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Schoen–Yau–Gromov–Lawson theory and

isoparametric foliations

Zizhou Tang, Yuquan Xie and Wenjiao Yan

Motivated by the celebrated Schoen–Yau–Gromov–Lawson surgery
theory on metrics of positive scalar curvature, we construct a dou-
ble manifold associated with a minimal isoparametric hypersurface
in the unit sphere. The resulting double manifold carries a metric
of positive scalar curvature and an isoparametric foliation as well.
To investigate the topology of the double manifolds, we use
K-theory and the representation of the Clifford algebra for the
FKM-type, and determine completely the isotropy subgroups of
singular orbits for homogeneous case.

1. Introduction

One of the simplest invariants of a Riemannian manifold is its scalar curva-
ture function. Here, we say an n-dimensional manifold M carries a metric
of positive scalar curvature RM if RM ≥ 0 and RM (p) > 0 for some point
p ∈ M . Then a natural question to raise is “Which manifolds admit Rieman-
nian metrics of positive scalar curvature?” In recent decades, this subject
has been the focus of lively research. The first important contribution to this
subject was made by Lichnerowicz [14] in 1962, who showed that a compact
spin manifold with non-vanishing ̂A-genus cannot carry a Riemannian metric
of positive scalar curvature. Hitchin [11] generalized this result. More pre-
cisely, he used a ring homomorphism α, constructed by Milnor, from Ωspin

∗ ,
the spin cobordism ring, to KO−∗(pt), and proved that α(M) vanishes if
M carries a metric of positive scalar curvature. When dimM ≡ 0 (mod4),
α(M) can be identified with ̂A(M) (up to a factor), so this recovers the
result of Lichnerowicz. One surprising and beautiful result of this study
was that half of the exotic spheres in dimensions 8k + 1 and 8k + 2 cannot
carry metrics of positive scalar curvature. Another remarkable step toward
answering the question above was made when Schoen and Yau [20], and
independently, Gromov and Lawson [6] established the following “surgery
theorem” on metrics of positive scalar curvature:
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Theorem. Let X be a compact manifold which carries a Riemannian met-
ric of positive scalar curvature. Then any manifold which can be obtained
from X by performing surgeries in codimension ≥ 3 also carries a metric of
positive scalar curvature.

Inspired by Schoen–Yau–Gromov–Lawson’s surgery theory, we will con-
struct a new manifold with rich geometrical properties from a Riemannian
manifold with an embedding hypersurface. In particular, we implement this
construction on a unit sphere with a minimal isoparametric hypersurface,
finding that the new manifold admits not only complicated topology, but
also a metric of positive scalar curvature. Moreover the isoparametric folia-
tion is kept. Details of the construction are given in the following.

Given a compact, connected manifold Xn (n ≥ 3) without boundary. Let
Y n−1 ↪→ Xn be a connected embedding hypersurface with a trivial normal
bundle, and π0(X − Y ) �= 0, i.e., the complement of Y in X is not connected.
Then Y n−1 separates Xn into two components, say Xn

+ and Xn−, with the
same boundary Y n−1. (The assumption π0(X − Y ) �= 0 is necessary. For
example, T 2 − S1, removing a latitude circle from the torus, is connected.)
Since Y has a trivial normal bundle in X, we can choose a unit normal vector
field ξ on Y , which is an interior normal direction with respect to X+.

Define a continuous function r : Xn −→ R

x �→
{

dist(x, Y ), if x ∈ X+,

−dist(x, Y ), if x ∈ X−,

where dist(x, Y ) means the distance from x to Y . Clearly, X+ (X−) is just
the subset that r ≥ 0 (resp. r ≤ 0). Let Yr := {x ∈ X| r(x) = r} for |r| so
small that Yr is still an embedding hypersurface. We extend ξ to a unit
vector field in a neighborhood of Y such that ξ is normal to Yr.

From now on, without loss of generality, we only deal with Xn
+. Con-

cerning with the Riemannian product space Xn
+ × R with coordinates (x, t),

for a small number r̄ > 0, we can define a hypersurface Mn in Xn
+ × R as [6]

Mn := {(x, t) ∈ Xn
+ × R : (r(x), t) ∈ γ, r(x) ≤ r̄},

where γ is a curve in the (r, t)-plane as pictured below:

N : unit “exterior” normal vector field on M, sin θ := 〈N, ξ〉
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The curve γ begins at one end with a vertical line segment t = 0, r1 ≤
r ≤ r̄, and ends with a horizontal line segment r = r∞ > 0, with r∞ small
enough as we will require.

Now fix a point q = (x, t) ∈ M corresponding to (r, t) ∈ γ. Choose an
orthonormal basis e1, e2, . . . , en−1 of TxYr such that the shape operator Aξ is
expressed as Aξei = μi(r)ei for i = 1, . . . , n − 1. Then the associated princi-
pal curvatures of M at q are of the form λi = μi(r) sin θ for i = 1, . . . , n − 1.
As observed by Gromov–Lawson [6], the tangent vector of M ∩ (l × R) is
also a principal direction for the second fundamental form of M in Xn

+ × R,
where l is a geodesic ray in X+ emanating from Y . We denote this tan-
gent vector by en. Thus the nth principal curvature at q is λn := k, the
(nonnegative) curvature of γ at (r, t).

Look at the Gauss equation:

KM
ij = KX×R

ij + λiλj , 1 ≤ i, j ≤ n,

where KM
ij is the sectional curvature of M of the plane ei ∧ ej , and KX×R

ij is
the corresponding sectional curvature of X+ × R. Since the metric of X+ × R

is the product metric, we see,

KX×R

ij = KX
ij , 1 ≤ i, j ≤ n − 1,

KX×R

n,j = KX
ξ,j cos2 θ,

where KX is the sectional curvature of X+.
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It follows immediately that the scalar curvature of M with the induced
metric can be expressed as

(1.1) RM =
n
∑

i�=j

KM
ij = RX + 2A sin2 θ + 2kH(r) sin θ,

where

A :=
∑

i<j≤n−1

μi(r)μj(r) − RicX(ξ, ξ);

H(r) =
n−1
∑

i=1

μi(r), the mean curvature of Yr.

Remark 1.1. Since γ ends with a horizontal line segment, M has the stan-
dard product metric as t goes to infinity. This guarantees that we can glue
X+(resp. X−) smoothly in metric with a copy of itself along Y to get a new
manifold called the double of X+ (resp. X−), and denoted by D(X+)(resp.
D(X−)). The double of a manifold with boundary, as a topological concept,
appeared in 1930’s. Gromov–Lawson [7] studied the geometric property of
the double of a manifold, and showed an interesting theorem which states
that if X carries a metric of positive scalar curvature, and Y is a minimal
hypersurface, then the double manifold D(X+)(resp. D(X−)) also carries a
metric of positive scalar curvature. But in their construction of the double
manifold, they “bent” too much near the boundary of X+, inducing some
singularities or creases. However in our method, an explicit construction of
D(X+)(resp. D(X−)) with satisfactory properties is given.

