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On a conformal quotient equation. II

Yuxin Ge and Guofang Wang

In this paper, we show that two conformal invariants Y2,1 and Ỹ2,1

defined in (1) and (2) resp. coincide and are achieved by a con-
formal metric g ∈ Γ+

2 (n > 4), which satisfies a conformal quotient
equation. The paper is a continuation of our paper [13].

1. Introduction

Let (M, g0) be a compact Riemannian manifold with metric g0 and [g0]
the conformal class of g0. Let Sg be the Schouten tensor of the metric g
defined by

Sg =
1

n − 2

(
Ricg − Rg

2(n − 1)
· g
)

.

Here Ricg and Rg are the Ricci tensor and scalar curvature of a metric g,
respectively. The importance of the Schouten tensor in conformal geometry
can be viewed in the following decomposition of the Riemann curvature
tensor:

Riemg = Wg + Sg ∧© g,

where ∧© is the Kulkani–Nomizu product. Note that g−1 · Wg is the invariant
in a given conformal class.

Define σk(g) be the σk-scalar curvature or k-scalar curvature by

σk(g) := σk(g−1 · Sg),

where g−1 · Sg is locally defined by (g−1 · Sg)i
j =

∑
k gik(Sg)kj and σk is the

kth elementary symmetric function. Here for an n × n symmetric matrix A,
we define σk(A) = σk(Λ), where Λ = (λ1, . . . , λn) is the set of eigenvalues of
A. It is clear that σ1(g) is a constant multiple of the scalar curvature Rg. The
k-scalar curvature σk(g), which was first considered by Viaclovsky [33], is a
natural generalization of the scalar curvature. There are many interesting
works related to the k-scalar curvatures, see for example [5–8, 18, 19, 22–24,
27, 28, 34, 35].
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Let

Γ+
k = {Λ = (λ1, λ2, . . . , λn) ∈ R

n |σj(Λ) > 0,∀j ≤ k}

be Garding’s cone. A metric g is said to be k-positive or simply g ∈ Γ+
k if

g−1 · Sg ∈ Γ+
k for every point x ∈ M . We call u is k-admissible if e−2ug0 ∈

Γ+
k . Set Ck([g0]) = Γ+

k ∩ [g0].
As in [11], we define a Yamabe-type constant

Y2,1([g0]) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf
g∈C1([g0])

∫
σ2(g)d vol(g)

(
∫

σ1(g)d vol(g))
n−4
n−2

, if n > 4,

∫
σ2(g)d vol(g), if n = 4,

sup
g∈C1([g0])

∫
σ2(g)d vol(g) ×

∫
σ1(g)d vol(g), if n = 3.

(1.1)

In [11], we prove the following proposition.

Proposition 1. Let (Mn, g0) be a compact Riemannian manifold with g0 ∈
Γ+

1 and n ≥ 3. Then the conformal invariant Y2,1([g0]) is positive if and only
if there is a conformal metric g ∈ [g0] ∩ Γ+

2 .

As in [21], we also define another Yamabe invariant in the other cone
C2([g0]) when it is not empty, that is,

(1.2) Ỹ2,1([g0]) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf
g∈C2([g0])

∫
σ2(g)d vol(g)

(
∫

σ1(g)d vol(g))
n−4
n−2

, if n > 4,

∫
σ2(g)d vol(g), if n = 4,

sup
g∈C2([g0])

∫
σ2(g)d vol(g) ×

∫
σ1(g)d vol(g), if n = 3.

By the definition, when the dimension n = 4, we have Y2,1([g0]) = Ỹ2,1([g0]).
In this paper, we consider n 	= 4. Since C2([g0]) ⊂ C1([g0]), it is clear that
Y2,1([g0]) ≤ Ỹ2,1([g0]) when n > 4 and Y2,1([g0]) ≥ Ỹ2,1([g0]) when n = 3.
Hence, a natural question is to know if these two invariants are same. Here,
we will give an affirmative answer under the suitable assumptions. One of
our main results in this paper is
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Theorem 1. Let (Mn, g0) be a compact Riemannian manifold with g0 ∈ Γ+
2

and n ≥ 3. Assume that 0 < Y2,1([g0]) < +∞. Then we have

(1.3) Y2,1([g0]) = Ỹ2,1([g0])

Moreover, if n > 4, then Y2,1([g0]) can be achieved by some conformal metric
g ∈ Γ+

2 ∩ [g0].

In the case n ≥ 4, the invariant Y2,1([g0]) is finite real number. Moreover,
in the case n ≥ 5, we have always Ỹ2,1(M, [g0]) ≤ Ỹ2,1(Sn), where Ỹ2,1(Sn)
is defined for the conformal class of the standard sphere. The equality
holds if and only if M = S

n is the standard sphere. Hence, the assumption
Y2,1([g0]) < +∞ is need just for the case n = 3. Till now we do not know if it
is bounded, although we believe it is true. This is a Sobolev-type inequality.
Recently, we obtained in [15] another (optimal) Sobolev-type inequality for
three-dimensional (3D) manifolds. This is related to a geometric inequal-
ity, which was recently obtained by (3D) Andrews [9] and De Lellis and
Topping [10]. See also [14, 16].

Following the definition of the sigma invariant of Schoen [30] (see also
[26]), one can define a differential invariant by using Y2,1 (n > 4)

τ2(M) = sup
C1([g]) �=∅

Y2,1([g]).

Previously, we wanted to use Ỹ2,1 to define it. The advantage to use Y2,1 is
that it might be easier to study. With Theorem 1 we know that both are
the same, provided τ2(M) > 0. One can show that

τ2(M) ≤ τ2(Sn) = τ2(Sn−1 × S
1).

We hope to use it to study the classification of 5D manifolds, as Bray and
Neves [3] and Akutagawa and Neves [2] did for 3D manifolds by using the
sigma invariant.

2. Yamabe-type flows

Set

F2(g) =
∫

M
σ2(g)d vol(g).
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For any small ε ∈ (0, 1), consider the following perturbed functional:

F1,ε(g) =
∫

M
e2εuσ1(g)d vol(g)

for g = e−2ug0. The variation of F1,ε is given

d

dt
F1,ε(g) =

n − 2 − 2ε

2

∫
e2εuσ1(g)g−1 · d

dt
g d vol(g)

− 1
2

∫
e2εuΔg(g−1 · d

dt
g)d vol(g)

=
n − 2 − 2ε

2

∫
e2εuσ1(g)g−1 · d

dt
g d vol(g)

− 1
2

∫
Δg(e2εu)g−1 · d

dt
g d vol(g),

where Δg is the Laplacian operator with respect to g = e−2ug0. It is easy to
see that

Δg(e2εu) = 2εe2(1+ε)u
(
Δu + (2ε − (n − 2))|∇u|2) .

Set for g = e−2ug0

σ1,ε(g) =
n − 2 − 2ε

n − 2 − 4ε

{
σ1(g) − 2ε

n − 2 − 2ε
e2u

(
Δu + (2ε − (n − 2))|∇u|2)

}

= σ1(g) + εe2u

{
|∇u|2 +

2
n − 2 − 4ε

σ1(g0)
}

.

(2.1)

From the computation given above, we have

Lemma 1. We have

d

dt
F1,ε(g) =

n − 2 − 4ε

2

∫
e2εuσ1,ε(g)g−1 · d

dt
(g)d vol(g).

Now we introduce a flow, which non-increases (resp. non-decreases) F2

when n ≥ 4 (resp. n = 3) and preserves F1,ε.

du

dt
= −1

2
g−1 d

dt
g = hε

(
e−2u σ2(g)

σ1(g)

)
(2.2)

− hε

(
rε(g)

(
1 +

e2uν

σ1(g)

)
e(2ε−2)u

)
+ sε(g),
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where rε(g) and sε(g) are space constants, given by

(2.3) rε(g) =

∫
M σ2(g)d vol(g)∫

M e2εuσ1,ε(g)d vol(g)
=

n − 2 − 4ε

n − 2 − 2ε

∫
M σ2(g)d vol(g)∫

M e2εuσ1(g)d vol(g)

and

∫
M

e2εuσ1,ε(g)
{

hε

(
e−2u σ2(g)

σ1(g)

)
− hε

(
rε(g)

(
1 +

e2uν

σ1(g)

)
e(2ε−2)u

)
(2.4)

+ sε(g)
}

d vol(g) = 0

and

(2.5) ν = ε

(
|∇u|2 +

2
n − 2 − 4ε

σ1(g0)
)

.

