A strict half-period is any half-period which is not a period of wτ .

In other words, x is a half-period of wτ if wτ ◦ Tx and wτ give rise to the
same parametrized curve of isotropic SO(p) × SO(q)-orbits in S

2(p+q)−1.
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Using 3.3 we see that x is a half-period of wτ if and only if

(4.40) wτ ◦ Tx = ρjk ◦ wτ for some ρjk ∈ Stabp,q,

where Stabp,q is the finite subgroup of U(2) defined by

(4.41) Stabp,q =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

±1 0
0 ±1

)

∼= Z2 × Z2 if p > 1;

(

1 0
0 ±1

)

∼= Z2 if p = 1.

More explicitly, we have

Per 1
2
(wτ ) := {x ∈ R | ∃ (j, k) ∈ 〈(+,±)〉 ≤ Z2 × Z2 such that(4.42)

ρjk ◦ wτ = wτ ◦ Tx }, if p = 1;

or

Per 1
2
(wτ ) := {x ∈ R | ∃ (j, k) ∈ Z2 × Z2 such that ρjk ◦ wτ = wτ ◦ Tx },

(4.43)

if p > 1.

If x satisfies (4.40) for (j, k) ∈ Z2 × Z2 then we call x a half-period of wτ of
type (jk). We see immediately from (4.40) that 2 Per 1

2
(wτ ) ⊂ Per(wτ ); this

explains the terminology half-period.
The importance of the half-periods of wτ is explained by the following

Proposition 4.44. Suppose 0 < |τ | < τmax and let Xτ be one of the SO(p) ×
SO(q)-invariant special Legendrian cylinders defined in (3.29). Suppose there
exist triples (t1, σ1, σ2), (t2, σ′1, σ′2) ∈ Cylp,q such that

(4.45) Xτ (t1, σ1, σ2) = Xτ (t2, σ′1, σ
′
2).

Then t2 − t1 ∈ Per 1
2
(wτ ). Moreover, if t2 − t1 ∈ Per(wτ ) then σ1 = σ′1 and

σ2 = σ′2.

Proof. See [13, Prop 6.32]. �

For completeness here is the analogue of 4.44 for the case τ = τmax.
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Lemma 4.46. Let Xτ : Cylp,q → S
2(p+q)−1 be the SO(p) × SO(q)-equivariant

special Legendrian immersion defined in (3.29), with τ = τmax. Then there
exists a pair of triples (t1, σ1, σ2), (t2, σ′1, σ′2) ∈ R × S

p−1 × S
q−1 such that

(4.47) Xτ (t1, σ1, σ2) = Xτ (t2, σ′1, σ
′
2),

if and only if

t2 − t1 =
lcm(p, q)π
nτmax

l, σ1 = (−1)jlσ′1, σ2 = (−1)klσ′2, for any l ∈ Z,

where j = q/ hcf(p, q) and k = p/hcf(p, q).

Per(Xτ ) = 〈Tx ◦ ((−1)j IdSp−1 , (−1)k IdSq−1)〉 where x =
lcm(p, q)π
nτmax

.

Proof. This is a straightforward computation using the explicit expression
for wτ (see 3.31.v). �

We now completely determine the periods and half-periods of wτ . We
see from (4.27) and (4.30) that T̂2p̂τ

∈ U(2) (recall T̂x ∈ U(2) is defined in
(3.9) and p̂τ is defined by (4.23)) plays a fundamental role in the geometry of
wτ . We call T̂2p̂τ

the rotational period of wτ , since by (4.27) and (4.30) T̂2p̂τ

controls how wτ gets rotated as we move from one domain of periodicity of
yτ to the next. This motivates the following definition.

Definition 4.48. Define k0 ∈ N ∪ {+∞} to be the order of the rotational
period T̂2p̂τ

∈ U(2). We set k0 = +∞ if the rotational period has infinite
order.

For the rest of this section we always assume 0 < |τ | < τmax unless stated
otherwise. We can completely describe the period lattice Per(wτ ) and the
half-period lattice Per 1

2
(wτ ) in terms of k0:

Lemma 4.49. Fix a pair of admissible integers p and q and let n = p+ q.
k0 the order of the rotational period T̂2p̂τ

defined in 4.48 can also be char-
acterized as

(4.50) k0 = min{k ∈ Z
+| kp̂τ ∈ π lcm(p, q)Z},

and the following are equivalent

p̂τ /∈ πQ ⇐⇒ k0 = ∞ ⇐⇒ Per 1
2
(wτ ) = Per(wτ ) = (0).
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If p̂τ ∈ πQ, then in all cases we have

(4.51) Per(wτ ) = 2k0pτZ,

(i) if k0 is odd then Per 1
2
(wτ ) = Per(wτ ) = 2k0pτZ, i.e., wτ has no strict

half-periods.

(ii) if k0 is even and p > 1 then Per 1
2
(wτ ) = 1

2 Per(wτ ) = k0pτZ. More-
over, for fixed p and q every strict half-period of wτ is of type (jk)
where j = q/ hcf(p, q) mod 2 and k = p/hcf(p, q) mod 2.

(iii) (a) if k0 is even, p = 1 and n is even then Per 1
2
(wτ ) = Per(wτ ) =

2k0pτZ.
(b) if k0 is even, p = 1 and n is odd then Per 1

2
(wτ ) = 1

2 Per(wτ ) =
k0pτZ.

Proof. See [13, Lemma 6.39]. �

Remark 4.52. For τ = 0, X0 is an embedding whose image is contained
in the standard totally real equatorial sphere S

n−1 ⊂ R
n ⊂ C

n. In this case
Per(wτ ) = Per 1

2
(wτ ) = (0). For τ = τmax, we leave it as an elementary exer-

cise for the reader to use the explicit expression given in 3.31 to write down
the period and half-period lattices of wτ in this case (see also
Proposition 4.46).

By combining Proposition 4.44 with our results on Per(wτ ) and Per 1
2
(wτ )

in 4.49 we have a complete understanding of the self-intersection points of
Xτ ; see also 7.44.iii.

5. Discrete symmetries of Xτ

In addition to its intrinsic interest, the full group of symmetries of our
SO(p) × SO(q)-equivariant building blocks Xτ plays a fundamental role in
our subsequent gluing constructions [9, 10]. These additional discrete sym-
metries that the Xτ possess allow us to impose certain symmetries through-
out our entire gluing construction (see the discussion in our survey paper
[12].) The imposition of these symmetries simplifies some aspects of the
gluing construction.

Fix a pair of admissible integers p and q and set n = p+ q. Recall
from 2.6 that we defined a symmetry of Xτ to be a pair (˜M,M) ∈ O(2n) ×
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Diff(Cylp,q) such that
˜M ◦Xτ = Xτ ◦ M,

where Diff(Cylp,q) denotes the group of diffeomorphisms of the domain of
Xτ . Recall from 2.11 that for any symmetry (˜M,M) then M is an isometry
of the pullback metric gτ := X∗

τ gS2n−1 . This motivates the next subsection
where we determine the structure of Isom(Cylp,q, gτ ) completely. In the fol-
lowing subsection we will show that in fact Sym(Xτ ) ∼= Isom(Cylp,q, gτ ), i.e.,
that every isometry of gτ gives rise to a symmetry of Xτ . We also determine
the structure of the group ˜Sym(Xτ ) ⊂ O(2n).

Symmetries of the pullback metric gτ . In this subsection we study
Isom(Cylp,q, gτ ) the group of isometries of the pullback metric gτ := X∗

τ g S2n−1

on the cylinder Cylp,q. In other words we study the symmetries of the intrin-
sic geometry of Xτ . Recall from 3.30.ii that the pullback metric gτ on Cylp,q

depends only on the function yτ ; isometries of gτ are thus intimately con-
nected with the symmetries of yτ studied in 4.3. The reader should recall the
elementary group theory reviewed in Section 2 which is assumed throughout
the rest of this section and in Section 6.

We begin by establishing notation. Any element T ∈ Isom(R) acts as an
element of Diff(Cylp,q) by

(5.1) (t, σ1, σ2) 	→ (Tt, σ1, σ2).

If p > 1 any O = (O1,O2) ∈ O(p) × O(q) acts as an element of Diff(Cylp,q)
by

(5.2) (t, σ1, σ2) 	→ (t,O1σ1,O2σ2).

Similarly, any element of O ∈ O(n− 1) acts as an element of Diff(Cyl1,n−1)
by

(5.3) (t, σ) 	→ (t,Oσ).

We also define the exchange map E ∈ Diff(Cylp,p) by

(5.4) E(t, σ1, σ2) = (t, σ2, σ1).

Conjugation by the exchange map E defined in (5.4) defines an involu-
tion E′ ∈ Aut Diff(Cylp,p). E′ leaves the subgroup O(p) × O(p) ⊂ Diff(Cylp,p)
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invariant and on it acts by

(5.5) E′(O1,O2) = (O2,O1).

There is an obvious isomorphism ρE : 〈E〉 → 〈E′〉 ⊂ Aut O(p) × O(p) ⊂
Aut Diff(Cylp,p) given by

E 	→ E′.

(5.5) implies that 〈E〉 · (O(p) × O(p)) = (O(p) × O(p)) · 〈E〉 and hence by the
group theory discussion in Section 2 the set 〈E〉 · (O(p) × O(p)) ⊂
Isom(Sp−1 × S

p−1) ⊂ Diff(Cylp,p) forms a group G. Moreover O(p) × O(p)
is a normal subgroup of G and clearly O(p) × O(p) ∩ 〈E〉 = (Id). Hence G
is the semidirect product of O(p) × O(p) by 〈E〉 ∼= Z2 where the twisting
homomorphism ρ : 〈E〉 → Aut O(p) × O(p) is ρE defined above, i.e., G =
(O(p) × O(p)) �ρE

〈E〉. (In fact, G ∼= Isom(Sp−1
r × S

p−1
r ); see (5.13) below.)

The main result of this section is the following:

Proposition 5.6 (Isometries of the pullback metric on Cylp,q). Let
gτ := X∗

τ g S2n−1 denote the metric induced on Cylp,q by the immersion Xτ :
Cylp,q → S

2(p+q)−1. For 0 < |τ | < τmax,

Isom(Cylp,q, gτ ) = D · O
where

(i) for p = 1, D = 〈T, T2pτ
〉 and O = O(n− 1).

(ii) for p > 1 and p �= q, D = 〈Tp+
τ
, T−p−

τ
〉 and O = O(p) × O(q).

(iii) for p > 1 and p = q, D = 〈T ◦ E, Tpτ/2〉 and O = O(p) × O(p).

Hence we have

Isom(Cylp,q, gτ )

=

⎧

⎪

⎨

⎪

⎩

〈T, T2pτ 〉 × O(n − 1) ∼= D∞ × O(n − 1), for p = 1;

〈T
p+τ

, T
p−τ

〉 × O(p) × O(q) ∼= D∞ × O(p) × O(q) for p > 1 and p �= q;

〈T ◦ E, Tpτ /2〉 × O(p) × O(p) ∼= (O(p) × O(p)) �ρ D∞ for p > 1 and p = q;

where the twisting homomorphism

ρ : 〈T ◦ E, Tpτ/2〉 ∼= D∞ → AutO(p) × O(p)

is defined by

ρ(γ) =

{

Id if γ is a word containing an even number of copies of T ◦ E,

E′ if γ is a word containing an odd number of copies of T ◦ E,

where E′ is the involution defined in (5.5).
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Remark 5.7. When p = q the subgroup D′ ⊂ D generated by the two
elements Tpτ/2 and T−pτ/2 = (T ◦ E) ◦ Tpτ/2 ◦ (T ◦ E) is also isomorphic to
the infinite dihedral group D∞, and corresponds to the symmetries that are
shared with the case p �= q. Alternatively, D′ ⊂ D is the subgroup consisting
of all words containing an even number of copies of T ◦ E and hence D′ is the
kernel ker ρ of the twisting homomorphism ρ : D → Aut O(p) × O(p). Hence
Isom(Cylp,p) contains a subgroup isomorphic to (O(p) × O(p)) × D′ ∼= O(p)
× O(p) × D∞.

Proof. Recall from 3.30 that gτ can be written in terms of yτ as

(5.8) gτ =

{

yq−1
τ (1 − yτ )p−1dt2 + (1 − yτ )gSp−1 + yτ gSq−1 , for p > 1;
yn−2
τ dt2 + yτgSn−2 ; for p = 1.

It follows immediately from (5.8) that for p > 1 any element of O(p) × O(q)
acting as in (5.2) is an isometry of gτ . Similarly, for p = 1 we have O(n− 1) ⊂
Isom(Cylp,q, gτ ). For any S ∈ Isom(R) satisfying yτ ◦ S = yτ , extend S to a
diffeomorphism of Cylp,q as described in (5.1). Since S preserves yτ it follows
from (5.8) that S ∈ Isom(Cylp,q, gτ ). Recall from (4.7) that in the special case
p = q, yτ possesses an additional symmetry T sending yτ 	→ 1 − yτ . Because
of this symmetry and the form of (5.8) the map T ◦ E ∈ Diff(Cylp,p) defined
by (t, σ1, σ2) 	→ (−t, σ2, σ1) also belongs to Isom(Cylp,p, gτ ). By using the
symmetries of yτ established in 4.3 it follows that D forms a subgroup of
Isom(Cylp,q, gτ ) where D is the discrete group defined for the three cases
(i) p = 1, (ii) p > 1, p �= q, (iii) p > 1, p = q in the statements 5.6.i–iii,
respectively. Hence we have established that D · O ⊆ Isom(Cylp,q) where
O = O(p) × O(q) if p > 1 and O = O(n− 1) if p = 1.