Remark 1.2. Formula (1.1) is the expression of the scalar curvature of M
in X+ × R. It also holds in X− × R although ξ is the exterior normal vector
field of X−. Gromov and Lawson [6] studied the scalar curvature of M .
Their formula is expressed in form of the estimate of principal curvatures,
while ours is an explicit expression. Their main result on surgery is of course
correct although in their formula (1) [6] they lost a factor 2. In addition,
in (1′) they missed one item related to the second fundamental form of the
submanifold. But this mistake would result in the missing of the item H(r)
in our formula (1.1), which is, however, essential for our research. Rosenberg
and Stolz [19] modified Gromov–Lawson’s expression, but they also lost the
principal curvatures or the second fundamental form of the submanifold.

From now on, we will be concerned with Xn = Sn(1). Suppose that
Y n−1 is a compact minimal isoparametric hypersurface, i.e., a compact
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hypersurface with vanishing mean curvature and constant principal cur-
vatures μ1, μ2, . . . , μn−1 (cf. [4]). In fact, in every isoparametric family in
the unit sphere, there does exist one and only one minimal hypersurface
(cf. [8]). Recall an elegant result of Münzner [17] that the number g of dis-
tinct principal curvatures must be 1, 2, 3, 4 or 6; and the multiplicities
mi (i = 1, 2, . . . , g) of distinct principal curvatures satisfy mk = mk+2 (sub-
scripts mod g). We will denote them by m+ and m−, respectively. More
precisely, as it is well known that every isoparametric hypersurface in the
unit sphere corresponds to an isoparametric function f with image [−1, 1].
Denote the focal submanifolds by M+ := f−1(1) and M− := f−1(−1) so that
codim(M+) = m+ + 1, codim(M−) = m− + 1.

One of the main results of the present paper is:

Theorem 1.1. Let Y n−1 be a compact minimal isoparametric hypersurface
in Sn(1), n ≥ 3, which separates Sn into Sn

+ and Sn−. Then each of doubles
D(Sn

+) and D(Sn−) admits a metric of positive scalar curvature. Moreover,
there is still an isoparametric foliation in D(Sn

+) (or D(Sn−)).

Remark 1.3. As a direct result, we get the KO-characteristic numbers

α(D(Sn
+)) = 0, α(D(Sn

−)) = 0.

Furthermore, we have:

Proposition 1.1. D(Sn
+) (resp. D(Sn−)) is a π-manifold, i.e., a stably

parallelizable manifold. In particular, it is an orientable, spin manifold with
vanishing Stiefel–Whitney classes and Pontrjagin classes.

It is worth pointing out that the condition “D(Sn
+) is stably paral-

lelizable” does not imply the conclusion α(D(Sn
+)) = 0. For instance, as

Kervaire–Milnor (Theorem 3.1 in [13]) proved, every homotopy sphere is a
π-manifold. But as we stated before, there do exist some 8k + 1- and 8k + 2-
dimensional exotic spheres with non-vanishing KO-characteristic number α.

For isoparametric hypersurfaces in unit spheres, taking the different val-
ues of g into account, we know:

When g = 1, an isoparametric hypersurface must be a great or small
sphere. Thus the double construction is trivial, namely, D(Sn

+) ∼= Sn.
When g = 2, an isoparametric hypersurface must be a standard prod-

uct of two spheres Sk(r) × Sn−k−1(s) with r2 + s2 = 1. Thus D(Sn
+) ∼= Sk ×

Sn−k or Sk+1 × Sn−k−1.
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When g = 3, E. Cartan has classified the isoparametric hypersurfaces.
In fact, they are all homogeneous (see, for example, [4]).

When g = 4, except for the unknown case (m+, m−) = (7, 8) (or (8, 7)),
all the isoparametric hypersurfaces are either of FKM-type or homogeneous
(cf. [2, 3]).

When g = 6, all the isoparametric hypersurfaces must be homogeneous
(see, for example, [15]).

Given all these classifications, in order to study the properties of the
double manifold D(Sn

+), it suffices to consider the cases that Y is either
homogeneous or of FKM-type, except for the case (g, m+, m−) = (4, 7, 8).
Therefore, we divide our research into two parts, one is on the homogeneous
case, and the other is on the FKM-type.

We begin by recalling a well-known result that homogeneous hypersur-
faces in Sn are isoparametric since they have constant principal curvatures.
They have been characterized as principal orbits of the isotropy representa-
tion of rank two symmetric spaces, and are classified completely by Hsiang
and Lawson (cf. [12, 23]). From the corresponding cohomogeneity one action
on Sn with a certain slice representation of the normal disc, we derive a
cohomogeneity one action on D(Sn

+). In terms of the isotropy subgroup
K0 of the principal orbit and K± of the singular orbits (focal submani-
folds) M±, we classify D(Sn

+) in Section 3 with respect to the homogeneous
hypersurface Y .

In particular, we investigate D(S4
+) in the case (g, m+, m−) = (3, 1, 1),

finding an interesting phenomenon that D(S4
+) ∼= S2 × S2/σ, where σ is

an involution different from that of the oriented Grassmannian G2(R4) ∼=
S2 × S2/ ∼.

Next, we turn to the FKM-type. For every orthogonal representation of
the Clifford algebra Cm−1 on R

l, Ferus, Karcher and Münzner [5] constructed
a homogeneous polynomial F on R

2l. The level hypersurfaces of F |S2l−1

are isoparametric in S2l−1 with g = 4 and multiplicities of distinct princi-
pal curvatures (m+, m−, m+, m−) = (m, l − m − 1, m, l − m − 1). If m �≡ 0
(mod 4), F is determined by m and l up to a rigid motion of S2l−1; if,
however m ≡ 0 (mod 4), there are inequivalent representations of Cm−1

on R
l parameterized by an integer q, the index of the representation (cf.

[24]). In the second case, denote by M+(m, l, q), M−(m, l, q) the corre-
sponding focal submanifolds, respectively. According to Ferus et al. [5],
M+ has a trivial normal bundle, while M− is diffeomorphic to an Sl−1

bundle over Sm. Thus D(S2l−1
+ ) ∼= M+ × Sm+1. As for D(S2l−1

− ), a deli-
cate calculation of the topology on a sphere bundle over M− leads to the
following.
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Theorem 1.2. Given an odd prime p. If q1 �≡ ±q2 (mod p), then D(Sn−)
(m, l, q1) and D(Sn−)(m, l, q2) have different homotopy types.

