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Principal bundles over a real algebraic curve

Indranil Biswas and Jacques Hurtubise

Let X be a compact connected Riemann surface equipped with
an anti-holomorphic involution σ. Let G be a connected complex
reductive affine algebraic group, and let σG be a real form of G.
We consider holomorphic principal G-bundles onX satisfying com-
patibility conditions with respect to σ and σG. We prove that the
points defined over R of the smooth locus of a moduli space of
principal G-bundles on X are precisely these objects, under the
assumption that genus(X) ≥ 3. Stable, semistable and polystable
bundles are defined in this context. Relationship between any of
these properties and the corresponding property of the underlying
holomorphic principal G-bundle is explored. A bijective correspon-
dence between unitary representations and polystable objects is
established.

1. Introduction

Let X be a compact connected Riemann surface, and let

σ : X −→ X

be an anti-holomorphic involution. Let G be a connected complex reductive
linear algebraic group equipped with an anti-holomorphic involutive auto-
morphism σG. The subgroup of the center of G that is fixed by σ will be
denoted by ZR.

For a holomorphic principal G-bundle EG on X, let EG be the corre-
sponding C∞ principal G-bundle obtained by twisting the action of G on
EG using σG. The pullback σ∗EG has a natural holomorphic structure.

A pseudo-real principal G-bundle on X is defined to be a pair of the
form (EG, ρ), where EG is a holomorphic principal G-bundle on X, and

ρ : EG −→ σ∗EG
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is a holomorphic isomorphism of principalG-bundles satisfying the condition
that there is an element c ∈ ZR such that the composition

EG
ρ−→ σ∗EG

σ∗ρ−→ σ∗σ∗EG = σ∗σ∗EG = EG

coincides with the automorphism of EG given by c. (The details are in
Section 2.1.) If c = e, then (EG, ρ) is called a real principal G-bundle.

We define semistable, stable and polystable pseudo-real principal
G-bundles. The following is proved (see Propositions 2.6 and 3.2):

Proposition 1.1. A pseudo-real principal G-bundle (EG, ρ) is semistable
(respectively, polystable) if and only if EG is semistable (respectively,
polystable).

A comment on the definition of (semi)stability is in order. Ramanathan
and Behrend defined (semi)stable principal bundles [3, 11]. It seems to be a
common belief that their definitions are equivalent. When the base field is
algebraically closed, it is easy to see that the two definitions are equivalent.
But here we are working over the base field R. In turns out that in this
case their definitions differ. The definition of Behrend works better. (See
Section 2.3 for the details.)

Fix a maximal compact subgroup K ⊂ G such that σG(K) = K (we
show that such a subgroup exists). Let

̂K := (Z/2Z) �K

be the semi-direct product given by the involution σG. Fix a point x ∈ X
such that σ(x) �= x. Let Γ be the space of all homotopy classes of paths on
X starting from x and ending in either x or σ(x). This set Γ has a natural
structure of a group. Let Hom′(Γ, ̂K) be the space of all homomorphisms
ϕ : Γ −→ ̂K that fit in the commutative diagram

0 −→ π1(X,x) −→ Γ −→ Z/2Z −→ 0
⏐

⏐

�

⏐

⏐

�ϕ ‖
0 −→ K −→ ̂K −→ Z/2Z −→ 0

We prove the following theorem (see Theorem 3.4):

Theorem 1.2. Let G be semisimple. Isomorphism classes of polystable
real principal G-bundles on X are in bijective correspondence with
Hom′(Γ, ̂K)/K.
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Let us assume that the involutions σ and σG are such that σ∗EG and
EG are of the same topological type. Let MX(G) be the moduli space of
stable principal G-bundles on X of the given topological type. The smooth
locus of MX(G) will be denoted by Ms

X(G). We have an anti-holomorphic
involution

η : Ms
X(G) −→ Ms

X(G)

defined by EG �−→ σ∗EG.
We prove the following (see Theorem 4.1):

Theorem 1.3. Assume that genus(X) ≥ 3. Take any principal G-bundle
EG ∈ Ms

X(G). Then this EG is fixed by the involution η if and only if EG

admits a pseudo-real structure.

2. Principal bundles and semistability over a curve
defined over R

2.1. Pseudo-real principal bundles

Let G be a connected complex algebraic group. Let G be the complex alge-
braic group given by G using the automorphism of the base field C defined
by λ �−→ λ. Let

(2.1) σG : G −→ G

be an anti-holomorphic involutive homomorphism, meaning σG ◦ σG = IdG.
So σG is an algebraic isomorphism of G with G. Let

(2.2) GR ⊂ G

be the fixed point set for σG; it is a real analytic group. The center of G will
be denoted by Z. The intersection

(2.3) ZR := Z ∩GR

coincides with the center of GR. Indeed, this follows immediately from the
fact that GR is Zariski dense in G.
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Let X be a compact connected Riemann surface equipped with an anti-
holomorphic involution

(2.4) σ : X −→ X.

Let EG −→ X be a holomorphic principal G-bundle over X. Let

EG = EG(σG) := EG ×σG G −→ X

be the C∞ principal G-bundle over X obtained by extending the structure
group of EG using the homomorphism σG in (2.1). So EG is a holomorphic
principal G-bundle over X.