It remains to prove that any element in Isom(Cylp,q, gτ ) belongs to D · O.
We begin by introducing some useful terminology. A meridian of Cylp,q is
any hypersurface of the form {t} × Merp,q (recall (3.2)) for any fixed t ∈
R. Let Π : Cylp,q → Merp,q denote projection (t, σ) 	→ σ. The generator of
Cylp,q through the point σ ∈ Merp,q is the curve γσ : R → Cylp,q given by

t 	→ (t, σ),

i.e., a generator is a curve γσ whose projection Π ◦ γσ to the cross section
Merp,q is the constant map σ : R → Merp,q. Suitably parametrized any gen-
erator is a minimizing geodesic, i.e., it minimizes the gτ -distance between
any two points on its image. Note that the meridians can be characterized as
the integral manifolds of the distribution D = 〈∂t〉⊥ of hyperplanes normal
to the tangent lines to the generators of Cylp,q.
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The key to proving Isom(Cylp,q, gτ ) = D · O is to establish that any
I ∈ Isom(Cylp,q, gτ ) maps meridians to meridians. It suffices to prove that
any minimizing geodesic of gτ must be a generator, since then any isome-
try must map generators to generators, preserve the hyperplane distribution
D and therefore map meridians to meridians. To prove that any minimiz-
ing geodesic is a generator we will make use of some special isometries of
Isom(Cylp,q, gτ ) which we now describe.

If tc is any critical point of yτ then reflection Ttc ∈ Diff(Cylp,q) across
the meridian {tc} × Merp,q is contained in the group D and hence by the
first part of the proposition is an isometry of Isom(Cylp,q, gτ ). For p = 1 and
any σ ∈ S

n−2 we denote by Rσ ∈ O(n− 1) reflection with respect to the line
through σ in R

n−1. For p > 1 and σ = (σ′, σ′′) ∈ S
p−1 × S

q−1 we define Rσ :=
(Rσ′ ,Rσ′′) ∈ O(p) × O(q) where Rσ′ ∈ O(p) and Rσ′′ ∈ O(q) denote reflec-
tions in the line through σ′ in R

p and the line through σ′′ in R
q respectively.

By the first part of the proposition Ttc ◦ Rσ ∈ D · O ⊂ Isom(Cylp,q, gτ ).
The key properties of the isometry Ttc ◦ Rσ are that it fixes the point

(tc, σ) ∈ {tc} × Merp,q and acts by − Id on the tangent space T(tc,σ)Cylp,q.
Therefore Ttc ◦ Rσ sends any geodesic γ passing through (tc, σ) to another
geodesic passing through (tc, σ) whose tangent vector at this point is the
negative of the tangent vector of the initial geodesic. Hence uniqueness of
the initial value problem for geodesics implies the following symmetry of γ:

(5.9) γ ◦ Ts = Ttc ◦ Rσ ◦ γ, where γ(s) = (tc, σ).

Let 2d denote the distance between the boundary meridians of any
domain of periodicity of gτ . Equivalently, d is the distance between two con-
secutive critical meridians (a meridian of the form {tk} × Merp,q for some
critical point tk of yτ ). d is realized along any generator and any other curve
connecting two such meridians has strictly greater length. (Also 2d depends
smoothly on τ and tends to π, the diameter of the unit sphere S

p+q−1

as τ → 0).
Suppose γ : R → Cylp,q is a geodesic parametrized by arc-length which is

minimizing. By using the obvious piecewise smooth comparison curve, we see
that the diameter of k consecutive domains of periodicity of gτ is bounded
above by 2kd+D where D is the largest diameter of any meridian in a
domain of periodicity of gτ . Since γ is a minimizing geodesic the diameter of
its image is infinite, and therefore γ intersects every meridian {t} × Merp,q.
yτ is non-constant and 2pτ -periodic and therefore has countably infinitely
many critical points tc that we label by the strictly increasing sequence
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(tk)k∈Z. By Lemma 4.3 and (4.10) the sequence (tk) satisfies

tk − tl = (k − l)pτ , for any k > l.

(If p = 1 we could normalize so that t0 = 0 and hence tk = kpτ . If p > 1 we
could normalize so that t0 = p+

τ and therefore t−1 = −p−τ .) Since γ intersects
every meridian, there exists an increasing sequence (sk)k∈Z and a unique
sequence of points σk ∈ Merp,q so that

(5.10) γ(sk) = (tk, σk).

In other words, sk is the arc-length parameter at which the minimizing
geodesic γ intersects the kth critical meridian {tk} × Merp,q. By
time-translation invariance of geodesics without loss of generality we may
assume that s0 = 0. Applying the isometry Ttk ◦ Rσk

as in (5.9) we deduce
that the minimizing geodesic γ has the symmetries

(5.11) γ ◦ Tsk
= Ttk ◦ Rσk

◦ γ, for any k ∈ Z,

for the sequence (sk) defined above in (5.10). Composing the two reflectional
symmetries arising from (5.11) by setting k = 0 and k = 1 and using (4.14)
together with the fact that T,Tx ∈ Diff(Cylp,q) commute with O(p) × O(q)
for p > 1 (respectively with O(n− 1) for p = 1) we obtain

(5.12) γ ◦ T2s1 = T2(t1−t0) ◦ Rσ1 ◦ Rσ0 ◦ γ = T2pτ
◦ Rσ1 ◦ Rσ0 ◦ γ.

By iteration of (5.12) we have

γ ◦ T2ks1 = (T2pτ
◦ Rσ1 ◦ Rσ0)

k ◦ γ = T2kpτ
◦ (Rσ1 ◦ Rσ0)

k ◦ γ,
for any k ∈ N

and hence that

γ(2ks1) ∈ {2kpτ + t0} × Merp,q = {t2k} × Merp,q.

It follows from the definition of sk given in (5.10) that s2k = 2ks1. Therefore
since γ is a minimizing geodesic parametrized by arc-length we have

dist(γ(s2k), γ(0)) = s2k = 2ks1, for all k ∈ N.
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On the other hand, by our previous (crude) diameter bound for the union
of any k consecutive domains of periodicity of gτ we have

2ks1 ≤ 2kd+D, for any k ∈ N,

where as previously D denotes the largest diameter of any meridian and d is
the distance between two consecutive critical meridians (which as we have
already stated is attained only by generators). Dividing by k and taking
k → ∞ we conclude that s1 ≤ d and hence that γ is a generator.

It remains to use the fact that any I ∈ Isom(Cylp,q, gτ ) maps meridians
to meridians to prove that I ∈ D · O. For the case p > 1 we will need the
following standard facts about the geometry of the product of two spheres
of radii r1 and r2

Isom( S
p−1
r1 × S

q−1
r2 ) =

{

O(p) × O(q) if p �= q or r1 �= r2;
O(p) × O(p) �ρ 〈E〉 if p = q and r1 = r2,

(5.13)

(the semidirect product structure in the latter case is discussed in more detail
in (5.5)) and that for p �= q, S

p−1
r1 × S

q−1
r2 and S

p−1
r′1

× S
q−1
r′2

are isometric if
and only if r1 = r′1 and r2 = r′2 and for p = q are isometric if and only if the
sets {r1, r2} and {r′1, r′2} are the same.

Let I be any element in Isom(Cylp,q, gτ ). Choose any meridian M =
{tk} × Merp,q so that k ∈ Z satisfies yτ (tk) = ymin, i.e., so that yτ is minimal
on M . We established above that I maps any meridian of Cylp,q to another
(isometric) meridian. In particular, when p = 1 or when p > 1 and p �= q this
implies (using the standard facts about when products of two spheres are
isometric) that I maps M to another meridian where yτ is minimal. If p > 1
and p = q then I maps M to another meridian where yτ is either minimal or
maximal (recall (4.11)). In any case of the three cases i–iii, it follows that by
composing with a suitable isometry D ∈ D we can arrange that D ◦ I fixes
M as a set. Hence D ◦ I restricted to M yields an isometry of M . Since M
is a meridian with yτ minimal by (5.13) we have Isom(M) = O with O as
in 5.6.i–iii. Hence there exists O ∈ O such that O ◦ D ◦ I fixes M pointwise.
Therefore O ◦ D ◦ I sends any generator γσ to itself and hence we have

O ◦ D ◦ I =

{

Id;
Ttk ,

according to whether O ◦ D ◦ I fixes or reflects all generators. In either case
it follows that I ∈ D · O for any I ∈ Isom(Cylp,q, gτ ) as claimed.
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Finally we must show that Isom(Cylp,q, gτ ) is isomorphic to the claimed
groups. First we note that all three discrete groups D defined in Proposition
5.6.i–iii are isomorphic to the infinite dihedral group D∞. This is essentially
already proved in 4.13, although when p = q we are considering the subgroup
of Isom(Cylp,p) generated by T ◦ E and Tpτ/2, rather than the subgroup of
Isom(R) generated by T and Tpτ/2. Nevertheless, the same argument applies.

By 5.6.i Isom(Cyl1,n−1, gτ ) = D · O(n− 1) where D = 〈T, T2pτ
〉. Since

D acts only on the R factor of Cyl1,n−1 and O(n− 1) acts only on the S
n−2

factor D centralizes O(n− 1) and also that D ∩ O(n− 1) = (Id). Hence
D · O(n− 1) ∼= D × O(n− 1). By 5.6.ii Isom(Cylp,q, gτ ) = D · O(p) × O(q)
where D = 〈Tp+

τ
, T−p−

τ
〉. By the same argument as above D · O(p) × O(q) ∼=

D × O(p) × O(q) By 5.6.iii Isom(Cylp,p, gτ ) = D · O(p) × O(p) where D =
〈T ◦ E, Tpτ/2〉. D does not centralize O(p) × O(p), since D no longer acts
only on the R factor of Cylp,p. However, conjugation by any element of D
does preserve the subgroup O(p) × O(p) ⊂ Diff(Cylp,p). More precisely, if
γ ∈ 〈T ◦ E, Tpτ/2〉 then

γ(O1,O2)γ−1 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(O1,O2) if γ is a word containing an even number
of copies of T ◦ E,

(O2,O1) if γ is a word containing an odd number
of copies of T ◦ E.

It follows that the set D · O(p) × O(p) coincides with the set O(p) × O(p) · D
and hence that D · O(p) × O(p) is a group, containing the subgroup O(p) ×
O(p) as a normal subgroup of this group. Since clearly O(p) × O(p) ∩ D =
(Id), we have the semidirect product structure claimed. �

Remark 5.14. When |τ | = τmax, yτ ≡ q
n and therefore yτ is invariant under

the whole of Isom(R). In particular, all meridians {t} × Merp,q of Cylp,q are
isometric. When p �= q the isometry group of each meridian is the group
O (defined in 5.6). If p = q then each meridian is a product of two p− 1
spheres of the same radius and hence the isometry group of each meridian
is the extension of O(p) × O(p) given in case two of (5.13). For p �= q the
isometry group of gτ for |τ | = τmax is Isom(R) · O, whereas for p = q it is
Isom(R) · Isom(Sp−1

r × S
p−1
r ). In all cases the action of the isometry group is

transitive on Cylp,q thus making it into a Riemannian homogeneous space.
When τ = 0 we have from 3.30.iv that g0 is isometric to the restriction of

the round metric to S
p+q−1 \ (Sp−1, 0) ∪ (0,Sq−1) if p > 1 or to S

n−1 \ (±1, 0)
if p = 1. Hence for p = 1 we have Isom(Cyl1,n−1, g0) ∼= O(1) × O(n− 1) the
subgroup of O(n) leaving invariant the line through e1 (the O(1) factor
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being generated by T ∈ Diff(Cyl1,n−1)). Similarly, for p > 1 and p �= q we
have Isom(Cylp,q, g0) = O(p) × O(q), the subgroup of O(n) leaving invari-
ant the subset (Sp−1, 0) ∪ (0,Sq−1) ⊂ S

p+q−1. Finally, for p > 1 and p = q
we have Isom(Cylp,p, g0) = 〈T ◦ E〉 · O(p) × O(p), which is isomorphic to the
subgroup of O(n) leaving invariant the subset (Sp−1, 0) ∪ (0,Sp−1) ⊂ S

2p−1.

Discrete symmetries of Xτ . In this section we exhibit all the discrete
symmetries enjoyed by Xτ . In particular, we establish that Sym(Xτ ) =
Isom(Cylp,q, gτ ). We begin by describing the discrete symmetries of Xτ for
the case p = 1.

Proposition 5.15 (Discrete symmetries of Xτ for p = 1). For p = 1
and 0 < |τ | < τmax, Xτ admits the following symmetries

˜O ◦Xτ = Xτ ◦ O, for all O ∈ O(n− 1),(5.16a)
˜T2p̂τ

◦Xτ = Xτ ◦ T2pτ
,(5.16b)

˜T ◦Xτ = Xτ ◦ T,(5.16c)
˜Tp̂τ

◦Xτ = Xτ ◦ Tpτ
,(5.16d)

where ˜Tx ∈ SU(n) is defined in (3.7), ˜T ∈ O(2n) and ˜Tx ∈ O(2n) are defined
by

(5.17) ˜T(z1, . . . , zn) = (−z1, z2, . . . , zn),

(5.18) ˜Tx = ˜T2x ◦ ˜T.

Proof. The O(n− 1)-equivariance expressed by (5.16a) follows immediately
from the definition of Xτ (and extends the SO(n− 1)-invariance used to
construct Xτ in the first place). The symmetries (5.16b)–(5.16d) of Xτ are
equivalent to the three symmetries of wτ established in (4.27). �

Remark 5.19.

(i) Symmetries when τ = 0: from 3.30.iv X0 : Cyl1,n−1 → S
2n−1 is an

embedding whose image is the totally real equatorial sphere S
n−1 ⊂

R
n ⊂ C

n minus the two antipodal points ±e1. Clearly the subgroup
O(n) ⊂ O(2n) leaves this equatorial n− 1 sphere invariant.
O(n− 1) ⊂ O(n) is the subgroup of O(n) fixing the line spanned by
e1. There is no analogue of the symmetries in (5.16b) and (5.16d) in



The geometry of SO(p) × SO(q)-invariant special Lagrangian cones 213

this case since the period 2pτ → ∞ as τ → 0 (see Section 7). How-
ever, the isometry ˜T ∈ O(2n) leaves S

n−1 invariant and sends e1 to
−e1 (cf. Remark 5.14). Hence the symmetry (5.16c) still holds in the
case τ = 0. This symmetry is equivalent to the fact that y0 is even in
the case p = 1 (recall 3.18.iv).

(ii) Symmetries when |τ | = τmax: In this case yτ is constant and hence Xτ

has the additional continuous symmetries

˜Tx ◦Xτ = Xτ ◦ Tx, for all x ∈ R.

