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Modified mean curvature flow of star-shaped

hypersurfaces in hyperbolic space

Longzhi Lin and Ling Xiao

We define a new modified mean curvature flow (MMCF) in hyper-
bolic space H

n+1, which interestingly turns out to be the natural
negative L2-gradient flow of the energy functional introduced by
De Silva and Spruck in [5]. We show the existence, uniqueness
and convergence of the MMCF of complete embedded star-shaped
hypersurfaces with prescribed asymptotic boundary at infinity. The
proof of our main theorems follows closely Guan and Spruck’s
work [9], and may be thought of as a parabolic analog.

1. Introduction

Let F(z, t) : S
n
+ × [0,∞) → H

n+1 be a one parameter family of complete
embedded star-shaped hypersurfaces which are radial graphs in H

n+1 over
S

n
+, the upper hemisphere of the unit sphere S

n in R
n+1, where the half-space

model of H
n+1 is used. We say the images Σt = F(z, t) move by modified

mean curvature flow (MMCF) if

(1.1)

⎧
⎨

⎩

∂

∂t
F(z, t)⊥ = (H − σ)νH, (z, t) ∈ S

n
+ × [0,∞),

F(z, 0) = Σ0, z ∈ S
n
+,

where H denotes the hyperbolic mean curvature of Σt, σ ∈ (−1, 1) is a con-
stant, and νH denotes the outward unit normal of Σt with respect to the
hyperbolic metric. By the half-space model of H

n+1, we mean

H
n+1 = {(x′, xn+1) ∈ R

n+1 : xn+1 > 0}
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equipped with the hyperbolic metric

ds2
H =

1
x2

n+1

ds2
E,

where ds2
E denotes the standard Euclidean metric on R

n+1. One identifies the
hyperplane {xn+1 = 0} = R

n × {0} ⊂ R
n+1 as the infinity of H

n+1, denoted
by ∂∞H

n+1.
In this paper, we consider the questions of the existence, uniqueness and

convergence of the MMCF of complete embedded star-shaped hypersurfaces
(as radial graphs) in the hyperbolic space H

n+1 with prescribed asymptotic
boundary at infinity, under some natural geometric conditions on the initial
hypersurfaces. Namely, we consider the following Dirichlet problem of the
MMCF:

(1.2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂

∂t
F(z, t)⊥ = (H − σ)νH, (z, t) ∈ S

n
+ × [0,∞),

F(z, 0) = Σ0, z ∈ S
n
+,

F(z, t) = Γ(z), (z, t) ∈ ∂S
n
+ × [0,∞),

where σ ∈ (−1, 1) and Γ = ∂Σ0 is the boundary of a star-shaped C1+1

domain in {xn+1 = 0} (the case of Γ being only continuous will also be
discussed). As an application, we shall also show that we can use the MMCF
to deform a complete regular hypersurface to one with constant hyperbolic
mean curvature σ in hyperbolic space H

n+1.
Mean curvature flow (MCF) was first studied by Brakke [3] in the con-

text of geometric measure theory. Later, smooth compact surfaces evolved
by MCF in Euclidean space were investigated by Huisken in [13, 17], and on
arbitrary ambient manifolds in [14]. The study of the evolution of complete
graphs by MCF in R

n+1 was also studied in [6], the result being improved
in [8]. See also [16] for the nonparametric MCF with Dirichlet boundary
condition. In [24], Unterberger considered the MCF in hyperbolic space,
namely, the case of σ = 0 in Equation (1.1). And he obtained that if the ini-
tial surface Σ0 has bounded hyperbolic height over S

n
+ then under the MCF,

Σt converges in C∞ to S
n
+ which has constant mean curvature 0. We shall

remark that a similar MMCF (which is called the volume preserving MCF)
was studied by Huisken in [15] for closed, uniformly convex hypersurface in
R

n+1, where the constant σ in (1.1) was replaced by the average of the mean
curvature of Σt, see also [4] for this volume preserving MCF in the hyper-
bolic space. With the average of the mean curvature of Σt in the place of the
constant σ, a priori one cannot predict what the flow will converge to (if it
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converges), while we see directly that if the MMCF (1.1) converges then it
converges to a hypersurface with constant mean curvature σ. Namely, we
can actually prescribe the constant mean curvature σ ∈ (−1, 1) for the limit-
ing hypersurface through the flow. This is the important feature and novelty
of our version of MMCF defined in this work, which is also special for the
hyperbolic setting. Finally, we shall remark that it would be very interesting
to see what the corresponding MMCF is in the Euclidean setting.

The problem of finding smooth complete hypersurfaces of constant mean
curvature in hyperbolic space with prescribed asymptotic boundary at infin-
ity (also known as Asymptotic Plateau Problem) has also been studied over
the years, see [1, 2, 18, 23] for the approach using geometry measure theory.
The first elliptic partial differential equation (PDE) approach to this prob-
lem was due to Lin [19], and later on it was used by Nelli and Spruck [22]
and Guan and Spruck [9]. In particular, in [9] Guan and Spruck proved
the existence and uniqueness of smooth complete hypersurfaces of constant
mean curvature σ ∈ (−1, 1) in hyperbolic space with prescribed asymptotic
boundary at infinity. In [5], among other, De Silva and Spruck recovered
this result using the method of calculus of variations and representation
techniques. We remark that our paper can be thought of as a flow version
of their variational method, see Section 2. For the existence of hypersur-
faces of constant (general) curvature in hyperbolic space H

n+1 which have
prescribed asymptotic boundary at infinity, see [10, 11].

Due to the degeneracy of the MMCF (1.2) for radial graphs at infinity
(see Equation (2.10) below), we will begin with considering the approximate
problem. For fixed ε > 0 sufficiently small, let Γε be the vertical transla-
tion of Γ to the plane {xn+1 = ε} and let Ωε be the subdomain of S

n
+ such

that Γε is the radial graph over ∂Ωε (see figure 1). We consider the fol-
lowing Dirichlet problem of the approximate modified mean curvature flow
(AMMCF):

(1.3)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂

∂t
F(z, t)⊥ = (H − σ)νH, (z, t) ∈ Ωε × [0,∞),

F(z, 0) = Σε
0, z ∈ Ωε,

F(z, t) = Γε(z), (z, t) ∈ ∂Ωε × [0,∞),

where Σε
0 = F(Ωε, 0), ∂Σε

0 = Γε and σ ∈ (−1, 1).
For any ε ≥ 0 sufficiently small and any point P ∈ ∂Σε

0 = Γε (denot-
ing Σ0

0 = Σ0 and Γ0 = Γ), the uniform star-shapedness and regularity of
Γε imply there exist balls BR1(a, P ) and BR2(b, P ) with radii R1 > 0 and
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Figure 1: Approximate initial hypersurface.

R2 > 0 and centered at a = (a′,−σR1) and b = (b′, σR2), respectively (see
also “equidistant spheres” in Section 3.2 below), such that {xn+1 = ε} ∩
BR1(a, P ) is internally tangent to Γε at P and {xn+1 = ε} ∩ BR2(b, P ) is
externally tangent to Γε at P . Note that in a small neighborhood Bδ(P )
around P for some δ > 0, both ∂BR1(a, P ) ∩ Bδ(P ) and ∂BR2(b, P ) ∩ Bδ(P )
can be locally represented as radial graphs. To state our main results appro-
priately, we say that the approximate initial hypersurfaces Σε

0’s satisfy the
uniform interior (resp. exterior) local ball condition if for all ε ≥ 0 sufficiently
small and all P ∈ Γε, Σε

0 ∩ Bδ(P ) ∩ BR1(a, P ) = {P} (resp. Σε
0 ∩ Bδ(P ) ∩

BR2(b, P ) = {P}, see figure 2), and the local radial graph ∂BR1(a, P ) ∩
Bδ(P ) (resp. ∂BR2(b, P ) ∩ Bδ(P )) has a uniform Lipschitz bound depending
only on the star-shapedness of Γ. If Σε

0’s satisfy both of the uniform interior
and exterior local ball conditions, then we say Σε

0’s satisfy the uniform local
ball condition.1

The main results in this paper are the following.

