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Desingularizing isolated conical singularities:

Uniform estimates via weighted Sobolev spaces

Tommaso Pacini

We define a very general “parametric connect sum” construction
that can be used to eliminate isolated conical singularities of Rie-
mannian manifolds. We then show that various important analytic
and elliptic estimates, formulated in terms of weighted Sobolev
spaces, can be obtained independently of the parameters used in
the construction. Specifically, we prove uniform estimates related
to (i) Sobolev Embedding Theorems, (ii) the invertibility of the
Laplace operator and (iii) Poincaré and Gagliardo–Nirenberg–
Sobolev-type inequalities.

Our main tools are the well-known theories of weighted Sobolev
spaces and elliptic operators on “conifolds”. We provide an overview
of both, together with an extension of the former to general Rie-
mannian manifolds.

For a geometric application of our results we refer the reader to
our paper [15] concerning desingularizations of special Lagrangian
conifolds in C

m.
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1. Introduction

It is a common problem in differential geometry to produce examples of
(possibly immersed) Riemannian manifolds (L, g) satisfying a given geo-
metric constraint, usually a non-linear partial differential equation, on the
metric (Einstein, constant scalar curvature, etc.) or on the immersion (con-
stant mean curvature, minimal, etc.). If L (or the immersion) happens to
be singular, one then faces the problem of “desingularizing” it to produce
a new, smooth, Riemannian manifold satisfying the same constraint. Often,
one actually hopes to produce a family (Lt, gt) of manifolds satisfying the
constraint and which converges in some sense to (L, g) as t → 0. One typical
way to solve this problem is via “gluing”. We outline this construction as
follows, focusing for simplicity on the situation, where L has only isolated
point singularities and the constraint is on the metric.

Step 1: For each singular point x ∈ L, we look for an explicit smooth
“local model”: i.e., a manifold (L̂, ĝ) which satisfies a related, scale-invariant,
constraint and which, outside of some compact region, is topologically and
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metrically similar to an annulus B(x, ε1) \ B(x, ε2) in L, centred in the
singularity. We can then glue L̂ onto the manifold L \ B(x, ε2), using the
“neck region” B(x, ε1) \ B(x, ε2) to interpolate between the two metrics.
The fact that the neck region is “small” is usually not a problem: one
can simply rescale ĝ to t2ĝ, so that now (L̂, t2ĝ) is of similar size. The
resulting manifold, which we denote (L̂#L, ĝ#g), satisfies the constraints
outside of the neck region simply by construction. If the interpolation is
done carefully we also get very good control over what happens on the
neck. We think of (L̂#L, ĝ#g) as an “approximate solution” to the gluing
problem. Rescaling also gives a way to build families: the idea is to glue
(L̂, t2ĝ) into B(x, ε1) \ B(x, tε2), producing a family (Lt, gt); intuitively, as
t → 0 the compact region in L̂ collapses to the singular point x and Lt

converges to L.
Step 2: We now need to perturb each (Lt, gt) so that the resulting family

satisfies the constraint globally. Thanks to a linearization process, the per-
turbation process often boils down to studying a linear elliptic system on
gt. One of the main problems is to verify that this system satisfies estimates
which are uniform in t. This is the key for obtaining the desired perturbation
for all sufficiently small t. Roughly speaking, there is often a delicate balance
to be found as t → 0: on the one hand, if Lt was built properly, as t → 0 it
will get closer to solving the constraint; on the other hand, it becomes more
singular. Uniform estimates are important in proving that this balance can
be reached.

The geometric problem defines the differential operator to be studied.
However, this operator is often fairly intrinsic, and can be defined indepen-
dently of the geometric specifics. The necessary estimates may likewise be of
a much more general nature. Filtering out the geometric “super-structure”
and concentrating on the analysis of the appropriate category of abstract
Riemannian manifolds will then enhance the understanding of the problem,
leading to improved results and clarity. The first goal of this paper is thus
to set up an abstract framework for dealing with gluing constructions and
the corresponding uniform estimates. Here, “abstract” means: independent
of any specific geometric problem. We focus on gluing constructions con-
cerning Riemannian manifolds with isolated conical singularities. These are
perhaps the simplest singularities possible, but in the gluing literature they
often appear as an interesting and important case. Our framework involves
two steps, parallel to those outlined above.

Step A: In Section 11 we define a general connect sum construction
between Riemannian manifolds, extrapolating from standard desingulariza-
tion procedures.
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Step B: We show how to produce uniform estimates on these connect
sum manifolds, by presenting a detailed analysis of three important
Problems: (i) Sobolev Embedding Theorems, (ii) invertibility of the Laplace
operator and (iii) Poincaré and Gagliardo–Nirenberg–Sobolev-type
inequalities. The main results are Theorems 11.7, 12.2, 12.3, 13.1 and
Corollary 13.2.

Our Step A is actually much more general than Step 1, as described
above: it is specifically designed to deal with both compact and non-compact
manifolds and it allows us to replace the given singularity not only with
smooth compact regions but also with non-compact “asymptotically conical
(AC) ends” or even with new singular regions. It also allows for different
“neck-sizes” around each singularity. In this sense it offers a very broad and
flexible framework to work with.

The range of possible estimates covered by our framework is clearly
much wider than the set of Problems (i)–(iii) listed in Step B. Indeed, the
underlying, well-known, theory of elliptic operators on conifolds is extremely
general. Within this paper, this choice is to be intended as fairly arbitrary:
among the many possible, we choose three estimates of general interest
but differing one from the other in flavour: Problem (i) is of a mostly
local nature; Problems (ii)–(iii) are global. In reality, however, our choice
of Problems (i)–(iii) is based on the very specific geometric problems we
happen to be interested in. The second goal of this paper is thus to lay
down the analytic foundations for our papers [14, 15] concerning deforma-
tions and desingularizations of submanifolds whose immersion map satisfies
the special Lagrangian constraint. The starting point for this work was a
collection of gluing results concerning special Lagrangian submanifolds due
to Arezzo–Pacard [2], Butscher [3], Lee [9] and Joyce [6, 7], and parallel
results concerning coassociative submanifolds due to Lotay [12]. It slowly
became apparent, thanks also to many conversations with some of these
authors, that several parts of these papers could be simplified, improved
or generalized: related work is currently still in progress. In particular,
building approximate solutions and setting up the perturbation problem
requires making several choices, which then influence the analysis rather
drastically. A third goal of the paper is thus to present a set of choices
which leads to very clean, simple and general results. One such choice con-
cerns the parametrization of the approximate solutions: parametrizing the
necks so that they depend explicitly on the parameter t is one ingredi-
ent in obtaining uniform estimates. A second ingredient is the consistent
use, even when dealing with compact manifolds, of weighted rather than
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standard Sobolev spaces. Although such choices may seem obvious to some
members of the “gluing community”, it still seems useful to emphasize this
point.

For expository purposes we found it useful to split the paper into three
separate parts. Part I is devoted to weighted Sobolev spaces and the
corresponding Sobolev Embedding Theorems. The main example we are
interested in is the case of “conifolds”; in this special case the Sobolev
Embedding Theorems, cf. Corollary 6.8, are well-known. However, Problem
(i) requires keeping close track of how the corresponding Sobolev constants
depend on the conifolds and on the other data used in the connect sum con-
struction. It is thus useful to step back and investigate exactly which prop-
erties of Sobolev spaces are crucial to the validity of Embedding Theorems.
In the standard, i.e., non-weighted, case, the book by Hebey [4] provides
an excellent introduction to this problem. Given the lack of an analogous
reference for weighted Sobolev spaces, we devote a fair amount of attention
to their definition and properties. Our main result in Part I is Theorem 5.1,
which proves the validity of the Sobolev Embedding Theorems under fairly
general hypotheses on the “scale” and “weight” functions with which we
define these spaces.

Part II is devoted to the Fredholm theory of elliptic operators on coni-
folds. This theory is well-known but, for the reader’s convenience, we review
it (together with its asymptotically cylindrical counterpart) in Sections 7
and 9. Sections 8 and 10 contain instead some useful consequences of the
Fredholm theory.

Part III contains the main results of this paper, corresponding to Steps
A and B, above: the definition of “conifold connect sums” and the uniform
estimates, Problems (i)–(iii).

We conclude with one last comment. Depending on the details, the con-
nect sum construction can have two outcomes: compact or non-compact
manifolds. In the context of weighted spaces, Problem (i) does not note
the difference. Problems (ii) and (iii) require instead that the kernels of
the operators in question vanish. On non-compact manifolds this can be
achieved very simply, via an a priori choice of weights: roughly speaking,
we require that there exist non-compact “ends”, then put weights on them
which kill the kernel. This topological assumption is perfectly compatible
with the geometric applications described in [15]. On compact manifolds it
is instead necessary to work transversally to the kernel; uniform estimates
depend on allowing the subspace itself to depend on the parameter t. We
refer to Section 12 for details.
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2. Preliminaries

Let (L, g) be an oriented m-dimensional Riemannian manifold. We can iden-
tify its tangent and cotangent bundles via the maps

(2.1) TxL → T ∗
xL, v �→ v# := g(v, ·), with inverse T ∗

xL → TxL, α �→ α�.

There are induced isomorphisms on all higher-order tensor bundles over L.
In particular, the metric tensor g, as a section of (T ∗L)2, corresponds to
a tensor g�, section of (TL)2. This tensor defines a natural metric on T ∗L
with respect to which the map of Equation (2.1) is an isometry. In local
coordinates, if g = gijdxi ⊗ dxj then g� = gij∂i ⊗ ∂j , where (gij) denotes the
inverse matrix of (gij).

Given any x ∈ L we denote by ix(g) the injectivity radius at x, i.e.,
the radius of the largest ball in TxL on which the exponential map is a
diffeomorphism. We then define the injectivity radius of L to be the number
i(g) := infx∈Lix(g). We denote by Ric(g) the Ricci curvature tensor of L:
for each x ∈ L, this gives an element Ricx(g) ∈ T ∗

xL ⊗ T ∗
xL.

Let E be a vector bundle over L. We denote by C∞(E) (respectively,
C∞

c (E)) the corresponding space of smooth sections (respectively, with com-
pact support). If E is a metric bundle we can define the notion of a metric
connection on E: namely, a connection ∇ satisfying

∇(σ, τ) = (∇σ, τ) + (σ,∇τ),

where (·, ·) is the appropriate metric. We then say that (E,∇) is a metric
pair.

Recall that coupling the Levi–Civita connection on TL with a given
connection on E produces induced connections on all tensor products of
these bundles and of their duals. The induced connections depend linearly
on the initial connections. Our notation will usually not distinguish between
the initial connections and the induced connections: this is apparent when
we write, for example, ∇2σ (short for ∇∇σ). Recall also that the difference
between two connections ∇, ∇̂ defines a tensor A := ∇− ∇̂. For example, if
the connections are on E then A is a tensor in T ∗L ⊗ E∗ ⊗ E. Once again,
we will not distinguish between this A and the A defined by any induced
connections.

Let E, F be vector bundles over L. Let P : C∞(E) → C∞(F ) be a linear
differential operator with smooth coefficients, of order n. We can then write
P =

∑n
i=0 Ai · ∇i, where Ai is a global section of (TL)i ⊗ E∗ ⊗ F and ·
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denotes an appropriate contraction. Note that since P is a local operator it
is completely defined by its behaviour on compactly-supported sections.

Remark 2.1. Assume P =
∑n

i=0 Ai · ∇i. Choose a second connection ∇̂ on
E and set A := ∇− ∇̂. Substituting ∇ = ∇− ∇̂ + ∇̂ = A + ∇̂ allows us to
write P in terms of ∇̂. Note that the new coefficient tensors Âi will depend
on A and on its derivatives ∇̂kA.

Now assume E and F are metric bundles. Then P admits a formal
adjoint P ∗ : C∞(F ) → C∞(E), uniquely defined by imposing

(2.2)
∫

L
(Pσ, τ)F volg =

∫

L
(σ, P ∗τ)E volg, ∀σ ∈ C∞

c (E), τ ∈ C∞
c (F ).

P ∗ is also a linear differential operator, of the same order as P .

Example 2.2. The operator ∇ : C∞(E) → C∞(T ∗L ⊗ E) has a formal
adjoint ∇∗ : C∞(T ∗L ⊗ E) → C∞(E). Given P =

∑n
i=0 Ai · ∇i, we can

write P ∗ in terms of ∇∗. For example, choose a smooth vector field X on
L and consider the operator P := ∇X = X · ∇ : C∞(E) → C∞(E). Then
(∇X)∗σ = ∇∗(X# ⊗ σ).

The ∇-Laplace operator on E is defined as Δ := ∇∗∇ : C∞(E) →
C∞(E). When E is the trivial R-bundle over L and we use the Levi–Civita
connection, this coincides with the standard positive Laplace operator acting
on functions

(2.3) Δg := −trg(∇2) = −g� · ∇2 : C∞(L) → C∞(L).

Furthermore ∇ = d and ∇∗ = d∗ so this Laplacian also coincides with the
Hodge Laplacian d∗d. On differential k-forms the Levi–Civita ∇-Laplacian
and the Hodge Laplacian coincide only up to curvature terms.

To conclude, let us recall a few elements of functional analysis. We now
let E denote a Banach space. Then E∗ denotes its dual space and 〈·, ·〉
denotes the duality map E∗ × E → R.

Let P : E → F be a continuous linear map between Banach spaces.
Recall that the norm of P is defined as ‖P‖ := sup|e|=1|P (e)| = supe�=0

(|P (e)|/|e|). This implies that, ∀e �= 0, |P (e)| ≤ ‖P‖ · |e|. If P is injective
and surjective then it follows from the Open Mapping Theorem that its
inverse P−1 is also continuous. In this case inf|e|=1|P (e)| > 0 and we can
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calculate the norm of P−1 as follows:

‖P−1‖ = supf �=0

|P−1(f)|
|f | = supe�=0

|e|
|P (e)| = sup|e|=1

1
|P (e)|(2.4)

=
1

inf|e|=1|P (e)| .

Recall that, given any subspace Z ≤ F , the annihilator of Z is defined as

Ann(Z) := {φ ∈ F ∗ : 〈φ, z〉 = 0, ∀z ∈ Z}.

Note that Ann(Z) = Ann(Z). Let P ∗ : F ∗ → E∗ be the dual map, defined by
〈P ∗(φ), e〉 := 〈φ, P (e)〉. It is simple to check that Ann(Im(P )) = Ker(P ∗).

Recall that the cokernel of P is defined to be the quotient space Coker
(P ) := F/Im(P ). Assume the image Im(P ) of P is a closed subspace of F ,
so that Coker(P ) has an induced Banach space structure. The projection
π : F → Coker(P ) is surjective so its dual map π∗ : (Coker(P ))∗ → F ∗ is
injective. The image of π∗ coincides with the space Ann(Im(P )) so π∗ defines
an isomorphism between (Coker(P ))∗ and Ann(Im(P )). We conclude that
there exists a natural isomorphism (Coker(P ))∗ 
 Ker(P ∗).

Remark 2.3. It is clear that Ker(P ∗) can be characterized as follows:

φ ∈ Ker(P ∗) ⇔ 〈φ, P (e)〉 = 0, ∀e ∈ E.

On the other hand, the Hahn–Banach theorem shows that f ∈ Z iff 〈φ, f〉 =
0, ∀φ ∈ Ann(Z). Applying this to Z := Im(P ), we find the following char-
acterization of Im(P ):

f ∈ Im(P ) ⇔ 〈φ, f〉 = 0, ∀φ ∈ Ker(P ∗).

We say that P is Fredholm if its image Im(P ) is closed in F and both
Ker(P ) and Coker(P ) are finite-dimensional. We then define the index of P
to be

i(P ) := dim(Ker(P )) − dim(Coker(P )) = dim(Ker(P )) − dim(Ker(P ∗)).

Important remarks: Throughout this paper we will often encounter
chains of inequalities of the form

|e0| ≤ C1|e1| ≤ C2|e2| ≤ . . .
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The constants Ci will often depend on factors that are irrelevant within the
given context. In this case we will sometimes simplify such expressions by
omitting the subscripts of the constants Ci, i.e., by using a single constant C.

We assume all manifolds are oriented. In Part 2 of the paper, we will
work under the assumption m ≥ 3.

Part 1. Sobolev Embedding Theorems

The goal of this part is to provide a self-contained overview of certain aspects
of the theory of weighted Sobolev spaces on Riemannian manifolds. Aside
from the special case of “conifolds”, discussed in Section 6 and which is well-
known, the point of view we present here applies to manifolds in general and
we would not know where to find it in the literature. In Sections 4 and 5,
we find it useful to separate the “scaling factor” ρ from the “weight” w:
distinguishing them in this way appears not to be a standard choice in the
literature, but we find it useful so as to emphasize their different roles in the
theory.

3. Review of the theory of standard Sobolev spaces

We now introduce and discuss Sobolev spaces on manifolds. A good refer-
ence, which at times we follow closely, is Hebey [4].

Let (E,∇) be a metric pair over (L, g). The standard Sobolev spaces are
defined by

W p
k (E) := Banach space completion of the space(3.1)

{σ ∈ C∞(E) : ‖σ‖W p
k

< ∞},

where p ∈ [1,∞), k ≥ 0 and we use the norm ‖σ‖W p
k

:=
(
Σk

j=0

∫
L |∇jσ|p volg

)1/p
. We will sometimes use Lp to denote the space W p

0 .