The discrete symmetry (5.16c) still holds in this case and so the ana-
logue of (5.16d) holds for all x ∈ R.

Using the Definitions (3.7), (5.17) and (5.18) it is easy to check the
following

Proposition 5.20 (Properties of discrete symmetries of target for
p = 1).

(i) ˜T ◦ ˜Tx ◦ ˜T = ˜T−x.

(ii) The O(2) subgroup generated by ˜T and {˜Tx} centralizes O(n− 1) ⊂
O(n) ⊂ O(2n).

(iii) ˜Tx commutes with J , while ˜T and ˜Tx anticommute with J .

(iv) ˜Tx preserves both Ω and ω.

(v) ˜T
∗
Ω = −Ω, ˜T

∗
ω = −ω.

Remark 5.21. We see from 5.20.v that ˜T is an anti-SL anti-holomorphic
isometry, while for any x ∈ R, ˜Tx ∈ SU(n) ⊂ IsomSL ⊂ Isom±SL. Since T is
reflection in the origin in R, we have the commutation relation T ◦ Tx ◦ T =
T−x. Part (i) above says that the same relations also hold for ˜T and ˜Tx and
that ˜Tx and ˜T generate a subgroup of O(2n) isomorphic to O(2) ∼= S

1
� Z2,

where ˜T generates the Z2 factor and acts by inversion (thinking of the group
generated by ˜Tx as an abelian group) on the S

1 factor. Also, since they act
on different factors of R × S

n−2, every element in Isom(R) ⊂ Isom(Cyl1,n−1)
commutes with every element in O(n− 1) ⊂ Isom(Cyl1,n−1). Part (ii) above
is the analogue of this result for the group O(2) generated by ˜T and ˜Tx.

We now describe the discrete symmetries of Xτ in the case p > 1 and
p �= q, cf. Prop. 5.15.



214 M. Haskins & N. Kapouleas

Proposition 5.22 (Discrete symmetries of Xτ for p > 1; cf.
Prop. 5.15). For p > 1 and 0 < |τ | < τmax, Xτ admits the following sym-
metries

˜O ◦Xτ = Xτ ◦ O, for all O ∈ O(p) × O(q),(5.23a)
˜T2p̂τ

◦Xτ = Xτ ◦ T2pτ
,(5.23b)

˜T+ ◦Xτ = Xτ ◦ Tp+
τ
,(5.23c)

˜T− ◦Xτ = Xτ ◦ T−p−
τ
,(5.23d)

where ˜Tx ∈ SU(n) is defined by (3.7) and ˜T+, ˜T− ∈ O(2n) (which depend
on τ) are defined by

˜T+(z, w) = (eiατ/p eiψ1(2p+
τ )z, eiατ/q eiψ2(2p+

τ )w),(5.24a)
˜T−(z, w) = (eiατ/p eiψ1(−2p−

τ )z, eiατ/q eiψ2(−2p−
τ )w),(5.24b)

where z ∈ C
p and w ∈ C

q.

Proof. (5.23a) follows immediately from the definition of Xτ (and extends
the SO(p) × SO(q)-invariance used to construct Xτ in the first place). The
symmetries (5.23b), (5.23c) and (5.23d) of Xτ are equivalent to the symme-
tries of wτ established in (4.30). �

Remark 5.25.

(i) Symmetries when τ = 0: by 3.30.iv X0 : Cylp,q → S
2n−1 is an embed-

ding whose image is the standard equatorial sphere S
n−1 ⊂ R

n ⊂ C
n

minus the two equatorial subspheres S
n−1 ∩ (Rp, 0) and S

n−1 ∩ (0,Rq).
Clearly the subgroup O(n) ⊂ O(2n) leaves this equatorial n− 1 sphere
invariant. O(p) × O(q) ⊂ O(n) is the subgroup of O(n) fixing this dis-
tinguished pair of orthogonal equatorial subspheres. Therefore X0 is
still O(p) × O(q)-equivariant as in (5.23a). However, there is no ana-
logue of any of the other symmetries in 5.23 in this case. This is consis-
tent with (recall 5.14) Isom(Cylp,q, g0) = O(p) × O(q) when p > 1 and
p �= q.

(ii) Symmetries when |τ | = τmax: As in the p = 1 case discussed in
Remark 5.19 yτ is constant and henceXτ has the additional continuous
symmetries

˜Tx ◦Xτ = Xτ ◦ Tx, for all x ∈ R,
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and Xτ is therefore homogeneous rather than cohomogeneity one as
for other values of τ .

Using Definitions (3.7), (5.24a) and (5.24b) one can check the following:

Proposition 5.26 (Properties of target discrete symmetries for
p > 1, p �= q, cf. 5.20).

(i) ˜T+ ◦ ˜Tx ◦ ˜T+ = ˜T− ◦ ˜Tx ◦ ˜T− = ˜T−x.

(ii) ˜T− ◦ ˜T+ = ˜T−2p̂τ
, ˜T+ ◦ ˜T− = ˜T2p̂τ

.

(iii) the dihedral subgroup ˜D := 〈˜T+,
˜T−〉 centralizes O(p) × O(q) ⊂ O(n) ⊂

O(2n).

(iv) ˜Tx commutes with J , while ˜T+ and ˜T− anticommute with J .

(v) ˜Tx preserves both Ω and ω.

(vi) ˜T
∗
+Ω = ˜T

∗
−Ω = −Ω, ˜T

∗
+ω = ˜T

∗
−ω = −ω.

To prove the first two equalities of 5.26.vi one also needs to use (4.21a),
(4.21b) and (4.36). 5.26.vi implies that both ˜T+ and ˜T− are anti-SL, anti-
holomorphic isometries in Isom±SL.

Remark 5.27. Remark 4.9 showed that the group generated by Tp+
τ
, Tp−

τ
∈

Isom(R) ⊂ Isom(Cylp,q) is isomorphic to the infinite dihedral group D∞.
Part (ii) above gives the analogous result for the subgroup ˜D of O(2n)
generated by ˜T+ and ˜T−. See Lemma 5.38 for the precise structure of ˜D.
Part (iii) is the analogue of the fact that D and O(p) × O(q) ⊂ Isom(Cylp,q)
centralize each other.

Finally, we describe the discrete symmetries of Xτ in the case p > 1 and
p = q.

Proposition 5.28 (Discrete symmetries of Xτ for p = q; cf.
Props. 5.15 and 5.22). For p > 1, p = q and 0 < |τ | < τmax, Xτ admits
the following symmetries

˜O ◦Xτ = Xτ ◦ O, for all O ∈ O(p) × O(p),(5.29a)
˜T2p̂τ

◦Xτ = Xτ ◦ T2pτ
,(5.29b)

˜T+ ◦Xτ = Xτ ◦ Tpτ/2,(5.29c)
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˜T− ◦Xτ = Xτ ◦ T−pτ/2,(5.29d)
˜T ◦Xτ = Xτ ◦ T ◦ E,(5.29e)

˜Tp̂τ
◦ ˜S ◦Xτ = Xτ ◦ Tpτ

◦ E,(5.29f)

where ˜Tx, ˜T+ and ˜T− are defined as in 5.22, ˜T ∈ O(2p) ⊂ U(2p) and ˜S ∈
O(4p) are defined by

(5.30) ˜T (z, w) = (w, z);

(5.31) ˜S (z, w) = e−iπ/2p(w, z),

where w, z ∈ C
p. Furthermore, the reflections ˜T+ and ˜T− can also be

expressed as

˜T+ = ˜Tp̂τ
◦ ˜S ◦ ˜T,(5.32a)

˜T− = ˜T−p̂τ
◦ ˜S ◦ ˜T.(5.32b)

Proof. The O(p) × O(p)-equivariance expressed by (5.29a) follows as a spe-
cial case of (5.23a). Similarly, since p+

τ = p−τ = 1
2pτ , (5.29b)–(5.29d) are each

special cases of (5.23b), (5.23c) and (5.23d) respectively. (5.29e) is equiva-
lent to the symmetry of wτ with respect to T given in (4.31). (5.29f) follows
from the symmetries (5.29c) and (5.29e), using (5.32a). �

Remark 5.33. (5.29e) and (5.29f) express the two additional symmetries
that Xτ possesses when p = q and both utilize the additional exchange isom-
etry E ∈ Isom(Cylp,p). (5.29e) expresses an additional reflectional symme-
try of Xτ about the SO(p) × SO(p)-orbit for which the radii of both p− 1
spheres are equal.

Using (5.30)–(5.32b), one can check the following:

Proposition 5.34 (Properties of target discrete symmetries for
p = q, cf. 5.20, 5.26). ˜T+, ˜T−, ˜Tx have all the properties detailed in
Proposition 5.26. Additionally the new isometries ˜S and ˜T satisfy

(i) ˜T ◦ ˜Tx ◦ ˜T = ˜T−x and ˜T ◦ ˜T+ ◦ ˜T = ˜T−.

(ii) ˜S commutes with ˜T+, ˜T−, ˜T and with ˜Tx.

(iii) ˜T commutes with J while ˜S anticommutes with J .
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(iv) ˜S
∗
Ω = (−1)p−1 Ω, ˜S

∗
ω = −ω, ˜T

∗
Ω = (−1)p Ω, ˜T

∗
ω = ω.

(v) Conjugation by ˜T acts on O(p) × O(p)⊂O(2p) by (˜O1, ˜O2) 	→ (˜O2, ˜O1).

5.34.iv implies that ˜T ∈ SU(2p)± = IsomJ
±SL and that ˜T ∈ SU(2p) if and

only if p is even.

The structure of ˜Sym(Xτ). Now, we determine the structure of
˜Sym(Xτ ) ⊂ O(2n) (recall (2.9)) as an abstract group.

Definition 5.35. Define a subgroup ˜D ⊂ ˜Sym(Xτ ) by ˜D := ρ̃(D) where
ρ̃ : Sym(Xτ ) → ˜Sym(Xτ ) is the epimorphism described in 2.10. More con-
cretely, using 5.15, 5.22 and 5.28 we have

(5.36) ˜D =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈˜T, ˜T2p̂τ
〉 if p = 1;

〈˜T+,
˜T−〉 if p > 1 and p �= q;

〈˜T, ˜T+〉 if p > 1 and p = q;

respectively, where ˜Tx ∈ SU(n) is defined in (3.7) and 2p̂τ is the angular
period defined in (4.23).

Using 5.20, 5.26 and 5.34, we see that in each case the generators of ˜D
belong to Isom±SL and hence ˜D ⊂ Isom±SL.

In all three cases ˜T2p̂τ
= ρ̃(T2pτ

) ∈ ˜D ⊂ ˜Sym(Xτ ) for 0 < |τ | < τmax.
Therefore for any such τ we call the immersion Xτ : Cylp,q → S

2(p+q)−1

2pτ -periodic; the corresponding element ˜T2p̂τ
∈ SU(n), we call the rotational

period of Xτ . In 4.48 we defined the rotational period T̂2p̂τ
∈ U(2) of wτ and

also its order k0 ∈ N ∪ {∞}. Using the definition of Xτ in terms of the curve
wτ the order of the rotational period T̂2p̂τ

∈ U(2) of wτ is equal to the order
of the rotational period ˜T2p̂τ

∈ SU(n) of Xτ . Hence, we will simply refer to
k0 as the order of the rotational period.

Let ˜O ⊂ O(n) ⊂ SU(n)± ⊂ O(2n) denote O(n− 1) ⊂ O(n) if p = 1 or
O(p) × O(q) ⊂ O(n) if p > 1. Then ˜O = ρ̃(O) ⊂ ˜Sym(Xτ ) where O is the
subgroup of Sym(Xτ ) defined in 5.6.i–iii; moreover ˜O and O are isomorphic.
Hence we have

(5.37)
˜Sym(Xτ ) = ρ̃(Sym(Xτ )) = ρ̃(D ·O) = ρ̃(D) · ρ̃(O) = ˜D · ˜O ⊂ Isom±SL .
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To determine the structure of ˜Sym(Xτ ) as an abstract group it suffices
to understand the structure of the subgroup ˜D, the commutation relations
between ˜D and ˜O and the intersection ˜D ∩ ˜O.

Lemma 5.38. For 0 < |τ | < τmax we have:

(i) The subgroup ˜D ⊂ ˜Sym(Xτ ) (recall 5.35) has the structure

(5.39) ˜D ∼=

⎧

⎪

⎨

⎪

⎩

D∞ if k0 is infinite;
Dk0 if k0 is finite and p = 1 or p > 1 and p �= q;
D2k0 if k0 is finite and p > 1 and p = q.

(ii)

˜D ∩ IsomJ
±SL = ˜D ∩ SU(n)±

=

{〈˜T2p̂τ
〉 if p = 1 or if p > 1 and p �= q;

〈˜T, ˜T2p̂τ
〉 if p > 1 and p = q.

(iii) If p = 1 or p > 1 and p �= q then ˜D centralizes ˜O. If p > 1 and p = q
then for ˜M ∈ ˜D = 〈˜T, ˜T+〉 we have

˜M(˜O1, ˜O2)˜M−1 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(˜O1, ˜O2) if ˜M is a word containing an even number
of copies of ˜T;

(˜O2, ˜O1) if ˜M is a word containing an odd number
of copies of ˜T,

for any (˜O1, ˜O2) ∈ ˜O.

(iv)

˜D ∩ ˜O =

⎧

⎪

⎨

⎪

⎩

(Id) if k0 is infinite or odd or p = 1 and n is even;
〈˜Tk0p̂τ

〉 ∼= Z2 if k0 is even and either p > 1 or p = 1
and n is odd.

