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Smooth convergence away from singular sets

Sajjad Lakzian and Christina Sormani

We consider sequences of metrics, gj , on a compact Riemannian
manifold, M , which converge smoothly on compact sets away from
a singular set S ⊂M , to a metric, g∞, on M \ S. We prove theo-
rems which describe when Mj = (M, gj) converge in the Gromov–
Hausdorff (GH) sense to the metric completion, (M∞, d∞), of (M \
S, g∞). To obtain these theorems, we study the intrinsic flat limits
of the sequences. A new method, we call hemispherical embedding,
is applied to obtain explicit estimates on the GH and Intrinsic Flat
distances between Riemannian manifolds with diffeomorphic sub-
domains.

1. Introduction

The purpose of this paper is to provide general results concerning the limits
of Riemannian manifolds which converge smoothly away from a singular set
as follows:

Definition 1.1. We will say that a sequence of Riemannian metrics, gj ,
on a compact manifold, M , converges smoothly away from S ⊂M to a
Riemannian metric g∞ on M \ S if for every compact set K ⊂M \ S, gj

converge Ck,α smoothly to g∞ as tensors.

The techniques developed in this paper will also be applied to other
notions of smooth convergence away from singular sets in upcoming work of
the first author, particular notions in which the sequence of manifolds need
not be diffeomorphic. With any notion of smooth convergence away from
a singular set, one must keep in mind that even when the singular set is
an isolated point, smooth convergence away from that point does not even
imply that (M∞, g∞) is compact [Example 3.12]. Increasingly large distances
may exist outside the compact sets used to define the smooth convergence.

Given two compact Riemannian manifolds, Mi, the Gromov–Hausdorff
(GH) distance, dGH(M1,M2), is an isometry invariant. Introduced by Gro-
mov in [10], it is a distance on compact metric spaces in the sense that
dGH(M1,M2) = 0 iff M1 is isometric to M2. When studying precompact
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domains within manifolds, one always takes the metric completion before
examining the region using the GH distance. Section 2 (see Definition 2.5).

Smooth limits away from singular sets, depend on the charts and tensors
gj used to define the smooth limit (cf. Example 3.7). Thus, it is important
to understand when the metric completion, Ȳ , of a smooth limit, Y = (M \
S, g∞), is in fact actually the GH limit, (M0, d0), of the original sequence
of manifolds, (Mj , dj), where dj is the Riemannian distance defined by the
Riemannian metric gj . Observe that these spaces need not be isometric (cf.
Example 3.1) and that the original sequence of manifolds might not even
have a GH limit (cf. Example 3.11). If M \ S is not connected there is
not even a notion of the metric completion as a single metric space (cf.
Example 3.4).

Theorems relating GH limits and smooth limits away from singular sets
appear in work of Anderson [2], Bando et al. [4], Eyssidieux et al. [6], Huang
[11], Ruan and Zhong [16], Sesum [17], Tian and Tosatti [20, 21] particularly
in the setting of Kahler–Einstein manifolds. However, even in this setting,
the relationship is not completely clear and the limits need not agree [3].

In this paper, our primary goal is to examine when the metric comple-
tion, (M∞, d∞), of the smooth limit, (M \ S, g∞), is isometric to the GH
limit, (M0, d0), of the original sequence of Riemannian manifolds (M, gj).
We prove a number of theorems and present a number of examples consid-
ering manifolds with and without Ricci curvature bounds. Perhaps the most
important result is the following:

Theorem 1.2. Let Mi = (M, gi) be a sequence of oriented compact Rie-
mannian manifolds with uniform lower Ricci curvature bounds,

(1.1) Riccigi(V,V) ≥ (n − 1)H gi(V,V), ∀V ∈ TMi,

which converges smoothly away from a singular closed submanifold, S, of
codimension two. If there is a connected precompact exhaustion, Wj,
of M \ S,

(1.2) W̄j ⊂Wj+1 with
∞⋃

j=1

Wj = M \ S

satisfying

diam(Mi) ≤ D0,(1.3)
Volgi

(∂Wj) ≤ A0,(1.4)
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and

(1.5) Volgi
(M \Wj) ≤ Vj , where lim

j→∞
Vj = 0,

then

(1.6) lim
j→∞

dGH(Mj , N) = 0,

where N is the metric completion of (M \ S, g∞).

Note that, unlike prior existing results concerning the GH limits of man-
ifolds, here we require only area and volume controls on the connected pre-
compact exhaustion. Theorem 1.2 is a consequence of Theorem 6.10, stated
within, which assumes only that the connected precompact exhaustion is
uniformly well embedded in the sense of Definition 5.1. The necessity of the
various hypothesis of these theorems is described in Remark 6.13. In par-
ticular, the diameter hypothesis is unnecessary when the Ricci curvature is
nonnegative.

The Ricci curvature condition in these theorems may be replaced by
a requirement that the sequence of manifolds have a uniform linear con-
tractibility function. See Definition 6.1, Theorem 6.7 and Theorem 6.6,
stated within. The necessity of the various hypothesis of these theorems
is described in Remark 6.8.

Observe our main theorems concern sequences of manifolds converging
smoothly away from a singular set satisfying (1.4) and (1.5). In order to con-
trol the limits of such manifolds using only conditions on volumes, we apply
techniques developed by the second author with Stefan and Wenger in [18]
and [19]. In attempt to keep this article self contained, we review conver-
gence of Riemannian manifolds in Section 2. We provide extensive examples
in Section 3. All examples are proven in detail with short statements for
easy reference.

Our theorems are proven by studying the intrinsic flat limit of the man-
ifolds [Definition 2.20]. This intrinsic flat distance, dF (M1,M2) was origi-
nally defined in work of the second author with Wenger [19]. It is estimated
by explicitly constructing a filling manifold, Bm+1, between the two given
manifolds, finding the excess boundary manifold Am satisfying (2.11) and
summing their volumes as in (2.12). See Remark 2.8 for a straight forward
construction. Since dF depends only on the Riemannian manifolds, Mi, as
oriented metric spaces with a notion of integration over m forms, we take
settled completions rather than metric completions of open domains when
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analyzing the intrinsic flat distance (see Definition 2.9). If two completely
settled oriented Riemannian manifolds, M1 and M2 have dF (M1,M2) = 0
then there is an orientation preserving isometry between them [19]. See Sec-
tion 2 for a review of the intrinsic flat distance and related concepts.

In Section 4, we prove new explicit estimates on the GH, intrinsic flat
and scalable intrinsic flat distances between pairs of manifolds, which are
diffeomorphic on subdomains [Theorem 4.6]. The subdomains need not be
connected. These estimates are found by isometrically embedding the regions
into a common metric space defined using a hemispherical construction
[Proposition 4.2] and then measuring the Hausdorff, flat and scalable flat
distances between their images respectively [Lemma 4.5]. Note that the
Hausdorff distance measures distances between the images using tubular
neighborhoods while the flat distance measures a filling volume between the
images. These estimates have been applied in work of the second author with
Dan Lee on questions concerning the Riemannian Penrose Inequality [15]
and in the first author’s doctoral dissertation [13].

In Section 5, we prove theorems concerning the intrinsic flat limits of
manifolds which converge smoothly away from singular sets. In particular,
we prove:

Theorem 1.3. Let Mi = (M, gi) be a sequence of compact oriented Rie-
mannian manifolds such that there is a closed submanifold, S, of codimen-
sion two and connected precompact exhaustion, Wj, of M \ S satisfying (1.2)
with gi converge smoothly to g∞ on each Wj,

diamMi
(Wj) ≤ D0 ∀i ≥ j,(1.7)

Volgi
(∂Wj) ≤ A0,(1.8)

and

(1.9) Volgi
(M \Wj) ≤ Vj where lim

j→∞
Vj = 0.

Then

(1.10) lim
j→∞

dF (M ′
j , N

′) = 0.

where N ′ is the settled completion of (M \ S, g∞).

This theorem is a consequence of Theorem 5.2 which assumes only that
the connected precompact exhaustion is uniformly well embedded in the
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sense of Definition 5.1. We discuss the necessities of the conditions for these
theorems in Remark 5.3. A key step in the proof is a technical proposition
concerning the convergence of exhaustions of manifolds [Proposition 5.4].

In Section 6, we apply the theorems regarding intrinsic flat limits to
prove the theorems concerning GH limits mentioned earlier. Note that the
second author and Stefan Wenger have proven that the intrinsic flat and GH
limits of sequences of manifolds agree when the sequence has nonnegative
Ricci curvature and the volume is bounded below uniformly [18]. These
results are reviewed in Section 6. Theorem 1.3 then immediately implies
Theorem 6.6 and Theorem 1.2 when H = 0. To obtain Theorem 1.2 for
arbitrary values of H, we prove Proposition 6.12.

Applications of these results appear in joint work of the second author
and Dan Lee concerning asymptotically flat rotationally symmetric Rieman-
nian manifolds with positive scalar curvature that satisfy an almost equality
in the Penrose inequality [15]. We believe these results may also be appli-
cable to open questions stated in [14]. The first author is examining further
applications in his doctoral dissertation.

2. Background

All notions of distances between Riemannian manifolds studied in this paper
are built upon Gromov’s idea that one may view Riemannian manifolds as
metric spaces and isometrically embed them into a common metric space.
In this paper, a key part of our work relies on constructing such isometric
embeddings. We review Gromov’s key ideas in Section 2.1.

To estimate the GH distance between a pair of Riemannian manifolds,
one needs only find a pair of isometric embeddings ϕi : Mm

i → Z into a
common complete metric space Z and then measure the Hausdorff distances
between the images. We review the definition of the Hausdorff and GH in
Section 2.2.

To estimate the intrinsic flat distance one must measure the flat distance
between these images. So one may construct a Riemannian manifold of one
dimension higher filling in the space between the two images, possible with
some excess boundary. Note that one can only measure the intrinsic flat dis-
tance between oriented manifolds with finite volume of the same dimension.
See Section 2.3.

The scalable intrinsic flat distance is also defined using filling manifolds
and excess boundaries. It is reviewed in Section 2.4.

Remarks 2.3, 2.6, 2.8 and 2.11 capture the key properties of these three
notions of distance needed to estimate them for the purposes of this paper.
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2.1. Metric spaces and isometric embeddings

Definition 2.1. Recall that one may view a Riemannian manifold (M, g)
as a metric space (M,d) by defining the distances between points as follows:

(2.1) d(x1, x2) = inf {Lg(γ) : γ(0) = x1, γ(1) = x2} ,

where

(2.2) Lg(γ) =
∫ 1

0
g(γ′(t), γ′(t))1/2 dt.

Given a connected subdomain,W ⊂M , and x, y ∈W , the “restricted metric”,
dM (x, y), will denote the distance between x and y measured as in (2.1)
where the infimum taken over all curves γ : [0, 1] →M , while the “induced
length metric”, dW (x, y) ≥ dM (x, y), has the infimum taken only over curves
γ : [0, 1] →W . We denote the restricted and intrinsic length diameters of
U ⊂W ⊂M as follows

diamM (U) = sup{dM (x, y) : x, y ∈ U},(2.3)
diamW (U) = sup{dW (x, y) : x, y ∈ U}.(2.4)

More generally a length metric space is a metric space whose distances
are defined as an infimum of lengths of rectifiable curves. Compact length
metric spaces always have minimizing geodesics between points achieving
the distance.

In this paper, we will often define metric spaces, Z, by gluing together
Riemannian manifolds with corners along their boundaries. In this way, we
may still apply (2.1) to define the distances between points. Again, for con-
nected subdomains, W ⊂ Z, one has both an induced length metric, dW ,
and a restricted distance dZ ≤ dW just as in Definition 2.1.

Definition 2.2. An isometric embedding ϕ : X → Z is a distance preserv-
ing map

(2.5) dZ(ϕ(x1), ϕ(x2)) = dX(x1, x2) ∀x1, x2 ∈ X.

One should be aware that a Riemannian isometric embedding defined by
the fact that dϕ is an isometry on the tangent spaces at each point, is not
necessarily an isometric embedding. For example, the natural embedding
of the sphere into Euclidean space is not an isometric embedding with the
standard metric on the sphere. See figure 1.
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Figure 1: S1 in the center isometrically embeds into S2 on the right, but
does not isometrically embed into E

2 on the left.

Remark 2.3. Suppose two manifolds, Mi have diffeomorphic subdomains,
Ui, then a filling manifold can be constructed of the form U × [h1, h2] with
a well-chosen metric g′ so that Mi isometrically embed into

(2.6) Z = M1 � (U × [h1, h2]) �M2.

Here Z is glued together so that Ui is identified point to point with U × {hi}.
A precise way of choosing such a g′ will be given in Theorem 4.6. See figure 2.

2.2. The GH distance

The GH distance between a pair of Riemannian manifolds is estimated by
taking isometric embeddings into a common metric space Z and measur-
ing the Hausdorff distance between them. This distance was introduced by
Gromov in [10]. It is defined on pairs of metric spaces.

Definition 2.4 (Hausdorff). Given two subsets Y1, Y2 ⊂ Z, the Hausdorff
distance is defined

(2.7) dZ
H(Y1, Y2) = inf {r : Y1 ⊂ Tr(Y2) and Y2 ⊂ Tr(Y1)} ,

where Tr(Y ) = {z ∈ Z : ∃y ∈ Y s.t. d(y, z) < r}.

One may immediately observe that the topology and dimension of sub-
sets, which are close in the Hausdorff sense can be quite different.
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Figure 2: M1 and M2 depicted on the left and the right isometrically embed
into Z in the center. See Remarks 2.3 and 2.6.

Definition 2.5 (Gromov). Given a pair of metric spaces (X1, d1) and
(X2, d2), the GH distance between them is

(2.8) dGH(X1, X2) = inf
{
dZ

H(ϕ1(X1), ϕ2(X2)) : ϕi : Xi → Z
}
,

where the infimum is taken over all common metric spaces, Z, and all iso-
metric embeddings, ϕi : Xi → Z.

Remark 2.6. In figure 2 depicting Remark 2.3, we see that

(2.9) dGH(M1,M2) ≤ dZ
H(ϕ1(M1), ϕ2(M2)),

which is roughly the length of a curve from the tip of the bump in M1

running back within ϕ(M1) ⊂ Z to the warped region U × [h1, h2] and then
straight up to M2. Later in this paper Theorem 4.6 we will find a precise
description of the metric on the metric space Z of figure 2.

