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Geometry of singular space

Shing-Tung Yau

This paper grew out from my talk for the inauguration of the Rie-
mann Center in Hanover, Germany. In an attempt to understand
what Riemann said in his famous paper in 1854 on the foundation
of geometry, I propose a theory of geometry that hopefully can be
used to understand singular space that may still satisfy the Ein-
stein equation in a generalized sense. Some calculations are made
in the appendix that allow us to perform Hodge theory, to calculate
the heat kernel within our abstract framework.
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1. The development of modern geometry that influenced our
concept of space

Bernhard Riemann (1826–1866) and his teacher C.F. Gauss (1777–1855) are
no doubt the two great geometers who founded modern geometry.

The beautiful theory of Riemannian geometry has in effect changed our
views of the concept of space which was introduced by the ancient Greek
geometers.

It is fair to say that without this development, it would have taken many
more years for Einstein (1879–1955) with helps from Grossman (1878–1936)
and Hilbert (1862–1943) to accomplish the great theory of general relativity.

Riemann [13] initiated the concept of modern geometry through the
following paper in 1854: Über die Hypothesen, welche der Geometrie zu
Grunde liegen (The Hypotheses on which Geometry is Based). This paper
is truly a spectacular work: Riemann had few works prior to inspire him or
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to provide guidance, with the exception of some bits of work of Gauss and
some philosophical work of Herbart.

He felt that “the theorems of geometry cannot be deduced from the general
notion of magnitude alone, but only from those properties which distinguished
space from other conceivable entities, and these properties can only be found
experimentally.”

“We can only investigate their probability, and therefore a judgment as
to the admissibility of extending them outside the limits of observation, in
the realms of both the immeasurably great and the immeasurably small.

Either the physical reality on which space is founded must be a discrete
variety, or else the foundation of its metric relation must be sought from
outside source in the forces which bind together its elements . . . .

This takes us into the realm of another science – physics.”

2. Geometry of singular spaces

I would like to reflect upon how we may think about geometry as a whole
and what we can do in the future. The subject is connected with geometry,
analysis and mathematical physics, and this is exactly what Riemann had
in mind about 160 years ago when he thought about geometry.

He was very much concerned about the role of space in physics. As
we saw in the above, he questioned what kind of concepts of space can be
drawn from physics. One may note that his discussion of the heat conduction
motivated him to give the definition of the curvature tensor.

Hence, I think any sensible motivation on the fundamental concept of
space should be linked to the intuitions from physics of nature. We are facing
a great challenge in this century on how to work out a concept of geometry
that is capable to understand general relativity in the large and quantum
physics in the small. There have been proposals on such geometry. The most
outstanding one is the non-commutative geometry of Alain Connes [5].

I am not an expert of his work, as my taste in geometry is largely tra-
ditional geometry, as is motivated from intuitions coming from curvature,
topology, physics and analysis, especially from the point of view of differ-
ential equations. However, what I said here may be considered as my first
primitive step towards the understanding of a suitable version of quantum
geometry. My goal is to understand geometry through operator theory where
classical spacetime may disappear altogether. This view was already devel-
oped by Connes. Most likely much of what I presented here is known to him.

In any case, we may need to study the geometry of discrete spacetime and
develop properties that may exhibit similarity with continuous spacetime.
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However, we need to review what we know about continuous spacetime
first. Much of the continuous geometry has been developed since the time
of Riemann and we like to preserve their key properties.

3. Geometry for Einstein equation and special holonomy
group

In order to demonstrate what I propose, I shall focus on the theory of Ein-
stein manifolds. The construction of the Riemannian version of a vacuum
Einstein equation with a possible cosmological constant is still the most chal-
lenging problem in geometry and analysis. It is a problem in analysis as it
provides a nice elliptic system in a suitable gauge. This system is non-linear
and a good definition of weak solution of Einstein equation is needed. We
shall find such a definition.

Only when the manifold has either a large group of symmetries or with
special internal symmetry (or special holonomy group) do we know how to
construct such Einstein manifolds.

Many complete and compact manifolds with special holonomy groups
have now been constructed, thanks to the works of many geometers. It is
remarkable that many of them are Einstein manifolds, i.e., their curvature
tensor satisfies the equation of Einstein in the Riemannian setting.

Among manifolds with special holonomy group, we have a reasonable
understanding of Kähler manifolds, Calabi–Yau manifolds and hyperkähler
manifolds. However, we do not have a good control of manifolds with holon-
omy groups G2, Spin(7) and Sp(1)Sp(n). They are all Einstein manifolds
with Ricci curvature equal to zero.

We need a theorem similar to the Calabi–Yau theorem [3, 14], which
reduces problems in manifolds to algebro-geometric problems which can
be solved by algebraic means. In classical general relativity, we are more
interested in metrics with Lorentzian signature. In some stationary space-
times such as the one described by the Kerr metric, there is a procedure
called Wick rotation that can “analytically” continue the Einstein metric
with Lorentzian signature to one with Riemannian signature. In an amazing
manner, the singularities of spacetime disappear after Wick rotation. These
manifolds play an important role in Gibbons–Hawking theory of quantum
gravity [6]. Although the Wick rotation construction is done in an ad hoc
manner, it is worthwhile to point out that the Wick rotated Kerr metric
admits a non-trivial second order differential operator that commutes with
Laplacian. I propose this to be a concept that generalises manifold with
special holonomy group. It is still not known how to classify all Lorentzian
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manifolds with special holonomy groups. They may be important for general
relativity. I shall not discuss manifolds with Lorentzian signature here.

When the holonomy group is a proper subgroup of the orthogonal group,
these are special subspaces of the tensor product of tangent bundle, and the
associated projection operators commute with the Laplacian that acts on
functions and forms.

In particular, the eigenforms of the Laplacian have natural splitting com-
ing from the projection operators. The theory of Hodge [8] made use of this
powerful and natural splitting on harmonic forms, which account for topol-
ogy of the manifold. It builds a bridge between topology and analysis.

I shall discuss how to generalize the concept of Riemannian geometry
by using the Laplace operator. In this new setting, the holonomy group will
be replaced by the graded ring of local operators that commute with the
Laplacian.

4. Laplacian and construction of generalized Riemannian
geometry in terms of operators

Most of the known Einstein manifolds are obtained by reduction of variables
by group actions or by constructing manifolds with special holonomy groups,
or by combining such constructions.

In such a process, we may have to handle spaces, which have singularities.
The most common singularities that we can handle are orbifold singulari-
ties. However, their structures are not rich enough to describe problems in
modern physics.

We need to enlarge the category of manifolds to allow manifolds with
general singularities. However at the same time, we would like to keep the
natural geometric operators to be well-defined on such singular spaces.

We propose to formulate a theory that replaces Riemannian manifolds
by operators acting on a Hilbert space equipped with an algebra.

(i) On a compact manifold M , the Riemannian metric gives rise to
a measure. If we normalize the total volume to be one, all these
measures are equivalent to each other by a volume preserving
diffeomorphism. Hence, we have a Hilbert space H = L2(M) and
an algebraA of unitary operators defined by the group of measures
preserving diffeomorphisms. (If we want to avoid the use of the
measure, we can replace functions by half-densities.)

(ii) Within the Hilbert space H, we have a subalgebra C of smooth
functions that determines the differential structure of M . The
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Laplacian L is a self-adjoint operator defined on C, which is local
in the sense that for any ϕ1, ϕ2 ∈ C, ϕ1ϕ2 = 0⇒ ϕ1L(ϕ2) = 0.

We may not require L to map C into C or H. However, we
shall require L(ϕ) to be a linear functional defined on C and is
symmetric in the following sense: for any ϕ,ψ ∈ C

(4.1) 〈L(ϕ), ψ〉 = 〈ϕ,L(ψ)〉.

(iii) The inner product 〈ϕ, (−L)sϕ〉 is positive on {ϕ ∈ C : 〈ϕ, 1〉 =
0}. Its completions are Hilbert spaces that will be called Hs, we
assume that the embedding H1 ↪→ H is compact.

