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On the Neuwirth conjecture for knots

Makoto Ozawa and Joachim Hyam Rubinstein

Neuwirth asked if any non-trivial knot in the three-sphere can be
embedded in a closed surface so that the complement of the surface
is a connected essential surface for the knot complement. In this
paper, we examine some variations on this question and prove it
for all knots up to 11 crossings except for two examples. We also
establish the conjecture for all Montesinos knots and for all general-
ized arborescently alternating knots. For knot exteriors containing
closed incompressible surfaces satisfying a simple homological con-
dition, we establish that the knots satisfy the Neuwirth conjecture.
If there is a proper degree one map from knot K to knot K ′ and
K ′ satisfies the Neuwirth conjecture then we prove the same is true
for knot K. Algorithms are given to decide if a knot satisfies the
various versions of the Neuwirth conjecture and also the related
conjectures about whether all non-trivial knots have essential sur-
faces at integer boundary slopes.
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1. Conjectures

In 1964, Neuwirth conjectured in [23, 24] that the fundamental group of
the complement of a non-trivial knot in the three-sphere is a non-trivial
free product with amalgamation, and the amalgamating subgroup is free.
In 1984, this conjecture was solved by Culler–Shalen, by realizing such an
algebraic splitting via a suitable properly embedded surface in the exterior
of the knot.

Theorem 1.1 (Weak Neuwirth conjecture, [6]). For any non-trivial
knot K, there exists a properly embedded separating, orientable, incompress-
ible and boundary incompressible surface in the exterior E(K).

However, a geometrical conjecture which is an original source of the
Weak Neuwirth conjecture has not been solved. The following Neuwirth
conjecture asserts that any non-trivial knot can be embedded in a closed
surface, similarly to the way a torus knot can be embedded in an unknotted
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torus. There are not so many geometrical properties satisfied by all non-
trivial knots.

Conjecture 1.2 (Neuwirth conjecture, [23]). For any non-trivial knot
K, there exists a closed surface F containing K such that F ∩ E(K) is
connected, incompressible and boundary incompressible.

The following knot classes are known to satisfy the Neuwirth conjecture.

• Torus knots and cable knots

• Two-bridge knots

• Alternating knots ([2, Theorem 9.8], [21, Proposition 2.3])

• Generalized alternating knots ([28, Theorem 2])

• Non-positive +-adequate knots ([30, Corollary 2.2])

• Crosscap number two knots ([15, Theorem 6])

• Tunnel number two knots which can be non-separatingly embedded in
a genus 2 Heegaard surface ([25, Lemma 2.3], [27, Lemma 1])

• Knots with accidental surfaces with non-separating accidental periph-
erals ([16, Theorem 2])

We will show in Corollary 4.4, that if a knot K satisfies the Neuwirth
conjecture then so does any satellite knot obtained from K and any compos-
ite knot obtained by summing a knot with K. This implies that to prove the
Neuwirth conjecture, it suffices to consider only simple knots and satellite
knots obtained from the trivial knot.

Almost all known examples of knots satisfying the Neuwirth conjecture,
are obtained by taking boundaries of regular neighbourhoods of algebraically
incompressible and boundary incompressible non-orientable spanning sur-
faces, except for torus knots and the last two classes in the above list.
Therefore, the following strong Neuwirth conjecture is plausible.

Conjecture 1.3 (Strong Neuwirth conjecture, [15, Question 5]).
For any prime non-torus knot K, there exists a non-orientable spanning
surface F for K such that F ∩ E(K) is algebraically incompressible and
boundary incompressible.

It seems to be unknown whether Conjecture 1.3 holds even if the condi-
tion weakened.
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Conjecture 1.4 (Weakly strong Neuwirth conjecture). For any
prime non-torus knot K, there exists a non-orientable spanning surface F
for K such that F ∩ E(K) is geometrically incompressible and boundary
incompressible.

Remark 1.5. It can be observed that a composite knot bounds an alge-
braically (geometrically) incompressible and boundary incompressible non-
orientable spanning surface if and only if at least one of the factor knots
also bounds an algebraically (geometrically) incompressible and boundary
incompressible non-orientable spanning surface.

The existence of an algebraically incompressible and boundary incom-
pressible non-orientable spanning surface in Conjecture 1.3 implies the fol-
lowing Conjecture 1.7. It seems to be unknown whether Conjecture 1.7 holds
even if the boundary slope is non-integer.

Conjecture 1.6 (Even boundary slope conjecture). For any prime
non-torus knot K, there is a properly embedded orientable incompressible
and boundary incompressible surface, which is not a Seifert surface, in the
exterior E(K) with boundary slope an even rational number (i.e., an irre-
ducible fraction with an even numerator).

Conjecture 1.7 (Strong even boundary slope conjecture). For any
prime non-torus knot K, there is a properly embedded orientable incompress-
ible and boundary incompressible surface, which is not a Seifert surface, in
the exterior E(K) with boundary slope an even integer.

We will show in Corollary 4.8, that if a knot K satisfies the (strong)
even boundary slope conjecture then so does any satellite knot obtained
from K and any composite knot obtained by summing a knot with K. This
implies that to prove the (strong) even boundary slope conjecture, it suffices
to consider only simple knots and satellite knots obtained from the trivial
knot.

Remark 1.8. Miyazaki [22] showed that for any integer m ≥ 0, there is a
hyperbolic knot which has m + 1 accidental surfaces with accidental slopes
0, 1, . . . , m. Tsutsumi [34] showed that for any finite set of even integers
{a1, . . . , an} and for any closed connected three-manifold M , there exists an
excellent knot in M which bounds excellent non-orientable spanning sur-
faces F1, . . . , Fn such that the boundary slope of Fi is ai. Each of these two
constructions shows that there exists a hyperbolic knot with finitely many
Neuwirth surfaces at finitely many integer boundary slopes.
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In this paper, we approach these conjectures by three methods; Murasugi
sum, pre-essential surface and degree one map, which are dealt with in
Sections 2, 3 and 4 respectively.

2. Murasugi sum

2.1. Geometrically incompressible and algebraically
incompressible surfaces

We review the definition of essential surfaces in both the geometric and
algebraic senses.

Let M be an orientable compact three-manifold, F a compact surface
properly embedded in M , possibly with boundary, except for a two-sphere
or disk, and let i denote the inclusion map F → M . We say that F is
algebraically incompressible if the induced map i∗ : π1(F ) → π1(M) is injec-
tive, and that F is algebraically boundary incompressible if the induced map
i∗ : π1(F, ∂F ) → π1(M, ∂M) is injective for every choice of two base points
in ∂F .

A disk D embedded in M is a compressing disk for F if D ∩ F = ∂D
and ∂D is an essential loop in F . A disk D embedded in M is a bound-
ary compressing disk for F if D ∩ F ⊂ ∂D is an essential arc in F and
D ∩ ∂M = ∂D − int(D ∩ F). We say that F is geometrically incompressible
(resp. geometrically boundary incompressible) if there exists no compressing
disk (resp. boundary compressing disk) for F .

2.2. Murasugi sum and knot minors

Let F be a spanning surface for a knot or link K. Suppose that there exists
a two-sphere S decomposing S3 into two three-balls B1, B2 such that S
intersects K transversely and F ∩ S consists of a disk. Put Fi = F ∩ Bi for
i = 1, 2. Then we say that F has a Murasugi decomposition into F1 and F2

and we denote by F = F1 ∗ F2. Conversely, we say that F is obtained from
F1 and F2 by a Murasugi sum along a disk F ∩ S. We say that a Murasugi
sum (or Murasugi decomposition) is plumbing (or deplumbing) if S intersects
K in four points.

The Murasugi sum is a natural geometric operation [9]. In fact, Gabai
proved that geometric incompressibility for Seifert surfaces is preserved
under Murasugi sums, and the first author showed that algebraic incom-
pressibility for spanning surfaces is also preserved under Murasugi sums.
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Figure 1: Two smoothings of a crossing.

Theorem 2.1 ([9, Theorem 1], [30, Lemma 3.4]). If F1 and F2 are
algebraically incompressible and boundary incompressible, then F = F1 ∗ F2

is also algebraically incompressible and boundary incompressible.

We say that a knot or link K has minors Ki if there exists algebraically
incompressible and boundary incompressible spanning surfaces Fi for Ki

such that F = F1 ∗ F2. In the proof of Theorem 2.17, this concept plays a
central role and it turns out that any Montesinos knot except for torus knots
has a pretzel knot or link minor.

2.3. State surfaces

In the following, we review the definitions and results on state surfaces,
which are introduced in [30].

Let K be a knot or link in the three-sphere S3 and D a connected
diagram of K on the two-sphere S2 which separates S3 into two three-
balls, say B+, B−. Let C = {c1, . . . , cn} be the set of crossings of D. A map
σ : C → {+,−} is called a state for D. For each crossing ci ∈ C, we take
a +-smoothing or −-smoothing according whether to σ(ci) = + or −. See
figure 1. Then, we have a collection of loops l1, . . . , lm on S2 and call these
state loops. Let Lσ = {l1, . . . , lm} be the set of state loops.

Each state loop li bounds a unique disk di in B− close to S2, and we may
assume that these disks are mutually disjoint. For each crossing cj and state
loops li, lk whose subarcs replaced cj by a σ(cj)-smoothing, we attach a half-
twisted band bj to di, dk so that cj is recovered. See figure 2 for σ(cj) = +.
In this way, we obtain a spanning surface which consists of disks d1, . . . , dm

and half-twisted bands b1, . . . , bn and call this a σ-state surface Fσ.