Remark 2.1. The total space of EG is canonically identified with the total
space of EG. This identification sends any z ∈ EG to the element of EG

given by (z, e) ∈ EG ×G; recall that the total space of EG is the quotient
of EG ×G where two elements (z1, g1) and (z2, g2) of EG ×G are identified
in EG if and only if there is an element h ∈ G such that z2 = z1h and
g2 = σG(h−1)g1. The inverse map EG −→ EG is obtained from the map
EG ×G −→ EG defined by (z, g) �−→ zσ−1

G (g).

Remark 2.2. We note that there is no natural holomorphic structure on
the principal G-bundle EG over X because σG is not holomorphic (although
it is a holomorphic principal G-bundle). On the other hand, since both σG

and σ (defined in (2.4)) are anti-holomorphic, the pulled back principal
G-bundle σ∗EG has a natural holomorphic structure given by the holomor-
phic structure on EG. To describe the holomorphic structure on σ∗EG, first
note that the total space of σ∗EG is naturally identified with the total space
of EG; one can keep the set (for the total space) fixed, and simply modify
the projection to X by σ. In Remark 2.1, we saw that the total space of
EG is identified with the total space of EG; indeed it is the same set, but
with the action of G twisted by σG. Combining these two identifications,
we obtain a natural identification of σ∗EG with EG; this identification does
not commute with projection to X, however, but must be intertwined with
σ, i.e., the identification is a lift of σ. With this identification, the holomor-
phic structure on σ∗EG is uniquely determined by the condition that the
identification between the total spaces of σ∗EG and EG is anti-holomorphic.

As both σ and σG are involutions, the principal G-bundles σ∗σ∗EG and
EG are identified with EG. We also note that σ∗EG is identified with σ∗EG.
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For any z ∈ Z (see (2.3)), and any holomorphic principal G-bundle FG,
the map FG −→ FG defined by y �−→ yz is a holomorphic isomorphism of
principal G-bundles. For any z ∈ Z \ {e}, the holomorphic automorphism of
FG given by z is nontrivial. Therefore, we have

(2.5) Z ⊂ Aut(FG),

where Aut(FG) is the group of all holomorphic automorphisms of the prin-
cipal G-bundle FG over the identity map of X.

Definition 2.3. A pseudo-real principal G-bundle on X is a pair of the
form (EG, ρ), where EG −→ X is a holomorphic principal G-bundle, and

ρ : EG −→ σ∗EG

is a holomorphic isomorphism of principalG-bundles satisfying the condition
that there is an element c ∈ ZR such that the composition

EG
ρ−→ σ∗EG

σ∗ρ−→ σ∗σ∗EG = σ∗σ∗EG = EG

coincides with the automorphism of EG given by c.

Some clarifications on the above definition are in order. The morphism

ρ : EG −→ σ∗EG

in Definition 2.3 is the one given by ρ using the natural identifications of
EG and σ∗EG with EG and σ∗EG respectively (see Remark 2.1). Since
σ∗EG = σ∗EG, it follows immediately that σ∗σ∗EG = σ∗σ∗EG. The element
c in Definition 2.3 is unique because Z is a subgroup of Aut(EG) (see (2.5)).

An isomorphism between two pseudo-real principal G-bundles (EG, ρ)
and (FG, δ) is a holomorphic isomorphism of principal G-bundles

μ : EG −→ FG

such that the following diagram commutes:

EG
ρ−→ σ∗EG

⏐

⏐

�μ
⏐

⏐

�σ∗μ

FG
δ−→ σ∗FG
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where σ∗μ is the holomorphic isomorphism of principal G-bundles given by
μ; the map σ∗μ coincides with μ using the identification of the total spaces
of EG and FG with σ∗EG and σ∗FG respectively (see Remark 2.2).

Definition 2.4. A real principal G-bundle on X is a pseudo-real principal
G-bundle (EG, ρ) such that the composition

EG
ρ−→ σ∗EG

σ∗ρ−→ σ∗σ∗EG = σ∗σ∗EG = EG

is the identity automorphism.

Therefore, a pseudo-real principal G-bundle (EG, ρ) as in Definition 2.3
is real if and only if c = e.

An alternate way of viewing these structures is as anti-holomorphic lifts

(2.6)
EG

σ̃−→ EG
⏐

⏐

�

⏐

⏐

�

X
σ−→ X

such that σ̃(z · g) = σ̃(z) · σG(g) and the composition σ̃ ◦ σ̃ is fiber-wise mul-
tiplication by c; see Remark 2.2.

Consider σ̃ in (2.6). We can modify the lift σ̃ by the action of an element a
of Z as follows: σ̃′(z) := σ̃(z) · a. This then gives the constraint aσG(a) ∈ ZR,
and the element c gets replaced by aσG(a)c = caσG(a).

In particular, we can take a lying in ZR, and the composition gets altered
by a2. Therefore, if c lies in Z2

R
:= {z2 | z ∈ ZR}, or more generally is of the

form σG(a)a, we can normalize our pseudo-real structure to a real one.
Let ZR(2) be the group of points of ZR of order 2. The natural homomor-

phism ZR(2) −→ ZR/Z
2
R

is surjective. So one can assume, as we will from
now on, that the element c in Definition 2.3 is of order two. In particular, it
lies in any maximal compact subgroup of G.