Proof. (i) Consider first the case where p = 1: recall the presentation
〈r, f | rk = 1, f2 = 1, frf = f−1〉 for the finite dihedral group Dk and the
presentation 〈r, f | f2 = 1, frf = f−1〉 for the infinite dihedral group D∞.
The structure of ˜D = 〈˜T, ˜T2p̂τ

〉 claimed now follows from 5.20.i, 5.35 and
the definition of k0. For the case p > 1 and p �= q recall the presentation
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〈x, y |x2 = y2 = (xy)k = 1〉 for the finite dihedral group Dk and the presen-
tation 〈x, y |x2 = y2 = 1〉 for the infinite dihedral group D∞. Since by 5.26.ii
˜T+ ◦ ˜T− = ˜T2p̂τ

we have ˜D = 〈˜T+,
˜T−〉 ∼= Dk0 if the rotational period has

finite order k0 and ˜D ∼= D∞ otherwise. For the case p > 1 and p = q: using
the same presentations for Dk and D∞ as in the previous case we see that
˜D = 〈˜T, ˜T+〉 is isomorphic to a finite or infinite dihedral group depending
on whether or not (˜T+ ◦ ˜T)k = Id for some k ∈ Z. From 5.34.i and 5.26.ii we
have

(5.40) (˜T+ ◦ ˜T)2 = ˜T+ ◦ ˜T− = ˜T2p̂τ
.

Hence, if k0 is finite then by the definition of k0 we have (˜T+ ◦ ˜T)2k0 = Id and
(˜T+ ◦ ˜T)2k �= Id for k < k0. By 5.26.iv and 5.34.iii ˜T and ˜T+ are holomorphic
and antiholomorphic respectively. Hence (˜T+ ◦ ˜T)k is antiholomorphic for
any odd integer k and so cannot be the identity. Therefore (˜T+ ◦ ˜T) has
order exactly 2k0 as claimed. If k0 is infinite then ˜T+ ◦ ˜T cannot have finite
order (the order cannot be odd by the antiholomorphic argument above
and by 5.40 an even order would imply k0 is finite) and hence ˜D ∼= D∞ as
claimed.

(ii) The case p = 1: Any element in ˜D = 〈˜T2p̂τ
, ˜T〉 is of the form ˜Tkp̂τ

(recall 5.18) or ˜T2kp̂τ
for some k ∈ Z. By 5.20.iii ˜Tkp̂τ

acts antiholomor-
phically while ˜T2kp̂τ

acts holomorphically. Hence ˜D ∩ IsomJ
±SL = 〈˜T2p̂τ

〉 ⊂
SU(n) as claimed. The case p > 1 and p �= q: Any nontrivial element in ˜D
can be written as an alternating word in its two generators ˜T+ and ˜T−.
By 5.26.iv both generators act antiholomorphically, and hence so does any
word with an odd number of letters. By 5.26.ii any word in ˜D with an
even number of letters lies in the cyclic subgroup ˜C = 〈˜T2p̂τ

〉 ⊂ SU(n) and
hence ˜D ∩ IsomJ

±SL = ˜C = 〈˜T2p̂τ
〉 as claimed. The case p > 1 and p = q: Any

nontrivial element in ˜D can be written as an alternating word in its two gen-
erators ˜T and ˜T+. An element of ˜D acts holomorphically if and only if it
contains the antiholomorphic isometry ˜T+ an even number of times. Hence a
holomorphic isometry in ˜D has either (a) an even number of both generators
or (b) an even number of ˜T+s and an odd number of ˜Ts. In case (b) any such
element is equal to ˜T2kp̂τ

◦ ˜T for some k ∈ Z. In case (a), by 5.40 any such
word is of the form ˜T2kp̂τ

for some k ∈ Z. Hence ˜D ∩ IsomJ
±SL = 〈˜T, ˜T2p̂τ

〉
as claimed.

(iii) p = 1 or p > 1 and p �= q: ˜D centralizes ˜O by 5.20.ii and 5.26.iii
respectively. For the case p > 1 and p = q the result follows using 5.34.i,v
and 5.26.iii.
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(iv) In all cases, we have ˜D ∩ ˜O ⊂ ˜D ∩ O(n) ⊂ ˜D ∩ SU(n)± and by part
(ii) we have

˜D ∩ SU(n)± =

{〈˜T2p̂τ
〉 if p = 1 or if p > 1 and p �= q;

〈˜T, ˜T2p̂τ
〉 if p > 1 and p = q.

p = 1 or p > 1 and p �= q cases: Using the definitions of ˜Tx, T̂x and
˜O ⊂ O(n) ⊂ U(n) for p = 1 we have

˜T2kp̂τ
∈ ˜O ⇐⇒ T̂2kp̂τ

=
(

1 0
0 ±1

)

,

or if p > 1 and p �= q (recall 3.3 for the definition of ρjk)

˜T2kp̂τ
∈ ˜O ⇐⇒ T̂2kp̂τ

=
( ±1 0

0 ±1

)

= ρjk, for some (j, k) ∈ Z2 × Z2.

Hence by 4.49 ˜D ∩ ˜O �= (Id) if and only if wτ admits half-periods of type
(+−) when p = 1 or if wτ admits strict-half periods when p > 1 and p �= q.
If p = 1 then by 4.49.iii wτ admits half-periods of type (+−) if and only if
k0, the order of the rotational period, is even and the dimension n is odd.
In this case ˜D ∩ ˜O ∼= Z2 where Z2 is the group generated by the involution
˜Tk0p̂τ

. If p > 1 and p �= q then by 4.49 wτ admits strict half-periods if and
only if k0 is even. Moreover, for fixed p and q only strict half-periods of type
(jk) occur where j = q/ hcf(p, q) and k = p/hcf(p, q).

Case p > 1 and p = q: Written in block diagonal form (using (3.7) and
(5.30)) ˜T2kp̂τ

◦ ˜T is purely off-diagonal and hence not contained in ˜O =
O(p) × O(p) ⊂ O(2p) for any k ∈ Z. Arguing as in the p = 1 and p �= q
cases we find that ˜T2kp̂τ

∈ ˜O if and only if T̂2kp̂τ
= ± Id and hence by 4.49

˜D ∩ ˜O �= (Id) if and only if wτ admits strict half-periods of type (−−).
Thus by 4.49 ˜D ∩ ˜O = (Id) if k0 is infinite or odd. If k0 is even then any odd
multiple of k0pτ is a strict half-period of type (−−). Therefore in this case,
˜D ∩ ˜O = 〈˜Tk0p̂τ

〉 = 〈− Id 〉 ∼= Z2. �

Remark 5.41. By (5.37) any ˜M ∈ ˜Sym(Xτ ) can be written (not uniquely
though) in the form

˜M = γ̃ ◦ ˜O,
for some γ̃ ∈ ˜D and ˜O ∈ ˜O. Therefore ˜Sym(Xτ ) ⊂ Isom±SL (recall ˜D ⊂
Isom±SL and ˜O ⊂ O(n) ⊂ SU(n)± ⊂ Isom±SL). In particular, every element
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of ˜Sym(Xτ ) acts on C
n either holomorphically or anti-holomorphically. The

subgroup of holomorphic symmetries of Xτ is by 5.38.ii

˜Sym(Xτ ) ∩ SU(n)± =

{

〈˜T2p̂τ
〉 · ˜O if p = 1 or p > 1 and p �= q;

〈˜T, ˜T2p̂τ
〉 · ˜O if p > 1 and p = q.

As an immediate corollary of (5.37) and Lemma 5.38 we have the fol-
lowing result about the group structure of ˜Sym(Xτ ):

Corollary 5.42. For 0 < |τ | < τmax the structure of ˜Sym(Xτ ) is as follows:

(i) For p = 1
(a) If k0 is infinite or odd or the dimension n is even, ˜Sym(Xτ ) ∼=

˜D × O(n− 1).
(b) If k0 is even and n is odd, ˜Sym(Xτ ) is an internal central direct

product of ˜D and O(n− 1) identifying the central subgroup
˜D ∩ O(n− 1) ∼= Z2 [5, p. 29].

(ii) For p > 1 and p �= q we have
(a) If k0 is infinite or odd, ˜Sym(Xτ ) ∼= ˜D × O(p) × O(q).
(b) If k0 is even, ˜Sym(Xτ ) is an internal central product of ˜D and

O(p) × O(q) identifying the central subgroup ˜D ∩ O(p) × O(q) ∼= Z2.

(iii) For p > 1 and p = q if k0 is odd then

(5.43) ˜Sym(Xτ ) ∼= O(p) × O(p) �λ
˜D,

where the twisting homomorphism λ : ˜D → AutO(p) × O(p) is
given by

λ(γ̃) =

{

Id if γ̃ ∈ ˜D is a word containing an even number of copies of ˜T,
E′ if γ̃ ∈ ˜D is a word containing an odd number of copies of ˜T,

where E′ is the involution defined in (5.5).

Corollary 5.44. For 0 < |τ | < τmax we have

Per(Xτ ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(Id) if k0 is infinite;

〈T2k0pτ 〉 if k0 is odd or p = 1 and n is even;

〈Tk0pτ ◦ (−1)j IdSp−1 ◦(−1)k IdSq−1〉 if k0 is odd and p > 1;

〈Tk0pτ ◦ − IdSn−1〉 if k0 is even, p = 1 and n is odd;

where j = q/ hcf(p, q) and k = p/hcf(p, q).
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Proof. This follows from the results on the structure of Sym(Xτ ) and
˜Sym(Xτ ) proved in this section together with the fact that Per(Xτ ) = ker ρ̃
where ρ̃ : Sym(Xτ ) → ˜Sym(Xτ ) is the homomorphism described in 2.10. �

6. Geometric features of Xτ

This section describes various geometric features of Xτ with particular
emphasis on its geometry as τ → 0, the action of Sym(Xτ ) on various sub-
domains of Cylp,q and the action of ˜Sym(Xτ ) on various equatorial spheres
associated with Xτ .

Waists, bulges and approximating spheres. In this section we describe
distinguished subsets of Cylp,q called the waists and bulges ofXτ and describe
the action of Sym(Xτ ) on these subsets. We also attach to each bulge a
p+ q − 1 dimensional equatorial subsphere of S

2(p+q)−1, called the approx-
imating sphere of the bulge and describe symmetries associated with these
approximating spheres. The terminology approximating sphere is justified
by (6.21) where we show that for τ sufficiently close to 0 the image of each
bulge under Xτ is close to its approximating sphere.

Fix admissible integers p and q and let Xτ : Cylp,q → S
2(p+q)−1 be the

1-parameter family of SO(p) × SO(q)-equivariant special Legendrian immer-
sions defined in (3.29) and gτ denote the pullback metric on Cylp,q induced
by Xτ . Throughout this section, we assume that |τ | < τmax.

Definition 6.1. A waist of (Cylp,q, gτ ) is a meridian {t} × Merp,q of Cylp,q

on which the radius of one spherical factor of the meridian is minimal.

Waists for p = 1. If p = 1 then a waist is any meridian {t} × S
n−2 such

that yτ (t) = ymin. Recall from (4.5) that our choice of initial conditions for
wτ in the case p = 1 forces yτ to have a maximum at t = 0 and a minimum
at t = pτ . Hence using the symmetries of yτ described in (4.4), yτ has max-
ima at precisely 2kpτ and minima at precisely (2k + 1)pτ for each k ∈ Z.
See figure 1 for an illustration. Therefore the meridian {t} × S

n−2 is a waist
of Xτ if and only if t ∈ (2Z + 1)pτ . For any k ∈ Z we define the kth waist
W [k] of Cyl1,n−1 to be

(6.2) W [k] = {(2k − 1)pτ} × S
n−2.

Waists for p > 1. If p > 1 then a waist is any meridian {t} × Merp,q such
that either yτ (t) = ymin or yτ (t) = ymax; we call a waist on which y(t) = ymax
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a waist of type 1, since it is the radius of the first spherical factor S
p−1 which

is minimal on such a waist. Similarly, a waist on which yτ (t) = ymin is called
a waist of type 2, since the radius of the second spherical factor S

q−1 is
minimal on such a waist. Recall from (4.1) that yτ attains a maximum at
t = −p−τ , a minimum at t = p+

τ , is decreasing on (−p−τ , p+
τ ) and increasing

on (p+
τ , pτ + p+

τ )—see figure 2. Hence {t} × Merp,q is a waist of type 1 if and
only if t+ p−τ ∈ 2pτZ and a waist of type 2 if and only if t− p+

τ ∈ 2pτZ. For
any k ∈ Z, we define the kth waist W [k] of Cylp,q by

W [2l + 1] := {2lpτ + p+
τ } × Merp,q if k = 2l + 1 some l ∈ Z;(6.3a)

W [2l] := {2lpτ − p−τ } × Merp,q if k = 2l some l ∈ Z.(6.3b)

The action of Isom(Cylp,q, gτ ) on waists. Any element of Isom(Cylp,q, gτ )
permutes the waists of Cylp,q. If p = 1 then all waists are isometric and
Isom(Cyl1,n−1, gτ ) acts transitively on the set of waists. If p > 1 and p �= q
then waists of type 1 and type 2 are not isometric and therefore
Isom(Cylp,q, gτ ) cannot act transitively on the set of all waists. However,
all waists of fixed type are isometric and Isom(Cylp,q, gτ ) acts transitively
on the set of waists of fixed type.

If p > 1 and p = q, waists of type 1 and type 2 are isometric (recall
(4.11)). Recall from 5.6.iii that Isom(Cylp,p, gτ ) = D · O(p) × O(p) where
D = 〈T ◦ E, Tpτ/2〉. Isometries containing an even number of copies of T ◦ E
preserve the type of any waist, while isometries containing an odd num-
ber of copies of T ◦ E exchange the two types of waist. The full group
Isom(Cylp,p, gτ ) acts transitively on the set of all waists.

Bulges. The set of all waists W of (Cylp,q, gτ ) is a hypersurface with
countably many components W [k] (k ∈ Z) and the complement of W in
Cylp,q has countably many components.

Definition 6.4. A bulge of (Cylp,q, gτ ) is a connected component of
(Cylp,q \W ). For any k ∈ Z the kth bulge Ŝ[k] of (Cylp,q, gτ ) is the unique
connected component of (Cylp,q \W ) such that ∂Ŝ[k] = W [k] ∪W [k + 1].
We call W [k] and W [k + 1] the boundary waists of the bulge Ŝ[k].

More concretely, for p = 1 the kth bulge of Cyl1,n−1 is

(6.5) Ŝ[k] = ( (2k − 1)pτ , (2k + 1)pτ ) × S
n−2 = T2kpτ

Ŝ[0],
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while for p > 1 the kth bulge of Cylp,q is

Ŝ[2l] = (−p−τ + 2lpτ ,−p−τ + (2l + 1)pτ ) × Merp,q = T2lpτ
Ŝ[0] if k = 2l;

(6.6a)

Ŝ[2l + 1] = (p+
τ + 2lpτ , p+

τ + (2l + 1)pτ )×Merp,q = T2lpτ
Ŝ[1] if k = 2l + 1.