The space of Riemannian metrics can be considered as the orbit space
of the space of the triples (H,C,L) mod A, the group of unitary operators
defined by the group of measure preserving diffeomorphisms. Note that the
algebra A is a subalgebra of the endomorphism ring of C. We would like to
make sure this orbit space is Hausdorff and the concept of stable manifold
in the sense of geometric invariant theory may be needed. In principle, we
can therefore replace a Riemannian manifold by (H,C,L), which satisfies
the above properties.

In order for the triple to recover standard properties of Riemannian
geometry, we shall make several assumptions.

(1) Compatibility of multiplication with inner product:
Hence,

(4.2) 〈f2, 1〉 = 〈f, f〉 =‖ f ‖2 〈fg, h〉 = 〈f, gh〉.

We shall also assume that multiplication by f ∈ C defines a bounded
operator on H.

(2) The Cone of positive functions:
The Cone defined by taking H− closure of {∑k

i=1 ρ
2
i : ρi ∈ C} will

be called H+.
Then for any element ρ ∈ H, there is a unique element ρ+ ∈ H+

and ρ−, so that

(4.3) ρ = ρ+ + ρ−

and 〈ρ−, g〉 ≤ 0 for all g ∈ H+.
If we define H+ = {h ∈ H : 〈h, g〉 ≥ 0, for all g ∈ H+},
Then H+ ⊆ H+, H+ ·H+ ⊆ H+and− ρ− ∈ H+.
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It is easy to prove that

(4.4) ‖ρ−‖2 + ‖ρ+‖2 ≤ ‖ρ‖2

In any case, we shall assume that L(ρ2)− 2ρL(ρ) ∈ H+. We need this
for proving that exp(tL) preserves H+. In order to define an inner
product on the space of differentials, we assume further that for any
set of elements {fi, gi} in C, we have

(4.5)
∑

gigj [L(fifj)− fjL(fi)− fiL(fj)] ∈ H+

(3) The embedding from Hs to Hs−1 are compact operators for all s. One
can then show that the spectrum of L is discrete and that it tends to
infinity whenH is infinite-dimensional. Note that all the eigenfunctions
of L belong to ∩∞s=0Hs.

(4) If λk are the eigenvalues of −L, we assume that λk ≥ 0, limk→∞ k−
2
nλk

exists and depends only on vol(M). This is Weyl’s law in Riemannian
geometry.

Tauberian theorems say that the Weyl law is equivalent to the statement

(4.6) lim
t→0

t
n

2 tr etL

exists, and is equal to a number a0 depending only on vol(M). We shall also
assume the existence of

(4.7) a1 = lim
t→0

t−1
(
t

n

2 tr etL − a0

)
.

Note that in Riemannian geometry, a1 is the total scalar curvature of the
manifold M . The number n seen above will be defined to be the dimension of
the manifold. Hence, we shall consider a1 as an action defined on the space
of (H,C,L) mod A. In this way, our generalized manifolds are Einstein if
they are critical points of this functional.

An important example is a metric with gij non-smooth but positive defi-
nite. We assume that gij is bounded above and below by smooth Riemannian
metrics. With low regularity on gij , one can make sense of a1 and hence weak
solution of Einstein equation.
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5. Differential topology of the operator geometry

With the algebra C, we can define the tangent bundle to be the space of
derivations of C, which are also local operators defined on Hs for all s ≥ 0
such that for all f ∈ Hs,

(5.1) ‖Xf‖s ≤ a‖f‖s+1.

The tangent bundle is a module over C. The wedge product of the tan-
gent vectors can be formed in the usual way. The dual spaces are differen-
tial forms. Given a function f in C, we can define a differential form by
df(X) = X(f).

If df1, df2, . . . , dfm are linearly independent over C, then we expect that
polynomials of them will produce enough functions to prove that the kth
eigenvalue of L is not greater than Ck

2
m if certain scaling properties hold

for L. In such cases, m ≤ n.
It is quite likely that for an n-dimensional manifold, the differential of

any n-distinct eigenfunctions with distinct non-zero eigenvalues are inde-
pendent over C. It will be interesting to find conditions such that the
analogous statement holds for the case of an operator manifold. That will
mean that such a manifold has dimension n iff the maximal m such that
df1 ∧ · · · ∧ dfm 
= 0 is equal to n.

We shall assume that the space of derivation is a finite-dimensional mod-
ule over C and can be generated by finite number of derivations {Xi} such
that [Xi, Xj ] defined by

(5.2) [Xi, Xj ](ϕ) = Xi

(
Xj(ϕ)

)−Xj

(
Xi(ϕ)

)
are derivations satisfying (5.1)

Hence, [Xi, Yj ] can be defined and they are derivations satisfying (5.1).
This allows us to define exterior derivative on the forms which are dual space
to the wedge product of tangent bundle.

The exterior algebra of cotangent bundle, which is the dual of the space
of derivations, admits exterior differentiations in the standard manner. They
can be called differential forms. Its cohomology can be considered as coho-
mology of the manifold.

The space of linear functional defined on the exterior algebra of cotan-
gent bundle will be defined as currents in our geometry. It has a boundary
operator dual to the exterior differentiation. We can then define the homol-
ogy of the manifold accordingly.
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The de Rham forms can be defined by the C-modules generated by
df1 ∧ · · · ∧ dfm and there is a natural exterior differentiation. The invariants
associated to this complex should be interesting for singular manifolds. The
cohomology defined by de Rham forms will be called de Rham cohomol-
ogy. Since it is not clear that the dual of vector fields are spanned by the
differential of functions, the cohomology defined by the exterior algebra of
differential forms may be different from the de Rham cohomology.

6. Inner product on tangent spaces and Hodge theory

The space spanned by differential of functions can be written as
ω =
∑

i gidfi. Its inner product can be defined so that for all ρ ∈ C, 〈ρω, ω〉 =∑
i,j〈ρgigj , L(fifj)− fiL(fj)− fjL(fi)〉.
In Section 5, we assume this defines a positive-definite inner product on

the space of differentials. In order for this expression to be well defined, we
make the following assumption: if

∑
giX(fi) = 0 for all derivation X, then

for all f ,

(6.1)
∑

gi

(
L(ffi)− f L(fi)− fi L(f)

)
= 0.

This simply says that if
∑
gidfi(X) = 0 for all derivation X, then

∑
gidfi is

orthogonal to all other differentials.
The inner product on the forms should be compatible with the multipli-

cation, i.e.,

(6.2) 〈gdf, d(hk)〉 = 〈gdf, hdk〉+ 〈gdf, kdh〉.

Therefore we require the following identity holds for L:

L(fhk) =fL(hk)− hk L(f) + hL(fk)− fk L(h)
+ k L(fh)− h f L(k).(6.3)

The inner product on the tangent bundle can be defined by duality:

(6.4) ‖X‖2 = sup
‖ω‖≤1

| 〈X,ω〉 |2,

where ω are differential one-forms.
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The inner product 〈ω, ω〉 may have kernel. We can mod out the kernel
of the inner product to obtain a non-degenerate inner product.

For any vector field X dual to df where f ∈ C, we define ∇Xω by the
following rule:

(6.5) 2∇Xω = L(fω)− f(Lω)− L(f)ω.

This equation can be extended to X which is dual to
∑

i gidfi. The
formula can be interpreted as an action of differential one-form on forms
with arbitary degree, without referring to vector fields.

The operator Ri defined by

〈Riω1, ω2〉 = L〈ω1, ω2〉 − 〈Li(ω1), ω2〉 − 〈ω1, Li(ω2)〉 − 〈∇ω1,∇ω2〉(6.6)

will be called Bochner curvature operator.
Assuming Ri defines a bounded operator on the L2 space of i-forms, we

form the Hilbert space obtained by completion of space of i-forms ω based
on the norm ‖∇ω‖2. It defines a compact embedding into the L2 space
of i-forms. This implies the harmonic i-forms are finite-dimensional. These
statements will be discussed in more detail in the Appendix. Note that there
may be kernel for ‖∇ω‖2, namely, there may be forms ω so that ∇ω = 0.

These forms are called parallel forms. Classically, existence of parallel
forms give strong restriction on the geometric structure of the manifolds,
such as special holonomy group or local product structure. We expect similar
phenomena in our operator geometry. We shall come back to this later.