Gromov proved in [10] that this a distance between compact metric
spaces, in the sense that dGH(X1, X2) = 0 iff X1 and X2 are isometric. In
general, one takes the metric completion, X̄, of a precompact space, X,
before discussing it’s GH distance and we will do the same here. Recall that
the metric completion is defined as follows:

Definition 2.7. Given a precompact metric space, X, the metric comple-
tion, X̄ of X is the space of Cauchy sequences, {xj}, in X with the metric

(2.10) d({xj}, {yj}) = lim
j→∞

dX(xj , yj)

and where two Cauchy sequences are identified if the distance between them
is 0. There is an isometric embedding, ϕ : X → X̄, defined by ϕ(x) = {x}



Smooth convergence away from singular sets 47

where {x} is a constant sequence. Lipschitz functions, F : X → Y , extend
to F : X̄ → Y via F ({xj}) = limj→∞ F (xj) as long as Y is complete.

Gromov’s compactness theorem states that a sequence of Riemannian
manifolds Mm

j with a uniform lower bound on Ricci curvature have a subse-
quence, which converges in the GH sense. More generally, one may replace
the Ricci curvature bound with a bound on the number, N(r), of disjoint
balls of radius, r, that can be placed in a metric space,X. That is, a sequence
of metric spaces Xj with a uniform bound on N(r) for all r sufficiently small,
has a subsequence which converges in the GH sense to a compact limit
space X. Conversely, if dGH(Xj , X) → 0, then there is a uniform bound on
N(r). [10].

2.3. The intrinsic flat distance

To estimate the intrinsic flat distance between a pair of oriented Rieman-
nian manifolds one again needs only find a pair of isometric embeddings,
ϕi : Mm

i → Z, into a common complete metric space, Z. When one finds a
filling submanifold, Bm+1 ⊂ Z, and an excess boundary submanifold, Am ⊂
Z, such that

(2.11)
∫

ϕ1(M1)
ω −

∫

ϕ2(M2)
ω =

∫

B
dω +

∫

A
ω,

then the intrinsic flat distance is bounded by

(2.12) dF (Mm
1 ,M

m
2 ) ≤ Volm(Am) + Volm+1(Bm+1).

Generally, the filling manifold and excess boundary can have corners and
more than one connected component. See figure 7.

Remark 2.8. In figure 2 depicting Remark 2.3, we have Mi isometrically
embedded into a well-chosen metric space

(2.13) Z = M1 � (U × [h1, h2]) �M2.

Applying (2.11) to

(2.14) B = U × [h1, h2]

we see that the excess boundary

(2.15) A = (M1 \ U1) ∪ (∂U × [h1, h2]) ∪ (M2 \ U2).
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Then

dF (M1,M2) ≤ Volm(M1 \ U1) + Volm(M2 \ U2) + Volm(∂U × [h1, h2])
+ Volm+1(U × [h1, h2], g′).

An explicit construction of the metric g′ on U × [h1, h2] in Theorem 4.6,
allows one to precisely estimate the volume of U × [h1, h2] and ∂U × [h1, h2].

To understand limits of sequences of Riemannian manifolds, the intrinsic
flat distance was defined on a larger class of metric spaces called integral
current spaces in [19]. An integral current space, (X, d, T ), is a metric space,
X, with a metric, d, and an integral current structure, T , such that set(T) =
X. An oriented Riemannian manifold, (M, g), of finite volume, has a metric,
dM , defined as in Definition 2.1 and an integral current structure, T , acting
on m-dimensional differential forms, ω as

(2.16) T (ω) =
∫

M
ω.

More generally, the integral current structure, T , of an integral current
space, (X, d, T ), is an m-dimensional integral current T ∈ Im(X̄) defined
as in Ambrosio–Kirchheim’s work [1]. The integral current structure T pro-
vides both an orientation and a measure called the mass measure denoted
||T || and set(T) is the set of positive lower density for this measure. On a ori-
ented Riemannian manifold, the mass measure is just the Lebesgue measure.
More generally, the mass measure can have integer valued weights.

If (Mm, g) is a Riemannian manifold with singularities on a subset S such
that the Hausdorff measure, Hm(S) = 0, then one obtains a corresponding
integral current space by taking the settled completion of M \ S defined as
follows:

Definition 2.9 [19]. The settled completion, X ′, of a metric space X with
a measure μ is the collection of points p in the metric completion X̄, which
have positive lower density:

(2.17) lim inf
r→0

μ(Bp(r))/rm > 0.

The resulting space is then “completely settled”.

If a manifold has only point singularities, one includes all conical tips
and does not include cusp tips in a manifold with point singularities. See
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Figure 3: The completion, X̄ includes the boundary and fills in the three
“holes” and the settled completion, X ′, removes the cusped singularity but
keeps the boundary, cone tip and smoothly filled hole.

figure 3. This is natural because the essential property of an integral current
space is its integration and points of 0 lower density do not contribute to
that integration. In fact, integral current spaces are completely settled with
respect to the mass measure, ||T ||, as a consequence of the requirement that
set(T) = X.

The mass of an integral current space, M(T ), is a weighted volume of
sorts, which takes into account the integer valued Borel weight defining the
current structure on the space. When the integral current space is an oriented
Riemannian manifold then its mass is just its volume, M(M) = Vol(M).

The boundary of an integral current space is defined

(2.18) ∂(X, d, T ) = (set(∂T),d, ∂T),

where ∂T is the boundary of the integral current defined as in [1] so that it
satisfies Stoke’s Theorem. When M is a Riemannian manifold, its boundary
is just the usual boundary, ∂M .

The flat distance between two integral currents is defined as in [7]

(2.19) dF (T1, T2) = inf
{
M(Bm+1) + M(Am) : T1 − T2 = A+ ∂B

}
.

That is T1(ω) − T2(ω) = A(ω) + ∂B(ω) = A(ω) +B(dω).

Definition 2.10 (Sormani–Wenger). The intrinsic flat distance between
integral current spaces is defined in [19] as

dF
(
(X1, d1, T1), (X2, d2, T2)

)
= inf

{
dZ

F (ϕ1#T1, ϕ2#T2); ϕi : Xi → Z
}
,

(2.20)

where the infimum is taken over all common complete metric spaces, Z, and
all isometric embeddings ϕi : Xi → Z and where ϕ# is the push forward
map on integral currents.
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If one constructs a specific Z and isometric embeddings ϕi : Mi → Z,
then one needs only estimate the flat distance between the images to obtain
an upper bound for the infimum in (2.20). An explicit filling manifold B
satisfying (2.11), then provides an upper bound on the infimum in (2.19).
This is how one obtains the estimate in (2.12). See also Remark 2.8.

In [19] it is proven that this is a distance between precompact integral
current spaces in the sense that dF

(
(X1, d1, T1), (X2, d2, T2)

)
= 0 iff there

is a current preserving isometry from X1 to X2. When the integral cur-
rent spaces are oriented manifolds, then there is an orientation preserving
isometry.

Note that all integral current spaces are metric spaces but they need not
be length spaces. As will be seen in Example 3.4 a sequence of connected
Riemannian manifolds may converge in the intrinsic flat sense to an integral
current space, which has broken apart due to the development of a cusp
singularity. So the limit is not a length metric space.

In [19] it is proven that if (M, gj) converge smoothly to (M, g∞) then
they converge in the intrinsic flat sense. In fact, precise estimates on the
intrinsic flat distance are given in terms of the Lipschitz distance, the diam-
eters and the volumes of the spaces. The bounds are found using geometric
measure theory. Here we provide a new estimate relating the intrinsic flat
and Lipschitz distances by explicitly constructing a filling manifold between
them [Lemma 4.5].

If a sequence of oriented Riemannian manifolds with a uniform upper
bound on their volumes and volumes of their boundaries converges in the GH
sense to a compact metric space (Y, d), then a subsequence converges in the
intrinsic flat sense to (X, d, T ) where X ⊂ Y and the metric d is restricted
from Y [19] [Thm 3.20]. In Example 3.4, we see that this may be a proper
subset. In fact, the Intrinsic flat limit may be the (0, 0, 0) integral current
space if (Y, d) has a lower dimension than the manifolds in the sequence [19].

In [18] two theorems were proven indicating when the intrinsic flat limit
and the GH limits agree. These theorems will be reviewed later in the paper
as they are applied. We will also apply the techniques in their proofs to
prove Theorem 1.2.

2.4. The scalable intrinsic flat distance

The scalable intrinsic flat distance was suggested as a notion in work of the
second author with Dan Lee [14] following a recommendation of Lars Ander-
sson. It is defined to scale with distance when the Riemannian manifolds are
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rescaled. In particular,

(2.21) dsF (Mm
1 ,M

m
2 ) ≤ (Volm(Am))1/m +

(
Volm+1(Bm+1)

)1/(m+1)

whenever there exist isometric embeddings, ϕi : Mm
i → Z, into a common

complete metric space, Z, and one finds a filling submanifold, Bm+1 ⊂ Z,
and an excess boundary submanifold, Am ⊂ Z, satisfying (2.11).

Remark 2.11. In the setting of Remark 2.8 depicted in figure 2, we see
that

dsF (M1,M2) ≤ Volm+1(U × [0, h], g′)1/(m+1)

+ (Volm(M1 \ U1) + Volm(M2 \ U2)

+ Volm(∂U × [h1, h2], g′)
)1/m

.

More precisely,

Definition 2.12. The scalable intrinsic flat distance between integral cur-
rent spaces is defined as

dsF ((X1, d1, T1), (X2, d2, T2)) = inf
{
dZ

sF (ϕ1#T1, ϕ2#T2); ϕi : Xi → Z
}(2.22)

where the infimum is taken over all common complete metric spaces, Z, and
all isometric embeddings ϕi : Xi → Z and where ϕ# is the push forward
map on integral currents and where the scalable flat distance between m
dimensional integral currents is defined by

(2.23) dsF (T1, T2) = inf
{
M(B)1/(m+1) + M(A)1/m : T1 − T2 = A+ ∂B

}

3. Examples

The following examples are presented to indicate how little control one may
have on limits of manifolds, which converge smoothly away from singular sets
and to prove the necessity of the conditions in our theorems. The proofs of
these examples will sometimes rely on our theorems proven below but we
include them up front so that they can be kept in mind when reading the
remainder of the paper.



52 Sajjad Lakzian & Christina Sormani

3.1. Losing a region

Example 3.1. There are metrics, gj , on the sphere, M3, such that (M3, gj)
converge smoothly away from S = B̄p0(π/16), such that the metric comple-
tion of the smooth limit away from S is S3 \Bp0(π/16), the standard round
sphere (S3, g0) with a ball removed. The smooth limit of M3 without the
singular set removed is the entire round sphere and this agrees with the
intrinsic flat and GH limits (cf. Lemma 4.5).

Proof. Taking the metrics, gj = g0, we have a constant sequence of standard
spheres. So the intrinsic flat and GH limits are clearly the standard sphere.
Furthermore (gj ,M \ S) clearly converges to (g0,M \ B̄p0(π/16)) whose met-
ric completion is (g0,M \Bp0(π/16)). �

3.2. Cones and cusps

Example 3.2. There are metrics gj on the sphere M3 such that (M3, gj)
converge smoothly away from a point singularity S = {p0} and the metrics
gj form a conical singularity at p0. The GH and intrinsic flat limits agree
with the metric completion of (M \ S, g∞), which is the sphere including the
conical tip.

Proof. More precisely, the metrics gj are defined by

(3.1) gj = dr2 + f2
j (r)gS2 for r ∈ [0, π],

where fj(r) = (1/j) sin(r) + (1 − 1/j) f(r) in which, f(r) is a smooth func-
tion such that:

(3.2) f(r) = sin(r) for r ∈ [0, π/2],

and,

(3.3) f(r) = − 2
π

(r − π) for r ∈ [3π/4, π].

For any δ > 0, fj converge to f smoothly on [0, π − δ]. Thus gj converge
smoothly on compact subsets of M \ S to

(3.4) g∞ = dr2 + f2(r)gS2 .
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The metric completion of (M \ S, g∞) then adds in a single point p0 at r = π.
Since

(3.5) lim inf
r→0

μ(Bp0(r))/r
3 =

4
3π2

vol(S2) =
16
3π

> 0,

the point, p0, is also included in the settled completion of (M \ S, g∞). To
complete the proof of the claim we could apply Theorem 1.3. �

Example 3.3. There are metrics gj on the sphere M3 such that (M3, gj)
converge smoothly away from a point singularity S = {p0} and the metrics
gj form a cusp singularity at p0. The GH agree with the metric completion
of (M \ S, g∞) which is the sphere including the cusped tip. However, the
intrinsic flat limit of (M \ S, g∞) does not include the cusped tip because
it has 0 density. So the intrinsic flat limit is the settled completion of (M \
S, g∞) which in this case is (M \ S, g∞)

Proof. More precisely, the metrics gj are defined by

(3.6) gj = dr2 + f2
j (r)gS2 for r ∈ [0, π],

where fj(r) = (1/j) sin(r) + (1 − 1/j) f(r) in which, f(r) is a smooth func-
tion such that:

(3.7) f(r) = sin(r) for r ∈ [0, π/2],

and

(3.8) f(r) =
4
π2

(r − π)2 for r ∈ [3π/4, π].

For any δ > 0, fj converge to f smoothly on [0, π − δ]. Thus, gj converge
smoothly on compact subsets of M \ S to

(3.9) g∞ = dr2 + f2(r)gS2 .

The metric completion of (M \ S, g∞) then adds in a single point p0 at r = π.
Since

(3.10) lim inf
r→0

μ(Bp0(r))/r
3 = lim inf

r→0

4
5π2

r2vol(S2) = 0,

the point, p0, is not included in the settled completion of (M \ S, g∞).
This GH and intrinsic flat limits in this example were proven to be as

claimed in the Appendix of [19]. One may also apply Theorem 4.6 to reprove
this. �
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3.3. Not connected

Example 3.4. There are smooth metrics gi on the sphere, M3, converging
smoothly away from the equator, S, such that the equator pinches to 0. Then
(M3 \ S, gi) has two components, each converging to a standard sphere with
a point removed. The metric completion of each of the two disjoint metric
spaces is a standard sphere. However the GH limit is a pair of spheres joined
at a point singularity. So we see why connectedness of M3 \ S is a necessary
condition in Theorem 5.2. Here, the singular set is of codimension 1.

Remark 3.5. In upcoming work of the first author [13], appropriate gluings
of disjoint metric spaces are taken to recover the GH limit when M \ S is
not connected.

Proof. Let φ(x) be a smooth bump function on R with the following prop-
erties:

∫ ∞

−∞
φ(x) dx = 1,(3.11)

lim
ε→0

φε(x) = lim
ε→0

ε−1φ(x/ε) = δ0(x),(3.12)

where δ0(x) is the Dirac delta function at 0. Let

Φ1/i (| sin(2x)|) (r) = φ1/i(x) ∗ | sin(2x)|(r) =
∫ ∞

−∞
φ1/i(r − x) | sin(2x)| dx.