2.2. Stable and semistable principal bundles

Henceforth, we assume that the group G is reductive.
Let (EG, ρ) be a pseudo-real principal G-bundle over X. Let

Ad(EG) := EG ×G G −→ X

be the group-scheme over X associated with EG for the adjoint action of
G on itself. So Aut(EG) in (2.5) is the space of all holomorphic sections of
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Ad(EG). Consider the C∞ principal G-bundle EG. Since it is, by definition,
the extension of structure group of EG by the isomorphism σG in (2.1), the
homomorphism σG induces a C∞ isomorphism

(2.7) α : Ad(EG) −→ Ad(EG),

where Ad(EG) is the adjoint bundle for EG. More precise, both Ad(EG)
and Ad(EG) are quotients of EG ×G; the map α in (2.7) is the descent
of the self-map IdEG

× σG of EG ×G. Note that for each point x ∈ X, the
restriction

α(x) : Ad(EG)x −→ Ad(EG)x

is an isomorphism of groups.
The isomorphism ρ produces a holomorphic isomorphism

Ad(EG) −→ Ad(σ∗EG) = σ∗Ad(EG).

Combining this with α in (2.7), we obtain an anti-holomorphic automor-
phism ρ̃ on Ad(EG) over σ, meaning ρ̃ fits in the commutative diagram

(2.8)
Ad(EG)

ρ̃−→ Ad(EG)
⏐

⏐

�

⏐

⏐

�

X
σ−→ X

We note that ρ̃ ◦ ρ̃ = IdAd(EG) because the adjoint action of ZR on G is the
trivial one.

Let

ad(EG) := EG ×G g −→ X

be the bundle of Lie algebras over X associated with EG for the adjoint
action of G on g := Lie(G); it is called the adjoint vector bundle.

A proper parabolic subgroup-scheme of Ad(EG) is a Zariski closed analyt-
ically locally trivial proper subgroup-scheme P ⊂ Ad(EG) such that
Ad(EG)/P is compact. For an analytically locally trivial subgroup-scheme
P ⊂ Ad(EG), let p ⊂ ad(EG) be the bundle of Lie subalgebras corresponding
to P .

Definition 2.5. A pseudo-real principal G-bundle (EG, ρ) over X is called
semistable (respectively, stable) if for every proper parabolic subgroup-scheme
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P ⊂ Ad(EG) such that ρ̃(P ) ⊂ P , where ρ̃ is constructed in (2.8),

degree(p) ≤ 0 (respectively, degree (p) < 0)

(the vector bundle p is defined above).

The above definition coincides with the one in [3, page 304, Definition
8.1], but it differs from the definition of (semi)stability given in [11]. The
definitions of Behrend and Ramanathan are equivalent if the base field is C.
The difference between the definitions in [3] and [11] of (semi)stable principal
bundles will be explained in Section 2.3.

For holomorphic vector bundles on X (so the base field is C), we will
adopt Ramanathan’s definition of (semi)stability. We reiterate that in this
case, this definition is equivalent to the one given in [3].

See [11], [2, page 221, Definition 3.5] for the definition of a polystable
principal bundle over a compact Riemann surface.

Proposition 2.6. A pseudo-real principal G-bundle (EG, ρ) over X is
semistable (respectively, stable) if the principal G-bundle EG is semistable
(respectively, stable).

For a semistable pseudo-real principal G-bundle (EG, ρ), the principal
G-bundle EG is semistable.

If (EG, ρ) is a stable pseudo-real principal G-bundle over X, then the
principal G-bundle EG is polystable.

Proof. Given a parabolic subgroup-scheme P ⊂ Ad(EG), there is a parabolic
subgroup Q ⊂ G and a holomorphic reduction of structure group EQ ⊂ EG

such that the subgroup-scheme Ad(EQ) ⊂ Ad(EG) coincides with P (see the
proof of Lemma 2.11 in [2]). (The parabolic subgroup-scheme P defines a
conjugacy class of parabolic subgroups of G, and the reduction of structure
group EQ depends only on the choice of a parabolic subgroup Q in this
conjugacy class.) Since any parabolic subgroup-scheme is given by a reduc-
tion of structure group to a parabolic subgroup, it follows immediately that
(EG, ρ) is semistable (respectively, stable) if the principal G-bundle EG is
semistable (respectively, stable).

To prove that EG is semistable if (EG, ρ) is so, assume that EG is not
semistable. Then the adjoint vector bundle ad(EG) is not semistable [1, page
698, Lemma 3]. Using the Harder–Narasimhan filtration of ad(EG), we get
a parabolic subalgebra bundle p of ad(EG), which in turn gives a parabolic



Principal bundles over a real algebraic curve 965

subgroup-scheme

(2.9) P ⊂ Ad(EG)

[1, page 699, Lemma 4]. We recall from [1] that the Harder–Narasimhan
filtration of ad(EG) is of the form

0 = E−�−1 ⊂ E−� ⊂ · · · ⊂ E−1 ⊂ E0 ⊂ E1 ⊂ · · · ⊂ E�−1 ⊂ E� = ad(EG)
(2.10)

for some positive integer 
. The subbundle p mentioned above is E0 in (2.10).
Let β : ad(EG) −→ ad(EG) be the C∞ isomorphism given by α in (2.7).

Using β, any C∞ subbundle V ⊂ Ad(EG) produces a subbundle of
ad(σ∗EG) = σ∗ad(EG), which we will denote by V ′. This subbundle V ′ is
holomorphic if and only if V is a holomorphic subbundle. (If h : M −→ N
is an anti-holomorphic isomorphism between complex manifolds, then a C∞

submanifold M ′ ⊂M is complex analytic if and only if f(M ′) is complex
analytic.)