Here, hε : R+ → R is smooth concave function satisfying

hε(t) =

{
t, if t ≤ 1,

αεt
1− ε

2 + βε, if t ≥ 2,
(2.6)

h′
ε(t) + h′′

ε(t)t ≥ 0, ∀t ≥ 0,(2.7)

where the constants αε > 0, βε are bounded as ε → 0 and αε → 1 as ε → 0.
From the definition, we infer

(2.8) h′
ε(t) = αε

(
1 − ε

2

)
t−

ε

2 if t ≥ 2.

Lemma 2. Assume flow (2.2) stays always in the cone C1([g0]), namely,
for all t, g(t) ∈ Γ+

1 . Then, flow preserves F1,ε and non-increases (resp. non-
decreases) F2 when n > 4 (resp. n = 3). Hence, rε is non-increasing (resp.
non-decreasing) along the flow when n > 4 (resp. n = 3).
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Proof. By the definition of sε(g) and Lemma 1, flow (2.2) preserves F1,ε. By
the definition of sε and rε, we can compute as follows:

− 2
n − 4

d

dt
F2(g)

= −
∫

M
σ2(g)g−1 · d

dt
gd vol(g)

= −
∫

(σ2(g) − rε(g)e2εuσ1,ε(g))g−1 · d

dt
gd vol(g)

= 2
∫

(σ2(g) − rε(g)e2εuσ1,ε(g))

×
(

hε

(
e−2u σ2(g)

σ1(g)

)
− hε

(
rε(g)

(
1 +

e2uν

σ1(g)

)
e(2ε−2)u

))
d vol(g)

= 2
∫

e2uσ1(g)
(

e−2u σ2(g)
σ1(g)

− rε(g)
(

1 +
e2uν

σ1(g)

)
e(2ε−2)u

)

×
(

hε

(
e−2u σ2(g)

σ1(g)

)
− hε

(
rε(g)

(
1 +

e2uν

σ1(g)

)
e(2ε−2)u

))
d vol(g).

(2.9)

�

Lemma 3 (see [11]). For 1 < k ≤ n set F = σk

σk−1
. We have

(1) the matrix (F ij)(W ) is semi-positive definite for W ∈ Γ+
k−1 and is

positive-definite for W ∈ Γ+
k−1\R1, where R1 is the set of symmetric

matrices of rank 1.

(2) The function F is concave in the cone Γ+
k−1. When k = 2, for all W ∈

Γ+
1 and for all R = (rij) ∈ Sn, we have

(2.10)
∑
ijkl

∂2

∂wij∂wkl

(
σ2(W )
σ1(W )

)
rijrkl = −

∑
ij(σ1(W )rij − σ1(R)wij)2

σ3
1(W )

.

Set

(2.11) F̃2,ε(g) = (F1,ε)
− n−4

n−2ε−2

∫
M

σ2(g) d vol(g)

and

Yε(M, [g0]) = inf
g∈C1([g0])

F̃2,ε(g),

Ỹε(M, [g0]) = inf
g∈C2([g0])

F̃2,ε(g).
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In the case n > 4 and under the assumptions as in Theorem 1, the above
discussion shows that (2.2) decreases the functional F̃2,ε(g). If g is a station-
ary point of the flow, then the metric g satisfies the following perturbed
equation:

(2.12)
σ2(g)
σ1(g)

− ce2εu e2uν

σ1(g)
= ce2εu,

or equivalently

(2.13)
σ2(g)
σ1,ε(g)

= ce2εu,

where c > 0 is some positive constant. This is the perturbed equation that
we use to approximate the following equation:

(2.14)
σ2(g)
σ1(g)

= 1.

We will show that Yε is achieved at uε ∈ C2([g0]) for any small ε > 0, which
is clearly a solution of (2.12). Hence, we can conclude

Y2,1([g0]) = Ỹ2,1([g0]),

since e−2uεg0 converges to the extremal metric when ε → 0. Similarly, we
have the same result in the case n = 3.

3. Local estimates

In this section, we will study local estimates for flow (2.2) and Equation
(2.12). In this paper, C and C ′ denote positive constants, which in general
are independent of ε. They vary from line to line. Recall
ν = ε

(
|∇u|2 + 2σ1(g0)

n−2−4ε

)
. Note that ν ≥ 0 and σ1,ε(g) = σ1(g) + e2uν. By the

standard implicit function theorem, we have the following short-time exis-
tence result. Let T ∗ ∈ (0,∞] be the maximum of the existence of the flow.

Theorem 2. Assume n ≥ 3. Let u be a solution of (2.2) in a geodesic
ball Br × [0, T ] for T < T ∗ and r < r0, the injectivity radius of M . We sup-
pose that the function rε(g(t)) is positive and bounded on [0, T ∗) and for
all t ∈ [0, T ∗) we have g(t) = e−2u(t)g0 ∈ Γ+

1 . Then there are constant ε0 > 0
depending only on (Br, g0), and constant C depending only on (Br, g0) (inde-
pendent of ε) and the upper bound of rε(g(t)) on [0, T ] such that for any
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ε ∈ (0, ε0) and (x, t) ∈ Br/2 × [0, T ]

(3.1) |∇u|2 + |∇2u| ≤ C(1 + e
− 2−2ε

1−ε/2
inf(x,t)∈Br×[0,T ] u(x,t)).

Proof. Let W = (wij) be an n × n matrix with wij = ∇2
iju + uiuj − |∇u|2

2
(g0)ij + (Sg0)ij . Here ui and uij are the first and second derivatives of u
with respect to the background metric g0. Set K = rε(g(t))e(2ε−2)u and
K1 = K

(
1 + ν

σ1(W )

)
. Let Fε : Γ1

+ × R
+ × R × R

+ → R be regular function
defined by

Fε(W, ν, u, t) := hε

(
σ2(W )
σ1(W )

)
− hε

(
rε(g(t))

(
1 +

ν

σ1(W )

)
e(2ε−2)u

)

= hε

(
σ2(W )
σ1(W )

)
− hε(K1).

(3.2)

Set

F ij
ε (W, ν, u, t) :=

∂Fε

∂wij
(W, ν, u, t)

= h′
ε

(
σ2(W )
σ1(W )

)
σ1(W )T ij − σ2(W )δij

σ2
1(W )

+ h′
ε(K1)

Kνδij

σ2
1(W )

,

(3.3)

where (T ij) = (σ1(W )δij − wij) is the first Newton transformation associ-
ated with W , and δij is the Kronecker symbol. As W ∈ Γ+

1 and h′
ε is positive

on (0, +∞), we see that (F ij
ε ) is positive definite. �

Lemma 4. Fε is concave in Γ+
1 .

Proof. To show this, we compute

∂2Fε

∂wijwkl
= h′′

ε

(
σ2(W )
σ1(W )

)
∂

∂wij

(
σ2(W )
σ1(W )

)
∂

∂wkl

(
σ2(W )
σ1(W )

)

+ h′
ε

(
σ2(W )
σ1(W )

)
∂2

∂wij∂wkl

(
σ2(W )
σ1(W )

)

− h′′
ε (K1)

(
Kν

σ2
1(W )

)2

δijδkl − 2h′
ε (K1)

Kν

σ3
1(W )

δijδkl

:= I + II,
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where

I := h′′
ε

(
σ2(W )
σ1(W )

)
∂

∂wij

(
σ2(W )
σ1(W )

)
∂

∂wkl

(
σ2(W )
σ1(W )

)

+ h′
ε

(
σ2(W )
σ1(W )

)
∂2

∂wij∂wkl

(
σ2(W )
σ1(W )

)

and

II := −h′′
ε (K1)

(
Kν

σ2
1(W )

)2

δijδkl − 2h′
ε (K1)

Kν

σ3
1(W )

δijδkl.