Remark 2.2. Although we chose a disk di in B− close to S2, we could
instead have chosen a disk in B+ for each state loop which is not innermost
in the two-sphere S2. Therefore, in general, there are many state surfaces
for a given state.
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Figure 2: Recovering a crossing by a half-twisted band.

Figure 3: An example of making a σ-state surface.

We construct a graph Gσ with signs on edges from Fσ by regarding a
disk di as a vertex vi and a band bj as an edge ej which has the sign σ(cj).
We call the graph Gσ a σ-state graph. In general, a graph is called a block
if it is connected and has no cut vertex. It is known that any graph has a
unique decomposition into maximal blocks. Following [5, 20], we say that a
diagram D is σ-adequate if Gσ has no loops, and that D is σ-homogeneous
if in each block of Gσ, all edges have the same sign.

Example 2.3. Let D be a diagram of the figure eight knot which has four
crossings c1, c2, c3, c4 as in figure 3. To make a σ-state surface, let σ(c1) =
σ(c2) = − and σ(c3) = σ(c4) = +, for example. Since the σ-state graph Gσ

has no loops and all edges in each block have the same sign as in figure 4,
D is σ-adequate and σ-homogeneous. Moreover, the block decomposition of
Gσ corresponds to a Murasugi decomposition of Fσ. See figure 5.

Example 2.4. A diagram D with an orientation is said to be positive if
all crossings have a positive sign. For any positive diagram D, there exists a
state σ such that D is σ-adequate and σ-homogeneous. Indeed, we can take
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Figure 4: The corresponding σ-state graph and its block decomposition.

Figure 5: The corresponding Murasugi decomposition.

σ so that σ(cj) = + for all cj , namely, the positive state σ+. Also we can
take σ so that it yields a canonical Seifert surface Fσ, namely, the Seifert
state �σ. Note that these states σ+ and �σ coincide only on a positive diagram.

Example 2.5. We say that a diagram D is +-adequate (or −-adequate) [20]
if D is σ-adequate for the positive state σ+ (or the negative state σ−).
Note that D is automatically σ±-homogeneous since σ±(cj) = ± for all j.
Furthermore, we say that a diagram D is adequate [33] if D is both +-
adequate and −-adequate.

The Hasse diagram of various classes of knots and links is illustrated in
figure 6. The set of algebraically alternating knots and links [29] includes
both sets of alternating and algebraic knots and links.
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Figure 6: The Hasse diagram for the set of knot diagrams partially ordered
by inclusion.

Theorem 2.6 [30]. If a diagram is both σ-adequate and σ-homogeneous
for some state σ, then the σ-state surface is algebraically incompressible and
boundary incompressible.

A knot is said to be adequate if it has an adequate diagram [33], that is,
both σ+-adequate and σ−-adequate. Note that at least one of σ+ and σ−
differs from �σ.

Corollary 2.7 [30]. If a diagram is σ-adequate and σ-homogeneous for
a state σ other than the Seifert state �σ, then the knot satisfies the strong
Neuwirth conjecture. In particular, adequate knots satisfy the strong
Neuwirth conjecture.

Theorem 2.6 is obtained from Theorems 2.1 and 2.8. Indeed, a knot
satisfying the condition of Theorem 2.6 has an alternating knot or link minor.

Theorem 2.8 ([2, Theorem 9.8], [21, Proposition 2.3], [28, Theo-
rem 2]). If a diagram is reduced and alternating, then both of the
checkerboard surfaces are algebraically incompressible and boundary incom-
pressible.

2.4. Rational tangles and Montesinos knots

We recall that a rational tangle is a two-tangle that is homeomorphic to the
trivial two-tangle as a map of pairs consisting of the three-ball and two arcs.
Usually, a rational tangle is inductively drawn as in figure 7 which consists
of ai-twists. We say that such a rational tangle diagram is standard if all ai
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Figure 7: A rational tangle (3, 2, 4) with the fraction [4, 2, 3] = 31/7.

Figure 8: A Montesinos knot or link M(r1, . . . , rn).

Figure 9: A Montesinos tangle MT(r1, . . . , rn).

are positive or all ai are negative, namely it is alternating. It is known that
any rational tangle has a standard form.

The fraction (or slope) of a rational tangle (a1, a2, . . . , an), where a1, . . .
an−1 are non-zero integers and an is an integer, is defined as the number
given by the continued fraction [an, an−1, . . . , a1]. Conway [4] proved that
the fraction is well defined and completely determines the rational tangle
up to tangle equivalence.

A knot or link K is called Montesinos if K has a form which is obtained
by summing n rational tangles Ti with slope ri as in figure 8, and we write the
result as K = M(r1, . . . , rn). A Montesinos knot or link K = M(r1, . . . , rn)
is pretzel if all numerators of ri are ±1, namely ri = ±1/pi, and then we
denote K = P (p1, . . . , pn).

Similarly, a tangle T is called Montesinos if T has a form which is
obtained by summing n rational tangles Ti with the slope ri as in figure 9,
and we denote the result as T = MT(r1, . . . , rn).
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Figure 10: A deformation from T (−r1, r2) to T (1 − r1, r2 − 1).

Lemma 2.9. Let MT(−r1, r2) be a Montesinos tangle with two rational
tangles with slopes −r1, r2, where 0 < ri < 1 for i = 1, 2. Then MT(−r1, r2)
can be deformed into a Montesinos tangle MT(1 − r1, r2 − 1).

Proof. See figure 10.
We remark that the slope of T1 is −r1/(1 − r1) and that of T2 is r2/

(1 − r2). The slope φ(T ) of a rational tangle T can be calculated by the
formula φ(T1 + T2) = φ(T1) + φ(T2) and φ(T1)φ(T ∗

1 ) = −1, where + denotes
the tangle sum and T ∗ denotes the rotation of T . See [29, Theorem 2.4]
for example. �

2.5. Pretzel surfaces and checkerboard surfaces

A pretzel knot or link P (p1, . . . , pn) bounds a checkerboard surface which
consists of two disks and pi half-twisted bands, and we call it a pretzel
surface. The following theorem determines which pretzel surfaces for some
pretzel knots or links are algebraically incompressible and boundary incom-
pressible.

Theorem 2.10. Let K be a pretzel knot or link P (−p1, p2, . . . , pn) with
pi ≥ 2 and n ≥ 3. Then the pretzel surface for K is algebraically incompress-
ible and boundary incompressible if and only if (−p1, p2, . . . , pn) �= (−2, 3, 3),
(−2, 3, 4), (−2, 3, 5) nor (−2, 2, p3), where p3 is odd.

Proof. Suppose that pretzel surface F is not algebraically incompressible
and boundary incompressible. By taking a regular neighbourhood of F ,
we obtain a genus n − 1 Heegaard splitting V1 ∪S V2, where V1 = N(F )
and S = ∂N(F ). We assume that V1 intersects the two-sphere S2, which
includes a (−p1, p2, . . . , pn)-pretzel diagram of K, in an n-punctured sphere.
Thus V2 intersects S2 in n disks D1, D2, . . . , Dn, where D1 is sandwiched
between the −p1 half-twisted band and the p2 half-twisted band, D2 is sand-
wiched between the p2 half-twisted band and the p3 half-twisted band, and
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Figure 11: (−2, 3, 5)-pretzel knot on a genus 2 Heegaard surface S.

Figure 12: The graph Gi for K = P (−p1, p2, . . . , pn).

Dn is an outside disk between the pn half-twisted band and the −p1 half-
twisted band. The knot K can be isotoped onto the genus n − 1 Heegaard
surface S so that |K ∩ ∂D1| = (p1 − 1) + (p2 − 1), |K ∩ ∂D2| = p2 + p3 and
|K ∩ ∂Dn| = (pn − 1) + (p1 − 1). See figure 11 for K = P (−2, 3, 5).

If we cut V2 along D1 ∪ D2 ∪ · · · ∪ Dn, then we have two three-balls
B1 and B2. On ∂Bi, we have a graph Gi with fat vertices as copies of
D1, D2, . . . , Dn and edges from K ∩ ∂Bi. Figure 12 illustrates the graph
Gi for K = P (−p1, p2, . . . , pn), where the number indicated at each edge
denotes the number of multiple edges.

Claim 2.11. p1 = 2 and n = 3.

Proof. Since F is not algebraically incompressible and boundary incompress-
ible, S ∩ E(K) is not geometrically incompressible and boundary incom-
pressible. If we have a boundary compressing disk E for S ∩ E(K), then E
can be extended a properly embedded disk E′ in V2 such that ∂E′ intersects
K in one point. Then by taking two copies of E′ and banding along K, we
obtain a compressing disk for S − K which cuts off a once punctured torus
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from S. Therefore, without loss of generality, let D be a compressing disk
for S − K. We assume that |D ∩ (D1 ∪ D2 ∪ · · · ∪ Dn)| is minimal up to iso-
topy of D. If |D ∩ (D1 ∪ D2 ∪ · · · ∪ Dn)| = 0, then one of the graphs Gi is
disconnected, a contradiction. Hence there exists an outermost disk δ in D
with respect to D ∩ (D1 ∪ D2 ∪ · · · ∪ Dn). Then the boundary of δ shows
that a graph Gi has a cut vertex. Since pi ≥ 2, it follows that p1 − 2 = 0
and n = 3. In this case, D2 is a cut vertex. �

Without loss of generality, we may assume that p2 ≤ p3.

Claim 2.12. p2 ≤ 3.

Proof. In general, there may be outermost disks of D in both B1 and B2.
However, we know where the boundaries of any such disks lie, and in partic-
ular we know the position of the arc of intersection with D2. When p2 ≥ 4
these two arcs necessarily cross, which shows that there can be outermost
disks of D in only one of B1 and B2. In particular, there is more than one
intersection arc on D.