We can define L to be first-order operator d± d∗ mapping even forms to
odd forms. It admits an adjoint L∗ . Then tr[exp(tL)− exp(tL∗)] is constant
in t and gives rise to the index of L when t→∞. In classical geometry, they
can be expressed as integrals of local differential forms defined by the curva-
ture when t→ 0. This is the local index formula of Atiyah–Bott–Patodi [1].
It is therefore important to find good conditions for the existence of

lim
t→0

tr[exp(tL)− exp(tL∗)].

Perhaps they can be expressed in terms of the above operators Ri.
Note that as long as (4.5) and (6.3) hold, we can define the de Rham and

Hodge theory without referring to vector fields. This may have advantages
for discrete spaces.
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7. Gauge groups, convergence of operator manifolds and
Yang–Mills theory

Given a vector field X, there is a function div X defined by

(7.1) 〈X(f), 1〉 = −1
2
〈div X, f〉,

for all f ∈ H. Then

(7.2)
〈(

X +
1
4
divX

)
f, g

〉
= −
〈
f,

(
X +

1
4
divX

)
g

〉
.

Therefore,

X +
1
4
divX

is a skew adjoint operator and exp(X + 1
4divX) defines a unitary operator

on H. It generates a gauge group acting on (H,C,L). For most calculations,
we can replace the group A by this gauge group.

Finite-dimensional vector bundles are projective modules over C with
finite rank. A metric on the vector bundle V is simply a positive-definite
symmetric pairing 〈, 〉 on the projective module, which is linear over C. A
connection is a map ∇ from the tensor product of the tangent bundle with
the projective module to the projective module itself. It is linear over both
variables, but linear over C for the first variable.

(i) For ρ ∈ C and W ∈ V ,

(7.3) ∇X(ρW ) = X(ρ)W + ρ∇XW

(ii)

(7.4) ∇X〈 W1,W2〉 = 〈∇XW1,W2〉+ 〈W1,∇XW2〉.

For each vector field X, ∇X defines an operator from the vector bundle
into itself. It has an adjoint ∇∗X . Hence, we can define an operator

(7.5) Δ =
∑
ei

∇∗ei
∇ei

,

where {ei} form an orthonormal basic for the space of vector fields. The
operator Δ is independent of the choice of the basis, but depends on the
connection.
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Note that in this discussion, we can replace X by differential one-form.
In that case, X(ρ) is simply the inner product of the one-form with dρ.

We shall assume that t
n

2 exp(tΔ) has an expansion a0 + a1t+ a2t
2 +

o(t2) when t is small. The number a2 can be considered as action on the space
of connection. Classically when we fix the metric on the base manifold, this
gives the Yang–Mills action plus some square integrals of the curvatures of
the metric. Hence, we can define Yang–Mills connections for vector bundles.

It is natural to introduce de Rham theory with coefficient in a vector
bundle, and this can be done by using the connection on the vector bundle.
Index theory can be also developed.

In order to define distance between (H,C,L1) and (H,C,L2), we replace
the triple by (H,C, etL1) and (H,C, etL2) respectively and we define their
square distance by

(7.6)
∫ ∞

0
t

n

2 tr(etL1 − etL2)2dt.

The distance between (H,C, etLi) mod A is obtained by taking the distance
between the orbits of A acting on etLi ,

(7.6’) min
B∈A

∫ ∞
0

t
n

2 tr(B−1etL1B − etL2)2dt.

It is perhaps useful to replace t by complex number if we are interested to
look into the Schrödinger operator, we look for operators L so that exp(tL)
can be analytically continued to a disk |t| ≤ a. The square distance can be
defined by

(7.7) min
B∈A

∫
|t|≤a

|t|n tr ‖ exp(tL1)− exp(tL2)‖2dt dt̄

In either distance, the limiting element can be considered as a singular
Riemannian manifold. The advantage of the definition of such a singular
manifold is that we have naturally defined geometric operators associated
with them.

The distance between operator manifolds with the same algebra C was
defined by the above definitions. However, when the algebra C is different,
we shall use the following definition:

Given two operator manifolds (H1, C1, L1) and (H2, C2, L2), we look for
another operator manifold (H3, C3, L3) such that there are bounded linear
maps from H3 to H1 and H2, which induce surjective homomorphisms from
C3 to C1 and C2, respectively. We also assume there are sections of these
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maps, i.e., bounded linear maps F1 and F2 mapping C1 and C2 back to the
C3 so that the composite maps are identity maps.

For any orthonormal basis of H1 consisting of vectors {θi} in C1, we lift
them to C3 by F1 and then map to C2 to obtain vectors in C2 which we
then operate by exp(tL2). Similarly, we can let exp(tL1) operate on θi and
then lift them up to C3 by F1 and project them to C2. Then we take the
difference of these two set of vectors. We take their square norms in H2 and
sum them up with respect to i. Then multiply with tn/2 and integrate with
respect to t. Finally, we minimize the choices among all H3 and the maps
F1 and F2. The end result will be the square distance between (H1, C1, L1)
and (H2, C2, L2):

(7.8) min
H3,F1,F2

∫ ∞
0

t
n

2

∑
i

‖ exp(tL2)F1(θi)− F1(exp(tL1)θi)‖2H2
dt.

On the other hand, if we fix H and the algebras C1, C2 are subalgebras
of H, we can define a distance between C1 and C2 in the following way: take
any two elements ϕ1, ϕ2 in C1 with H1-norm equal to one, project it into
two elements ϕ1 and ϕ2 in the closure of C2 with respect to the H1-norm.
Then the algebra norm of the projection P in Hom(C1, C2) can be defined
to be

sup{‖ϕ1 ϕ2 − ϕ1 ϕ2‖H :
∀ϕ1, ϕ2 ∈ C1, H1 norm of ϕ1 and ϕ2 equals 1 }.(7.9)

In the other direction, we can define the algebra norm of the projection
from C2 to C1. Adding these two norms together gives rise to a distance
between C1 and C2.

In the above discussions, I did not discuss the Dirac operator as its
existence requires vanishing of the second Stiefel–Whitney class, which is
not defined over real number. An easy way to go around this is to start out
from the Dirac operator instead of the Laplacian acting on functions. We
shall come back to this topic later.

8. Generalized manifolds with special holonomy groups

Special holonomy group gives rise to projection operators acting on the
tangent bundle or subspaces of tensor product of copies of tangent bundle
and cotangent bundles. These operators are local and commute with the
Laplacian.



1110 Shing-Tung Yau

From this point of view, it is therefore natural to generalize the concept of
manifolds with special holonomy group to these manifolds whose Laplacian
has non-trivial local commuting or anti-commuting local operators.

In this regard, it is natural to ask the following question: If {ϕi} is the
orthonormal basis of eigenfunctions of L, then for a sequence of positive
numbers {ai} such that ai ∼ i

m

n , when will the operator
∑
aiϕi ⊗ ϕi define

a local operator?
The order of the operator will be calledm. These operators form a graded

algebra by itself. It will be interesting to develop a theory to understand
those manifolds where this graded algebra is large.

This question is interesting even when we deal with classical Riemannian
geometry. When the manifold is the Riemannian Kerr metric, there is a non-
trivial second-order operator commute with the Laplacian.

The generalized manifold is said to have symplectic structure if there
is a skew-symmetric pairing ω(X,Y ) on the space of vector fields and that
dω = 0. In this case, for any f ∈ C, we can associate a vector field Xf by

(8.1) df(Y ) = ω(Xf , Y )

for all Y .
The Poisson bracket between two functions f, g are defined by {f, g}, so

that

(8.2) X{f,g} = [Xf , Xg].

The cycles defined by an ideal I in C will be Lagrangian if I is invariant
under the Poisson bracket. In this way, we can define Lagrangian cycles with
singularities.

We shall define Kahler manifold to be these manifolds admitting an
almost complex structure J which acts on the tangent bundle which satisfies
J2 = −I and also commute with the action of Laplacian on differentia forms.
As a consequence, the de Rham cohomology will have the Hodge structure
and most of the standard theory will go through.

9. Maps, subspaces and sigma models

The idea of using space of maps (worldsheets) from Riemann surfaces to
determine structures of manifolds, as was done in string theory, has led to
many interesting properties of manifolds. This is the sigma model of the
manifold. It gives rise to conformal field theory if spacetime has special
property.
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The idea of associating a “conformal field theory” to manifolds with
special holonomy group has contributed immensely to understanding the
study of such manifolds.