(6.6b)

Since any isometry in Isom(Cylp,q, gτ ) = Sym(Xτ ) permutes the waists of
(Cylp,q, gτ ) it also permutes the bulges of Cylp,q. Moreover Isom(Cylp,q, gτ )
acts transitively on the set of all bulges.

Definition 6.7. For any k ∈ Z we define Symk(Xτ ) to be the subgroup of
Sym(Xτ ) = Isom(Cylp,q, gτ ) leaving the kth bulge Ŝ[k] invariant.

Since Isom(Cylp,q, gτ ) = Sym(Xτ ) acts transitively on the set of all
bulges the subgroups Symk(Xτ ) are all conjugate in Sym(Xτ ). In partic-
ular, they are all isomorphic as groups.

Lemma 6.8 (Structure of Symk(Xτ); cf. Lemma 6.13). For any fixed
k ∈ Z we have

Symk(Xτ )

=

⎧

⎪

⎨

⎪

⎩

〈T2kpτ
〉 · O(n− 1) ∼= O(1) × O(n− 1) if p = 1;

O(p) × O(q) if p > 1 and p �= q;
〈Tkpτ

◦ E〉 · O(p) × O(p) ∼= O(p) × O(p) � Z2 if p > 1 and p = q.

Proof. An element of Sym(Xτ ) belongs to Symk(Xτ ) if and only if it leaves
invariant the union of the two boundary waists W [k] and W [k + 1]. The
lemma now follows using the structure of Isom(Cylp,q, gτ ) = Sym(Xτ ) estab-
lished in 5.6 to determine its action on the set of waists W . �
(p, q)-marked special Legendrian spheres and approximating spheres. Fix
admissible integers p and q. We now define the important concept of a (p, q)-
marked special Legendrian sphere. We will see shortly that we can associate
a (p, q)-marked SL sphere S[k] to every bulge of Xτ : Cylp,q → S

2(p+q)−1.
Moreover, for τ sufficiently small the image of the kth bulge Ŝ[k] under Xτ

is close to the marked SL sphere S[k].

Definition 6.9. If (p, q) = (1, n− 1) then a (p, q)-marked SL sphere is a
pair {±e,S} consisting of an equatorial n− 1 sphere S of S

2n−1 which is
special Legendrian (for the correct orientation) and a pair of antipodal points
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±e ∈ S. We call ±e ⊂ S the attachment set (or alternatively the marked set)
of the (1, n− 1)-marked SL sphere (±e,S).

If p > 1 then a (p, q)-marked SL sphere is a triple consisting of an
equatorial special Legendrian (for the correct orientation) p+ q − 1 sphere
S of S

2(p+q)−1, an equatorial subsphere Sp−1 ⊂ S of dimension p− 1 and
the orthogonal equatorial subsphere Sq−1 ⊂ S. We call Sp−1 ∪ Sq−1 ⊂ S the
attachment set or marked set of the (p, q)-marked SL sphere (Sp−1,Sq−1,S).

A (1, n− 1)-marked SL sphere is equivalent to a pair {l,Πn} where
Πn ⊂ C

n is a SL n-plane and l = 〈±e〉 ⊂ Πn is an unoriented real line in the
n-plane Πn. We call S

n−1 ⊂ R
n ⊂ C

n the standard special Legendrian sphere
and {±e1,Sn−1} the standard (1, n− 1)-marked special Legendrian sphere,
where e1, . . . , en is the standard oriented orthonormal basis of R

n.
For p > 1 a (p, q)-marked SL sphere is equivalent to a triple

{Πp,Πq = Π⊥
p ,Πp+q} where Πp+q ⊂ C

p+q is a SL p+ q-plane and Πp ⊂ Πp+q

is a real p-plane in Πp+q and Πq = Π⊥
p ⊂ Πp+q. The (p, q)-marked SL sphere

with Πp+q = R
p+q ⊂ C

p+q, Πp = R
p × {0} ⊂ Πp+q and Πq = {0} × R

q =
Π⊥
p ⊂ Πp+q we call the standard (p, q)-marked SL sphere. The choice of a

real p-plane Πp ⊂ Πp+q determines the q-plane Πq as the orthogonal com-
plement of Πp inside Πp+q.

Fix admissible integers p and q and τ satisfying |τ | < τmax. To each bulge
Ŝ[k] of Xτ we now associate a (p, q)-marked SL sphere called its approxi-
mating (marked) sphere S[k].

Definition 6.10. For each k ∈ Z we define a (p, q)-marked sphere S[k] as
follows. For k = 0 we define S[0] to be the standard (p, q)-marked SL sphere
defined following 6.9.
For p = 1 we define

(6.11) S[k] := ˜T2kp̂τ
S[0] if k �= 0.

For p > 1 we define

(6.12) S[k] :=

{

˜T2lp̂τ
S[0] if k = 2l;

˜T2lp̂τ
◦ ˜T+ S[0] if k = 2l + 1.

S[k] is called the approximating (p, q)-marked sphere (or more simply the
approximating sphere) associated with the kth bulge Ŝ[k] of Xτ .
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Note that since ˜Tx ∈ SU(n) ⊂ IsomSL for all x, for p = 1 if we orient the
central marked sphere S[0] so that it is special Legendrian then the orien-
tation S[k] = ˜T2kp̂τ

S[0] inherits from S[0] via ˜T2kp̂τ
also makes S[0] special

Legendrian. However, for p > 1 recall from 5.26 that ˜T+ ∈ Isom±SL \ IsomSL;
this occurs because the corresponding symmetry Tp+

τ
∈ Sym(Xτ ) ⊂ Diff

(Cylp,q) reverses orientation on Cylp,q. Hence if we orient the central marked
sphere S[0] so that it is special Legendrian then the orientation inherited on
any odd approximating sphere S[2l + 1] = ˜T2lp̂τ

◦ ˜T+S[0] from S[0] makes it
anti-special Legendrian.

Lemma 6.13 (Action of ˜Sym(Xτ) on the approximating spheres;
cf. 6.8). ˜Sym(Xτ ) = ˜D · ˜O acts on the approximating marked spheres of
Xτ as follows:

(i) For any p and q we have ˜O S[k] = S[k] for all k ∈ Z and all ˜O ∈ ˜O.

(ii) For p = 1 and any k ∈ Z, ˜D = 〈˜T, ˜T2p̂τ
〉 acts by

˜T2p̂τ
S[k] = S[k + 1];(6.14a)
˜T S[k] = S[−k].(6.14b)

(iii) For p > 1 and p �= q, for any k ∈ Z ˜D = 〈˜T+,
˜T−〉 acts by

˜T+ S[k] = S[1 − k];(6.15a)
˜T− S[k] = S[−1 − k].(6.15b)

(iv) For p > 1 and p = q, for any k ∈ Z, ˜D = 〈˜T, ˜T+〉 acts by

˜T+ S[k] = S[1 − k];(6.16a)
˜T S[k] = S[−k].(6.16b)

Proof. The lemma follows using 6.10, the commutation properties between
˜D and ˜O given in (5.37).iii, the structure of the group ˜D given in 5.38.i, and
the action of ˜D and ˜O on S[0]. We leave the details to the reader. �

Remark 6.17. For p > 1, it follows immediately from 6.15 and 5.26.ii that
for any k ∈ Z

(6.18) ˜T2p̂τ
S[k] = ˜T+ ◦ ˜T− S[k] = S[k + 2],
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i.e., the rotational period ˜T2p̂τ
maps S[k] 	→ S[k + 2] unlike the case p = 1

(recall 6.14a) where it maps S[k] 	→ S[k + 1]. This reflects a fundamental
difference in the geometry of Xτ in the cases p = 1 and p > 1.

Corollary 6.19. ˜Symk(Xτ ), the subgroup of ˜Sym(Xτ ) leaving the kth
approximating sphere S[k] invariant is

(6.20) ˜Symk(Xτ ) =

⎧

⎪

⎨

⎪

⎩

〈˜T2kp̂τ
〉 · O(n− 1) if p = 1;

O(p) × O(q) if p > 1 and p �= q;
〈˜Tkp̂τ

〉 · O(p) × O(p) if p > 1 and p = q.

It follows from 6.8 and 6.13 together with 5.15, 5.22 and 5.28 that
˜Symk(Xτ ) = ρ̃(Symk(Xτ )) where ρ̃ : Sym(Xτ ) → ˜Sym(Xτ ) is the homomor-
phism defined in 2.10 and Symk(Xτ ) is defined in 6.7.

The limiting geometry of Xτ as τ → 0. Next we describe the geome-
try of Xτ as τ → 0 concentrating on the almost spherical regions of Xτ that
asymptotically resemble equatorial spheres and on the necks which asymp-
totically resemble small Lagrangian catenoids or the product of a unit sphere
with a small Lagrangian catenoid. The fact that Xτ degenerates to a union
of very simple geometric objects is fundamental to our gluing constructions
in [9–12].

Almost spherical regions of Xτ and approximating spheres. Recall
that by (3.23) wτ depends analytically on τ ∈ (−τmax, τmax) and the image of
w0 is contained in S

1 ⊂ R
2 ⊂ C

2. This implies that Xτ depends analytically
on τ and that X0 gives a parametrization of S[0] \ M[0] where S[0] denotes
the standard (p, q)-marked special Legendrian sphere (recall 6.10) and M[0]
is its marked set (two orthogonal equators of dimension p− 1 and q − 1 if
p > 1 or two antipodal points if p = 1).

Because of the analytic dependence on τ , Xτ smoothly converges to X0

as τ → 0 on any compact subset K ⊂⊂ Cylp,q. Define

S[0] := [−b, b] × Merp,q,

then by choosing b ∈ R
+ sufficiently large we can ensure the image X0(S[0])

contains any given compact subset of S[0] \ M[0]. If |τ | is small enough in
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terms of b, then wτ and therefore Xτ satisfy

(6.21)
‖wτ − w0 : Ck([−b, b])‖ ≤ C(b, k)|τ |,
‖Xτ −X0 : Ck(S[0])‖ ≤ C(b, k)|τ |,

where we can use the standard metric of the cylinder to define the Ck norm
and the constant C(b, k) depends only on b and k. This motivates us to
call S[0] an almost spherical region of Xτ . Note that the definition of S[0]
depends on a choice of b which we do not make precise here, but which
is supposed to be chosen large enough as needed. The freedom to choose
an appropriate b to define the almost spherical regions is needed in our
gluing constructions [9–12]. (6.21) implies that for τ sufficiently small the
image under Xτ of the almost spherical region S[0] ⊂⊂ Ŝ[0] is close to its
approximating sphere S[0] and converges as τ → 0 to a fixed compact subset
of S[0] \ M[0] (depending on the choice of b). This explains the origin of the
terminology approximating sphere and also one of the roles played by the
marked set.

If we have fixed the almost spherical region S[0] as above, then we can
mimic the definition of Ŝ[k] in terms of Ŝ[0] (recall 6.5, 6.6) to define the
kth almost spherical region S[k] ⊂⊂ Ŝ[k] ⊂ Cylp,q of Xτ in terms of S[0] by

S[k] :=

⎧

⎪

⎨

⎪

⎩

T2kpτ
S[0] if p = 1;

T2lpτ
S[0] if p > 1 and k = 2l;

T2lpτ
◦ Tp+

τ
S[0] if p > 1 and k = 2l + 1.

Because pτ → ∞ when p = 1 and p+
τ , p

−
τ → ∞ as τ → 0 (see 7.3 for a precise

statement), every almost spherical region S[k] with k �= 0 “slides off the
end” of Cylp,q as τ → 0. However, by using an element of Isom(Cylp,q, gτ )
to bring S[k] back to S[0] we can also infer the small τ behaviour of Xτ

on the other almost spherical regions S[k]. Using the relevant symmetries
of Xτ (from 5.15 and 5.22) we see that on the kth almost spherical region
S[k] ⊂⊂ Ŝ[k], Xτ satisfies the analogue of (6.21) with X0 replaced by the
embedding X[k] : Cylp,q → S

2(p+q)−1 defined as

X[k] :=

⎧

⎪

⎨

⎪

⎩

˜T2kp̂τ
◦X0 ◦ T−2kpτ

if p = 1;
˜T2lp̂τ

◦X0 ◦ T−2lpτ
if p > 1 and k = 2l;

˜T2lp̂τ
◦ ˜T+ ◦X0 ◦ Tp+

τ
◦ T−2lpτ

if p > 1 and k = 2l + 1.

For k �= 0 X[k] itself depends on τ . The image of Cylp,q under X[k] is
S[k] \ M[k], where S[k] denotes the kth (p, q)-marked approximating sphere
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and M[k] is its marked set, both of which also depend on τ for k �= 0. Never-
theless, we have that for τ sufficiently small the image of the almost spherical
region S[k] ⊂⊂ Ŝ[k] under Xτ is close to its approximating sphere S[k].

Each almost spherical region S[k] of Cylp,q connects to its neighbouring
almost spherical regions S[k − 1] and S[k + 1] in the two adjacent bulges
Ŝ[k − 1] and Ŝ[k + 1] via a pair of transition regions whose images under
Xτ for τ sufficiently small localize near the two components of the marked
set M[k] of the kth approximating marked sphere S[k]. This pair of transition
regions is centred on the two boundary waists W [k] and W [k + 1] of Ŝ[k]
(recall 6.4). In the next section we study the geometry of Xτ in the vicinity
of the waists as τ → 0.

Waists, necks and Lagrangian catenoids. Recall from (6.1) that a
waist W [k] is a meridian of Cylp,q on which the radius of one spherical factor
of the meridian is minimal. The vicinity of any meridian we call a neck. The
necks are the regions of (Cylp,q, gτ ) where the magnitude of the curvature is
largest and where as τ → 0 the curvature becomes unbounded. We will show
below that for τ sufficiently small any neck of Xτ—appropriately scaled and
repositioned—is a small perturbation of a (truncated) Lagrangian catenoid
(see 6.24) in the case p = 1, or the product of a large round sphere with a
Lagrangian catenoid in the case p > 1. This is reminiscent of the Delaunay
surfaces [17, Lemma A.2.1] whose highly curved regions approximate a scaled
repositioned catenoid.