Now consider the disk D, marked by the arcs of intersection with D1 ∪
D2 ∪ D3. Label each such arc with i if it lies in Di. Any outermost arc is
labelled 2. Furthermore, by examining where these arcs lie in D2, we find
that as we follow ∂D away from this arc, in one direction the first arc we meet
is labelled 1, while in the other direction the first arc we meet is labelled 3.

Therefore, any two outermost arcs cannot be next to each other, and
hence there exists a second outermost arc which is parallel to an outermost
arc. However, the second outermost arc cannot exist since one end of it is
labelled 1 and the other end is labelled 3. �

Claim 2.13. If p2 = 3, then p3 ≤ 5.

Proof. Since p1 = −2 and p2 = 3, it follows that |K ∩ ∂D1| = 3. Therefore,
by exchanging D for a disk coming from an outermost disk of D − D1 if
necessary, there exists a compressing or boundary compressing disk D which
is disjoint from D1. We cut V2 along D1, and obtain a solid torus, say V ′

2 ,
and the complement of V ′

2 in S3 is a solid torus, say V ′
1 . On the Heegaard

torus S′ = ∂V ′
i , we have a theta-curve graph with two fat vertices as two

copies D′
1, D

′′
1 of D1 and three edges k1, k2, k3 as in figure 13.

If p3 ≥ 6, then the constituent knot k1 ∪ k3 goes around V ′
2 at least twice.

However this shows that ∂D intersects k1 ∪ k3 in at least two points, and
contradicts that D is a compressing or boundary compressing disk.
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Figure 13: A theta-curve graph on a Heegaard torus S′.

Otherwise, if p3 ≤ 5, then there exists a compressing or boundary
compressing disk for S′ − (k1 ∪ k2 ∪ k3) in V ′

2 . �

Claim 2.14. If p2 = 2, then p3 is odd.

Proof. Since p1 = −2 and p2 = 2, it follows that |K ∩ ∂D1| = 2. Therefore,
by exchanging D if necessary, there exists a compressing or boundary com-
pressing disk D which is disjoint from D1. As in the previous claim, we cut
V2 along D1, and obtain a solid torus, say V ′

2 , and the rest is a solid torus
V ′

1 . On the Heegaard torus S′ = ∂V ′
i , we have a loop corresponding to k1

and a two-cycle with two fat vertices as two copies D′
1, D

′′
1 of D1 and two

edges k2, k3 similarly as in figure 13. We note that the loop k1 goes around
V ′

2 exactly once.
If p3 is even, then the two-cycle k2 ∪ k3 is parallel to the loop k1 in the

Heegaard torus S′, hence it also goes around V ′
2 exactly once. Therefore, in

this case, ∂D intersects k1 ∪ k2 ∪ k3 in at least two points, and contradicts
that D is a compressing or boundary compressing disk.

Otherwise, in the case that p3 is odd, the two-cycle k2 ∪ k3 bounds a
disk in the Heegaard torus S′ and this shows that S′ − (k1 ∪ k2 ∪ k3) is
compressible in V ′

2 . �

The above claims show that if the pretzel surface for K is not alge-
braically incompressible and boundary incompressible, then (−p1, p2, . . . ,
pn) = (−2, 3, 3), (−2, 3, 4), (−2, 3, 5) or (−2, 2, p3), where p3 is odd. Con-
versely, if (−p1, p2, . . . , pn) = (−2, 3, 3), (−2, 3, 4), (−2, 3, 5) or (−2, 2, p3),
where p3 is odd, then there exists a compressing or boundary compressing
disk for S − K in V2 as shown in Claims 2.13 and 2.14. This completes the
proof of Theorem 2.10. �
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Theorem 2.10 on pretzel surfaces can be generalized to checkerboard
surfaces as follows. Let G be a planar graph in the two-sphere S2 whose
edges e1, . . . , en have weights w1, . . . , wn ∈ Z. We replace each vertex vi of
G with a disk di, and replace each edge ei with a wi half-twisted band bi.
Then we obtain a surface FG and a knot or link KG = ∂FG. Naturally, KG

has a diagram on S2 and FG can be regarded as a checkerboard surface
for KG. We remark that any knot or link can be obtained from a suitable
weighted planar graph in this manner. For example, a pretzel knot or link
P (p1, . . . , pn) can be obtained as KG from a theta-curve graph G whose
multiple edges e1, . . . , en have weights p1, . . . , pn, and the pretzel surface
coincides with FG.

Theorem 2.15. Let G be a two-connected planar graph in S2 with edges
e1, . . . , en having weights w1, . . . , wn ∈ Z.

(1) If |wi| ≥ 3 for all i, then the surface FG is algebraically incompressible
and boundary incompressible.

(2) If w1 ≤ −2 and wi ≥ 2 for i = 2, . . . , n and the surface FG is not alge-
braically incompressible and boundary incompressible, then G has an
edge, say e2, that is parallel to e1 such that w1 = −2 and w2 = 2 or 3.

Proof. We can prove Theorem 2.15 by the argument similar to Theorem 2.10,
so we omit the details. In the same was as the proof of Theorem 2.10, we
obtain a graph Gi on the three-ball Bi and if the condition in (1) is satisfied,
then Gi is two-connected. This shows that there exists no compressing disk
for ∂N(FG) − KG.

As in Claim 2.11, it follows from the existence of an outermost disk δ
that w1 = −2 and there exists a region of S2 − N(FG), denoted D2 as in the
argument for Theorem 2.10, containing the outermost arc. Namely, D2 can
be enlarged into a region D′

2 of S2 − G which contacts the two end points
of e1 but does not contact the interior of e1.

As in Claim 2.12, it follows from the existence of outermost disks in both
B1 and B2 that an edge adjacent to e1, say e2, must be parallel to e1 and the
weight w2 is less than or equal to 3. Otherwise, two outermost arcs which
are coming from two outermost disks in both B1 and B2 must intersect in
D2. Thus we obtain two edges e1 and e2 satisfying the condition in (2). �

Remark 2.16. Theorem 2.15 (2) shows that the diagram of KG contains
a Montesinos tangle MT(−1/2, 1/2) or MT(−1/2, 1/3).
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2.6. Montesinos knots

Theorem 2.17. Montesinos knots satisfy the strong Neuwirth conjecture.

Proof. Let K = M(r1, . . . , rn) be a Montesinos knot with n rational tangles
of slope ri. We may assume that ri �= 0/1, 1/0 and n ≥ 3 since a composite
knot with two-bridge knot summands satisfies the strong Neuwirth con-
jecture. Moreover, we may assume that R− ≤ R+, where R− denotes the
number of negative ri’s and R+ denotes the number of positive ri’s. Sup-
pose that K is not a torus knot. Hence, by [3], K �= M(−1/2, 1/3, 1/3) nor
M(−1/2, 1/3, 1/5). We put each rational tangle in a standard form.

If R− = 0, then K is alternating and at least one of the two
checkerboard surfaces is non-orientable, algebraically incompressible and
boundary incompressible.

Hereafter, we assume that R− ≥ 1. Under such a condition, we can take
each slope ri so that |ri| < 1.

If R− ≥ 2, then K is +-adequate and −-adequate. Then, by Theorem 2.6,
both of the state surfaces Fσ+ and Fσ− are algebraically incompressible and
boundary incompressible, and at least one of them is non-orientable.

Henceforth, we assume that R− = 1. By exchanging ri, we can put K =
M(−r1, r2, . . . , rn), where ri > 0 for i = 1, 2, . . . , n. Then K is +-adequate,
and the state surface Fσ+ is algebraically incompressible and boundary
incompressible. Hence if K is not positive, then Fσ+ is non-orientable. Here,
we remark that K is positive if and only if Fσ+ is orientable.

From now on, we assume that K is positive. Therefore, both of the
checkerboard surfaces are non-orientable since they can be obtained as state
surfaces other than the positive state σ+.

By using a deformation as in figure 14 inductively, one of the two checker-
board surfaces for K = M(−r1, r2, . . . , rn) can be deplumbed to a pretzel
surface for a pretzel knot or link K ′ = P (−�1/r1�, �1/r2�, . . . , �1/rn�), where
�x� denotes the ceiling function of x which is the smallest integer not less
than x.

If K ′ is neither P (−2, 3, 3), P (−2, 3, 4), P (−2, 3, 5) nor P (−2, 2, p), where
p is odd, then the checkerboard surface for K is non-orientable, algebraically
incompressible and boundary incompressible.

Therefore, hereafter we may assume that K = M(−r1, r2, r3) and we
need to consider the following two cases.

(1) K ′ = P (−2, 3, 3), P (−2, 3, 4) or P (−2, 3, 5).
(a) r1 �= 1/2.
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Figure 14: Deplumbing a checkerboard surface.

Figure 15: A state surface Fσ for K = M(−r1, r2, r3).

(b) r1 = 1/2.

(2) K ′ = P (−2, 2, p), where p is odd.
(a) r2 �= 1/2.
(b) r2 = 1/2.

In Case (1)-(a), let σ be a state which has all negative signs except for
one crossing in the rational tangle with slope −r1. Then, we have a non-
orientable state surface Fσ for K as in figure 15 which can be obtained from
a pretzel surface for P (−1, 3, 3), P (−1, 3, 4) or P (−1, 3, 5). Since the pretzel
surface is a genus 1 Seifert surface for 31, 41 or 52 up to mirror image respec-
tively, Fσ is algebraically incompressible and boundary incompressible.