Recall that hε is concave and by lemma 3, σ2(W )
σ1(W ) is concave in W in the

cone Γ1
+. Thus (I), as a matrix, is non-positive definite. On the other hand,

it follows from (2.7) we have
([

−h′′
ε(K1)

Kν

σ1(W )
− h′

ε(K1)
]

Kν

σ3
1(W )

δijδkl

)
≤ 0,

since K > 0, ν > 0, h′
ε(t) + h′′

ε(t)t ≥ 0 for all t ≥ 0 and σ1(W ) > 0. There-
fore, we prove the lemma. �

From the proof of Lemma 4, we in fact have

(3.4)
∑
ijkl

∂2Fε

∂wij∂wkl
rijrkl ≤ −h′

ε(K1)
Kν

σ3
1(W )

(∑
i

rii

)2

.

For the simplicity of notations, we now drop the index ε, if there is no
confusion. We try to show the local estimates for first- and second-order
derivatives together. Let S(TM) denote the unit tangent bundle of M with
respect to the background metric g0. We define a function G̃ : S(TM) ×
[0, T ] → R

(3.5) G̃(e, t) = (∇2u + |∇u|2g0)(e, e).

Without loss of generality, we assume r = 1. Let ρ ∈ C∞
0 (B1) be a cut-off

function defined as in [19] such that

(3.6)

ρ ≥ 0, in B1,
ρ = 1, in B1/2,

|∇ρ(x)| ≤ 2b0ρ
1/2(x), in B1,

|∇2ρ| ≤ b0, in B1.
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Here, b0 > 1 is a constant. Since e−2ug0 ∈ Γ+
1 , to bound |∇u| and |∇2u|, we

only need to bound (∇2u + |∇u|2g0)(e, e) from above for all e ∈ S(TM) and
for all t ∈ [0, T ]. To see this, denote G(e, t) = ρ(x)G̃(e, t). Assume x0 ∈ M
and (e1, t0) ∈ S(Tx0M) × [0, T ] such that

G(e1, t0) = max
S(TM)×[0,T ]

G(e, t),(3.7)

t0 > 0,(3.8)

G(e1, t0) > n max
B1

σ1(g0).(3.9)

Let (e1, . . . , en) be a orthonormal basis at point (x0, t0). It follows from the
fact W ∈ Γ+

1

nG(e1, t0) ≥ ρ(Δu + n|∇u|2) ≥ ρ

(
n|∇u|2 +

n − 2
2

|∇u|2 − σ1(g0)
)

≥ 3n − 2
2

ρ|∇u|2 − 1
n

G(e1, t0),

so that

G(e1, t0) ≥
3n−2

2

n + 1
n

ρ|∇u|2 ≥ 21
20

ρ|∇u|2.

Consequently, we obtain

(3.10) ∇2
11u(x0, t0) ≥ 1

20
|∇u|2(x0, t0).

Set for any i 	= j ∈ {1, . . . , n}

e′ =
1√
2
(ei ± ej).

We have

(3.11) G(e′, t0) =
1
2
(G(ei, t0) + G(ej , t0)) ± ρ∇2

iju(x0, t0).

Thus, there holds

(3.12) ρ|∇2
iju(x0, t0)| ≤ G(e1, t0) − 1

2
(G(ei, t0) + G(ej , t0)).
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On the other hand, we have ∀i = 1, . . . , n

(n − 1)G(e1, t0) + G(ei, t0) ≥ ρ(Δu + n|∇u|2)(3.13)

≥ ρ

(
3n − 2

2
|∇u|2 − σ1(g0)

)
,

which implies

(3.14) G(ei, t0) ≥ ρ

(
3n − 2

2
|∇u|2 − σ1(g0)

)
− (n − 1)G(e1, t0).

Together with (3.12), we deduce

ρ|∇2
iju(x0, t0)| ≤ nG(e1, t0) − 3n − 2

2
ρ|∇u|2 + ρσ1(g0) ≤ (n + 1)G(e1, t0).

(3.15)

(indeed, at all point (x, t), the estimate ρ|∇2
iju| ≤ (n + 1)G(e1, t0) holds).

Now choose the normal coordinates around x0 such that at point x0

∂

∂x1
= e1

and consider the function on M × [0, T ]

G(x, t) = ρ(x)(u11 + |∇u|2)(x, t).

(without the confusion, we denotes also this function by G). Clearly, (x0, t0)
is a maximum point of G(x, t) on M × [0, T ]. At (x0, t0), we have

0 ≤ Gt = ρ(u11t + 2
∑

l

ulult),(3.16)

0 = Gj =
ρj

ρ
G + ρ(u11j + 2

∑
l≥1

ululj), for any j,(3.17)

0 ≥ (Gij) =

⎛
⎝ρρij − 2ρiρj

ρ2
G + ρ(u11ij +

∑
l≥1

(2uliulj + 2ululij))

⎞
⎠ .(3.18)
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Recall that (F ij) is definite positive. Hence, we have

0 ≥
∑
i,j≥1

F ijGij − Gt

≥
∑
i,j≥1

F ij ρρij − 2ρiρj

ρ2
G + ρ

∑
i,j≥1

F ij

⎛
⎝u11ij +

∑
l≥1

(2uliulj + 2ululij)

⎞
⎠

− ρ

⎛
⎝u11t + 2

∑
l≥1

ulult

⎞
⎠ .

(3.19)

First, from the definition of ρ, we have

(3.20)
∑
i,j≥1

F ij ρρij − 2ρiρj

ρ2
G ≥ −C

∑
i,j≥1

|F ij |1
ρ
G

and

(3.21)
∑
i,j≥1

|F ij | ≥
∑

i

F ii ≥ C
∑
i,j≥1

|F ij |,

since F is positive definite. Using the facts that

ukij = uijk +
∑
m

Rmikjum,(3.22)

ukkij = uijkk +
∑
m

(2Rmikjumk − Ricmjumi(3.23)

− Ricmiumj − Ricmi,jum + Rmikj,kum)

and

(3.24)

(∑
l

u2
l

)

11

= 2
∑

l

(u11lul + u2
1l) + O(|∇u|2),
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we have

∑
i,j≥1

F iju11ij

≥
∑
i,j≥1

F ij

⎛
⎝wij11 − (u11)iuj − ui(u11)j +

∑
l≥1

(u2
1l + u11lul)(g0)ij

⎞
⎠

− 2
∑
i,j≥1

F ijui1uj1 − C(1 + |∇2u| + |∇u|2)
∑
i,j≥1

|F ij |

(3.25)

and

∑
i,j,l

F ijululij ≥
∑
i,j,l

F ijulwijl −
∑
i,j,l

F ij(uluiluj + uluiujl)

(3.26)

+
1
2

∑
i,j

F ij〈∇u,∇(|∇u|2)〉(g0)ij − C(1 + |∇u|2)
∑
i,j≥1

|F ij |.

Combining (3.25) and (3.26), we deduce

∑
i,j≥1

F ij

⎛
⎝u11ij + 2

∑
l≥1

(uliulj + ululij)

⎞
⎠

(3.27)

≥
∑
i,j≥1

F ij

⎛
⎝wij11 + 2

∑
l≥1

wijlul

⎞
⎠+ 2

∑
i,j≥1

F ij
∑
l≥2

uliulj +
∑

i,j,l≥1

u2
1lF

ij(g0)ij

−
∑
i,j

F ij
[
(u11 + |∇u|2)iuj + ui(u11 + |∇u|2)j

− 〈∇u,∇(u11 + |∇u|2)〉(g0)ij

]
− C(1 + |∇2u| + |∇u|2)

∑
i,j≥1

|F ij |

≥
∑
i,j

F ij

(
wij11 + 2

∑
l

wijlul

)
+ u2

11

∑
i,j

F ij(g0)ij

+
∑
i,j

F ij (ρiuj + ρjui − 〈∇ρ,∇u〉(g0)ij)
G

ρ2

− C(1 + |∇2u| + |∇u|2)
∑
i,j≥1

|F ij |.
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Now, we want to estimate
∑

i,j,l F
ijwijlul and

∑
i,j F ijwij11, respectively.

For the first term
∑

i,j,l F
ijwijlul, we have

∑
i,j,l

F ijwijlul =
∑

l

Flul + h′(K1)
K

σ1(W )

∑
l

νlul(3.28)

+ h′(K1)K1(2ε − 2)
∑

l

u2
l .