Remark 3.1. At times we will want to emphasize the metric g rather than
the specific Sobolev spaces. In these cases, we will use the notation ‖ · ‖g.

It is important to find conditions ensuring that two metrics g, ĝ on L
(corresponding to Levi–Civita connections ∇, ∇̂), define equivalent Sobolev
norms, i.e., such that there exists C > 0 with (1/C)‖ · ‖g ≤ ‖ · ‖ĝ ≤ C‖ · ‖g.
In this case the corresponding two completions, i.e., the two spaces W p

k ,
coincide.
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Definition 3.2. We say that two Riemannian metrics g, ĝ on a manifold
L are equivalent if they satisfy the following assumptions:

A1: There exists C0 > 0 such that

(1/C0)g ≤ ĝ ≤ C0g.

A2: For all j ≥ 1 there exists Cj > 0 such that

|∇j ĝ|g ≤ Cj .

Remark 3.3. It may be useful to emphasize that the conditions of Defini-
tion 3.2 are symmetric in g and ĝ. Assumption A1 is obviously symmetric.
Assumption A2 is also symmetric. For j = 1, for example, this follows from
the following calculation which uses the fact that the connections are metric:

(3.2) |∇ĝ|g = |∇ĝ − ∇̂ĝ|g = |A(ĝ)|g 
 |A(g)|ĝ = |∇̂g|ĝ,

where 
 replaces multiplicative constants. Note that in Equation (3.2) A is
the difference of the induced connections on T ∗L ⊗ T ∗L. This tensor depends
linearly on the tensor defined as the difference of the connections on TL.
It is simple to see that these two tensors have equivalent norms so that
Assumption A2 provides a pointwise bound on the norms of either one.
From here we easily obtain bounds on the norms of the tensor defined as
the difference of the induced connections on any tensor product of TL and
T ∗L. Similar statements hold for bounds on the derivatives of A.

Assumptions 1 and 2 can be unified as follows. Assume that, for all j ≥ 0,
there exists Cj > 0 such that

|∇j(ĝ − g)|g ≤ Cj .

As long as C0 is sufficiently small, for j = 0 this condition implies Assump-
tion 1. Since ∇jg = 0, it is clear that for j > 0 it is equivalent to Assumption 2.

Lemma 3.4. Assume g, ĝ are equivalent. Then the Sobolev norms defined
by g and ĝ are equivalent.

Proof. Consider the Sobolev spaces of functions on L. Recall that ∇u = du.
This implies that the W p

1 norms depend only pointwise on the metrics. In this
case Assumption A1 is sufficient to ensure equivalence. In general, however,
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the W p
k norms use the induced connections on tensor bundles. For example,

assume j = 2. Then

|∇2u| = |(A + ∇̂)(A + ∇̂)u| ≤ |A2u| + |A · ∇̂u| + |∇̂(Au)| + |∇̂2u|,

where A := ∇− ∇̂ is the difference of the appropriate connections. It is
clearly sufficient to obtain pointwise bounds on A and its derivative ∇̂A. As
mentioned in Remark 3.3, these follow from Assumption A2. The same is
true for Sobolev spaces of sections of tensor bundles over L.

Now consider the Sobolev spaces of sections of E. Since we are not
changing the connection on E, Assumption A1 ensures equivalence of the
W p

1 norms. The equivalence of the W p
k norms is proved as above. �

For p > 1 we define p′ via

(3.3)
1
p

+
1
p′

= 1, i.e., p′ =
p

p − 1
.

For p ≥ 1 we define p∗ via

(3.4)
1
p∗

=
1
p
− 1

m
, i.e., p∗ =

mp

m − p
.

It is simple to check that

(3.5)
1
p∗

+
1
p′

=
m − 1

m
.

More generally, for p ≥ 1 and l = {1, 2, . . . } we define p∗l via

(3.6)
1
p∗l

=
1
p
− l

m
, i.e., p∗l =

mp

m − lp
,

so that p∗ = p∗1. Note that p∗l is obtained by l iterations of the operation

p �→ p∗

and that 1
p∗

l
< 1

p∗
l−1

< 1
p , so if p∗l > 0 (equivalently, lp < m) then p∗l > p∗l−1 >

p. In other words, under appropriate conditions p∗l increases with l.
The Sobolev Embedding Theorems come in two basic forms, depending

on the product lp. The Sobolev Embedding Theorems, Part I concern the
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existence of continuous embeddings of the form

(3.7) W p
k+l(E) ↪→ W

p∗
l

k (E) (for lp < m),

i.e., the existence of some constant C > 0 such that, ∀σ ∈ W p
k+l(E),

(3.8) ‖σ‖
W

p∗
l

k (E)
≤ C‖σ‖W p

k+l(E).

A standard argument based on Hölder’s inequality then shows that W p
k+l

(E) ↪→ W q
k (E), for all q ∈ [p, p∗l ]. We call C the Sobolev constant. In words,

bounds on the higher derivatives of σ enhance the integrability of σ. Oth-
erwise said, one can sacrifice derivatives to improve integrability; the more
derivatives one sacrifices, the larger the integrability range [p, p∗l ].

The exceptional case of Part I concerns the existence of continuous
embeddings of the form

(3.9) W p
k+l(E) ↪→ W q

k (E) (for lp = m), ∀q ∈ [p,∞).

The Sobolev Embedding Theorems, Part II concern the existence of contin-
uous embeddings of the form

(3.10) W p
k+l(E) ↪→ Ck(E) (for lp > m).

Roughly speaking, this means that one can sacrifice derivatives to improve
regularity.

The validity of these theorems for a given manifold (L, g) depends on
its Riemannian properties. It is a useful fact that the properties of (E,∇)
play no extra role: more precisely, if an Embedding Theorem holds for func-
tions on L, it then holds for sections of any metric pair (E,∇). This is a
consequence of the following result.

Lemma 3.5 Kato’s inequality. Let (E,∇) be a metric pair. Let σ be a
smooth section of E. Then, away from the zero set of σ,

(3.11) |d|σ|| ≤ |∇σ|.

Proof.
2|σ||d|σ|| = |d|σ|2| = 2(∇σ, σ) ≤ 2|∇σ||σ|. �

The next result shows that if Part I holds in the simplest cases, it then
holds in all cases. Likewise, the general case of Part II follows from combining
the simplest cases of Part II with the general case of Part I.
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Proposition 3.6.

(1) Assume Part I, Equation (3.7), holds for all p < m with l = 1 and
k = 0. Then Part I holds for all p and l satisfying lp < m and for all
k ≥ 0.

(2) Assume Part I, Equation (3.7), holds in all cases and that the excep-
tional case, Equation (3.9), holds for l = 1 and k = 0. Then the excep-
tional case holds for all p and l satisfying lp = m and for all k ≥ 0.

(3) Assume Part I, Equation (3.7), and the exceptional case,
Equation (3.9), hold in all cases and that Part II, Equation (3.10),
holds for all p > m with l = 1 and k = 0. Then Part II holds for all
p and l satisfying lp > m and for all k ≥ 0.

Proof. As discussed above, it is sufficient to prove that the result holds for
functions: as a result of Kato’s inequality it will then hold for arbitrary
metric pairs (E,∇).

(1) Assume l = 1. Given u ∈ W p
k+1, Kato’s inequality shows that |u| . . .

|∇ku| ∈ W p
1 . Applying Part I to each of these then shows that W p

k+1 ↪→ W p∗

k .
The general case follows from the composition of the embeddings

W p
k+l ↪→ W p∗

k+l−1 ↪→ W
p∗
2

k+l−2 ↪→ . . .

(2) For l = 1 we can prove W p
k+1 ↪→ W q

k as in (1) above. Now assume
lp = m for l ≥ 2. Then Part I yields W p

l ↪→ W
p∗

l−1

1 . Since p∗l−1 = m we can
now apply the exceptional case in its simplest form.

(3) Let us consider, for example, the case l = 2 and k = 0. We are
then assuming that p > m/2. Let us distinguish three subcases, as follows.
Assume p ∈ (m/2, m). Then Part 1 implies that W p

2 ↪→ W p∗

1 . Since p∗ > m
we can now use the embedding W p∗

1 ↪→ C0 to conclude. Now assume p = m.
Then W p

2 ↪→ W q
1 for any q > m and we can conclude as above. Finally,

assume p > m. Then W p
2 ↪→ W p

1 ↪→ C0. The other cases are
similar. �

Corollary 3.7. Assume the Sobolev Embedding Theorems hold for (L, g).
Let ĝ be a second Riemannian metric on L such that, for some C0 > 0,
(1/C0)g ≤ ĝ ≤ C0g. Then the Sobolev Embedding Theorems hold also for
(L, ĝ).
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Proof. According to Proposition 3.6 it is sufficient to verify the Sobolev
Embedding Theorems in the case l = 1 and k = 0. These involve only C0-
information on the metric. The conclusion is thus straightforward. �

Remark 3.8. Under a certain density condition, Proposition 3.6 can be
enhanced as follows.

Assume Part I, Equation (3.7), holds for p = 1, l = 1 and k = 0, i.e.,
W 1

1 ↪→ L
m

m−1 . Assume also that, for all p < m, the space C∞
c (L) is dense in

W p
1 . Then Part I holds for all p < m with l = 1 and k = 0, i.e., W p

1 ↪→ Lp∗
.

The proof is as follows.
Choose u ∈ C∞

c (L). One can check that, for all s > 1, |u|s ∈ W p
1 , cf.,

e.g., [4]. Then, using Part I and Hölder’s inequality,

‖|u|s‖
L

m
m−1 ≤ C

∫

L
(|u|s + |∇|u|s|) volg

≤ C

∫

L
(|u|s−1|u| + |u|s−1|∇u|) volg

≤ C ‖|u|s−1‖Lp′ (‖u‖Lp + ‖∇u‖Lp) .

Let us now choose s so that (s − 1)p′ = sm/(m − 1), i.e., s = p∗(m − 1)/m.
Substituting, we find

(∫

L
|u|p∗

)m−1
m

≤ C

(∫

L
|u|p∗

) 1
p′

‖u‖W p
1
.

This leads to ‖u‖Lp∗ ≤ C‖u‖W p
1
, for all u ∈ C∞

c (L). By density, the same is
true for all u ∈ W p

1 .
To conclude, we mention that if (L, g) is complete, then C∞

c (L) is known
to be dense in W p

1 for all p ≥ 1, cf. [4] Theorem 3.1.

The most basic setting in which all parts of the Sobolev Embedding
Theorems hold is when L is a smooth bounded domain in R

m endowed with
the standard metric g̃. Another important class of examples is the following.

Theorem 3.9. Assume (L, g) satisfies the following assumptions: there
exists R1 > 0 and R2 ∈ R such that

i(g) ≥ R1, Ric(g) ≥ R2 g.
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Then:

(1) The Sobolev embeddings Part I, Equation (3.7), hold for all p and l
satisfying lp < m and for all k ≥ 0.

(2) The exceptional case of Part I, Equation (3.9), holds for all p and l
satisfying lp = m and for all k ≥ 0.

(3) The Sobolev embeddings Part II, Equation (3.10), hold for all p and l
satisfying lp > m and for all k ≥ 0.

Furthermore, when kp > m, W p
k is a Banach algebra. Specifically, there

exists C > 0 such that, for all u, v ∈ W p
k , the product uv belongs to W p

k
and satisfies

‖uv‖W p
k
≤ C‖u‖W p

k
· ‖v‖W p

k
.

We will prove Theorem 3.9 below. Roughly speaking, the reason it holds
is the following. Given any coordinate system on L, the embeddings hold on
every chart endowed with the flat metric g̃. Now recall that, given any (L, g)
and any x ∈ L, it is always possible to find coordinates φx : B ⊂ R

m → L
in which the metric g is a small perturbation of the flat metric: this implies
that the embeddings hold locally also with respect to g. The problem is that,
in general, the size of the ball B, thus the corresponding Sobolev constants,
will depend on x. Our assumptions on L, however, can be used to build a
special coordinate system whose charts admit uniform bounds. One can then
show that this implies that the embeddings hold globally. The main technical
step in the proof of Theorem 3.9 is thus the following result concerning the
existence and properties of harmonic coordinate systems.

Theorem 3.10. Assume (L, g) satisfies the assumptions of Theorem 3.9.
Then for all small ε > 0 there exists r > 0 such that, for each x ∈ L, there
exist coordinates φx : Br ⊂ R

m → L satisfying

(1) φ−1
x (seen as a map into R

m) is harmonic.

(2) ‖φ∗
xg − g̃‖C0 ≤ ε.

Remark 3.11. Theorem 3.10 can be heavily improved, cf. [4] Theorem
1.2. First, it is actually a local result, i.e., one can get similar results for any
open subset of L by imposing similar assumptions on a slightly larger sub-
set. Secondly, these same assumptions actually yield certain C0,α bounds.
Thirdly, assumptions on the higher derivatives of the Ricci tensor yield cer-
tain bounds on the higher derivatives of φ∗

xg − g̃, see Remark 4.6 for details.
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To conclude, it may be useful to emphasize that imposing a global lower
bound on the injectivity radius of (L, g) implies completeness.

Proof of Theorem 3.9. As seen in Proposition 3.6, it is sufficient to prove
the Sobolev Embedding Theorems in the simplest cases. Concerning Part
I, let us choose u ∈ W p

1 (L). Using the coordinates of Theorem 3.10, φ∗
xu ∈

W p
1 (Br). All Sobolev Embedding Theorems hold on Br with its standard

metric g̃. Thus there exists a constant C such that, with respect to g̃,

(3.12) ‖φ∗
xu‖Lp∗ (Br) ≤ C‖φ∗

xu‖W p
1 (Br).

The fact that ∇u = du implies that Equation (3.12) involves only C0 infor-
mation on the metric. Since φ∗

xg is C0 close to g̃, up to a small change of the
constant C the same inequality holds with respect to φ∗

xg. Let Bx(r) denote
the ball in (L, g) with centre x and radius r. Then Bx(r/2) ⊂ φx(Br) ⊂
Bx(2r) so

∫

Bx(r/2)
|u|p∗

volg ≤
∫

φx(Br)
|u|p∗

volg

≤ C

(∫

φx(Br)
(|u|p + |du|p) volg

) p∗−p+p

p

≤ C

(∫

L
(|u|p + |du|p) volg

) p∗−p

p

×
(∫

Bx(2r)
(|u|p + |du|p) volg

)

.

Let us now integrate both sides of the above equation with respect to x ∈ L.
We can then change the order of integration according to the formula

∫

x∈L

(∫

y∈Bx(r)
f(y) volg

)

volg =
∫

y∈L
f(y)

(∫

x∈By(r)
volg

)

volg.

Reducing r if necessary, the C0 estimate on g yields uniform bounds (with
respect to x) on volg(Bx(r/2)) and volg(Bx(2r)) because analogous bounds
hold for g̃. This allows us to substitute the inner integrals with appropriate
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constants. We conclude that

∫

L
|u|p∗

volg ≤ C

(∫

L
(|u|p + |du|p) volg

) p∗−p

p
(∫

L
(|u|p + |du|p) volg

)

= C

(∫

L
(|u|p + |du|p) volg

) p∗
p

.

We conclude by raising both sides of the above equation to the power 1/p∗.
Note that the final constant C can be estimated in terms of the volume of
balls in L and of the constant C appearing in Equation (3.12).

The exceptional case of Part I is similar: it is sufficient to replace p∗ with
any q > m. Part II is also similar, although slightly simpler. Specifically, one
finds as above that

‖u‖C0(φx(Br)) ≤ C‖u‖W p
1 (φx(Br)) ≤ C‖u‖W p

1 (L).

Since this holds for all x ∈ L, we conclude that ‖u‖C0(L) ≤ C‖u‖W p
1 (L).

The proof that W p
k is a Banach algebra relies on the Sobolev Embedding

Theorems and some simple algebraic manipulations. For brevity, we present
only the case W p

2 with 2p > m, which already contains all the main ideas; [1],
Theorem 5.23, gives the general proof for domains in R

m.
Recall the Leibniz rule

∇j(uv) =
j∑

k=0

(
j

k

)

(∇ku) ⊗ (∇j−kv).

It thus suffices to estimate each term on the right-hand side, for j = 0, 1, 2.
The embedding W p

2 ↪→ C0 implies that

∫

L
|uv|p volg ≤ ‖u‖p

C0 ·
∫

L
|v|p volg ≤ C‖u‖p

W p
2
· ‖v‖p

W p
2
.

We can analogously estimate all other terms except perhaps
∫ |∇u|p|∇v|p. If

p > m we can use the stronger embedding W p
2 ↪→ C1 to estimate this term

as above. Otherwise we use the following fact.
Fact : Assume m/2 < p ≤ m. Then there exist r, r′ such that 1/r + 1/r′ =

1 and pr < p∗, pr′ < p∗.
This fact is obvious if p = m (using the convention p∗ = ∞). For p < m

it suffices to choose r such that m/p < r < m/(p − m) and r′ = r/(r − 1).
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The Sobolev Embedding Theorem, Part I, then yields W p
1 ↪→ Lpr so

|∇u|p ∈ Lr. Likewise, |∇v|p ∈ Lr′
so, using Hölder’s inequality,

∫

L
|∇u|p|∇v|p volg ≤ ‖|∇u|p‖Lr · ‖|∇v|p‖Lr′ = ‖∇u‖p

Lpr · ‖∇v‖p
Lpr′

≤ C‖∇u‖p
W p

1
· ‖∇v‖p

W p
1
≤ C‖u‖p

W p
2
· ‖v‖p

W p
2
.