The Lagrangian catenoid. We give a brief description of the Lagrangian
catenoid in C

n suited to our present purposes, stating a number of basic
properties without proof.

Let w : I → C
∗ be a smooth immersed curve. Consider the ODEs

(6.22) ẇ = wn−1.

(6.22) can be viewed as a degenerate analogue of (3.8): see (6.30) and (6.37).
The ODE (6.22) admits the conserved quantity I := Imwn, cf. I2 defined
in (3.8.i).

The case n = 2 is special because (6.22) reduces to a linear ODE.
Straightforward calculation shows that any solution to this linear ODE has
the form

w(t) = aet + ibe−t, for a, b ∈ R,

and that Imw2(t) ≡ 2ab. In particular, when n = 2 all solutions of (6.22)
are defined for all t ∈ R (in contrast to the case when n > 2).
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For n > 2 one can show that the initial value problem for (6.22) with
any initial data w(0) ∈ C

∗ has a unique real analytic solution w : J → C
∗

defined on a bounded interval J ⊂ R. Let w1 denote the unique solution of
(6.22) with initial data w(0) = eiπ/2n (and hence I(w1) = 1). Then w1 has
the symmetry w1 ◦ T = e−iπ/nw1, where T denotes reflection in the origin
t 	→ −t. The solution w1 is defined on the time interval I = (−T, T ) where

(6.23) T :=
∫ ∞

1

dy

2
√
yn − 1

=
Γ(1

2)Γ(1
2 − 1

n)
2Γ(− 1

n)
=

√
π Γ(1

2 − 1
n)

2Γ(− 1
n)

,

and Γ denotes the gamma function.

Definition 6.24 (Standard embeddings of the Lagrangian catenoid).

(i) Suppose n > 2. Let w1 : R → C
∗ be the unique solution of (6.22) with

w1(0) = eiπ/2n as above and let 2T denote the lifetime defined in (6.23).
We call the special Lagrangian embedding X1 : (−T, T ) × S

n−1 → C
n

defined by

X1(t, σ) = w1(t)σ, for t ∈ (−T, T ), σ ∈ S
n−1 ⊂ R

n,

the standard embedding of the Lagrangian catenoid of size 1 or just
the standard unit Lagrangian catenoid for short.

(ii) Suppose n = 2. Let w1 : R → C
∗ be the unique solution of (6.22) with

w1(0) = eiπ/4, i.e.,

w1(t) =
1√
2
(et + ie−t).

We call the special Lagrangian embedding X1 : R × S
1 → C

2 defined
by

X1(t, σ) := w1(t)σ, for t ∈ R, σ ∈ S
1 ⊂ R

2,

the standard embedding of the two-dimensional Lagrangian catenoid of
size 1 or just the standard unit two-dimensional Lagrangian catenoid
for short.

Remark 6.25. If we replace w1 above with the rescaled solution of (6.22)
given by

wλ(t) := λ1/nw1(λ1−2/nt)

and define Xλ(t, σ) = wλ(t)σ then we obtain the standard embedding of the
Lagrangian catenoid of size λ1/n, i.e., the waist of Xλ is a round sphere



The geometry of SO(p) × SO(q)-invariant special Lagrangian cones 231

of radius λ1/n. The solution wλ is defined on the interval λ−1+2/n(−T, T ),
where 2T is the lifetime of the solution w1.

The limiting geometry of the necks for p = 1. Recall that for p = 1
all waists are isometric and Isom(Cylp,q, gτ ) acts transitively on the waists.
Hence without loss of generality we can concentrate on the neck containing
the first waist W [1] := {pτ} × S

n−2. We first magnify the immersion Xτ

while simultaneously repositioning and scaling the t variable, by taking

(6.26) ˜Xτ (t̃, σ) =
1
β
W Xτ (β3−n t̃+ pτ , σ),

where W ∈ U(n) and β > 0 are defined by
(6.27)

β := |w2(pτ )| =
√
ymin, W =

⎛

⎝

|w1(pτ )|
w1(pτ ) 0

0 eiπ/2(n−1) |w2(pτ )|
w2(pτ )

Idn−1

⎞

⎠ .

Geometrically, β is the radius of the sphere S
n−2 on the waist. Note that

using (3.12) and that ẏ(pτ ) = 0 we have detW = −1. We can write (recall
(3.29))

(6.28) ˜Xτ (t̃, σ) =

(

z1( t̃ ) +

√

1 − β2

β
, z2( t̃ ) · σ

)

,

where

z1( t̃ ) =

√

1 − β2

β

(

w1(β3−n t̃+ pτ )
w1(pτ )

− 1
)

,(6.29)

z2( t̃ ) = eiπ/2(n−1) w2(β3−n t̃+ pτ )
w2(pτ )

.

In terms of the new coordinates z1, z2 and the rescaled time parameter t̃,
(3.8) is equivalent to

dz1

dt̃
= β zn−1

2 ,

dz2

dt̃
= (
√

1 − β2 + βz1) zn−2
2 ,

with initial data z1(0) = 0, z2(0) = eiπ/2(n−1).

(6.30)

By standard ODE theory (6.30) has a unique (real analytic) maximal solu-
tion for each β ∈ R, which we denote by zβ = (z1,β , z2,β), and which depends
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analytically on β ∈ (−1, 1). When β = 0 the system simplifies: we obtain
z1,0 ≡ 0 and z2,0 satisfies equation (6.22) with n replaced by n− 1 and with
initial condition z2,0(0) = eiπ/2(n−1). Hence (recall 6.24) X(t̃, σ) := z2,0( t̃ )σ
is the standard embedding of the unit Lagrangian catenoid in C

n−1. By mod-
ifying (6.28), we define a new SO(n− 1)-invariant embedding ̂Xτ : (−T, T ) ×
S
n−2 → C

n by

(6.31) ̂Xτ (t̃, σ) =

(

√

1 − β2

β
, z2,0( t̃ ) · σ

)

,

where 2T is the lifetime of the standard embedding of the unit Lagrangian
catenoid in C

n−1; as discussed in 6.24 the lifetime 2T is finite when n− 1 > 2
and infinite when n− 1 = 2. ̂Xτ is independent of τ except for the translation
by
√

1 − β2/β in the first factor and its image is the standard unit n− 1
dimensional Lagrangian catenoid in {0} × C

n−1 ⊂ C × C
n−1 translated in

the x direction of the extra C factor. As τ → 0 the translation makes the
Lagrangian catenoid drift to infinity.

If we take b large if n = 3 or b < T but close to T if n > 3, and we
restrict |t̃| ≤ b, the image under ̂Xτ is a truncated Lagrangian catenoid which
exhausts the whole Lagrangian catenoid as b→ T− (b→ ∞ when n = 3).
By the smooth dependence of zβ on β, we conclude that if τ is small enough
depending on b, and β is defined as in (6.27), we have

(6.32)
‖zβ − z0 : Ck([−b, b])‖ ≤ C(b, k)β,

‖ ˜Xτ − ̂Xτ : Ck([−b, b] × Mer1,n−1)‖ ≤ C(b, k)β,

where we can use the standard metric of the cylinder or alternatively the
pullback of the Euclidean metric by ̂Xτ to define the Ck norm, and the
constant C(b, k) depends only on b and k.

The limiting geometry of the necks when p > 1. Recall that for
p > 1 waists (and hence necks) come in two types: type 1 waists where the
radius of the first spherical factor S

p−1 is minimal and type 2 waists where
the radius of the second spherical factor S

q−1 is minimal. We concentrate
now on the case of a type 2 neck.

Since all type 2 waists are isometric and Isom(Cylp,q, gτ ) acts tran-
sitively on them we can without loss of generality deal with the waist
W [1] = {p+

τ } × Merp,q (recall (6.3)). As in the case p = 1 we magnify the
immersion Xτ while repositioning and scaling the t variable, by taking

(6.33) ˜Xτ (t̃, σ1, σ2) =
1
β
W Xτ (β2−q t̃+ p+

τ , σ1, σ2),
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where W ∈ U(n) and β > 0 are defined by
(6.34)

β := |w2(p+
τ )| =

√
ymin, W =

⎛

⎜

⎜

⎝

|w1(p+
τ )|

w1(p+
τ )

Idp 0

0 eiπ/2q |w2(p+
τ )|

w2(p+
τ )

Idq

⎞

⎟

⎟

⎠

.

Geometrically, β is the radius of the second spherical factor S
q−1 on the

waist. As in the previous case using (3.12) and that ẏ(p+
τ ) = 0 we have

detW = −1. We can write (recall (3.29))

(6.35) ˜Xτ (t̃, σ1, σ2) =

((

z1( t̃ ) +

√

1 − β2

β

)

· σ1, z2( t̃ ) · σ2

)

,

where

z1( t̃ ) =

√

1 − β2

β

(

w1(β2−q t̃+ p+
τ )

w1(p+
τ )

− 1
)

,

z2( t̃ ) = eiπ/2q w2(β2−q t̃+ p+
τ )

w2(p+
τ )

.

(6.36)

In terms of the new coordinates z1, z2 and the rescaled time parameter t̃,
(3.8) is equivalent to

dz1

dt̃
= β (

√

1 − β2 + βz1)
p−1 zq

2,

dz2

dt̃
= (
√

1 − β2 + βz1)
p zq−1

2 ,

with initial data z1(0) = 0, z2(0) = eiπ/2q.(6.37)

As in the case p = 1 (6.37) has a unique maximal solution zβ = (z1,β , z2,β),
for any β ∈ R, which depends analytically on β ∈ (−1, 1). When β = 0 (6.37)
again simplifies: z1,0 ≡ 0 and z2,0 satisfies the equation for the standard
embedding of the unit Lagrangian catenoid in C

q. Therefore following (6.31),
we define a new SO(p) × SO(q)-invariant embedding ̂Xτ : (−T, T ) ×
Merp,q → C

p+q

(6.38) ̂Xτ (t̃, σ1, σ2) =

(

√

1 − β2

β
· σ1, z2,0( t̃ ) · σ2

)

,

where 2T denotes the lifetime of the standard embedding of the unit
Lagrangian catenoid in C

q (which as we already discussed is finite if q > 2
and infinite if q = 2). The image of ̂Xτ is the product of a p− 1 sphere
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r · S
p−1 of large radius r =

√

1 − β2/β � β−1 with a unit q-dimensional stan-
dard Lagrangian catenoid. Arguing as before we conclude that if τ is small
enough depending on b, and β is defined as in (6.34), we have

(6.39)
‖zβ − z0 : Ck([−b, b])‖ ≤ C(b, k)β,

‖ ˜Xτ − ̂Xτ : Ck([−b, b] × Merp,q)‖ ≤ C(b, k)β,

where we use the pullback of the Euclidean metric by ̂Xτ to define the Ck

norm, the constant C(b, k) depends only on b and k, and b < T .
Finally the case of any type 1 neck is similar except that ̂Xτ now becomes

an SO(p) × SO(q)- invariant embedding of the product of the unit standard
Lagrangian catenoid in C

p with a large round q − 1 sphere in C
q. We omit

the details.

Synthesis. We combine the results from the previous two sections to
describe qualitatively the geometry of Xτ for small τ .
Case p = 1. In this case each domain of periodicity of gτ contains a single
bulge Ŝ[k] ⊂ Cylp,q. Inside each bulge we fixed a compact subset S[k] ⊂ Ŝ[k]
(depending on the choice of a sufficiently large real number b) which we called
an almost spherical region of Xτ . As τ → 0 the image of the kth almost
spherical region S[k] under Xτ tends to the complement of a small tubular
neighbourhood of the marked set M[k] ⊂ S[k] inside the kth approximating
sphere S[k] = ˜T2kp̂τ

S[0]. S[k] connects to its neighbouring almost spherical
regions S[k − 1] and S[k + 1] via two small transition regions which are local-
ized near the marked set M[k] = ±˜T2kp̂τ

(e1) of S[k]. The core of each tran-
sition region—the necks—are the vicinity of the two boundary waists W [k]
andW [k + 1] of Ŝ[k]. As τ → 0 on each neckXτ approaches an embedding of
the n− 1 dimensional Lagrangian catenoid of size

√
ymin � (2τ)1/n−1 located

close to one of the two points ±˜T2kp̂τ
(e1).

In the limit as τ → 0 almost spherical regions tend to (subsets) of the
approximating spheres, while a transition region connecting neighbouring
almost spherical regions tends to a point of intersection of the corresponding
approximating spheres. It follows from (4.24) and Proposition 7.41 that as
τ → 0 the rotational period of Xτ satisfies

(6.40) ˜T2p̂τ
→
(−1 0

0 e−iπ/(n−1) Idn−1

)

.

Hence in the τ → 0 limit, the real n-planes in C
n associated to the almost

spherical region S[0] and the almost spherical region S[1] are R ⊕ R
n−1 and
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Figure 3: Schematic presentation of the intrinsic geometry of a special Leg-
endrian cylinder Xτ with small τ and p = 1.

R ⊕ e−iπ/(n−1)
R
n−1, respectively. This is consistent with the fact that the

Lagrangian catenoid in C
n−1 is asymptotic to the union of two n− 1 planes

(which up to rotation we can take to be) R
n−1 and e−iπ/(n−1)

R
n−1. See

figure 3 for a schematic illustration of the intrinsic geometry of Xτ in the
case p = 1.

Case p > 1. In this case each domain of periodicity of gτ contains not one
but two bulges Ŝ[k] and Ŝ[k + 1]. For each bulge one of its two boundary
waists is a waist of type 1 (where the radius of the first spherical factor
S
p−1 is minimal) and the other is a waist of type 2 (where the radius of the

second spherical factor S
q−1 is minimal). Moreover, since waists of types 1

and 2 alternate along Cylp,q one of the two bulges in a domain of periodicity
will have a type 1 waist at its left-hand boundary and a type 2 waist at its
right-hand boundary, whereas the other bulge will have a type 2 waist at
its LH boundary and a type 1 waist at its RH boundary. Hence while the
reflectional symmetry T2kpτ

◦ Tp+
τ

exchanges the adjacent almost spherical
regions S[k] and S[k + 1] there is no purely translational symmetry that
achieves this (unlike the case p = 1). Instead the basic rotational period
˜T2p̂τ

of Xτ sends S[k] to S[k + 2]. This reflects a fundamental difference in
the geometry of Xτ between the cases p = 1 and p > 1.