(3.13)

It is standard that the sequence is smooth and converges to | sin(2r)| as i→
∞. Now, take a partition of unity {ψ, 1 − ψ} on [0, π] such that supp(ψ) ⊂
[π/8, 7π/8] and ψ = 1 on [π/4, 3π/4]. We take the sequence of metrics

(3.14) gi = dr2 + f2
i (r)gS2 ,

where

fi(r) =
1
i

sin(r) +
i− 1
2i

(
(1 − ψ(r)) (| sin(2r)|) + ψ(r) Φ1/i (| sin(2x)|) (r)

)
.

(3.15)
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These are smooth metrics for r ∈ [0, π] because fi(r) > 0 for r ∈ (0, π),

f ′i(0) =
1
i

+
2(i− 1)

2i
= 1,(3.16)

f ′i(π) = −1
i
− 2(i− 1)

2i
= −1(3.17)

and f ′′i (0) = f ′′i (π) = 0. As i→ ∞, gi converge smoothly away from
r−1(π/2) to

(3.18) g∞ = dr2 +
sin2(2r)

4
gS2 ,

which is a metric on a pair of spheres, each with a point removed. The metric
completion keeps the pair of spheres disjoint, endowing each with its own
point of completion.

The GH and intrinsic flat limits however are a connected pair of spheres
joined at point which creates a conical singularity. This can be seen because
the distances di defined on Mi using gi are in fact converging in the Lipschitz
sense to d∞ defined by using the infimum of lengths, L∞, of curves between
points where

(3.19) L∞(C) =
∫ 1

0
g∞(C ′(s), C ′(s))1/2 ds.

Taking Wj = r−1[0, π/2 − 1/j] ∪ r−1[π/2 + 1/j, π], then we have smooth
convergence on Wj . The uniform embeddedness constants converge to 0.
Both Volgi

(V \Wj) < Vj with Vj → 0 and Volgi
(∂Wj) ≤ Aj with Aj → 0.

So we only fail the connectedness hypothesis of this theorem. �

3.4. Bubbling

Example 3.6. There are smooth metric gi on the sphere, M3 converging
smoothly away from the singular set S = {p0} to a sphere. Yet (M3, gi)
converge in the GH and intrinsic flat sense to a pair of spheres meeting at
p0. See figure 4.

Proof. Let

(3.20) gi = h2
i (r) dr

2 + f2
i (r)gS2 ,
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Figure 4: Example 3.6.

where

hi(r) = 1 on r ∈ [0, ai],(3.21)
fi(r) = sin(r) on r ∈ [0, ai],(3.22)

where ai = π − π/(10i) so that gi converges smoothly away from S to the
round metric g∞ on the sphere. The metric completion of (M \ S, g∞) is the
round sphere.

Now we set

hi(r) = 10i on r ∈ [bi, π],(3.23)
fi(r) = sin((π − r)/(10i)) on r ∈ [bi, π],(3.24)

where bi = π − (π − π/(10i))/(10i) so there is symmetry and we extend
them smoothly for r ∈ [ai, bi] so that

(3.25) hi(ai) = 1 ≤ hi(r) ≤ 10i = hi(bi)

and

(3.26) 0 < fi(r) < max{fi(ai), fi(bi)}.

These thin regions are converging to a single point. So the GH limit of (M, gi)
is a pair of standard spheres joined at a point and the intrinsic flat limit is
the same. The smooth limit away from S missed the second sphere! �
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3.5. Losing volume in the limit

Example 3.7. There are (M3, gi) all isometric to the standard sphere,
which converge smoothly away from a singular set S = {p0} to (M \ S, g∞)
which is isometric to an open hemisphere. The metric completion agrees
with the settled completion, (M∞, d∞), which is isometric to a closed hemi-
sphere. The singular set is codimension 2 in M . This example satisfied all
the conditions of all of our Theorems concerning smooth convergence away
from singular sets except Vol(M \Wj) < Vj where limj→∞ Vj = 0.

Proof. Again we viewM3 = S3 as a warped product with a warping function
r ∈ [0, π], such that r(p0) = π. Let

(3.27) gi = (h′i(r))
2dr2 + sin2(hi(r))gS2 ,

where hi(r) is a smooth increasing function such that

hi(r) = r(π/2)/(π − π/(2i)) for r ∈ [0, π − 1/i],(3.28)
hi(r) = π − (r − π)(1/(2i))(π − 1/(2i)) for r ∈ [π − 1/(2i), π].(3.29)

Then the diffeomorphism that maps r 
→ s = hi(r) is an isometry from
(M3, gi) to (S3, gS3).

On any compact set K ⊂M \ S, there exists a j sufficiently large that
K ⊂ r−1[0, π − 1/j]. Taking i→ ∞ we see that on K, hi(r) → r/2 and gi

converge smoothly to

(3.30) g∞ = (1/2)2dr2 + sin2(r/2)gS2 .

Thus (M \ S, g∞) is isometric to an open hemisphere via the isometry, which
maps r 
→ s = r/2. The metric completion is then the closed hemisphere and
the settled completion agrees with the metric completion because every point
in the closed hemisphere has positive lower density.

Setting Wj = r−1[0, π − 1/j], we see that

(3.31) Volgi
(∂Wj) ≤ 4π.

Clearly the diameter, volume, Ricci curvature and contractibility conditions
all hold because the sequence of (M, gj) are all isometric to spheres. However,

(3.32) lim
i→∞

Volgi
(M \Wj) ≥ Vol(S3)/2.

�
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3.6. Unbounded volumes and diameters

Recall that below Theorem 1.2, we stated that the diameter condition is not
necessary when the manifold has nonnegative Ricci curvature. Here, we see
that the volume bound is still necessary:

Example 3.8. There are metrics gi on the sphere M3 with nonnega-
tive Ricci curvature such that (M3, gi) converge smoothly away from a
point singularity S = {p0} to a complete noncompact manifold. In partic-
ular, converging to a hemisphere attached to a cylinder of length k on the
r−1[0, π − 1/k) region.

Proof. For any L ∈ R large enough, define the warped metric gL on [0, L] ×
S2 as follows:

(3.33) gL(t) = dt2 + (fL(t))2 gS2 ,

where

fL(t) = sin(t) for t ∈ [0, π/2],(3.34)
fL(t) = 1 for t ∈ [π/2 + 1/100, L− π/2 − 1/100],(3.35)

fL(t) = sin(π + t− L) for t ∈ [L− π/2, L](3.36)

and fL(t) smooth with f ′′L(t) < 0 elsewhere. We will be calling gL, the double
torpedo metric (it is comprised two torpedo metrics glued together from their
cylindrical ends.) For any L, gL has nonnegative Ricci curvature.

Let φ : [0, π] → [0,∞) be a smooth increasing function such that

(3.37) φ(r) = r for r ∈ [0, π/2]

with

(3.38) lim
r→π

φ(r) = ∞.

For j > 2, let φj(r) : [0, π] → [0, Lj = j + π/2 + 1] be a smooth increas-
ing function such that

(3.39) φj(r) = φ(r) for r ∈ [0, φ−1(j + π/2)]

and

(3.40) φj(r) = j + r − π/2 + 1 for r near π.
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Again, we view M3 = S3 as a warped product with a warping function
r ∈ [0, π], such that r(p0) = π. Let

(3.41) gj(r) = φ∗j
(
gLj

)
= (φ′j(r))

2dr2 +
(
fLj

)2 (φj(r))gS2 .

Then the diffeomorphism φj is an isometry from (M3, gj) to (S3, gLj
). On

any compact set K ⊂M \ S, there exists a k sufficiently large that K ⊂
r−1[0, π − 1/k]. Taking j → ∞ we see that on K, gj converge to

(3.42) g∞ = (φ′(r))2dr2 + f2(φ(r))gS2 ,

where

f(r) = sin(r) for r ∈ [0, π/2 − 1/100] and(3.43)
f(r) = 1 for r ∈ [π/2 + 1/100,∞),

which is a hemisphere smoothly attached to a cylinder of length k.
If we take Wj = r−1([0, π − 1/j)) then, we see that, Volgi

(Wj) and
Volgi

(M \Wj) are unbounded. Since (M \ S, g∞) is complete, it coincides
with the metric completion. Since (M \ S, g∞) is noncompact, (M3, gj) does
not have GH limit. Also since the volume is not finite, there is no intrinsic
flat limit either.

Nevertheless, this example has Vol(∂Wj) ≤ 4π and Wj are uniformly
embedded, the sequence has nonnegative Ricci curvature and a uniform
contractibility function, ρ(r) = r for r ∈ (0, π/2]. �

Example 3.9. There are metrics gi on the sphere M3 with Ricci ≥ (n−
1)Hg such that (M3, gi) converge smoothly away from a point singularity
S = {p0} to a complete noncompact manifold; In particular, converging to
a hemisphere attached to an infinitely long cusp.

Proof. Let h : [0,∞) → [0,∞) be defined so that h(t) = sin(t) for t ∈ [0, π/2]
and h(t) = e−t for t ∈ [π,∞) and smooth in between so that

(3.44) g = dt2 + h2(t)gS2

is a complete noncompact metric with finite volume over [0,∞) × S2.
Observe that the sectional curvature is uniformly bounded below by some
negative constant, H.
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For any L ∈ R large enough, we can find εL > 0 sufficiently small so that
we may define a smooth warped metric gL on [0, L] × S2 as follows:

(3.45) gL(t) = dt2 + (fL(t))2 gS2 ,

where

(3.46) fL(t) = h(t) for t ∈ [0, L− 2εL]

and

(3.47) fL(t) = sin(π + t− L) for t ∈ [L− εL, L]

and fL(t) smooth with −f ′′L(t)/fL(t) > H elsewhere. For any L, gL has sec-
tional curvatures ≥ H.

Let φ : [0, π] → [0,∞) be a smooth increasing function as in the prior
example. In particular satisfying (3.37)–(3.40).

Again, we view M3 = S3 as a warped product with a warping function
r ∈ [0, π], such that r(p0) = π. Let

(3.48) gj(r) = φ∗j
(
gLj

)
= (φ′j(r))

2dr2 +
(
fLj

)2 (φj(r))gS2 .

Then the diffeomorphism φj is an isometry from (M3, gj) to (S3, gLj
). On

any compact set K ⊂M \ S, there exists a k sufficiently large that K ⊂
r−1[0, π − 1/k]. Taking j → ∞ we see that on K, gj converge to

(3.49) g∞ = (φ′(r))2dr2 + h2(φ(r))gS2 .

Since (M \ S, g∞) is complete, it coincides with the metric completion. Since
(M \ S, g∞) is noncompact, (M3, gj) does not have GH limit.

If we take Wj = r−1([0, π − 1/j)) then, we see that, Volgi
(Wj) and

Volgi
(M \Wj) are bounded, Vol(∂Wj) ≤ 4π and Wj are uniformly embed-

ded. So this proves the necessity of the diameter condition in
Theorem 1.2. �

3.7. Spheres with splines

The following examples are based on examples in [19].

Example 3.10. There are metrics gi on the sphere M3 such that (M3, gi)
converge smoothly away from a point singularity S = {p0} yet we have a
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single spline of finite length, L, becoming thinner and thinner so that the
GH limit is not the sphere while the intrinsic flat limit is just the sphere.
The metric completion of (M \ S, g∞) is also the sphere in this example.

A version of this example with positive scalar curvature will be given
in [12].

Proof. More precisely, the metrics gi are defined by

(3.50) gi = hi(r)2dr2 + f2
i (r)gS2 for r ∈ [0, π],

where fi(r) = sin(r) and

(3.51) hi(r) = 1 + i exp

( (
1
2i

)2

(
r−π+

2
i

)(
r−π+

1
i

)

)
χ[

π−2
i ,π−1

i )
] .

Observe that on r−1[0, π − 1/j) we have hi(r) = 1 for i ≥ 2j. So gi converge
smoothly away from p0 to the standard metric on a sphere, g∞. The metric
and settled completions of (M \ {p0}, g∞) are both the standard sphere.

We will refer to Ni = r−1(π − 2/i, π] with the metric gi as a spline.
Observe that

(3.52) diamgi
(Mj) ≥

∫ π

0
hi(r) dr = π − 2/i+ L+ 1/i,

where L is the length of the spline:

L =
∫ π−1/i

π−2/i
hi(r) dr,(3.53)

=
∫ 1

0
1 + e1/(4u(u−1)) du.(3.54)

Since the diameter of the GH limit, when it exists, is the limit of the diam-
eters of the sequence, we see that the GH limit is not metric completion in
this case. We will not provide an explicit proof that the GH limit is in fact
the sphere with a line segment of length D attached at p0.

Now taking Wj = r−1([0, π − 1/(2j)]), we see that

diamMi
(Wj) ≤ π for i ≥ j,(3.55)

Vol(Mi) ≤ Vol(S3, g0) + sin(1/(2i))L ≤ V0,(3.56)
Volgi

(∂Wj) ≤ 4π,(3.57)

Volgi
(M \Wj) ≤ π(1/(2j)2) + π sin(2/j)2L ≤ Vj ,(3.58)
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where limj→∞ Vj = 0. By Theorem 1.3 we have the intrinsic flat limit is
settled metric completion which is the sphere. This example has no uniform
lower bound on Ricci curvature nor a uniform contractibility function so it
demonstrates the necessities of these conditions in all of our theorems, which
require them to prove the GH limit exists and is the metric completion of
(M \ S, g∞). �

Example 3.11. There are metrics gi on the sphere M3 with uniformly
bounded diameter and volume such that (M3, gi) converge smoothly away
from a point singularity S = {p0} and we have increasingly many splines
of length L whose total volume goes to 0 based in smaller and smaller
neighborhoods of S. The metric completion of (M \ S, g∞) is the round
sphere. This is also the intrinsic flat limit. The GH limit, however, does not
exist since the number of balls of radius L/2 diverges to infinity.

A version of this example with positive scalar curvature will be given
in [12].

Proof. Let (M, gi) be created by taking the standard sphere of radius 1 and
removing i pairwise disjoint balls of radius 2/i2 from the ball of radius 2/i
about p0. Replace each of those balls with a spline, Ni2 from the previous
example. Each spline has length L as in the previous example, so there
are i balls of radius L/2 centered at the tips of the splines. By Gromov’s
Compactness Theorem’s Converse, there is no subsequence converging in
the GH sense.