Main Theorem 1.1. Let Γ be the boundary of a star-shaped C1+1 domain
in {xn+1 = 0} = ∂∞H

n+1 and Γε be its vertical lift to {xn+1 = ε} for ε > 0
sufficiently small. Let Σ0 = limε→0 Σε

0 be the limiting hypersurface of radial

1Such initial hypersurfaces naturally exist and this can be seen explicitly since
the balls BR1(a, P ) and BR2(b, P ) can be constructed with uniform radii (see Equa-
tion (8.5)) and the tangent plane to them at P can be computed explicitly as well
(see Equation (6.2)).
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Figure 2: Uniform interior and exterior local ball conditions.

graphs Σε
0 ∈ C1+1(Ωε) with ∂Σε

0 = Γε. Suppose Σε
0’s have a uniform Lipschitz

bound and satisfy the uniform local ball condition. Then

(i) there exists a unique solution F(z, t) ∈ C∞(Sn
+ × (0,∞)) ∩ C1+1, 1

2
+ 1

2

(Sn
+ × (0,∞)) ∩ C0(Sn

+ × [0,∞)) to the MMCF (1.2);

(ii) there exist ti ↗ ∞ such that Σti
= F (Sn

+, ti) converges to a unique sta-
tionary smooth complete hypersurface Σ∞ ∈ C∞(Sn

+) ∩ C1+1(Sn
+) (as

a radial graph over S
n
+) which has constant hyperbolic mean curvature

σ and ∂Σ∞ = Γ asymptotically. Also, each Σt is a complete radial
graph over S

n
+;

(iii) if additionally Σε
0 has mean curvature Hε ≥ σ for all ε > 0 sufficiently

small, then Σt converges uniformly to Σ∞ for all t.

In fact, if Σε
0 has hyperbolic mean curvature Hε ≥ σ for all ε > 0 sufficiently

small, then the uniform interior local ball condition on Σε
0’s can be relaxed.

Main Theorem 1.2. Let Γ and Γε be as in Theorem 1.1 and Σ0 = limε→0

Σε
0 be the limiting hypersurface of radial graphs Σε

0 ∈ C2(Ωε) ∩ C1+1(Ωε)
with ∂Σε

0 = Γε. Suppose Σε
0 has mean curvature Hε ≥ σ for all ε > 0

sufficiently small and Σε
0’s have a uniform Lipschitz bound and satisfy the

uniform exterior local ball condition. Then there exists a unique solution
F(z, t) ∈ C∞(Sn

+ × (0,∞)) ∩ C0+1,0+ 1
2 (Sn

+ × (0,∞)) ∩ C0(Sn
+ × [0,∞)) to

the MMCF (1.2). Moreover, Σt = F (Sn
+, t) converges uniformly for all t to a

unique stationary smooth complete hypersurface Σ∞ ∈ C∞(Sn
+) ∩ C1+1(Sn

+)
(as a radial graph over S

n
+) which has constant hyperbolic mean curvature

σ and ∂Σ∞ = Γ asymptotically. Also, each Σt is a complete radial graph
over S

n
+.
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Remark 1.3. We expect that the same results would hold for general star-
shaped initial hypersurfaces.

In Section 8, we will give an example of “good” initial hypersurfaces of
Theorem 1.2. We point out that many of the techniques and estimates used
in the proofs of Theorems 1.1 and 1.2 come from the work of Guan and
Spruck [9], and our results could be thought of as the parabolic analog of
the results in [9]. Given this fact, we shall also remark that a proof via flow
method to the following existence theorem due to Guan and Spruck can be
obtained.

Theorem 1.4 [9]. Suppose Γ is the boundary of a star-shaped C1+1 domain
in {xn+1 = 0} and let |σ| < 1. Then there exists a unique smooth complete
hypersurface Σ of constant hyperbolic mean curvature σ in H

n+1 with asymp-
totic boundary Γ. Moreover, Σ may be represented as a radial graph over S

n
+

of a function in C∞(Sn
+) ∩ C1+1(Sn

+).

With the aid of an a priori interior gradient estimate (see Section 9) and
via an approximation argument, the regularity of the boundary data Γ in
Theorems 1.1 and 1.2 could be further relaxed to be only continuous and a
similar result still holds (see Theorem 9.2 below). And again, we note that a
parabolic version of proof to the following result due to Guan and Spruck [9]
and De Silva and Spruck [5] can be obtained.

Theorem 1.5 [5, 9]. Suppose Γ is the boundary of a continuous star-shaped
domain in {xn+1 = 0} and let |σ| < 1. Then there exists a unique smooth
complete hypersurface Σ of constant hyperbolic mean curvature σ in H

n+1

with asymptotic boundary Γ. Moreover, Σ may be represented as a radial
graph over S

n
+ of a function in C∞(Sn

+) ∩ C0(Sn
+).

The paper is organized as follows. In Section 2, we set up the prob-
lems, namely, the Dirichlet problems for the MMCF and AMMCF for radial
graphs in hyperbolic space. In Section 3, we state the short-time existence
result for the AMMCF and discuss the equidistant spheres in H

n+1 which
will serve as good barriers in many situations. We will prove Theorem 1.1 in
Sections 4–7. In Section 4, we prove a global gradient estimate for the solu-
tion to the AMMCF and therefore the long-time existence of the AMMCF.
In Section 5, we prove the uniform gradient estimate (independent of ε)
for the solutions to the AMMCF’s, which leads to the long-time existence
of the MMCF. This estimate is the main technical result of the paper.
In Section 6, we show the boundary regularity of the MMCF and the uniform
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Figure 3: Σ as a radial graph.

convergence of the MMCF in the case of Hε ≥ σ initially in Section 7 . In
Section 8, we will prove Theorem 1.2 and give an example of “good” initial
hypersurfaces in Theorem 1.2. In Section 9, we prove a version of a priori
interior gradient estimate and therefore the existence result of the MMCF
with only continuous boundary data.

2. MMCF and AMMCF for radial graphs in hyperbolic
space

Let Ω ⊆ S
n
+, and suppose that Σ is a radial graph over Ω with position vector

X in R
n+1. Then we can write

X = ev(z)z, z ∈ Ω,

for a function v defined over Ω. We call such function v the radial height of
Σ. One observes that Σ remains a radial graph as long as

(2.1) X · νE > 0,

where νE is the Euclidean outward unit normal vector of Σ (see figure 3).

2.1. Gradient flow

As in [5], one can define the energy functional I(Σ) associated to Σ:

I(Σ) = IΩ(v) = AΩ(v) + nσVΩ(v)

=
∫

Ω

√
1 + |∇v|2y−n dz + nσ

∫

Ω
v(z)y−(n+1) dz,(2.2)
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where y = zn+1 and ∇ denotes the covariant derivative on the standard unit
sphere. Note that in this energy functional I(Σ), the term AΩ corresponds
to the area of Σ (under the hyperbolic metric) and the term VΩ corresponds
to the radial volume of the cone region between Σ and the origin (up to a
constant), see [5] for more details.

Then for a smooth solution Σt = F(z, t) to the MMCF (1.1), which can
be represented as a complete radial graph over Ω = S

n
+, namely,

F(z, t) = X(z, t) = ev(z,t)z, (z, t) ∈ S
n
+ × (0,∞),

we have

d

dt
I(Σt) = −n

∫

Ω
(H − σ)2

√
1 + |∇v|2y−ndz(2.3)

= −n

∫

Σt

〈∂F/∂t, (H − σ)νH〉H dA

= −n

∫

Σt

(H − σ)2dA ≤ 0,

where in the first equality we used integration by parts, Equation (2.10) (see
below) and the fact that (see Equation (1.2) of [5])

divz

(
y−n∇v

√
1 + |∇v|2

)

= nHy−(n+1) in Ω,

and the second equality is just the first variation formula for I.
From this point of view, one sees that the MMCF is the natural negative

L2-gradient flow of the energy functional I(Σ). We have:

Lemma 2.1. Let F(z, t) = ev(z,t)z be a smooth radial graph solution to the
AMMCF (1.3) in Ω × [0, T ]. Then for all t ∈ [0, T ) we have

(2.4) I(Σε
t) + n

∫ t

0

∫

Ω
(H − σ)2 dA dt = I(Σε

0).

Remark 2.2. We point out that Equation (2.3) is a natural analog of the
well-known formula for the classic MCF:

d

dt
Area(Σt) = −

∫

Σt

H2 dA ≤ 0.
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2.2. The hyperbolic mean curvature

We will begin with fixing some notations, and collecting some relevant facts
about the hyperbolic space H

n+1, which can be easily found in [9]. Where
necessary, expressions in the Euclidean and hyperbolic spaces will be denoted
by the subscript or superscript E and H, respectively. Let ∇ denote the
covariant derivative on the standard unit sphere S

n in R
n+1 and

y = e · z, for z ∈ S
n ⊂ R

n+1,

where, throughout this paper, e is the unit vector in the positive xn+1 direc-
tion in R

n+1, and ‘·’ denotes the Euclidean inner product in R
n+1. Let

τ1, . . . , τn be a local frame of smooth vector fields on the upper hemisphere
S

n
+. We denote by γij = τi · τj the standard metric of S

n
+ and γij its inverse.