As we claimed in Proposition 1.1, D(Sn
+) is a π-manifold with vanishing

Stiefel–Whitney classes and Pontrjagin classes. Without the aid of character-
istic classes, it is usually not easy to distinguish the homeomorphism classes.
Our Theorem 1.2 is established by using mod p cohomology operators.

2. Geometry of the double manifold D(Sn
+)

This section will be devoted to the proof of Theorem 1.1. We prefer to
prove this result by making use of fundamental properties of isoparametric
hypersurfaces and some straightforward verifications.

Let Y n−1 be a minimal isoparametric hypersurface in the unit sphere
Sn(1). It is well known that Y is a level hypersurface with vanishing mean
curvature of an isoparametric function f on Sn(1). By an isoparametric
function on Sn(1), we mean a function f : Sn(1) → R satisfying:

(2.1)

{

|∇f |2 = b(f),
�f = a(f),

where ∇f is the gradient of f , �f is the Laplacian of f , b is a smooth
function on R, and a is a continuous function on R (see [22], for an excellent
survey). We require that the isoparametric function is proper (cf. [9]) so that
both focal submanifolds have codimensions greater than 1.

Recall that an isoparametric hypersurface Y n−1 in Sn(1) has constant
principal curvatures, which we denote by μ1(0), μ2(0), . . . , μn−1(0) as before
corresponding to the unit normal vector field ξ = ∇f

|∇f | . A key reason for
choosing Y n−1 to be minimal isoparametric is that, as we will see, its induced
metric from Sn(1) has positive scalar curvature.

By Gauss equation, for a closed minimal hypersurface N in a unit sphere
Sn(1),

S = (n − 1)(n − 2) − RN ,

where S is square of the length of the second fundamental form. If, in addi-
tion, N is a minimal isoparametric hypersurface on Sn, Peng and Terng [18]
asserted that

S = (g − 1)(n − 1),

which implies RN ≥ 0, and “=” is achieved if and only if (m+, m−) = (1, 1)
since n − 1 = g

2(m+ + m−).
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It follows immediately that the minimal isoparametric hypersurface Y
has RY ≥ 0, H(0) =

∑n−1
i=1 μi(0) = 0, and S =

∑n−1
i=1 μ2

i (0) = (g − 1)(n − 1),
which imply that

2
n−1
∑

i<j

μiμj |Y = H(0)2 −
n−1
∑

i=1

μ2
i |Y = −(g − 1)(n − 1).

By definition in formula (1.1), we see A =
∑

i<j≤n−1 μiμj − (n − 1). In order
to simplify the calculation of RM , we set

a(r) := 2
n−1
∑

i<j

μiμj |Yr
− 2

n−1
∑

i<j

μiμj |Y = 2
n−1
∑

i<j

μiμj |Yr
+ (g − 1)(n − 1).

Since

lim
r→0

2
n−1
∑

i<j

μiμj |Yr
= lim

r→0

(

H(r)2 −
n−1
∑

i=1

μ2
i |Yr

)

= −(g − 1)(n − 1),

we have

(2.2) lim
r→0

a(r) = 0

In fact, according to the Bochner–Weitzenböck formula:

1
2
�|∇f |2 = |Hessf |2 + 〈∇f,∇(�f)〉 + Ric(∇f,∇f),

by virtue of the expression of Hessian of f (cf. [10]):

Hessf = diag
(

−
√

b(f)μ1, . . . ,−
√

b(f)μn−1, b
′(f)/2

)

,

with b(f) = g2(1 − f2) in formula (2.1) by the famous Cartan–Münzner
equations, we obtain

n−1
∑

i=1

μ2
i |Yr

=
(n − 1)(g − 1) − cf + (n − 1)f2

1 − f2
with c =

g2(m− − m+)
2

.

(2.3)
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Hence we can express H(r) explicitly as

(2.4) H(r) = (n − 1)
f |Yr

√

1 − f2|Yr

− c

g
√

1 − f2|Yr

.

It follows immediately that H(0) = 0 and H(r) > 0 for any r > 0.
Consequently, from the definition of a(r) and (2.3), (2.4), it follows that

a(r) = H2(r) −
n−1
∑

i=1

μ2
i |Yr

+ (g − 1)(n − 1)

(2.5)

= (g − 1)(n − 1) +
1

1 − f2
{(n − 1)2f2 − 2c

g
(n − 1)f +

c2

g2
− (n − 1)f2

+ cf − (g − 1)(n − 1)},

Substituting all these equalities in (1.1), we get immediately

RM |Yr
= n(n − 1) cos2 θ + (n − g − 1)(n − 1) sin2 θ + a(r) sin2 θ(2.6)

+ 2kH(r) sin θ

with H(r) and a(r) in (2.4), (2.5), respectively.
Since we have the dimension relation n − 1 = g

2(m+ + m−), it suffices to
analyze the following two cases for our destination.
(A): (m+, m−) = (1, 1).

This is just the case that n − g − 1 = 0. Since a(r) is identically 0 in this
case, (2.6) becomes

RM = n(n − 1) cos2 θ + 2kH(r) sin θ.

By controlling the “bending” angle of the curve γ, we can assume 0 ≤ k ≤ 1
2

so that RM |Yr
= n(n − 1) cos2 θ + 2kH(r) sin θ ≥ 0, and “=” is achieved if

and only if r = 0.
(B): Max{m+, m−} ≥ 2.

In this case, n − g − 1 > 0. For θ ∈ [0, π
2 ], it is easily seen that

Min{n(n − 1) cos2 θ + (n − g − 1)(n − 1) sin2 θ} = (n − g − 1)(n − 1),

thus by (2.6),

RM ≥ (n − g − 1)(n − 1) + a(r) sin2 θ + 2kH(r) sin θ.
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With the same assumption on k as in case (A), RM has a positive lower
bound.

Up to now, we changed only the metric near the minimal isoparametric
hypersurface Y along the curve γ into a product metric while preserving the
positive scalar curvature, as desired. In this way, gluing two copies of Sn

+, we
get the double manifold of positive scalar curvature. More importantly, there
is still an isoparametric foliation on D(Sn

+), remaining the same with that
in Sn(1) as r ≥ r1. In a neighborhood of Y with diameter 2r1, the principal
curvatures turn out to be μ1 cos θ, μ2 cos θ, . . . , μn−1 cos θ.

The proof is now complete. �

3. Topology of the double manifold D(Sn
+)

First of all, we compute the cohomology groups.

Proposition 3.1. Let the ring of coefficient R = Z if M+ and M− are both
orientable and R = Z2 otherwise. Then

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

H0(D(Sn
+)) = R,

H1(D(Sn
+)) = H1(M+),

Hq(D(Sn
+)) = Hq−1(M−) ⊕ Hq(M+), for 2 ≤ q ≤ n − 2

Hn−1(D(Sn
+)) = Hn−2(M−),

Hn(D(Sn
+)) = R.