For i ∈ [−
− 1, 
], let

E′
i ⊂ ad(σ∗EG)

be the holomorphic subbundle corresponding to Ei in (2.10).
Let

(2.11) ρad : ad(EG) −→ ad(σ∗EG)

be the holomorphic isomorphism induced by ρ. Note that ρad is an involution
because the central element c in Definition 2.3 acts trivially on g. Since

rank(E′
i) = rank(Ei) and degree(E′

i) = degree(Ei),

and ad(EG) is holomorphically isomorphic to ad(σ∗EG), we conclude that

0 = E′
−�−1 ⊂ E′

−� ⊂ · · · ⊂ E′
−1 ⊂ E′

0 ⊂ E′
1 ⊂ · · · ⊂ E′

�−1 ⊂ E′
� = ad(σ∗EG)

is the Harder–Narasimhan filtration of ad(σ∗EG). Indeed, for any i ∈ [−
−
1, 
− 1], the quotient Ei+1/Ei is the unique subbundle of ad(EG)/Ei of
maximal rank among the subbundles of maximal slope. From this it follows
that the above filtration of ad(σ∗EG) coincides with its Harder–Narasimhan
filtration.
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Since any holomorphic isomorphism between vector bundles preserves
their Harder–Narasimhan filtrations, we conclude that

ρad(E0) = E′
0,

where ρad is constructed in (2.11). This implies that ρ̃(P ) ⊂ P , where ρ̃ is
constructed in (2.8), and P is the subgroup-scheme in (2.9).

We note that

(2.12) degree(ad(EG)) = 0.

Indeed, any G-invariant nondegenerate symmetric bilinear form on g pro-
duces a nondegenerate symmetric bilinear form on ad(EG). This bilinear
form on ad(EG) identifies ad(EG) with its dual ad(EG)∗. In particular, (2.12)
holds.

We have

degree(E0/E−1) = 0

implying that degree(E−1) > 0 (see [2, page 216]). Hence in view of (2.12)
we conclude that the subbundle E0 = p ⊂ ad(EG) violates the inequality in
Definition 2.5. So (EG, ρ) is not semistable. This proves the second part of
the proposition.

To prove the third part of the proposition, let (EG, ρ) be a stable pseudo-
real principal G-bundle over X. From the second part of the proposition we
know that EG is semistable. Assume that EG is not polystable. Since EG is
semistable but not polystable, the adjoint vector bundle ad(EG) is semistable
but not polystable (see [2, page 214, Proposition 2.10] and [2, page 224,
Corollary 3.8]). Let

(2.13) S ⊂ ad(EG)

be the unique maximal polystable subbundle, which is called socle, of ad(EG)
(see [7, page 23, Lemma 1.5.5]).

We noted in the proof of the second part of the proposition that any
holomorphic subbundle of ad(EG) produces a holomorphic subbundle of
ad(σ∗EG). Let

S′ ⊂ ad(σ∗EG)

be the holomorphic subbundle corresponding to the socle S.
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We will show that

(2.14) ρad(S) = S′,

where ρad is constructed in (2.11). To prove this, first note that ad(σ∗EG)
is semistable but not polystable, because ρad is an isomorphism of it with
ad(EG). The holomorphic subbundles of S are in bijective correspondence
with the holomorphic subbundles of S′ by the earlier described correspon-
dence between subbundles of ad(EG) and subbundles of ad(σ∗EG). Since
this correspondence preserves both rank and degree, it follows that S′ is the
socle of ad(σ∗EG). Now (2.14) follows from the uniqueness of the socle.

Let Z0 be the connected component, containing the identity element, of
the center Z of G. A holomorphic reduction of structure group EQ ⊂ EG to
a parabolic subgroup Q of G is called admissible if for any character χ of Q
trivial on Z0, the associated line bundle EQ ×χ

C over X is of degree zero.
A character χ of Q is called strictly anti-dominant if χ is trivial on Z0, and
the associated line bundle G×χ

C on G/Q is ample (we are using the fact
that the natural projection G −→ G/Q is a principal Q-bundle).

We will recall a construction from [2].
We have the socle filtration of ad(EG)

S := S0 ⊂ S1 ⊂ · · · ⊂ Sk−1 ⊂ Sk := ad(EG),

where Si/Si−1 is the socle of ad(EG)/Si−1 for all i ∈ [1, k]. Using this socle
filtration, we get a holomorphic reduction of structure group

EQ ⊂ EG,

where

• Q � G is maximal among all the proper parabolic subgroups Q′ of G
such that EG has an admissible reduction of structure group

E′
Q′ ⊂ EG,

for which the associated principal L(Q′)-bundle

EL(Q′) = E′
Q′/Ru(Q′)

is polystable, where L(Q′) := Q′/Ru(Q′) is the Levi quotient of Q′,
and Ru(Q′) is the unique maximal normal unipotent subgroup of Q′

(also called the unipotent radical of Q′),
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• EQ is a holomorphic reduction of structure group of EG to Q such that
the associated principal L(Q)-bundle is polystable, where L(Q) is the
Levi quotient of Q.

The pair (Q,EQ) is unique in the following sense: for any other pair (Q1, EQ1)
satisfying the above conditions, there is some g ∈ G such that Q1 = g−1Qg,
and EQ1 = EQg. (See [2, page 218].)

Note that from the above relations between (Q,EQ) and (Q1, EQ1) it
follows that the two subgroup-schemes Ad(EQ) and Ad(EQ1) of Ad(EG)
coincide.