One of the major achievements is the discovery of the concept of mirror
symmetry [15], where many interesting questions can be understood through
duality. It arises from conformal field theory. Hence, it will be interesting to
associate a conformal field theory to our singular space with special struc-
ture.

Subspaces of our abstract manifold can be defined by closed ideals of C
in the Hs topology. Then there is naturally defined induced Laplacian acting
on the quotient algebra and we can also define mappings of manifolds. We
shall explain this in the following.

A point on the manifold is defined by the maximal ideal of functions in
Hs, which vanishes at that point. Here Hs are the closure of the algebra C
in the norm 〈ϕ,−Lsϕ〉. A closed subset E is defined by some closed ideal
I of functions in C vanishing on this subset. The closure of I in Hs will be
called Is. We choose s large enough, so that functions in Hs are continuous,
by Sobolov embedding theorem. The quotient space Ht/It and Hs/Is admit
natural inner products inherited from Ht and Hs, respectively. They give
rise to a new triple (H ′t, H ′s, L′t,s) because the inner product on Hs/Is, when
compared with the inner product on H ′t/It, defines a self-adjoint operator
L′t,s. We can consider the lim (L′t,s)

1
s when s→∞ and define it to be our

Laplacian L′. Hence we have a new triple (H ′t,
⋂
sH

′
s, L

′). The derivations
of H ′s can be obtained by derivations of C that preserve the ideal I.

The new triple can be considered as the triple associated to the closed
subset E. Note that the ideal I carries more information than the set E
itself. The set E may be zero set of different ideals and the geometry can be
different for different ideals. It would be useful to understand the spectral
resolution of L′ when the closed set is complicated. An important question is
when the dimension of this closed subset, by looking at the trace of exp(tL′),
is related to the Hausdorff dimension of the subset or some other related
definitions of dimension.

There are natural morphisms between triples which can be considered
as generalization of maps from manifolds to each other. An important con-
sideration is the sigma model where we consider maps from two-dimensional
surfaces to the manifold.

Two-dimensional surfaces are those triples where the spectrum of the
operator grows linearly. It will be interesting to prove the following possible
generalization of classical uniformization theorem: two-dimensional triple is
conformally isomorphic to a triple formed by a compact surface whose metric
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has constant curvature. Conformal means that the operator is the same as
the Laplacian of the metric with constant curvature, up to multiplication by
a function.

Sigma model considers the space of maps from our given triple to space
of all triples defined by compact surfaces. It is a homomorphism mapping
the algebra from one to another.

The homomorphism from C2, the space of functions defined on the man-
ifold triple to C1, the space of functions defined on the surface triple, gives
rise to a subspace of C1, which is the image of C2 under the homomorphism.
This subspace is the quotient of C2 by an ideal I. We can define the inner
product on this subspace by taking the orthogonal complement of I in C2

by the H1 inner product on C2. Comparing the original inner product from
the surface triple and this new inner product, we can define a self-adjoint
operator whose trace defines the energy of the map. Harmonic maps are
defined to be the critical point of this energy.

In general, when we have a homomorphism from C of one manifold
triple to the algebra of another one, we say that there is a smooth map
from the second manifold to the first manifold. If there is a homomor-
phism from the algebra Hs of M1 defined by completion of C1 using Hs

norm, to the Ht of M2 defined by completion of C2 using Ht norm, we
can say the map is t− s regular. The map is called embedding if the
homomorphism induces isomorphism from C2 to C1 modulo the kernel
of the homomorphism. It is called immersion if for each maximal ideal
of C2, there is an element f not in that ideal so that f multiplies C1 is
isomorphic to the algebra defined by f multiplies C2 mod the kernel of the
homomorphism.

The space of vector fields in a manifold triple form a Lie algebra under
Lie bracket. A vector field X defines an action on the space of vector fields
by taking Lie bracket. It is called Killing vector field if this operator is skew
symmetric. Naturally the Jacobian identity allows us to prove that the space
of Killing fields form a sub Lie algebra. This Lie algebra should be finite-
dimensional if Sobolev inequality holds on our manifold triple. Moreover,
it should be the Lie algebra of the group of automorphism of the manifold
triple.

Given a map from one manifold triple M2 to another triple M1, we can
have two Lie algebra of vector fields on M2: namely the algebra of functions
defined on M2 that comes from the algebra of C1 mod kernel ideal, need not
be the same as the algebra of functions on M2, unless we have an embedding.
The space of vector fields inM1 that preserves the kernel ideal defines a new
Lie algebra; here we identify two vector fields if their action on any functions
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on C1 differs by an element in the kernel ideal. The difference of these two
Lie algebras measures the “singularity of the map”.

10. Non-compact manifolds

To model after non-compact manifolds, we replace the algebra C by smooth
functions with compact support. The spectrum of L may not tell us too
much. We have to look at the distribution:

ρ −→ tn/2 tr
(
ρ exp(tL)

)
= a0(ρ) + a1(ρ) t+ · · · .

When t→ 0, we can obtain the heat coefficient with weight ρ. In particular,
we obtain the integral of ρR, where R is the scalar curvature. Hence, R is a
well-defined distribution.

Einstein manifolds are the triples, which are stationary with respect to
the action a1(ρ) for all ρ. (Cosmological constant is obtained by the action
a1(ρ)− α〈ρ, 1〉, where α is the cosmological constant.)

All the heat coefficients can be recovered as distribution.

11. Discrete spaces

As pointed out by Riemann, the basic concept of space may consist of dis-
crete objects. The formulation discussed in the first part can work for dis-
crete space also.

A very important discrete space is simply a graph that consists of a
bunch of vertices and edges joining them. We can use graphs to approximate
singular spaces.

The study of the geometry of graphs can be fruitful. We need to imple-
ment structures over graphs so that it reflects geometry of continuous space.
We can construct exactly the same triple as we did in the continuous case.

When we consider space of functions defined on the vertices of the graph,
the multiplication of them can be allowed to spread out in a neighbourhood
of each vertex. The tangent vectors are linear combinations of edges which
act on these functions as derivations. Practically, all the structures men-
tioned above can be carried over.

It turns out that many interesting structures can be defined based only
on the combinatorial structure of the graph that resembles continuous geom-
etry.
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For example, A. Grigor’yan, Yong Lin, Y. Muranov and myself [7] have
found a certain type of graph cohomology that resembles de Rham coho-
mology which need not be trivial even when the degree of the cohomology
is big.

There are also several definitions of Ricci curvature for graphs [2, 4, 9,
10, 12] and we can develop theorems parallel to theorems in Riemannian
geometry.

There is a natural operator associated to the graph: the graph Laplacian
acting on a function is obtained by averaging the function in a suitable
manner.

Moreover, there are operators acting naturally on de Rham forms as I
mentioned above. They are all important operators that can provide invari-
ants for the graph. We can therefore study Hodge theory on graphs. We
may like to look at local operators that commute with such operators as
was mentioned in the above. As a result, we can provide special structures
over the combinatorial part of the graph.

12. Conclusion

We have proposed new structures over continuous spaces and discrete spaces
that allow us to discuss them in the same setting. They provide many inter-
esting questions for classical geometry.

On the other hand, there are not enough physical intuitions behind
the construction. While many interesting geometrical and combinatorial
problems have already appeared, we are still a long way to understanding
quantum geometry: a geometry that can incorporate quantum mechanics in
the small and general relativity in the large.

Here are some open problems:

1. Under what condition can a manifold triple be embedded into
Euclidean space where the algebra C is the smooth functions with
compact support?

2. Under what condition does the automorphism group of the manifold
triple form a Lie group with the Lie algebra given by Killing vector
fields?

3. Develop the whole theory based on Clifford algebra and derive the
formula for Dirac operators with coefficients on bundles. Furthermore,
find the index of the operators in terms of the asymptotic coefficients of
the heat kernel on forms. Under what the conditions are the operators
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Fredholm and the index is invariant under deformations of the mani-
fold triples. Study K-theory of the manifold triples.

4. In Section 10, we mention that we can define scalar curvature of the
manifold triple as a distribution. If it is zero, what can we say about
the manifold triple. Should the corresponding Â genus vanish, when it
is suitably defined.