However, diam(M, gi) ≤ π + 2L.
Each (M, gi) is diffeomorphic to S3, via the identity map outside of

the splines and via the diffeomorphism from each spline to the ball it has
replaced. Taking any precompact setW ⊂ S3, such that p0 /∈ W̄ , we can take
i sufficiently large that W ∩Bp0(2/i) = ∅, so that gi is then the standard
metric on Wi. So we see that (M, gi) converges smoothly to a standard
sphere with p0 removed. The metric and settled completions are one again
the standard sphere.

Let Wj = S3 \Bp0(2/j) where the ball is measured using the standard
metric on S3 so that for j ≤ i there are no splines within (Wj , gi).

diamMi
(Wj) ≤ π for i ≥ j,(3.59)

Vol(Mi) ≤ Vol(S3, g0) + i sin(1/(2i2))L ≤ V0,(3.60)

Volgi
(∂Wj) ≤ 4π sin(1/2i2)i ≤ A0,(3.61)

Volgi
(M \Wj) ≤ πi(1/(2i2)2) + πi sin(2/i2)2L ≤ Vj ,(3.62)
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where limj→∞ Vj = 0. By Theorem 1.3 we have the intrinsic flat limit is
settled metric completion, which is the sphere. This example has no uniform
lower bound on Ricci curvature nor a uniform contractibility function so it
demonstrates the necessities of these conditions in all of our theorems, which
require them to prove the GH limit exists and is the metric completion of
(M \ S, g∞). �

Example 3.12. There are metrics gi on the sphere M3 with uniformly
bounded volume such that (M3, gi) converge smoothly away from a point
singularity S = {p0} and we have a single spline of increasing length whose
volume goes to 0 and width goes to 0 contained in smaller and smaller
neighborhoods of S. The metric completion of (M \ S, g∞) is the round
sphere. This is also the intrinsic flat limit. The GH limit, however, does not
exist since the diameter diverges to infinity.

Proof. More precisely, the metrics gi are defined by

(3.63) gi = hi(r)2dr2 + f2
i (r)gS2 for r ∈ [0, π],

where fi(r) = sin(r) and

(3.64) hi(r) = 1 + i2 exp

( (
1
2i

)2

(
r−π+

2
i

)(
r−π+

1
i

)

)
χ[

π−2
i ,π−1

i )
] .

Observe that on r−1[0, π − 1/j) we have hi(r) = 1 for i ≥ 2j. So gi converge
smoothly away from p0 to the standard metric on a sphere, g∞. The metric
and settled completions of (M \ {p0}, g∞) are both the standard sphere.

Observe that

(3.65) diamgi
(Mj) ≥

∫ π

0
hi(r) dr = π − 2/i+ Li + 1/i,

where Li is the length of the spline:

Li =
∫ π−1/i

π−2/i
hi(r) dr,(3.66)

= i

∫ 1

0
e1/(4u(u−1)) du = iL.(3.67)
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Now taking Uj = r−1([0, π − 1/(2j)]), we see that

diamMi
(Uj) ≤ π for i ≥ j,(3.68)

Vol(Mi) ≤ Vol(S3, g0) + sin(1/(2i))Li ≤ V0,(3.69)
Volgi

(∂Wj) ≤ 4π1,(3.70)

Volgi
(M \Wj) ≤ π(1/(2j)2) + π sin(2/j)2Lj ≤ Vj ,(3.71)

where limj→∞ Vj = 0 + limj→∞ sin(2/j)jL = 0. By Theorem 1.3 we have the
intrinsic flat limit is settled metric completion which is the sphere. This
example has no uniform lower bound on Ricci curvature nor a uniform con-
tractibility function so it demonstrates the necessities of these conditions in
all of our theorems which require them to prove the GH limit exists and is
the metric completion of (M \ S, g∞). �

3.8. Unbounded boundary volumes

Here, we have examples demonstrating the necessity of the Vol(∂W ) condi-
tions in our theorems.

Example 3.13. There are (M3, gj) all diffeomorphic to the standard
sphere, which converge smoothly away from a singular set S = {p0} to
(M \ S, g∞) with the metric

(3.72) dr2 + f2(r)gS2 where r ∈ [0, π),

such that f(r) = sin(r) on [0, π/2] and Volg∞(M \ S) is finite but

(3.73) lim
r→π

f(r) = ∞.

The metric completion agrees with the settled completion of (M∞, d∞),
which is not an integral current space because the area of the boundary is
infinite. The diameter of this example is clearly ≤ 2π. This example demon-
strates that (1.4) of Theorem 1.3 is a necessary condition.

Proof. Let g∞ = dr2 + f2(r)gS2 where f(r) is a smooth increasing function
such that:

(3.74) f(r) = sin(r) for r ∈ [0, π/2]

and

(3.75) f(r) = (π − r)−
1
4 for r ∈ [π/2 + 1/2, π).
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Then we have

(3.76) lim
r→π

f(r) = ∞

and

(3.77) Volg∞(M \ S) =
∫ π

0
ω2f

2(r) dr <∞.

Now let gi = dr2 + f2
i (r)gS2 where, fi(r) ≤ f(r) is a smooth function

given by:

(3.78) fi(r) = f(r) for r ∈ [0, π − 1/i]

and

(3.79) fi(r) = sin(r) for r ∈ [π − 1/(2i), π].

It is easy to see that gi converges to g∞ away from the singular point.
Taking Wj = r−1([0, π − 1/j]), we see that all conditions of Theorem 1.3

are satisfied except that Volgi
(∂Wj) is not bounded. �

Remark 3.14. The sequence in Example 3.13 also appears to satisfy uni-
form local contractibility estimates as there is no cusp effect. The GH limit
appears to be the one point completion of (M \ S, g∞). The metric com-
pletion of (M \ S, g∞) includes infinitely many new points. So this example
may well also prove necessity of boundary volume estimates in Theorem 6.6.

Remark 3.15. It is an open question whether the area hypothesis, (1.4),
is a necessary hypothesis in Theorem 1.2. It is possibly that one might
always find a new exhaustion satisfying this condition as long as one has an
exhaustion satisfying all the other hypothesis of the theorem.

3.9. Torus to square

Example 3.16. There are (M2, gj) all isometric to the flat torus, S1 × S1,
which converge smoothly away from a singular set

(3.80) S =
(
S1 × {0}) ∪ ({0} × S1

) ⊂ S1 × S1

to

(3.81) (M \ S, g∞) =
(
(0, 2π) × (0, 2π), dt2 + ds2

)
.
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So the metric completion and the settled completions are both

(3.82) M∞ = [0, 2π] × [0, 2π]

with the standard flat metric, while the intrinsic flat and GH limits are
the flat torus S1 × S1. Thus, the codimension condition and the uniform
embeddedness conditions are necessary in all our theorems.

Proof. Let Wk = (1/k, 2π − 1/k) × (1/k, 2π − 1/k). Then, for j large
enough:

(3.83) λi,j,k = sup
x,y∈Wj

|dWk
(x, y) − dM (x, y)| = 2π − 4/j.

Therefore

(3.84) lim sup
j→∞

lim sup
k→∞

lim sup
i→∞

λi,j,k = 2π

and

(3.85) lim sup
j→∞

lim sup
i→∞

lim sup
k→∞

λi,j,k = 2π.

So we fail uniform embeddedness as well as the codimension 2 condition.
Observe that the sequence satisfies Ricci curvature, contractibility, diam-

eter and volume conditions on Mi because all the Mi are the standard flat
torus. Furthermore, Volgi

(M \Wj) ≤ 4/j and Volgi
(∂Wj) ≤ 4. �

4. Explicit estimates with isometric embeddings

In this section, we construct isometric embeddings of Riemannian manifolds
into metric spaces to provide explicit bounds on the GH and intrinsic flat
distances between them.

Recall the definition of isometric embedding given in Section 2.1. In fact,
we construct more general mappings.

Definition 4.1. Let D > 0 and M,M ′ are geodesic metric spaces. We say
that ϕ : M →M ′ is a D-geodesic embedding if for any smooth minimal
geodesic, γ : [0, 1] →M , of length ≤ D we have

(4.1) dM ′(ϕ(γ(0)), ϕ(γ(1))) = L(γ).
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When D = diam(M), then D-geodesic embeddings are isometric embed-
dings. The advantage of this more general notion is that it can be applied
when M is not complete. This will be essential to proving Theorem 4.6.

4.1. Hemispherical embeddings

In this subsection we prove the following key proposition:

Proposition 4.2. Given a manifold M with Riemannian metrics g1 and g2
and D1, D2, t1, t2 > 0. Let M ′ = M × [t1, t2] and let ϕi : Mi →M ′ be defined
by ϕi(p) = (p, ti). If a metric g′ on M ′ satisfies

(4.2) g′ ≥ dt2 + cos2((t− ti)π/Di)gi for |t− ti| < Di/2

and

(4.3) g′ = dt2 + gi on M × {ti} ⊂M ′

then any geodesic, γ : [0, 1] →Mi, of length ≤ Di satisfies (4.1). If the diam-
eter is bounded, diamgi

(M) ≤ Di, then ϕi is an isometric embedding.
Furthermore, for q1, q2 ∈M , we have

(4.4) dM ′(ϕ1(q1), ϕ2(q2)) ≥ dMi
(q1, q2).

Example 4.3. Let M = S1 × [0, 1] and let gi = a2
i dθ

2 + b2i dl
2, where a1 >

a2 > 0 and b2 > b1 > 0. Take

(4.5) Di = diamgi
(Mi) =

√
(πai)2 + b2i .

By Proposition 4.2, we know that if we can find ti ∈ R and functions a, b :
[t1, t2] → R such that

a(t) ≥ max
i=1,2

aihi(t),(4.6)

b(t) ≥ max
i=1,2

bihi(t),(4.7)

where hi(t) = max{cos((t− ti)π/Di), 0} and

(4.8) a(t1) = a1, a(t2) = a2, b(t1) = b1 and b(t2) = b2,

then we have isometric embeddings ϕi : (M, gi) → (M ′, g′) where

(4.9) g′ = dt2 + a2(t)dθ2 + b2(t)dl2.
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Figure 5: First we see a pair of flat tori, Mi = (M, gi), isometrically embed-
ded in their own hemispherical suspensions. Then they both isometrically
embed into a common M ′.

To obtain (4.8), we must choose t2 − t1 sufficiently large that

(4.10) a1h1(t2 − t1) ≤ a2 and b2h2(t2 − t1) ≤ b1.

Since a2/a1, b2/b1 < 1 this is achieved by taking

(4.11) |t2 − t1| ≥ max
{
D1

π
arccos

(
a2

a1

)
,
D2

π
arccos

(
b1
b2

)}
.

See figure 5.

Before we prove the proposition we prove the following lemma. Recall
that equators in spheres isometrically embed into the hemispheres. Here, we
create standard isometric embeddings of Riemannian manifolds into hemi-
spherically warped product spaces. The idea comes from Gromov’s notions
in filling Riemannian manifolds [9].

Lemma 4.4. Given a compact Riemannian manifold (M, g) and D > 0.
Let M ′ = M × [0, D/2] and let ϕ : M →M ′ be defined by ϕ(p) = (p, 0). If a
metric g′ on M ′ satisfies

(4.12) g′ ≥ dt2 + cos2(tπ/D)g on M ′

and

(4.13) g′ = dt2 + g on M × {0} ⊂M ′

then any geodesic, γ : [0, 1]→M , of length ≤D satisfies (4.1). If diam(M)≤
D then ϕ is an isometric embedding.

Here the hemispherical suspension, M ′, is a well-defined metric space
but not necessarily a smooth manifold as can be seen, for example, on the
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Figure 6: On the left we have a smooth torus, Mm, which is warped with
a cosine function to create the curved manifold, Mm × [0, D/2], in which C
lies. On the right we see the the set U viewed as a subset of a hemisphere
created using the same warping function.

left side of figure 6. The inspiration for using a hemispherical suspension
comes from Gromov’s work on filling Riemannian manifolds [9].

Proof. Assume not. There exists a geodesic γ : [0, 1] →M of length ≤ D, and
a curve σ : [0, 1] →M ′ running from γ(0) to γ(1) of length Lg′(σ) < Lg(γ).
If we replace the metric g′ by g′′ = dt2 + cos2(tπ/D)g, then Lg′′(σ) < Lg(γ).

So there exists a curve C(s) = (x(s), t(s)) ∈M × [0, D/2], which is mini-
mizing with respect to g′′ between its endpoints C(0) = (x(0), 0) = γ(0) and
C(1) = (x(1), 0) = γ(1) such that

(4.14) Lg′′(C) ≤ Lg′′(σ) ≤ Lg′(σ) < Lg(γ) = dM (x(0), x(1)) ≤ D.

Since C : [0, 1] →M ′ is a minimizing geodesic in the warped product, x :
[0, 1] →M , is a minimizing geodesic in M . We choose the parameter s so
that x is parametrised proportional to arclength and let h be the length of
the geodesic x, so we have h = dM (x(0), x(1)) ≤ D. See figure 6.

Observe that F : [0, h] × [0, D/2] →M ′ defined by F (s, t) = (x(s/h), t)
is an isometric embedding of a region, U , in the standard round sphere, S2,
of diameter D into M ′. That is the metric on U is

(4.15) dt2 + cos2(tπ/D)ds2
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and for any curve γ : [a, b] → U where γ(u) = (γs(u), γt(u)) we have, by
(4.12),

g′′((F ◦ γ)′(u), (F ◦ γ)′(u)) = (dt2 + cos2(tπ/D)g)((F ◦ γ)′(u), F ◦ γ)′(u))
= γ′t(u)

2 + cos2(tπ/D)

× g((x ◦ γs)′(u/h), (x ◦ γs)′(u/h))/h2

= γ′t(u)
2 + cos2(tπ/D)|γ′s(u)|2

× g(x′(u/h), x′(u/h))/h2

= γ′t(u)
2 + cos2(tπ/D)|γ′s(u)|2

because g(x′, x′) = h2

= (dt2 + cos2(tπ/D)ds2)(γ′(u), γ′(u)).

In particular, L(F ◦ x) = L(x) by (4.13).
Furthermore C(s) ⊂ F (U). So F−1 ◦ C is a curve in S2 running between

F−1(C(0)) and F−1(C(1)). Thus

(4.16)
Lg′′(C) ≥ dS2(F−1(C(0)), F−1(C(1))) = L(F−1 ◦ x) = dM (x(0), x(1))

because F−1 ◦ x runs along a great circle in S2 and has length < D. This
contradicts (4.14). �

We may now apply Lemma 4.4 to prove Proposition 4.2:

Proof. By Lemma 4.4, (4.2) and (4.3), we see that any geodesic, γ : [0, 1] →
Mi, of length ≤ Di satisfies (4.1).