From (2.14) it can be deduced that ρ̃(Ad(EQ)) = Ad(EQ), where ρ̃ is
constructed in (2.8). Indeed, this is evident from the construction of Ad(EQ)
using the socle filtration.

Since the reduction EQ ⊂ EG is admissible, and the adjoint action of Z0

on g is trivial, the degree of the line bundle on X associated with the princi-
pal Q-bundle EQ for the character of Q given by the Q-module

∧top Lie(Q)
is zero. In other words, degree(ad(EQ)) = 0. This contradicts the fact that
(EG, ρ) is a stable pseudo-real principal G-bundle. Therefore, we conclude
that EG is polystable. �

The following is a corollary of Proposition 2.6:

Corollary 2.7. A pseudo-real principal G-bundle (EG, ρ) over X is semi-
stable if and only if the corresponding adjoint real vector bundle (ad(EG), ρad)
(defined in (2.11)) is semistable.

Proof. A pseudo-real principal G-bundle (EG, ρ) over X is semistable if and
only if EG is semistable (Proposition 2.6), and we know that EG is semistable
if and only if ad(EG) is semistable [2, page 214, Proposition 2.10]. But
ad(EG) is semistable if and only if (ad(EG), ρad) is semistable (recall that
ρad is an involution). �

It may be mentioned that the analog of Corollary 2.7 for stable bundles
is not true. In fact, there are stable holomorphic vector bundles such that the
corresponding trace zero endomorphism bundle is not stable (see [8, page
2212, Example 2 and Remark 2]).

2.3. Ramanathan’s definition and Behrend’s definition

We will first recall Ramanathan’s definition of (semi)stability in our context.
Let (EG, ρ) be a pseudo-real principal G-bundle over X. It will be called

r-semistable (respectively, r-stable) if for any proper parabolic subgroup
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Q ⊂ G such that σG(Q) = Q, and for any holomorphic reduction of structure
group of EG

EQ ⊂ EG

to Q with ρ(EQ) = EQ (see the next sentence for a clarification), and for
any strictly anti-dominant character χ of Q, the line bundle EQ ×χ

C −→ X
is of nonnegative (respectively, positive) degree. (The total space of σ∗EG is
identified with that of EG, as shown in Remark 2.2; using this identification,
ρ(EQ) is considered as a submanifold of EG.)

For any given holomorphic reduction of structure group EQ ⊂ EG to
Q ⊂ G, considering the corresponding subgroup-scheme Ad(EQ) ⊂ EG we
conclude that (EG, ρ) is r-semistable (respectively, r-stable) if (EG, ρ) is
semistable (respectively, stable).

We will construct a r-stable real principal G-bundle (EG, ρ) which is not
semistable.

Take a pair (X,σ) as in (2.4). Take G = GL(2,C), and let σG = σGL(2,C)

be the anti-holomorphic involution defined by

(2.15) A �−→ (At)−1.

The real subgroup is then U(2), and the real structure corresponds in vector
bundle terms to isomorphisms V −→ σ∗(V ∗) (this will be elaborated later).

Let L −→ X be a holomorphic line bundle with degree(L) > 0. Define

M := (σ∗L)∗ and V := L⊕M.

Both M and V are holomorphic vector bundles. Note that

σ∗V ∗ = σ∗L∗ ⊕ σ∗M∗ = M ⊕ L = L⊕M.

Therefore, the identity map of L⊕M produces a holomorphic isomorphism

(2.16) ρ0 : V −→ σ∗V ∗
.

The composition

V
ρ0−→ σ∗V ∗ σ∗(ρ0

∗)−1

−→ (σ∗σ∗V ∗)∗ = σ∗σ∗V
∗∗

= V

is clearly the identity map of V .
The vector bundle V defines a principal GL(2,C)-bundle over X, which

we will denote by EGL2 . We recall that EGL2 is the space of all C-linear
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isomorphisms from C
2 to the fibers of V . Using ρ0 in (2.16), we will construct

a map from EGL2 to σ∗EGL2 .
Take a point x ∈ X, and take any ψ ∈ (EGL2)x in the fiber over x. So,

ψ is a C-linear isomorphism from C
2 to Vx. Let

ψ : C
2 −→ V x

be the C-linear isomorphism defined by v �−→ ψ(v). Now we have the iso-
morphism

(2.17) (ψ∗)−1 : (C2)∗ −→ (V x)∗.

On the other hand, the isomorphism ρ0 in (2.16) produces an isomorphism

ρ0,x : V x −→ (σ∗V ∗)x = (Vσ(x))
∗

by sending any w to ρ0,x(w), where ρ0,x is the restriction of ρ0 to x. Consider
the corresponding isomorphism

(ρ0,x
∗)−1 : (V x)∗ −→ (Vσ(x))

∗∗ = Vσ(x).

Let

(2.18) (ρ0,x
∗)−1 ◦ (ψ∗)−1 : (C2)∗ −→ Vσ(x)

be the composition of it with the isomorphism in (2.17).
Consider the standard inner product on C

2; the standard basis is an
orthonormal one. Note that the C-linear isometries of C

2 are the fixed points
of the involution σGL(2,C) (see (2.15)). This inner product produces a C-linear
isomorphism of C

2 with (C2)∗. Let

(2.19) ˜ψ : C
2 −→ Vσ(x)

be the isomorphism given by the one in (2.18) using this isomorphism of C
2

with (C2)∗.
Let

ρGL : EGL2 −→ σ∗EGL2

be the isomorphism that sends any ψ to ˜ψ constructed in (2.19). Note that
the total space of EGL2 is identified with that of EGL2 (the maps are con-
structed in Remark 2.1); using this identification, the isomorphism ˜ψ in
(2.19) is considered as an element of the fiber (EGL2)σ(x).
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It is straightforward to check that the pair (EGL2 , ρGL) constructed above
is a real principal GL(2,C)-bundle over X.