For D(Sn−), analogous identities hold. �

Remark 3.1. By Morse theory, we see that if m+ > 1 (resp. m− > 1), then
M− (resp. M+) is orientable. In fact, we define a spherical distance function
on the focal submanifold M−.

Lp : M− −→ R

x �→ cos−1〈p, x〉,

where p belongs to the complement of M± in Sn. The Morse index theorem
states that the index of Lp at a non-degenerate critical point x equals the
number of focal points (counting multiplicities ) of (M−, x) on the short-
est geodesic segment from p to x. Immediately, we obtain, for example
when g = 4, the index of non-degenerate critical points are 0, m+, m+ + m−
and 2m+ + m−, respectively. Consequently, we have the cell decomposition
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M− = Sm+
⋃

em++m−
⋃

e2m++m− . Thus if m+ > 1, M− is simply connected.
Similar results hold for other values of g.

In order to prove Proposition 3.1, we recall a topological theorem of
Münzner (cf. [17]) stated as

Theorem. Let N be a compact connected hypersurface in Sn such that:

(a) Sn is divided into two manifolds B+ and B− with the same boundary
N .

(b) B+ (resp. B−) has the structure of a disc bundle over a compact man-
ifold M+ (resp. M−) of dimension n − 1 − m+ (resp. n − 1 − m−).

Let the ring of coefficient R = Z if M+ and M− are both orientable and
R = Z2, otherwise. Let ν = m+ + m−. Then

Hq(M±) =

⎧

⎪

⎨

⎪

⎩

R, for q ≡ 0(mod ν), 0 ≤ q < n − 1,

R, for q ≡ m∓(mod ν), 0 ≤ q < n − 1,

0, otherwise.

Further,

Hq(N) =

{

R, for q = 0, n − 1,

Hq(M+) ⊕ Hq(M−), for 1 ≤ q ≤ n − 2.

�

To complete the proof of Proposition 3.1, we observe that a minimal
isoparametric hypersurface Y in Sn satisfies the hypotheses of the previous
theorem, getting the cohomology groups Hq(M±), equivalently, Hq(Sn±).
Finally, by the Mayer–Vietoris sequence of (D(Sn

+), Sn
+, Sn

+), we arrive at
the conclusion immediately. �

Next, we give a proof of

Proposition 1.1. D(Sn
+) (resp. D(Sn−)) is a π-manifold, i.e., a stably par-

allelizable manifold. In particular, it is an orientable, spin manifold with
vanishing Stiefel–Whitney classes and Pontrjagin classes.

Suppose we are now given a (minimal) isoparametric hypersurface in Sn.
As Münzner asserted (cf. [4] p. 283), Sn

+ has the structure of a differential
disc bundle over M+. In fact, it is the normal disc bundle over M+. More
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precisely, we have

Bm++1 ↪→ Sn
+ = B(ν+)(3.1)
↓ π

M+

where ν+ is the normal bundle over M+, Bm++1 is the fiber disc.
Since Sn

+ has a metric, we can define a homeomorphism as:

Bn
1 �id Bn

2 −→ S(ν+ ⊕ 1)

e �−→
{

(e,
√

1 − |e|2), for e ∈ Bn
1 ,

(e,−√1 − |e|2), for e ∈ Bn
2 ,

where Bn
1 , Bn

2 are two copies of Sn
+ = B(ν+), S(ν+ ⊕ 1) is a sphere bundle

of the Whitney sum ν+ ⊕ 1, here 1 is a trivial line bundle over M+.

As a result, we get a new bundle

Sm++1 ↪→ D(Sn
+)

↓ ρ

M+

and a correspondence D(Sn
+) ∼= S(ν+ ⊕ 1). It follows immediately that

T (D(Sn
+)) ⊕ 1 ∼= T (S(ν+ ⊕ 1)) ⊕ 1

∼= ρ∗TM+ ⊕ ρ∗(ν+ ⊕ 1)
∼= ρ∗j∗+TSn ⊕ 1 ∼= (n + 1),

where j+ : M+ → Sn is an inclusion. In other words, D(Sn
+) is stably paral-

lelizable, i.e., a π-manifold. This completes the proof. �
As indicated in Introduction, we will be mainly concerned with the min-

imal isoparametric hypersurface Y in the following two cases: homogeneous
hypersurface and FKM-type.

3.1. Homogeneous hypersurface

Let Y be a homogeneous hypersurface in Sn, as Hsiang and Lawson [12]
showed: Y can be characterized as a principal orbit of the isotropy repre-
sentation of some rank two symmetric space U/K.
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To begin with, we provide a brief description of the corresponding rank
two symmetric spaces. Again, let g be the number of distinct principal cur-
vatures of the homogeneous hypersurface Y . As mentioned before, g can
only be 1, 2, 3, 4 or 6.

When g = 1, Y is a hypersphere in Sn, the corresponding rank two
symmetric space is

(S1 × SO(n + 1))/SO(n) = S1 × Sn.

When g = 2, Y is a Riemannian product of two spheres Sk(r) × Sn−k−1

(s) with r2 + s2 = 1, 1 ≤ k ≤ n − 2, the corresponding rank two symmetric
space is

(SO(k + 2) × SO(n − k + 1))/(SO(k + 1) × SO(n − k)) = Sk+1 × Sn−k.

When g = 3, Y is congruent to a tube of constant radius around the
Veronese embedding of real projective plane RP 2 into S4, or complex pro-
jective plane CP 2 into S7, or quaternionic projective plane HP 2 into S13,
or Cayley projective plane OP 2 into S25. The corresponding rank two sym-
metric spaces are

SU(3)/SO(3); SU(3) × SU(3)/SU(3); SU(6)/Sp(3); E6/F4.

When g = 4, Y is a principal orbit of the isotropy representation of

SO(5) × SO(5)/SO(5); SO(10)/U(5); E6/T · Spin(10);

or of two-plane Grassmannians

SO(k + 2)/SO(k) × SO(2) (k ≥ 3),
SU(k + 2)/S(U(k) × U(2)) (k ≥ 3),

Sp(k + 2)/Sp(k) × Sp(2) (k ≥ 2).

When g = 6, Y is a principal orbit of the isotropy representation of

G2/SO(4) or G2 × G2/G2.

Now let G be a closed subgroup of the isometry group of Sn acting on Sn

with cohomogeneity one. We equip the orbit space Sn/G with the quotient
topology relative to the canonical projection Sn → Sn/G. Since n > 1, Sn

is simply connected and compact, for topological reasons Sn/G must be
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homeomorphic to [−1, 1] and each singular orbit has codimension greater
than 1.

We denote the singular orbits corresponding to ±1 by M±, and their
isotropy subgroups by K±, respectively. Naturally, there is a diffeomorphism
M± ∼= G/K±. The other orbits are congruent to each other, and they are all
principal orbits. It makes sense to fix an orbit Y corresponding to a certain
value in (−1, 1) so that Y is minimal, and denote its isotropy subgroup by
K0. The existence of such Y is clear. Similarly, Y ∼= G/K0.