In Case (1)-(b), first we assume that r3 �= 1/3, 1/4 nor 1/5. By using
Lemma 2.9, we can deform the Montesinos knot K = M(−1/2, r2, r3) into
K = M(1/2, r2 − 1, r3).
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Figure 16: A state surface Fσ for K = M(1/2, r2 − 1, r3).

In the case that K ′ = P (−2, 3, 4), then the deformed knot K = M(1/2,
r2 − 1, r3) has a minor P (2,−2, 4). By Theorem 2.10, the pretzel surface
for P (2,−2, 4) is algebraically incompressible and boundary incompressible
and hence the checkerboard surface for K = M(1/2, r2 − 1, r3) is also alge-
braically incompressible and boundary incompressible.

Otherwise, for the case that K ′ = P (−2, 3, 3) or P (−2, 3, 5), let σ be a
state as in figure 16. Then, we have a non-orientable state surface Fσ for K
which can be obtained by plumbings from a pretzel surface for P (2,−2, 2)
or P (2,−2, 4).

In Case (2)-(a), by using Lemma 2.9, we can deform the Montesinos
knot K = M(−r1, r2, r3) into K = M(1 − r1, r2 − 1, r3). Then, one of the
two checkerboard surfaces for K = M(1 − r1, r2 − 1, r3) can be deplumbed
into a pretzel surface for P (p1,−p2, p3), where pi ≥ 2. Since r2 �= 1/2 and the
state surface Fσ+ for K = M(−r1, r2, r3) is orientable, for the corresponding
slope t2 = −r2/(r2 − 1) of a subtangle T2 in Lemma 2.9, 
t2� is an even inte-
ger greater than or equal to 2. Hence, p2 ≥ 3 and the checkerboard surface
for K = M(1 − r1, r2 − 1, r3) is algebraically incompressible and boundary
incompressible.

In Case (2)-(b), by using Lemma 2.9, we can deform the Montesinos knot
K = M(−r1, 1/2, r3) into K = M(1 − r1,−1/2, r3). Since K is connected,
r1 �= −1/2. Hence, we have r1 > 1/2, 1 − r1 < 1/2 and �1/(1 − r1)� ≥ 3.
Therefore, the checkerboard surface for K cannot be deplumbed to one
for K ′ = P (q,−2, p), where q ≥ 3 and p is odd. Eventually, we arrive at
Case (1). �

2.7. Knots with 11 crossings or fewer

Theorem 2.18. All knots with 11 crossings or fewer except for K11n118
and K11n126 satisfy the Neuwirth conjecture (figure 17).
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Figure 17: Knot diagrams from KnotInfo.

Proof. It has been confirmed in [30] that every knot diagram in the Rolfsen
table [31] with at most 10 crossings except for the positive knots 819, 10124,
10128, 10134, 10139 and 10142 is σ-adequate and σ-homogeneous for a positive
or negative state σ distinct from the Seifert state �σ.

819 and 10124 are equivalent to the (3, 4) and (3, 5)-torus knot respec-
tively and hence these knots satisfy the Neuwirth conjecture.

10128 and 10139 are Montesinos knots and by Theorem 2.17, these knots
satisfy the Neuwirth conjecture.

10142 is the (−4, 3, 3)-pretzel knot and by Theorem 2.10, it bounds an
algebraically incompressible and boundary incompressible non-orientable
pretzel surface. Hence 10142 satisfies the Neuwirth conjecture.

It has been be confirmed in [30] that every 11 crossing knot diagram
in the Hoste–Thistlethwaite knot table [14] except for K11n93, K11n95,
K11n118, K11n126, K11n136, K11n169, K11n171, K11n180 and K11n181
is also σ-adequate and σ-homogeneous for a positive or negative state σ
distinct from the Seifert state �σ.

Furthermore, it can be checked that K11n93, K11n95, K11n136, K11n

169, K11n171, K11n180 and K11n181 bound algebraically incompressible
and boundary incompressible non-orientable checkerboard surfaces. (You
might need to deform the diagram by a Reidemeister move of
type III.) �

Remark 2.19. It would be interesting to prove the Neuwirth conjecture
for positive knots since the σ+-state surface for a positive state σ+ is ori-
entable. Moreover, it seems to be not straightforward to prove the Neuwirth
conjecture for positive knots, since all torus knots are positive
knots.
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2.8. Generalized arborescently alternating links

In this subsection, we generalize the classes of generalized alternating links
and arborescent links, and show that any link in this huge link class bounds
an algebraically incompressible and boundary incompressible generalized
state surface.

First, we recall generalized alternating knots and links. Let F be a closed
surface embedded in S3 and K a knot or link contained in F × [−1, 1].
Suppose that p(K) is a regular projection on F , where p : F × [−1, 1] → F ×
{0} = F is the projection. Then, we have a regular diagram on F obtained
from p(K) by adding the over/under information to each double point, and
we denote it by the same symbol p(K) in this paper. As usual, a diagram
p(K) on F is said to be alternating if it has alternating over- and under-
crossings as the diagram p(K) is traversed on F . We say that a diagram
p(K) on F is reduced if there is no disk region of F − p(K) which meets
only one crossing. We say that a diagram p(K) on F is prime if it contains
at least one crossing and for any loop l intersecting p(K) in two points except
for crossings, there exists a disk D in F bounded by l such that D ∩ p(K)
consists of an embedded arc.

Theorem 2.20 [28]. Let F be a closed surface embedded in S3, K a knot or
link contained in F × [−1, 1] which has a reduced, prime, alternating diagram
on F . Then, both checkerboard surfaces for K are algebraically incompress-
ible and boundary incompressible.

Next, we introduce generalized arborescently alternating knots and links.
Let S be a closed surface embedded in S3 and K a knot or link contained in
S × [−1, 1]. Let p(K) be a connected diagram for K on S. The closed surface
S separates S3 into two submanifolds, say V+, V−. Let σ : C → {+,−} be a
state for p(K), and let C = {c1, . . . , cn} be the set of crossings of p(K). For
each crossing ci ∈ C, we take a +-smoothing or −-smoothing according to
σ(ci) = + or −. See figure 1. Then, we have the set of state loops Lσ =
{l1, . . . , lm} on S.

Suppose that each state loop li bounds two disks d+
i , d−i in V+, V−

respectively, and we may assume that these disks are mutually disjoint. For
each crossing cj and state loops li, lk whose subarcs replaced cj by σ(cj)-
smoothing, we attach a half-twisted band bj to d−i , d−k so that it recovers cj .
See figure 2 for σ(cj) = +. In this way, we obtain a spanning surface which
consist of disks d−1 , . . . , d−m and half-twisted bands b1, . . . , bn and call this a
σ-state surface Fσ.
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Remark 2.21. Similarly to Remark 2.2, there are two options to choose a
disk d±i in B± bounded by each state loop li which is not innermost in the
closed surface S. Therefore, in general, there are many state surfaces for a
given state.

We construct a graph Gσ with signs on edges from Fσ by regarding a
disk d−i as a vertex vi and a band bj as an edge ej which has the same sign
σ(cj). We call the graph Gσ the σ-state graph. Let Gσ = G1 ∗ · · · ∗ Gr be the
block decomposition of Gσ. Following [5, 20], we say that a diagram p(K) is
σ-adequate if each block Gk has no loop, and that p(K) is σ-homogeneous if
in each block Gk, all edges have the same sign.

Furthermore, the block decomposition of Gσ = G1 ∗ · · · ∗ Gr corresponds
to a Murasugi decomposition of Fσ = F1 ∗ · · · ∗ Fr. See figure 5. By cut-
ting the closed surface S along each state loop li and pasting in the disk
d−i , we have closed surfaces S1, . . . , Sr which include knot or link diagrams
p(K1), . . . , p(Kr) respectively, where Ki = ∂Fi.

Theorem 2.22. Let S be a closed surface embedded in S3, K a knot or
link contained in S × [−1, 1]. Suppose that there exists a state σ for p(K)
such that:

(1) each state loop li ∈ Lσ bounds disks in both sides of S,

(2) the diagram p(K) is σ-adequate,

(3) the diagram p(K) is σ-homogeneous,

(4) each diagram p(Ki) is reduced and prime on Si.

Then, the state surface Fσ for K is algebraically incompressible and bound-
ary incompressible. Furthermore, if σ can be taken so that it is not the Seifert
state �σ, then the knot K satisfies the strong Neuwirth conjecture.

Proof. The proof is similar to [30]. By Theorem 2.20, each spanning surface
Fi for Ki is algebraically incompressible and boundary incompressible since
p(Ki) is a reduced, prime, alternating diagram on Si. And by Theorem 2.1,
the σ-state surface Fσ = F1 ∗ · · · ∗ Fr is also algebraically incompressible and
boundary incompressible. �

We call a link satisfying the conditions of Theorem 2.22 a generalized
arborescently alternating link since it can be obtained from generalized



1040 Makoto Ozawa & Joachim Hyam Rubinstein

alternating links on closed surfaces by taking Murasugi sums of those checker-
board surfaces. More precisely, a link K is a generalized arborescently alter-
nating link if K has a diagram p(K) on a closed surface S and there exists
a state σ for p(K) which satisfy conditions (1)–(4) in Theorem 2.22.

Remark 2.23. The existence of knots or links which are not generalized
arborescently alternating is unknown. In [30, Problem 1], we have proposed
a problem for showing the existence of a knot which has no diagram which
is both σ-adequate and σ-homogeneous.

3. Pre-essential surfaces

3.1. Definition of pre-essential surfaces

Definition 3.1. Suppose (S3, K) is a knot and let E(K) be the exterior of
K in S3.

A Neuwirth surface F for K is a compact, orientable, geometrically
incompressible and boundary incompressible surface properly embedded in
E(K) such that the number of boundary components of F is two and the
boundary slope of F is an integer.