We will show that (EGL2 , ρGL) is not semistable. For that, note that
for any x ∈ X, the fiber Ad(EGL2)x is GL(Vx) (the space of all C-linear
automorphisms of Vx). Let

P ⊂ Ad(EGL2)

be the subgroup-scheme whose fiber over any x ∈ X is the space of all linear
automorphisms of Vx = Lx ⊕Mx that preserve the line Lx. It is straightfor-
ward to check that ρ̃(P ) ⊂ P , where ρ̃ is the diffeomorphism in (2.8). Let p

be the Lie algebra bundle corresponding to P . We have

p = End(L) ⊕ End(M) ⊕Hom(M,L) ⊂ End(V ) = ad(EGL2).

Therefore,

degree(p) = degree(Hom(M,L)) = 2 · degree(L) > 0.

Hence (EGL2 , ρGL) is not semistable.
On the contrary, (EGL2 , ρGL) is r-stable because there is no proper

parabolic subgroup of GL(2,C) that is preserved by the involution σGL(2,C).
Indeed, for any proper parabolic subgroup Q of GL(2,C), the intersection
Q

⋂

σGL(2,C)(Q) is isomorphic to C
∗ × C

∗.

Lemma 2.8. Let (EG, ρ) be a pseudo-real principal G-bundle over X satis-
fying the condition that there is a point y ∈ EG such that ρ(y) = yz for some
element z in the center Z of G (using the identification of the total spaces of
σ∗EG and EG (see Remark 2.2), the element ρ(y) of σ∗EG is considered as
an element of EG). Then (EG, ρ) is r-semistable if and only if the principal
G-bundle EG is semistable.

Proof. If EG is semistable, then it is obvious that (EG, ρ) is r-semistable.
To prove the converse, take a point y ∈ EG such that ρ(y) = yz with

z ∈ Z. Let x ∈ X be the image of y. Since ρ(y) = yz, it follows that σ(x) = x.
Let

fy : G −→ Ad(EG)x

be the map that sends any g ∈ G to the image of (y, g) in Ad(EG)x (recall
that Ad(EG)x is a quotient of (EG)x ×G). This map fy is a holomorphic
isomorphism of groups.
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Define fρ(y) := fyz : G −→ Ad(EG)x by replacing y with ρ(y) = yz in
the above construction of fy. The two isomorphisms fy and fyz differ by the
automorphism of G produced by the adjoint action of z. Since z is in the
center of G, we conclude that

(2.20) fy = fyz.

From (2.20) it follows that

(2.21) fy(σG(g)) = ρ̃(fρ(y)(g)) = ρ̃(fy(g))

for all g ∈ G, where ρ̃ and σG are the maps defined in (2.8) and (2.1) respec-
tively; note that since σ(x) = x, the map ρ̃ sends Ad(EG)x to itself.

Assume that EG is not semistable. Let P ⊂ Ad(EG) be the parabolic
subgroup-scheme in (2.9) constructed from the Harder–Narasimhan filtra-
tion of the vector bundle ad(EG). Let

Q := f−1
y (Px) ⊂ G

be the parabolic subgroup, where fy is the isomorphism constructed above.
Since ρ̃(P ) = P , from (2.21) we conclude that

(2.22) σG(Q) = Q.

Let EQ ⊂ EG be the holomorphic reduction of structure group of EG

to Q constructed using the pair (P,Q) (see the proof of Lemma 2.11 in [2]
for the construction of EQ). Since ρ̃(P ) = P , from (2.22) it follows immedi-
ately that ρ(EQ) = EQ. Therefore, the reduction EQ ⊂ EG establishes that
(EG, ρ) is not r-semistable. �

Proposition 2.6 and Lemma 2.8 together give the following corollary:

Corollary 2.9. Let (EG, ρ) be a pseudo-real principal G-bundle on X sat-
isfying the condition that there is a point y ∈ EG such that ρ(y) = yz for
some z ∈ Z. Then (EG, ρ) is semistable if and only if it is r-semistable.

Remark 2.10. The assumption in Lemma 2.8 and Corollary 2.9 that
ρ(y) = yz implies that the image of y in X is fixed by the involution σ.
Hence this assumption fails if σ does not have a fixed point.
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3. Polystable pseudo-real principal bundles and
representations of the fundamental group

3.1. Polystable pseudo-real principal bundles

As before, G is a connected complex reductive group.
Let EG be a holomorphic principal G-bundle over X. Let P ⊂ Ad(EG)

be a proper parabolic subgroup-scheme. For each point x ∈ X, the unipotent
radical of the fiber Px will be denoted by Ru(P )x; it is the unique maximal
normal unipotent subgroup. We have an analytically locally trivial subgroup-
scheme

Ru(P ) ⊂ P

whose fiber over any x ∈ X is Ru(P )x. The quotient P/Ru(P ) is a group-
scheme over X.

A Levi subgroup-scheme of P is an analytically locally trivial subgroup-
scheme L(P ) ⊂ P such that the composition

L(P ) ↪→ P −→ P/Ru(P )

is an isomorphism. It should be emphasized that a Levi subgroup-scheme
does not exist in general. In vector bundle terms, the existence of a Levi
subgroup-scheme corresponds to some extension classes being trivial.