Based on the bundle structure of Sn
+ over M− and the following group

action of K±:

K± × (G × B
m++1
± ) −→ G × B

m++1
±

(k, g, x) �−→ (gk−1, k • x)

where • is a slice representation (for details, see for example, [1]), we decom-
pose Sn into

Sn = G ×K+ B
m++1
+ ∪Y G ×K− B

m−+1
− .

Next, by gluing two copies of Sn
+, we define a new action of the isotropy

group K+ on G × Sm++1:

K+ × (G × Sm++1) −→ G × Sm++1

(k, g, (x, t)) �−→ (gk−1, k � (x, t))

where k � (x, t) := (k • x, t), t = ±√1 − |x|2, (x, t) ∈ Sm++1.
Consequently, we have the diffeomorphism

D(Sn
+) ∼= G ×K+ Bm++1 ∪Y G ×K+ Bm++1 ∼= G × Sm++1/K+.

In conclusion, D(Sn
+) can be determined by K+ and its action on

G × Sm++1. Similarly, we can also express D(Sn−) in this way.
A series of delicate calculations lead us to a complete list of the isotropy

subgroups K0 and K± of homogeneous hypersurfaces and focal submanifolds
as follows. To the best of our knowledge, the determinations of K+ and K−
have not previously appeared in the literature. The main difficult occurred
in the calculation of exceptional Lie groups.

In the following, we first illustrate the calculations of K0, K+ and K−
in the case of the symmetric pair (E6, T · Spin(10)) with (g, m+, m−) =
(4, 6, 9), and then give an example of the case (SU(3), SO(3)) with
(g, m+, m−) = (3, 1, 1).
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Example 3.1. The calculation of K+, K− of the symmetric pair
(E6, T · Spin(10)) with (g, m+, m−) = (4, 6, 9).

At the beginning, we introduce some notations and operations on the
division Cayley algebra O, which is generated by {e0 = 1, e1, . . . , e7} and
satisfies

1) for i > 0, e2
i = −1;

2) for i, j > 0, i �= j, eiej = −ejei;

3) e1e2 = e4;

4) if eiej = ek for some i, j, k > 0, then ei+1ej+1 = ek+1 and e2ie2j = e2k

(subscripts mod 7).

Let M3(O) be the set of 3 × 3 matrices with entries in O, H3 the set of
Hermitian matrices in M3(O), namely,

H3 = {X ∈ M3(O)| tX = X},

where the conjugate of any element x =
∑7

i=0 xiei ∈ O is defined by

x = x0e0 −
7
∑

i=1

xiei.

In the following, we will always denote an element X ∈ H3 of the form

X = X(ξ, x) =

⎛

⎝

ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

⎞

⎠ , for ξi ∈ R, xi ∈ O

by

X = ξ1E1 + ξ2E2 + ξ3E3 + F1(x1) + F2(x2) + F3(x3).

The Jordan product, as a basic operation in H3, is a multiplication
defined by

X ◦ Y = 1
2(XY + Y X), for X, Y ∈ H3.

Usually, (H3, ◦) is called the exceptional Jordan algebra. Moreover, the trace
Tr(X), the inner product (X, Y ) and the determinant detX can be defined
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respectively by

Tr(X) = ξ1 + ξ2 + ξ3, for X = X(ξ, x),
(X, Y ) = Tr(X ◦ Y ),

det X = ξ1ξ2ξ3 + Re(x1x2x3) − ξ1|x1|2 − ξ2|x2|2 − ξ3|x3|2.

Let HC

3 = {X1 +
√−1X2 | X1, X2 ∈ H3} be the complexification of Jor-

dan algebra H3. In the same manner, we have the Jordan product, the trace,
the C-linear form ( , ) and the determinant in HC

3 . A Hermitian inner product
〈 , 〉 on HC

3 is given by

〈X, Y 〉 = (X, τY ), for X, Y ∈ HC

3 ,

where τ is the complex conjugate of HC

3 .
With all these notations, an equivalent definition of the group E6 can

be given by (cf. [25])

E6 = {α ∈ GL(HC

3 , C) | det(αX) = detX, 〈αX, αY 〉 = 〈X, Y 〉}.

Set

SH3 = {A ∈ M3(O)| tA = −A, Tr(A) = 0}.
As above, we denote an element A ∈ SH3 of the form

A =

⎛

⎝

a1 x3 −x2

−x3 a2 x1

x2 −x1 a3

⎞

⎠ , ai, xi ∈ O, ai = −ai, a1 + a2 + a3 = 0.

by

A = a1E1 + a2E2 + a3E3 + A1(x1) + A2(x2) + A3(x3).

Notice that [SH3,SH3] = SH3, [SH3,H3] = H3. Thus any A ∈ SH3

induces a map Ã : H3 → H3 expressed as

Ã(X) =
1
2
[A, X].

Let t′ be the subalgebra of gl(H3) generated by {Ã|A ∈ SH3}. Then t′ is
isomorphic to the (compact) Lie algebra of F4.
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Furthermore, observing that any X ∈ H3 also induces a map X̃ : H3 →
H3 defined by

X̃(Y ) = X ◦ Y, Y ∈ H3,

we set p′ = {X̃|X ∈ H3, Tr(X) = 0}, then the Lie algebra t′ +
√−1p′ is just

the (compact) Lie algebra of E6, denoted by e6. In the following discussions,
we will omit the symbol “∼” for simplicity.

Let d4 be the subalgebra of t′ generated by {ΣaiEi|ai ∈ O, ai = −ai,
Σai = 0}. Then for any D ∈ d4, X = X(ξ, x),

D

⎛

⎝

ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

⎞

⎠ =

⎛

⎝

0 D3x3 D2x2

D3x3 0 D1x1

D2x2 D1x1 0

⎞

⎠ ,

where D1, D2, D3 are elements of Lie algebra so(8) and satisfy the principle
of triality:

(D1x)y + x(D2y) = D3(xy), x, y ∈ O,

which implies that D2, D3 are uniquely determined by D1. Hence the map
defined by D �→ D1 is an isomorphism from d4 to so(8).

Furthermore, setting

Di = {Ai(x) | x ∈ O}, i = 1, 2, 3,

Ri = {Fi(x) | x ∈ O}, i = 1, 2, 3,

R0 = {ΣξiEi | ξi ∈ R, Σξi = 0},

we can decompose the Lie algebra e6 as

e6 = d4 + D1 + D2 + D3 +
√−1R0 +

√−1R1 +
√−1R2 +

√−1R3.