For the second term
∑

i,j,l F
ijwij11, we have

∑
i,j

F ijwij11 = F11 −
∑

i,j,k,m

∂2F

∂wij∂wkm
wij1wkm1

(3.29)

− 2
∑
i,j

∂2F

∂wij∂u
wij1u1 − 2

∑
i,j

∂2F

∂wij∂ν
wij1ν1

− ∂2F

∂ν2
ν2
1 − 2

∂2F

∂ν∂u
ν1u1 − ∂2F

∂u2
u2

1 −
∂F

∂ν
ν11 − ∂F

∂u
u11.

It follows from (3.4) that

(3.30) −
∑

i,j,k,m

∂2F

∂wij∂wkm
wij1wkm1 ≥ h′(K1)

Kν

σ3
1(W )

(∑
i

wii1

)2

.

Using the facts (2.6)–(2.8), we can estimate successively

− 2
∑
i,j

∂2F

∂wij∂u
wij1u1

(3.31)

≥ −2(2 − 2ε)h′(K1)
Kν

σ2
1(W )

⎡
⎣2σ1(W )u2

1 +
1

8σ1(W )

(∑
i

wii1

)2
⎤
⎦ ,

− 2
∑
i,j

∂2F

∂wij∂ν
wij1ν1

(3.32)

≥ −2h′(K1)
K

σ2
1(W )

⎡
⎣σ1(W )

ν
ν2
1 +

ν

4σ1(W )

(∑
i

wii1

)2
⎤
⎦ ,
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−2
∂2F

∂ν∂u
ν1u1 ≥ −2h′(K1)

Kν

σ1(W )
u2

1 − 2h′(K1)
K

νσ1(W )
ν2
1 ,(3.33)

−∂2F

∂ν2
ν2
1 = h′′(K1)

K2

σ2
1(W )

ν2
1 ≥ −h′(K1)

K

σ2
1(W )

ν2
1 ,(3.34)

−∂2F

∂u2
u2

1 ≥ 0(3.35)

and

(3.36) 2h′(K1)
K

σ1(W )

∑
l

νlul ≥ −h′(K1)
K

σ1(W )

[ |∇ν|2
ν

+ ν|∇u|2
]

.

These estimates, together with (3.28) and (3.29), imply

∑
i,j

F ij

(
wij11 + 2

∑
l

wijlul

)

≥
(

F11 +
∑

l

2Flul

)
− 11h′(K1)

Kν

σ1(W )
|∇u|2

− 5h′(K1)
K

σ1(W )ν
|∇ν|2 − h′(K1)

K

σ2
1(W )

|∇ν|2

− 4h′(K1)K1|∇u|2 + h′(K1)
K

σ1(W )
ν11 − (2 − 2ε)h′(K1)K1u11

≥ F11 +
∑

l

2Flul − 15h′(K1)
Kν

σ1(W )
|∇u|2

− 5h′(K1)
K

σ1(W )ν
|∇ν|2 − h′(K1)

K

σ2
1(W )

|∇ν|2

− C(1 + e(2ε−2)u)
G

ρ
+ h′(K1)

K

σ1(W )
ν11 − 2h′(K1)

Kν

σ1(W )
u11.

(3.37)

Here, we the fact that u11 ≥ 0 at the point (x0, t0). Remark

∣∣∣∣∣
∑

l

uilul

∣∣∣∣∣ =

∣∣∣∣∣
∑

l

(
wil − uiul +

|∇u|2
2

(g0)il − (Sg0)il

)
ul

∣∣∣∣∣
≤
√

σ2
1(W ) − 2σ2(W )|∇u| + |∇u|3

2
+ |Sg0 ||∇u|,

(3.38)
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so that together with (3.17) and (3.24), there holds

h′(K1)
K

σ1(W )
ν11

= εh′(K1)
K

σ1(W )

(
|∇u|2 +

2
n − 2 − 4ε

σ1(g0)
)

11

= εh′(K1)
K

σ1(W )

⎡
⎣2∑

l

⎛
⎝−Gρlul

ρ2
− 2

∑
j

ujujlul + u2
1l

⎞
⎠+ O(|∇u|2 + 1)

⎤
⎦

≥ εh′(K1)
K

σ1(W )

[−2G〈∇ρ,∇u〉
ρ2

− C|∇u|2|∇2u| − C(|∇u|4 + 1)
]

.

(3.39)

Finally, we deduce that

∑
i,j

F ij

(
wij11 + 2

∑
l

wijlul

)

≥ F11 + 2
∑

l

Flul − 15h′(K1)
Kν

σ1(W )
|∇u|2 − 5h′(K1)

K

σ1(W )ν
|∇ν|2

− 2h′(K1)
Kν

σ1(W )
u11 − h′(K1)

K

σ2
1(W )

|∇ν|2

− C(1 + e(2ε−2)u)
G

ρ
− Cεh′(K1)

K

σ1(W )

[
G|∇u|
ρ3/2

+
G

ρ
(1 + |∇u|2)

]
.

(3.40)

Now, we claim that there is a constant C > 0 independent of ε such that

(3.41) G ≤ C

⎡
⎣1 +

√
ρ

(∑
i

F ii

)−1 (
1 + e(2ε−2)u

)
+ ερ

(
1 + e(2ε−2)u

)⎤⎦ .

We divide the proof of the claim into two cases.

Case 1.
ν

σ1(W )
≥ 1.

It is clear that

(3.42) C ′ε(1 + |∇u|2) ≤ ν ≤ Cε(1 + |∇u|2)
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and

(3.43) |∇ν|2 ≤ Cεν
G2

ρ2
,

for some positive constants C ′ and C with C ′ < C. Recall

(3.44)
∑

i

F ii = h′
(

σ2(W )
σ1(W )

)(
n − 1 − nσ2(W )

σ2
1(W )

)
+ h′(K1)

nKν

σ2
1(W )

Thus, we can obtain that

h′(K1)
Kν

σ1(W )
|∇u|2 ≤

(∑
i

F ii

)
σ1(W )

n
|∇u|2 ≤

(∑
i

F ii

)
ν

n
|∇u|2

≤ Cε

(∑
i

F ii

)
G2

ρ2
,

(3.45)

h′(K1)
Kν

σ1(W )
u11 ≤ Cε

(∑
i

F ii

)
G2

ρ2
,(3.46)

h′(K1)
K

νσ1(W )
|∇ν|2 ≤ h′(K1)

K

σ2
1(W )

|∇ν|2 ≤ Cε

(∑
i

F ii

)
G2

ρ2
(3.47)

and

Cεh′(K1)
K

σ1(W )

[
G|∇u|
ρ3/2

+
G(1 + |∇u|2)

ρ

]
≤ Cε

(∑
i

F ii

)[
G3/2

ρ2
+

G2

ρ2

]
.

(3.48)

Combining (3.40) and (3.45)–(3.48), we obtain

∑
i,j

F ij(wij11 + 2
∑

l

wijlul)(3.49)

≥ F11 + 2
∑

l

Flul − Cε

(∑
i

F ii

)(
G

ρ

)2

− C(1 + e(2ε−2)u)
G

ρ
,
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so that it follows from (3.19) to (3.21) and (3.27)

0 ≥ −C

(∑
i

F ii

)
G

ρ
+ ρu2

11

(∑
i

F ii

)
− C

(∑
i

F ii

)
G
√

G

ρ

− C

(∑
i

F ii

)
G − Cε

(∑
i

F ii

)
G2

ρ
− C(1 + e(2ε−2)u)G.

(3.50)

Therefore, we prove (3.41), provided ε is sufficiently small.

Case 2.
ν

σ1(W )
< 1.

We distinguish two cases.

(a) σ2(W ) ≥ 0.
Then from (3.38), we have

(3.51) |∇ν| ≤ Cε(σ1(W )|∇u| + |∇u|3 + |∇u| + 1).

In view of (3.42), we have

h′(K1)
Kν

σ1(W )
|∇u|2 + h′(K1)

K

σ1(W )ν
|∇ν|2 + h′(K1)

K

σ2
1(W )

|∇ν|2(3.52)

+ h′(K1)
Kν

σ1(W )
|u11| ≤ C

(
1 + e(2ε−2)u

) G

ρ

and

Cεh′(K1)
K

σ1(W )

[
G|∇u|
ρ3/2

+
G

ρ
(1 + |∇u|2)

]
≤ C

(
1 + e(2ε−2)u

) G

ρ3/2
.