Inside each bulge we fixed a compact subset S[k] ⊂ Ŝ[k] (depending on
the choice of a sufficiently large real number b) which we called the kth
almost spherical region ofXτ . As τ → 0 the image of the kth almost spherical
region S[k] under Xτ tends to the complement of a small tubular neighbour-
hood of the marked set M[k] ⊂ S[k] inside the kth approximating sphere. The
marked set M[k] is a generalized (p, q)-Hopf link, i.e., two orthogonal equa-
torial subspheres in S

p+q−1 of dimensions p− 1 and q − 1. S[k] connects to
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its neighbouring almost spherical regions S[k − 1] and S[k + 1] via two tran-
sition regions which are localized near the two components of the marked
set M[k]. The core of each transition region—the necks—is the vicinity of
one of the waists W [k] and W [k + 1]: one of type 1 and one of type 2. On
the neck containing the type 1 waist Xτ approaches an embedding of the
product of a Lagrangian catenoid in C

p of size
√

1 − ymax � (2τ)1/p with
a round sphere S

q−1 of radius 1 as τ → 0. This type 1 neck localizes to
the equatorial q − 1 sphere of the marked set M[k]. On the type 2 neck Xτ

approaches an embedding of the product of a round sphere S
p−1 of radius

1 with a Lagrangian catenoid in C
q of size

√
ymin � (2τ)1/q which localizes

to the equatorial p− 1 sphere of the marked set M[k]. In particular, when
p �= q necks of type 1 and necks of type 2 are not isometric and hence no
symmetry can take a type 1 neck to a type 2 neck.

However, when p = q type 1 and type 2 necks are isometric and extra
symmetries exist that exchange the two neck types; the symmetry Tkpτ

◦ E

(recall 6.8) sends the bulge Ŝ[k] to itself but exchanges its two boundary
waists W [k] and W [k + 1].

In the limit as τ → 0 almost spherical regions tend to (subsets) of the
approximating spheres, while a transition region connecting neighbouring
almost spherical regions tends to the equatorial subsphere formed by the
intersection of the corresponding approximate spheres. It follows from (4.24)
and Proposition 7.41 that as τ → 0 the reflection ˜T+ that sends S[0] to S[1]
converges to the reflection

(z, w) 	→ (z, e−iπ/qw), for (z, w) ∈ C
p × C

q.

Hence in the τ → 0 limit, the real n-planes in C
n associated to the almost

spherical regions S[0] and S[1] are R
p ⊕ R

q and R
p ⊕ e−iπ/q

R
q. This is

consistent both with the asymptotic geometry of the Lagrangian catenoid
in C

q and the fact that the neck concentrates on a round S
p−1. Similarly, the

reflection ˜T− that sends S[0] to S[−1] converges as τ → 0 to the reflection

(z, w) 	→ (e−iπ/pz, w), for (z, w) ∈ C
p × C

q.

Hence in the τ → 0 limit the real n-planes in C
n associated to the almost

spherical regions S[0] and S[−1] are R
p ⊕ R

q and e−iπ/p
R
p ⊕ R

q respectively,
which is again consistent with the asymptotic geometry of the p-dimensional
catenoid and concentration of the neck on a round S

q−1.
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7. Precise asymptotics as τ → 0

In order to describe the asymptotics it helps to introduce the following
notation: We define functions of τ by

(7.1) Tk(τ) :=

{

τ−1+2/k, for k > 2;
log τ−1, for k = 2,

and introduce the notation f1 ∼ f2 for functions f1 and f2 of τ to mean that

(7.2)
f2(τ)
f1(τ)

→ 1 as τ → 0.

Using this notation we have the following:

Proposition 7.3 (Small τ asymptotics of the period and partial-
periods).

(i) For p > 1, p+
τ and p−τ are analytic functions of τ for 0 < |τ | < τmax.

For p = 1, pτ is an analytic function of τ for 0 < |τ | < τmax.

(ii) In the case p > 1 we have

(7.4) p+
τ ∼ bq Tq(τ), p−τ ∼ bp Tp(τ),

where
(7.5)

b2 :=
1
2
, bk := 4−1+ 1

k

∫ ∞

1

dz√
zk − 1

= 4−1+ 1
k

√
π Γ(1

2 − 1
k )

Γ(− 1
k )

for k ≥ 2,

where Γ is the gamma function. We also have
(7.6)

pτ ∼ bq Tq(τ) when 1 ≤ p < q, pτ ∼ 2bq Tq(τ) when 2 ≤ p = q.

Remark 7.7. For k > 2, we note that the expression bkTk(τ) appearing
in (7.4) is (recall 6.25) exactly half the lifetime of a Lagrangian catenoid
in C

k of size 2τ parametrized by (6.22). In light of the geometry of the
high curvature regions of Xτ described in Section 6 this does not come as a
surprize. Note that b2 = 1

2 in (7.5) corrects a misprint in [13, Prop 7.3].

Proof. See [13, Prop 7.3]. �
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We introduce now some convenient notation. Note that the definition of
Φv is motivated by the fact that if Φ is Legendrian then Φv is also Legendrian
(see, e.g., [20, Lemma 2.4]).

Definition 7.8. If Φ : Σ → S
2n−1 ⊂ C

n is an immersion and V is a normal
(to Φ in S

2n−1) small vector field, we define ΦV : Σ → S
2n−1 by

ΦV =
Φ + V

|Φ + V | ,

where we consider Φ and V as C
n-valued and |.| is the standard length. If Φ

is Legendrian and v : Σ → R a function with locally small enough C1 norm,
we also write Φv for Φ2v J ∂

∂r
+J∇v.

In order to understand the asymptotics of p̂τ we prove first the following
lemma. Recall the definition of the torque/flux in (3.32) and the calculation
of the torque for Xτ given in Proposition 3.34.

Lemma 7.9. Let t = d˜Tx

dx

∣

∣

∣

x=0
∈ su(n) be the generator of the 1-parameter

subgroup {˜Tx}. Suppose that (Xτ )φ is special Legendrian where φ : Cylp,q →
R is a smooth function which depends only on t. The t-flux through the
meridian ({t} × Merp,q) of (Xτ )φ is given by

Ft =
n

pq
Vol(Merp,q)

(

2τ + (q − ny)φ̇+ nẏφ
)

+ h.o.t.,

where Vol(Merp,q) = Vol(Sp−1) Vol(Sq−1) if p> 1 or Vol(Merp,q) = Vol(Sn−2)
if p = 1, and “h.o.t.” stands for terms which are quadratic or higher order
in φ and its derivatives.

Remark 7.10.

(i) Since φ depends only on t the linearized equation

ΔX∗g
S2n−1φ+ 2nφ = 0

reduces to

(7.11) φ̈ = −2n|ẇ|2φ.

By (3.16) and (3.14) we have

( (q − ny)φ̇+ nẏφ ) ˙ = (q − ny) |ẇ|2 (ΔX∗g
S2n−1φ+ 2nφ),
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which shows that for any constant A the first order linear ODE

(7.12) (q − ny)φ̇+ nẏφ = A

is a first integral of the second order linearized Equation (7.11).
Clearly, φ = q − ny satisfies (7.12) with A = 0 and hence is a solution
of the linearized Equation (7.11).

(ii) There is a simple geometric explanation for the solution q − ny to
the rotationally invariant linearized equation including for the fact
that it satisfies (7.12) with constant A = 0; to explain this recall the
discussion in 3.6. For any special Legendrian X the variation vector
field V associated with the 1-parameter variation ˜Tx ◦X arises from
a function ϕ which solves the linearized equation. The function ϕ is
ft ◦X, where

(7.13) ft(z1, ..., zn) =
1
2p

p
∑

i=1

|zi|2 − 1
2q

n
∑

i=p+1

|zi|2,

which satisfies

(7.14) J∇ft = t =
d˜Tx
dx

∣

∣

∣

∣

∣

x=0

,

i.e., it is the function whose associated Hamiltonian vector field is t,
the infinitesimal generator of {˜Tx}. Recall that the 1-parameter sub-
group {˜Tx} commutes with every ˜O ∈ SO(p) × SO(q). Hence for any x,
˜Tx ◦Xτ is also an SO(p) × SO(q)-invariant special Legendrian congru-
ent to Xτ . Since ft is SO(p) × SO(q)-invariant its restriction to every
meridian is constant, i.e., ft ◦Xτ is some rotationally invariant func-
tion. Calculation shows this function is ft ◦Xτ = q−ny

2pq . q − ny satisfies
(7.12) with A = 0 because ˜Tx ◦Xτ is just a repositioning of Xτ .

(iii) The variation vector field corresponding to varying τ in Xτ also arises
from a rotationally invariant solution ϕ of the linearized equation, but
by Lemma 7.9 it must satisfy (7.12) with a nonzero constant A.

(iv) Recall (see, e.g., [1, Section 27]) that if ψ and φ are solutions of the
second order linear equation (7.11) then the Wronskian Wψ,φ(t) :=
ψφ̇− ψ̇φ is constant and ψ, φ span the space of solutions of (7.11)
if and only if this constant is nonzero. The expression on the LHS
of (7.12) is precisely the Wronskian where ψ = q − ny. Hence to find
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a basis of solutions for (7.11) it suffices to find a function φ satisfying
(7.12) with say A = 1.

Proof. The proof is a rather long calculation making full use of the expression
for Xτ in terms of wτ , the definition of the perturbation of a Legendrian
submanifold by a function and repeated use of the equations satisfied by wτ ,
in particular (3.8), (3.12), (3.13) and (3.16). Because of the importance of
the lemma for calculating the asymptotics of p̂τ as τ → 0 we outline some
important steps in the calculation.

To simplify the notation we write X = Xτ and Y = (Xτ )φ. To compute
the t-flux through the meridian ({t} × Merp,q) of Y using (3.32) we need to
compute the following: the pullback metric Y ∗g S2n−1 , the unit conormal η
to the meridian, the volume form induced on the meridian by Y ∗g S2n−1 and
the inner product η · t.

We proceed to calculate Y ∗g S2n−1 . We first assume that p > 1. The def-
inition of (X)φ yields

(7.15) Y = X + i|ẇ|−2φ̇ Ẋ + 2iφX + h.o.t.,

and therefore

Ẏ = Ẋ + iẌ (|ẇ|−2φ̇) + iẊ ( φ̇ (|ẇ|−2)˙+ |ẇ|−2φ̈+ 2φ ) + 2iX φ̇+ h.o.t.
(7.16)

We compute that

|Ẏ |2 = |Ẋ|2 + 2|ẇ|−2φ̇ Ẋ · iẌ + h.o.t.

(many terms vanish using the fact thatX is Legendrian in S
2n−1 and because

we only keep terms linear in φ and its derivatives). From the definition of
Xτ in terms of wτ we find

Ẋ · iẌ = Im(ẇ1ẅ1 + ẇ2ẅ2).

Differentiation of (3.8) to compute the second derivatives of w and subse-
quent persistent use of (3.8) to replace all first derivatives of w eventually
yields

ẇ1ẅ1 + ẇ2ẅ2 = wp1w
q
2 (1 − y)p−1yq−1

×
(

(p− 1)
|w2|2
|w1|2 + (p− q) − (q − 1)

|w1|2
|w2|2

)

.
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Using (3.16), (3.12) and some algebraic manipulation we obtain Ẋ · iẌ =
2τ |ẇ|2

(

p−1
|w1|2 − q−1

|w2|2
)

, and hence

(7.17) |Ẏ |2 = |ẇ|2 + 4τ
(

p− 1
|w1|2 − q − 1

|w2|2
)

φ̇+ h.o.t.

A straightforward but somewhat lengthy calculation shows that for p > 1

Y ∗g S2n−1 =
(

|ẇ|2 + 4τ
(

p− 1
|w1|2 − q − 1

|w2|2
)

φ̇

)

dt2

(7.18)

+ (|w1|2 − 4τ |ẇ|−2φ̇) g Sp−1 + (|w2|2 + 4τ |ẇ|−2φ̇) g Sq−1 + h.o.t.

and for p = 1

Y ∗g S2n−1 =
(

|ẇ|2 − 4τ(n− 2)|w2|−2φ̇
)

dt2(7.19)

+ (|w2|2 + 4τ |ẇ|−2φ̇) g Sn−2 + h.o.t.

When φ = 0 these expressions reduce to the induced metric gτ given in
3.30.ii. Hence in both cases the unit conormal η to the meridian {t} × Merp,q

is η = Ẏ
|Ẏ | + h.o.t. Combining this with (7.18) and (7.19), we have

η · tdv =

⎧

⎪

⎨

⎪

⎩

(

1 − 4τ |ẇ|−2

(

p − 1

|w1|2 − q − 1

|w2|2
)

φ̇

)

Ẏ · tdvSp−1dvSq−1 + h.o.t. if p > 1;

(

1 + 4τ(n − 2)|ẇ|−2|w2|−2φ̇
)

Ẏ · tdvSn−2 + h.o.t. if p = 1.

(7.20)

It remains to calculate Ẏ · t. Recall that t at the point (z1, . . . , zn) ∈ C
n

is given by

t(z1, . . . , zn) = i (z1/p, . . . , zp/p,−zp+1/q, . . . ,−zn/q).

Since Y is special Legendrian, and φ depends only on t it satisfies the lin-
earized equation (7.11). Substituting (7.11) into (7.16) and also using the
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expression for Y from (7.15) we calculate that

Ẏ · t =
1
p

Re
(

− iẇ1w1 + ẅ1w1|ẇ|−2φ̇+ ẇ1w1(|ẇ|−2)˙ φ̇

− ẇ1w12nφ+ |w1|22φ̇− |ẇ1|2|ẇ|−2φ̇
)

− 1
q

Re
(

− iẇ2w2 + ẅ2w2|ẇ|−2φ̇+ ẇ2w2(|ẇ|−2)˙ φ̇

− ẇ2w22nφ+ |w2|22φ̇− |ẇ2|2|ẇ|−2φ̇
)

.