Since there is a transformation σ of HC

3 expressed as

σ

⎛

⎝

ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

⎞

⎠ =

⎛

⎝

ξ1 −x3 −x2

−x3 ξ2 x1

−x2 x1 ξ3

⎞

⎠ ,

(obviously, σ2 = id ), an involution γ of E6 can be naturally defined by
γ(α) = σασ, for α ∈ E6. Thus the decomposition of e6 corresponding to γ
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can be written as e6 = t + p, where

t = {δ ∈ e6 | σδ = δσ} = d4 + D1 +
√−1R0 +

√−1R1,

p = {δ ∈ e6 | σδ = −δσ} = D2 + D3 +
√−1R2 +

√−1R3.

Choosing a maximal Abelian subspace of p as h = {A2(λ1e0) +
√−1F2

(λ2e1) | λ1, λ2 ∈ R}, and denoting by Δ the set of restricted positive roots
with respect to h, we have

(3.2) e6 = m + h +
∑

λ∈Δ

{tλ + pλ},

where

m = {A ∈ t | [A, H] = 0, for H ∈ h},
tλ = {A ∈ t | ad(H)2A = −λ(H)2A, for H ∈ h},
pλ = {A ∈ p | ad(H)2A = −λ(H)2A, for H ∈ h}.

Set ẽi = e1ei, for i > 1 and Gij = Eij − Eji, for i, j = 0, 1, . . . , 7, where Eij

is the matrix with (i, j) entry 1 and all others 0. By a direct computation,
we can express m explicitly as

m = span{√−1(E1 − 2E2 + E3), D | D2 = Gij , i, j > 1} ∼= so(6) ⊕ R.

Moreover, we calculate tλ and pλ in (3.2) with respect to the root system
Δ, and list them in the following table.

Let K = {α ∈ E6 | ασ = σα}, which acts on p by the adjoint represen-
tation. The orbits can only be of the following three types:

1. If H0 ∈ h with λ1(H0) · λ2(H0) �= 0 and λ1(H0) �= ±λ2(H0), the Lie
algebra of the isotropy subgroup K0 at H0 is m and K0

∼= U(1) · Spin(6).
2. If H+ ∈ h with either λ1(H+) = 0 or λ2(H+) = 0. Without loss of

generality, assume λ2(H+) = 0. According to the previous table, the Lie
algebra of the isotropy subgroup K+ is m ⊕ kλ2

∼= so(7) ⊕ R. Then it is not
difficult to see that

K+
∼= U(1) · Spin(7).

3. If H− ∈ h with either λ1(H−) = λ2(H−) or λ1(H−) = −λ2(H−). With-
out loss of generality, assume λ1(H−) = λ2(H−). According to the previous
table, the Lie algebra t− of the isotropy subgroup K− is given by

t− = m + tμ + tμ/2, for μ = λ1 − λ2.
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Dimension λ ∈ Δ Basis of tλ Basis of pλ

6 λ1 D ∈ d4 : D2 = G0i,
i > 1

A2(ei) : i > 1

6 λ2 D ∈ d4 : D2 = G1i,
i > 1

√−1F2(ei) : i > 1

1 λ1 − λ2 D +
√−1(E1 − E3) :

D2 = G01

A2(e1) +
√−1F2(e0)

1 λ1 + λ2 D −√−1(E1 − E3) :
D2 = G01

A2(e1) −
√−1F2(e0)

A1(e0) −
√−1F1(e1) A3(e0) −

√−1F3(e1)
8 1

2(λ1 − λ2) A1(e1) +
√−1F1(e0) A3(e1) +

√−1F3(e0)
A1(ei) +

√−1F1(ẽi) :
i > 1

A3(ei) −
√−1F3(ẽi) :

i > 1
A1(e0) +

√−1F1(e1) A3(e0) +
√−1F3(e1)

8 1
2(λ1 + λ2) A1(e1) −

√−1F1(e0) A3(e1) −
√−1F3(e0)

A1(ei) −
√−1F1(ẽi) :

i > 1
A3(ei) +

√−1F3(ẽi) :
i > 1

Let V 10 be a ten-dimensional vector space defined by

V 10 =

⎧

⎨

⎩

⎛

⎝

0 0 0
0 ξ x
0 x −τ(ξ)

⎞

⎠ | ξ ∈ C, x ∈ O

⎫

⎬

⎭

⊂ HC

3 .

It is well known that K ∼= T 1 · Spin(10), and the representation φ : Spin
(10) → SO(V 10) is just the vector representation.

We finally introduce a complex structure J on V 10 as follows:

J

⎛

⎝

0 0 0
0 ξ x
0 x −τ(ξ)

⎞

⎠ =

⎛

⎝

0 0 0
0 −√−1ξ x · e1

0 x · e1 −√−1τ(ξ)

⎞

⎠ , for ξ ∈ C, x ∈ O.

By a direct computation, we find that elements of the subalgebra
[t−, t−] ⊂ so(10) commute with the complex structure J , specifically,
[t−, t−] ∼= su(5). Moreover, the center c(t−) ∼= R is not contained in so(10).
Therefore, we can conclude

t− = c(t−) ⊕ [t−, t−] ∼= R ⊕ su(5),
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and via the representation φ the corresponding isotropy subgroup is

K− ∼= S1 · SU(5),

where S1 is a group generated by the center c(t−).

Example 3.2. An explicit description of D(S4
+) with (g, m+, m−) =

(3, 1, 1).
Firstly, recall a result of Cartan that the isoparametric hypersurface

in this case must be a tube of constant radius over a standard Veronese
embedding of RP 2 into S4.

Let ν be the normal bundle of RP 2 ↪→ S4, which is non-orientable since
TRP

2 ⊕ ν = 4, a four-dimensional trivial bundle. Let η be the Hopf line
bundle over RP 2. It is well known that TRP 2 ⊕ 1 = 3η. Thus 3η ⊕ ν =
TRP 2 ⊕ 1 ⊕ ν = 5. Hence 4η ⊕ ν=5 ⊕ η.

Assertion 1. 4η ∼= 4.

It follows at once that ν ⊕ 4 = η ⊕ 5. Then we deduce by obstruction
theory that ν ⊕ 1 = η ⊕ 2, and thus D(S4

+) ∼= S(ν ⊕ 1) ∼= S(η ⊕ 2). Further-
more, we show

Assertion 2. D(S4
+) ∼= S2 × S2/σ, where σ is an involution.

Proof of Assertion 2. Again, let η be a Hopf line bundle over RPn, E(η) be
the total space of η, then

E(η) ∼= Sn × R

/

(x, t) ∼ (−x,−t),(3.3)

↓
Sn/x ∼ −x = RPn,

where x ∈ Sn, t ∈ R. This interpretation deduces that for x ∈ Sn, (t1, . . . ,
tp) ∈ R

p and (s1, . . . , sq) ∈ R
q,

Sn × R
p+q
/

(x, t1, . . . , tp, s1, . . . , sq) ∼ (−x, t1, . . . , tp,−s1, . . . ,−sq)
∼= E(p ⊕ qη)(3.4)
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In particular,

D(S4
+) ∼= S(η ⊕ 2) ∼= S2 × S2

/

(x, y1, y2, y3) ∼ (−x,−y1, y2, y3).

where x ∈ S2, (y1, y2, y3) ∈ S2. �

Assertion 1 should be well known. However, we would like to give an
interesting and simple proof.