Combining all these estimates proves that ‖uv‖W p
2
≤ C‖u‖W p

2
· ‖v‖W p

2
, as

claimed. �

Example 3.12. Any compact oriented Riemannian manifold (L, g) satisfies
the assumptions of Theorem 3.9. Thus the Sobolev Embedding Theorems
hold in full generality for such manifolds. The same is true for the non-
compact manifold R

m, endowed with the standard metric g̃.
Let (Σ, g′) be a compact oriented Riemannian manifold. Consider L :=

Σ × R endowed with the metric h̃ := dz2 + g′. It is clear that (L, h̃) satisfies
the assumptions of Theorem 3.9 so again the Sobolev Embedding Theorems
hold in full generality for these manifolds. More generally they hold for the
asymptotically cylindrical (A. Cyl.) manifolds of Section 6. Note however
that here we are using the Sobolev spaces defined in Equation (3.1). In
Section 6, we will verify the Sobolev Embedding Theorems for a different
class of Sobolev spaces, cf. Definition 6.14.

4. Scaled Sobolev spaces

In applications standard Sobolev spaces are often not satisfactory for various
reasons. First, they do not have good properties with respect to rescalings of
the sort (L, t2g). Secondly, uniform geometric bounds of the sort seen in The-
orem 3.9 are too strong. Thirdly, the finiteness condition in Equation (3.1)
is very rigid and restrictive.

For all the above reasons it is often useful to modify the Sobolev norms.
A simple way of addressing the first two problems is to introduce an extra
piece of data, as follows.

Let (L, g, ρ) be an oriented Riemannian manifold endowed with a scale
factor ρ > 0 or a scale function ρ = ρ(x) > 0. Given any metric pair (E,∇),
the scaled Sobolev spaces are defined by

W p
k;sc(E) := Banach space completion of the space(4.1)

{
σ ∈ C∞(E) : ‖σ‖W p

k;sc
< ∞

}
,

where we use the norm ‖σ‖W p
k;sc

:=
(
Σk

j=0

∫
L |ρj∇jσ|pgρ−m volg

)1/p
.



Desingularizing isolated conical singularities 123

Note that at the scale ρ ≡ 1 these norms coincide with the standard
norms.

Remark 4.1. Let us slightly change notation, using gL (respectively, gE)
to denote the metric on L (respectively, on E). The metric g used in the
above norms to measure ∇jσ is obtained by tensoring gL (applied to ∇j)
with gE (applied to σ): let us write g = gL ⊗ gE . We then find

|ρj∇jσ|gL⊗gE
ρ−m volgL⊗gE

= |∇jσ|(ρ−2gL)⊗gE
vol(ρ−2gL)⊗gE

.

Roughly speaking, the scaled norms thus coincide with the standard norms
obtained via the conformally equivalent metric ρ−2gL on L. It is important
to emphasize, however, that we are conformally rescaling only part of the
metric. This can be confusing when E is a tensor bundle over L, endowed
with the induced metric: it would then be natural to also rescale the metric of
E. We are also not changing the connections ∇. In general these connections
are not metric connections with respect to (ρ−2gL) ⊗ gE . This has important
consequences regarding the Sobolev Embedding Theorems for scaled Sobolev
spaces, as follows.

Naively, one might hope that such theorems hold under the assumptions:

i(ρ−2g) ≥ R1, Ric(ρ−2g) ≥ R2ρ
−2g.

Indeed, these assumptions do suffice to prove the Sobolev Embedding The-
orems in the simplest case, i.e., l = 1 and k = 0. However, the general case
requires Kato’s inequality, Lemma 3.5, which in turn requires metric con-
nections. To prove these theorems we will thus need further assumptions on
ρ, cf. Theorem 4.7.

We now define rescaling to be an action of R
+ on the triple (L, g, ρ),

via t · (L, g, ρ) := (L, t2g, tρ). Recall that the Levi–Civita connection ∇ on
L does not change under rescaling. Using this fact it is simple to check
that ‖σ‖W p

k;sc
, calculated with respect to t · (L, g, ρ), coincides with ‖σ‖W p

k;sc
,

calculated with respect to (L, g, ρ): in this sense the scaled norm is invariant
under rescaling.

Remark 4.2. As in Remark 4.1, our definition of rescaling requires some
care. To explain this, let us adopt the same notation as in Remark 4.1. Our
notion of rescaling affects only the metric on L, not the metric on E. As
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before, this can be confusing when E is a tensor bundle over L, endowed
with the induced metric.

As in Section 3, it is important to find conditions under which (L, g, ρ)
and (L, ĝ, ρ) define equivalent norms.

Definition 4.3. Let (L, ρ) be a manifold endowed with a scale function.
We say that two Riemannian metrics g, ĝ are scaled-equivalent if they satisfy
the following assumptions:

A1: There exists C0 > 0 such that

(1/C0)g ≤ ĝ ≤ C0g.

A2: For all j ≥ 1 there exists Cj > 0 such that

|∇j ĝ|ρ−2g⊗gE
≤ Cj ,

where ∇ is the Levi–Civita connection defined by g, E = T ∗L ⊗ T ∗L
and we are using the notation introduced in Remark 4.1.

Remark 4.4. As in Remark 3.3, one can check that

|∇ĝ|ρ−2g⊗gE
≤ C1 ⇒ |A(ĝ)|ρ−2g⊗gE

≤ C1.

In turn this implies that |A|ρ−2g⊗gE
≤ C1, where now A denotes the differ-

ence ∇− ∇̂ of the connections on TL and E = T ∗L ⊗ TL.
Again as in Remark 3.3, one can check that if for all j ≥ 0 there exists

Cj > 0 such that

|∇j(ĝ − g)|ρ−2g⊗gE
≤ Cj

and if C0 is sufficiently small then g, ĝ satisfy Assumptions A1 and A2.

The following result is a simple consequence of Remark 4.1 and
Lemma 3.4.

Lemma 4.5. Assume (L, g, ρ), (L, ĝ, ρ) are scaled-equivalent in the sense
of Definition 4.3. Then the scaled Sobolev norms are equivalent.
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We can also define the scaled spaces of Ck sections

(4.2) Ck
sc(E) :=

{
σ ∈ Ck(E) : ‖σ‖Ck

sc
< ∞

}
,

where we use the norm ‖σ‖Ck
sc

:=
∑k

j=0 supx∈L |ρj∇jσ|g. Once again, these
norms define Banach spaces.

Remark 4.6. One can analogously define Ck,α
sc spaces. Note that Equation

(4.2) implies that C0
sc = C0. It is these spaces which are relevant to the

generalization to higher derivatives of Theorem 3.10. Specifically, bounds on
the higher derivatives of Ric(g) yield Ck,α

sc bounds on φ∗
xg − g̃ with respect

to the (constant) scale factor r determined by the theorem.

We are now ready to study the Sobolev Embedding Theorems for scaled
spaces. As mentioned in Remark 4.1, these theorems require further assump-
tions on ρ.

Theorem 4.7. Let (L, g) be a Riemannian manifold and ρ a positive func-
tion on L. Assume there exist constants R1 > 0, R2 ∈ R, R3 > 1 and ζ > 0
such that:

A1: ∀x ∈ L, ix(g) ≥ R1ρ(x).

A2: ∀x ∈ L, Ricx(g) ≥ R2ρ(x)−2gx.

A3: ∀x ∈ L,∀y ∈ B(x, ζρ(x)),

(1/R3)ρ(x) ≤ ρ(y) ≤ R3ρ(x).

Then all parts of the Sobolev Embedding Theorems hold for scaled norms and
for any metric pair (E,∇). Furthermore, when kp > m, W p

k;sc is a Banach
algebra.

Now let ĝ be a second Riemannian metric on L such that, for some
C0 > 0, (1/C0)g ≤ ĝ ≤ C0g. Then the scaled Sobolev Embedding Theorems
hold also for (L, ĝ, ρ) and for any metric pair (E,∇). The Sobolev constants
of ĝ depend only on the Sobolev constants of g and on C0.

Proof. Let us prove Part 1 for functions, assuming l = 1, k = 0. Choose
x ∈ L. Set Bx := B(x, ζρ(x)). For y ∈ Bx, consider the rescaled metric h
defined by hy := ρ(x)−2gy. Assumption A1 shows that iy(g) ≥ R1ρ(y). Using
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Assumption A3 we find

iy(h) = ρ(x)−1iy(g) ≥ R1ρ(y)ρ(x)−1 ≥ R1/R3.

Now recall that the Ricci curvature Ric is invariant under rescaling, i.e.,
Ric(h) = Ric(g). Then Assumptions A2 and A3 show that

Ricy(h) = Ricy(g) ≥ R2ρ(y)−2ρ(x)2h ≥ (R2/R2
3)h.

We have thus obtained lower bounds on the injectivity radius and Ricci cur-
vature of (Bx, h). Note that these bounds are independent of x. Recall from
Remark 3.11 that Theorem 3.10 is essentially local. Specifically, set B′

x :=
B(x, (1/2)ζρ(x)). Then for any ε > 0 there exists r = r(p, R1, R2, R3, ε, m)
such that, for any x ∈ L, there exist coordinates φx : Br → (B′

x, h) satisfying
‖φ∗

xh − g̃‖C0 ≤ ε.
Exactly as in the proof of Theorem 3.9, we can now use the local Sobolev

Embedding Theorems for Br to conclude that

(4.3)

(∫

B′
x

|u|p∗
volh

)1/p∗

≤ C

(∫

B′
x

(|u|p + |du|ph) volh

)1/p

.

Assumption A3 allows us, up to a change of constants, to replace the (locally)
constant quantity ρ(x) with the function ρ(y). Remark 4.1 shows how replac-
ing ρ−2g with g leads to the scaled norms. Proceeding as in the proof of
Theorem 3.9, via double integration, we then get

(4.4) ‖u‖Lp∗
sc

≤ C‖u‖W p
1;sc

,

where we are now using the metric g.
Now consider the case k = 1, i.e., assume u ∈ W p

2;sc. Then φ∗
x|∇u|h ∈

W p
1 (Br). As before, we obtain

(4.5)

(∫

B′
x

|∇u|p∗

h volh

)1/p∗

≤ C

(∫

B′
x

(|∇u|ph + |d(|∇u|h)|ph) volh

)1/p

.
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Note that the Levi–Civita connections of g and h coincide. We can thus apply
Kato’s inequality, finding |d|∇u|h|h ≤ |∇2u|h = |ρ(x)2∇2u|g. This leads to

(∫

B′
x

|ρ(x)∇u|p∗
g ρ(x)−mvolg

)1/p∗

(4.6)

≤ C

(∫

B′
x

(|ρ(x)∇u|pg + |ρ(x)2∇2u|pg)ρ(x)−mvolg

)1/p

.

We can now proceed as before, using Assumption A3, to obtain

‖∇u‖Lp∗
sc

≤ C‖∇u‖W p
1;sc

.

Together with Equation (4.4), this implies W p
2;sc ↪→ W p∗

1;sc.
The other cases and parts of the Sobolev Embedding Theorems can be

proved analogously.
The claim that W p

k;sc is a Banach algebra can be proved as in Theo-
rem 3.9, using Remark 4.1 to write the scaled norms in terms of standard
norms. In this case, the fact that the connection ∇ is not a metric connection
with respect to the rescaled metric ρ−2g is not a problem: the proof only
uses the Leibniz rule (together with Hölder’s inequality for Lp norms and
the Sobolev Embedding Theorems which we have just proved).

The proof of the Sobolev Embedding Theorems for (L, ĝ, ρ) is simi-
lar. For example, to prove Part I with l = 1 and k = 0, we locally define
ĥy := ρ−2(x)ĝy. Our assumption on ĝ allows us to substitute h with ĥ in
Equation (4.3). The proof then continues as before. Now consider the case
k = 1, i.e., assume u ∈ W p

2;sc with respect to ĝ. Let ∇̂ denote the Levi–Civita
connection defined by ĝ. We can then study φ∗

x|∇̂u|ĥ as before, obtaining
the analogue of Equation (4.5) in terms of (ĥ, ∇̂) instead of (h,∇). Since
the Levi–Civita connections of ĝ and ĥ coincide we also obtain the analogue
of Equation (4.6). The proof then continues as before. �

Remark 4.8. Compare the proof of Theorem 4.7 with the ideas of
Remark 4.1. The main issue raised in Remark 4.1 concerned Kato’s inequal-
ity for the rescaled metric ρ−2g. In the proof of the theorem this problem is
solved by Assumption A3, which essentially allows us to locally treat ρ as
a constant. Assumptions A1 and A2 are then similar to the assumptions of
Remark 4.1.

Example 4.9. We now want to present two important examples of (L, g, ρ)
satisfying Assumptions A1–A3 of Theorem 4.7.



128 Tommaso Pacini

(1) Let L be a smooth bounded domain in R
m, endowed with the stan-

dard metric g̃. Given any x ∈ L we can define ρ(x) := d(x, ∂L). This
function satisfies Assumption A1 with R1 = 1 and Assumption A2 with
R2 = 0. The triangle inequality shows that, for all y ∈ B(x, (1/2)ρ(x)),
(1/2)ρ(x) ≤ ρ(y) ≤ (3/2)ρ(x). This implies that Assumption A3 is also
satisfied.

(2) Given a compact oriented Riemannian manifold (Σ, g′), let L := Σ ×
(0,∞) and g̃ := dr2 + r2g′. Let θ denote the generic point on Σ. There
is a natural action

R
+ × L → L, t · (θ, r) := (θ, tr).

Given any t ∈ R
+, it is simple to check that t∗g̃ = t2g̃. For any x ∈ L,

note that itx(g̃) = ix(t∗g̃). We conclude that itx(g̃) = tix(g̃). Analo-
gously, Rictx(g̃) = Ricx(g̃). It follows that, given any strictly positive
f = f(θ), the function ρ(θ, r) := rf(θ) satisfies A1 and A2. It is simple
to check that it also satisfies Assumption A3. The simplest example is
f(θ) ≡ 1, i.e., ρ(θ, r) = r. In Section 6, we will extend this example to
the category of “conifolds”.

Remark 4.10. Since the norms ‖ · ‖W p
k;sc

are scale-invariant it is clear that
if the Sobolev Embedding Theorems hold for (L, g, ρ) then they also hold
for (L, t2g, tρ) with the same Sobolev constants. This is reflected in the fact
that Assumptions A1–A3 of Theorem 4.7 are scale-invariant.

5. Weighted Sobolev spaces

In Section 4, we mentioned that the finiteness condition determined by the
standard Sobolev norms is very restrictive. This problem can be addressed
by introducing a weight function w = w(x) > 0 into the integrand. Coupling
weights with scale functions then produces very general and useful spaces,
as follows.

Let (L, g) be a Riemannian manifold endowed with two positive functions
ρ and w. Given any metric pair (E,∇), the weighted Sobolev spaces are
defined by

W p
k;w(E) := Banach space completion of the space(5.1)

{
σ ∈ C∞(E) : ‖σ‖W p

k;w
< ∞

}
,

where we use the norm ‖σ‖W p
k;w

:=
(
Σk

j=0

∫
L |wρj∇jσ|pgρ−m volg

)1/p
.
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We can also define the weighted spaces of Ck sections

(5.2) Ck
w(E) :=

{
σ ∈ Ck(E) : ‖σ‖Ck

w
< ∞

}
,

where we use the norm ‖σ‖Ck
w

:=
∑k

j=0 supx∈L|wρj∇jσ|g. Once again, these
norms define Banach spaces.

Theorem 5.1. Let (L, g) be a Riemannian manifold endowed with posi-
tive functions ρ and w. Assume ρ satisfies the assumptions of Theorem 4.7
with respect to constants R1, R2, R3 and ζ. Assume also that there exists a
positive constant R4 such that, ∀x ∈ L,∀y ∈ B(x, ζρ(x)),

(1/R4)w(x) ≤ w(y) ≤ R4w(x).

Then all parts of the Sobolev Embedding Theorems hold for the weighted
norms defined by (ρ, w) and for any metric pair (E,∇).

Now let ĝ be a second Riemannian metric on L such that, for some C0 >
0, (1/C0)g ≤ ĝ ≤ C0g. Then the weighted Sobolev Embedding Theorems hold
also for (L, ĝ, ρ, w) and for any metric pair (E,∇). The Sobolev constants
of ĝ depend only on the Sobolev constants of g and on C0.

Proof. The proof is a small modification of the proof of Theorem 4.7: one
needs simply to take into account the weights by multiplying Equations (4.3)
and (4.6) by w(x). The assumption on w allows us, up to a change of con-
stants, to replace the (locally) constant quantity w(x) with the function
w(y). �

Remark 5.2. Choose any constant β ∈ R. Define rescaling to be an action
of R

+ on (L, g, ρ, w), via t · (L, g, ρ, w) := (L, t2g, tρ, tβw). Then ‖σ‖W p
k;w

,
calculated with respect to t · (L, g, ρ, w), coincides with tβ‖σ‖W p

k;w
, calculated

with respect to (L, g, ρ, w): this shows that these weighted norms are in
general not invariant under rescaling. However, if the Sobolev Embedding
Theorems hold for (L, g, ρ, w) then, multiplying by the factor tβ , we see
that they hold for (L, t2g, tρ, tβw) with the same Sobolev constant. This is
reflected in the fact that the hypotheses of Theorem 5.1 are t-invariant.