Given q1, q2 ∈M , let γ : [0, 1] →M ′ be a length minimizing geodesic
from ϕ1(q1) to ϕ2(q2). So

(4.17) γ(s) = (c(s), t(s)) ∈M × [t1, t2].
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For fi(t) = cos((t− ti)π/Di)

Lg′(γ) =
∫ 1

0
g′(γ′(s), γ′(s)) ds

≥
∫ 1

0

√
t′(s)2 + max

i=1,2
f2

i (t(s))gi(c′(s), c′(s)) ds

≥
∫ 1

0

√
t′(s)2 + f2

1 (t(s))g1(c′(s), c′(s)) ds

≥
∫ 1

0

√
t′(s)2 + f2

1 (t(s))g1(c̄′(s), c̄′(s)) ds,

where c̄ is a length minimizing geodesic in (M, g1) from c(0) to c(1) para-
metrised proportional to arclength of length h = dg1(c(0), c(1)). Thus

(4.18) Lg′(γ) ≥
∫ 1

0

√
t′(s)2 + f2

1 (t(s))h2 ds.

This integral is the length of a curve in a hemisphere of diameter D1 running
from a point (0, h) on the equator to a point (|t1 − t2|, 0). So it is greater
than or equal to the length of the third side of a triangle opposite a right
angle with legs of length dM1(q1, q2) and |t1 − t2|. Applying the Spherical
Law of Cosines rescaled we obtain

dM ′(ϕ1(q1), ϕ2(q2)) ≥ D1

π
arccos

(
cos

(
πdM1(q1, q2)

D1

)
cos

(
π|t1 − t2|

D1

))(4.19)

≥ dM1(q1, q2).(4.20)

�

4.2. Estimating distances between manifolds

The GH distance between a pair of metric spaces was estimated in terms
of the Lipschitz distance between them in [10]. In [19], the intrinsic flat dis-
tance between a pair of integral current spaces was estimated in terms of
the Lipschitz distance between them. Here we give a simple proof estimat-
ing these distances between Riemannian manifolds using explicit isometric
embeddings into a common Riemannian manifold. Recall Definitions 2.7
and 2.9.



72 Sajjad Lakzian & Christina Sormani

Lemma 4.5. Suppose M1 = (M, g1) and M2 = (M, g2) are diffeomorphic
oriented precompact Riemannian manifolds and suppose there exists ε > 0
such that

g1(V, V ) < (1 + ε)2g2(V, V ) and g2(V, V ) < (1 + ε)2g1(V, V ) ∀V ∈ TM.

(4.21)

Then for any

(4.22) a1 >
arccos(1 + ε)−1

π
diam(M2)

and

(4.23) a2 >
arccos(1 + ε)−1

π
diam(M1),

there is a pair of isometric embeddings ϕi : Mi →M ′ = M̄ × [t1, t2] with a
metric as in Proposition 4.2 where t2 − t1 ≥ max{a1, a2}.

Thus the GH distance between the metric completions is bounded,

(4.24) dGH(M̄1, M̄2) ≤ a := max{a1, a2},

and the intrinsic flat and scalable intrinsic flat distances between the settled
completions are bounded,

dF (M ′
1,M

′
2) ≤ a (V1 + V2 +A1 +A2) ,(4.25)

dsF (M ′
1,M

′
2) ≤ (a(V1 + V2))

1/(m+1) + (a(A1 +A2))
1/(m) ,(4.26)

where Vi = Volm(Mi) and Ai = Volm−1(∂Mi).

Proof. By our choice of ai we have

(4.27) g1(V, V ) > cos2(a1π/diam(M2))g2(V, V ) ∀V ∈ TM

and

(4.28) g2(V, V ) > cos2(a2π/diam(M1))g1(V, V ) ∀V ∈ TM.

Applying Proposition 4.2 and setting t1 = 0 and t2 = a, we have isometric
embeddings ϕi : (M, gi) → (M ′, g′) for any g′ satisfying (4.2) and (4.3). In
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fact, the metric g′ on M ′ can be chosen so that

(4.29) g′(V, V ) ≤ dt2(V, V ) + g1(V, V ) + g2(V, V ) ∀V ∈ TM ′.

By Definition 2.5 we have,

(4.30) dGH(M̄1, M̄2) ≤ dM ′
H (ϕ1(M1), ϕ2(M2)).

For all r > a, ϕ1(M1) ⊂ Tr(ϕ2(M2)) and ϕ2(M2) ⊂ Tr(ϕ1(M1)), because for
all p ∈M we have

(4.31) dM ′(ϕ1(p), ϕ2(p)) = |t2 − t1| = a.

By Definition 2.4 we have (4.24).
Recall that to estimate the Intrinsic flat Distance and scalable intrinsic

flat distance we must estimate volumes of a filling manifold and an excess
boundary as in (2.12) and (2.21). Taking ν to be the unit inward normal to
∂M ′ \ (M1 ∪M2) and applying the estimate on g′ given in (4.29) we have

dF (M ′
1,M

′
2) ≤ Vol(M ′) + Vol(∂M ′ \ (M1 ∪M2))

=
∫ t2

t1

∫

M
μg′ dt+

∫ t2

t1

∫

∂M
ν�μg′ dt

≤ |t2 − t1|(Vol(M1) + Vol(M2))
+ |t2 − t1|(Vol(∂M1) + Vol(∂M2))

and

dsF (M ′
1,M

′
2) ≤

(
Vol(M ′)

)1/(m+1) +
(
Vol(∂M ′ \ (M1 ∪M2))

)1/m

=
(∫ t2

t1

∫

M
μg′ dt

)1/(m+1)

+
(∫ t2

t1

∫

∂M
ν�μg′ dt

)1/m

≤ (|t2 − t1|(Vol(M1) + Vol(M2)))
1/(m+1)

+ (|t2 − t1|(Vol(∂M1) + Vol(∂M2)))
1/m .

�

4.3. Appending regions without smooth approximations

Now we examine pairs of precompact oriented manifolds (M1, g1) and
(M2, g2), which are not diffeomorphic but have diffeomorphic regions Ui ⊂
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Mi. That is, there is a common smooth manifold with boundary U and dif-
feomorphisms ψi : U → Ui ⊂Mi. Then we may apply Proposition 4.2 and
Lemma 4.5 to the regions Ui to estimate the distances between the met-
ric and settled completions of the Mi. Recall also Definitions 2.7 and 2.9.
Recall also the distinction between the intrinsic length metric, dU , and the
restricted metric dM , on a region U ⊂M and the corresponding diameters,
diamM (U) ≤ diamU (U), in Definition 2.1.

Theorem 4.6. Suppose M1 = (M, g1) and M2 = (M, g2) are oriented pre-
compact Riemannian manifolds with diffeomorphic subregions Ui ⊂Mi and
diffeomorphisms ψi : U → Ui such that

(4.32) ψ∗
1g1(V, V ) < (1 + ε)2ψ∗

2g2(V, V ) ∀V ∈ TU

and

(4.33) ψ∗
2g2(V, V ) < (1 + ε)2ψ∗

1g1(V, V ) ∀V ∈ TU.

Taking the extrinsic diameters,

DUi
= sup{diamMi

(W ) : W is a connected component of Ui} ≤ diam(Mi),
(4.34)

we define a hemispherical width,

(4.35) a >
arccos(1 + ε)−1

π
max{DU1 , DU2}.

Taking the difference in distances with respect to the outside manifolds,

(4.36) λ = sup
x,y∈U

|dM1(ψ1(x), ψ1(y)) − dM2(ψ2(x), ψ2(y))|,

we define heights,

(4.37) h =
√
λ(max{DU1 , DU2} + λ/4)

and

(4.38) h̄ = max{h,
√
ε2 + 2ε DU1 ,

√
ε2 + 2ε DU2}.

Then the GH distance between the metric completions is bounded,

(4.39) dGH(M̄1, M̄2) ≤ a+ 2h̄+ max
{
dM1

H (U1,M1), dM2
H (U2,M2)

}
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and the intrinsic flat distance between the settled completions is bounded,

dF (M ′
1,M

′
2) ≤

(
2h̄+ a

) (
Volm(U1) + Volm(U2) + Volm−1(∂U1)

+ Volm−1(∂U2)
)

+ Volm(M1 \ U1) + Volm(M2 \ U2).

and the scalable intrinsic flat distance is bounded,

dsF (M ′
1,M

′
2) ≤

(
(Volm(U1) + Volm(U2))

(
h̄+ a

) )1/(m+1)

+
( (

2h̄+ a
)
(Volm−1(∂U1) + Volm−1(∂U2))

+ Volm(M1 \ U1) + Volm(M2 \ U2)
)1/m

.

Figure 2 may be viewed as an application of this theorem. It should be
noted that this theorem is an improvement on the Bridge Method Lemma
A.2 of [19] in two respects. First, we allow U1 and U2 not isometric, and
secondly we loosen the diameter bounds of that method asking only for
control on the λ defined here.

Recall in Definition 2.1, that two different metrics are defined on a con-
nected subdomain, U ⊂M . When U is also totally convex, these two metrics
agree. Theorem 4.6 does not require the subdomains to be connected or con-
vex, and so the proof becomes quite difficult. Before we prove this theorem
we state and prove a special case with stronger estimates.

Theorem 4.7. Suppose M1 = (M, g1) and M2 = (M, g2) are oriented Rie-
mannian manifolds with diffeomorphic totally convex subregions Ui ⊂Mi

and diffeomorphisms ψi : U → Ui such that

(4.40) ψ∗
1g1(V, V ) < (1 + ε)2ψ∗

2g2(V, V ), ∀V ∈ TU

and

(4.41) ψ∗
2g2(V, V ) < (1 + ε)2ψ∗

1g1(V, V ), ∀V ∈ TU.

Then for any

(4.42) a1 >
arccos(1 + ε)−1

π
diamU2(U2)
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and

(4.43) a2 >
arccos(1 + ε)−1

π
diamU1(U1),

there is a pair of isometric embeddings ϕi : Ui →M ′ where M ′ = U × [t1, t2]
where t2 − t1 = max{a1, a2} such that ϕi(x) = (x, ti). Furthermore, these
isometric embeddings extend to isometric embeddings ϕ : Mi → Z ′, where
Z ′ is a length metric space defined by gluing Mi to M ′ along Ui.

In particular the GH distance between the metric completions is bounded,

(4.44) dGH(M̄1, M̄2) ≤ max{a1, a2} + max{dM1
H (U1,M1), dM2

H (U2,M2)}

and the intrinsic flat distance between the settled completions is bounded,

dF (M ′
1,M

′
2) ≤ max{a1, a2}

(
Vol(U1) + Vol(U2) + Vol(∂U1) + Vol(∂U2)

)

+ Vol(M1 \ U1) + Vol(M2 \ U2),

and the scalable intrinsic flat distance is bounded,

dsF (M ′
1,M

′
2) ≤

(
max{a1, a2}(Vol(U1) + Vol(U2))

)1/(m+1)

+
(

max{a1, a2}(Vol(∂U1) + Vol(∂U2))

+ Vol(M1 \ U1) + Vol(M2 \ U2)
)1/(m)

.

Proof. The metric g′ on M ′ is defined by applying Proposition 4.2 and
Lemma 4.5 to the diffeomorphic regions, U1 and U2; taking Di = diamUi

(Ui)
as defined above, ϕi : Ui →M ′ are isometric embeddings. We can choose g′

satisfying (4.29).
We must verify that the Mi isometrically embed into Z ′ constructed as

in the statement of the theorem. To see this we take any x, y ∈M1 and a
shortest curve C ⊂ Z ′ running between ϕ1(x) and ϕ1(y). If the curve never
enters ϕ2(M2 \ U2) then dM1(x, y) = dZ′(ϕ1(x), ϕ1(y)) by Lemma 4.5 and
Lemma A.1 in the Appendix of [19] applied to ϕ1(M1) ∪M ′ ⊂ Z ′. If the
curve does enter ϕ2(M2 \ U2) then we have a length minimizing curve which
leaves Ū2 contradicting the fact that it is convex. The same argument may
be repeated to prove ϕ2 : M2 → Z ′ is an isometric embedding.
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So now we may estimate the GH distance as in Remark 2.6. Let ri =
dMi

H (Mi, Ui). We claim

(4.45) dGH(M1,M2) ≤ dZ′
H

(
ϕ1(M1), ϕ2(M2)

) ≤ |t1 − t2| + max{ri}.

Fix any δ > 0. Then any point p ∈M1 has a point q ∈ U1 such that d(p, q) ≤
r1 + δ. Furthermore, ϕ1(q) = (q, t1) ∈M ′ ⊂ Z ′ so

(4.46) dZ′(ϕ1(q), (q, t2)) = |t2 − t1|

and (q, t2) ⊂ ϕ2(U2) ⊂ ϕ2(M2). Thus

(4.47) ϕ1(M1) ⊂ Tr1+δ+|t2−t1|(ϕ(M2))

and similarly

(4.48) ϕ2(M2) ⊂ Tr2+δ+|t2−t1|(ϕ(M1)).

The claim follows by taking δ → 0.
We bound the intrinsic flat distance as in Remark 2.8 taking M ′ to be

the filling manifold with the metric g′ defined in Lemma 4.5 satisfying (4.29).
We apply the same estimates as in Lemma 4.5 to bound the volumes of these
regions, only now we add in the additional volume terms coming from the
additional components of the excess boundary Mi \ Ui.

We bound the scalable intrinsic flat distance as in Remark 2.11. Again we
include the additional components of the excess boundary but insert them
into the summand with an exponent of 1/m since these are m-dimensional
boundary regions and the scalable flat distance is one-dimensional. �

We now prove Theorem 4.6. To prove this theorem we adapt the proof of
the convex case and the proof of Lemma A.2 in [19]. It is essential to possibly
push the two manifolds further apart than required simply to isometrically
embed the Ui into M ′ as a short cut for a path between points in ϕ1(M1)
might be found within ϕ2(M2 \ U2).