5. Study sigma model for the manifold triple and derive the anomaly
equations. Then construct conformal field theory for these manifold
triples. Study manifold triple with boundary, so it should be a pair
of manifold triples. Also study the cobordism theory and the singular
cohomology of the manifold triples.

6. Study the question of surgery on such manifold triple. When the man-
ifold triple is Einstein, what kind of obstruction we may find in terms
of index of operators and suitably defined fundamental group of the
manifold triple.

7. For cotangent space, one can define a natural symplectic structure and
that should be useful for quantization.
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Appendix A

In this appendix, we shall clarify and provide some general conditions for
the operators to satisfy our hypothesis.

A.1. Tangent space and the spectrum of C

On a manifold, the set of functions vanish at one point form a maximal
ideal m in C. If C is the space of smooth functions, the space of maximal
ideals can be identified with the manifold. Each element f in C can be
considered as a function defines on the space of maximal ideals by simply
assign the value f(m) to m where f(m) is the unique scalar multiple of the
constant function 1 such that f − f(m) belongs to m. There is a topology
and a measure defined on the space of maximal ideals by requiring all the
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functions come from C to be continuous. The inner product of H defines
integration on this space. For any open set Θ containing m, we assume that
∩m′ ⊂ mi for m′ ⊂ Θ for any i > 0. We shall assume that intersection of all
maximal ideals is trivial so that the map f −→ {f(m)} is one to one.

The space m/m2 can be considered as the cotangent space at the point
represented by m. However, we need to modify this definition to obtain a
cotangent space with an inner product.

The space m2 is in general not closed in Hs topology and its closure can
be equal to closure of m unless s is large enough. We shall assume such an s
exists such that m2

s, the closure of m2 in space Hs is a proper closed subideal
of ms, where ms, the closure of m in Hs. The inner product of Hs give rise
to an inner product on ms and hence on ms/m

2
s, as quotient space of ms by

a closed subspace m2
s. There is an orthogonal splitting of ms into Fs ⊕s m2

s.
The space Fs can be embedded into the original Hilbert space H. We define
lims→∞ Fs with the induced metric from H to be our cotangent space.

Note that the elements in the tangent bundle, namely the derivations
of C, define linear maps on ms/m

2
s. In fact, if fi gi, hi are in ms, then

for any derivation X, X(f +
∑

i gihi) mod ms gives a real number X(f)
independent of choice of gi or hi. (Note that X is a bounded operator on
Hs for all s.) This is because

∑
i giX(hi) +

∑
i hiX(gi) is an element of ms.

Hence, X(f) is well defined and linear. Conversely, if for each ms, we have
a linear functional Ims

on ms/m
2
s, we can define a derivation X by mapping

each f ∈ C to X(f) = Ims

(
f − f(m)

)
, where f(m) is the unique scalar

multiple of the constant function I so that f − f(m) ∈ m.
Since (f − f(m))(g − g(m)) ∈ m2, X

[
(f − f((m)

)(
g − g(m)

]
= 0 and

one proves easily that X(fg)|dm = f(m)X(g)|m + g(m)X(f)|m, we claim
that the derivation X defined in this way is a local operator, i.e., if f, g ∈ C
and fg = 0, then gX(f) = 0. This can be seen as follows: suppose g /∈ m,
then by continuity, g /∈ m′ for all maximal ideal in a neighbourhood of m.
Since fg ∈ m′, f ∈ m′ for all m′ near m. This implies that f ∈ m2. Hence,
Im(f)=0 and gX(f) = 0.

In order for X to be a derivation, we need to assume

‖Im
(
f − f(m)

)‖s ≤ as‖f‖s+1,

where as is independent of f .
For f ∈ C, we can project f to ms/m

2
s by taking away the constant term

f(m). This element defines df as a bounded linear functional on the space of
derivation. For any fi and gi in C,

∑
i gidfi defines a map from m to ms/m

2
s.

It maps m to
∑
gi(m)

(
fi − fi(m)

)
. Hence, it has a norm ‖∑ gi · dfi‖2m and
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we can integrate it over the space of m. In this way, we have another inner
product for the space of differentials.

A.2. Eigenvalues by method of variational calculus

We shall see that the asymptotic of eigenvalues of −L so that the Weyl law
limk→∞ k−

2
nλk holds is related to covering properties of the space.

We assume that there are (plenty of) non-negative functions ρi such that

(A.1)
k∑
i=1

ρ2
i = 1

and there are positive constants λ(ρi) such that the following Poincaré
inequality holds:

(A.2) 1
2〈ρ2

i , L(ϕ2)〉 − 〈ρ2
iϕ,Lϕ〉 ≥ λ(ρ2

i )〈ρ2
iϕ,ϕ〉,

for all ϕ such that 〈ρ2
i , ϕ〉 = 0. In particular, if ϕ is perpendicular to ρ2

i

for all i = 1, . . . , k, we can sum the above inequality to obtain −〈ϕ,Lϕ〉 ≥
mini λ(ρ2

i )〈ϕ,ϕ〉.
The max–min principle characterization of eigenvalues of L then

says that

λk+1 ≥ min
i
λ(ρ2

i ).

Since we can vary the choice of ρ2
i , we see that

(A.3) λk+1 ≥ λ̄k+1 := max
ρi

min
i
λ(ρ2

i ),

where ρi satisfies (A.1) and (A.2).
In Riemannian geometry, ρ2

i can be chosen to be characteristic functions
of balls in M which cover M and the number of overlap of the balls are
bounded by a constant depending on the dimension. The number of such
balls are k � (1

r )
1
n vol(M) where n = dim M and λ(ρi) � 1

r2 � ( k
vol(M))

2
n .

Note that r2 reflects the order of L is chosen to be two. Hence, λk+1 �
( k
vol(M))

2
n .

As for upper bound of λk+1, we consider ρi such that 〈ρiρj〉 = 0 for i 
= j
and 〈ρi, ρi〉 = 1. Then for ψ =

∑
aiρi,

(A.4) −〈ψ,Lψ〉 = −
∑

a2
i 〈ρi, Lρi〉 = min

i
[−〈ρi, Lρi〉]〈ψ,ψ〉.



1118 Shing-Tung Yau

Hence, λk+1 � mini(−〈ρi, Lρi〉). In the case of Riemannian geometry, we
choose ρi to be the first eigenfunction of the Dirichlet problem of balls
that are disjoint. Hence, −〈ρi, Lρi〉 ∼ (1

r )
2 and k � (1

r )
( 1

n
) vol(M). There-

fore, λk+1 � C ′( k
vol(M))

2
n .

In general, we allow choice of ρi so that 〈ρi, ρj〉 = δij , we define

(A.5) ¯̄λk+1 = min
ρ

min
i

[−〈ρi, Lρi〉].

Then

(A.6) λ̄k+1 ≤ λk+1 ≤ ¯̄λk+1,

where λ̄k+1 is defined in equation (A.10). If we assume that

(A.7) lim
k→∞

k−
2
n λ̄k = lim

k→∞
k−

2
n
¯̄λk,

which depends only on vol(M), as is similar to the case of smooth manifolds,
the Weyl law holds and n would be the dimension of our space.

Theorem A.1. If the triple is defined by a Riemannian manifold whose
metric tensor

∑
gij d

i
x d

j
x is only measurable, but bounded between two

smooth Riemannian metric, then the dimension of the triple as defined by
spectrum of the Laplacian is the dimension of the manifold.

A.3. Weak maximum principle for heat equation

Given any element ρ ∈ H, ρt = exp(tL)ρ will satisfy the heat equation:

(A.8)

⎧⎪⎨⎪⎩
dρt
dt

= L(ρt),

lim
t→0

ρt = ρ.

Since −L is a positive operator, one can easily prove that for all i > 0

(A.9) 〈ρt, (−L)iρt〉 <∞

and hence ρt ∈ Hi for all i. In classical manifold theory, ∩∞i=1Hi are smooth
functions. While C ⊂ ∩∞i=1Hi in general, it will be useful to find conditions
so that C = ∩∞i=1Hi. For classical geometry, this is a consequence of Sobolev
embedding theorem. In the following we shall relax the equation (A.8) to
∂ρ
σt − L(ρ) εH+ and derive consequences.
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Suppose the initial data ρ ∈ H+, i.e., 〈ρ, f2〉 > 0 for all f 
= 0 ∈ H. We
would like to demonstrate that the same inequality holds true for all t. This
may be considered as a weak maximum principle.