6. Application: manifolds with ends modelled on cones and
cylinders

We now introduce the category of “conifolds”. These Riemannian manifolds
are a well-known example for the theory of weighted Sobolev spaces. They
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will also provide a useful framework for our study of desingularizations. It
will also be useful to define the analogous “cylindrical” category, both for
its affinities to conifolds and as a tool for studying them.

Definition 6.1. Let Lm be a smooth manifold. We say L is a manifold
with ends if it satisfies the following conditions:

1) We are given a compact subset K ⊂ L such that S := L \ K has a
finite number of connected components S1, . . . , Se, i.e., S = �e

i=1Si.

2) For each Si we are given a connected (m − 1)-dimensional compact
manifold Σi without boundary.

3) There exist diffeomorphisms φi : Σi × [1,∞) → Si.

We then call the components Si the ends of L and the manifolds Σi the links
of L. We denote by Σ the union of the links of L.

Definition 6.2. Let L be a manifold with ends. Let g be a Riemannian
metric on L. Choose an end Si with corresponding link Σi.

We say that Si is a conically singular (CS) end if the following conditions
hold:

1) Σi is endowed with a Riemannian metric g′i.
We then let (θ, r) denote the generic point on the product mani-

fold Ci := Σi × (0,∞) and g̃i := dr2 + r2g′i denote the corresponding
conical metric on Ci.

2) There exist a constant νi > 0 and a diffeomorphism φi : Σi × (0, ε] →
Si such that, as r → 0 and for all k ≥ 0,

|∇̃k(φ∗
i g − g̃i)|g̃i

= O(rνi−k),

where ∇̃ is the Levi–Civita connection on Ci defined by g̃i.

We say that Si is an AC end if the following conditions hold:

1) Σi is endowed with a Riemannian metric g′i.
We again let (θ, r) denote the generic point on the product mani-

fold Ci := Σi × (0,∞) and g̃i := dr2 + r2g′i denote the corresponding
conical metric on Ci.
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2) There exist a constant νi < 0 and a diffeomorphism φi : Σi × [R,∞) →
Si such that, as r → ∞ and for all k ≥ 0,

|∇̃k(φ∗
i g − g̃i)|g̃i

= O(rνi−k),

where ∇̃ is the Levi–Civita connection on Ci defined by g̃i.

In either of the above situations we call νi the convergence rate of Si.

Remark 6.3. Let (L, g) be a manifold with ends. Assume Si is an AC end
as in Definition 6.2. Using the notation of Remark 4.1 we can rewrite this
condition as follows: for all k ≥ 0,

|∇̃k(φ∗
i g − g̃i)|r−2g̃i⊗g̃i

= O(rνi).

In particular there exist constants Ck > 0 such that

|∇̃k(φ∗
i g − g̃i)|r−2g̃i⊗g̃i

≤ CkR
νi .

By making R larger if necessary, we can assume C0R
νi is small. This implies

that φ∗
i g and g̃i are scaled-equivalent in the sense of Definition 4.3, cf.

Remark 4.4. The above conditions are stable under duality and tensor prod-
ucts so one can prove that, for any tensor σ on L and as r → ∞,

|σ|φ∗
i g = |σ|g̃i

(1 + O(rνi)) .

If σ = df for some function f on L, we can multiply both sides by r to obtain
an analogous estimate in terms of the rescaled metrics:

|df |r−2φ∗
i g = |df |r−2g̃i

(1 + O(rνi)) .

Furthermore, let A := ∇− ∇̃ denote the difference of the two connections
defined by φ∗

i g and g̃i. Then, as in Remark 3.3, Definition 6.2 implies that
|A|g̃i

= O(rνi−1). This leads to

|∇2f |φ∗
i g = |∇̃2f |g̃i

(1 + O(rνi)) + |df |g̃i
O(rνi−1),

|trφ∗
i g∇2f | = |trg̃i

∇̃2f | (1 + O(rνi)) + |df |g̃i
O(rνi−1).

Multiplying these equations by r2 we can re-write them as

|∇2f |r−2φ∗
i g = |∇̃2f |r−2g̃i

+ O(rνi)
(
|∇̃2f |r−2g̃i

+ |df |r−2g̃i

)
,

|r2Δφ∗
i gf | = |r2Δg̃i

f | + O(rνi)
(|r2Δg̃i

f | + |df |r−2g̃i

)
.

Analogous comments apply to higher derivatives and to CS ends.
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Definition 6.4. Let (L, g) be a manifold with ends endowed with a Rie-
mannian metric. We say that L is a CS (respectively, AC) manifold if all
ends are CS (respectively, AC). We say that L is a CS/AC manifold if all
ends are either CS or AC. We use the generic term conifold to indicate any
CS, AC or CS/AC manifold.

When working with a CS/AC manifold we will often index the CS
(“small”) ends with numbers {1, . . . , s} and the AC (“large”) ends with
numbers {1, . . . , l}. Furthermore we will denote the union of the CS links
(respectively, of the CS ends) by Σ0 (respectively, S0) and those correspond-
ing to the AC links and ends by Σ∞, S∞.

Remark 6.5. It is useful to include smooth compact manifolds in the cate-
gory of conifolds: they are precisely those for which the set of ends is empty.

We now need to choose which function spaces to work with on conifolds.
It turns out that the most useful classes of function spaces are precisely
those of Section 5. One needs only to choose appropriate functions ρ and w
satisfying the assumptions of Theorem 5.1, as follows.

Regarding notation, given a vector β = (β1, . . . , βe) ∈ R
e and j ∈ N we

set β + j := (β1 + j, . . . , βe + j). We write β ≥ β̂ iff βi ≥ β̂i for all
i = 1, . . . , e.

Definition 6.6. Let L be a conifold with metric g. We say that a smooth
function ρ : L → (0,∞) is a radius function if φ∗

i ρ = r, where φi are the
diffeomorphisms of Definition 6.2. Given any vector β = (β1, . . . , βe) ∈ R

e,
choose a function β : L → R which, on each end Si, restricts to the con-
stant βi. Then ρ and w := ρ−β satisfy the assumptions of Theorem 5.1, cf.
Example 4.9. We call (L, g, ρ,β) a weighted conifold.

Given any metric pair (E,∇), we define weighted spaces Ck
β(E) and

W p
k,β(E) as in Section 5. We can equivalently define the space Ck

β(E) to
be the space of sections σ ∈ Ck(E) such that |∇jσ| = O(rβ−j) as r → 0
(respectively, r → ∞) along each CS (respectively, AC) end.

In the case of a CS/AC manifold we will often separate the CS and
AC weights, writing β = (μ, λ) for some μ ∈ R

s and some λ ∈ R
l. We then

write Ck
(μ,λ)(E) and W p

k,(μ,λ)(E).

One can extend to these weighted spaces many results valid for standard
Sobolev spaces. Hölder’s inequality is one example.
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Lemma 6.7 (Weighted Hölder’s inequality). Let (L, g) be a conifold.
Then, for all p > 1 and β = β1 + β2,

‖uv‖L1
β
≤ ‖u‖Lp

β1
· ‖v‖

Lp′
β2

.

More generally, assume 1
q = 1

q1
+ 1

q2
. Then

‖uv‖Lq
β
≤ ‖u‖L

q1
β1

· ‖v‖L
q2
β2

.

Proof.

‖uv‖L1
β

=
∫

L
(ρ−β1uρ−m/p)(ρ−β2vρ−m/p′

) volg

≤ ‖ρ−β1uρ−m/p‖Lp · ‖ρ−β2vρ−m/p′‖Lp′

= ‖u‖Lp
β1

· ‖v‖
Lp′

β2

.

The general case is similar. �

Corollary 6.8. Let (L, g,β) be a weighted conifold. Then all parts of the
weighted Sobolev Embedding Theorems hold for any metric pair (E,∇).

Furthermore, assume kp > m. Then the corresponding weighted Sobolev
spaces are closed under multiplication, in the following sense. For any β1

and β2 there exists C > 0 such that, for all u ∈ W p
k,β1

and v ∈ W p
k,β2

,

‖uv‖W p
k,β1+β2

≤ C‖u‖W p
k,β1

· ‖v‖W p
k,β2

.

Proof. Let (L, g) be a conifold. Write L = K ∪ S as in Definition 6.1 and
let Ci denote the cone corresponding to the end Si. Example 4.9 showed
that the assumptions for the scaled Sobolev Embedding Theorems hold for
(Ci, g̃i, r). The same is true for the weighted Sobolev Embedding Theorems.
Using the compactness of K we conclude that these assumptions, thus the
theorems, hold for L with respect to any metric ĝ such that φ∗

i ĝ = g̃i on
each end. As in Remark 6.3 one can assume that φ∗

i g and g̃i are scaled-
equivalent so there exists C0 > 0 such that (1/C0)g̃i ≤ φ∗

i g ≤ C0g̃i. Again
using the compactness of K we may thus assume that (1/C0)ĝ ≤ g ≤ C0ĝ.
Theorem 5.1 now shows that the weighted Sobolev Embedding Theorems
hold for (L, g). The fact that weighted Sobolev spaces are closed with respect
to products can be proved as in Theorem 4.7, using Lemma 6.7. �

Remark 6.9. Let (L, g) be an AC manifold. Note that for β̂ ≥ β there exist
continuous embeddings W r

k,β ↪→ W r
k,β̂

. The analogous statement is true for
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the weighted Ck spaces. By composition Corollary 6.8 thus leads to the
following statements:

1) If lp < m then there exists a continuous embedding W p
k+l,β(E) ↪→

W
p∗

l

k,β̂
(E).

2) If lp = m then, for all q ∈ [p,∞), there exist continuous embeddings
W p

k+l,β(E) ↪→ W q

k,β̂
(E).

3) If lp > m then there exists a continuous embedding W p
k+l,β(E) ↪→

Ck
β̂
(E).

Note that if (L, g) is a CS manifold then the behaviour on the ends is studied
in terms of r → 0 rather than r → ∞. In this case the same conclusions hold
for the opposite situation β̂ ≤ β. Finally, let (L, g) be a CS/AC manifold
with β = (μ, λ). Then the same conclusions hold for all β̂ = (μ̂, λ̂) with
μ̂ ≤ μ, λ̂ ≥ λ.

We now want to show that all the above notions and results are scale-
independent, as long as we rescale the weight function correctly to take
into account the possibility of variable weights. We start by examining the
properties of (L, t2g).

Lemma 6.10. Let (L, g) be a conifold. For each AC end Si let φi : Σi ×
[R,∞) → Si denote the diffeomorphism of Definition 6.2. In particular, for
all k ≥ 0 there exist Ck > 0 such that, for r ≥ R,

|∇̃k(φ∗
i g − g̃i)|r−2g̃i⊗g̃i

≤ Ckr
νi ≤ CkR

νi .

As seen in Remark 6.3, we can thus assume that φ∗
i g, g̃i are scaled-equivalent.

Choose any t > 0. Define the diffeomorphism

φt,i : Σi × [tR,∞) → Si, φt,i(θ, r) := φi(θ, r/t).

Then, for r ≥ tR and with respect to the same Ck, there are t-uniform esti-
mates

|∇̃k(φ∗
t,i(t

2g) − g̃i)|r−2g̃i⊗g̃i
≤ Ck(r/t)νi ≤ CkR

νi .

Analogously, for each CS end Si let φi denote the diffeomorphism of Defini-
tion 6.2. Define the diffeomorphism

φt,i : Σi × (0, tε] → Si, φt,i(θ, r) := φi(θ, r/t).

Then there are t-uniform estimates as above.
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In particular, with respect to these diffeomorphisms, (L, t2g) is again a
conifold. If ρ is a radius function for (L, g) then tρ is a radius function for
(L, t2g).

Proof. Define the map

δt : Σi × R
+ → Σi × R

+, (θ, r) �→ (θ, tr).

Since δt is simply a rescaling it preserves the Levi–Civita connection ∇̃.
Note that φt,i = φi ◦ δ1/t. It is simple to check that δ∗1/t(t

2g̃i) = g̃i. Thus, for
r ≥ tR,

|∇̃k(φ∗
t,i(t

2g) − g̃i)|g̃i⊗g̃i
= |∇̃k(δ∗1/tφ

∗
i (t

2g) − g̃i)|g̃i⊗g̃i

= δ∗1/t

(
|∇̃k(φ∗

i (t
2g) − t2g̃i)|t2g̃i⊗t2g̃i

)

= δ∗1/t

(
|∇̃k(φ∗

i g − g̃i)|t2g̃i⊗g̃i

)

≤ t−kCk(r/t)νi−k = Ck(r/t)νir−k,

where in the last line the factor t−k comes from measuring ∇̃k using t2g̃i, cf.
Remark 4.1. These inequalities can be rescaled as in Remark 6.3 to obtain
the desired t-uniform estimates.

Now note that

φ∗
t,i(tρ)|(θ,r) = tρ ◦ φt,i(θ, r) = tρ ◦ φi(θ, r/t) = tr/t = r,

so tρ is a radius function in the sense of Definition 6.6. CS ends can be
studied analogously. �

The following result is a direct consequence of Theorem 5.1 and
Remark 5.2.

Corollary 6.11. Let (L, g) be a conifold. Then, for all t > 0:

1) Choose a constant weight β. Define weighted Sobolev spaces W p
k,β as

in Section 5 using the metric t2g, the scale function tρ and the weight
function w := (tρ)−β. Then all forms of the weighted Sobolev theorems
hold for (L, t2g, tρ, (tρ)−β) with t-independent Sobolev constants.

2) More generally, let β be a function as in Definition 6.6. Choose a con-
stant “reference” weight β′ and define weighted Sobolev spaces W p

k,β

as in Section 5 using the metric t2g, the scale function tρ and the
weight function wt := (t

β′−β

β tρ)−β. Then the weighted norms ‖ · ‖W p
k,β

,
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calculated with respect to these choices, coincide with t−β′‖ · ‖W p
k,β

, cal-
culated with respect to (L, g, ρ, w := ρ−β). In particular, all forms of
the weighted Sobolev Embedding Theorems hold for (L, t2g, tρ, wt :=
(t

β′−β

β tρ)−β) with t-independent Sobolev constants.

Remark 6.12. Compare the weights used in parts (1) and (2) above. Basi-
cally, to deal with variable weights we introduce a corrective factor of the
form tβ−β′

: since the exponent is bounded, for fixed t this does not affect the
decay/growth condition on the ends. Its effect is simply to yield estimates
which are uniform with respect to t.

We conclude this section by summarizing the main definitions and prop-
erties of a second class of manifolds with ends, modelled on cylinders. We
will see that the corresponding theory is closely related to that of conifolds.

Definition 6.13. Let L be a manifold with ends. Let g be a Riemannian
metric on L. Choose an end Si with corresponding link Σi. We say that Si

is an A. Cyl. end if the following conditions hold:

1) Σi is endowed with a Riemannian metric g′i.
We then let (θ, z) denote the generic point on the product mani-

fold Ci := Σi × (−∞,∞) and h̃i := dz2 + g′i denote the corresponding
cylindrical metric on Ci.

2) There exist a constant νi < 0 and a diffeomorphism φi : Σi × [R′,∞) →
Si such that, as z → ∞ and for all k ≥ 0,

|∇̃k(φ∗
i g − h̃i)|h̃i

= O(eνiz),

where ∇̃ is the Levi–Civita connection on Ci defined by h̃i.

We say that L is a A.Cyl. manifold if all ends are A. Cyl.

For the purposes of this paper the function spaces of most interest on
A.Cyl. manifolds are not the ones already encountered, cf. Section 3 and
Example 3.12. Instead, we use the following.

Definition 6.14. Let (L, h) be a A.Cyl. manifold. We say that a smooth
function ζ : L → [1,∞) is a radius function if φ∗

i ζ = z, where φi are the
diffeomorphisms of Definition 6.2. Given any vector β = (β1, . . . , βe) ∈ R

e,
choose a function β on L which, on each end Si, restricts to the constant
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βi. We call (L, h, ζ,β) a weighted A. Cyl. manifold. Given any metric pair
(E,∇) we define Banach spaces of sections of E in the following two ways.

The weighted spaces of Ck sections of E are defined by

(6.1) Ck
β(E) :=

{
σ ∈ Ck(E) : ‖σ‖Ck

β
< ∞

}
,

where we use the norm ‖σ‖Ck
β

:=
∑k

j=0 supx∈L|e−β(x)ζ(x)∇jσ|.
The weighted Sobolev spaces are defined by

W p
k,β(E) := Banach space completion of the space(6.2)

{
σ ∈ C∞(E) : ‖σ‖W p

k,β
< ∞

}
,

where p ∈ [1,∞), k ≥ 0 and we use the norm ‖σ‖W p
k,β

:=
(∑k

j=0

∫
L |e−βζ∇jσ|p volh

)1/p
.

Both types of spaces are independent of the particular choices made.

Remark 6.15. It is simple to see that the norm ‖σ‖W p
k,β

is equivalent to the
norm defined by

∑k
j=0(

∫
L |∇j(e−βζσ)|p volh)1/p. This leads to the following

fact.
Let W p

k (E) denote the standard Sobolev spaces for (L, h) introduced in
Section 3. Let eβζ · W p

k denote the space of all sections of E of the form
σ = eβζτ for some τ ∈ W p

k (E), endowed with the norm ‖σ‖ := ‖τ‖. Then
W p

k,β(E) = eβζ · W p
k (E) as sets and the norms are equivalent. Analogously,

the spaces Ck
β(E) are equivalent to the spaces eβζ · Ck(E), where Ck(E) are

the standard spaces of Ck sections used in Section 3.