Proof. For each corresponding pair of connected components Uα,i of Ui, we
create a hemispherically defined filling bridge M ′

α diffeomorphic to Uαi,i ×
[0, a] with metric g′α satisfying (4.1) by applying Proposition 4.2 and
Lemma 4.5 using the ai = ai(α) defined there for that particular connected
component, Uα and Di = DUi

. Observe that all ai ≤ a, so we may take
|t1 − t2| = a for all the connected components. Any minimal geodesic γ :
[0, 1] → Uα,i of length ≤ DUi

≤ diamMi
(Ui) satisfies (4.1).
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We take the disjoint unions of these bridges to be M ′. So it has a metric
g′ satisfying (4.29). Observe that the boundary of M ′ is (U, g1) ∪ (U, g2) ∪
(∂U × [0, a], g′). So that

Volm(M ′) =
∑

α

Volm(M ′
α)(4.49)

≤
∑

α

a(Volm(Uα,1) + Volm(Uα,2))(4.50)

≤ a(Volm(U1) + Volm(U2))(4.51)

and

(4.52) Volm
(
∂M ′ \ (ϕ1(U1) ∪ ϕ2(U2)

) ≤ a (Volm−1(∂U1) + Volm−1(∂U2))

as in Lemma 4.5.
We cannot directly glue Mi to M ′ and obtain an isometric embedding

because our regions are not convex. On either end of the filling bridges,
we glue isometric products Uα × [0, h̄] with metric dt2 + gi, so that all the
bridges are extended by an equal length on either side. This creates a Lips-
chitz manifold,

(4.53) M ′′ = (U1 × [0, h̄]) �U1 M
′ �U2 (U2 × [0, h̄]).

We then define ϕi : Ui →M ′′ such that

ϕ1(x) = (x, 0) ∈ U1 × [0, h̄],(4.54)
ϕ2(x) = (x, h̄) ∈ U2 × [0, h̄],(4.55)

as in figure 7. Then by (4.49) and (4.52), we have

Volm+1(M ′′) = Volm+1(M ′) + h̄(Volm(U1) + Volm(U2))(4.56)
≤ (a+ h̄)(Volm(U1) + Volm(U2))(4.57)

and Volm (∂M ′′ \ (ϕ1(U1) ∪ ϕ2(U2)) =

= Volm
(
∂M ′ \ (ϕ1(U1) ∪ ϕ2(U2)

)
+ h̄(Volm−1(∂U1) + Volm−1(∂U2))

(4.58)

≤ (a+ h̄)(Volm−1(∂U1) + Volm−1(∂U2)).
(4.59)
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Finally, we glue M1 and M2 to the far ends of M ′′ along ϕi(Ui) to create
a connected length space

(4.60) Z = M̄1 �U1 M
′′ �U2 M̄2,

where distances in Z are defined by taking the infimum of lengths of curves
as usual. See figure 7. We will refer to each connected component, M ′′

α of
M ′′ as the filling bridge corresponding to Uα.

We must prove that ϕ1 : M1 → Z mapping M1 into its copy in Z is an
isometric embedding. To see this we take any x, y ∈M1 and a shortest curve
C ⊂ Z running between ϕ1(x) and ϕ1(y). As in the convex proof, our only
concern is the possibility that C passes into ϕ2(M2 \ U2).

If the minimizing curve never crosses a filling bridge, then we claim it has
the same length as a curve in ϕ1(M1). To see this, we take any s2 > s1 ∈ [0, 1]
such that C(s1), C(s2) ∈ ϕ1(M1) and C((s1, s2)) ⊂ Z \ ϕ1(M1). Since C is
assumed not to cross a bridge (not to enter ϕ2(M2), then C(s1) = ϕ(x1) and
C(s2) = ϕ(x2) where x1, x2 lie in the same connected component, Uα,1, of
U1. Since C([s1, s2]) is a minimizing curve it has length

(4.61) ≤ dM ′′(C(s1), C(s2)) ≤ dM1(x1, x2) ≤ diamM1(Uα,1) ≤ DU1 .

By (4.1), a minimal geodesic from x1 to x2 lying in Uα,1 has the same length
as C([s1, s2]). So we may replace this segment of C with the image of this
minimal geodesic.

On the other hand, if the minimizing curve crosses a filling bridge all
the way to ϕ2(M2), then we may carefully apply the choice of h̄ to reach
a contradiction as in the left hand side of figure 8. We define the following
points 0 ≤ t1 < t2 ≤ t3 < t4 ≤ 1 such that

t1 = inf{t : C(t) ∈ Cl(Z \ ϕ1(M1))},(4.62)
t2 = min{t : C(t) ∈ ϕ2(M2)},(4.63)
t4 = min{t > t2 : C(t) ∈ ϕ1(M1)},(4.64)
t3 = max{t ∈ [t2, t4) : C(t) ∈ ϕ2(M2)}(4.65)

so that C([t1, t2]) and C([t3, t4]) are geodesic segments lying within filling
bridges:

(4.66) C([t1, t2]) ⊂M ′′
α1,2

C([t3, t4]) ⊂M ′′
α3,4

.
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Figure 7: Creating Z for Theorem 4.6.

Figure 8: Why length minimizing curves cannot cross bridges in the proof
of Theorem 4.6.

Observe that there are points p1, p4 ∈ U and p2, p3 ∈ ∂(U) such that

ϕ1(ψ1(p1)) = C(t1)ϕ1(ψ1(p4)) = C(t4),(4.67)
ϕ2(ψ2(p2)) = C(t2)ϕ2(ψ2(p3)) = C(t3).(4.68)

Observe that since C([t2, t3]) ⊂ ϕ2(M2) we know the length of this segment is

(4.69) dZ(C(t2), C(t3)) = dM2(ψ2(p2), ψ2(p3)) ≥ dM1(ψ1(p2), ψ1(p3)) − λ

by the definition of λ in (4.36).
We claim that the lengths of the other segments are

(4.70) dM ′′(C(t1), C(t2)) >
√
dM1(p1, p2)2 + h2

and

(4.71) dM ′′(C(t3), C(t4)) >
√
dM1(p3, p4)2 + h2 .
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Once we prove this claim, we see that by the definition of h we have

dM ′′(C(t1), C(t2)) > dM1(p1, p2) + λ/2,(4.72)
dM ′′(C(t3), C(t4)) > dM1(p3, p4) + λ/2.(4.73)

This combined with (4.69) implies that

L(C([t1, t4]) = dM ′′(C(t1), C(t2)) + dZ(C(t2), C(t3)) + dM ′′(C(t3), C(t4))
> dM1(p1, p2) + λ/2 + dM1(p2, p3) − λ+ dM1(p3, p4) + λ/2
≥ dM1(p1, p2) + dM1(p2, p3) + dM1(p3, p4)
≥ dM1(p1, p4) = dϕ1(M1)(C(t1), C(t4))
≥ dZ(C(t1), C(t4)),

which is a contradicts the fact that C was minimizing.
So we need only prove our claim in (4.70) and (4.71) to see that ϕ1 :

M1 → Z is an isometric embedding. This claim concerns a minimizing geodesic
lying in a single connected component of the filling bridges,

(4.74) γ : [0, 1] → (Uα,1 × [0, h̄]) �Uα,1 M
′
α �Uα,2 (Uα,2 × [0, h̄])

such that

(4.75) γ(0) = (q0, 0) ∈ Uα,1 × {0} ⊂ ϕ1(M1)

and

(4.76) γ(1) = (q3, h̄) ∈ Uα,2 × {h̄} ⊂ ϕ2(M2).

Consult the right-hand side of figure 8. Let 0 < s1 < s2 < 1 be chosen so
that

(4.77) γ(s1) = (q1, h̄) ∈ Uα,1 × {h̄} ⊂ ∂M ′
α

and

(4.78) γ(s2) = (q2, 0) ∈ Uα,2 × {0} ⊂ ∂M ′
α.

Then by (4.4), we have

(4.79) Lg′(γ([s1, s2]) = dg′(γ(s1), γ(s2)) ≥ dg1(q1, q2),
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so that

L(γ) = dZ(γ(0), γ(s1)) + dZ(γ(s1), γ(s2)) + dZ(γ(s2), γ(1))

=
√
dU1(q0, q1)2 + h̄2 + dU1(q1, q2) +

√
dU2(q2, q3)2 + h̄2

≥
√
dU1(q0, q1)2 + h2 + dU1(q1, q2)

+
√
dU1(q2, q3)2/(1 + ε)2 + (ε2 + 2ε)D2

U1

≥
√
dM1(q0, q1)2 + h2 + dM1(q1, q2)

+
√
dM1(q2, q3)2/(1 + ε)2 + (ε2 + 2ε)dM1(q3, q4)2

≥
√
dM1(q0, q1)2 + h2 + dM1(q1, q2) +

√
dM1(q2, q3)2

>
√

(dM1(q0, q1) + dM1(q1, q2) + dM1(q2, q3))2 + h2

≥
√
dM1(q0, q3)2 + h2.

This gives us (4.70) and (4.71). Thus, we have proven ϕ1 : M1 → Z is an
isometric embedding and the same follows for ϕ2 : M2 → Z.

So now we may estimate the GH distance: Let ri = dMi

H (Mi, Ui). We
claim

(4.80) dGH(M1,M2) ≤ dZ
H(ϕ1(M1), ϕ2(M2) ≤ h̄+ h̄+ a+ max{ri}.

Fix any δ > 0. Then any point p ∈M1 has a point q ∈ U1 such that d(p, q) ≤
r1 + δ. Furthermore,

(4.81) dZ(ϕ1(q), ϕ2(q)) ≤ a+ h̄+ h̄

and ϕ2(q) ⊂ ϕ2(U2) ⊂ ϕ2(M2). Thus

(4.82) ϕ1(M1) ⊂ Tr1+δ+a+h̄+h̄(ϕ(M2))

and similarly

(4.83) ϕ2(M2) ⊂ Tr2+δ+a+h̄+h̄(ϕ(M1)).

The claim follows by taking δ → 0.
To bound the intrinsic flat distance and scalable intrinsic flat distance, we

take Bm+1 = M ′′ to be the filling manifold and then the excess boundary is

(4.84) Am = ϕ1(M1 \ U1) ∪ ϕ2(M2 \ U2) ∪ ∂M ′′ \ (ϕ1(U1) ∪ ϕ2(U2))
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so that with appropriate orientations we have

(4.85)
∫

ϕ1(M1)
ω −

∫

ϕ2(M2)
ω =

∫

Bm+1

dω +
∫

Am

ω.

The volumes of these manifolds have been computed in (4.58) and (4.56).
So as in Remark 2.8 we have

dF (M1,M2) ≤ Volm(U1)
(
h̄+ a

)
+ Volm(U2)

(
h̄+ a

)

+
(
h̄+ a

)
Volm−1(∂U1) +

(
h̄+ a

)
Volm−1(∂U2)

+ Volm(M1 \ U1) + Volm(M2 \ U2).

The scalable intrinsic flat distance is bounded as in Remark 2.11 so that
we have

dsF (M1,M2) ≤
(

Volm(U1)
(
h̄+ a

)
+ Volm(U2)

(
h̄+ a

) )1/(m+1)

+
( (
h̄+ a

)
Volm−1(∂U1) +

(
h̄+ a

)
Volm−1(∂U2)

+ Volm(M1 \ U1) + Volm(M2 \ U2)
)1/m

.

�

5. Intrinsic flat limits

In this section, we examine sequences of Riemannian manifolds that converge
smoothly away from singular sets and their intrinsic flat limits proving The-
orem 1.3. This theorem will be shown to be consequences of the following
more powerful theorem, which requires a condition on the embeddings of
the exhaustion in the manifold:

Definition 5.1. Given a sequence of Riemannian manifolds Mi = (M, gi)
and an open subset, U ⊂M , a connected precompact exhaustion, Wj , of U
satisfying (1.2) is uniformly well embedded if

(5.1) λi,j,k = sup
x,y∈Wj

|d(Wk,gi)(x, y) − d(M,gi)(x, y)|

has

(5.2) lim sup
j→∞

lim sup
k→∞

lim sup
i→∞

λi,j,k ≤ λ0
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and

(5.3) lim sup
k→∞

λi,j,k = λi,j where lim sup
i→∞

λi,j = λj and lim
j→∞

λj = 0.

Theorem 5.2. Let Mi = (M, gi) be a sequence of compact oriented Rie-
mannian manifolds such that there is a closed subset, S, and a uniformly
well embedded connected precompact exhaustion, Wj, of M \ S satisfying
(1.2) such that gi converge smoothly to g∞ on each Wj with

(5.4) diamMi
(Wj) ≤ D0 ∀i ≥ j,

(5.5) Volgi
(∂Wj) ≤ A0

and

(5.6) Volgi
(M \Wj) ≤ Vj where lim

j→∞
Vj = 0.

Then

(5.7) lim
j→∞

dF (M ′
j , N

′) = 0,

where N ′ is the settled completion of (M \ S, g∞).

In the first subsection, we prove a technical proposition demonstrating
that the intrinsic flat limit of a connected precompact exhaustion of an
open set in a fixed Riemannian manifold is the metric completion of that
open set [Proposition 5.4]. This theorem is shown to be false for GH limits
[Example 5.5].

The second subsection, we complete the proof of Theorem 5.2 applying
Proposition 5.4 and Theorem 4.6.

The third subsection contains a proof of Lemma 5.7 concerning mani-
folds with singular sets of codimension two. This final lemma combined with
Theorem 5.2 proves Theorem 1.3.

Remark 5.3. In Example 3.4, we see that it is necessary to assume that
the exhaustion is connected in Theorem 5.2. The excess volume bound in
(1.5) is shown to be necessary in Example 3.7 and Example 3.8, which
has no intrinsic flat limit. The uniform bound on the boundary volumes,
(1.4), is seen to be necessary in Example 3.13. All these examples have
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codimension 2 singular sets and show the necessity of these hypothesis for
Theorem 1.3 as well. The uniform embeddedness hypothesis of Theorem 5.2
and the codimension two condition of Theorem 1.3 are seen to be necessary
for their respective theorems in Example 3.16.

5.1. Creating spaces from exhaustions

In this section, we examine the construction of the limit space from a
sequence of precompact open sets. One may view this section as a techni-
cal subsection. Recall that a connected precompact exhaustion of a domain
satisfies (1.2).

Proposition 5.4. Let Wj be a connected precompact exhaustion of a Rie-
mannian manifold, N , with fixed Riemannian metric, gN . If we assume that
diam(N) ≤ D0, Vol(Wj) ≤ Vol(N) ≤ V0 and Vol(∂Wj) ≤ A0 then the settled
completion N ′ ⊂ N̄ satisfies

(5.8) lim
j→∞

dF
(
(W ′

j , dW ′
j
), (N ′, dN ′)

)
= 0,

where dWj
is the induced length metric on Wj defined by the Riemannian

metric gN and W ′
j is the settled completion of Wj with respect to dWj

.

The connectedness is essential to this theorem as can be seen in Exam-
ple 3.4. Interestingly, one does not obtain GH convergence under these con-
ditions. There need not even exist a GH limit of (W̄j , dWj

). See Example 5.5
below.