In order to achieve this, we make the assumption that for any f ∈ H1,
which is not a multiple of 1,

(A.10) 0 
= L(f2)− 2f · L(f) ∈ H+.

Then

(A.11)
d

dt
〈ρ, f2〉 = 2

〈
ρ, f

(
df

dt
+ Lf

)〉
+ 〈ρ, g〉+

〈
dρ

dt
− Lρ, f2

〉
,

for some g 
= 0 ∈ H+.
At the time T , we are given a function f0. We then construct σ =

(exp(T − t)L) f0. For this f , df
dt + Lf = 0. Hence

(A.12)
d

dt
〈ρ, f2〉 ≥ 〈ρ, g〉.

Let T0 > 0 be the first time so that 〈ρ, g〉 > 0 for all 0 ≤ t < T0 and
for all g 
= 0 ∈ H+. Our assumption says that this is true for t = 0, hence
T0 ≥ 0. On the other hand, we can replace ρ by ρ+ ε1 for small ε > 0. In
that case T0 > 0. The above equation shows that T0 can be prolonged to T .

We conclude with the following theorem:

Theorem A.2. Suppose ρ0 ∈ H+ and dρ
dt −Δρ ∈ H+. Then if (A.12)

holds, ρ ∈ H+ for all t.

The weak maximum principle allows us to give estimate for the operator
exp(tL). The idea is to find good super or sub solution of the heat equation
and as a result, one finds estimate of solutions of the heat equation.

A.4. Sobolev inequality and analytic dimension

On a more abstract space that we are discussing, perhaps we can define
Sobolev inequality by the following inequality:

For all f ∈ H+
1 ,

(A.13) ‖f‖m+2
m ≤ c1‖f‖1〈f, 1〉 2

m + c2‖f‖〈f, 1〉 2
m ,

where m, c1, and c2 are positive constants independent of f .
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The smallest m satisfying this inequality will be called the analytic
dimension.

The heat kernel can be formulated in the following way: Take the tensor
product H

⊗
H where we pick {ei} to be orthonormal basis for H and {ei ⊗

ej} for H ⊗H. exp(tL) defines an element in H
⊗
H in the following way:

For any f , g ∈ H, 〈exp(tL)f, g〉 defines a bilinear form and hence a linear
functional on H

⊗
H. By duality, it gives rise to an element ρ ∈ H ⊗H so

that

(A.14) 〈exp(tL)f, g〉 = 〈ρ, f ⊗ g〉

The element ρ will satisfy the heat equation. The fact that L is self-adjoint
implies that ρ is symmetric.

Theorem A.3. Assume Sobolev inequality (A.12) holds, then tr exp(tL) ≤
Ct−

m

2 and the dimension of the space is not greater than m.

Proof. Let {ϕi} be an orthonormal base of H. Then
∑

i ϕi ⊗ ϕi can be con-
sidered as the Delta function.

The trace of exp(2tL) is defined by

(A.15)
∑
i

〈exp(2tL)ϕi, ϕi〉,

which is equal to

(A.16)
∑
i

〈exp(tL) exp(tL)ϕi, ϕi〉 =
∑

‖ exp(tL)ϕi‖2.

Suppose we consider ρ0 =
∑
ϕi ⊗ ϕi as element in H ⊗H, and exp(tL)

acts on H ⊗H through the action on the first factor. Then we have

(A.17) ρt =
∑
i

exp(tL)ϕi ⊗ ϕi.

Hence

(A.18) ‖ρt‖2 =
∑
i

‖ exp(tL)ϕi‖2.

Now

(A.19)
d

dt
‖ρt‖2 = 2

〈
dρt
dt
, ρt

〉
= −2〈−Lρt, ρt〉
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and

(A.20)
d

dt
〈ρt, 1⊗ 1〉 = 〈Lρt, 1⊗ 1〉 = 0.

Hence

(A.21) 〈ρt, 1⊗ 1〉 = 〈ρ0, 1⊗ 1〉 = 1.

By (A.15), we find

(A.22) c1
d

dt
‖ρt‖ ≤ −‖ρt‖

m+2
m + c2‖ρt‖.

Hence, ‖ρt‖ ≤
[

1
mc1

(
exp(2c1

c2
t)− 1

)]−m

2 . The inequality in theorem (A.8) is
proved.

However, we need to prove ρt ∈ H+
1 . However, this can be achieved as

in (A.11).
For comparison with classical argument, we reproduce the following

argument of Nash [11]. Note that Sobolov inequality says that for any smooth
function f ,

(A.23)
(∫

f
2m

m−2

)m−2
2m

≤ c1

(∫
|∇f |2

) 1
2

+ c2

(∫
f2

) 1
2

,

where c1 and c2 are constants independent of f .
By applying Hölder inequality, we obtain

(A.24)
(∫

f2

)
≤
(∫

f
2m

m−2

)m−2
m+2
(∫

|f |
) 4

m+2

.

Hence

(A.25)
(∫

f2

)m+2
2m

≤
(∫

f
2m

m−2

)m−2
2m
(∫

|f |
) 2

m

and (∫
f2

)m+2
2m

≤ c1

(∫
|∇f |2

) 1
2
(∫

|f |
) 2

m

+ c2

(∫
f2

) 1
2
(∫

|f |
) 2

m

.(A.26)
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Let us define the number m that satisfies (A.26) for all f ∈ C to be
analytic dimension of our triple (H,C,L) (Note that

∫ |∇f |2 = −〈f,Δf〉).
The semigroup exp(tL) acts on H = L2(M) with a kernel function

h(t, x, y), which satisfies the heat equation

(A.27)

⎧⎨⎩
∂h

∂t
= Δxh(t, x, y),

limt→0 h(t, x, y) = δy(x).

The integral
∫
h(t, x, y)dy is preserved by the first equation. Since

limt→0

∫
h(t, x, y)dy = 1, we conclude that for all t > 0,

(A.28)
∫
h(t, x, y)dy = 1.

One can also prove that d
dt

∫ |h| ≤ 0. Hence,
∫ |h| = 1 which means

h(t, x, y) ≥ 0.
Note that

(A.29)
d

dt

∫
h2 = 2

∫
hΔh = −2

∫
|∇xh|2

Hence

(A.30)
d

dt

∫
h2 ≤ −C3

(∫
h2

)m+2
m

+ C4

∫
h2

Since

lim
t→0

∫
h2(t, x, y) =∞,

we conclude that for t small,

(A.31)
∫
h2(t, x, y) ≤ C ′

(
1− e−c4t

)m

2 .

The semigroup property of exp(−tL) shows

h(2t, x, x) =
∫
h(t, x, y)h(t, y, x)

=
∫
h2(t, x, y).(A.32)
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Hence

h(t, x, y) ≤ C
(
1− e−

c4
2
t
)m

2 ,(A.33)

Tr exp(tΔ) =
∫
h(t, x, x)dx

≤ C
(
1− e−

c4
2
t
)m

2 vol(M).(A.34)

Since we assume

(A.35) Tr exp(tΔ) ∼ ct
−n

2 ,

we conclude that the analytic dimension m is not less than the dimension
of the space. �

A.5. Compactness

Before we discuss compactness, we need to introduce a norm on the algebra
H1, the completion of C by the norm −〈ϕ1, Lϕ〉.

The map

H1

⊗
H1 −→ H1,

f ⊗ g −→ fg(A.36)

is assumed to be continuous bilinear and there is a positive constant B, so
that

(A.37) ‖fg‖1 ≤ B‖f‖1‖g‖1

for all f, g ∈ H1. The smallest constant B will be defined to be the norm of
the algebra H1.

Let us fix one triple (H,C,L) and we assume that we have a family of
such triples such that the constant B in (A.37) is uniform for all triples in
this family.

Theorem A.4. A family of triples is precompact if within the family, the
constant B, constants c1 and c2 in the Sobolov inequality (A.13) and the
constant ¯̄λR defined by (A.5) are uniformly bounded.