A pre-essential surface S for K is a compact non-orientable surface prop-
erly embedded in E(K) with the property that the boundary ∂N(S) of a
regular neighbourhood of S can be compressed to a properly embedded
incompressible and boundary incompressible surface F for K. Note that the
boundary slope of the resulting surface F is the same as the boundary slope
of the pre-essential surface S. (This slope must be even rational).

A quasi-spanning surface is a compact non-orientable surface properly
embedded in E(K) with a single boundary component. We note that any
even rational boundary slope has such a quasi-spanning surface at this slope.
If a quasi-spanning pre-essential surface S has an integer boundary slope,
namely it is spanning pre-essential, then ∂N(S) compresses to a Neuwirth
surface. Examples of spanning pre-essential surfaces are given in Exam-
ples 3.3 and 3.4.

Remark 3.2. A pre-essential surface must have an odd number of bound-
ary curves and their slope is an even rational number. The reason for this
is that if we attach an annulus along the boundary torus to two adjacent
boundary curves of a pre-essential surface, then we can obtain a new non-
orientable surface with two fewer boundary components. Since there are no
closed embedded non-orientable surfaces in S3, it immediately follows that
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Figure 18: A regular neighbourhood of a checkerboard surface for 10128 =
M(3/7,−1/2, 1/3).

Figure 19: 10128 on a genus 4 closed surface of boundary slope 16.

there must be an odd number of boundary curves. Reducing to one bound-
ary curve, we see that the boundary slope must be even since it is zero in
homology with coefficients in Z2.

3.2. Examples of pre-essential surfaces

Example 3.3. 10128 bounds a pre-essential checkerboard surface. Figure 18
shows a regular neighbourhood of a checkerboard surface for 10128 = M(3/7,
−1/2, 1/3).

After twisting the right-hand half, a compressing disk appears in the
outside region as in figure 19.

By compressing the boundary of a regular neighbourhood of the checker-
board surface, we can obtain a Neuwirth surface for 10128. Therefore, a
checkerboard surface for a Montesinos knot M(3/7,−1/2, 1/3) is pre-
essential. Similarly, we can observe that a (−2, 3, 3)-pretzel knot, equiva-
lently the (3, 4)-torus knot, bounds a pre-essential checkerboard surface.
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Figure 20: 10139 on a genus 4 closed surface.

Figure 21: 10139 on a genus 4 closed surface.

Example 3.4. 10139 bounds a two-pre-essential checkerboard surface,
namely, the boundary of a regular neighbourhood of the checkerboard sur-
face becomes essential after twice compressions. Let F be a checkerboard
surface for 10139 = M(1/3,−3/4, 1/3) and V1 be a regular neighbourhood
of F as in figure 20. Put S = ∂V1 and V2 = S3 − intV1. Then, similarly to
the case of 10128, there exists a compressing disk A for S − K in V2 whose
boundary is denoted by a.

After compressing S along A, we obtain a genus 3 closed surface S′

which separates S3 into V ′
1 and V ′

2 respectively. Then, there exists a second
compressing disk B for S′ − K in V ′

1 whose boundary is denoted by b. We
remark that this compressing disk B cannot be found in the original pair
(S, K), however it appears after isotoping a portion of K as in figure 21.
This isotopy can be done by sliding a portion of K along the compressing
disk A in S ∪ A.

After compressing S along the two disks A and B, we obtain a genus 2
closed surface which is a regular neighbourhood of a non-orientable, alge-
braically incompressible and boundary incompressible spanning surface F ′

as in figure 22.
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Figure 22: A non-orientable, algebraically incompressible and boundary
incompressible spanning surface F ′ for 10139.

3.3. Pre-essential surfaces and algebraic boundary
incompressibility

A convenient criterion for a surface to be pre-essential is given by the fol-
lowing result.

Lemma 3.5. Suppose (S3, K) is a knot. A compact properly embedded non-
orientable surface S for K is pre-essential if S is algebraically boundary
incompressible.

Proof. Assume that S is a compact properly embedded non-orientable sur-
face in E(K) which is algebraically boundary incompressible. There are two
possibilities. If a series of compressions of ∂N(S) results in a properly embed-
ded orientable incompressible and boundary incompressible surface F for K
then S is pre-essential and we are done. So we conclude that there must
be a collection of compressions of ∂N(S) which produces only trivial com-
ponents. Such components must be either two-spheres or boundary parallel
annuli. Then it is easy to see there must be at least one annulus component
after the compressions. Consequently, there is an essential arc λ on such an
annulus which is homotopic into ∂E(K) keeping its ends fixed. But then
λ is also an essential arc on ∂N(S) which is homotopic into ∂E(K) imply-
ing that S is not algebraically boundary incompressible. So this completes
the proof. �

We next show that if a knot has a pre-essential surface at a non-longitude
boundary slope, then it has a geometrically incompressible and boundary
incompressible pre-essential surface.
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Lemma 3.6. Suppose that a knot (S3, K) has a pre-essential surface S
at a non-longitude boundary slope. Then the knot admits a geometrically
incompressible and geometrically boundary incompressible pre-essential sur-
face S0 with the same boundary slope as S. Moreover, S0 can be chosen to
be algebraically boundary incompressible.

Proof. Let F be the properly embedded, orientable, incompressible and
boundary incompressible surface obtained by compressing ∂N(S). Suppose
that compressing disks D1, D2, . . . , Dk are used to transform ∂N(S) to
F . Let F1, F2, . . . , Fk = F be the sequence of surfaces obtained by these
compressions. (Any closed components of these surfaces can be discarded).
Clearly D1 must be on the side of ∂N(S) away from S. However after several
compressions, we may reach a compression disk Dj for Fj−1 which is on the
same side as S and in fact which may meet S. However using a sequence of
innermost disks of intersection of Dj with S, we can geometrically compress
S to a new compact properly embedded non-orientable surface S′ that is
disjoint from both Fj−1 and the compressing disk Dj , and hence also from
Fj . (Note that compressions of S cannot produce an orientable surface, since
the boundary slope of S is not a longitude). So by repeatedly changing S
by compressions, we eventually obtain a new compact properly embedded
non-orientable surface S∗ which is disjoint from F .

Next, if we geometrically compress S∗, then this can be achieved in the
complement of F , since any compressing disk for S∗ can be isotoped off of
F . Then since the boundary slope of S∗ is not a longitude, after a finite
number of steps we end up with a non-orientable geometrically incompress-
ible surface S0 with the same boundary curve as S and which is disjoint
from F . Consider next a singular boundary compression of S0. This is an
immersed disk with one boundary arc on S0 and one boundary arc γ on
∂N(K). By making the map of the disk transverse to F , we can assume
that the inverse image of F is a collection of arcs A with ends on γ and sim-
ple closed curves. The latter loops can be removed by homotoping subdisks
off F , leaving only arcs.

If an innermost arc of A has image which is homotopic into ∂F , then
the subdisk it cuts off has image which can be homotoped off F . But since
F has no non-trivial boundary compressions, by repeating this step for all
the arcs of A, we eventually obtain a new immersed boundary compression
disk which is disjoint from F . But this is impossible, since the arc γ of
the boundary compression disk must run from one side of ∂S0 to the other
side along ∂N(K). This completes the proof that S0 is geometrically incom-
pressible and geometrically boundary incompressible, since it is algebraically
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boundary incompressible. Finally since S0 is also algebraically boundary
incompressible, it is pre-essential by Lemma 3.5. �

Putting together Lemmas 3.5 and 3.6, we have the following theorem.

Theorem 3.7. Let (S3, K) be a knot and assume that the boundary slope
r is not longitudinal. Then the following conditions are equivalent.

(1) There exists a pre-essential surface S with boundary slope r.

(2) There exists an algebraically boundary incompressible non-orientable
surface S0 with boundary slope r.

Moreover we can also assume that S0 is geometrically incompressible (and
geometrically boundary incompressible).

3.4. Pre-essential surfaces and a homological property

The following results Theorems 3.9 and 3.12 give criteria producing an
essential surface at an even boundary slope and the Neuwirth conjecture
respectively, using a homological argument. We first give a key lemma required
for both proofs.

Lemma 3.8. Suppose that (S3, K) is a non-trivial knot and X is a con-
nected two-subcomplex of a triangulation T of E(K). Assume that X ∩
∂E(K) = C is a non-empty collection of disjoint simple closed curves, all at
a non-zero rational even boundary slope and the mapping induced by inclu-
sion H1(X, Z2) → H1(E(K), Z2) has image zero. Then there is a properly
embedded compact connected non-orientable surface F which is disjoint from
X and meets ∂E(K) at a collection of simple closed curves C′ with the same
boundary slope as the loops of C. Moreover if X is non-separating, then the
number of curves in C′ is at most the number in C. If X is separating, the
number of curves in C′ is at most half the number in C.

Proof. See [19] for a discussion of basic concepts in normal surface theory.
We use a method from [18]. As X is a subcomplex of the triangulation T ,

the vertices and edges of X are in the one-skeleton T 1 of T . Take a maximal
tree in each loop of X ∩ ∂E(K) = C. Extend this forest to a maximal tree in
the 1-skeleton of X. Next extend this to a maximal tree in the one-skeleton
of X ∪ ∂E(K). Finally, extend this to a maximal tree T in T 1. Note that
T ∩ ∂E(K) is a maximal forest in the one-skeleton of ∂E(K), and every tree
in this forest contains all except one of the edges of a loop in C.
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Figure 23: Labelling edges of a triangulation T .