For a function v on S
n
+, we denote vi = ∇iv = ∇τi

v, vij = ∇j∇iv, etc.
Suppose that locally Σ is a radial graph over Ω ⊆ S

n
+. Then the Euclidean

outward unit normal vector and mean curvature of Σ are respectively

νE =
z −∇v

w

and

HE =
aijvij − n

nevw
,

where

aij = γij − γikvkvj

w2
, 1 ≤ i, j ≤ n and w = (1 + |∇v|2)1/2.

Note that

(2.5) X · νE =
ev

w
,

and therefore as long as w is bounded from above Σ remains a radial graph
by (2.1).

We also have the hyperbolic outward unit normal vector

νH = uνE,

where

u = e · X = e · evz = yev
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is called the height function. Moreover, using the relation between the hyper-
bolic and Euclidean principle curvatures

κH
i = e · νE + uκE

i , i = 1, . . . , n,

we have (see Equation (2.1) of [9], cf. Equation (1.8) of [10])

(2.6) H = e · νE + uHE,

which gives the hyperbolic mean curvature of Σ:

(2.7) H = yevHE +
y − e · ∇v

w
=

yaijvij

nw
− e · ∇v

w
,

and therefore

(2.8) aijvij =
n

y
(Hw + e · ∇v).

2.3. Degenerate parabolic equation

The first equation of the MMCF (1.2) implies

(2.9)
〈

∂

∂t
F, νH

〉

H

=
〈

∂

∂t
(evz), νH

〉

H

=
ev

uw

∂v

∂t
=

1
yw

∂v

∂t
= H − σ.

Therefore by Equation (2.7) we have

(2.10)
∂v

∂t
= yw(H − σ) = y2 aijvij

n
− ye · ∇v − σyw.

Suppose Γ is the radial graph of a function eφ over ∂S
n
+, i.e., Γ can be

represented by

X = eφ(z)z, z ∈ ∂S
n
+.
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Then one observes that the Dirichlet problem for the MMCF (1.2) is equiv-
alent to the following (degenerate parabolic) Dirichlet problem (i.e., the
MMCF for radial graphs):

(2.11)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂v(z, t)
∂t

= y2 aijvij

n − ye · ∇v − σyw, (z, t) ∈ S
n
+ × (0,∞),

v(z, 0) = v0(z), z ∈ S
n
+,

v(z, t) = φ(z), (z, t) ∈ ∂S
n
+ × [0,∞),

where we represent Σ0 as the radial graph of the function ev0 over S
n
+ and

v0

∣
∣
∂Sn

+
= φ.

2.4. Approximate problem

Due to the degeneracy of Equation (2.11) at infinity (i.e., y = 0), we con-
sider the corresponding approximate problem for a fixed ε > 0 sufficiently
small. Namely, equivalently to (1.3), we solve the following (non-degenerate
parabolic) Dirichlet problem (i.e., the AMMCF for radial graphs):

(2.12)

⎧
⎪⎪⎨

⎪⎪⎩

∂v(z, t)
∂t

= y2 aijvij

n
− ye · ∇v − σyw, (z, t) ∈ Ωε × (0,∞),

v(z, 0) = vε
0(z), z ∈ Ωε,

v(z, t) = φε(z), (z, t) ∈ ∂Ωε × [0,∞),

where we represent Σε
0 as the radial graph of the function evε

0 over Ωε and
vε
0

∣
∣
∂Ωε

= φε, and φε is a function defined on ∂Ωε ⊂ S
n
+ such that Γε can be

represented as a radial graph of eφε

over ∂Ωε, i.e.,

(2.13) X = eφε(z)z, z ∈ ∂Ωε.

We denote the regular solution to (2.12) by vε.

3. The short-time existence and equidistant spheres

3.1. Short-time existence

In the rest of the paper, we will focus on the case of σ ∈ [0, 1) and the case
of σ ∈ (−1, 0) can be dealt with in the same way after using the hyper-
bolic reflection over S

n
+. The standard parabolic PDE theory with Schauder
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estimates guarantees the short-time existence of a regular solution (up to
the parabolic boundary) to the AMMCF (2.12) with a C∞ initial hypersur-
face and compatible boundary data (i.e., H = σ on ∂Σε

0). For a C∞ initial
hypersurface with incompatible boundary data, a solution exists at least for
short time and becomes regular immediately after t = 0 (cf. [12]). This is
the statement of the next lemma.

Lemma 3.1. There exists T �
ε > 0 such that the AMMCF (2.12) with initial

data vε
0 ∈ C∞(Ωε) has a solution vε ∈ C∞(Ωε × [0, T �

ε )) except on the corner
∂Ωε × {t = 0}.

For less regular (e.g., C1+1) initial and boundary data, the short-time
existence lemma will remain true (see e.g., [20, Theorem 8.2] and [21, The-
orem 4.2, P. 559]).

Lemma 3.2. There exists T �
ε > 0 such that the AMMCF (2.12) with initial

data vε
0 ∈ C1+1(Ωε) has a solution vε ∈ C∞(Ωε × (0, T �

ε )) ∩ C0(Ωε × [0, T �
ε )).

Moreover, as we shall see, the passage to the limit of {vε} as ε → 0 to
get the long-time existence of the MMCF (2.11) will be based on a series of
estimates uniform in ε.

3.2. Equidistant spheres

In the following, let Tε (possibly ∞) be the maximal time up to which the
AMMCF (1.3) for radial graphs or equivalently the solution to (2.12) exists,
and let Vε = ∪0≤t≤Tε

Σε
t denote the flow region in H

n+1, where Σε
t = F(Ωε, t)

is the hypersurface moving by the AMMCF (1.3) at time t.
Our estimates in the proof of the main theorems are all based on the

following fact, which was also extensively used in [9]. Let B1 = BR(a) be
a ball of radius R centered at a = (a′,−σR) ∈ R

n+1 where a′ ∈ R
n and

σ ∈ (−1, 1). Then S1 = ∂B1 ∩ H
n+1 has constant hyperbolic mean curva-

ture σ with respect to its outward normal. Similarly, let B2 = BR(b) be a
ball of radius R centered at b = (b′, σR) ∈ R

n+1, then S2 = ∂B2 ∩ H
n+1 has

constant hyperbolic mean curvature σ with respect to its inward normal.
These so-called equidistant spheres will serve as good barriers in many situ-
ations (see Lemma 3.4 below). Let D ⊂ {xn+1 = 0} be the domain enclosed
by Γ and Dε ⊂ {xn+1 = ε} be the domain enclosed by Γε.

The following lemma is an immediate consequence of the fact mentioned
above, see [9].
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Figure 4: Bounded by equidistant spheres.

Lemma 3.3 ([9], Lemma 3.1). Let B1 and B2 be balls in R
n+1 of radius

R centered at a = (a′,−σR) and b = (b′, σR), respectively. Suppose Σ has
constant hyperbolic mean curvature σ. Then

(i) If ∂Σ ⊂ B1, then Σ ⊂ B1;

(ii) If B1 ∩ {xn+1 = ε} ⊂ Dε, then B1 ∩ Σ = ∅;
(iii) If B2 ∩ Dε = ∅, then B2 ∩ Σ = ∅.

As a parabolic analog of Guan and Spruck’s Lemma 3.3, we have the
following a priori bound for the flow.

Lemma 3.4. Let B1 and B2 be balls in R
n+1 of radius R centered at

a = (a′,−σR) and b = (b′, σR), respectively.

(i) If Σε
0 ⊂ B1, then Vε ⊂ B1 (see figure 4);

(ii) If B1 ∩ {xn+1 = ε} ⊂ Dε and B1 ∩ Σε
0 = ∅, then B1 ∩ Vε = ∅;

(iii) If B2 ∩ Dε = ∅ and B2 ∩ Σε
0 = ∅, then B2 ∩ Vε = ∅.

Proof. The proof is virtually the same as the proof of Lemma 3.3 in [9] and
we include it for the convenience of the reader. This lemma follows from the
maximum principle by performing homothetic dilations (hyperbolic isome-
tries) from (a′, 0) and (b′, 0), respectively. For (i), we expand B1 continu-
ously until it contains Σε

0; for (ii) and (iii) we shrink B1 and B2 until they
are respectively inside and outside Σε

0. We note that Σε
t satisfies Equation

(2.10) as a radial graph and its mean curvature is calculated with respect
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to its outward normal direction. Also S1, S2 have constant mean curvature
σ with respect to the outward and inward normal respectively, and locally
as radial graphs they both satisfy Equation (2.10) (statically) too. Then
from the maximum principle we see that Σε

t cannot touch B1 or B2 when
we reverse this process. �

4. Global gradient bounds and long time existence of the
AMMCF

Before we begin our proof, we collect some important formulas that were
first derived in [9]. From now on, we assume the local vector fields τ1, . . . , τn

to be orthonormal on S
n
+ so that γij = δij and thus aij = δij − vivj

w2 . The
covariant derivatives of y are

yi = ∇iy = (e · z)i = e · τi,(4.1)
yij = ∇i∇jy = e · ∇i∇jz = e · ∇iτj = −yδij .