Proof. The Sobolov inequality gives lower estimate of eigenvalues in the
family which (A.5) gives upper estimate. Hence, we can take limit of the
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eigenvalues and eigenvectors of subsequence of the operators to form a new
operator. �

A.6. Heat equations

First of all, we note that for any f, ρ ∈ C,

(A.38) 〈ρ, L(ef ) =
∑
m

1
m!
〈ρ, L(fm)〉.

However,

(A.39) 〈ρ, L(fm)〉 = 〈ρ, fL(fm−1)〉+ 〈ρ, fm−1L(f)〉+ 2〈ρd(fm−1), df〉.

By induction, we obtain

〈ρ, L(fm)〉 = m〈ρfm−1, L(f)〉+m(m− 1)〈ρfm−2df, df〉.(A.40)

In particular,

(A.41) 〈ρ, L(ef )〉 = 〈ρef , Lf〉+ 〈ρefdf, df〉.

For functions g1(t), g2(t), a0(x, y) and a1(x, y), we define

F = g1(t) exp
( −f
g2(t)

)
(a0 + a1t).

Then we have〈
ρ,

(
∂

∂t
− L
)
F

〉
=
〈
ρ

(
g′1
g1

+
g′2f
g2
2

− L(f)
g2

)
, F

〉
−
〈
ρ
df

g2
2

, F df

〉

+
〈
ρ

df

g2(a0 + a1t)
, F [da0 + (da1)t]

〉
+
〈

ρa1

a0 + a1t
, F

〉

−
〈
ρ
L(a0) + L(a1)t

a0 + a1t
, F

〉
.(A.42)

In order to solve the heat equations, we require that for t small,

(A.43)
∣∣∣∣〈g′1g1 − L(f)

g2
− 〈df, da0〉

g2a0
, Fρ

〉∣∣∣∣ ≤ Ct‖ρ‖,
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(A.44)
∣∣∣∣〈g′2fg2

2

− 〈df, df〉
g2
2

, Fρ

〉∣∣∣∣ ≤ Ct‖ρ‖,

(A.45)
∣∣∣∣〈a1 − L(a0)− t

g2
〈df, da1〉+

t

g2

a1〈df, da0〉
a0

, Fρ

〉∣∣∣∣ ≤ Ct‖ρ‖,

where C is a constant independent of t.
Typically, we choose

(A.46) g1(t) = α1t
−n/2

and

(A.47) g2(t) = α2t,

where α1 and α2 are constants to be chosen so that

(A.48) lim
t→0

〈
1, g1(t) exp

( −f
g2(t)

)〉
= 1

and we like to choose f ∈ H ⊗H, so that

(A.49) lim
t→0

〈
ρ, α1t

−n/2 exp
(−f(x, y)

α2t

)〉
= ρ(y).

For Riemannian manifold, f(x, y) is d2(x, y) up to lower-order term where
d(x, y) is the distance between x and y.

Suppose f satisfies (A.43), (A.44), (A.45) and (A.48). Then by (A.42),
the operator ∂

∂t − LF satisfies the following:

(A.50) ‖
(
∂

∂t
− L
)
F‖ ≤ Ct.

We claim that as an operator,

(A.51) ‖F−1

(
∂

∂t
− L
)
F‖ ≤ C ′t.

In fact, we have

(A.52) F−1

(
∂

∂t
− L
)
Fϕ = ψ,
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Then

(A.53) ‖ψ‖2 = ‖F (ψ)‖2 − 2
∫ t

0

〈
∂

∂s
F (ψ), F (ψ)

〉
.

However,

(A.54) ‖F (ψ)‖2 =
∥∥∥∥( ∂∂t − L

)
Fϕ

∥∥∥∥2 ≤ C2t2‖ϕ‖2.

and

(A.55)
〈
∂

∂s
F (ψ), F (ψ)

〉
= 〈L(F (ψ)), F (ψ)〉+

〈(
∂

∂s
− L
)
F (ψ), F (ψ)

〉

Since

〈L(F (ψ)), F (ψ)〉 ≤ 0(A.56)

we obtain

‖ψ‖2 ≤ C2t2‖ϕ‖2 + C2t2‖ψ‖‖ϕ‖(A.57)

which implies ‖ψ‖2 ≤ C ′′t2‖ϕ‖2

By requiring further constrains on f , one can find condition depend-
ing only on Li(f) for the existence of the asymptotic expansion of the
tn/2 tr exp(tL).

Let E(tL) = exp(tL) and F (t) be any one parameter family of operators
such that F (0) is identity and

∥∥∥∥F−1

(
∂

∂t
− L
)
F

∥∥∥∥2 = sup
‖ψ‖≤1

∥∥∥∥F−1

(
∂

∂t
− L
)
F (ψ)

∥∥∥∥2 � ctk,(A.58)
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for some k � 0. Then

E(tL)− F (t) =
∫ t

0

d

ds

(
E(sL)F (t− s)

)
=
∫ t

0
E(sL)

(
L− ∂

∂s

)
F

=
∫ t

0
E(sL)F (t− s)F−1(t− s)

(
L− ∂

∂s

)
F

=
∫ t

0
E(sL)

(
F (t− s)− E(t− s)

)
F−1(t− s)

(
L− ∂

∂s

)
F

+ E(tL)
∫ t

0
F−1

(
L− ∂

∂s

)
F.(A.59)

Define F = F−1
(
∂
∂t − L

)
F . Then

E(tL)− F (t) = E(tL)
{∫ t

0
F ±
∫∫

s1+s2=1
F(s1)F(s2)

±
∫∫

s1+s2+s3=1
F(s1)F(s2)F(s3)± · · ·

}
= E(tL)F̃(t) =

(
E(tL)− F (t)

)
F̃(t) + F (t)F̃(t).(A.60)

Hence

(A.61) E(tL)− F (t) = F (t)F̃(t)
(
1− F̃(t)

)−1
.

Now let ψλ be an eigenfunction of L with eigenvalue −λ. Then

‖F (t)ψλ‖ ≤ ‖F (t)− E(tL)ψλ‖+ ‖E(tL)ψλ‖
≤ ctk+1‖F (t)ψλ‖+ e−tλ.(A.62)

Hence,

|〈E(tL)ψλ, ψλ〉 − 〈F (t)ψλ, ψλ〉| ≤ ctk+1‖F (t)ψλ‖

≤ ctk+1

1− ctk+1
e−tλ.(A.63)
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Since {ψλ} form an orthonomal basis for H, we obtain

(A.64) (1− ctk+1) trF (t) ≤ trE(tL) ≤ (1− ctk+1)(1− 2ctk+1)−1 trF.

Theorem A.5. Given a self-adjoint operator L operating on a Hilbert space
H so that exp(tL) is of trace class. Suppose there is also a one parameter
of operators F (t), for t > 0 , which is also of trace class and satisfied the
following conditions:

(A.65) F (0) = identity,
∥∥∥∥F−1

(
∂

∂t
− L
)
F

∥∥∥∥ ≤ ctk.

Then

(A.66) (1− ctk+1) trF (t) ≤ tr exp(tL) ≤ (1− ctk+1)(1− 2ctk+1)−1 tr F.

Theorem A.6. On our triple, if we can find f in the tensor product of
H with itself, that satisfies (A.48), (A.49) and also (A.43), (A.44), (A.45).
Then we can define a one parameter family of operators F (t), for t > 0, so
that the hypothesis (A.65) holds and therefore (A.66) holds. The asymptotic
of the heat operator therefore holds up to second order.

Note that in principle, we can go to any order for the asymptotic of the
heat operator as long as we know the information of the action of high power
of L acting on f .

A.7. Hodge theory for differential forms

Let us illustrate the ideas of Hodge Theory for one-forms and two-forms. We
shall call our space to be finite type if there are finite number of one-forms
θi generating the space of one-forms over C and

〈θi, θj〉 = ρi δij

This can be achieved for any smooth manifold by partition of unity.
Then for any one-form ω, there are fi ∈ C, so that

(A.67) ω =
∑
i

fi θi.

Let

(A.68) θi =
∑

aij dgj .



Geometry of singular space 1129

Then for any h ∈ C,

〈δω, h〉 =
∑

fi aij〈dgj , dh〉
=

1
2

∑
fi aij

(
L(gjh)− gjL(h)− hL(gi)

)
=

1
2

∑
i

gj L(fi aij)h− 1
2

∑
i

L(fi aij gj)h− 1
2

∑
i

(
fi aij L(gi)

)
h

= −
∑
i

〈d(fi aij〉, d gj〉h−
∑
i

fi aij L(gi)h.(A.69)

We conclude

(A.70) δω = −〈dfi, θi〉 −
∑
i

fi
(〈daij , dθj〉+ aijL(gj)

)
.