As before, weighted spaces defined with respect to A.Cyl. metrics and
cylindrical metrics are equivalent. Remark 6.15 allows us to reduce the
weighted Sobolev Embedding Theorems for A.Cyl. manifolds to the stan-
dard Sobolev Embedding Theorems, obtaining results analogous to Corol-
lary 6.8 and Remark 6.9. According to [4] Theorem 3.1 and Proposition 3.2,
the spaces C∞

c are dense in the standard Sobolev spaces defined for mani-
folds whose ends are exactly cylindrical. The same is then true for weighted
Sobolev spaces on A.Cyl. manifolds.

Remark 6.16. It is interesting to compare Definitions 6.14 and 6.6. Assume
(L, h) is an A.Cyl. manifold with respect to certain diffeomorphisms φi =
φi(θ, z) as in Definition 6.2. Since the corresponding weighted Sobolev spaces
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are equivalent we may assume that h is exactly cylindrical on each end, i.e.,
using the notation of Definition 6.2 it can be written h = dz2 + g′i. Consider
the conformally rescaled metric g := e2ζh. Using the change of variables
r = ez it is simple to check that g = dr2 + r2g′i. This implies that (L, g) is
an AC manifold with respect to the diffeomorphisms φi(θ, log z). Viceversa,
any AC metric on L defines a conformally equivalent A.Cyl. metric. Note
that if z ∈ (R′,∞) then r ∈ (R,∞) with R := eR′

and that r−mvolg = volh.
Thus, by change of variables,

(6.3)
∫ ∞

R

∫

Σ
|r−βσ|pr−m volg =

∫ ∞

R′

∫

Σ
|e−βzσ|p volh.

This shows that the spaces Lp
β(E) of sections of E coincide for (L, g) and

(L, h), while the corresponding norms are equivalent (but again, as in
Remark 4.1, one may need to take into account, which metric is being used
on E in the two cases).

The same is true also for Sobolev spaces of higher order. Specifically,
an explicit calculation shows that the Levi–Civita connections defined by h
and g are equivalent, i.e., the corresponding Christoffel symbols coincide up
to constant multiplicative factors. It thus makes no difference which metric
is used to define ∇. On the other hand, the norm inside the integral does
depend on the choice of metric. For example,

(6.4)
∫ ∞

R

∫

Σ
|r−β+j∇jfσ|pgr−m volg =

∫ ∞

R′

∫

Σ
|e−βz∇jσ|ph volh.

This proves that the spaces W p
k,β(E) are equivalent.

Analogous results hold for CS manifolds: if h is A.Cyl. then g := e−2ζh
is CS. In this case

(6.5)
∫ ε

0

∫

Σ
|r−βf |pr−m volg =

∫ ∞

− log ε

∫

Σ
|eβzf |p volh,

so the space Lp
β for (L, g) coincides with the space Lp

−β for (L, h).
These facts show, for example, that the Sobolev Embedding Theorems

for conifolds and A.Cyl. manifolds are simply two different points of view on
the same result. They also show that C∞

c is dense in all weighted Sobolev
spaces on conifolds because, as already seen, this is true on A.Cyl. manifolds.
Finally, they show that in Remark 6.3, we are really using the cylindrical
metric r−2g̃ = h̃ to “measure” ∇̃k (in the sense of Remark 4.1).
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Part 2. Elliptic estimates

We now turn to the theory of elliptic operators via weighted Sobolev spaces,
focusing on Fredholm and index results for the manifolds discussed in Sec-
tion 6. Results of this kind have been proved by various authors, e.g.,
Lockhart–McOwen [11], Lockhart [10] and Melrose [13]. We will follow the
point of view of Lockhart and McOwen to which we refer for details, see also
Joyce–Salur [8].

7. Fredholm results for elliptic operators on A.Cyl.
manifolds

We start with the case of A.Cyl. manifolds. The theory requires appropriate
assumptions on the asymptotic behaviour of the operators, which we roughly
summarize as follows.

Definition 7.1. Given a manifold Σ, consider the projection π : Σ × R →
Σ. A vector bundle E∞ on Σ × R is translation-invariant if it is of the form
π∗E′, for some vector bundle E′ over Σ. We define the notion of translation-
invariant metrics and connections analogously.

Let P∞ : C∞(E∞) → C∞(F∞) be a differential operator between
translation-invariant vector bundles. We say that P∞ is translation-invariant
if it commutes with the action of R on Σ × R determined by translations;
equivalently, writing P∞ =

∑
A∞

k · ∇k with respect to a translation-
invariant ∇, if the coefficient tensors A∞

k are independent of z.
Let (L, h) be an A.Cyl. manifold with link Σ = �Σi. Let E, F be vector

bundles over L. Assume there exist translation-invariant vector bundles E∞,
F∞ over Σ × R such that, using the notation of Definition 6.13, φ∗

i (E|Si
)

(respectively, φ∗
i (F|Si

)) coincides with the restriction to Σi × (R′,∞) of E∞
(respectively, F∞).

Let P∞ =
∑

A∞
k · ∇k : C∞(E∞) → C∞(F∞) be a translation-invariant

linear differential operator of order n. Consider a linear operator P :
C∞(E) → C∞(F ). We say that P is asymptotic to P∞ if on each end there
exists νi < 0 such that, writing P =

∑
Ak · ∇k (up to identifications) and

as z → ∞,

|∇j(Ak − A∞
k )| = O(eνiz),

where | · | is defined by the translation-invariant metrics. We call νi the
convergence rates of the operator P .
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In what follows, to define the spaces W p
k,β(E), we will assume that E is

endowed with a metric and a metric connection which are asymptotic to the
translation-invariant data on E∞, in the appropriate sense.

Assume P is a linear operator of order n with bounded coefficients Ak.
It follows from Definition 6.14 that, for all p > 1, k ≥ 0 and β, P extends
to a continuous map

(7.1) P : W p
k+n,β(E) → W p

k,β(F ).

Remark 7.2. It will sometimes be useful to denote by Pβ the extended
operator of Equation (7.1), so as to emphasize the particular weight being
used.

Now assume P is asymptotic to a translation-invariant operator P∞.
Then Equation (7.1) holds also for the operator e−νζ(P − P∞), where ν < 0
denotes the convergence rates of P as in Definition 7.1. This implies that
the operator P − P∞ extends to a continuous map

(7.2) P − P∞ : W p
k+n,β(E) → W p

k,β+ν(F ).

Note that if β < β′ then W p
k+n,β(E) ⊂ W p

k+n,β′(E) and that the opera-
tor Pβ′ extends the operator Pβ. Note also that C∞

c (E) ⊂ W p
k,β(E) as a

dense subset. Dualizing this relation allows us to identify the dual space
(W p

k,β(E))∗ with a subspace of the space of distributions (C∞
c (E))∗. It is

customary to denote this space W p′

−k,−β(E). Endowed with the appropri-
ate norm, it again contains C∞

c (E) as a dense subset. The duality map
W p′

−k,−β(E) × W p
k,β(E) → R, restricted to this subset, coincides with the

map

(7.3) C∞
c (E) × W p

k,β(E) → R, < σ, σ′ >:=
∫

L
(σ, σ′)E volh.

This map extends by continuity to a map defined on W p′

l,−β(E) × W p
k,β(E)

for all l ≥ 0, showing that W p′

−k,−β(E) also contains all spaces W p′

l,−β(E). It
can be shown that P admits continuous extensions as in Equation (7.1) for
any k ∈ Z.

Lemma 7.3. Let P : C∞(E) → C∞(F ) be a linear differential operator
of order n, asymptotic to a translation-invariant operator P∞. Let P ∗ :
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C∞(F ) → C∞(E) denote its formal adjoint. Consider the continuous exten-
sion of P ∗ to the spaces

(7.4) P ∗ : W p′

−k,−β(F ) → W p′

−k−n,−β(E).

Under the identification of Sobolev spaces of negative order with dual spaces,
this operator coincides with the operator dual to that of Equation (7.1),

(7.5) P ∗ : (W p
k,β(F ))∗ → (W p

k+n,β(E))∗.

Furthermore if E = F and P is self-adjoint, i.e., P = P ∗ on smooth
compactly-supported sections, then P = P ∗ on any space W p

k,β.

Proof. The formal adjoint of P is asymptotic to the formal adjoint of P∞, so
the extensions exist as specified. The statement of this lemma can be clarified
by adopting the notation of Remark 7.2: the claim is then that (P ∗)−β =
(Pβ)∗, where on the left the superscript ∗ denotes the formal adjoint and on
the right it denotes the dual map.

Since both maps are continuous, it is sufficient to show that they coin-
cide on a dense subset: in particular that (P ∗)−β(τ) = (Pβ)∗(τ), for all
τ ∈ C∞

c (F ). Since we are identifying (P ∗)−β(τ) with an element of the dual
space (W p

k+n,β(E))∗, we can again invoke continuity to claim that it is suf-
ficient to prove that, for all e ∈ C∞

c (E),

(7.6) 〈(P ∗)−β(τ), e〉 = 〈(Pβ)∗(τ), e〉.

This claim is now a direct consequence of the definitions and of Equa-
tion (7.3).

The claim concerning self-adjoint operators is a simple consequence of
continuity. �

Remark 7.4. As already remarked, β′ > β implies Pβ′ extends Pβ. This
shows that the spaces Ker(Pβ) grow with β. On the other hand, as a vector
space, the cokernel of P in Equation (7.1) is not canonically a subspace of
W p

k,β(F ) so there is no canonical way of relating cokernels corresponding
to different weights. However, consider the following construction, for which
we assume P , P ∗ are Fredholm. Pick τ1 ∈ W p

k,β(F ) such that 〈σ, τ1〉 �= 0,
for some σ ∈ Ker(P ∗). According to Remark 2.3 this implies that τ1 does
not belong to Im(P ). By density we can then find τ̃1 which is smooth and
compactly-supported and does not belong to Im(P ). Now choose τ2 satisfy-
ing 〈σ, τ2〉 �= 0 for some σ ∈ Ker(P ∗) and which is linearly independent of τ1,
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etc. After a finite number of steps we will have found a vector space spanned
by τ̃1, . . . , τ̃k which defines a complement to Im(P ) and thus is isomorphic
to Coker(P ). Note that by construction τ̃i belong to all spaces W p

k,β(F ). On
the other hand, as β decreases the dual weight −β increases, so Ker(P ∗)
increases, so the τ̃i chosen for the weight β can be used also for any weight
β′ < β. The conclusion is that we can construct spaces representing the
cokernel, which grow as β decreases, i.e., as the function spaces become
smaller.

Now assume P is elliptic. We are interested in conditions ensuring that
the extended map of Equation (7.1) is Fredholm.

Definition 7.5. Let Σ be a compact oriented Riemannian manifold with
connected components Σ1, . . . ,Σe. Let P∞ be a translation-invariant opera-
tor on Σ × R. Consider the complexified operator P∞ : E∞ ⊗ C → F∞ ⊗ C.
Choose a connected component Σj × R and fix γ + iδ ∈ C. Let us restrict
our attention to the space of sections of E∞ ⊗ C of the form e(γ+iδ)zσ(θ).
Consider the subspace V j

γ+iδ determined by the solutions to the problem
P∞(e(γ+iδ)zσ(θ)) = 0 on Σj × R. We define the space Cj

P∞
⊆ C to be the

space of all γ + iδ such that V j
γ+iδ �= 0. We then define the space of excep-

tional weights for P∞ on Σj × R to be the corresponding set of real values,
Dj

P∞
:= Re(Cj

P∞
) ⊆ R.

Now fix a multi-index γ + iδ ∈ C
e. Let Vγ+iδ := ⊕e

j=1V
j
γj+iδj

. We define
the space of exceptional weights for P∞ on Σ × R, denoted DP∞ ⊆ R

e, to be
the set of multi-indices γ = (γ1, . . . , γe) such that, for some j, γj ∈ Dj

P∞
.

Remark 7.6. Definition 7.5 introduces the exceptional weights via the
kernel of P∞ and the space of sections with exponential growth. Along the
lines of [11], the exceptional weights can equivalently be defined as follows.
Separating the ∂θ derivatives from the ∂z derivatives and setting Dz =
−i∂z, we can write

(7.7) P∞ =
∑

Ak(θ, ∂θ)(∂z)k =
∑

Ak(θ, ∂θ)ik(Dz)k,

where, to simplify the notation, ∂θ denotes any combination of derivatives
in the θ variables. For any λ ∈ C, set Pλ :=

∑
Ak(θ, ∂θ)ikλk. Note that

(7.8) P∞(eiλzσ(θ)) =
∑

Ak(θ, ∂θ)(iλ)kσeiλz = (Pλ(σ))eiλz

so P∞(eiλzσ(θ)) = 0 iff Pλ(σ) = 0. We view the latter as a generalized eigen-
value problem on Σ and say that λ is an eigenvalue iff the corresponding
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generalized eigenvalue problem admits non-trivial solutions. It follows from
the above calculations that a weight γ ∈ R is exceptional in the sense of
Definition 7.5 iff −γ = Im(λ), for some eigenvalue λ.

For elliptic operators it turns out that the exceptional weights of P∞
determine the possible Fredholm extensions of any P asymptotic to P∞.

Theorem 7.7. Let (L, h) be an A.Cyl. manifold with link Σ = �Σi. Let
P : C∞(E) → C∞(F ) be a linear elliptic operator of order n, asymptotic to
an elliptic operator P∞.

Then each Dj
P∞

is discrete in R so DP∞ defines a discrete set of hyper-
planes in R

e. Furthermore, for each p > 1 and k ≥ 0, the extended operator
Pγ : W p

k+n,γ(E) → W p
k,γ(F ) is Fredholm iff γ /∈ DP∞.

In a similar vein, we can compute how the index of P depends on γ.

Definition 7.8. Consider the complexified operator P∞ : E∞⊗C →
F∞⊗C. Choose a connected component Σj × R of Σ × R and fix
γ + iδ ∈ Cj

P∞
. We denote by Ṽ j

γ+iδ the space of solutions to the problem
P∞(e(γ+iδ)zσ(θ, z)) = 0 on Σj × R, where σ(θ, z) is polynomial in z. We can
extend this definition to all γ + iδ by setting Ṽ j

γ+iδ = {0} if γ + iδ /∈ Cj
P∞

.
Note that V j

γ+iδ ≤ Ṽ j
γ+iδ. Given any γ ∈ R we now set Ṽ j

γ :=
⊕

δ∈R
Ṽ j

γ+iδ,
then define the multiplicity of γ on Σj × R by mj

P∞
(γ) := dim(Ṽ j

γ ).
Now fix a multi-index γ ∈ R

e. We define the multiplicity of γ on Σ × R

to be mP∞(γ) :=
∑e

j=1 mj
P∞

(γj).

Theorem 7.9. In the setting of Theorem 7.7, each multiplicity mP∞(γ) is
finite. Furthermore, choose γ1, γ2 ∈ R

e \ DP∞ with γ1 ≤ γ2. Then

iγ2
(P ) − iγ1

(P ) =
∑

γ∈DP∞ ,γ1≤γ≤γ2

mP∞(γ).

Remark 7.10. Assume we can compute the value of iγ(P ) for a specific
good choice of non-exceptional γ. Theorem 7.9 then allows us to compute
iγ(P ) for all non-exceptional γ in terms of data on the link.

The following result is proved in [11] Section 7, cf. also [8], as a conse-
quence of the Sobolev embedding and change of index theorems.

Proposition 7.11. In the setting of Theorem 7.9, assume γ and γ′ belong
to the same connected component of R

e \ DP∞. Then iγ(P ) = iγ′(P ) and
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Ker(Pγ) = Ker(Pγ′). Furthermore, the index and kernel are independent of
the choice of p and k.

Example 7.12. Assume (L, h) is an A.Cyl. manifold with one end with
link (Σ, g′). Let P := Δh denote the positive Laplace operator on functions.
Then P is asymptotic to the Laplace operator Δh̃ defined on the prod-
uct (Σ × R, h̃ := dz2 + g′). One can check that Δh̃ = −(∂z)2 + Δg′ and that
Δh̃e(γ+iδ)zσ(θ) = 0 iff δ = 0 and Δg′σ = γ2σ. In other words, the harmonic
functions on the cylinder which have exponential growth are generated by
the eigenvalues of Δg′ . In particular, the exceptional weights for Δh are of
the form ±√

en, where en are the eigenvalues of Δg′ .

8. Weight-crossing

Let (L, h) be an A.Cyl. manifold. Let P : C∞(E) → C∞(F ) be a linear
elliptic operator asymptotic to some P∞ as in Definition 7.1. Consider the
extension of P to weighted Sobolev spaces as in Equation (7.1). When β
changes value crossing an exceptional weight the change of index formula
given in Theorem 7.9 leads us to expect that the kernel and/or cokernel of
P will change. Specifically, when β increases, we expect the kernel of P to
increase and the cokernel to decrease. The process by which this occurs can
be formalized using the Fredholm and index results stated in Section 7. The
notation we rely on was introduced in Definitions 7.5 and 7.8. To simplify the
notation, throughout this section we forgo the distinction between bundles
(or operators) and their complexifications.