Therefore

e · ∇y =
∑

(e · τi)2 = 1 − y2,

∇v · ∇y = e · ∇v and ∇w · ∇y = e · ∇w.

Note that we also have the identities

aijvi =
vj

w2
, aijvivj = 1 − 1

w2
,
∑

aii = n − 1 +
1

w2
.

Moreover,

wi =
vkvki

w
, wij =

vkvkij

w
+

1
w

aklvkivlj and (∇ka
ij)vij = − 2

w
aijwivkj .

(4.2)

Straight forward calculations also show that

(e · ∇v)i = (e · τkvk)i = e · τkvki − yvi = ykvki − yvi,

(e · ∇v)ij = e · τkvkij − 2yvij − e · τjvi = ykvkij − 2yvij − yjvi

and

(4.3) ∇v · ∇(e · ∇v) = vi(e · τkvki − yvi) = we · ∇w − y(w2 − 1).
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We also have the formula for commuting the covariant derivatives

(4.4) vijk = vkij + vjδik − vkδij .

Now we are ready to state our first main technical lemma.

Lemma 4.1. Let v ∈ C3, 3
2 (Ω × (0, T )) be a function satisfying Equation

(2.10) for some T > 0 and Ω ⊆ S
n
+. Then

(
∂

∂t
− L

)

w ≤ −σ(e · ∇v) +
y2(w2 − 1)

nw
− H2w ≤ 2w, in Ω × (0, T ),

(4.5)

where L is the linear elliptic operator

L ≡ y2

n

(

aij∇ij − 2
w

aijwi∇j − n

wy
(σ∇v + we) · ∇

)

.

Remark 4.2. The main part of the linear elliptic operator L was already
used by Guan and Spruck in [9].

Proof. (of Lemma 4.1) By Equation (2.10) we have

∂

∂t
w =

1
w
∇v · ∇(vt) =

∇v

w
· ∇(yw(H − σ))

=
∇v

w
· (∇yw(H − σ) + y∇w(H − σ) + yw∇H)

= e · ∇v(H − σ) +
y(H − σ)

w
∇v · ∇w + y∇v · ∇H

Differentiating both sides of Equation (2.8) with respect to τk gives (using
also Equation (4.2))

(∇ka
ij)vij + aijvijk = aijvijk − 2

w
aijwivkj

=
n

y
(Hkw + Hwk + (e · ∇v)k) − n

y2
(Hw + e · ∇v)yk.

Therefore

aijvkij =
n

y
(Hkw + Hwk + (e · ∇v)k) − n

y2
(Hw + e · ∇v)yk +

2
w

aijwivkj

(4.6)

− vk

w2
+
(

n − 1 +
1

w2

)

vk
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and

aijvkvijk − 2
w

aijwivkvkj =
n

y
∇v · (∇Hw + H∇w + ∇(e · ∇v))

− ne · ∇v

y2
(Hw + e · ∇v).

Note that we also have

aijwij = aij

(
vkvkij

w
+

1
w

aklvkivlj

)

=
1
w

(vka
ij(vijk − vjδik + vkδij)) +

1
w

aijaklvkivlj .

Now by the definition of the operator L, we have

(
∂

∂t
− L

)

w = e · ∇v(H − σ) +
y(H − σ)

w
∇v · ∇w + y∇v · ∇H

− y2

n

(

aijwij − 2
w

aijwiwj − n

wy
(σ∇v + we) · ∇w

)

= e · ∇v(H − σ) +
y(H − σ)

w
∇v · ∇w + y∇v · ∇H

− y2

n

[
n

wy
∇v · (∇Hw + H∇w + ∇(e · ∇v)

)

− ne · ∇v

wy2
(Hw + e · ∇v)

]

+
y2aijvivj

nw
− y2(w2 − 1)

nw

×
(

n − 1 +
1

w2

)

− y2

nw
aijaklvkivlj − 2y2

w2n
aijwivkvkj

+
2y2

wn
aijwiwj +

y

w
(σ∇v + we) · ∇w

= e · ∇v(2H − σ) − y

w
(∇v · ∇(e · ∇v) − we · ∇w)

+
(e · ∇v)2

w
+

y2

nw

(

1 − 1
w2

)

− y2

(

w − 1
w

)

×
(

1 − 1
n

+
1

nw2

)

− y2

nw
aijaklvkivlj
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≤ e · ∇v(2H − σ) − y

w
(−y(w2 − 1)) +

(e · ∇v)2

w

+
y2

nw

(

1 − 1
w2

)

− y2

(

w − 1
w

)(

1 − 1
n

+
1

nw2

)

− 1
w

(Hw + e · ∇v)2

= −σ(e · ∇v) +
y2

n

(

w − 1
w

)

− H2w.

Here we have used Equations (4.3), (2.8) and (by Cauchy–Schwarz
inequality)

aijaklvkivlj ≥ 1
n

(aijvij)2 =
n

y2
(Hw + e · ∇v)2.

Hence we conclude that
(

∂

∂t
− L

)

w ≤ 2w.

�
For any ε ≥ 0 sufficiently small and at any point z0 ∈ ∂Ωε corresponding

to P0 = eφε(z0)z0 ∈ Γε, let Bε
1 = Bε

R1
(a′,−σR1) and Bε

2 = Bε
R2

(b′, σR2) be
the (Euclidean) balls with radii R1 > 0 and R2 > 0, respectively, such that
Bε

1 and Bε
2 are tangent at P0, and Bε

1 ∩ {xn+1 = ε} is internally tangent to
Γε at P0, and Bε

2 ∩ {xn+1 = ε} is externally tangent to Γε at P0. Recall that
Sε

1 = ∂Bε
1 ∩ H

n+1 has constant (hyperbolic) mean curvature σ with respect
to its outward normal while Sε

2 = ∂Bε
2 ∩ H

n+1 has constant mean curvature
σ with respect to its inward normal. Moreover, we can represent Sε

1 and Sε
2

near P0 as local radial graphs Xi = eϕε
iz, i = 1, 2 for z ∈ Ωε ∩ Bε0(z0) where

ε0 depends only on the radii of Bε
i ’s and the uniformly star-shapedness of Γ.

Then the uniform local ball condition implies

(4.7) ϕε
1(z) ≤ vε

0 ≤ ϕε
2(z), z ∈ Ωε ∩ Bε0(z0).

From this point of view, one sees that Sε
1 and Sε

2 serve as good local barriers
of Σε

0 around P0 and moreover we have |∇vε
0|(P0) ≤ C, where C is indepen-

dent of ε and P0 ∈ Γε. Also note that Sε
1 and Sε

2 have constant hyperbolic
mean curvature σ (w.r.t. respective normals) and they are static under the
MMCF (2.10) as local radial graphs. Therefore by the maximum principle,
they also serve as good local barriers of Σε

t around (P0, t) for all t ∈ [0, Tε)
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and we have

(4.8) |∇vε|(P0, t) ≤ C

for all t ∈ [0, Tε), where C is independent of ε and P0 by the uniform local
ball condition.

Lemma 4.3. Locally Sε
1 is interior to Vε and Sε

2 is exterior to Vε.

Proof. This follows from the maximum principle. �

Let PΩε(T �
ε ) = Ωε × {0} ∪ ∂Ωε × [0, T �

ε ) be the parabolic boundary of
Ωε × [0, T �

ε ). Then Lemma 4.1, Equation (4.8) and the Lipschitz bound on
the initial radial graph Σε

0 immediately yield (see e.g., [20, Theorem 9.5])

(4.9) wε(z, t) ≤ e3T �
ε max

(z,t)∈PΩε(T �
ε )

wε(z, t) ≤ C(ε), (z, t) ∈ Ωε × [0, T �
ε ).

With this gradient estimate (and therefore the Hölder gradient estimate,
see e.g., [20, Theorem 12.10]), for any fixed ε > 0 sufficiently small, the
AMMCF with the approximate initial hypersurface satisfying the condi-
tions in Theorem 1.1 exists uniquely by the parabolic comparison prin-
ciple and vε ∈ C∞(Ωε × (0,∞)) ∩ C0+1,0+ 1

2 (Ωε × (0,∞)) ∩ C0(Ωε × [0,∞))
by Schauder estimates. Therefore we have proved

Theorem 4.4. Let Γ, Γε and Σε
0’s be as in Theorem 1.1. Then there exists

a unique solution F(z, t) ∈ C∞(Ωε × (0,∞)) ∩ C0+1,0+ 1
2 (Ωε × (0,∞)) ∩ C0

(Ωε × [0,∞)) to the AMMCF (1.3).