Proof of Assertion 1. By (3.4), it suffices to define a point-wise isomor-
phism Φ

S2 × R
4
/

(x, t) ∼ (−x,−t) Φ−→ S2/Z2 × R
4(3.5)

↓ ↓
RP 2 id−→ RP 2

where R
4 is identified with the quaternions H, and x ∈ S2 = {x ∈ H | |x| =

1, Re x = 0}, t ∈ H.
Define Φ(x, t) := (x, xt). Obviously, Φ is well defined, and for a fixed x,

it is a linear isomorphism. �

It is worth remarking that D(S4
+) is not diffeomorphic to the oriented

Grassmannian

G2(R4) ∼= S2 × S2/(x, y) ∼ (−x,−y),

where x, y ∈ S2. To show this remark, firstly, recall that (cf. [21])

H∗(G2(R4); Z2) ∼= Z2[a1, a2]
/

a3
1 = 0, a2

1a2 + a2
2 = 0,

where a1 ∈ H1(G2(R4); Z2), a2 ∈ H2(G2(R4); Z2). By this cohomology ring
structure, it is not difficult to conclude the total Stiefel–Whitney class

W (G2(R4)) = 1 + w2
1.

This means that the first Stiefel–Whitney class vanishes, and the second
Stiefel–Whitney class w2(G2(R4)) �= 0. In other words, G2(R4) is an ori-
entable manifold, but not spin, while D(S4

+) is spin as mentioned in Propo-
sition 1.1.
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3.2. FKM-type

In this subsection, we investigate the FKM-type isoparametric hypersurfaces
in spheres with four distinct principal curvatures (cf. [2, 5]).

According to Ferus et al. [5], for a symmetric Clifford system {P0, . . . ,
Pm} on R

2l, i.e., Pi’s are symmetric matrices satisfying PiPj + PjPi = 2δij

I2l, there is a homogeneous polynomial on R
2l defined by

F : R
2l → R(3.6)

F (z) = |z|4 − 2
m
∑

i=0

〈Piz, z〉2.

It can be shown that if l − m − 1 > 0, then the level sets of the restriction
f = F |S2l−1 constitute a family of isoparametric hypersurfaces with g = 4
distinct principal curvatures with multiplicities m+ = m, m− = l − m − 1.
The focal submanifolds are M+ = f−1(1), M− = f−1(−1), with codimen-
sions m + 1 and l − m in S2l−1, respectively.

Clearly, the +1 eigenspace of P0, say E+(P0), is invariant under the
transformations E1 = P1P2,. . . , Em−1 = P1Pm. As usual, let δ(m) be the
dimension of the irreducible Clifford algebra Cm−1-modules (e.g., δ(4) =
4, δ(8) = 8, δ(m + 8) = 16δ(m)). Then l = kδ(m), for some positive inte-
ger k. As is known in representation theory, when m ≡ 0 (mod 4), there
exist exactly two irreducible Cm−1-modules Δ+

m and Δ−
m distinguished by

E1E2 · · ·Em−1 = Id or − Id. If we write E+(P0) = aΔ+
m ⊕ bΔ−

m as Cm−1-
modules, then

tr(P0P1 · · ·Pm) = 2qδ(m),

where q = a − b. On the other hand, noticing k = a + b, we see

(3.7) q ≡ k (mod 2).

By [24], two symmetric Clifford systems with the same index q give
rise to equivalent isoparametric functions on S2l−1. Therefore, when m ≡ 0
(mod 4), f is determined by m, l = kδ(m), as well as q up to a rigid motion
of S2l−1. However, when m �≡ 0 (mod 4), q is always zero, so f is determined
only by m and l up to a rigid motion of S2l−1.

In the rest of this subsection, we focus on the case when m ≡ 0 (mod 4).
First, we denote the corresponding isoparametric hypersurface by M

(m, l, q), and focal submanifolds by M±(m, l, q). Next, recall the following
conclusions shown in [5]:
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(a) The normal bundle ν+ is trivial, in particular, M(m, l, q) is diffeo-
morphic to the product M+(m, l, q) × Sm;

(b) M−(m, l, q) is diffeomorphic to an Sl−1 bundle over Sm.
Therefore, the property (a), together with the proof of Proposition 1.1,

implies that D(S2l−1
+ ) ∼= D(B(ν+)) ∼= S(ν+ ⊕ 1) ∼= M+ × Sm+1. In the

remaining part, we will be concerned with the topology of D(S2l−1
− ). On

this account, we prove Theorem 1.2 in two steps.

Proof. Step 1. As stated before, D(S2l−1
− ) ∼= D(B(ν−)) ∼= S(ν− ⊕ 1) is the

total space of a sphere bundle. Set ζ := ν− ⊕ 1, then D(S2l−1
− ) = S(ζ), where

ζ is a vector bundle over M− with disc bundle B(ζ) and sphere bundle S(ζ),
respectively.

ζ : R
l−m+1 ↪→ E(ζ) ⊃ B(ζ) ⊃ S(ζ) = D(B(ν−))(3.8)

↓ π

Mm+l−1
−

As mentioned in (b) above, M−(m, l, q) is diffeomorphic to an Sl−1 bun-
dle over Sm, that is: M−(m, l, q) ∼= S(ξ), where ξ is a vector bundle over Sm

so that

Sl−1 ↪→ M− = S(ξ)(3.9)
↓ π1

Sm

Lemma 3.1. The Pontrjagin class

pm

4
(ζ) = −π∗

1pm

4
(ξ) = −q · β(m) ·

(m

2
− 1
)

! · π∗
1γ,

where β(m) =

{

1, m ≡ 0 (mod 8),
2, m ≡ 4 (mod 8),

γ ∈ Hm(Sm; Z) is a suitable

generator.

Proof. Denoting the total Pontrjagin class of an arbitrary vector bundle η by
P (η) = 1 + p1(η) + p2(η) + · · · , from [16], we know that P (η ⊕ 1) = P (η).

Firstly, since ν− ⊕ TM− ∼= TS2l−1|M− is stably parallelizable (in fact it is
trivial for the dimension reason), we have P (ν− ⊕ TM−) = 1. On the other
hand, since m ≥ 4, l = kδ(m) ≡ 0 (mod 4), thus l − 1 cannot be divided
by 4. By reason of rank of the sphere bundle S(ξ), we can deduce that
P (M−) := P (TM−) = 1 + pm

4
(M−).
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Consequently, since in this case the cohomology of M− with coefficients Z

has no torsion (Proposition 3.1), it follows from P (ζ) = P (ν− ⊕ 1) = P (ν−)
that

(3.10) pm

4
(ζ) = −pm

4
(M−).