Now let us discuss two-forms

(A.71) Ω =
∑

bij θi ∧ θj ,

where bij = −bji. Then

〈δΩ, ω〉 = 〈Ω,
∑

dfi ∧ θi +
∑

fi d θi〉
= 〈Ω,

∑
fi,j θj ∧ θi +

∑
i

fi d θi〉

= 〈Ω, 1
2

∑
(fi,j − fj,i)θj ∧ θi +

∑
i

fi d θi〉

=
1
2

∑
(fj,i − fi,j)bij ρiρj + 〈Ω,

∑
fi d θi〉.(A.72)

Let

(A.73) ω′ =
∑

fj bij ρiρj θi.

We have

〈δω′, 1〉 = −
∑

〈d(fj bij ρj), θi〉 −
∑

fi bij ρj

(
〈daik, dgk〉+ aik L(gk)

)
= −
∑

fj,i bij ρjρi −
∑

fj(bij ρj),i ρi

−
∑

fibij ρj

(
〈d aik, dgk〉+ aik L(gk)

)
.(A.74)
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Since 〈δω′, 1〉 = 0 and

(A.75)
∑

(fj,i − fi,j)bijρiρj = 2
∑

fj,i bijρiρj ,

we conclude

〈δΩ, ω〉 = −
∑

fj(bij ρj),i ρi

−
∑

fi bij ρj
(〈d aik, d gk〉+ aik L(gk)

)
+ 〈Ω,

∑
fi d θi〉(A.76)

and

δΩ = −
∑

(bij ρj),i ρiρ−1
j θj +

∑
bij ρi
(〈d ajk, d gk〉

+ ajk L(gk)
)
ρ−1
j θj −

∑
〈Ω, d θi〉ρ−1

i θi(A.77)

Let us now look at the Bochner form for one-form

‖dω‖2 + ‖δω‖2 =
∥∥∥∥12∑(fi,j − fj,i)θi ∧ θj +

∑
fi d θi

∥∥∥∥2
+
∥∥∥∑〈d fi, θi〉+

∑
fi

(
〈d(aij), d gj〉+ aij L(gj)

)∥∥∥2
=

1
2

∑
(fi,j − fj,i)2ρiρj +

∑
(fi,j − fj,i)fi〈θi ∧ θj , dθi〉

+
∑

fifj〈dθi, dθj〉+

(∑
i

fi,i ρi

)2

+ 2
(∑

fi,i ρi

)∑
fk

(
〈d(akj), d gj〉+ akj L(gj)

)
+
∥∥∥∑ fi

(〈d(ai,j), d gj〉+ ai,j L(gj)〉
∥∥∥2 .(A.78)

Define one-form

(A.79) ω′′ =
∑

fi fj,i ρi θj ,

we have 〈δω′′, 1〉 = 0. Hence

(A.80)
∑

(fi fj,i ρi)j ρj +
∑

fi fj,i ρi
(〈d ajk, d gk〉+ ajk L(gk)

)
= 0

and

−
∑

fi,j fj,i ρi ρj =
∑

fi fj,ij ρi ρj −
∑

fi fj,i ρi,j ρj

+
∑

fi fj,i ρk
(〈d ajk, d gk〉+ ajk L(gk)

)
.(A.81)
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Similarly, let

(A.82) ω′′′ =
∑

fi fj,j ρi ρj θi.

Then 〈δω′′′, 1〉 = 0 and

(A.83)
∑

(fi fj,j ρj)i ρi +
∑

fi fj,j ρj
(〈d aik, d gk〉+ aik L(gk)

)
= 0.

Hence,

∑
fi fj,ji ρj ρi = −

(∑
i

fi,i ρi

)2 −∑ fi fj,j ρj,i ρi

+
∑

fi fj,j ρj
(〈d aik, d gk〉+ aik L(gk)

)
.(A.84)

‖dω‖2 + ‖δω‖2 =
∑

f2
i,j ρiρj +

∑
(fi,j − fj,i)fi〈θi ∧ θj , dθi〉

+
∑

fi fj〈d θi, dθj〉 −
∑

fi fj,i ρi,j ρj

+
∑

fi fj,i ρi
(〈d ajk, d gk〉+ ajk L(gk)

)
−
∑

fi fj,j ρj,i ρi +
∑

fi fj,jρj
(〈d aik, d gk〉+ aikL(gk)

)
+ 2
∑

fi,i ρi
∑

fk
(〈d(akj), d gj〉+ akj L(gj)

)
+
∥∥∥∑ fi

(
〈d aij , d gj〉+ aij L(gj)

)∥∥∥2 .(A.85)

From this formula, we can put terms together to form the Bochner mentioned
in Section 6. It allows us to prove the corresponding Sobolev inequality (A.8)
for forms from Sobolev inequality for functions. Hence, we can control the
growth of the spectrum of Laplacian acting on forms and their eigenspaces
are all finite-dimensional.

A.8. Star operators

The operator manifold may not have Poincaré duality and hence we may
not have star operator in ordinary sense. However, we still can define them
to be two endomorphisms ∗ and ∗′ from the exterior algebra of de Rham
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forms to itself, which satisfy the following two identities:

d∗ = ∗′δ, ∗d = δ ∗′ .

In this way, if such operators exist, a coclosed form is mapped under ∗
to be a closed form. And a closed form is mapped under ∗′ to be coclosed.
The structure of ∗2, ∗∗′, ∗′∗, or (∗′)2 would be interesting to understand.
It is related to Poincaré duality. For example, if ∗ = ∗′ and ∗2 is invertible,
we have Poincaré duality. Otherwise, their kernel and cokernel would have
suitable duality.

A.9. Examples

An important class of examples of singular varieties are given by metric sim-
plicial complex which consist of several smooth manifolds Mi glued together.
Each Mi\(∪j 	=i(Mj)) would be smooth with a smooth metric whose metric
completion is compact.

Let C be the space of continuous functions which are continuous on
∪iMi, smooth on Mi\(∪j 	=iMj) for all i and satisfy the following condition:
For each Mi, let Mj1 , · · · ,Mji be the set so that

(9.1) Mi ⊂M j�

and no other Mk with

Mi ⊂Mk ⊂M j� .

For each j�, Mi has a neighborhood defined by a tube Nj�(r) of radius r.
Along ∂Nj�(r), there is an outer normal νj� and we require that for all Mi,

(9.2) lim
r→0

∑
�

∫
∂Nj�

(r)
νj�(f) = 0.

Note that Δf can be defined in the sense of distribution on Mi by the
formula: For any function g ∈ C, which can be written as a function of a
distance function r(x) from a point x, we can define Δg on each Mi which
contains x when r(x) is small. For such function g, we require the following
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formula to hold:∑
�

∫
Nj�

(r)
g(Δf) =

∑
�

∫
Nj�

(r)
(f)Δg +

∑
�

∫
∂Nj�

(r)
gνj�(f)

−
∑
�

∫
∂Nj�

(r)
f · νj�(g).

We define the Hilbert space to be the direct sum
⊕
L2(Mi). Note that

the eigenfunctions or the heat kernel may not be an element in C.
The triple defined in this manner is interesting even for the configuration

of two circles joining at one point.
Consider an embedded subvariety defined by a function h. Let h ∈ C

be in our triple. We can define a new triple where the algebra of smooth
functions would be given by C quotiented by hC. The new Hilbert space is
the completion of C/hC given by the norm

〈f + hf ′, g + hg′〉 = lim
t→0

t−1/2

2
√
π
〈e−h2

4t (f + hf ′), (g + hf ′)|dh|〉.

The self-adjoint operator is defined by the inner product coming from the
norm

‖f + hf ′‖21 = inf
f ′

lim
t→0

t−1/2

2
√
π
〈e−h2

4t (df + d(hf ′)), (df + d(hf ′))|dh|〉.

When the triple comes from a smooth manifold and zero is not a critical
value of h, then the new triple corresponds to the smooth manifold define
by h = 0.
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