5. Sharp gradient estimates

Since the earlier gradient estimate is too crude to prove the uniform conver-
gence of the AMMCF’s to the MMCF as ε → 0, we need a uniform sharp
gradient estimate. To do this, we will need the next main technical result.

Theorem 5.1. Let v ∈ C3, 3
2 (Ω × (0, T )) be a function satisfying Equation

(2.10) for some T > 0 and Ω ⊆ S
n
+. Then

(5.1)
(

∂

∂t
− L

)

(ev(w + σ(y + e · ∇v))) ≤ 0, in Ω × (0, T ),

where L is the linear elliptic operator from Lemma 4.1.
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Proof. From the proof of Lemma 4.1 we know that

(5.2)
(

∂

∂t
− L

)

w ≤ −σ(e · ∇v) +
y2

n

(

w − 1
w

)

− H2w.

We also have

(
∂

∂t
− L

)

y = −L(y)(5.3)

= −y2

n

(

aijyij − 2
w

aijwiyj − n

wy
(σ∇v + we) · ∇y

)

= −y2

n

(

−y
∑

aii − 2
w

aijwiyj − n

wy
(σ∇v + we) · ∇y

)

= −y2

n

(

− 2
w

aijwiyj − n

wy
(σe · ∇v + w) + y − y

w2

)

=
2y2

nw
aijwiyj +

y

w
(σe · ∇v + w) − y3

n
+

y3

nw2
,

and

(
∂

∂t
− L

)

(e · ∇v) = e · ∇vt − L(e · ∇v)

= e · ∇(yw(H − σ)) − y2

n

[
aij(e · ∇v)ij − 2

w
aijwi(e · ∇v)j

− n

wy
(σ∇v + we) · ∇(e · ∇v)

]

= e · (∇yw(H − σ) + y∇w(H − σ) + yw∇H)

− y2

n

[
aij(ykvkij − 2yvij − yjvi) − 2

w
aijwi(ykvkj − yvj)

− nσ

wy
∇v · ∇(e · ∇v) − n

y
e · ∇(e · ∇v)

]

= (1 − y2)w(H − σ) + (∇w · ∇y)y(H − σ) + ywe · ∇H

− y2

n

[

yk

(
n

y
(Hkw + Hwk + (e · ∇v)k) − n

y2
(Hw + e · ∇v)yk

+
2
w

aijwivkj − vk

w2
+
(

n − 1 +
1

w2

)

vk

)

− ∇v · ∇y

w2
− 2n(Hw + e · ∇v)

− 2
w

aijwiykvkj +
2y

w
aijwivj − nσ

wy
∇v · ∇(e · ∇v) − n

y
e · ∇(e · ∇v)

]
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= 2wH − σw(1 − y2) − σy∇w · ∇y +
(

1 +
y2

n
+

y2

nw2

)

e · ∇v

− 2y3

nw3
∇v · ∇w +

yσ

w
∇v · ∇(e · ∇v),

where we used Equations (2.8), (4.1) to (4.3) and (4.6). Moreover,

(
∂

∂t
− L

)

v = yw(H − σ) − y2

n

(

aijvij − 2
w

aijwivj − n

wy
(σ∇v + we) · ∇v

)
(5.4)

= yw(H − σ) − y2

n

(
n

y
Hw − 2

w3
∇v · ∇w − nσw

y
+

nσ

wy

)

= yw(H − σ) − yHw +
2y2

nw3
∇v · ∇w + yσw − yσ

w

=
2y2

nw3
∇v · ∇w − yσ

w
.

Next, we note that for a function η defined on Ω × (0, T ),

e−v

(
∂

∂t
− L

)

(evη) = η(vt − Lv) + (ηt − Lη) − y2

n
aijvivjη − 2y2

n
aijviηj .

(5.5)

In particular,

e−v

(
∂

∂t
− L

)

(evw) ≤ w

(
2y2

nw3
∇v · ∇w − yσ

w

)
(5.6)

+
[

−σ(e · ∇v) +
y2

n

(

w − 1
w

)

− H2w

]

− y2

n
aijvivjw − 2y2

n
aijviwj

=
2y2

nw2
∇v · ∇w − yσ − σ(e · ∇v) +

y2

n

(

w − 1
w

)

− H2w − y2

n

(

w − 1
w

)

− 2y2

nw2
∇v · ∇w

= −yσ − σ(e · ∇v) − H2w,
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and

e−v

(
∂

∂t
− L

)

(evy)

= y

(
2y2

nw3
∇v · ∇w − yσ

w

)

+
2y2

nw
aijwiyj

+
y

w
(σe · ∇v + w) − y3

n
+

y3

nw2
− y3

n
aijvivj − 2y2

n
aijviyj

=
2y3

nw3
∇v · ∇w − y2σ

w
+

2y2

nw
∇y · ∇w − 2y2

nw3
(∇v · ∇w)(∇y · ∇v)

+
σy

w
(e · ∇v) + y − 2y3

n

(

1 − 1
w2

)

− 2y2

nw2
∇v · ∇y,

and also

e−v

(
∂

∂t
− L

)

(ev(e · ∇v))

= (e · ∇v)
(

2y2

nw3
∇v · ∇w − yσ

w

)

+ 2wH − σw(1 − y2) − σy∇w · ∇y

+ (e · ∇v)
(

1 +
y2

n
+

y2

nw2

)

− 2y3

nw3
∇v · ∇w +

yσ

w
∇v · ∇(e · ∇v)

− y2

n
(e · ∇v)

(

1 − 1
w2

)

− 2y2

n

∇v · ∇(e · ∇v)
w2

=
2y2

nw3
(∇v · ∇w)(e · ∇v) − yσ

w
(e · ∇v) + 2wH − σw(1 − y2)

− σy∇w · ∇y + (e · ∇v)
(

1 +
2y2

nw2

)

− 2y3

nw3
∇v · ∇w +

(
yσ

w
− 2y2

nw2

)

× (we · ∇w − y(w2 − 1)).

Therefore, combining the above two Equations gives

e−v

(
∂

∂t
− L

)

(ev(y + (e · ∇v)))(5.7)

= −y2σ

w
+
(

2y2

nw2
− σy

w

)

y(w2 − 1) + y − 2y3

n

(

1 − 1
w2

)

+ 2wH − σw(1 − y2) + e · ∇v

= y + 2wH − σw + e · ∇v.
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Finally, combining Equations (5.6) and (5.7) implies
(

∂

∂t
− L

)

(ev(w + σ(y + e · ∇v))) ≤ −ev(H − σ)2w ≤ 0.
�

The uniform local ball condition (see Equation (4.8)) and Theorem 5.1,
together with the maximum principle allow us to conclude:

Corollary 5.2. Let vε be the regular solution to the AMMCF (2.12) with
initial hypersurface Σε

0 as in Theorem 1.1. Then we have

(5.8) |∇vε(z, t)| ≤ C, for all (z, t) ∈ Ωε × [0,∞),

where C is a constant independent of ε.

With the aid of Corollary 5.2 and the Arzelà–Ascoli theorem, letting
ε → 0, we can extract a subsequence of the regular solutions {Σεi

t } to the
AMMCF (1.3), converging uniformly to Σt ∈ C∞(Sn

+ × (0,∞)) ∩ C0+1,0+ 1
2

(Sn
+ × (0,∞)) ∩ C0(Sn

+ × [0,∞)) which solves the MMCF (1.2) with initial
hypersurface Σ0 = limεi→0 Σεi

0 .

6. The boundary regularity

In this section, we show the boundary regularity of the MMCF (1.2) in
Theorem 1.1. The proof follows closely the idea in Section 4.3 of [9], cf.
[22]. Under the uniform local ball condition, let P0 ∈ Γ and set ε = 0 in
Equation (4.7). Let us denote Si = S0

i and ϕi = ϕ0
i , i = 1, 2. Then for some

ε2 > 0 we have

(6.1) ϕ1(z) ≤ v(z, t) ≤ ϕ2(z), (z, t) ∈ (Sn
+ ∩ Bε2(z0)) × [0,∞).

Note that the tangent plane T to S1 and S2 at P0 is a radial graph T = eηz
in S

n
+ ∩ {z · ν0 > 0} with

(6.2) η(z) = log
P0 · e1

λy + z · e1
,

where λ = σ√
1−σ2 , e1 is the exterior unit normal to Γ at P0 and ν0 = σe +√

1 − σ2e1 is the unit normal vector to S1 and S2 at P0. We also have

(6.3) ϕ1(z) ≤ η(z) ≤ ϕ2(z), z ∈ S
n
+ ∩ Bε2(z0).