Literally speaking, given any index γ ∈ R and end Sj , the sections in each
Ṽ j

γ are defined on Σj × R. Using the identification φj , we can alternatively
think of them as being defined on Sj . However, we can also think of them as
being globally defined on L by first choosing a basis of sections σj

i for each
Ṽ j

γ , then interpolating between them so as to get smooth extensions σj
i over

L. In particular, it may be useful to choose the extension of each σj
i so that

it is identically zero on the other ends. The construction implies that each
P∞(σj

i ) has compact support. By choosing the extensions generically over
L \ S, we can assume that all P (σj

i ) are linearly independent. This implies
that P is injective on Ṽγ.

Now assume γ ∈ R
e is exceptional. Then, for any ν < 0 with |ν| << 1,

(8.1) P : W p
k+n,γ+ν(E) → W p

k,γ+ν(F )
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is Fredholm. In particular, let ν < 0 be the convergence rates of P as in
Definition 7.1. We will assume that |ν| << 1 as above. Writing P (σ) =
(P − P∞)(σ) + P∞(σ) and using Equation (7.2) then shows that P (Ṽγ) ⊂
W p

k,γ+ν(F ). Since P is injective on Ṽγ we can define a decomposition

(8.2) Ṽγ = Ṽ ′
γ ⊕ Ṽ ′′

γ

by defining P (Ṽ ′
γ) := P (Ṽγ) ∩ Im(Pγ+ν) and choosing any complement Ṽ ′′

γ .
By definition, P (Ṽ ′′

γ ) ∩ Im(Pγ+ν) = 0. In other words, we can think of P (Ṽ ′′
γ )

as belonging to the cokernel of Pγ+ν. On the other hand, P (Ṽ ′′
γ ) belongs to

the image of Pγ−ν because Ṽγ ⊂ W p
k+n,γ−ν(E) . Roughly speaking, P (Ṽ ′′

γ )
thus describes the portion of the cokernel of P which “disappears” when
crossing the exceptional weight γ.

By construction, for any σ ∈ Ṽ ′
γ there exists uσ ∈ W p

k+n,γ+ν(E) such
that P (σ) = P (uσ). Note that uσ is not necessarily uniquely defined. How-
ever, it is sufficient to fix a choice of uσ for each element of a basis of Ṽ ′

γ

to obtain a unique choice of uσ for any σ ∈ Ṽ ′
γ. Note also that σ − uσ ∈

W p
k+n,γ−ν(E). We have thus defined a map

(8.3) Ṽ ′
γ → Ker(Pγ−ν), σ �→ σ − uσ /∈ W p

k+n,γ+ν(E).

The image of the map of Equation (8.3) thus defines a space of “new”
elements in Ker(P ), generated by crossing the exceptional weight γ. Note
that uσ is of strictly lower order of growth compared to σ. This shows that
the map of Equation (8.3) is injective and that the elements in its image
admit an asymptotic expansion of the form eγζ + lower order. The following
result shows that every new element in Ker(P ) arises this way.

Lemma 8.1. Let us identify Ṽ ′
γ with its image under the map of Equa-

tion (8.3). Then

Ker(Pγ−ν) = Ker(Pγ+ν) ⊕ Ṽ ′
γ.

Proof. By injectivity, the inequality ⊇ is clear. To prove the lemma it is thus
sufficient to prove that the inverse inequality holds on the corresponding
dimensions. Choose any σ ∈ Ṽ ′′

γ . According to Remark 2.3,

P (σ) ∈ Im(Pγ−ν) ⇔ 〈τ, P (σ)〉 = 0, ∀τ ∈ Ker(P ∗
−γ+ν),

P (σ) ∈ Im(Pγ+ν) ⇔ 〈τ, P (σ)〉 = 0, ∀τ ∈ Ker(P ∗
−γ−ν).
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From the definition of Ṽ ′′
γ we know that P (σ) ∈ Im(Pγ−ν) and that P (σ) /∈

Im(Pγ+ν) unless σ = 0. Note also that Ker(P ∗−γ+ν) ⊆ Ker(P ∗−γ−ν). We con-
clude that the following map is well-defined:

(8.4)
Ker(P ∗−γ−ν)
Ker(P ∗−γ+ν)

× Ṽ ′′
γ , ([τ ], σ) �→ 〈τ, P (σ)〉,

and that the corresponding map

(8.5) Ṽ ′′
γ →

(
Ker(P ∗−γ−ν)
Ker(P ∗−γ+ν)

)∗

is injective. This proves that

(8.6) dim(Ṽ ′′
γ ) ≤ dim(Ker(P ∗

−γ−ν)) − dim(Ker(P ∗
−γ+ν)).

On the other hand, the change of index formula shows that

dim(Ṽ ′
γ) + dim(Ṽ ′′

γ ) = dim(Ker(Pγ−ν)) − dim(Ker(P ∗
−γ+ν))(8.7)

− dim(Ker(Pγ+ν)) + dim(Ker(P ∗
−γ−ν)).

Subtracting Equation (8.6) from (8.7) proves the desired inequality. �

9. Fredholm results for elliptic operators on conifolds

We now want to see how to achieve analogous results for certain elliptic
operators on conifolds. In parallel with Section 7 it is possible to develop an
abstract definition and theory of AC operators, analogous to that of asymp-
totically translation-invariant operators on A.Cyl. manifolds. For simplicity,
however, we will limit ourselves to the special case of the Laplace opera-
tor acting on functions. This already contains the main ideas of the general
theory.

Let (L, g) be a conifold. Consider the weighted spaces introduced in Def-
inition 6.6. As in Section 7 we denote the dual space (W p

k,β)∗ by W p′

−k,−β−m.
This choice of weights is compatible with the identifications of Remark 6.16,
and the properties of these dual spaces are analogous to those seen in Sec-
tion 7. It follows directly from the definitions that

∇ : W p
k,β → W p

k−1,β−1
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is a continuous operator. Equation (2.3) then implies that Δg extends to a
continuous map

(9.1) Δβ : W p
k,β → W p

k−2,β−2.

The following result is closely related to Lemma 7.3 and uses the fact that
Δg is formally self-adjoint.

Lemma 9.1. Let (L, g) be a conifold. Choose u ∈ W p
k,β, v ∈ W p′

2−k,2−β−m.
Then

(9.2) 〈v, Δgu〉 = 〈dv, du〉 = 〈Δgv, u〉.

Proof. Using the appropriate dualities, each expression in Equation (9.2)
defines by composition a continuous bilinear map (u, v) ∈ W p

k,β ×
W p′

2−k,2−β−m → R. Since Δg = d∗d the equalities hold on the dense subsets
C∞

c × C∞
c . By continuity the equalities thus continue to hold on the full

Sobolev spaces. �

We now want to investigate the Fredholm properties of Δβ. It is initially
useful to distinguish between the AC and CS case. To begin, let (L, g) be an
AC manifold with ends Sj and links Σj . The starting point for the Fredholm
theory is then the following observation.

Lemma 9.2. Let (Σ, g′) be a Riemannian manifold. Let the corresponding
cone C := Σ × (0,∞) have the conical metric g̃ := dr2 + r2g′. Let Δg̃ denote
the corresponding Laplace operator on functions. Then, under the substitu-
tion r = ez, the operator r2Δg̃ coincides with the translation-invariant oper-
ator

(9.3) P∞ := −(∂z)2 + (2 − m)∂z + ΔΣ

on the cylinder Σ × R.

Proof. Recall that in any local coordinate system the Laplace operator on
functions is given by the formula

(9.4) Δg = − 1√
g
∂j(

√
ggij∂i).
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Let U be a local chart on Σ so that U × (0,∞) is a local chart on C.
Equation (9.4) then shows that

(9.5) Δg̃ = −(∂r)2 − m − 1
r

∂r + r−2ΔΣ.

The substitution r = ez implies r∂r = ∂z. The claim is then a simple
calculation. �

Lemma 9.2 allows us to study the Fredholm properties of Δg by building
an equivalent problem for an A.Cyl. manifold, as follows. We use the notation
of Section 7.

Multiplication by ρ2 defines an isometry W p
k−2,β−2 
 W p

k−2,β. Thus Δβ

in Equation (9.1) is Fredholm iff the operator

(9.6) ρ2Δβ : W p
k,β → W p

k−2,β

is Fredholm. Now consider the A.Cyl. manifold (L, h), where h = ρ−2g. It
follows from Equation (2.3) and Lemma 9.2 that the operator P := ρ2Δg is
asymptotic in the sense of Definition 7.1 to the translation-invariant operator
P∞ of Equation (9.3). One can check that the convergence rate ν of P
coincides with the convergence rate ν of the AC manifold, cf. Definition 6.2.

It is simple to verify that the equation P∞(e(γ+iδ)zσ(θ)) = 0 is equivalent
to the following eigenvalue problem on the link:

(9.7) ΔΣj
σ = [(γ + iδ)2 + (m − 2)(γ + iδ)]σ.

Using the fact that the eigenvalues ej
n of ΔΣj

are real and non-negative, it
follows that δ = 0 and that γ satisfies γ2 + (m − 2)γ = ej

n for some n, i.e.,

(9.8) γ =
(2 − m) ±

√

(2 − m)2 + 4ej
n

2
.

This shows that, for this particular operator, Cj
P∞

= Dj
P∞

. It also fol-
lows from Lemma 9.2 that the equation P∞(eγzσ(θ)) = 0 is equivalent to
Δg̃(rγσ) = 0. Thus

(9.9) V j
γ = {rγσ(θ) : Δg̃(rγσ) = 0},

i.e., V j
γ coincides with the space of homogeneous harmonic functions of

degree γ on the cone Σj × (0,∞).
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Varying the choice of eigenvalue ej
n gives the set of exceptional weights

for P∞ on the end Sj . Repeating this for each end defines the set DP∞ ⊂ R
e.

According to Theorem 7.7 these are the weights for which the operator P is
not Fredholm with respect to the Sobolev spaces of (L, h). However, recall
from Remark 6.16 that the Sobolev spaces of (L, g) and (L, h) coincide. Thus
DP∞ ⊂ R

e are also the weights for which the operators of Equations (9.6),
(9.1) are not Fredholm.

Remark 9.3. Note that in this particular case (and in the analogous case
presented in Example 7.12) the generalized eigenvalue problem introduced
in Remark 7.6 has reduced to an eigenvalue problem in the usual sense.

It is also fairly straightforward to verify that, for this operator P∞, the
spaces Ṽ j

γ+iδ and V j
γ+iδ coincide, cf. Joyce [5] Proposition 2.4 for details. This

allows us to simplify the definition of the multiplicity m(γ).
The situation for CS manifolds is similar. The change of variables r = e−z

introduces a change of sign in Equation (9.3). This sign is later cancelled by
a change of sign in the identification of Sobolev spaces of (L, g) and (L, h).
The final result is thus identical to the AC case. Combining these results
leads to the following conclusion.

Corollary 9.4. Let (L, g) be a conifold with e ends. For each end Sj with
link Σj let ej

n denote the eigenvalues of the positive Laplace operator ΔΣj

and define the set of “exceptional weights” Dj := {γj} ⊆ R as in Equation
(9.8). Given any weight γ ∈ R define V j

γ as in Equation (9.9) and let mj(γ)
denote its dimension. Given any weight γ ∈ R

e set m(γ) :=
∑e

j=1 mj(γj).
Let D ⊆ R

e denote the set of weights γ for which m(γ) > 0. Then each
multiplicity m(γ) is finite and the Laplace operator

(9.10) Δg : W p
k,β → W p

k−2,β−2

is Fredholm iff β /∈ D.
The analogue of Theorem 7.9 also holds. For example, assume L is a

CS/AC manifold and write β = (μ, λ). Choose (μ1, λ1), (μ2, λ2) ∈ R
e \ D

with μ1 ≥ μ2, λ1 ≤ λ2. Then

iμ2,λ2(Δg) − iμ1,λ1(Δg) =
∑

m(μ, λ),

where the sum is taken over all (μ, λ) ∈ D such that μ1 ≥ μ ≥ μ2, λ1 ≤
λ ≤ λ2.

In the same way one can also prove the analogue of Proposition 7.11.
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10. Application: harmonic functions on conifolds

We can use the results of Sections 8 and 9 to reach a good understanding
of the properties of the Laplace operator acting on functions on conifolds.
Specifically, we will be interested in the kernel and cokernel of Δg.

Smooth compact manifolds. Let (L, g) be a smooth compact Rieman-
nian manifold. Let Δg denote the positive Laplace operator on functions.
Consider the map

(10.1) Δg : W p
k (L) → W p

k−2(L).

For all p > 1 and k ∈ Z, standard elliptic regularity shows that any f ∈
Ker(Δg) is smooth. The maximum principle then proves that f is constant.
Thus Ker(Δg) = R, independently of the choice of p, k.

As seen in Section 2, f ∈ Im(Δg) iff < u, f >= 0, for all u ∈ Ker(Δ∗
g),

where Δ∗
g is the operator dual to that of Equation (10.1). As in Lemma 7.3

we can identify this with the formal adjoint operator. However, Δg is for-
mally self-adjoint, i.e., the operators Δg and Δ∗

g coincide on smooth func-
tions. By continuity they continue to coincide when extended to any Sobolev
space. Thus Ker(Δ∗

g) = Ker(Δg) = R. As in Equation (7.3) we find
< u, f >=

∫
L uf volg. It follows that Im(Δg) = {f ∈ W p

k−2(L) :
∫
L f volg =

0}. In particular, Δg has index zero.
AC manifolds. Let (L, g) be a AC manifold with convergence rate ν < 0

as in Definition 6.2. Let Δg denote the positive Laplace operator on weighted
Sobolev spaces of functions, as in Equation (9.1). For simplicity, we will
restrict our attention to the case of L with two ends.

Each end defines exceptional weights, plotted as points on the horizontal
and vertical axes of figure 1. Each exceptional weight gives rise to an excep-
tional hyperplane, plotted as a vertical or horizontal line. The Laplacian
is Fredholm for weights β = (β1, β2) which are non-exceptional, i.e., which
do not lie on these lines. The arrow indicates the direction in which the
corresponding Sobolev spaces, thus the kernel of Δg, become bigger.

Choose β non-exceptional. For all p > 1 and k ∈ Z, standard elliptic reg-
ularity proves that any f ∈ Ker(Δg) is smooth. Furthermore, since Ker(Δg)
is independent of p and k, the Sobolev Embedding Theorems show that f
has growth of the order O(rβ). If β < 0 we can thus apply the maximum
principle to conclude that f ≡ 0. In other words, Δg is injective through-
out the quadrant defined by the lower shaded region. Since Δg is formally
self-adjoint, the same holds for Δ∗

g. Recall from Section 9 how weights on
AC manifolds change under duality. We conclude, following Section 2, that
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Figure 1: Harmonic functions on AC manifolds.

Coker(Δg) = 0 for β > 2 − m. In other words, Δg is surjective throughout
the quadrant defined by the upper shaded region. In particular, the map
of Equation (9.1) is an isomorphism and has index zero for 2 − m < β < 0,
i.e., in the region marked by A.

When β > 2 − m the cokernel is independent of the weight. Thus, any
change of index corresponds entirely to a change of kernel. Furthermore,
Ker(Δg) = Ker(ρ2Δg). We can thus use the results of Section 8 to study how
the kernel changes as β increases. For example, assume we are interested in
harmonic functions for some (thus any) β in the region B. We can reach
this region by keeping β2 fixed and repeatedly increasing β1, starting from



152 Tommaso Pacini

the region A. Each time we cross an exceptional line x = γ, new harmonic
functions on (L, g) are generated by elements rγσ(θ) ∈ V 1

γ . Specifically, these
new harmonic functions will be asymptotic to rγσ on the first end and to
zero on the second end. Using the ideas of Section 8, we can further show
that the lower-order terms will have rate O(rγ+ν1) on the first end and
O(rν2) on the second. Analogous results hold for harmonic functions for β
in the region C. The construction shows that the harmonic functions in the
regions B and C are linearly independent. We can thus apply the change of
index formula to show that harmonic functions in the generic region D are
generated by linear combinations of harmonic functions in the regions B, C.

It may be good to emphasize that the above constructions depend on
the specific (L, g) only in terms of the specific exceptional weights, but are
otherwise completely independent of (L, g). However, these constructions
fail if D is chosen outside the region where Δg is surjective.

CS manifolds. Let (L, g) be a CS manifold with convergence rate ν > 0
as in Definition 6.2. As before, let Δg denote the positive Laplace operator
on weighted Sobolev spaces of functions, as in Equation (9.1). We again
restrict our attention to the case of L with two ends.

Figure 2 plots the exceptional weights and lines in this case. Once
again the arrow indicates the direction in which the corresponding Sobolev
spaces, thus the kernel of Δg, become bigger. Choose β non-exceptional. As
before, any f ∈ Ker(Δg) is smooth with growth of order O(rβ). If β > 0
the maximum principle shows that f = 0. Now assume β = 2−m

2 . In this
case (W 2

k−2,β−2)
∗ = W 2

2−k,β. Choose f ∈ W 2
k,β and assume Δgf = 0. Then,

choosing u = v = f in Lemma 9.1 and using regularity, we can conclude
df = 0 so f is constant. This shows that, for any weight in the region A,
Ker(Δg) = R. As before we also find that, in this region, Im(Δg) = {f ∈
W p

k−2,β−2 :
∫
L f volg = 0}. In particular, the index of Δg is zero.

Now assume (β1, β2) > (0, 2−m
2 ). Then W p

k,β ⊂ W p

k,( 2−m

2
, 2−m

2
)
so our inte-

gration by parts argument remains valid. On the other hand, the only con-
stant function in W p

k,β is zero, so in this case we find that Δg is injective.
The same holds for (β1, β2) > (2−m

2 , 0). Thus Δg is injective in the upper
shaded region. By duality we deduce that Δg is surjective in the lower shaded
region.