(3.53)

Hence, we also infer (3.41), provided ε is sufficiently small.

(b) σ2(W ) < 0.
We also have (3.53) and

h′(K1)
Kν

σ1(W )
|∇u|2 + h′(K1)

Kν

σ1(W )
|u11| ≤ C

(
1 + e(2ε−2)u

) G

ρ
.(3.54)

Thanks of (3.38), we have

(3.55) |∇ν| ≤ Cε(
√

σ2
1(W ) − 2σ2(W )|∇u| + |∇u|3 + |∇u| + 1),
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so that together with (3.42) and (3.44) we obtain

h′(K1)
K

σ2
1(W )

|∇ν|2 ≤ h′(K1)
K

σ1(W )ν
|∇ν|2

≤ Ch′(K1)Kε2

(
σ2

1(W ) − 2σ2(W )
σ1(W )ν

|∇u|2 +
|∇u|6 + 1

ν2

)

≤ C(1 + e(2ε−2)u)
G

ρ
+ CεKσ1(W )

(∑
i

F ii

)

≤ C(1 + e(2ε−2)u)
G

ρ

(
1 + ε

∑
i

F ii

)
.

(3.56)

Finally, we imply that the claim (3.41) holds in this case, provided ε is
sufficiently small. It is easy to see from (2.6) that h′

ε(2) is uniformly bounded
from below by a positive constant for all ε ∈ [0, 1/2]. Hence, we have

(3.57)

(∑
i

F ii

)−1

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C, if
σ2(W )
σ1(W )

≤ 2,

C

(
G

ρ

)ε/2

, if
σ2(W )
σ1(W )

≥ 2,

which, together with (3.41), implies that

(3.58) G ≤

⎧⎪⎪⎨
⎪⎪⎩

C
(
1 + e(2ε−2)u

)
, if

σ2(W )
σ1(W )

≤ 2,

C
(
1 + e

(4ε−4)u

2−ε

)
, if

σ2(W )
σ1(W )

≥ 2.

Therefore, we have finished the proof of the theorem. �
The same proof gives the local estimates for the elliptic Equation (2.13).

Theorem 3. Assume n ≥ 3 and ε ∈ [0, ε0). Let u be a solution of (2.13) in
a geodesic ball Br for r < r0, the injectivity radius of M . There is a constant
C depending only on (Br, g0) (independent of ε) such that for any ε ∈ [0, ε0)
and x ∈ Br/2

(3.59) |∇u|2 + |∇2u| ≤ C(1 + e−(2−2ε)infx∈Br u(x)).
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4. A Sobolev inequality

The Sobolev inequality is a very important analytic tool in many problems
arising from analysis and geometry. It plays a crucial role in the resolu-
tion of the Yamabe problem, which was solved completely by Yamabe [36],
Trudinger [32], Aubin [1] and Schoen [29]. See various optimal Sobolev
inequalities in [25]. In this section, we are interested in a similar type inequal-
ity for the class of a fully non-linear conformal quotient operators. In [12, 17,
20, 21], the Sobolev inequality was generalized to the various fully non-linear
operators.

In this section, we establish the Sobolev inequality relating
∫
M σ2(g)d

vol(g) and
∫
M σ1,ε(g)d vol(g) for a general manifold, which will be used in

the next section.

Theorem 4. Let (M, g0) be a compact Riemannian manifold with g0 ∈ Γ+
2

and the dimension n > 4. Assume ε ∈ [0, 1/2]. Then there exists a positive
constant C > 0 depending only on (M, g0) (and independent of ε) such that
for any C2 function u with e−2ug0 ∈ C1([g0]) we have

∫
M

σ2(e−2ug0)d vol(e−2ug0) ≥ C

(∫
M

e2εuσ1(e−2ug0)d vol(e−2ug0)
) n−4

n−2−2ε

.

(4.1)

Equivalently, for such a function u we have

∫
M

e(4−n)uσ2

(
∇2u + du ⊗ du − |∇u|2

2
g0 + Sg0

)
d vol(g0)

≥ C

(∫
M

e(2+2ε−n)uσ1

(
∇2u + du ⊗ du − |∇u|2

2
g0 + Sg0

)
d vol(g0)

) n−4
n−2−2ε

.

(4.2)

Proof. Let g = e−2ug0. We have shown in [11] the invariant Y2,1([g0]) > 0
and for any e−2ug0 ∈ C1([g0])∫

M
σ2(e−2ug0)dvol(e−2ug0) ≥ C1

∫
M

|∇u|4e(4−n)udvol(g0)(4.3)

− C

∫
M

e(4−n)udvol(g0)

(4.4)
∫

M
σ2(e−2ug0)dvol(e−2ug0) ≥ C1

∫
M

e(4−n)udvol(g0),
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for some positive constants C1 > 0 and C > 0. Hence, we deduce

(4.5)
∫

M
σ2(e−2ug0)dvol(e−2ug0) ≥ C

∫
M

|∇u|4e(4−n)ud vol(g0).

It is easy to say that

∫
M

e2εuσ1(e−2ug0)dvol(e−2ug0)

=
∫ (

Δu − n − 2
2

|∇u|2 + σ1(g0)
)

e(2+2ε−n)udvol(g0)

=
∫ (

n − 2 − 4ε

2
|∇u|2 + σ1(g0)

)
e(2+2ε−n)udvol(g0)

≤ n − 2 − 4ε

2

(∫
|∇u|4e(4−n)ud vol(g0)

∫
e(4ε−n)udvol(g0)

)1/2

+ (sup σ1(g0))
∫

e(2+2ε−n)ud vol(g0).

(4.6)

Recall the definition of the conformal invariants [11]

(4.7) Y1([g0]) = inf
g∈C1([g0])

∫
σ1(g)d vol(g)

(vol(g))
n−2

n

and

(∫
M

d vol(e−2ug0)
)n−4

n

(4.8)

≤ (Y2,1([g0])Y1([g0])
n−4
n−2 )−1

∫
M

σ2(e−2ug0)d vol(e−2ug0).

By the Hölder inequality, we get for any α ∈ [0, n/2]

(4.9)
(∫

M
eαud vol(e−2ug0)

) n−4
n−α

≤ C

∫
M

σ2(e−2ug0)d vol(e−2ug0),
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where C is a positive constant independent of α. Equations (4.5), (4.6) and
(4.9) imply

∫
M

e2εuσ1(e−2ug0)d vol(e−2ug0)(4.10)

≤ C

[(∫
M

σ2(e−2ug0)d vol(e−2ug0))
)1/2

×
(∫

M
σ2(e−2ug0)d vol(e−2ug0))

) n−4ε

2(n−4)

+
(∫

M
σ2(e−2ug0)d vol(e−2ug0))

)n−2−2ε

n−4

]

≤ C

(∫
M

σ2(e−2ug0)d vol(e−2ug0))
)n−2−2ε

n−4

.

We finish the proof of theorem. �

Remark 1. In [13], we proved the Sobolev inequality (4.1) in the cone
C2([g0]) when the conformal invariant Y2,1([g0]) > 0.

5. Proof of Theorem 1 in the case n ≥ 5

Now we can prove that Yε is achieved for any small ε > 0.

Proposition 2. For ε0 > ε > 0, flow (2.2) globally converges to a solution
of (2.12). As a direct application, Yε is achieved by a function uε satisfying
(2.12).

Proof. We divide the proof into three steps.

Step 1. For a fixed small number ε > 0, the solution u of flow (2.2) has a
uniform C0 bound, which is independent of t.

The proof use the optimality of the local estimate (3.1). First all, since
flow (2.2) does not increase F2, F2(g) is bounded from above along the flow.
By (4.8), we know that

∫
M d vol(g) is bounded from above. From the Hölder

inequality, Vε(g) =
∫
M e2εud vol(g) is also bounded.

Let T ∗ ∈ (0,∞] be the maximum of the existence of the flow. For any
T ∈ [0, T ∗), set

m(T ) = min
(x,s)∈M×[0,T ]

u(x, s).
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We show that there is a constant C0 > 0 independent of T (depending
on ε) such that

(5.1) inf
T∈[0,T ∗)

m(T ) > −C0.