Now each edge E of T \ T can be labelled by either 0 or 1 depending on
whether the cycle defined by connecting the ends of E along a path in T is 0
or 1 in H1(E(K), Z2) = Z2. We also label all the edges in T by 0. It is easy
to see that every face of T is then labelled either by all edges 0 or two edges
1 and one edge 0 since the sum of the labels must be 0 in Z2. Consequently
each tetrahedron has all edges labelled 0, or three edges at a common vertex
labelled 1 and the other three edges in a common face labelled 0, or two
opposite edges labelled 0 and the other four edges labelled 1 (figure 23). In
the first case, we choose the empty surface inside the tetrahedron, in the
second a triangular normal disk with one corner on each edge labelled 1
and in the third case a quadrilateral normal disk with one corner on each
edge labelled 1. See figure 11. Doing this for every tetrahedron in T gives a
properly embedded normal surface F which is clearly non-empty.

We claim that F is connected, disjoint from X and non-orientable, and
has a family of boundary curves C′ satisfying the conditions in the theorem.
This will complete the proof. First of all, note that any component of F is
non-separating, since by definition, an edge containing a corner of a normal
disk of F meets F in one point and the ends can be connected along T in the
complement of F . Hence we see that F cannot have any closed components
since there are no closed non-separating surfaces in S3. Next, F ∩ X = ∅.
For by assumption, the map H1(X, Z2) → H1(E(K), Z2) has image zero.
Hence any edge E of T \ T which is in X has label 0, since T ∩ X consists
of a maximal tree in X and all these edges are also labelled 0. But then all
the normal disks of F are disjoint from all the edges and hence triangular
faces of the subcomplex X. It now follows immediately that F ∩ X = ∅.

The next step is to show that F has a collection of boundary curves
C′ parallel to the loops of C. Once this is established, it follows that the
components of F must be non-orientable, because the boundary slope of the
loops of C is not a longitude and the components of F are non-separating.
The labels of the edges of C are all 0 since all these edges are in X. There
must be edges labelled 1 in ∂E(K) since H1(∂E(K), Z2) → H1(E(K), Z2)
is onto. Hence we see that ∂F �= ∅, and that each component C of ∂F is
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non-separating and disjoint from the loops of X ∩ ∂E(K) by the previous
argument. Every component or set of components of F has an odd number of
boundary components, since otherwise pairs of boundary components could
be connected by annuli in ∂E(K) producing a closed non-separating surface
in S3, a contradiction. Hence F is connected.

Finally, we want to bound the number of curves in ∂F = C′. Recall that
the maximal tree T contains a forest F of edges in ∂E(K) with the property
that each tree in F contains all the edges except one of a loop C of C. We
claim this implies that there cannot be two parallel edges of ∂F in any
annulus component of ∂E(K) \ C. Deducing the bound on the number of
curves in ∂F is then easy.

Suppose on the contrary to the claim that there are parallel curves C, C ′

of ∂F in an annulus component A of ∂E(K) \ C. All the edges of T meeting
C ∪ C ′ are labelled 1 by construction. Hence none of these edges are in the
forest F ⊂ T . The trees of the forest meet the annulus A in subtrees T1, T2

where T1 (respectively T2) contains all the edges except one of the boundary
component C1 (respectively C2) of A, where C1 ∪ C2 = ∂A. But then we see
that both the trees T1, T2 cannot contain any of the edges which cross C, C ′

since the edges in the trees are labelled 0. Hence it is obvious that the forest
F is not maximal, since it will not reach any vertices of ∂E(K) trapped
between C, C ′ in A. This contradiction establishes the claim.

To complete the bound, if X is non-separating, since there is at most one
curve of ∂F in any annulus of ∂E(K) \ C, the number of curves in ∂F = C′

is at most the number of curves in X ∩ ∂E(K) = C. If X is separating, then
since F is on one side of X, we see that there is at most one curve of ∂F in
any annulus of ∂E(K) \ C on the same side of X as F , i.e., half of all the
annuli. So this gives the required bounds and completes the proof. �

Theorem 3.9. Suppose that (S3, K) is a non-trivial knot. Then K has
a pre-essential surface at a non-longitudinal boundary slope if and only if
K has a properly embedded orientable incompressible and boundary incom-
pressible surface G at an even slope, so that the inclusion H1(G, Z2) →
H1(E(K), Z2) has image zero. Moreover if a surface G can be found with
two boundary curves, then the pre-essential surface can be chosen with a
single boundary curve (i.e., a quasi-spanning surface) and vice versa.

Proof. If K has a pre-essential surface S, then by definition there is a prop-
erly embedded orientable, incompressible and boundary incompressible sur-
face G at the boundary slope of S. Note that the surface G is disjoint from a
compact non-orientable properly embedded surface S0 by Lemma 3.6. Hence
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every loop C on G is disjoint from S0 and so the homology class of C is zero
in H1(E(K), Z2) since the unique non-zero class of H1(E(K), Z2) is dual to
the homology class [S0] in H2(E(K), ∂E(K), Z2). It is obvious that if S has
a single boundary curve then G has two boundary curves.

Conversely suppose there is a properly embedded orientable
incompressible and boundary incompressible surface G at an even boundary
slope, with the property that H1(G, Z2) → H1(E(K), Z2) has image zero.
Using Lemma 3.8, we can construct a properly embedded non-orientable
surface S satisfying S ∩ G = ∅, since H1(G, Z2) → H1(E(K), Z2) has image
zero. So we conclude that there is a compact properly embedded non-
orientable surface S in E(K) which is disjoint from G. Note that S has
a single boundary curve if G has two boundary curves.

But now it is easy to deduce that S is pre-essential. As in Lemma 3.5, we
can perform a series of compressions of ∂N(S) to obtain a new incompress-
ible surface S0 which is disjoint from G. Next, any boundary compression of
S0 can be isotoped off of G, as in the proof of Lemma 3.5. It is easy to see
that there cannot be such a boundary compression of S0 disjoint from G,
since the boundary curves of S0 and G are parallel. Hence S0 is incompress-
ible and boundary incompressible and we conclude that S is pre-essential as
required. �

Remark 3.10. Theorem 3.9 shows that the even boundary slope conjecture
is very closely related to the existence of a pre-essential surface. If a knot
has a pre-essential surface at a non-longitudinal slope, then it satisfies the
even boundary slope conjecture and the additional assumption about Z2

homology implies the converse statement.

Example 3.11. A nice class of examples is the (p, q)-torus knots Kp,q.
These knots all satisfy the Neuwirth conjecture with Neuwirth surface given
by an essential annulus. Since the boundary slope of an essential annulus
for Kp,q is pq, it follows that the boundary slope of the annulus is even if
one of p, q are even and is odd if both p, q are odd. We can therefore apply
Theorem 3.9 to deduce that even torus knots have pre-essential surfaces,
since it is obvious that the annulus has image zero in Z2 homology.

It is also not difficult to show that the odd torus knots do not have
pre-essential surfaces. One way of proving this is to observe that if there was
such a surface, then there would have to be a properly embedded orientable
incompressible and boundary incompressible surface at an even boundary
slope, by Lemma 3.5. But torus knots have no orientable incompressible sur-
faces other than annuli and the unique minimal genus Seifert surfaces, which
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have longitudinal boundary slopes. So we conclude that the only separating
essential surfaces are annuli and so no pre-essential surface is possible in the
odd case.

3.5. Pre-essential surfaces and closed surfaces

In this subsection, we show that for large knots, the Neuwirth conjecture is
satisfied if a closed incompressible surface can be found in the knot comple-
ment with suitable homological properties.

Theorem 3.12. Suppose that (S3, K) is a knot and there is an embedded
closed incompressible surface Σ in E(K). Suppose that i : Σ → E(K) is the
inclusion map and the induced map i∗ : H1(Σ, Z) → H1(E(K), Z) has non-
zero image, but the induced map ĩ∗ : H1(Σ, Z2) → H1(E(K), Z2) has zero
image. Then K bounds a pre-essential surface and satisfies the Neuwirth
conjecture.

Proof. The first step is to construct a properly embedded orientable incom-
pressible and boundary incompressible surface S with the property that
∂S ⊂ ∂E(K) ∪ Σ and int(S) ∩ Σ = ∅. We also require that the boundary
slope of S ∩ ∂E(K) is a non-zero even integer.

Consider the three-manifold M obtained by splitting E(K) open along
Σ and discarding the component P that only has boundary given by Σ.
Hence ∂M = ∂E(K) ∪ Σ. Let W1, W2 be the images of j∗ : H1(∂E(K), Q) →
H1(M, Q) and of k∗ : H1(Σ, Q) → H1(M, Q) respectively, where j, k are the
inclusion maps. Using the Mayer–Vietoris sequence applied to the decom-
position E(K) = M ∪ P , we see that the rank of H1(M, Q) is g + 1 where g
is the genus of Σ.

There are two possibilities for the rank of W1, namely 1, 2. In the former
case, as is well known we could construct an orientable spanning surface
Σ∗ in M with one essential boundary curve on ∂E(K), using e.g., the
Stallings argument [32]. (See the next paragraph for more details on this
technique). But then Σ∗ would be an orientable spanning surface for K and
hence would have longitudinal boundary slope. But by the assumption that
i∗ : H1(Σ, Z) → H1(E(K), Z) has non-zero image, again using the Mayer–
Vietoris sequence, we see that W2 must contain a non-zero multiple of the
homology class of the meridian [C], which is homologically dual to the rel-
ative homology class of Σ∗. This is a contradiction since Σ∗ is disjoint from
Σ. We conclude that the rank of W1 is 2.
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On the other hand, the assumption that ĩ∗ : H1(Σ, Z2) → H1(E(K), Z2)
has zero image, implies that any multiple of the homology class of the merid-
ian [C] contained in W2 must be even.