We claim that this expression for Ẏ · t can be simplified to
(7.21)

Ẏ · t =
n

pq

(

2τ +
(

q|w1|2 − p|w2|2 + 8τ2|ẇ|−2

(

p− 1
|w1|2 − q − 1

|w2|2
))

φ̇+ nẏφ

)

.

Granted this claim the Lemma follows by using (7.20) and (7.21) to evaluate
the t-flux integral (3.32) up to higher order terms. For completeness, we
indicate how to obtain (7.21). The zero order terms and the terms involving
only φ are easily computed using (3.8), (3.12) and (3.16). Combining the
eight terms involving φ̇ in the expression above (7.21) to yield the coefficient
of φ̇ in (7.21) is more involved. First, we rewrite the eight terms appearing
as the coefficient of φ̇ in the form

1
p

(

∂t(Re(w1ẇ1)|ẇ|−2) + 2|w1|2 − 2|w2
2|
)

(7.22)

− 1
q

(

∂t(Re(w2ẇ2)|ẇ|−2) + 2|w2|2 − 2|w2
1|
)

=
n

pq

(

∂t(Re(w1ẇ1)|ẇ|−2) + 2|w1|2 − 2|w2|2
)

.

Rewrite Re(w1ẇ1)|ẇ|−2 as Re(w1w2w
1−p
1 w1−q

2 ) using (3.8) and (3.16).
Repeated use of (3.8) yields

∂t(w1w2w
1−p
1 w1−q

2 ) = |w2|2 − |w1|2 +
wp1w

q
2

wp1w
q
2

(

(1 − p)|w2|2 − (1 − q)|w1|2
)

,

while (3.16), (3.12) and (3.13) imply that

Re
(

wp1w
q
2

wp1w
q
2

)

= 1 − 8τ2

f(y)
= 1 − 8τ2

|ẇ|2|w1|2|w2|2 .
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Hence

∂t(Re(w1ẇ1)|ẇ|−2) = (2 − p)|w2|2 − (2 − q)|w1|2(7.23)

+ 8τ2|ẇ|−2

(

p− 1
|w1|2 − q − 1

w2
2

)

.

Combining (7.22) with (7.23) gives us the coefficient of φ̇ as it appears in
(7.21). �

The asymptotics of the angular period p̂τ as τ → 0 will follow from the
following result which expresses the derivative of the angular period for all
values of τ in terms of the behaviour of a particular (rotationally invariant)
solution Q (depending on τ) of the linearized equation (7.11).

Lemma 7.24. The angular period p̂τ is an analytic function of τ for
τ ∈ (0, τmax). For any 0 < τ < τmax the derivative of the angular period p̂τ
satisfies

(7.25)
dp̂τ
dτ

= 4(n− 1)
(

Q(pτ )
q − ny(pτ )

− Q(0)
q − ny(0)

)

, when p = 1;

(7.26)
dp̂τ
dτ

= 4pq
(

Q(p+
τ )

q − ny(p+
τ )

− Q(−p−τ )
q − ny(−p−τ )

)

, when p > 1;

where Q(t) is the unique solution to the rotationally-invariant linearized
equation (7.11) with initial data

n ẏ(p∗τ )Q(p∗τ ) = 1, Q̇(p∗τ ) = 0, when p = 1;(7.27)

n ẏ(0)Q(0) = 1, Q̇(0) = 0, when p > 1;(7.28)

where for p = 1 p∗τ is the unique t ∈ (0, pτ ) such that y(p∗τ ) = n−1
n = q

n .

Remark 7.29. For p = 1 y(p∗τ ) = q/n and p∗τ is locally characterized by
this property. Also ẏ(p∗τ ) = −4

√

τ2
max − τ2 �= 0 for τ ∈ (−τmax, τmax). Hence

by the real analytic Implicit Function Theorem p∗τ is an analytic function of
τ in (−τmax, τmax). In particular, it is bounded independent of τ as τ → 0.
For p > 1 y(0) = q/n and ẏ(0) = −4

√

τ2
max − τ2.

Hence in both cases the initial conditions for Q vary analytically with
|τ | < τmax. Also by 3.30.i the coefficients of the linearized equation (7.11)
depend analytically on τ ∈ (−τmax, τmax). Combining all these facts we see
that the solution Q to (7.11) defined above depends analytically on τ ∈
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(−τmax, τmax). Therefore, if t stays in a bounded interval I ⊂ R then
supt∈I |Q(t)| is bounded independent of τ as τ → 0. In particular, the term
Q(0) appearing in (7.25) is bounded as τ → 0.

Proof. Real analyticity of p̂τ for τ ∈ (0, τmax) follows from real analyticity of
wτ , p+

τ , p−τ and pτ and the definition of p̂τ (4.23). We fix any τ ∈ (0, τmax)
and consider σ sufficiently close to τ which we will allow to vary.

Consider first the case p = 1. By 5.15 X := Xτ has the symmetries

˜T ◦X = X ◦ T, ˜Tp̂τ
◦X = X ◦ Tpτ

.

Y := Xσ shares the ˜T symmetry

(7.30) ˜T ◦ Y = Y ◦ T,

but not the symmetry with respect to ˜Tp̂τ
(because we have changed from τ

to σ). However, the following repositioned and reparametrized version of Xσ

Z := ˜Tp̂τ−p̂σ
◦Xσ ◦ Tpσ−pτ

,

does share the other (σ-independent) symmetry of X, i.e.,

(7.31) ˜Tp̂τ
◦ Z = Z ◦ Tpτ

.

Since {˜Tx} commutes with O(n− 1) by 5.20.ii the immersion Z is O(n− 1)-
invariant like X and Y .

When p > 1 we write

X := Xτ , Y := ˜Tx− ◦Xσ ◦ Tp−
τ −p−

σ
, Z := ˜Tp̂τ−p̂σ

◦ Y ◦ Tpσ−pτ
,

where x− is defined to be the small number which ensures that the symme-
tries of X in (5.23d) and (5.23c) (or (5.29d) and (5.29c)) apply to Y and Z
respectively as

(7.32) ˜T− ◦ Y = Y ◦ T−p−
τ

and

(7.33) ˜T+ ◦ Z = Z ◦ Tp+
τ
,

where ˜T− and ˜T+ are defined in (5.24b) and (5.24a) respectively (and are
independent of σ).
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Provided σ is sufficiently close to τ we clearly have unique small vec-
tor fields V and W normal to X|(−2pτ ,2pτ )×Merp,q , and diffeomorphisms close
to the identity Dσ, Eσ : (−2pτ , 2pτ ) × Merp,q → Cylp,q, such that on
(−2pτ , 2pτ ) × Merp,q

Y = XV ◦Dσ, and Z = XW ◦ Eσ.
Clearly V,W,Dσ, Eσ are smooth and depend smoothly on σ. Moreover by the
appropriate version of the Legendrian neighbourhood theorem (see, e.g., [20,
Lemma 2.4]) there are unique small smooth functions ˜φσ, ϕ̃σ : (−2pτ , 2pτ ) ×
Merp,q → R depending smoothly on σ such that

V = 2˜φσ J
∂

∂r
+ J∇˜φσ, W = 2ϕ̃σ J

∂

∂r
+ J∇ϕ̃σ,

and therefore by 7.8 XV = X
˜φσ

and XW = Xϕ̃σ
.

We want to show that ˜φσ and ϕ̃σ inherit certain symmetries from the
symmetries of X, Y and Z given above. We claim that ˜φσ and ϕ̃σ depend
only on t and that

−˜φσ ◦ T = ˜φσ, −ϕ̃σ ◦ Tpτ
= ϕ̃σ if p = 1;(7.34)

−˜φσ ◦ T−p−
τ

= ˜φσ, −ϕ̃σ ◦ Tp+
τ

= ϕ̃σ if p > 1.(7.35)

To see the first symmetry of (7.34) we combine 5.20.iii with the ˜T sym-
metry of X to obtain

˜T ◦X
˜φσ

= (˜T ◦X)−˜φσ
= (X ◦ T)−˜φσ

= X−˜φσ◦T ◦ T.

Combining this with the symmetry (7.30) of Y we conclude

X−˜φσ◦T ◦ T ◦Dσ = X
˜φσ

◦Dσ ◦ T.

The uniqueness statement in the Legendrian neighbourhood theorem now
implies that −˜φσ ◦ T = ˜φσ as required. Arguing in the same way using the
symmetry of X and Z (7.31) with respect to ˜Tp̂τ

we conclude that ϕ̃ satisfies
the second symmetry of (7.34). The analogous argument using the symmetry
of X, Y and Z under any O ∈ O(n− 1) (recall (5.16a)) implies that

˜φσ ◦ O = ˜φσ, ϕ̃σ ◦ O = ϕ̃σ, for any O ∈ O(n− 1),

and therefore ˜φσ and ϕ̃σ depend only on t. For p > 1 the same sort of
arguments establish the symmetries in (7.35) and the rotational symmetry
of ˜φσ and ϕ̃σ.
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Linearizing Z := ˜Tp̂τ−p̂σ
◦ Y ◦ Tpσ−pτ

around σ = τ , using 7.14 and com-
paring normal components we obtain the following important equality

(7.36) ϕ = φ −
(

dp̂τ
dτ

∣

∣

∣

∣

τ

)

ft ◦X,

with ft as defined in 7.13 and

ϕ =
dϕ̃σ
dσ

∣

∣

∣

∣

σ=τ

and φ =
d˜φσ
dσ

∣

∣

∣

∣

∣

σ=τ

.

Recall that

ft ◦X =
q − ny

2pq
.

Differentiating the expression for the linearized t-flux from Lemma 7.9, we
find that φ satisfies

(7.37) (q − ny)φ̇+ nẏφ = 2.

Using the initial conditions for Q given in (7.27) and (7.28) we see that the
Wronskian W (t) of q − ny with Q satisfies

(7.38) W (t) := (q − ny)Q̇+ nẏ Q ≡ 1,

and hence by Remark 7.10 Q and q − ny span the solution space of the
linearized equation (7.11). Hence from (7.37) there is a unique constant b
such that

(7.39) φ = 2 ( b(q − ny) +Q ) .

φ and ϕ inherit the symmetries of ˜φσ and ϕ̃σ (7.34) and (7.35) (for the case
p = 1 and p > 1, respectively). In particular, we have

φ(0) = 0, and ϕ(pτ ) = 0 when p = 1;

and
φ(−p−τ ) = 0, and ϕ(p+

τ ) = 0 when p > 1.

We determine b by using the values of φ given above

(7.40) b = − Q(0)
q − ny(0)

if p = 1, or b = − Q(−p−τ )
q − ny(−p−τ )

if p > 1.
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Similarly (7.36) together with the above values of ϕ implies

dp̂τ
dτ

=
2(n− 1)
q − ny(pτ )

φ(pτ ) if p = 1,

and
dp̂τ
dτ

=
2pq

q − ny(p+
τ )
φ(p+

τ ) if p > 1.

Combining these expressions with (7.39) and (7.40) yields (7.25) and (7.26).
�

Proposition 7.41. For τ > 0 the angular period satisfies

(7.42)
dp̂τ
dτ

∼ 4p
q

pτ p̂τ − π

2
∼ 2p τpτ .

Proof. We already proved in [13, Prop 7.7] that limτ→0 p̂τ = π
2 . The results

will now follow easily from Lemma 7.24 by estimating the appropriate values
of Q when τ is sufficiently small.

To achieve this we subdivide the interval (0, pτ ) when p = 1 or (−p−τ , p+
τ )

when p > 1 as in the proof of 7.3. By Remark 7.29 we obtain bounds on Q(t)
independent of τ except when y(t) is close to ymin and in the case p > 1 also
when y(t) is close to ymax. To deal with these regions we notice that away
from zeros of q − ny the first order ODE for Q (7.38) can be rewritten as

(7.43)
(

Q

q − ny

)˙
=

1
(q − ny)2

.

Using (3.13) and (7.43) we see that in the vicinity of ymax or ymin, Q̇ is close
to (q − ny)−1, which is close to either −1/p or 1/q respectively. Using the
asymptotics from 7.3 we conclude

Q(pτ ) ∼ 1
n− 1

pτ when p = 1,

or

Q(−p−τ ) ∼ 1
p
p−τ and Q(p+

τ ) ∼ 1
q
p+
τ when p > 1,

which together with Lemma 7.24 implies the result for dp̂τ

dτ claimed. �
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Corollary 7.44. Fix admissible integers p and q. Define N ⊂ (0, τmax) by

N := {τ ∈ (0, τmax) | p̂τ ∈ πQ}.

Then

(i) τ ∈ N if and only if the (p, q)-twisted SL curve wτ is closed.

(ii) N is a countably infinite dense subset of (0, τmax).

(iii) For τ ∈ N the SO(p) × SO(q)-invariant special Legendrian immersion
Xτ : Cylp,q → S

2(p+q)−1 factors through a special Legendrian embed-
ding of the closed manifold Cylp,q/Per(Xτ ), where Per(Xτ ) ∼= Z ⊂
Sym(Xτ ) ⊂ Diff(Cylp,q) is the following infinite cyclic subgroup:

Per(Xτ ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

〈(Tk0pτ ◦ − IdSn−1)〉 if p = 1 and k0 is even and n is odd;

〈(Tk0pτ ◦ (−1)j IdSp−1 ◦(−1)k IdSq−1)〉 if p > 1 and k0 is even and n is odd;

〈T2k0pτ 〉 otherwise;

where j = q/ hcf(p, q), k = p/hcf(p, q) and k0 is the order of the rota-
tional period ˜T2p̂τ

.

Proof. (i–ii): Except for the statement about the density of the subset N
this is proved in [13, Thm 7.15]; the density of N follows from the same argu-
ment making use of the refined asymptotics for p̂τ proved in 7.41. From 4.49
the condition τ ∈ N is equivalent to the condition that the rotational period
T̂2p̂τ

(recall (3.9)) of wτ is of finite order k0 (recall Definition 4.48).
(iii): this follows by combining the structure of Per(Xτ ) given in 5.44
with 4.44. �
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