We assume by contradiction that inft∈[0,T ∗) m(t) = −∞. Let Ti be a
sequence tending to T ∗ with m(Ti) → −∞ as i → ∞. Let (xi, ti) ∈ M ×
[0, Ti] with u(xi, ti) = m(Ti). Fix δ ∈ (2

5 , 1
2), we consider ri = ε

2 |m(Ti)|
e(1−δε)m(Ti). Clearly, we have ri → 0. It follows from Theorem 2 that for
sufficiently large i and for any x ∈ Bri

(xi)

u(x, ti) ≤ m(Ti) + ( sup
Bri

(xi)
|∇u|)ri

≤ m(Ti) + Ce( ε

2−ε
−1)m(Ti) ε

2
|m(Ti)|e(1−δε)m(Ti)

= m(Ti) + C
ε

2
|m(Ti)|eε( 1

2−ε
−δ)m(Ti)

≤ (1 − κ)m(Ti)

for some κ ∈ (0, (δ − 2
n)ε). Note that δ − 2

n > 0, for n ≥ 5. Therefore, we
obtain

∫
B(xi,ri)

e2εud vol(g) ≥
∫

B(xi,ri)
e(2ε−n)m(Ti)(1−κ)d vol(g0)

≥ Ce(2ε−n)m(Ti)(1−κ)rn
i

≥ C

( |m(Ti)|ε
2

)n

→ ∞,

where we have used n ≥ 5. Hence, this fact contradicts the boundedness of
Vε. This proves the claim. This claim, together with the local estimates and
the fact F1,ε is preserved along the flow, implies that ‖u(t)‖C2 has a unform
bound.

Step 2. We prove a crucial fact that the flow preserves Γ+
1 metrics. More

precisely, we have the following result:

Lemma 5. There is a constant C0 > 0, independent of T ∈ [0, T ∗) such
that σ1(g(x, t)) > C0 for any t ∈ [0, T ] and x ∈ M .
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Proof of Lemma 5. From the Sobolev inequality and Lemma 2, the func-
tion rε(g(t)) is bounded from below and from above by the positive con-
stants. Recall

ν = ε(|∇u|2 + 2σ1(g0)/(n − 2 − 4ε)),

W = (wij) =
(
∇2

iju + uiuj − |∇u|2
2

(g0)ij + (Sg0)ij

)
,

K = rε(g(t))e(2ε−2)u, K1 = K

(
1 +

ν

σ1(W )

)

and

Fε(W, ν, u, t) = hε

(
σ2(W )
σ1(W )

)
− hε (K1) .

Let us consider a function Hε : M × [0, T ] defined by

Hε := Fε − e−u

= ut − sε(g) − e−u,

where ut denotes the derivative of u with respect to t. Without loss of
generality, we assume that the minimum of Hε is achieved at (x0, t0) ∈ M ×
(0, T ] and at (x0, t0)

σ2(W )
σ1(W )

< 1.

Recall that hε(t) = t for t < 1. Hence, in a small neighborhood of (x0, t0)

Hε =
σ2(W )
σ1(W )

− hε(K1) − e−u.

Let us use O(1) denote terms with a uniform bound (perhaps depending on
ε). Using drε(g)

dt ≤ 0, we have near (x0, t0)

d

dt
Hε ≥ tr

(
A∇2

g(Hε + e−u)
)− h′

ε(K1)K
2ε〈∇g0u,∇g0(Hε + e−u)〉g0

σ1(W )
(5.2)

+ kε(x, t)ut,

where

A :=
(σ2

1(W ) − σ2(W ))I − σ1(W )W
σ2

1(W )
+ h′

ε(K1)
KνI

σ2
1(W )

is positive definite and

kε(x, t) := e−u + (2 − 2ε)h′
ε(K1)K1
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is a positive function and I denotes the identity matrix. To simplify the
notations, we drop the index ε as before. We prove first, there is a con-
stant C2 > 0, independent of T ∈ [0, T ∗) such that σ1(g(x0, t0)) > C2. Since
(x0, t0) is the minimum of H in M × [0, T ], at this point, we have dH

dt ≤ 0,
Hl = 0 ∀l and (Hij) is non-negative definite. Note that

(∇2
g)ijH = Hij + uiHj + ujHi −

∑
l

ulHlδij = Hij

at (x0, t0), where Hj and Hij are the first and second derivatives with respect
to the back-ground metric g0. From the positivity of A and (5.2), we have

0 ≥ Ht −
∑
i,j

AijHij

≥
∑
i,j

Aij

{
(e−u)ij + ui(e−u)j + uj(e−u)i −

∑
l

ul(e−u)lδij

}
+ k(x, t)ut

= e−u
∑
i,j

Aij

{
−wij + S(g0)ij +

1
2
|∇u|2δij

}
+ k(x, t)ut

≥ e−u
∑
i,j

Aij(−wij + S(g0)ij) + k(x, t)ut.

(5.3)

Here we have
∑
i,j

Aijwij =
σ2(W )
σ1(W )

+ h′(K1)
Kν

σ1(W )
.

On the other hand, we have

∑
i,j

AijS(g0)ij =
σ1(g0)(σ2

1(W ) − σ2(W ))
σ2

1(W )
− 1

σ1(W )

∑
i,j

wijS(g0)ij

+ h′(K1)
Kνσ1(g0)
σ2

1(W )

= −σ2(W )σ1(g0)
σ2

1(W )
+ h′(K1)

Kνσ1(g0)
σ2

1(W )

− 1
σ1(W )

∑
i,j

wijS(g0)ij + σ1(g0).

(5.4)
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As W is bounded, we deduce that
∑
i,j

Aij(−wij + S(g0)ij)(5.5)

=
(

h′(K1)
Kνσ1(g0)
σ2

1(W )
− σ2(W )σ1(g0)

σ2
1(W )

+ O

(
1

σ1(W )

)
+ O(1)

)
,

(5.6) k(x0, t0) = (2 − 2ε)h′(K1)
Kν

σ1(W )
+ O(1),

ut(x0, t0) = H(x0, t0) + sε(g(t0)) + e−u(x0,t0) ≥ H(x0, t0) + O(1)

=
σ2(W )
σ1(W )

− h(K1) + O(1).
(5.7)

We divide the proof into two cases.

Case 1: σ2(W ) ≥ 0.
It is clear

0 ≤ σ2(W ) ≤ 1
2
σ2

1(W ).

Thus,

0 ≥ e−uh′(K1)
Kνσ1(g0)
σ2

1(W )
− (2 − 2ε)h(K1)h′(K1)

Kν

σ1(W )
(5.8)

+ O(1) + O

(
1

σ1(W )

)
.

Assume that 1
σ1(W ) is sufficiently large. Then

(5.9) h′(K1)
Kνσ1(g0)
σ2

1(W )
≥ C3

σ
2−ε/2
1 (W )

and

(5.10) (2 − 2ε)h(K1)h′(K1)
Kν

σ1(W )
≤ C4

σ2−ε
1 (W )

for some positive constants C3 and C4 independent of T . This implies bound-
ness of σ1(W ) at the point (x0, t0) from below by some positive constant
independent of T .
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Case 2: σ2(W ) < 0.

In this case, (5.8) holds also since −σ1(g0)σ2(W )
σ2

1(W ) + k(x0, t0)
σ2(W )
σ1(W ) > 0, pro-

vided 1
σ1(W ) is sufficiently large. Hence, the desired result yields.

Now for any (x, t) ∈ M × [0, T ] we have

(5.11) H(x, t) ≥ H(x0, t0) = O(1),

so that

(5.12) h

(
σ2(W )
σ1(W )

)
(x, t) − h(K1)(x, t) ≥ O(1).

Therefore, we infer

(5.13) −h

(
rε(g(t))e(2ε−2)u

(
1 +

ν

σ1(W )

))
(x, t) ≥ O(1),

since we have always

(5.14)

⎧⎪⎪⎨
⎪⎪⎩

h

(
σ2(W )
σ1(W )

)
(x, t) =

σ2(W )
σ1(W )

(x, t) < 0, if σ2(W )(x, t) < 0,

σ2(W )
σ1(W )

(x, t) ≤ 1
2
σ1(W )(x, t) ≤ O(1), if σ2(W )(x, t) ≥ 0.