Definition 3.1. A semistable pseudo-real principal G-bundle (EG, ρ) over
X is called polystable if either (EG, ρ) is stable, or there is a proper parabolic
subgroup-scheme P ⊂ Ad(EG), and a Levi subgroup-scheme L(P ) ⊂ P , such
that the following conditions hold:

1. ρ̃(P ) ⊂ P and ρ̃(L(P )) ⊂ L(P ), where ρ̃ is constructed in (2.8), and

2. for any proper parabolic subgroup-scheme P ′ ⊂ L(P ) with ρ̃(P ′) ⊂ P ′,
we have

degree(p′) < 0,

where p′ is the bundle of Lie algebras corresponding to P ′.

It should be clarified that in the above definition, P ′ is not a parabolic
subgroup-scheme of Ad(EG). The condition that P ′ is a parabolic subgroup-
scheme of L(P ) implies that the quotient L(P )/P ′ is compact.

Proposition 3.2. A pseudo-real principal G-bundle (EG, ρ) is polystable if
and only if the principal G-bundle EG is polystable.
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Proof. First assume that the pseudo-real principal G-bundle (EG, ρ) is poly-
stable. We will show that EG is polystable.

We begin by constructing a reduction of EG to a suitable parabolic
subgroup Q. Fix a point x0 ∈ X, and also fix a point z0 ∈ (EG)x0 in the
fiber over x0. Let

(3.1) φ : G −→ Ad(EG)x0

be the map that sends any g ∈ G to the image of (z, g) in Ad(EG)x0 ; recall
that Ad(EG)x0 is a quotient of (EG)x0 ×G. This map φ is a holomorphic
isomorphism of groups.

If (EG, ρ) is stable, then EG is polystable by Proposition 2.6. Assume
that (EG, ρ) is not stable. Take P and L(P ) as in Definition 3.1. Let

Q := φ−1(Px0) ⊂ G

be the parabolic subgroup. The conjugacy class of the subgroup Q is inde-
pendent of the choices of x0 and z0 (meaning subgroups are conjugate by
some element ofG). We will first show that EG admits a natural holomorphic
reduction of structure group to Q.

For any x ∈ X, let

(EQ)x ∈ (EG)x

be the submanifold consisting of all points z such that for all q ∈ Q, the
image of (z, q) ∈ (EG)x ×Q in Ad(EG)x lies in the subgroup Px (recall that
Ad(EG)x is a quotient of (EG)x ×Q). These (EQ)x, x ∈ X, together form a
holomorphic sub-fiber bundle EQ ⊂ EG. In fact, EQ is a holomorphic reduc-
tion of structure group of the principal G-bundle EG to the subgroup Q.
This follows from the fact that the normalizer of Q in G coincides with Q.
It should be mentioned that ρ(EQ) need not coincide with EQ (we consider
ρ(EQ) as a submanifold of the total space of EG using the identification of
the total spaces of EG and σ∗EG described in Remark 2.2).

Consider L(P ) ⊂ P as in Definition 3.1. Define

(3.2) L(Q) := φ−1(L(P )x0) ⊂ Q,

where φ is constructed in (3.1). It is a Levi subgroup of Q, meaning L(Q)
is a connected reductive subgroup of Q such that the composition

L(Q) ↪→ Q −→ Q/Ru(Q)
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is an isomorphism, where Ru(Q) is the unipotent radical of Q. Any two
Levi subgroups of Q are conjugate by some element of Q. We will show that
L(P ) produces a holomorphic reduction of structure group of the principal
Q-bundle EQ to the subgroup L(Q) ⊂ Q defined in (3.2).

Let Z(L(Q)) ⊂ L(Q) be the connected component of the center of L(Q)
containing the identity element. It is a product of copies of C

∗ because L(Q)
is reductive. Let

Z(L(P )) ⊂ L(P )

be the fiber-wise connected component of the center containing the identity
element, meaning the fiber Z(L(P ))x for any x ∈ X is the connected compo-
nent, containing the identity element, of the center of L(P )x. So Z(L(P ))x

is isomorphic to Z(L(Q)).
We recall that for any x ∈ X, the fiber Ad(EQ)x is the group of all

Q-equivariant self-maps of (EQ)x. Let

(3.3) S ⊂ EQ

be the subset consisting of all (x, z), x ∈ X and z ∈ (EQ)x, such that

φ(t)(z) = zt

for all t ∈ Z(L(Q)), where φ is constructed in (3.1). This S is a holomorphic
reduction of structure group of the principal Q-bundle EQ to the subgroup
L(Q). It should be emphasized that ρ(S) need not coincide with S. Let

(3.4) EL(Q) ⊂ EQ

be the principal L(Q)-bundle defined by S in (3.3). We note that the sub-
group-scheme Ad(EL(Q)) ⊂ Ad(EQ) is identified with L(P ). Indeed, this fol-
lows immediately from the above construction of S.

We recall from Definition 3.1 that for any proper parabolic subgroup-
scheme P ′ ⊂ L(P ) with ρ̃(P ′) ⊂ P ′,

(3.5) degree(p′) < 0,

where p′ is the bundle of Lie algebras corresponding to P ′. In the proof
of Proposition 2.6, we saw that the vector bundle ad(EG) is polystable if
(EG, ρ) is stable. Repeating verbatim this argument for EL(Q) (defined in
(3.4)), and using (3.5), we conclude that the adjoint vector bundle ad(EL(Q))
is polystable. Note that in the proof that ad(EG) is polystable if (EG, ρ) is
stable, the involution ρ is not used; only ρ̃ is used.
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We also note that EL(Q) is polystable because ad(EL(Q)) is polystable [2,
page 224, Corollary 3.8].