Next, we can construct a map f : M → S1 using the cohomology class
in H1(M, Z) of the meridian C. Making f transverse to a base point x0 ∈
S1, we get that f−1(x0) is a properly embedded orientable surface S′ with
∂S′ ∩ ∂E(K) = C ′. We can surger the map f as in the classical method of
Stallings [1, 32]. After a finite number of homotopies of f , the result is that
S′ is replaced by an incompressible and boundary incompressible surface,
which still satisfies ∂S′ ∩ ∂E(K) = C ′. We again denote this surface by S′.
Notice that since W2 contains an even multiple of the homology class of the
meridian [C], we see that S′ ∩ Σ �= ∅. For by the same argument as in the
previous paragraph, if S′ ∩ Σ = ∅, then the two-chain carried by S′ would
have non-zero intersection number with [C], which gives a contradiction.
But then the sum of the homology classes of the loops of S′ ∩ Σ equals [C ′]
in H1(M, Z). This shows that W2 contains a subgroup of rank 2, with basis
consisting of [C ′] and a non-zero even multiple m[C] of [C].

We can now complete the construction of S. Since W1, W2 both contain
the homology class m[C] + [C ′] there is a two-chain c∗ with boundary given
by curves on ∂E(K) and Σ which represent m[C] + [C ′]. We can then build
a new cohomology class in H1(M, Z) which is dual to this chain. Construct a
new map f∗ : M → S1 using this cohomology class, arranging that f∗−1(x0)
is a properly embedded orientable surface S with ∂S ∩ ∂E(K) = C∗, where
C∗ has slope m[C] + [C ′]. This surface also has some boundary curves on
Σ. By surgering the map f∗, we can homotope f∗ until the inverse image
f∗−1(x0) is incompressible and boundary incompressible. So this completes
the construction of S.

To finish the proof, we use Lemma 3.8. Namely we build a pre-essential
surface S′ which is disjoint from S. Consider the homomorphism α : H1(M,
Z2) → H1(E(K), Z2) = Z2 induced by the inclusion map of M ⊂ E(K).
Clearly kernel(α) contains all the homology classes of loops in S and in
Σ. Therefore we can choose X = S ∪ Σ and apply Lemma 3.8 giving a com-
pact properly embedded non-orientable surface S′ with a connected essential
boundary disjoint from X. It is easy to see that S′ is pre-essential. For any
possibly singular boundary compression of S′ can be pulled off the incom-
pressible surface Σ and then off the incompressible and boundary incom-
pressible surface S.

The final step is to compress ∂N(S′). Note that this can be done in the
complement of S ∪ Σ but we do not actually need this. We end up with a
properly embedded incompressible and boundary incompressible surface F
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with two boundary curves at non-zero even integer boundary slope. So this
implies the knot satisfies the Neuwirth conjecture. �

Remark 3.13. In [26], it is shown that if (S3, K) is a large knot and
it contains a closed embedded incompressible surface Σ so that the image
H1(Σ, Z) → H1(E(K), Z) is zero, then there is a Seifert surface F for K
disjoint from Σ. Conversely if a knot (S3, K) has a Seifert surface F which
is not free, then there is a closed embedded incompressible surface Σ disjoint
from F with the property that H1(Σ, Z) → H1(E(K), Z) is zero. The method
of Theorem 3.12 gives a similar result for non-orientable spanning surfaces.

Example 3.14. We can construct, as follows, many examples of knots
(S3, K) with embedded incompressible surfaces Σ, satisfying the image of
H1(Σ, Z2)→H1(E(K), Z2) is zero but the image of H1(Σ, Z)→H1(E(K), Z)
is non-zero. Construct a knotted handlebody Y in S3, i.e., an embedding
so that S3 \ Y = M is a three-manifold with incompressible boundary Σ =
∂Y . Choose an embedded knot K ⊂ Y with the following three properties.
Firstly, K is disk busting in Y , i.e., meets every compressing disk in Y .
Secondly, the induced map by inclusion H1(K, Z2) → H1(Y, Z2) has image
zero. Finally, the inclusion induces a map H1(K, Z) → H1(Y, Z) with non-
zero image. Then it is easy to see that Σ is a closed incompressible surface
in E(K) satisfying the required properties as in Theorem 3.12. Note that
there are many such knots which are parallel into Σ, i.e., are embedded in
Y so that the knot is isotopic into Σ = ∂Y .

4. Degree one maps

Definition 4.1. A degree one map φ between knots (S3, K) → (S3, K ′) is
a continuous proper map between knot complements E(K) → E(K ′) which
induces an isomorphism H3(E(K), ∂E(K)) → H3(E(K ′), ∂E(K ′)).

Theorem 4.2. If there exists a degree one map (S3, K) → (S3, K ′) and
K ′ satisfies the Neuwirth conjecture, then K also satisfies the Neuwirth
conjecture.

Proof. We follow the method of surgering maps as in Theorem 3.12. Choose
a Neuwirth surface F ′ for the knot K ′ and assume that φ is a degree one
map (S3, K) → (S3, K ′). We first homotope φ so that it is transverse to F ′.
We can also assume after a homotopy that φ restricts to a homeomorphism
∂E(K) → ∂E(K ′) since it is easy to check that the induced map on the
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boundary tori is degree one. Then the inverse image F0 of F ′ under φ is a
properly embedded compact orientable surface with two boundary curves,
which have the same boundary slope as F , since as is well known, a degree
one map maps the longitude, meridian pair for K to the longitude, meridian
pair for K ′. Although F0 need not be connected, it must have a connected
component F1 containing the two boundary curves. For suppose there are
two components F2, F3 each with one boundary curve. The map φ restricted
to F2 gives an induced map H1(F2) → H1(F ′) which maps the class [∂F2] =
0 in H1(F2) to a non-zero class in H1(F ′), which is of the form [C] where C
is one of the components of ∂F ′. This is a contradiction.

If F1 is incompressible and boundary incompressible, it is clearly a
Neuwirth surface for K. Since F1 has two boundary components, if it is
boundary compressible then it is compressible. Choose a compressing disk
D for F . We can now perform Stallings technique of surgering the map φ.
Namely a homotopy of φ can be performed so that the inverse image of F ′

is the result of compressing F along D. After a finite number of surgeries,
we must end up with an incompressible component F ∗ of φ−1(F ′) which
has the same boundary as F1. But then F ∗ is incompressible and boundary
incompressible and hence is the required Neuwirth surface for K. �

Corollary 4.3. If there exists a degree one map (S3, K) → (S3, K ′) and
K ′ has a pre-essential surface, then K also has a pre-essential surface.

Proof. Suppose that S′ is a pre-essential surface for K ′. By definition, if
G′ is the boundary of N(S′) in E(K ′), then compressing G′ produces a
properly embedded orientable incompressible and boundary incompressible
surface F ′ for K ′. Applying Theorem 4.2, we see that the degree one map φ :
(S3, K) → (S3, K ′) can be homotoped until the inverse image of F ′ contains
a component which is a properly embedded orientable incompressible and
boundary incompressible surface F for K.

Now it is easy to also arrange that the inverse image of S′ contains a
non-orientable quasi-spanning surface S for K. In fact, recall from the proof
of Theorem 4.2, φ can be assumed to restrict to a homeomorphism between
the peripheral tori preserving the longitude, meridian pair. Therefore, the
inverse image of S′ will contain exactly one boundary curve at the same
slope as that of S′. Hence if the boundary slope of S′ is not the longitude,
then S must be a non-orientable surface. But then S is disjoint from F and
so if we compress the boundary of N(S) in E(K), all the compressions can
be isotoped off F . We see that S is pre-essential, since compressing ∂N(S)
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in E(K) will produce a properly embedded orientable incompressible and
boundary incompressible surface (not necessarily the same as F ).

Finally in the case that the pre-essential surface S′ has longitudinal
boundary slope, then the inverse image must still contain a non-orientable
spanning surface S. For the map induced by φ from S′ to S must have degree
one, so that the induced map H2(S′, ∂S′) → H2(S, ∂S) is an isomorphism.
But this is impossible if S is non-orientable and S′ is orientable. So this
completes the proof. �

Corollary 4.4. Suppose a knot K satisfies the Neuwirth conjecture or has a
pre-essential surface, respectively. Then any satellite knot K∗ obtained from
K and any sum K#K ′ satisfy the Neuwirth conjecture or has a pre-essential
surface, respectively.

Proof. By Theorem 4.2 together with the fact that there is clearly a degree
one map from a satellite knot K∗ to the knot K, if K satisfies the Neuwirth
conjecture then so does K∗. Similarly by Corollary 4.3, if K has a pre-
essential surface then so does the satellite knot K∗ using the degree one
map K∗ → K.

The argument for a sum K#K ′ is similar. We just observe that there is
a degree one map K#K ′ → K. �

It is a fundamental problem whether a topological invariant becomes
“smaller” under a degree one map between knots ([35, Question 3.1]). It is
known that the rank of the fundamental group, Gromov’s simplicial volume,
the Haken number of incompressible surfaces, the knot genus, the homology
group and the Alexander polynomial behave in this way under degree one
maps. Theorem 4.5 is an addition to this list of invariants and it can be used
to show that there does not exist a degree one map between two knots, using
the calculation of boundary slopes of knots in [7, 11, 13] and recently [8].

Theorem 4.5. If there exists a degree one map (S3, K) → (S3, K ′), then
the set of boundary slopes of K includes the set of boundary slopes of K ′.