Now assume β crosses from A to B. In this particular case the method
used above for AC manifolds fails, because it would require Δg to be sur-
jective in the region A. We can however bypass this problem as follows: the
change of index formula shows that the index increases by one and we know
that the Laplacian is surjective in B, so Ker(Δg) = R in B. The same is true
for the region C. We can use Section 8 to study the harmonic functions in
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Figure 2: Harmonic functions on CS manifolds.

the lower shaded region. For example, the harmonic functions in D will be
generated by functions which are of the form rγσ + O(rγ+ν1) on the first end
and of the form O(rν2) on the second end. Note a difference with respect
to AC manifolds: harmonic functions in B and C (more generally, in D and
E) are not necessarily linearly independent. Thus we cannot write harmonic
functions in F as the direct sum of harmonic functions in D and E, as in the
AC case. Once again, harmonic functions elsewhere will be heavily depen-
dent on the specific (L, g).

We may also be interested in the cokernel of Δg. The change of index
formula shows that the dimension of the cokernel increases with β. For
example, the index is −1 in the regions G,H. Since Δg is injective here, this
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Figure 3: Harmonic functions on CS/AC manifolds.

implies that the cokernel has dimension 1. More generally, the change of
index formula allows us to compute the dimension of the cokernel wherever
Δg is injective. We can also use the ideas of Remark 7.4 to build complements
of Im(Δg) which grow with β.

CS/AC manifolds. Let (L, g) be a CS/AC manifold with convergence
rate ν. Following the same conventions as before, we now turn to figure 3.
Here, the horizontal axis corresponds to the CS end with weight μ and the
vertical axis corresponds to the AC end with weight λ.

When λ < 0 and μ > 2 − m, the maximum principle and integration by
parts show that Δg is injective. Dually, when λ > 2 − m and μ < 0, Δg is
surjective. In the region A, Δg is an isomorphism with index zero. Harmonic
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functions in the region B are of the form rγσ + O(rγ+ν2) on the AC end and
of the form O(rν1) on the CS end. Harmonic functions in the region C are of
the form rγσ + O(rγ+ν1) on the CS end and of the form O(rν2) on the AC
end. Since these functions are linearly independent, their linear combinations
give the harmonic functions in the region D.

Example 10.1. R
m with its standard metric can be viewed as a CS/AC

manifold, the CS end being a neighbourhood of the origin. In this case all
harmonic functions can be written explicitly, so in this case we have exact
information on their asymptotics.

Part 3. Conifold connect sums and uniform estimates

This is the main part of the paper. Our goal is to introduce a certain “para-
metric connect sum” construction between conifolds; as mentioned in the
Introduction, this is the abstract analogue of certain desingularization pro-
cedures used in differential geometry, in which an isolated conical singularity
is replaced by something smooth or perhaps by a new collection of AC or
CS ends. We will show that careful choices of parameters and weights lead
to uniform estimates concerning both Sobolev Embedding Theorems and
the Laplace operator. These estimates are at the heart of the paper [15].
Readers interested in specific applications of these estimates can thus refer
there for details.

11. Conifold connect sums

The goal of this section is to define the “parametric connect sum” con-
struction and prove that the scaled and weighted Sobolev constants are
independent of the parameter t. For simplicity we start with the non-parametric
version.

Definition 11.1. Let (L, g) be a conifold, not necessarily connected. Let
S denote the union of its ends. A subset S∗ of S defines a marking on L.
We can then write S = S∗ � S∗∗, where S∗∗ is simply the complement of S∗.
We say S∗ is a CS-marking if all ends in S∗ are CS; it is an AC-marking if
all ends in S∗ are AC. We will denote by d the number of ends in S∗.

If L is weighted via β we require that βi = βj , if Si and Sj are marked
ends belonging to the same connected component of L.
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Definition 11.2. Let (L, g, S∗) be a CS-marked conifold. Let Σ∗, C∗ denote
the links and cones corresponding to S∗, as in Definition 6.2. Given any end
Si ⊆ S∗ let φi : Σi × (0, ε] → Si be the diffeomorphism of Definition 6.2.

Let (L̂, ĝ, Ŝ∗) be an AC-marked conifold. Let Σ̂∗, Ĉ∗, φ̂i : Σ̂i × [R̂,∞) →
Ŝi denote the corresponding links, cones and diffeomorphisms, as above.

We say that L and L̂ are compatible if they satisfy the following assump-
tions:

1) C∗ = Ĉ∗. Up to relabelling the ends, we may assume that C∗
i = Ĉ∗

i .

2) R̂ < ε. We can then identify appropriate subsets of S∗ and Ŝ∗ via the
maps φ̂i ◦ φ−1

i .

3) On each marked AC end, the metrics φ̂∗
i ĝ and g̃i are scaled-equivalent

in the sense of Definition 4.3. Analogously, on each marked CS end, the
metrics φ∗

i g and g̃i are scaled-equivalent in the sense of Definition 4.3.

If L is weighted via β and L̂ is weighted via β̂ we further require that,
on the marked ends, the corresponding constants satisfy βi = β̂i and that
β̂i = β̂j if Ŝi and Ŝj are marked ends in the same connected component
of L̂.

Remark 11.3. The condition R̂ < ε may seem rather strong. However, let
(L, g, S∗) be CS-marked, (L̂, ĝ, Ŝ∗) be AC-marked and C∗ = Ĉ∗. As seen
in Remark 6.3, by making R̂ larger if necessary it is possible to assume
that the metrics φ̂∗

i ĝ, g̃i on Σi × [R̂,∞) are scaled-equivalent in the sense
of Definition 4.3. Lemma 6.10 then shows that the metrics φ̂∗

t,i(t
2ĝ), g̃i on

Σi × [tR̂,∞) are also scaled-equivalent, with the same bounds. Analogously,
by making ε smaller if necessary, we can assume that the metrics φ∗

i g, g̃i

on Σi × (0, ε] are scaled-equivalent. By first making R̂ large and ε small
and then rescaling to satisfy the condition R̂ < ε we thus obtain compatible
conifolds in the sense of Definition 11.2.

Definition 11.4. Let (L, g, S∗), (L̂, ĝ, Ŝ∗) be compatible marked conifolds.
We define the connect sum of L and L̂ as follows. We set

(11.1) L̂#L := (L̂ \ Ŝ∗) ∪ (Σ∗ × [R̂, ε]) ∪ (L \ S∗),

where the boundary of L̂ \ Ŝ∗ is identified with Σ∗ × {R̂} via the maps φ̂i

and the boundary of L \ S∗ is identified with Σ∗ × {ε} via the maps φi. We
can endow this manifold with any metric ĝ#g which restricts to ĝ on L̂ \ Ŝ∗
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and to g on L \ S∗. Then L̂#L is a conifold. Its ends are Ŝ∗∗ � S∗∗. We call
Σ∗ × [R̂, ε] the neck region of L̂#L.

Given radius functions ρ on L and ρ̂ on L̂ we can endow L̂#L with the
radius function

ρ̂#ρ :=

⎧
⎪⎨

⎪⎩

ρ̂ on L̂ \ Ŝ∗

r on Σ∗ × [R̂, ε]
ρ on L \ S∗.

If L, L̂ are weighted via β, β̂ then L̂#L is weighted via the function

β̂#β :=

⎧
⎪⎨

⎪⎩

β̂ on L̂ \ Ŝ∗

β|S∗ on Σ∗ × [R̂, ε]
β on L \ S∗.

Example 11.5. Let L be a smooth m-dimensional submanifold of R
n,

endowed with the induced metric. Assume that it is either compact or that
it has AC ends: e.g., it could be a collection of m-planes in R

n. Now assume
it has transverse self-intersection points x1, . . . , xk ∈ R

n. For each xi choose
a ball B(xi, ε) in R

n. Then L := L \ {x1, . . . , xk} is a conifold with s CS ends
defined by the connected components of (B(x1, ε) ∪ · · · ∪ B(xk, ε)) ∩ L. The
corresponding cones are copies of R

m. Choose a pair S1, S2 of connected
components of B(x1, ε) ∩ L and an appropriately rescaled m-dimensional
hyperboloid L̂ ⊆ R

n asymptotic to the corresponding cones C1, C2. Then L,
L̂ are compatible and L̂#L is an abstract Riemannian manifold, which we
can think of as a desingularization of L. Our hypothesis in Definition 11.1
that L, L̂ are not necessarily connected allows us to extend this construction
to intersection points of distinct submanifolds and to desingularize all points
simultaneously.

Since L̂#L is again a conifold it is clear that all versions of the Sobolev
Embedding Theorems continue to hold for it. Note that Ŝ∗∗ ∪ S∗∗ might also
be empty: in this case L̂#L is a smooth compact manifold. We now consider
the parametric version of this construction.

Definition 11.6. Let (L, g, S∗), (L̂, ĝ, Ŝ∗) be compatible marked conifolds
with d marked ends. Let (ρ, β), respectively, (ρ̂, β̂), be corresponding radius
functions and weights. Choose parameters t = (t1, . . . , td) > 0 sufficiently
small. We assume that t is compatible with the decomposition of L̂ into its
connected components: specifically, that ti = tj if Ŝi and Ŝj belong to the
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same connected component of L̂. We then define the parametric connect sum
of L and L̂ as follows. We set

Lt := (L̂ \ Ŝ∗) ∪ (∪Σi⊆Σ∗Σi × [tiR̂, ε]) ∪ (L \ S∗),

where the components of the boundary of L̂ \ Ŝ∗ are identified with the
Σi × {tiR̂} via maps φ̂ti,i defined as in Lemma 6.10 and the components of
the boundary of L \ S∗ are identified with the Σi × {ε} via the maps φi.
Choose τ ∈ (0, 1). If the ti are sufficiently small, we find tiR̂ < tτi < 2tτi < ε.
Choose any metric gt on Lt such that, for each Σi ⊆ Σ∗,

gt :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t2i ĝ on the corresponding component of L̂ \ Ŝ∗

φ̂∗
ti,i

(t2i ĝ) on Σi × [tiR̂, tτi ]
φ∗

i g on Σi × [2tτi , ε]
g on L \ S∗

and such that, for all j ≥ 0 and as t → 0,

sup
Σi×[tτ

i ,2tτ
i ]
|∇̃j(gt − g̃i)|r−2g̃i⊗g̃i

→ 0.

We endow Lt with the radius function

ρt :=

⎧
⎪⎨

⎪⎩

tiρ̂ on the corresponding component of L̂ \ Ŝ∗

r on Σi × [tiR̂, ε]
ρ on L \ S∗

and the weight

βt :=

⎧
⎪⎨

⎪⎩

β̂ on L̂ \ Ŝ∗

βi on Σi × [tiR̂, ε]
β on L \ S∗.

We now need to define the weight function wt. As in Corollary 6.11, the
simplest case is when β̂ is constant on each connected component of L̂. We
then define

wt := ρ
−βt

t =

⎧
⎪⎨

⎪⎩

(tiρ̂)−β̂i on the corresponding component of L̂ \ Ŝ∗

r−βi on Σi × [tiR̂, ε]
ρ−β on L \ S∗.
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For general weights β̂, we need to modify the weight function. As in Corol-
lary 6.11, on the ith component of L̂ consider the constant “reference” weight
β̂i. We then define

wt :=

⎧
⎪⎪⎨

⎪⎪⎩

(t
β̂i−β̂

β̂

i tiρ̂)−β̂ on the corresponding component of L̂ \ Ŝ∗,
r−βi on Σi × [tiR̂, ε],
ρ−β on L \ S∗.

We may equivalently write this as

wt :=

{
tβ̂−β̂i

i ρ
−βt

t , on L̂ \ Ŝ∗,
ρ
−βt

t , elsewhere.

Using this data, we now define weighted Sobolev spaces W p
k,βt

on Lt as in
Section 5. We call Σi × [tiR̂, ε] the neck regions of Lt.

Theorem 11.7. Let (L, g, S∗), (L̂, ĝ, Ŝ∗) be compatible weighted marked
conifolds. Define Lt, gt, ρt and βt as in Definition 11.6. Then all forms
of the weighted Sobolev Embedding Theorems hold uniformly in t, i.e., the
corresponding Sobolev constants are independent of t.

Proof. The proof is similar to that of Corollary 6.8. Let us for the moment
pretend that the metrics g, ĝ are exactly conical on all ends of L, L̂. This
allows us to assume that the metrics gt are exactly conical on all ends
and neck regions of Lt so the assumptions of Theorem 5.1 are satisfied in
these regions. On L̂ \ Ŝ∗ we are using rescaled metrics, radius functions and
weights as in Corollary 6.11. As seen in Remark 5.2, the assumptions of The-
orem 5.1 are t-independent, so they are verified here. These assumptions are
also verified on L \ S∗ and on the neck regions. We conclude that all forms
of the weighted Sobolev Embedding Theorems hold for these metrics, with
t-independent Sobolev constants.

Let us now go back to the metric gt. Recall from Lemma 6.10 that we
can assume that, on each end of Lt, gt is a t-uniformly small perturbation
of the conical metric. The same is true also on the neck regions. Specifically,
on Σi × [tiR̂, tτi ] Lemma 6.10 shows that

sup |φ∗
t,i(t

2
i ĝ) − g̃i| ≤ C0R̂

ν̂i .

On Σi × [tτi , 2tτi ] our hypotheses imply

sup |gt − g̃i|r−2g̃i⊗g̃i
≤ C0.
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The analogue is true also on Σi × [2tτi , ε], using the estimates provided by
Definition 6.2.

These perturbations are all t-independent, so according to Theorem 5.1
the weighted Sobolev Embedding Theorems hold also for gt, with t-
independent Sobolev constants. �

Remark 11.8. Note that Theorem 11.7 actually requires only t-uniform
C0-bounds over the metrics gt. In Definition 11.6, we include control over
the higher derivatives and the assumption that the quantities in question
tend to zero for use in later sections. The same is also true for various other
results, e.g., Corollary 6.8.

We conclude with the following result, which serves to highlight certain
properties of gt as t → 0. This is important for Section 12.

Lemma 11.9. Consider gt as in Definition 11.6. Choose a neck region in
Lt and b ∈ (0, τ) so that tiR̂ < tτi < 2tτi < tbi < ε. Then, on Σi × [tiR̂, tbi ], the
metric gt converges to the rescaled metric t2i φ̂

∗
t,iĝ in the following sense: for

all j ≥ 0 and as t → 0,

sup |rj∇̂j(gt − t2i φ̂
∗
t,iĝ)|t2i φ̂∗

t,iĝ⊗t2i φ̂∗
t,iĝ

→ 0,

where ∇̂ denotes the Levi–Civita connection defined by φ̂∗
ti,i

ĝ on Σi × [tiR̂, tbi ].

Proof. Consider the map

δti
: Σi × [R̂, tb−1

i ] → Σi × [tiR̂, tbi ], (θ, r) �→ (θ, tir).

We can use this map to pull the estimate back to Σi × [R̂, tb−1
i ]. We can then

write it as follows: for all j ≥ 0 and as t → 0,

(11.2) sup |∇̂j(δ∗ti
(t−2

i gt) − φ̂∗
i ĝ)|r−2φ̂∗

i ĝ⊗φ̂∗
i ĝ → 0,

where ∇̂ denotes the Levi–Civita connection defined by φ̂∗
i ĝ on Σi × [R̂, tb−1].

We choose to prove this form of the estimate.
On Σi × [R̂, tτ−1

i ] it follows from Definition 11.6 that δ∗ti
(t−2

i gt) = φ̂∗
i ĝ,

so the equation is trivially true.
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On Σi × [tτ−1
i , 2tτ−1

i ],

|∇̃j(δ∗ti
(t−2

i gt) − g̃i)|r−2g̃i⊗g̃i
= |∇̃j(δ∗ti

(t−2
i gt)

− δ∗ti
(t−2

i g̃i))|δ∗
ti

(r/ti)−2δ∗
ti

(ti
−2g̃i)⊗δ∗

ti
(t−2

i g̃i)

= δ∗ti

(
|∇̃j(t−2

i gt − t−2
i g̃i)|(r/ti)−2t−2

i g̃i⊗t−2
i g̃i

)

= δ∗ti

(
|∇̃j(gt − g̃i)|r−2g̃i⊗g̃i

)
→ 0,

where the last statement follows from Definition 11.6. Furthermore, it follows
from Definition 6.2 that

|∇̃j(φ̂∗
i ĝ − g̃i)|r−2g̃i⊗g̃i

≤ Cjti
(τ−1)ν̂i → 0,

using (τ − 1)ν̂i > 0. We have thus found that both metrics of interest con-
verge to the same metric g̃i. The conclusion is a simple computation.

On Σi × [2tτ−1
i , tb−1

i ], as above and using gt = φ∗
i g,

|∇̃j(δ∗ti
(t−2

i gt) − g̃i)|r−2g̃i⊗g̃i
= δ∗ti

(
|∇̃j(φ∗

i g − g̃i)|r−2g̃i⊗g̃i

)
≤ Cjt

bνi

i → 0,

using bνi > 0. Furthermore,

|∇̃j(φ̂∗
i ĝ − g̃i)|r−2g̃i⊗g̃i

≤ Cj(2tτ−1
i )ν̂i → 0.