We will need the following more precise estimate on v.



Modified mean curvature flow in hyperbolic space 1083

Lemma 6.1. v(z, t) = η(z) + O(|z − z0|2) in (Sn
+ ∩ Bε2(z0)) × [0,∞).

Proof. This follows immediately from Equation (6.1) and the estimates |ϕi −
η|(z) = O(|z − z0|2), i = 1, 2 from [9, Lemma 4.5 ]. �

Now let p ∈ S
n
+ and δ be the geodesic distance of p to ∂S

n
+ with

δ < ε2. Let q ∈ ∂S
n
+ be the closest point to p. Introduce normal coordinates

x = (x1, . . . , xn) in TqS
n
+ with x(p) = (0, . . . , 0, δ). We observe that Equa-

tion (2.10) may be written as

∂v

∂t
− y2w

n
∇i

(∇iv

w

)

+ y∇y · ∇v + σyw = 0,

or in local coordinates (cf. Equation (4.33) of [9]):

(6.4)
∂v

∂t
− y2w

n
√

γ

∂

∂xi

(√
γγij

w

∂v

∂xj

)

+ yγkl ∂y

∂xk

∂v

∂xl
+ σyw = 0,

where γ = det(γij) and w2 = 1 + γij ∂v
∂xi

∂v
∂xj

. One sees easily that both v and
η satisfy Equation (6.4) (note that the hyperplane T has constant hyperbolic
mean curvature σ as well and locally as radial graph T is static under the
MMCF).

Set ṽ(x, t) = 1
δ v(δx, t) and η̃(x) = 1

δ η(δx). Then (6.4) transforms to

(6.5)
∂ṽ

∂t
− ỹ2w̃

n
√

γ̃

∂

∂xi

(√
γ̃γ̃ij

w̃

∂ṽ

∂xj

)

+ ỹγ̃kl ∂ỹ

∂xk

∂ṽ

∂xl
+ σỹw̃ = 0,

where ỹ(x) = 1
δ y(δx), γ̃ij(x, t) = γij(δx, t), γ̃ = det(γ̃ij) and w̃2 = 1 +

γ̃ij ∂ṽ
∂xi

∂ṽ
xj

.
Under this transformation we can move point p to the “interior” point

p̃ = (0, . . . , 0, 1). For any T > 0 and in BT = B 1
2
(p̃) × (0, T ), one observes

that ỹ = O(1). Also since sup |∇ṽ| = sup |∇v| ≤ C and by [20, Theorem
12.10], ṽ is uniformly C1+α, 1+α

2 . Moreover, since η̃ satisfies the same Equation
(6.4), ṽ − η̃ satisfies a linear uniformly parabolic equation L(ṽ − η̃) = 0 with
uniformly Hölder continuous coefficients. Then by the standard parabolic
Schauder-type estimates and Lemma 6.1 we obtain

sup
BT

(|∇(ṽ − η̃)| + |∇2(ṽ − η̃)|) ≤ C1 sup
BT

|ṽ − η̃| ≤ Cδ.

Returning to the original variable we obtain

(6.6) |∇v| + |∇2v| ≤ C, where C is independent of δ.
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Now by Equation (2.3) and Lemma 2.1, the energy functional I is non-
increasing as time t increases and the MMCF subconverges to a smooth
complete hypersurface Σ∞ ∈ C∞(Sn

+) ∩ C1+1(Sn
+) with constant hyperbolic

mean curvature σ and ∂Σ∞ = Γ ⊂ ∂∞H
n+1. Thus we have proved

Theorem 6.2. Let v ∈ C∞(Sn
+ × (0,∞)) ∩ C0+1,0+ 1

2 (Sn
+ × (0,∞)) ∩ C0

(Sn
+ × [0,∞)) be a solution to the MMCF (2.11) and φ ∈ C1+1(∂S

n
+). Then

v ∈ C∞(Sn
+ × (0,∞)) ∩ C1+1, 1

2
+ 1

2 (Sn
+ × (0,∞)) ∩ C0(Sn

+ × [0,∞)). More-
over, there exist ti ↗ ∞ such that Σti

= F (Sn
+, ti) converges to a unique

stationary smooth complete hypersurface Σ∞ ∈ C∞(Sn
+) ∩ C1+1(Sn

+) (as a
radial graph over S

n
+) which has constant hyperbolic mean curvature σ and

∂Σ∞ = Γ asymptotically.

So now all that is left to prove of Theorem 1.1 is the uniform convergence
of the MMCF in the case that Σε

0 has mean curvature Hε ≥ σ for all ε > 0
sufficiently small.

7. Uniform convergence

In this section, we will show the uniform convergence of the regular solution
to the MMCF (1.2) as t → ∞ in the case of Hε ≥ σ initially for all ε > 0
sufficiently small. To do this, we first show that for any fixed ε > 0 sufficiently
small and for any z0 ∈ Ωε, vε(z0, t) is non-decreasing along the flow in this
case, where vε is the regular solution to the AMMCF (2.12) for radial graphs.
This is an immediate corollary of the following lemma.

Lemma 7.1. Let v ∈ C3, 3
2 (Ω × (0, T )) be a function satisfying Equation

(2.10) for some T > 0 and Ω ⊆ S
n
+. Then

(7.1)
(

∂

∂t
− L̃

)

(yw(H − σ)) = 0, in Ω × (0, T ),

where L̃ is the linear elliptic operator

L̃ ≡ y2

n
aij∇ij +

[
2y2

nw3
(∇w · ∇v)∇v − 2y2∇w

nw
− σy

w
∇v − ye

]

· ∇.

Proof. Let g = H − σ and h = ywg, we have

∂v

∂t
= yw(H − σ) = ywg = h,(7.2)
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∂w

∂t
=

1
w
∇v · ∇(ywg) =

1
w
∇v · ∇h,(7.3)

∂aij

∂t
=

2vivj∇v · ∇h

w4
− hivj + hjvi

w2
,(7.4)

and

(7.5)
∂H

∂t
=

y

nw
(aij

t vij + aij(vt)ij) − yaijvijwt

nw2
− (e · ∇v)t

w
+

(e · ∇v)wt

w2
.

Therefore by Equations (7.3) to (7.5) and (2.8), we have

∂h

∂t
= ywtg + ywgt

= ywtg + yw

[
yaij

t vij + yaijhij

nw
− yaijvijwt

nw2
− (e · ∇v)t

w
+

(e · ∇v)wt

w2

]

= yHwt − σywt +
y2vij

n

(
2vivj∇v · ∇h

w4
− hivj + hjvi

w2

)

+
y2

n
aijhij

− y(Hw + e · ∇v)
w

wt − y(e · ∇v)t +
y

w
(e · ∇v)wt

= yHwt − σy

w
∇v · ∇h +

2y2

nw3
(∇w · ∇v)(∇v · ∇h) − 2y2∇w · ∇h

nw

+
y2

n
aijhij − yHwt − y(e · ∇v)t

=
y2

n
aijhij +

2y2

nw3
(∇w · ∇v)(∇v · ∇h) − 2y2∇w · ∇h

nw

− σy

w
∇v · ∇h − y(e · ∇h).

This completes the proof of the lemma using the definition of the
operator L̃. �

Corollary 7.2. Suppose Σε
0 has mean curvature Hε ≥ σ. Then ∂vε

∂t = ywε

(Hε − σ) ≥ 0 for all (z, t) ∈ Ωε × [0,∞).

Proof. Since for any ε > 0 sufficiently small, vε(z, t) ≡ φε(z) for all (z, t) ∈
∂Ωε × (0,∞), we have vt ≡ 0 on ∂Ωε × (0,∞). Then the condition Hε ≥ σ
at t = 0, Lemma 7.1 and the maximum principle imply that ∂vε

∂t = ywε(Hε −
σ) ≥ 0. �

Theorem 7.3. Let Γ, Γε and Σε
0’s be as in Theorem 1.1 and suppose Σε

0 has
mean curvature Hε ≥ σ for all ε > 0 sufficiently small. Then Σt converge
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uniformly for all t to a unique smooth complete star-shaped hypersurface
Σ∞ ∈ C∞(Sn

+) ∩ C1+1(Sn
+) with constant hyperbolic mean curvature σ and

boundary Γ.

Proof. The subconvergence of the flow follows from Theorem 6.2. Corollary
7.2 then yields ∂v

∂t ≥ 0, where v is the regular solution to the MMCF (2.11)
for radial graphs. This monotonicity of v implies that the regular solution
Σt to the MMCF (1.2) with initial hypersurface Σ0 converges uniformly for
all t to Σ∞. �

This completes the proof of Theorem 1.1.