Proof. By the methods of Theorem 4.2 and Corollary 4.3, if there is a prop-
erly embedded orientable incompressible and boundary incompressible sur-
face with a given boundary slope in E(K ′), then by pulling this back under
the degree one map and performing surgery of the map, we obtain a similar
surface in E(K) with the same boundary slope. Hence the set of boundary
slopes of K ′ is a subset of the set of boundary slopes of K. �
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Remark 4.6. In [12, Corollary 2.5], a similar result was obtained for two-
bridge knots and epimorphisms.

Corollary 4.7. If there exists a degree one map (S3, K) → (S3, K ′) and K ′

satisfies the (strong) even boundary slope conjecture, then K also satisfies
the (strong) even boundary slope conjecture.

Corollary 4.8. If K satisfies the (strong) even boundary slope conjecture,
then any satellite knot or sum of a knot with K also satisfies the (strong)
even boundary slope conjecture.

Proof. The proof follows along the same lines as Corollary 4.4. �

Example 4.9. Take a two-component boundary link L ⊂ S3 with the prop-
erty that an arc λ between the two components of L can be found which
misses a choice of two disjoint spanning surfaces for the components of L.
We also assume that the handlebody Y = N(L ∪ λ) is knotted, i.e., ∂Y is
incompressible in S3 \ Y . Next pick any knot K embedded in Y which is
disk busting in Y . We claim that the knot (S3, K) has a degree one map
to the knot (S3, K ′) where the pair (Y ′, K ′) is homeomorphic to the pair
(Y, K) and Y ′ ⊂ S3 is unknotted.

The reason is that the two disjoint spanning surfaces in S3 \ Y can be
mapped to disks and then the closure of the complement of these spanning
surfaces mapped to a ball, so that there is a degree one map S3 \ Y → Y1

which is a genus 2 handlebody with meridian disks with the same boundaries
as the spanning surfaces. This map clearly extends to a degree one map
E(K) → E(K ′) as claimed.

5. Algorithms

We show that there are algorithms to decide if a knot satisfies all of the
different versions of the Neuwirth conjecture, except for the weakly strong
one. The key techniques are obtained from [17, 19].

Theorem 5.1. Suppose that (S3, K) is a knot. Then there are algorithms
to decide if K satisfies the Neuwirth conjecture, the strong Neuwirth conjec-
ture, the even boundary slope conjecture and the strong even boundary slope
conjecture.

Proof. We first consider the even and strong even boundary slope conjec-
tures. These follow from [17, 19] as follows. By Corollaries 3.9, 3.10 and 3.11
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of [19], there is an algorithm to construct the finite set of boundary slopes of
all embedded normal surfaces and hence in particular of properly embedded
orientable incompressible and boundary incompressible surfaces, which can
be isotoped to be normal. These occur as slopes of the finite set of vertices of
the projective solution space of normal surfaces in a one vertex triangulation
of E(K).

Next, by doubling E(K), we obtain a closed manifold 2E(K) with a one
vertex triangulation which is symmetric under the involution interchanging
the two copies of E(K). We claim that if there is an incompressible and
boundary incompressible orientable surface S at some slope α of K, then
there is a closed orientable incompressible surface S∗ at a vertex of the pro-
jective solution space of 2E(K), where S∗ ∩ E(K) is similarly incompressible
and boundary incompressible in E(K) and has the same slope α as S. Since
there are finitely many vertex solutions and these are constructible, each can
be checked to see if it has an even rational or even integer boundary slope of
intersections with the torus ∂E(K) and if it is incompressible, using stan-
dard techniques as discussed in either [17] or [19]. Hence the algorithm to
check if a knot satisfies the even or strong even boundary slope conjectures
is complete, once we have verified the claim above.

The proof of the claim is also straightforward. Given S, it is obvious that
2S is a closed orientable incompressible surface in 2E(K) meeting ∂E(K)
in essential curves at slope α. As usual, we can isotope 2S to be least weight
normal and then using [17] write a multiple of the normal class of 2S as a
sum of vertex solutions, each of which is incompressible. So it remains to
see why we can assume that these vertex solutions give at least one surface
of the form S∗ which meets ∂E(K) at slope α. But this follows by [19]. For
there, a key result is that if a properly embedded normal surface in E(K) at
slope α is written as a Haken sum, then the summands must either have the
same slope α or a unique associated slope β. The slope β has the property
that the sum of normal curves representing α and β represents a multiple
of the trivial curve in a one-vertex triangulation of a torus. But in our case,
it is easy to see that no associated slopes can occur since clearly our least
weight normal surface in the isotopy class of 2S has no trivial curves of
intersection with ∂E(K). Hence, we conclude that all the vertex solutions
obtained by decomposing a multiple of 2S are either disjoint from ∂E(K)
or meet ∂E(K) with slope α and there must be at least one surface S∗ of
the latter type. Note that S∗ ∩ E(K) is boundary incompressible, since it is
orientable and therefore a boundary compression would imply the existence
of a compression. So this completes the discussion of the even and strong
even boundary slope algorithms.
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We now consider the Neuwirth conjecture and strong Neuwirth
conjectures for a knot (S3, K). Suppose that there is an orientable incom-
pressible and boundary incompressible surface S ⊂ E(K) with ∂S consisting
of two curves with integer slope. The key idea is to use fundamental nor-
mal solutions rather than vertex normal solutions. Recall that a fundamental
normal surface F has the property that F cannot be written as a Haken sum
of two non-empty normal surfaces. Haken [10] proved that there is a finite
set of constructible fundamental normal surfaces in any closed triangulated
three-manifold.

The procedure is similar to the case of the boundary slope conjectures.
Namely given S, we can assume that 2S is a closed orientable incompressible
least weight surface in its isotopy class in 2E(K). Moreover, we still have
the key property that 2S ∩ ∂E(K) consists of two copies of an essential
curve with integer boundary slope. Now if we write 2S as a sum of least
weight fundamental normal surfaces, using [17], it follows that each of these
is again a closed orientable incompressible surface in 2E(K). But we can
also deduce from [19] that each of these summands either is disjoint from
∂E(K) or meets ∂E(K) in essential curves at the same slope as S. (As usual,
since all these surfaces are least weight, no trivial curves of intersection with
∂E(K) can occur). Moreover, it is easy to see using an elementary homology
argument on ∂E(K) that the total number of curves of intersection of all the
summands with ∂E(K) must be two. Hence we see that either one summand
has two such curves or two summands have one curve of intersection each.
The first case gives us the result required — by checking all fundamental
solutions we search for one with two intersection curves with ∂E(K) which is
incompressible. It then splits along ∂E(K) into two surfaces each of which
is a Neuwirth surface for K. In the second case, splitting a surface with
one curve of intersection with ∂E(K) gives two spanning surfaces for K
which must be either orientable Seifert surfaces, in which case the boundary
slope of S is longitudinal, or are non-orientable. In the latter case, as usual,
a boundary of a regular neighbourhood of such a surface is the required
Neuwirth surface. Hence, we have proved that there is an algorithm to verify
the Neuwirth conjecture in all cases except where the boundary slope is
longitudinal.

For the final case, suppose that the Neuwirth surface S we seek is longi-
tudinal. In this case, we have to complete the argument in case 2S splits as
a sum of fundamental solutions so that two of them have one curve of inter-
section with ∂E(K) and split along ∂E(K) into orientable Seifert surfaces
for K. It is easy to see that these two fundamental surfaces have differ-
ent normal classes, so that when they are combined by a Haken sum, a
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connected normal surface is obtained. But then there is a simple algorithm
to complete the problem. Namely search amongst fundamental normal sur-
faces in 2E(K) for ones which meet ∂E(K) in one longitudinal curve. For
pairs of such surfaces check whether their Haken sum is incompressible and
connected. Such a surface will then split along ∂E(K) into two longitudinal
Neuwirth surfaces as required.

It remains to discuss the strong Neuwirth conjecture. This is very sim-
ilar to the argument for the Neuwirth conjecture. Assume that S is a non-
orientable surface at an even integer boundary slope in E(K), so that
S′ = ∂N(S) is incompressible and boundary incompressible in E(K). By
[10], we can write [2S] = Σni[Fi] where F1, F2, . . . , Fk are fundamental nor-
mal surfaces in 2E(K) and ni are positive integers. By the arguments in the
previous paragraphs, it follows that there must be some i0 so that ni0 = 1
and Fi0 meets ∂E(K) in a single curve at the same boundary slope as S.
Moreover each Fi is disjoint from ∂E(K) for each i �= i0. (This follows since
the results of [19] on boundary slopes apply to normal surfaces, not just
incompressible normal surfaces). We see that if Fi0 is split along ∂E(K),
the result is either non-orientable spanning surfaces at the same boundary
slope as S, or Seifert surfaces if the slope of S is longitudinal. However, if
all the surfaces Fi are orientable, then so is [2S], which is a contradiction.
On the other hand, each Fi, for i �= i0, is a closed surface in E(K) so must
be orientable. Hence we conclude that Fi0 must be non-orientable and must
split along ∂E(K) into at least one non-orientable spanning surface for K.

To complete the argument, we want to apply [17]. The equation [2S] =
Σni[Fi] implies [2S′] = 2[2S] = Σ2ni[Fi]. But then by [17], we deduce that all
the surfaces Fi are π1-injective and so in particular Fi0 is π1-injective. There-
fore ∂N(Fi0) meets E(K) in an incompressible and boundary incompressible
surface. So this shows that Fi0 ∩ E(K) is an essential non-orientable span-
ning surface for K. We can now verify the strong Neuwirth conjecture, by
searching amongst fundamental normal surfaces in 2E(K) for a solution Fi0

with the property that ∂N(Fi0) is incompressible in 2E(K) and Fi0 ∩ ∂E(K)
has even integer boundary slope. �
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