Proof. We first verify that we can apply Theorem 4.6 with M1 = Wk and
M2 = N and U1 = Wi ⊂Wk for i < k and U2 = Wi ⊂ N . Note that ε = 0
and the hemispherical width a can be taken to be 0 because Ui have the
same Riemannian metric, gN .

We claim

(5.9) lim
j→∞

Vol(N \Wj) = 0.

Since N is an open manifold of finite volume

(5.10) Vol(N) =
∞∑

k=1

Vol(Wk \Wk−1),
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so

(5.11) lim
j→∞

∞∑

k=j+1

Vol(Wk \Wk−1) = 0.

However,

(5.12) Vol(N \Wj) =
∞∑

k=j+1

Vol(Wk \Wk−1)

so we have our claim.
Let k > i and let

(5.13) λi,k = sup
x,y∈Wi

|dWk
(x, y) − dN (x, y)|.

Then

(5.14) DU1 = diamWk
(Wi) ≤ diamN Wi + λi,k ≤ D0 + λi,k

and

(5.15) DU2 = diamN Wi ≤ D0.

We claim that for fixed i

(5.16) lim
k→∞

λi,k = 0.

First note that λi,k is decreasing in k because

(5.17) dWk
(x, y) ≥ dWk+1(x, y) ≥ dN (x, y).

If the limit is not zero in (5.16) then let

(5.18) ε′ = inf
k
λi,k > 0.

Since W̄i is compact, there exists xi,k, yi,k ⊂ W̄i achieving the supremum
in (5.13). Taking k to infinity, a subsequence converges to xi, yi ⊂ W̄i with
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respect to dW̄i
. Let γi ⊂ N be a curve from xi to yi such that

(5.19) L(γi) ≤ dN (xi, yi) + ε′/5.

Since Wk exhaust N , there exists Nε′ sufficiently large that

(5.20) γi ⊂Wk ∀k ≥ Nε′ .

Thus

(5.21) dWk
(xi, yi) ≤ dN (xi, yi) + ε′/5 ∀k ≥ Nε′ .

Now take k from the subsequence sufficiently large that we have

dW̄k
(xi,k, xi) ≤ dW̄i

(xi,k, xi) < ε′/5,(5.22)
dW̄k

(yi,k, yi) ≤ dW̄i
(yi,k, yi) < ε′/5.(5.23)

Thus

dWk
(xi,k, yi,k) ≤ dWk

(xik
, xi) + dWk

(xi, yi) + dWk
(yi, yik

)
< dN (xi, yi) + 3ε′/5
≤ dN (xik

, xi) + dN (xi, yi) + dN (yi, yik
) + 3ε′/5

≤ dWk
(xik

, xi) + dN (xi, yi) + dWk
(yi, yik

) + 3ε′/5
≤ dWk

(xik
, xi) + dN (xi, yi) + dWk

(yi, yik
) + 3ε′/5

< 5ε′/5 = ε′.

Since dN (xi,k, yi,k) ≤ dWk
(xi,k, yi,k), we have

(5.24) λi,k < dWk
(xi,k, yi,k) − dN (xi,k, yi,k)ε′,

which contradicts (5.18).
By (5.14), (5.15) and (5.16), we know that for fixed i,

(5.25) lim
k→∞

h̄i,k = 0,

where h̄i,k is defined as in (4.37)–(4.38) with λ = λi,j and ε = 0.
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By Theorem 4.6, the intrinsic flat distance is bounded

dF (N ′,Wj) ≤
(
h̄i,j

)
(2 Vol(Wi) + 2 Vol(∂Wi))

+ Vol(N \Wi) + Vol(Wj \Wi)
≤ (

h̄i,j

)
(2V0 + 2A0) + Vol(N \Wi) + Vol(N \Wi).

By (5.9), for any ε” > 0 there exists i sufficiently large that

(5.26) dF (N ′,Wj) ≤
(
h̄i,j

)
(2V0 + 2A0) + ε”.

Fixing that value for i, we now take j → ∞

(5.27) lim
j→∞

dF (N ′,Wj) < ε”.

We have the theorem as stated. �

Example 5.5. In figure 9 we see that a connected precompact exhaustion
Wj of a standard flat two-dimensional torus satisfying Vol(Wj) ≤ Vol(N) ≤
V0 and

(5.28) lim
j→∞

Vol(N \Wj) = 0.

Observe that (W̄j , dWj
) need not have a GH limit because balls of radius

1/2 about the tips of the arms measured with respect to the intrinsic length
metric dWj

are disjoint and so the number of disjoint balls of radius 1/2 is
unbounded. According to the converse of Gromov Compactness Theorem,
the number of disjoint balls in a sequence of compact metric spaces converg-
ing to a compact metric space is uniformly bounded above, so this sequence
cannot converge [10].

To find an example which also satisfies Vol(∂Wj) ≤ A0, we may construct
a connected precompact exhaustion of a standard flat three-
dimensional torus where the arms are thin tubular neighborhoods of curves
so that their lengths are still long enough to have disjoint balls but the areas
of the boundaries of the arms are arbitrarily small.

5.2. Proof of Theorem 5.2

In this subsection, we prove Theorem 5.2. Keep in mind Remark 5.3. First,
we prove a short lemma that will be applied here and elsewhere:
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Figure 9: W1 with two arms is depicted in white on a black T 2. W2 with
four arms is depicted in light gray containing W1. W3 with eight arms is
depicted in darker gray containing W2 and W1.

Lemma 5.6. Let Mi = (M, gi) be a sequence of compact Riemannian man-
ifolds such that there is a closed subset, S, and a connected precompact
exhaustion, Wj, of M \ S satisfying (1.2) such that gi converge smoothly to
g∞ on each Wj. If

(5.29) Volgi
(M \Wj) ≤ Vj where lim

j→∞
Vj = 0

then there exists a uniform V0 > 0 such that

(5.30) Volgi
(M) < V0.

Proof. Fix any Wj . Since gi converges smoothly on Wj , Volgi
(Wj) must

converge smoothly as well. So there exists V1 > 0 such that Volgi
(Wj) ≤ V1.

Thus, we have

(5.31) Volgi
(M) = Volgi

(Wj) + Volgi
(M \Wj) ≤ V1 + Vj

and supVj <∞ because limj→∞ Vj exists. �

We now prove Proposition 5.4:

Proof. By hypothesis (5.6) and Lemma 5.6 we have:

(5.32) Vol(Mi) ≤ V0,

Next we prove that (Wj , g∞) satisfy the hypothesis of Theorem 5.4. Observe
that hypothesis (5.4) implies

(5.33) Volg∞(Wj) = lim
i→∞

Volgi
(Wj) ≤ V0,
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while (5.5) implies

(5.34) Volg∞(∂Wj) = lim
i→∞

Volgi
(∂Wj) ≤ A0.

Finally,

diamN (N) = lim
j→∞

diamN (Wj)(5.35)

≤ lim
j→∞

lim
k→∞

diam(Wk,g∞)(Wj)(5.36)

≤ lim
j→∞

lim
k→∞

lim
i→∞

diam(Wk,gi)(Wj)(5.37)

≤ lim
j→∞

lim
k→∞

lim
i→∞

diam(M,gi)(Wj) + λi,j,k(5.38)

≤ lim sup
j→∞

lim sup
k→∞

lim sup
i→∞

D0 + λi,j,k(5.39)

≤ D0 + λ0.(5.40)

Thus by Theorem 5.2, we have

(5.41) dF
(
(Wj , g∞), (N ′, d∞)

)
= Fj where lim

j→∞
Fj = 0.

Next, we will apply Theorem 4.6 to show M1 = (Wk, g∞) and M2 =
(M, gi) are close in the intrinsic flat sense by setting U1 = Wj ⊂Wk and
U2 = Wj ⊂M for some well chosen j < k. Then the values in the hypothesis
of the theorem are

ε = εi,j where lim
i→∞

εi,j = 0,(5.42)

DU2 ≤ diam(M,gi)(Wj) ≤ D0,(5.43)

DU1 ≤ diam(Wk,gi)(Wk) ≤ D0 + λ0,(5.44)

a = ai,j,k ≤ ai,j = 2(D0 + λ0) arccos(1 + εi,j)−1/π,(5.45)
λ = λi,j,k,(5.46)

h = hi,j,k ≤
√
λi,j,k(D0 + λ0 + λi,j,k/4) ,(5.47)

h̄ = h̄i,j,k ≤ max{hi,j,k,
√
ε2i,j + 2εi,j(D0 + λ0)}.(5.48)

Thus,

(5.49) dF
(
(Wk, g∞), (M, gi)

) ≤ (
h̄i,j,k + ai,j,k

) (
2V0 + 2A0

)
+ 2Vj .
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Combining this with (5.41), we have for any j < k,

(5.50) dF
(
(N, g∞), (M, gi)

) ≤ (
h̄i,j,k + ai,j,k

) (
2V0 + 2A0

)
+ 2Vj + Fk.

Taking the limsup as k → ∞ we have

dF
(
(N, g∞), (M, gi)

) ≤ lim sup
k→∞

(
h̄i,j,k + ai,j,k

) (
2V0 + 2A0

)
+ 2Vj(5.51)

≤ (
h̄i,j + ai,j

) (
2V0 + 2A0

)
+ 2Vj ,(5.52)

where

h̄i,j = lim sup
k→∞

h̄i,j,k,(5.53)

≤ max{hi,j ,
√
ε2i,j + 2εi,j(D0 + λ0)}(5.54)

and

(5.55) hi,j = lim sup
k→∞

hi,j,k ≤
√
λi,j(D0 + λ0 + λi,j/4) .

Recall that for any fixed j, limi→∞ εi,j = 0, thus limi→∞ ai,j = 0 as well.
By the hypothesis lim supi→∞ λi,j = λj so

(5.56) h̄j = lim sup
i→∞

h̄i,j ≤
√
λj(D0 + λ0 + λj/4) .

Thus

(5.57) lim sup
i→∞

dF
(
(N, g∞), (M, gi)

) ≤ h̄j(2V0 + 2A0) + 2Vj , ∀j ∈ N.

By the hypothesis, taking j → ∞ we have,

(5.58) lim sup
i→∞

dF
(
(N, g∞), (M, gi)

)
= 0.

�

5.3. Codimension 2 singular sets

The following lemma combined with Theorem 5.2 completes the proof of
Theorem 1.3.
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Lemma 5.7. Let M be compact, S a closed submanifold of codimension 2
and diamg∞(M \ S) <∞ then, any connected precompact exhaustion, Wj,
of M \ S is uniformly well embedded.

Proof. We claim for fixed i, j,

(5.59) λi,j = lim sup
k→∞

λi,j,k = 0.

Suppose not.
Let xi,j,k, yi,j,k ⊂ W̄j achieve to supremum in the definition of λi,j .
Since W̄j is compact, a subsequence as k → ∞ converges to xi,j , yi,j ⊂

W̄j . Let γi,j be a minimizing geodesic between these points inM with respect
to gi. Since S is a submanifold of codimension 2, we can find a curve Ci,j :
[0, 1] →M \ S between these points such that

(5.60) Lgi
(Ci,j) ≤ dM,gi

(xi,j , yi,j) + λi,j/5

by sliding γi,j over slightly to avoid S.
Let k be chosen from the subsequence sufficiently large that

Ci,j([0, 1]) ⊂Wk,(5.61)
d(W̄j ,gi)(xi,j,k, xi,j) < λi,j/10,(5.62)

d(W̄j ,gi)(yi,j,k, yi,j) < λi,j/10.(5.63)

Thus d(W̄k,gi)(xi,j,k, yi,j,k) ≤

≤ d(W̄k,gi)(xi,j,k, xi,j) + d(W̄k,gi)(xi,j , yi,j) + d(W̄k,gi)(yi,j , yi,j,k)
(5.64)

≤ d(W̄j ,gi)(xi,j,k, xi,j) + L(Ci,j) + d(W̄j ,gi)(yi,j , yi,j,k)
(5.65)

≤ λi,j/10 + dM,gi
(xi,j , yi,j) + λi,j/5 + λi,j/10

(5.66)

≤ 2λi,j/5 + dM,gi
(xi,j , xi,j,k) + dM,gi

(xi,j,k, yi,j,k) + dM,gi
(yi,j,k, yi,j)

(5.67)

≤ 2λi,j/5 + dWj ,gi
(xi,j , xi,j,k) + dM,gi

(xi,j,k, yi,j,k) + dWj ,gi
(yi,j,k, yi,j)

(5.68)
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≤ 3λi,j/5 + dM,gi
(xi,j,k, yi,j,k)

(5.69)

≤ 3λi,j/5 + dWk,gi
(xi,j,k, yi,j,k) − λi,j,k,

(5.70)

by the choice of xi,j,k and yi,j,k. This is a contradiction.
Next, we must show

(5.71) lim sup
j→∞

lim sup
k→∞

lim sup
i→∞

λi,j,k ≤ λ0.

Observe that

(5.72) λi,j,k ≤ λ̄i,j,k = diam(Wk,gi)(Wj).

Since gi → g∞ on Wk we know

(5.73) lim sup
i→∞

λi,j,k ≤ diam(Wk,g∞)(Wj).

We claim that

(5.74) lim sup
k→∞

diam(Wk,g∞)(Wj) ≤ diam(M\S,g∞)(Wj).

Suppose not. Then ∃δ > 0 and a subsequence k → ∞ such that

(5.75) lim
k→∞

diam(Wk,g∞)(Wj) = L > diam(M\S,g∞)(Wj) + 5δ.

So ∃xk, yk ∈Wj such that

(5.76) diam(Wk,g∞)(Wj) ≤ d(Wk,g∞)(xk, yk) + δ.

By the precompactness of Wj , a subsequence of xk → x∞ ∈ W̄j and yk →
y∞ ∈ W̄j . In particular these subsequences are Cauchy with respect to dWj

.
So there exists x, y ∈Wj such that for k sufficiently large

(5.77) d(Wk,g∞)(xk, x) < δ and d(Wk,g∞)(yk, y) < δ.

There exists a curve C : [0, 1] →M \ S such that

Lg∞(C) < d(M\S,g∞)(x, y) + δ(5.78)
< diam(M\S,g∞)(Wj) + δ(5.79)
< L− 4δ.(5.80)
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There exists k sufficiently large such that C([0, 1]) ⊂Wk, so

Lg∞(C) > d(Wk,g∞)(x, y)(5.81)
> d(Wk,g∞)(xk, yk) − 2δ(5.82)

≥ diam(Wk,g∞)(Wj) − 3δ.(5.83)

Taking k → ∞, we have L− 4δ > Lg∞(C) ≥ L− 3δ, which is a contradiction
and proves the claim in (5.74).