8. Proof of Theorem 1.2 and “good” initial hypersurfaces

In this section, we will prove Theorem 1.2 and give an example of “good”
initial hypersurfaces for the Dirichlet problems (2.12) and (2.11).

Proof. (of Theorem 1.2) Note that since for any ε > 0 sufficiently small,
we have Hε ≥ σ, Σε

0 (as a radial graph of the function evε
0 over Ωε) is a

subsolution to the AMMCF (2.12). Therefore Σε
0 serves as a natural lower

barrier for the AMMCF. Combining this with the uniform exterior local
ball condition yields the same proof as the one of Theorem 1.1 given in the
previous sections, except the C1+1 boundary regularity of the flow. The C1+1

boundary regularity of the limiting hypersurface Σ∞ follows from an elliptic
version of the argument given in Section 6, see also Section 4.3 of [9]. �

To find an example of “good” initial hypersurfaces in Theorem 1.2, for
any ε > 0 sufficiently small we will restrict ourselves to looking for an initial
smooth (C2-) hypersurface Σε

0 = F(Ωε, 0) that can be represented as a radial
graph of the function evε

0 over Ωε ⊂ S
n
+ and has hyperbolic mean curvature

Hε ≥ σ and Γε as its boundary. Moreover, Σε
0’s satisfy the uniform exterior

local ball condition and |∇vε
0|(z) ≤ C for all z ∈ Ωε, where C is a constant

independent of ε. To do this, we will simply apply the implicit function
theorem to construct a smooth hypersurface Σε

0 ∈ H
n+1 that is of constant

hyperbolic mean curvature close to 1 and has boundary Γε to serve as such
“good” initial hypersurface. As we shall see, the construction relies heavily
on the estimates in [9] for hypersurfaces with constant mean curvature as
vertical graphs.

From Equations (2.7) and (2.13), one observes that if a smooth radial
graph of the function ev over Ωε has constant hyperbolic mean curvature σ
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with prescribed boundary Γε, then v satisfies

(8.1)

⎧
⎨

⎩

aijvij =
n

y
(σw + e · ∇v), in Ωε,

v = φε, on ∂Ωε,

where φε ∈ C1+1(∂Ωε) is assumed.
It is clear that for σ = 1, the flat domain Dε ⊂ {xn+1 = ε} enclosed by Γε

(known as “horosphere”) is the corresponding smooth radial graph satisfying
(8.1). Therefore, there exists σ0 ∈ [0, 1) ∩ [σ, 1) with σ0 being sufficiently
close to 1 so that the implicit function theorem applies to (8.1). In this way,
we can obtain a hypersurface Σε

0 = {evε
0z : z ∈ Ωε}, where vε

0 ∈ C∞(Ωε) ∩
C1+1(Ωε). Moreover, Σε

0 has hyperbolic mean curvature σ0 and ∂Σε
0 = Γε.

By continuity, Σε
0 is close to the flat domain Dε and for all ε ≥ 0 the uniform

exterior local ball condition is satisfied by Σε
0’s.

With this specific construction of the initial hypersurface, we next give
a preliminary C0 estimate for the solution to the AMMCF (1.3).

Lemma 8.1. For Σε
t with initial hypersurface Σε

0 given above, there holds
the height estimate

(8.2) uε(z, t) <
d(D)

2

√
1 − σ

1 + σ
+ ε, (z, t) ∈ Ωε × [0, Tε),

where d(D) is the Euclidean diameter of D (the flat domain enclosed by Γ).

Proof. This is a direct parabolic generalization of [9, Lemma 3.2]. Let B
be a ball of radius R with center on the plane {xn+1 = −σR} such that the
n-ball B ∩ {xn+1 = ε} has radius r = d(D)/2 and contains Dε. By continuity,
we can choose σ0 so small that Σε

0 ⊆ B as well. By (i) of Lemma 3.4, Σε
t is

contained in B ∩ H
n+1 for any t ∈ [0, Tε), and therefore

uε(z, t) < (1 − σ)R, (z, t) ∈ Ωε × [0, Tε).

Moreover, R2 = (ε + σR)2 + r2, which implies

(8.3)
r√

1 − σ2
+

σ

1 − σ2
ε ≤ R ≤ r√

1 − σ2
+

1 + σ

1 − σ2
ε.

This completes the proof. �
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Remark 8.2. In particular, on Σε
0 there holds the height estimate

(8.4) uε
0 <

d(D)
2

√
1 − σ0

1 + σ0
+ ε.

The only thing left to show is |∇vε
0|(z) ≤ C for some constant C that

is independent of ε ≥ 0 and z ∈ Ωε. The first step is to obtain a good bar-
rier for vε

0 at any point z0 ∈ ∂Ωε corresponding to P0 = eφε(z0)z0 ∈ Γε. For
convenience, we choose a coordinate system around P0 so that the exterior
normal to Γε at P0 is eε

1. Let δ1 > 0 (respectively δ2) be such that for each
point P ∈ Γε, a ball of radius δ1 (respectively δ2) is internally (respectively
externally) tangent to Γε at P . Let Bε

i = Bε
i (σ0), i = 1, 2 be the (Euclidean)

balls of radius Ri centered at Ci = P0 + (−1)iδieε
1 + (ai − ε)e, where

(8.5) Ri =
−(−1)iεσ0 +

√

ε2 + δ2
i (1 − σ2

0)

1 − σ2
0

and ai = (−1)iRiσ0.

Recall that Sε
1(σ0) = ∂Bε

1 ∩ H
n+1 has constant (hyperbolic) mean curvature

σ0 with respect to its outward normal while Sε
2(σ0) = ∂Bε

2 ∩ H
n+1 has con-

stant mean curvature σ0 with respect to its inward normal. Moreover, by
our construction, Bε

1 and Bε
2 are tangent at P0, Bε

1 ∩ {xn+1 = ε} is internally
tangent to Γε at P0, and Bε

2 ∩ {xn+1 = ε} is externally tangent to Γε at P0.

Lemma 8.3 [9]. Locally Sε
1(σ0) is interior to Σε

0(σ0) and Sε
2 is exterior

to Σε
0.

Proof. This follows from the maximum principle for Equation (2.7). �
Similar to Equation (4.7), we see that Sε

1(σ0) and Sε
2(σ0) serve as good

local barriers of Σε
0 around P0 and we obtain that

(8.6) |∇vε
0|(P0) ≤ C,

where C is independent of ε and P0 ∈ Γε.
The next step is to obtain a uniform interior gradient bound for vε

0 and
one observes that we only need to bound

Xε
0 · νε

E =
evε

0

√
1 + |∇vε

0|2

from below uniformly in ε. This can be done as follows. Firstly note that,
since Dε is a vertical graph over D and by continuity (induced from the
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implicit function theorem used in the construction of Σε
0), Σε

0 is a vertical
graph of the function uε

0 over D as well. And similar to Lemma 8.1, we have
another height estimate for vertical graphs.

Lemma 8.4 ([9], Lemma 3.5). On Σε
0 (that has constant mean curvature

σ0) there holds

(8.7) uε
0(x

′) ≥ d(x′)
√

1 − σ0

1 + σ0
+

σ0ε

1 + σ0
, x′ ∈ D,

where d(x′) is the distance from x′ to ∂D.

Proof. For x′ ∈ D, let r = d(x′) and R > 0 satisfy R2 = (ε + σ0R)2 + d2(x′).
Note that BR(x′,−σ0R) ∩ {xn+1 = ε} ⊂ Dε and ∂BR(x′,−σ0R) ∩ H

n+1

has constant hyperbolic mean curvature σ0. Then by (ii) of
Lemma 3.3,

uε
0(x

′) > (1 − σ0)R.

Now the first inequality in (8.3) gives (8.7). �

Moreover, there exists ε1 > 0 such that, for any σ0 ∈ [1 − ε1, 1), there
exists δ1 = δ1(ε1) so that in the δ1-neighborhood of Γ in D one has |∇vε

0| ≤
C
2 , where C is the uniform gradient bound of vε

0 on Γε as in Equation (8.6).
Away from the δ1-neighborhood, by Lemma 8.4

Xε
0 · νε

E = Xε
0 · e − Xε

0 · (e − νε
E)(8.8)

≥ δ1

√
1 − σ0

1 + σ0
− evε

0

√
√
√
√2 − 2

√

1 + |∇̃uε
0|2

,

where ∇̃ is the Levi–Civita connection on R
n+1 and we used that

νε
E =

⎛

⎝
−∇̃uε

0√

1 + |∇̃uε
0|2

,
1

√

1 + |∇̃uε
0|2

⎞

⎠ ,

since Σε
0 is a vertical graph.
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Now using the fact that Hε
E is subharmonic on the constant mean cur-

vature hypersurface Σε
0 (see Theorem 2.2 of [9]), we have

Lemma 8.5 ([9], Corollary 2.3). For any λ ∈ (0, 1),

(8.9)
√

1 + |∇̃uε
0|2 ≤ 1

(1 − λ)σ0
in Ωλ,

where Ωλ =
{

x ∈ D : uε
0 ≤ λσ0

supΓε
Hε

E

}
.