Finally, K1(x, t) is bounded from above and yields that there exists C0 > 0
independent of T such that σ1(W )(x, t) > C0. Therefore, lemma is proved.

Proof of Proposition 2 (continued). Step 3: Now we can finish the proof of
Proposition 2. From Step 2, we know that the flow is uniformly parabolic.
In view of Step 1, Krylov’s theory implies u(t) has a uniform C2,α bound.
Hence, T ∗ = ∞. One can also show that u(t) globally converges to u(∞),
which clearly is a solution of (2.12) for ε0 > ε > 0 (see [31]). From the local
estimates, the set of solutions of (2.12) for c = 1 with the uniform bounded
energy functional F2 is bounded in C2 norm. Since (2.13) is concave in W ,
from the Evans–Krylov theory, this set is compact in C2,α norm. Now it is
easy to show that Yε is achieved. �

Proof of Theorem 1 in the case n ≥ 5. By Proposition 2, for small ε > 0, we
have a solution uε of (2.12) that has F̃2,ε(uε) = Yε. It is easy to show that

lim
ε→0

Yε = lim
ε→0

Ỹε = Y2,1.
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If limε→0 minx∈M uε(x) > −∞, then local estimates imply that uε (taking
a subsequence) converges in C2,α to u, which is a solution of (1.3). We are
done.

If limε→0 minx∈M uε(x) = −∞, we can use the local estimates and the
classification of solutions of (2.14) in the standard sphere to get a contradic-
tion to the facts Ỹ2,1([g0]) ≤ Ỹ2,1(Sn) and equality holds if only if (M, [g0])
is the standard sphere. This so-called the blow-up analysis for this class of
fully non-linear conformal equations becomes more or less standard. Here,
we leave the proof to the interested reader.

Now Y2,1([g0]) is achieved by some g ∈ C1([g0]), which solves (2.14).
Hence, g ∈ C2([g0]) and yields that Y2,1([g0]) = Ỹ2,1([g0]). �

6. Proof of Theorem 1 in the case n = 3

Now we want to consider the existence of the following equation:

(6.1) Fε(g) =
σ2(g) − εe4u

σ1(g)
= constant

with g = e−2ug0 for ε > 0 a positive number. In this paper, we will choose
ε as a small positive constant. Following [12, 13, 20], we will introduce a
suitable Yamabe-type flow to study Equation (6.1).

For any ε ∈ (0, +∞) and for g = e−2ug0, consider the following perturbed
functional:

Eε(g) :=

⎧⎪⎪⎨
⎪⎪⎩

2
n − 4

∫
M

(σ2(g) − εe4u)d vol(g), if n 	= 4,

−
∫ 1

0

∫
M

(σ2(gt) − 2εe4tu)ud vol(gt)dt, if n = 4,

where gt = e−2tug0. When ε = 0, the functional was considered in [4, 5, 33].
Recall

F1(g) =
∫

M
σ1(g)d vol(g) and F2(g) =

∫
M

σ2(g)d vol(g).

From the variational formula given in [4, 5, 33], we have

(6.2)
d

dt
Eε(g) =

∫
(σ2(g) − εe4u)g−1 · d

dt
gd vol(g)
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and

(6.3)
d

dt
F1(g) =

n − 2
2

∫
σ1(g)g−1 · d

dt
gd vol(g).

Now we introduce a Yamabe-type flow, which non-increases Eε and
preserves F1.

(6.4)
du

dt
= −1

2
g−1 d

dt
g = e−2u σ2(g) − εe4u

σ1(g)
− rε(g)e−2u + sε(g),

where rε(g) and sε(g) are space constants, given by

(6.5) rε(g) :=
F2(g) − ∫

M εe4ud volg
F1(g)

and

(6.6)
∫

M
σ1(g)

{
e−2u σ2(g) − εe4u

σ1(g)
− rε(g)e−2u + sε(g)

}
d vol(g) = 0.

We collect some basic facts proved in [11].

Lemma 6. Assume flow (6.4) stays in the cone Γ+
1 . Then the flow preserves

F1 and non-increases Eε. Hence when n ≥ 4, then rε is non-increasing along
the flow, and when n = 3, then rε is non-decreasing along the flow.

Given ε > 0, assume g0 ∈ C1([g0]). By Lemma 3, (6.4) is parabolic. By
the standard implicit function theorem we have the short-time existence
result. Let T ∗ ∈ (0,∞], so that [0, T ∗) is the maximum interval for the exis-
tence of the flow g(t) ∈ Γ+

1 .

Proposition 3. Assume that n ≥ 3, ε > 0 and g0 ∈ Γ+
1 . Let u be a solution

of (6.4) in a geodesic ball BR × [0, T ] for T < T ∗ and R < τ0, the injectivity
radius of M .

(1) Assume that ∀t ∈ [0, T ], there holds

rε(t) ≤ 0.

Then there is a constant C depending only on (BR, g0) (independent
of ε and T ) such that for any (x, t) ∈ BR/2 × [0, T ]

(6.7) |∇u|2 + |∇2u| ≤ C.
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(2) Assume that ∀t ∈ [0, T ], there holds

rε(t) > 0.

Then there is a constant C depending only on (BR, g0) (independent
of ε and T ) such that for any (x, t) ∈ BR/2 × [0, T ]

(6.8) |∇u|2 + |∇2u| ≤ C

(
1 + sup

t∈[0,T ]
rε(t) × e−2 inf(x,t)∈BR×[0,T ] u(x,t)

)
.

Now we define

(6.9) aε := inf
g∈C1([g0])

Eε(g)

(
∫
M σ1(g)d vol(g))

n−4
n−2

, if n 	= 4.

If aε is achieved by a metric g = e−2ug0, the g satisfies

(6.10)
σ2(g) − εe4u

σ1(g)
= κ

for some constant κ. Equivalently, we will consider the energy functional Eε

on the normalized cone C̃1([g0])

(6.11) C̃1([g0]) :=
{

g ∈ C1([g0]) |
∫

M
σ1(g)d vol(g) = 1

}
.

Using the same arguments as in Proposition 3, we have the following
local estimate.

Proposition 4. Assume that n ≥ 3, ε > 0 and g0 ∈ Γ+
1 . Let u be a solution

of (6.10) in a geodesic ball BR × [0, T ] for T < T ∗ and R < τ0, the injectivity
radius of M .

(1) Assume

κ ≤ 0.

Then there is a constant C depending only on (BR, g0) (independent
of ε and T ) such that for any (x, t) ∈ BR/2 × [0, T ]

(6.12) |∇u|2 + |∇2u| ≤ C.
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(2) Assume

κ > 0.

Then there is a constant C depending only on (BR, g0) (independent
of ε and T ) such that for any (x, t) ∈ BR/2 × [0, T ]

(6.13) |∇u|2 + |∇2u| ≤ C(1 + κ × e−2 inf(x,t)∈BR×[0,T ] u(x,t)).

Now we consider n = 3 and can prove that aε is achieved for any small
ε > 0.

Proposition 5. Assume g0 ∈ Γ+
1 and n = 3. For 1

2 > ε > 0, flow (6.4)
globally converges to a solution of (6.10). As a direct application, aε is
achieved by a function uε satisfying (6.10) for κ > 0, provided ε is suffi-
ciently small.

Proof. We divide the proof into three steps.

Step 1. There is a constant C0 > 0, independent of T ∈ [0, T ∗) such that

(6.14) ‖u(t)‖C2 ≤ C0.

Claim. There is a constant C > 0, independent of T ∈ [0, T ∗) such that

(6.15)
∫

M
e4u(t)d vol(g(t)) ≤ C.

Without loss of generality, we can suppose F1(g(t)) ≡ 1. Thus, we obtain

(6.16) ε

∫
M

e4u(t)d vol(g(t)) = F2(g(t)) − rε(g(t)) ≤ F2(g(t)) ≤ Y2,1([g0]).