Next, for the tangent bundle of M−, we have TM− ⊕ 1 ∼= π∗
1TSm ⊕ π∗

1ξ.
As a direct result, TM− ⊕ 2 = (m + 1) ⊕ π∗

1ξ, which implies that pm

4
(M−) =

pm

4
(π∗

1ξ).
Since l − 1 > m, there exists a section of the sphere bundle S(ξ), thus

its Euler class e vanishes. Hence, from the Gysin cohomology sequence with
coefficients Z associated with S(ξ):

(3.11) → H i(Sm) e−→ H i+l(Sm)
π∗

1−→ H i+l(M−) → H i+1(Sm) → · · · ,

we deduce that

(3.12) π∗
1 : Hm(Sm; Z) −→ Hm(M−; Z) is an isomorphism.

Thus by (3.10)

(3.13) pm

4
(ζ) = −π∗

1pm

4
(ξ) under the isomorphism π∗

1.

At the mean time, ξ − rank ξ ∈ ˜KO(Sm), which will be abbreviated as
ξ. Let us consider the complexification homomorphism

C : ˜KO(Sm) → ˜K(Sm)(3.14)
ξ �→ ξ ⊗ C

1 �→
{

1, m ≡ 0 (mod 8),
2, m ≡ 4 (mod 8).

Recall a well-known result that the Chern character Ch : ˜K(Sm) −→
Hm(Sm; Z) is an isomorphism for even m, namely, the top Chern class of
the generator of ˜K(Sm) is equal to a generator of Hm(Sm; Z) multiplied
by (m

2 − 1)!. By the isomorphisms ξ ∼= aΔ+ + bΔ− ∼= (a − b)Δ+ + b(Δ+ +
Δ−) ∼= qΔ+ + b, (since Δ+ + Δ− is trivial) where Δ+ ∈ ˜KO(Sm) is a gen-
erator, we finally arrive at

(3.15) pm

4
(ξ) = q · β(m) ·

(m

2
− 1
)

! · γ ∈ Hm(Sm; Z) ∼= Z,
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where γ ∈ Hm(Sm; Z) is a suitable generator, and

β(m) =

{

1, m ≡ 0 (mod 8),
2, m ≡ 4 (mod 8).

In summary, pm

4
(ζ) = −π∗

1pm

4
(ξ) = −q β(m) (m

2 − 1)! π∗
1γ. �

Step 2. We mainly make use of Wu Square P1 (cf. [16]).
Let p := 2r + 1 ≥ 3 be an odd prime, and m = 2(p − 1) = 4r ≡ 0

(mod 4). We will need the following fundamental criterion from number
theory.

Wilson’s Theorem. p is a prime, if and only if (p − 1)! ≡ −1 (mod p).
We recall the Wu Squares with coefficients Zp, which are generalized

from Steenord Squares with coefficients Z2 by Wu Wen–Tsün:

P i : Hj(X; Zp) → Hj+4ri(X; Zp).

For (B(ζ), S(ζ)) ⊃ B(ζ) ⊃ S(ζ), one has the following commutative diagram
of the cohomology sequences with coefficients Zp:

Hj(B(ζ), S(ζ)) → Hj(B(ζ)) → Hj(S(ζ)) δ−→ Hj+1(B(ζ), S(ζ)) → · · ·
(3.16)

↓ P i ↓ P i ↓ P i ↓ P i

Hj+4ri(B(ζ), S(ζ)) → Hj+4ri(B(ζ)) → Hj+4ri(S(ζ)) δ−→ Hj+1+4ri(B(ζ),
S(ζ)) → · · ·

in particular, P i satisfies δP i = P iδ.
Define qi(ζ) := Φ−1 · P i · Φ(1), where 1 ∈ H0(M−; Zp), and Φ is the

Thom isomorphism

Φ : H i(M−; Z) −→ H i+l−m+1(B(ζ), S(ζ); Z).

By Wu theorem (cf. [16]), qi(ζ) can be expressed in form of a combination
of Pontrjagin classes p1(ζ), p2(ζ),. . . , pri(ζ). Observing p0(ζ) = 1, p1(ζ) =
0,. . . ,pr−1(ζ) = 0, pr(ζ) �= 0, we want to represent q1(ζ) by pr(ζ).

By Newton’s identities and Lemma 3.1,

q1(ζ)

≡ (−1)r+1 · r · pr(ζ) (mod p)
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≡ (−1)
m

4
+1 · r · (−1) · q · β(m) ·

(m

2
− 1
)

!π∗
1(γ) (mod p)

≡ (−1)
m

4 · q · β(m) · p − 1
2

· (p − 2)!π∗
1(γ) (mod p).

When m ≡ 4 (mod 8), a direct application of Wilson Theorem gives
q1(ζ) ≡ (−1)

m

4
+1 · q · π∗

1(γ) (mod p); When m ≡ 0 (mod 8), by Wilson
Theorem, it is not difficult to show 1

2(p − 1)! ≡ 1
2(p − 1) (mod p), which

yields that q1(ζ) ≡ (−1)
m

4 · q · p−1
2 · π∗

1(γ) (mod p).
In summary,

(3.17) q1(ζ) ≡
{

(−1)
m

4 · q · p−1
2 π∗

1(γ) (mod p), m ≡ 0 (mod 8),
(−1)

m

4
+1 · q · π∗

1(γ) (mod p), m ≡ 4 (mod 8).

Fix j = l − m, i = 1 in (3.16). Since m < l − m < l − 1, H l−m(B) = 0,
H l(B) = 0, so both δ’s are injective:

H l−m(S)
δ

GGGGGA

inj.
H l−m+1(B, S)

Φ
D GGGGG∼=

H0(M−) ∼= Zp(3.18)

↓ P1 ↓ P1

H l(S)
δ

GGGGGA

inj.
H l+1(B, S)

Φ
D GGGGG∼=

Hm(M−) ∼= Zp

On the other hand, by Gysin cohomology sequence of ζ with coeffi-
cient Zp:

→ Hk(M−) ∪e−→ Hk+l−m+1(M−) π∗−→ Hk+l−m+1(S(ζ)) → Hk+1(M−) → · · · ,

(3.19)

we get H l−m(S(ζ)) ∼= Zp, H l(S(ζ)) ∼= Zp, thus δ are isomorphisms since they
are injective as we stated above. At last, by the definition q1(ζ) := Φ−1 · P1 ·
Φ(1), different values of q give rise to different Wu Squares P1, as we desired.

The proof of Theorem 1.2 is now complete! �
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