To make use of Lemma 8.5, we also need the following estimate on the
Euclidean mean curvature Hε

E of Σε
0 on ∂Σε

0 = Γε. For x ∈ ∂D = Γ, denote
by r1(x) and r2(x) the radius of the largest exterior and interior spheres to
∂D at x, respectively, and let r1 = minx∈∂D r1(x), r2 = minx∈∂D r2(x). Then
we have

Lemma 8.6 ([9], Lemma 3.3). For ε > 0 sufficiently small,

−
√

1 − σ2
0

r2
− ε(1 − σ0)

r2
2

<
σ0 − e · νε

E

u

= Hε
E <

√
1 − σ2

0

r1
+

ε(1 + σ0)
r2
1

on Γε.

In particular, e · νε
E → σ0 on Γε as ε → 0, provided that ∂D is C1+1.

Note that in (8.8), if |∇̃uε
0| is sufficiently small then Xε

0 · νε
E(x′) ≥ C(δ1)

for any x′ ∈ D that is away from the δ1-neighborhood of Γ. In the other case,
if |∇̃uε

0| is uniformly bounded from below, then by combing the estimates in
Remark 8.2 and Lemmas 8.4 to 8.6, we can choose σ0 sufficiently close to 1
(for fixed ε1) such that we still have

Xε
0 · νε

E(x′) ≥ C(δ1) (uniformly in ε),

for any x′ ∈ D\δ1-neighborhood.
Now we can conclude

Theorem 8.7. There exist constants ε0 > 0 and σ0 ∈ (0, 1) ∩ [σ, 1) that is
sufficiently close to 1 such that for all 0 ≤ ε ≤ ε0, there exists a smooth
hypersurface Σε

0 with ∂Σε
0 = Γε ⊂ {xn+1 = ε} and whose hyperbolic mean
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curvature is σ0. Additionally, Σε
0 can be represented as a radial graph of

a function evε
0 over Ωε ⊂ S

n
+ and

(8.10) |∇vε
0|(z) ≤ C, z ∈ Ωε,

where C is a constant independent of ε. Moreover, the Σε
0’s satisfy the

uniform exterior local ball condition.

9. Interior gradient bounds and continuous boundary data

9.1. Interior gradient bounds

We will next provide a version of a priori interior gradient estimate for the
regular solution to the MMCF (2.11), which is essential for the existence
result of the MMCF with less regular (e.g., continuous) boundary data. The
idea follows closely the work of Evans and Spruck [7].

Lemma 9.1. Let v be a C3, 3
2 function satisfying Equation (2.11) in

Bρ(P ) × (0, 2T ) for some T > 0, where Bρ(P ) ⊂ {y ≥ ε}. Then

√
1 + |∇v|2(P, T ) = w(P, T ) ≤ C1e

C2
ρ2 ,

where C1, C2 are non-negative constants depending only on n, σ, ε, T and
‖v‖L∞.

Proof. Define

L =
∂

∂t
− L,

where L is the linear elliptic operator from Lemma 4.1. Without loss of
generality we may assume (by adding a constant to v) 1 ≤ v ≤ C0. We will
derive a maximum principle for the function h = η(z, t, v(z, t))w by com-
puting Lh in Bρ(P ) × (0, 2T ), where η is non-negative, vanishes on the set
{t(ρ2 − (dP (z)2) = 0}, and is smooth where it is positive. Here dP (z) is the
distance function (on the sphere) from P , the center of the geodesic ball
Bρ(P ). Then h is non-negative and vanishes on the parabolic boundary of
Bρ(P ) × (0, 2T ).
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Choose
η ≡ g(ϕ(z, t, v(z, t))); g(ϕ) = eKϕ − 1,

with the constant K > 0 to be determined and

ϕ(z, t, v(z, t)) =

[
−v(z, t)
2v(P, T )

+
t

T

(

1 −
(

dP (z)
ρ

)2
)]+

.

By Lemma 4.1, we have

Lh = ηLw + wLη − 2y2

n
aijηiwj(9.1)

= ηLw + w

(

ηt − y2

n
Mη

)

≤ w

(

2η + ηt − y2

n
Mη

)

,

where

M = aij∇ij − n

y

(

σ
∇v

w
+ e
)

· ∇.

We will choose K so that 2η + ηt − y2

n Mη ≤ 0 on the set where h > 0 and
w is large.

A straightforward computation gives that on the set where h > 0 (using
Equation (2.10))

Mη = g′(ϕ)
(

aij∇ijϕ − n

y

(

σ
∇v

w
+ e
)

· ∇ϕ

)

+ g′′(ϕ)aij∇iϕ∇jϕ

= KeKϕ

[
−nvt

2y2v(P, T )
− nσ

2ywv(P, T )

− 2t

ρ2T

(
aij∇idP∇jdP + dP aij∇ijdP

)
+

2nt

ρ2yT

(

σ
∇v

w
+ e
)

· dP∇dP

]

+ K2eKϕaij

(
vi

2v(P, T )
+

2t

ρ2T
dP∇idP

)(
vj

2v(P, T )
+

2t

ρ2T
dP∇jdP

)

.

Using the definition of aij we find

aij

(
vi

2v(P, T )
+

2t

ρ2T
dP∇idP

)(
vj

2v(P, T )
+

2t

ρ2T
dP∇jdP

)

=
|∇v|2

4(v(P, T ))2w2
+

2tdP

Tv(P, T )ρ2w2
〈∇v,∇dP 〉

+
4t2d2

P

T 2ρ4

(

1 −
〈∇v

w
,∇dP

〉2
)

,
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where 〈, 〉 denotes the inner product with respect to the induced Euclidean
metric on Σt. Therefore, we have

2η + ηt − y2

n
Mη

= 2η + KeKϕ

⎛

⎜
⎝

−vt

2v(P, T )
+

1 −
(

dP

ρ

)2

T

⎞

⎟
⎠− y2

n
Mη

≤ 2η +
KeKϕ

T
− y2

n
Mη − KeKϕvt

2v(P, T )

≤ −y2

n
eKϕ

[

K2

( |∇v|2
4w2(v(P, T ))2

− 1
w2

(
32
ρ2

+
|∇v|2

8(v(P, T ))2

))

− CK

ρ2
− C

]

≤ −y2

n
eKϕ

[
K2

32
− CK

ρ2
− C

]

,

whenever w > max{√2, 32C0
ρ } = 32C0

ρ so that |∇v|2
w2 > 1

2 and 32
w2ρ2 < 1

32C2
0
.

Thus, the choice of K = 32CC0

(
1 + C0

ρ2

)
gives

(9.2) Lh ≤ w

[

2η + ηt − y2

n
Mη

]

< 0

on the set where h > 0 and w > 32C0
ρ . Then by the maximum principle, (9.2)

gives

(9.3) h(P, T ) =
(
e

K

2 − 1
)

w(P, T ) ≤ max h ≤ (e2K − 1
) 32C0

ρ

and hence

w(P, T ) ≤ C1e
CC0

ρ2

for a slightly larger constant C. This completes the proof. �

9.2. Continuous boundary data

By standard modulus of continuity estimates (see e.g., [20, theorem 10.18])
and with the aid of the a priori interior gradient estimate (see Lemma 9.1)
proved in the previous section, one can further relax the regularity of the
boundary data to be only continuous via an approximation argument. We
have
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Theorem 9.2. Let Γ be the boundary of a continuous star-shaped domain
in {xn+1 = 0} and Σ0 = limε→0 Σε

0 be as in Theorem 1.1 or Theorem 1.2.
Then there exists a unique solution F(z, t) ∈ C∞(Sn

+ × (0,∞) ∩ C0(Sn
+ ×

[0,∞)) to the MMCF (1.2). Moreover, there exist ti ↗ ∞ such that Σti
=

F (Sn
+, ti) converges to a unique stationary smooth complete hypersurface

Σ∞ ∈ C∞(Sn
+) ∩ C0(Sn

+) (as a radial graph over S
n
+) which has constant

hyperbolic mean curvature σ and ∂Σ∞ = Γ asymptotically.
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