Thus, we prove the claim. As in [11], we have for all g ∈ C1([g0])

(6.17)
∫

σ2(g)d vol(g) ≤ − 1
16

∫
|∇u|4g0

e4ud vol(g) + c

∫
e4ud vol(g),

for some positive constant c > 0. Recall that Y2,1([g0]) is finite and
∫

σ2(g(t))
d vol(g(t)) ≥ 0, provided rε(g(0)) > 0, since rε(g(t)) is non-decreasing. Thus,
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we infer ∀t ∈ [0, T ∗)

256
∫

|∇e
u

4 |4g0
d vol(g0) =

∫
|∇u|4g0

e4ud vol(g) ≤ c

∫
e4ud vol(g)(6.18)

≤ c

∫
(eu/4)4d vol(g0)

which implies by the Sobolev’s embedding theorem for all x, y ∈ M

|eu(x,t)/4 − eu(y,t)/4| ≤ c

(∫
e4ud vol(g)

)1/4

(dg0(x, y))1/4 ≤ c(dg0(x, y))1/4,

(6.19)

where dg0(x, y) is the distance between x and y with respect to the metric
g0. Set

(6.20) β(t) := eminM u(·,t) = eu(xt,t)

and

(6.21) β̃(t) := emaxM u(·,t) = eu(x̃t,t)

for some xt, x̃t ∈ M . It follows from (6.19) that for any y ∈ M

(6.22) e−u(y,t)/4 ≥ (β(t)1/4 + c(dg0(x, y))1/4)−1

which implies

Vol(g(t)) =
∫

e−3u(t)d vol(g0) ≥
∫

(β(t)1/4 + c(dg0(x, y))1/4)−12d vol(g0)

≥ c

∫ R

0
(β(t)1/4 + cr1/4)−12r2dr ≥ −c lnβ(t),

(6.23)

provided β(t) < 1/2. On the other hand, we have always Vol(g(t)) ≤ (Y1([g0])
F1(g(t)))3. Thus the lower boundness of u(x, t) yields. Together with the
local estimates and the fact F1 is preserved along the flow, this implies that
‖u(t)‖C2 has a uniform bound.

Step 2. The flow preserves the positivity of the scalar curvature.

Proposition 6. There is a constant C0 > 0, independent of T ∈ [0, T ∗)
such that σ1(g(t)) > C0 for any t ∈ [0, T ].
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Proof. Recall

W = (wij) =
(
∇2

iju + uiuj − |∇u|2
2

(g0)ij + (Sg0)ij

)
.

Set

Fε(W ) =
σ2(W ) − ε

σ1(W )
− αe−2u.

where α = 2Y2,1([g0]). Thus, Fε = ut + (rε(g(t)) − α)e−2u − sε(g(t)). With-
out loss of generality, we assume that the minimum of Fε is achieved at
(x0, t0) ∈ M × (0, T ]. Let us use O(1) denote terms with a uniform bound
with respect to t (perhaps depending on ε). It is clear that sε(g(t)) and
rε(g(t)) are bounded. Near (x0, t0), we have

d

dt
Fε =

∑
ij

Aij
[
(∇2

g(Fε))ij − (rε(g) − α)(∇2
g(e

−2u))ij

]
+ 2α e−2uut,(6.24)

where

Aij :=
(σ2

1(W ) − σ2(W ) + ε)δij − σ1(W )W ij

σ2
1(W )

is positive definite. To simplify the notations, we drop the index ε as before.
Since (x0, t0) is the minimum of F in M × [0, T ], at this point, we have
dF
dt ≤ 0, Fl = 0 ∀l and (Fij) is non-negative definite. Note that

(∇2
g)ijF = Fij + uiFj + ujFi −

∑
l

ulFlδij = Fij ,

at (x0, t0), where Fj and Fij are the first and second derivatives with respect
to the back-ground metric g0. From the positivity of A and (6.24), we have

− 2αe−2uut(6.25)

= −2αe−2u σ2(W ) − ε

σ1(W )
+ O(1)

≥ Ft −
∑
i,j

AijFij − 2αe−2uut

≥ (α − rε(g))
∑
i,j

Aij
{

(e−2u)ij + ui(e−2u)j
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+ uj(e−2u)i −
∑

l

ul(e−2u)lδij

}

= (α − rε(g))e−2u
∑
i,j

Aij{−2wij + 2uiuj + 2S(g0)ij + |∇u|2δij}

≥ (α − rε(g))e−2u

[(−2σ2(W ) − 2ε

σ1(W )

)

+
∑
i,j

Aij(2uiuj + 2S(g0)ij + |∇u|2δij)

⎤
⎦ .

Here we have used
∑

i,j Aijwij = σ2(W )+ε
σ1(W ) . On the other hand, we have

∑
i,j

AijS(g0)ij =
(σ2

1(W ) − σ2(W ))σ1(g0)
σ2

1(W )
(6.26)

− 1
σ1(W )

∑
i,j

W ijS(g0)ij +
εσ1(g0)
σ2

1(W )
.

Going back to (6.25), we have

− 2αe−2u σ2(W ) − ε

σ1(W )
+ O(1)

≥ Ft −
∑
i,j

AijFij − 2αe−2uut

≥ (α − rε(g))e−2u

[−2σ2(W ) − 2ε

σ1(W )
+

2(σ2
1(W ) − σ2(W ))σ1(g0)

σ2
1(W )

− 2
σ1(W )

∑
i,j

W ijS(g0)ij +
2εσ1(g0)
σ2

1(W )

⎤
⎦ ,

(6.27)

since (Aij) is positive definite and α − rε(g) > Y2,1([g0]) is positive. One can
check σ2(g) = O(1) for ‖u‖C2 is uniformly bounded and

∑
i,j , W

ijS(g0)ij =
O(1). Also the term σ2

1(W ) − σ2(W ) is always non-negative. From (6.27),
we conclude that there is a positive constant C2 > 0 (independent of T ) such
that

(6.28) σ1(W )(x0, t0) > C2 > 0.
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Now for any (x, t) ∈ M × [0, T ], we have

σ2(W )(x, t) − ε

σ1(W )(x, t)
≥ O(1),

so that there is a positive constant C > 0, independent of T , such that

σ1(W )(x, t) ≥ C,

since we have σ2(W ) ≤ 1
2σ2

1(W ) provided σ2(W ) ≥ 0. This finishes the proof
of the proposition. �
Step 3. Now we can prove equation (6.10) admits a solution. From Steps
1 and 2, we know that the flow is uniformly parabolic. Krylov’s theory
implies u(t) has a uniform C2,α bound. Hence, T ∗ = ∞. One can also show
that u(t) globally converges to u(∞), which clearly is a solution of (6.10)
for k = rε(g(∞)). (Note that rε(g(t)) is monotone and bounded, so that
rε(g(∞)) exists) (see [20]). So uε = u(∞) − 1

2 log |rε(g(∞))| solves (6.10) for
κ = 1 (resp. 0, 1) if rε(g(∞)) > 0 (resp. = 0, < 0). Now, if ε is sufficiently
small, we have rε(g(0)) > 0. Thus, there exists a minimizing solution to
(6.10), that is, aε is achieved.

Proof of Theorem 1 in the case n = 3. Now let uε be a minimizing solution to
(6.10) for κ = 1. It is clear e−2uεg0 ∈ C2([g0]) and Ỹ2,1([g0]) ≥ aε. As aε →
Y2,1([g0]), we infer Ỹ2,1([g0]) ≥ Y2,1([g0]). On the other hand, Ỹ2,1([g0]) ≤
Y2,1([g0]) since C2([g0]) ⊂ C1([g0]). Finally, Ỹ2,1([g0]) = Y2,1([g0]). This fin-
ishes the proof of theorem. �
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École Norm. Sup. 39 (2006), 569–598.

[13] Y. Ge and G. Wang, On a conformal quotient equation, Int. Math. Res.
Not. IMRN 2007, Art, ID rnm019, 32pp.

[14] Y. Ge and G. Wang, An almost Schur theorem on 4-dimensional man-
ifolds, PAMS. 140 (2012) 1041–1044.

[15] Y. Ge and G. Wang, A new conformal invariant on 3-dimensional man-
ifolds, preprint 2011.

[16] Y. Ge, G. Wang and C. Xia, On problems related to an inequality of
Andrews, De Lellis and Topping, Int Math Res Not. IMRN, to appear,
doi:10.1093/imrn/rns196
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