Combining (5.73) with (5.74) we have

(5.84) lim sup
k→∞

lim sup
i→∞

λi,j,k ≤ diam(M\S,g∞)(Wj)

and so

(5.85) lim sup
j→∞

lim sup
k→∞

lim sup
i→∞

λi,j,k ≤ diamg∞(M \ S).

�

6. Intrinsic flat to GH convergence

There are occasions where one has volume controls as in Theorem 5.2 but
one would like to obtain a GH limit. That is not always possible. Exam-
ple 3.11 has no GH limit despite satisfying the conditions of Theorem 5.2.
In Example 3.10 the GH limits and intrinsic flat limits do not agree. How-
ever, the second author and Stefan Wenger have shown in [19] that the GH
and intrinsic flat limits agree when the sequence of manifolds has nonnega-
tive Ricci curvature or a uniform contractibility function:

Definition 6.1. A function ρ : [0, r0] → [0,∞) is a contractibility function
for a manifold M with metric g if every ball Bp(r) is contractible within
Bp(ρ(r)).

We review these results in the first subsection.
In the second subsection, we apply the results in [19] on sequences of

manifolds with a uniform contractibility function, proving Theorems 6.7
and 6.6.

In the third subsection we use additional properties of of manifolds
with Ricci curvature bounds to prove additional theorems about GH limits
inspired by the techniques in [19]. In particular, we prove Theorems 6.10
and 1.2.
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6.1. Review of convergence theorems

First recall that Gromov proved a sequence of compact Riemannian man-
ifolds has a subsequence converging in the GH sense if there is a uniform
bound on the number of disjoint balls of radius r that fit in the space [10].
This lead to two compactness theorems:

Theorem 6.2 (Gromov) [10]. A sequence of compact Riemannian man-
ifolds, (Mj , gj), such that diam(Mj) ≤ D and RicciMj

≥ −H, has a subse-
quence converging in the GH sense to a metric space (X, d).

Theorem 6.3 (Greene–Petersen) [8]. A sequence of compact Rieman-
nian manifolds, (Mj , gj), such that Vol(Mj) ≤ V and such that there is a
uniform contractibility function, ρ : [0, r0] → [0,∞), for all the Mj, has a
subsequence converging in the GH sense to a metric space (X, d).

See Definition 6.1.
In [18] the following theorems were proven which can be applied to

deduce information about the GH limit of a sequence.

Theorem 6.4 (Sormani–Wenger). If a sequence of oriented compact
Riemannian manifolds, (Mj , gj), such that diam(Mj) ≤ D and RicciMj

≥ 0
and vol(Mj) ≥ V0 > 0 converges in the GH sense to (X, d), then it converges
in the intrinsic flat sense to (X, d, T ) (cf. Theorem 4.16 of [19]).

This theorem is conjectured to hold with uniform lower bounds on Ricci
curvature [19].

Theorem 6.5 (Sormani–Wenger). If a sequence of oriented compact
Riemannian manifolds, (Mj , gj), with a uniform linear contractibility func-
tion, ρ : [0,∞) → [0,∞) and a uniform upper bound on volume, Vol(Mj) ≤
V , converges in the GH sense to (X, d), then it converges in the intrinsic
flat sense to (X, d, T ) (cf. Theorem 4.14 of [19]).

Recall that, in general, the intrinsic flat limits and GH limits need not
agree [Examples 3.3 and 3.10] because intrinsic flat limits do not include
points with 0 density as in (2.17). In fact intrinsic flat limits may exist when
GH limits do not [Example 3.11].
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6.2. Sequences with uniform contractibility functions

Recall Definition 6.1. Here we apply the results in [19] on sequences of man-
ifolds with a uniform contractibility function, stating and proving Theo-
rems 6.7 and 6.6. Recall Definitions 1.1 and 5.1.

Theorem 6.6. Let Mi = (M, gi) be a sequence of oriented compact Rie-
mannian manifolds with a uniform linear contractibility function, ρ, which
converges smoothly away from a closed submanifold, S, of codimension two.
If there is a connected precompact exhaustion of M \ S as in (1.2) satisfying
the volume conditions

(6.1) Volgi
(∂Wj) ≤ A0

and

(6.2) Volgi
(M \Wj) ≤ Vj where lim

j→∞
Vj = 0,

then

(6.3) lim
j→∞

dGH(Mj , N) = 0,

where N is the settled and metric completion of (M \ S, g∞).

Theorem 6.7. Let Mi = (M, gi) be a sequence of compact oriented Rie-
mannian manifolds with a uniform linear contractibility function, ρ, which
converges smoothly away from a singular set, S. If there is a uniformly well
embedded connected precompact exhaustion of M \ S as in (1.2) satisfying
the volume conditions (6.1) and (6.2) then

(6.4) lim
j→∞

dGH(Mj , N) = 0,

where N is the settled and metric completion of (M \ S, g∞).

Remark 6.8. Example 3.10 has no uniform linear contractibility near the
singular set and the GH limit does not agree with the intrinsic flat limit.
Examples 3.11 and 3.12, also satisfy all the conditions of Theorems 6.6
and 6.7 except the existence of a uniform linear contractibility function.
They have no GH limit.

The excess volume bound in (1.5) is shown to be necessary in Exam-
ples 3.7 and 3.8. The codimension two condition of Theorem 6.6 and the
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uniform embeddedness hypothesis of Theorem 6.7 are seen to be neces-
sary in Example 3.16. We believe we have an example proving the necessity
of the uniform bound on the boundary volumes, (1.4), and discuss this in
Remark 3.14.

Remark 6.9. It would be interesting to see whether the requirement that
the contractibility function is linear is a necessary condition. One might
consider adapting the Example by Schul and Wenger in the appendix of [18]
to prove this.

Proof. By Lemma 5.6, we have

(6.5) Vol(Mi) ≤ V0.

This combined with the uniform contractibility function allows us to apply
the Greene–Petersen Compactness Theorem. In particular, we have a uni-
form upper bound on diameter:

(6.6) diam(Mi) ≤ D0.

We may now apply Theorem 5.2 to obtain

(6.7) lim
j→∞

dF (Mj , N
′) = 0.

We then apply Theorem 6.5 to see that the flat limit and GH limits agree
due to the existence of the uniform linear contractibility function and the
fact that the volume is bounded below uniformly by the smooth limit. In
particular, the metric completion and the settled completion agree. �

We now easily prove Theorem 6.6:

Proof. This theorem follows from Theorem 6.7 combined with
Lemma 5.7. �

6.3. Ricci curvature bounded below

In this subsection, we use additional properties of manifolds with Ricci
curvature bounds to prove additional theorems about GH limits inspired
by the techniques in [19]. In particular, we prove Theorems 6.10 and 1.2.
Recall Definitions 1.1, 1.2 and 5.1.
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Theorem 6.10. Let Mi = (M, gi) be a sequence of oriented compact Rie-
mannian manifolds with uniform lower Ricci curvature bounds,

(6.8) Riccigi(V,V) ≥ (n − 1)H gi(V,V), ∀V ∈ TMi,

which converges smoothly away from a singular set, S ⊂M . If there is a
uniformly well embedded connected precompact exhaustion of M \ S as in
(1.2) satisfying the volume conditions (1.4) and (1.5), and diameter bound
(1.3), then

(6.9) lim
i→∞

dGH(Mi, N) = 0,

where N is the settled and metric completion of (M \ S, g∞).

When H = 0, this theorem is an immediate consequence of Theorem 5.2.
In fact, we need no diameter assumption in that setting:

Lemma 6.11. Suppose we have a sequence of compact manifolds, Mi =
(M, gi) with nonnegative Ricci curvature and

(6.10) Vol(Mi) ≤ V0

converging smoothly away from a singular set to (M \ S, g∞) then

(6.11) diamMi
(Wj) ≤ diam(Mi) ≤ D0, ∀i ≥ j,

Proof. Suppose not. Let p ∈W ⊂ W̄ ⊂M \ S where W is precompact and
let qi ∈Mj such that di = di(p, qi) → ∞. By smooth convergence on W ,
there exists r0 > 0 such that Bp(r0) ⊂Mj smoothly converge to a ball in a
smooth Riemannian manifold. In particular, Volgi

(Bp(r0)) ≥ V1. Then, by
the Bishop–Gromov Volume Comparison Theorem, we have

V0 ≥ Vol(Bq(di − r0))(6.12)

≥ (di − r0)m

(di + r0)m − (di − r0)m
Vol(Annq(di − r0, di + r0))(6.13)

≥ (di − r0)m

dm
i − (di − r0)m

Vol(Bp(r0))(6.14)

≥ (di − r0)m

2mdm−1
i r0

V1,(6.15)

which gives a contradiction as di → ∞. �
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The lemma does not hold for a uniform lower bound on Ricci curvature
which is negative, as can be seen by taking a sequence of manifolds approach-
ing a complete noncompact hyperbolic manifold with finite volume.

The following proposition handles the more general lower bounds on
Ricci curvature not addressed in [18]:

Proposition 6.12. Let Mi = (M, gi) be a sequence of oriented compact
Riemannian manifolds with a uniform lower bound on Ricci curvature. Sup-
pose there is a connected precompact exhaustion of M \ S as in (1.2) satis-
fying the volume conditions

(6.16) Volgi
(M \Wj) ≤ Vj where lim

j→∞
Vj = 0,

(6.17) Vol(Mi) ≤ V0

and

(6.18) diam(Mi) ≤ D0, ∀i ≥ j.

If Mi converge smoothly away away from S to N = (M \ S, g∞). Suppose
also that (M, gi) converge in the intrinsic flat sense to N ′ where N ′ is the
settled completion of (M \ S, g∞). Then

(6.19) dGH(Mj , N̄) → 0

and the metric completion satisfies, N̄ = N ′.

Proof. By Gromov’s Compactness theorem, we know that a subsequence of
the Riemannian manifolds Mi = (M, gi) converge to a compact metric space
(Y, d). Thus, a subsequence of the manifolds converges in the intrinsic flat
sense to an integral current space, (X, d, T ), where X ⊂ Y [19] [Thm 3.20].

By Theorem 5.2 and the fact that intrinsic flat limits are unique, we
know that the settled completion of (M \ S, g∞) is (X, d, T ). In particular,
one needs no subsequence to obtain the flat limit.

In the case, where the sequence of metrics has nonnegative Ricci curva-
ture, Theorem 6.4 implies that X = Y . In particular the settled completion
is the metric completion and so the GH limit is the metric completion of
(M \ S, g∞) and no subsequence was needed.

When the sequence of manifolds has a negative uniform lower bound on
Ricci curvature, we may imitate the proof of Theorem 6.4, which appears
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in [18]. We must show that every y ∈ Y lies in the settled completion of
(M \ S, g∞).

First observe that by the smooth convergence of gi away from S, we
know the volumes are uniformly bounded below:

(6.20) Voli(Mi) ≥ V0.

Thus, we can apply the noncollapsing theory of Cheeger–Colding [5] to see
that after possibly taking another subsequence of (M, gi) we can control the
volumes of the limit space’s balls: For all y ∈ Y , there exists yi ∈M such
that

(6.21) lim
i→∞

Voli(Byi
(r)) = Hm(By(r)) ≥ V0(r/D0)m > 0,

where By(r) ⊂ Y and Hm is the m dimensional volume. In particular, for i
sufficiently large

(6.22) Voli(Byi
(r)) ≥ (V0/2)(r/D0)m > 0.

Now we choose j sufficiently large (depending on r), so that

(6.23) Vj < (V0/4)(r/D)m.

Then

Voli(Wj ∩Byi
(r)) ≥ Voli(Byi

(r)) − Voli(M \Wj)(6.24)
> (V0/4)(r/D0)m > 0.(6.25)

Thus, there exists

(6.26) zr,i ∈Wj ∩Byi
(r) ⊂ M \ S.

and

(6.27) Voli(Wj ∩Bzr,i
(2r)) ≥ Voli(Wj ∩Byi

(r)).

Since zr,i ⊂Wj ⊂ W̄j , a subsequence of the zr,i converge to zr,∞ ∈ W̄j ⊂
Wj+1. Since gi converge smoothly to g∞ on Wj+1,

(6.28) Voli(Wj ∩Bzr,i
(2r)) → Vol∞(Wj ∩Bzr,∞(2r)).
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Thus

(6.29) Vol∞(Wj ∩Bzr,∞(2r)) ≥ (V0/4)(r/D0)m > 0.

Note that by (6.26), taking the GH limit we see that

(6.30) d(zr,∞, y) < r.

So y is in the metric completion of (M \ S, g∞). Furthermore,

Vol(By(3r) ∩ (M \ S)) ≥ Vol(By(3r) ∩Wj)(6.31)
≥ Vol(Bzr,∞(2r) ∩Wj)(6.32)
≥ (V0/4)(r/D0)m > 0,(6.33)

so y is in the settled completion of (M \ S, g∞).
In particular, the settled completion is the metric completion and so the

GH limit is the metric completion of (M \ S, g∞) and no subsequence was
needed. �

We may now prove Theorem 6.10:

Proof. The hypothesis (1.3)–(1.5), allow us to apply Theorem 5.2. So (Mi, gi)
has an intrinsic flat limit and that this intrinsic flat limit is the settled
completion of (M \ S, g∞). By Lemma 5.6, we have 6.17. Thus, by Proposi-
tion 6.12, the GH and Intrinsic Flat limits agree. �

We now prove Theorem 1.2, which was stated in the introduction:

Proof. This theorem follows from Theorem 6.10 combined with Lemma 5.7.
�

Remark 6.13. The Ricci curvature condition is necessary in Theorem 1.2
as can be seen in Examples 3.10 and 3.11, which has no GH limit. The excess
volume bound in (1.5) is shown to be necessary in Example 3.7. All these
examples satisfy the uniform embeddedness hypothesis of Theorem 6.10 and
demonstrate the necessity of these conditions in that theorem as well. By
Lemma 6.11, the diameter hypothesis is not necessary when the Ricci curva-
ture is nonnegative although the volume condition is still necessary as seen
in Example 3.8. Otherwise we see this is a necessary condition in Exam-
ple 3.9. We were unable to find an example proving the necessity of the
uniform bound on the boundary volumes, (1.4), and suggest this as an open
question in Remark 3.15. The codimension two condition of Theorem 1.2
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and the uniform embeddedness hypothesis of Theorem 6.10 are seen to be
necessary for their respective theorems in Example 3.16.
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