Again, combining these estimates implies the claim. �

12. The Laplacian on conifold connect sums

Let (L, g, ρ, S∗), (L̂, ĝ, ρ̂, Ŝ∗) be compatible marked conifolds. As seen in
Section 11, we can define their connect sum (L̂#L, ĝ#g, ρ̂#ρ). This is a
new conifold so we can study the properties of its Laplace operator as in
Section 10.

We start with the case in which Ŝ∗∗ ∪ S∗∗ �= ∅, i.e., the set of ends is
non-empty. This case actually turns out to be easier than the alternative
situation, where L̂#L is smooth and compact, because we can use weights
to force injectivity of the Laplacian.

Non-compact conifolds. Assume the set Ŝ∗∗ ∪ S∗∗ of ends of L̂#L is non-
empty. If weights β, β̂ are non-exceptional for Δg, Δĝ then the weight β̂#β
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is non-exceptional for Δĝ#g so

Δĝ#g : W p

k,β̂#β
→ W p

k−2,β̂#β−2

is Fredholm. The same holds for the parametric connect sums (Lt, gt, ρt, βt).
We want to study the invertibility of the Laplace operator. The following

result is obvious.

Lemma 12.1. Let (L̂, ĝ, ρ̂, β̂, Ŝ∗) be a weighted AC-marked conifold.
Assume β̂ satisfies the conditions

{
β̂i < 0, for all AC ends Ŝi ∈ Ŝ,

β̂i > 2 − m, for all CS ends Ŝi ∈ Ŝ,

so that Δĝ is injective.
Let (L, g, ρ,β, S∗) be a weighted CS-marked conifold. Assume β satisfies

the conditions

{
βi < 0, for all AC ends Si ∈ S,

βi > 2 − m, for all CS ends Si ∈ S.

This is not yet sufficient to conclude that Δg is injective because the set of
AC ends might be empty. To obtain injectivity we must furthermore assume
that each connected component of L has at least one end, e.g., S′, satisfying
the condition

{
β′ < 0, if S′ is AC,

β′ > 0, if S′ is CS.

Now assume that L, L̂ are compatible. Then, for all ends Si ∈ S∗,
2 − m < βi < 0. This implies that S′ ∈ S∗∗ so L̂#L has at least one end.
Furthermore, β̂#β satisfies the conditions

{
β̂#β|Si

< 0, for all AC ends Si ∈ Ŝ∗∗ ∪ S∗∗,
β̂#β|Si

> 2 − m, for all CS ends Si ∈ Ŝ∗∗ ∪ S∗∗.

Together with the condition on S′, this implies that Δĝ#g is injective.
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If furthermore β, β̂ are non-exceptional for Δg, Δĝ then

Δĝ#g : W p

k,β̂#β
→ W p

k−2,β̂#β−2

is a topological isomorphism onto its image so there exists C > 0 such that,
for all f ∈ W p

k,β̂#β
,

‖f‖W p

k,β̂#β
≤ C‖Δf‖W p

k−2,β̂#β−2
.

For the constant C in Lemma 12.1 one can choose the norm of the
inverse map (Δĝ#g)−1, as in Equation (2.4). The analogous result holds also
for parametric connect sums. We now want to show that, in this case, the
invertibility constant C can be chosen to be t-independent. In other words,
there exists a t-uniform upper bound on the norms of the inverse maps
(Δgt

)−1.

Theorem 12.2. Let (L, g, ρ,β, S∗), (L̂, ĝ, ρ̂, β̂, Ŝ∗) be marked compatible
conifolds satisfying all the conditions of Lemma 12.1. Define (Lt, gt, ρt, βt)
as in Definition 11.6. Then there exists C > 0 such that, for all f ∈
W p

k,βt
(Lt),

‖f‖W p
k,βt

≤ C‖Δgt
f‖W p

k−2,βt−2
.

Proof. To simplify the notation let us assume that all ti coincide: we can
then work with a unique parameter t. The general case is analogous.

Let Cg denote an invertibility constant for Δg on L, i.e., for all f ∈
W p

k,β(L),
‖f‖W p

k,β
≤ Cg‖Δgf‖W p

k−2,β−2
.

Let Cĝ denote an analogous constant for Δĝ on L̂.
Choose constants a, b satisfying 0 < b < a < τ and a smooth decreasing

function η : R → [0, 1] such that η(s) = 1 for s ≤ b and η(s) = 0 for s ≥ a.
Then the function ηt(r) := η(log r/ log t) : (0,∞) → [0, 1] has the following
properties:

(1) ηt is smooth increasing, ηt(r) = 0 for r ≤ ta, ηt(r) = 1 for r ≥ tb.

(2) For all k ≥ 1 there exists Ck > 0 such that
∣
∣
∣
∣r

k ∂kηt

(∂r)k
(r)
∣
∣
∣
∣ ≤

Ck

| log t| → 0 as t → 0.

We set η′t(r) := ∂ηt

∂r (r), η′′t (r) := ∂2ηt

(∂r)2 (r).
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Using the diffeomorphisms φ̂t,i and φi we now extend ηt to a smooth function
on Lt by setting ηt ≡ 0 on (L̂ \ Ŝ∗) ∪ (Σ∗ × [tR̂, ta]) and ηt ≡ 1 on (L \ S∗) ∪
(Σ∗ × [tb, ε]).

For any f ∈ W p
k,βt

,

‖f‖W p
k,βt

≤ ‖ηtf‖W p
k,βt

+ ‖(1 − ηt)f‖W p
k,βt

.

Note that ηtf has support in (Σ∗ × [ta, ε]) ∪ (L \ S∗), where, up to identifi-
cations via the diffeomorphisms φi, (gt, ρt) = (g, ρ), βt = β. Thus

‖ηtf‖W p
k,βt

(gt) = ‖ηtf‖W p
k,β(g)

≤ Cg‖Δg(ηtf)‖W p
k−2,β−2(g)

= Cg‖Δgt
(ηtf)‖W p

k−2,βt−2(gt)

≤ Cg

(
‖ηtΔgt

f‖W p
k−2,βt−2

+ ‖η′t∇f‖W p
k−2,βt−2

+ ‖η′′t f‖W p
k−2,βt−2

)
,

where we drop unnecessary constants. Applying the Leibniz rule to expres-
sions of the form ∇j(ηtΔgt

f) we find (again up to constants)

‖ηtΔgt
f‖p

W p
k−2,βt−2

≤
k−2∑

j=0

j∑

l=0

∫

|ρl∇lηt|pgt
|ρ2−βt+j−l∇j−lΔgt

f |pgt
ρ−mvolgt

≤
(

1 +
(

C

| log t|
)p)

‖Δgt
f‖p

W p
k−2,βt−2

.

We conclude that

‖ηtΔgt
f‖W p

k−2,βt−2
≤ ‖Δgt

f‖W p
k−2,βt−2

+
C

| log t|‖f‖W p
k,βt

.

Analogously,

‖η′t∇f‖p
W p

k−2,βt−2
≤

k−2∑

j=0

j∑

l=0

∫

|ρ1+l∇lη′t|pgt
|ρ1−βt+j−l∇j−l∇f |pgt

ρ−mvolgt

≤
(

C

| log t|
)p

‖f‖p
W p

k,βt

.

Similar calculations apply to ‖η′′t f‖, ultimately showing that

‖η′t∇f‖W p
k−2,βt−2

≤ C

| log t|‖f‖W p
k,βt

, ‖η′′t f‖W p
k−2,βt−2

≤ C

| log t|‖f‖W p
k,βt

.
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The function (1 − ηt)f has support in (L̂ \ Ŝ∗) ∪ (Σ∗ × [tR̂, tb]). On this
space Definition 11.6 shows that βt = β̂. Furthermore, on the ith com-
ponent Σi × [tR̂, tb] and up to identifications via the diffeomorphisms φ̂t,i,
Lemma 11.9 shows that gt is scaled-equivalent to t2ĝ and ρt = tρ̂.

Using Corollary 6.11 we thus find

‖(1 − ηt)f‖W p
k,βt

(gt,ρt) 
 ‖(1 − ηt)f‖W p

k,β̂
(t2ĝ,tρ̂)

= t−βi‖(1 − ηt)f‖W p

k,β̂
(ĝ,ρ̂)

≤ t−βiCĝ‖Δĝ((1 − ηt)f)‖W p

k−2,β̂−2
(ĝ,ρ̂)

= t2−βiCĝ‖Δt2ĝ((1 − ηt)f)‖W p

k−2,β̂−2
(ĝ,ρ̂)

= Cĝ‖Δt2ĝ((1 − ηt)f)‖W p

k−2,β̂−2
(t2ĝ,tρ̂)


 Cĝ‖Δgt
((1 − ηt)f)‖W p

k−2,βt−2(gt,ρt),

where 
 replaces multiplicative constants. We now continue as above. Com-
bining the above results leads to an inequality of the form

‖f‖W p
k,βt

≤ (Cg + Cĝ)
(

‖Δgt
f‖W p

k−2,βt−2
+

C

| log t|‖f‖W p
k,βt

)

.

For t sufficiently small we can absorb the second term on the right-hand side
into the left-hand side, proving the claim. �

Smooth compact manifolds. Assume the set Ŝ∗∗ ∪ S∗∗ is empty, so that
L̂#L is smooth and compact. In this case the Laplace operator, acting on
functions, always has kernel: the space of constants R. We can thus achieve
injectivity only by restricting ourselves to a subspace transverse to constants.
Furthermore, if we want the invertibility constant to be independent of t we
must allow the subspace to depend on t, as follows.

Theorem 12.3. Let (L, g, ρ, S∗), (L̂, ĝ, ρ̂, Ŝ∗) be marked compatible coni-
folds such that the parametric connect sums (Lt, gt, ρt) are smooth and com-
pact. Choose constant weights β = β̂ ∈ (2 − m, 0) and define βt as usual.

(1) Assume L has only one connected component. Then there exists a
constant C > 0 and, for each t sufficiently small, a subspace Et ⊂
W p

k,t(Lt) such that

(12.1) W p
k,t(Lt) = Et ⊕ R
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and, for all f ∈ Et,

‖f‖W p
k,βt

≤ C‖Δgt
f‖W p

k−2,βt−2
.

Furthermore, the image of the restricted operator Δgt|Et
coincides with

the image of the full operator Δgt
.

(2) Assume L has k > 1 connected components. Then there exists a con-
stant C > 0 and, for each t sufficiently small, a codimension k subspace
Et ⊂ W p

k,t(Lt) transverse to constants such that, for all f ∈ Et,

‖f‖W p
k,βt

≤ C‖Δgt
f‖W p

k−2,βt−2
.

Proof. Assume L has one connected component. Choose any closed subspace
E ⊂ W p

k,β(L) such that

W p
k,β(L) = E ⊕ R.

Define ηt as in the proof of Theorem 12.2. Extending it to zero on the CS
ends of L, we can think of it as an element of W p

k,β(L). One can check that
ηt → 1 in the W p

k,β norm as t → 0 so, for small t, ηt /∈ E. The multiplication
map

Pt : W p
k,βt

(Lt) → W p
k,β(L), f �→ ηtf,

is linear and uniformly continuous with respect to the parameter t, so Et :=
P−1

t (E) is linear and closed. Since ηt does not belong to E, constants do
not belong to Et. To confirm that Et has codimension 1, choose any linear
function Q : W p

k,β(L) → R such that E = Ker(Q). Then Et = Ker(Q ◦ Pt),
so it is defined by one linear condition. This proves Decomposition 12.1.

Consider Δgt
restricted to Et. It is clearly injective. One can check that

it is uniformly injective exactly as in Theorem 12.2.
Now assume L has multiple components L1, . . . , Lk. For each Li, choose

a closed subspace Ei ⊂ W p
k,β(Li) as above. The multiplication map

W p
k,βt

(Lt) →
⊕

W p
k,βt

(Li), f �→ ηtf,

is again linear and uniformly continuous, so we can define Et as the inverse
of E1 ⊕ . . . ,⊕Ek. One can again check that it has codimension k and that,
restricted to this space, Δgt

is uniformly injective. �

Remark 12.4. Note that, even though Lt is smooth and compact, the
proof of Theorem 12.3 requires the use of radius functions and weights on
the necks.
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13. Further Sobolev-type inequalities on conifold connect
sums

Given a conifold (L, g), we can also apply the theory of Section 9 to the
elliptic operator

(13.1) Dg = d ⊕ d∗g : W p
k,β(Λeven) → W p

k−1,β−1(Λ
odd),

defined from the bundle of all even-dimensional forms on L to the bundle
of all odd-dimensional forms. As for the Laplacian, it is possible to define
and study the exceptional weights for this operator. For any non-exceptional
weight β, the operator Dg of Equation (13.1) is Fredholm. This implies that

Dg : W p
k,β(Λeven)/Ker(Dg) → W p

k−1,β−1(Λ
odd)

is a topological isomorphism onto its image. Note that W p
k,β(L)/Ker(Dg) is

closed in W p
k,β(Λeven)/Ker(Dg). It follows that d(W p

k,β(L)) = Dg(W
p
k,β(L)) =

Dg(W
p
k,β(L)/Ker(Dg)) is closed in Im(Dg), thus in W p

k−1,β−1(Λ
odd). We can

conclude that the restricted operator

(13.2) d : W p
k,β(L) → W p

k−1,β−1(Λ
1)

has closed image. Note that Ker(d) can only contain constants. If the choice
of weights is such that constants do not belong to the space W p

k,β(L), the
operator d of Equation (13.2) is a topological isomorphism onto its image
and can be inverted. In particular there exists C > 0 such that, for any
f ∈ W p

k,β(L),

‖f‖W p
k,β

≤ C‖df‖W p
k−1,β−1

.

We now want to show that, on conifolds obtained as parametric connect
sums, such C can chosen independently of t. For brevity, we restrict our
attention to the non-compact case.

Theorem 13.1. Let (L̂, ĝ, ρ̂, β̂, Ŝ∗) be a weighted AC-marked conifold.
Assume that β̂ is non-exceptional for the operator

Dĝ : W p

k,β̂
(Λeven) → W p

k−1,β̂−1
(Λodd)

defined on the manifold L̂ and that β̂i < 0 for all ends Ŝi ∈ Ŝ∗.
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Let (L, g, ρ,β, S∗) be a weighted CS-marked conifold. Assume β is non-
exceptional for the operator

Dg : W p
k,β(Λeven) → W p

k−1,β−1(Λ
odd)

defined on the manifold L and that each connected component of L has at
least one end, e.g., S′, satisfying the condition

{
β′ < 0, if S′ is AC
β′ > 0, if S′ is CS.

Now assume that L, L̂ are compatible. Then, for all ends Si ∈ S∗, βi = β̂i <
0. This implies that S′ ∈ S∗∗ so each connect sum Lt has at least one end.

There exists C > 0 such that, for all f ∈ W p
k,βt

(Lt),

(13.3) ‖f‖W p
k,βt

≤ C‖df‖W p
k−1,βt−1

.

Proof. As seen above, the assumptions prove that the operator d is a topolog-
ical isomorphism (onto its image) between Sobolev spaces on both manifolds
L, L̂. This means that there exist constants Cg, Cĝ satisfying the analogue
of Equation (13.3) on both manifolds separately. We can use Cg, Cĝ to build
C satisfying Equation (13.3) on Lt using the same ideas introduced in the
proof of Theorem 12.2. There is only one difference, as follows. In the proof
of Theorem 12.2 we use the equality

t−βiCĝ‖Δĝ((1 − ηt)f)‖W p

k−2,β̂−2
(ĝ,ρ̂) = t2−βiCĝ‖Δt2ĝ((1 − ηt)f)‖W p

k−2,β̂−2
(ĝ,ρ̂).

The factor t2−βi is then cancelled by rescaling. In particular, the above
equality uses the fact that the Laplacian depends on the metric and rescales
in a specific way.

In the case at hand the operator d does not depend on the metric.
However, note that it takes functions into 1-forms: it is this property that
allows us to conclude. Specifically, setting αt = d((1 − ηt)f) and assuming
β̂ is constant to simplify the notation, we find:

‖αt‖p
W p

k−1,β̂−1
(ĝ,ρ̂) =

∑

j

∫

L̂
|ρ̂1−β̂+j∇jαt|pĝ⊗ĝρ̂

−mvolĝ

= tpβ̂
∑

j

∫

L̂
|(tρ̂)1−β̂+j∇jαt|pt2ĝ⊗t2ĝ(tρ̂)−mvolt2ĝ

= tpβ̂‖αt‖p
W p

k−1,β̂−1
(t2ĝ,tρ̂).

The proof can now continue as for Theorem 12.2. �
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Combining Theorems 11.7 and 13.1, we obtain the following improve-
ment of the weighted Sobolev Embedding Theorems, Part 1, for parametric
connect sums.

Corollary 13.2. Let (L, g, ρ,β, S∗), (L̂, ĝ, ρ̂, β̂, Ŝ∗) be marked compatible
conifolds as in Theorem 13.1. Define Lt as in Definition 11.6. Then there
exists C > 0 such that, for all 1 ≤ p < m, t and f ∈ W p

1,βt
(Lt) ,

‖f‖Lp∗
βt

≤ C‖df‖Lp
βt−1

.

Remark 13.3. Following standard terminology in the literature we can
refer to Equation (13.3) as a “uniform weighted Poincaré inequality” and to
Corollary 13.2 as a “uniform weighted Gagliardo–Nirenberg–Sobolev
inequality”. Alternatively, following [4] Chapter 8, the latter is a “uniform
weighted Euclidean-type Sobolev inequality”.
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