Consider the adjoint action of Z(L(Q)) on g := Lie(G). Let

(3.6) g =
n

⊕

i=1

Vi

be the isotypical decomposition of the Z(L(Q))-module g. Note that each
subspace Vi ⊂ g is a preserved by the adjoint action of L(Q). For any i ∈
[1, n], let

EVi
:= EL(Q) ×L(Q) Vi −→ X

be the holomorphic vector bundle associated with the principal L(Q)-bundle
EL(Q) (constructed in (3.4)) for the L(Q)-module Vi. Since EL(Q) is poly-
stable, the vector bundle EVi

is polystable [10, page 285, Theorem 3.18] (this
theorem of [10] applies because Z(L(Q)) acts on Vi through a character).

Since (EG, ρ) is semistable (see Definition 3.1), from the second part of
Proposition 2.6 we know that EG is semistable. Hence the adjoint vector
bundle ad(EG) is semistable [2, page 214, Proposition 2.10]. From (3.6) we
have a decomposition

ad(EG) =
n

⊕

i=1

EVi
.

Since ad(EG) is semistable, and each EVi
is polystable, we conclude that

ad(EG) is polystable. Hence EG is polystable [2, page 224, Corollary 3.8].
To prove the converse, assume that the principal G-bundle EG is

polystable. We will prove that (EG, ρ) is polystable.
The adjoint vector bundle ad(EG) is polystable because EG is polystable

[2, page 224, Corollary 3.8]. Therefore, ad(EG) is semistable. Hence for every
proper parabolic subgroup-scheme P ⊂ Ad(EG) such that ρ̃(P ) ⊂ P , where
ρ̃ is constructed in (2.8), we have

degree(p) ≤ 0

(p is the bundle of Lie algebras associated with P ). If degree(p) < 0 for
every such P , then (EG, ρ) is stable (see Definition 2.5), in particular, it is
polystable in that case.
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Assume that

(3.7) degree(p) = 0,

for a proper parabolic subgroup-scheme P ⊂ Ad(EG) with ρ̃(P ) ⊂ P . We
also assume that the rank of the vector bundle p is smallest among all bun-
dles of Lie algebras p′′ satisfying the conditions that degree(p′′) = 0 and p′′

corresponds to a σ̃-invariant proper parabolic subgroup-scheme of Ad(EG).
Since EG is polystable, it has an Einstein–Hermitian connection [11], [2,

page 208, Theorem 0.1]. Let ∇ be the connection on ad(EG) induced by an
Einstein–Hermitian connection on EG. We need to choose a Kähler form on
X and a maximal compact subgroup of G in order to define an Einstein–
Hermitian connection on EG. But the induced connection on ad(EG) is
independent of the choices of Kähler form on X and maximal compact
subgroup of G. The connection ∇ on ad(EG) is flat unitary. Note that
degree(ad(EG)) = 0 (see (2.12)).

From (3.7) it follows immediately that the second fundamental form of
the subbundle p ⊂ ad(EG) for the connection ∇ vanishes identically [9, page
139]. Therefore, the connection ∇ on ad(EG) preserves the subbundle p.

Fix a maximal compact subgroup

(3.8) K ⊂ G

such that σG(K) = K, where σG is the involution in (2.1). To see that such
a subgroup exists, let

̂G := (Z/2Z) �G

be the semi-direct product for the involution σG in (2.1). Let ̂K ⊂ ̂G be
a maximal compact subgroup. Then, the intersection ̂K

⋂

G is a maximal
compact subgroup of G which is preserved by σG.

Fix a Kähler form ω on X such that σ∗ω = −ω, where σ is the involution
in (2.4); such a Kähler form is constructed by averaging, with respect to σ,
a Hermitian structure on TX. Let

EK ⊂ EG

be a C∞ reduction of structure group of the principal G-bundle EG giving
the Einstein–Hermitian connection on EG.

Fix an inner product h on g such that h is preserved by the adjoint
action of K on g (we note that such an inner product exists because K is
compact). Since ad(EG) is identified with the vector bundle associated with



978 Indranil Biswas & Jacques Hurtubise

the principal K-bundle EK for the adjoint action of K on g, from the fact
that h is preserved by the adjoint action of K it follows immediately that
the inner product h on g produces a Hermitian structure on ad(EG). This
Hermitian structure on ad(EG) will be denoted by ̂h.

Since the connection ∇ on ad(EG) is induced by the Einstein–Hermitian
connection on EG given by EK , it follows immediately that ∇ coincides with
the Chern connection on ad(EG) associated with the Hermitian structure ̂h
on it.

Let
Rn(p) ⊂ p

be the subbundle defined by the fiber-wise nilpotent radicals; in other words,
for each point x ∈ X, the fiberRn(p)x is the nilpotent radical of the parabolic
subalgebra px. We note that Rn(p) is a holomorphic subbundle because the
section of Hom(

∧2 p∗, p) defined by the Lie algebra structure on the fibers
of p is holomorphic. Let

(3.9) L(p) := Rn(p)⊥
⋂

p ⊂ p

be the orthogonal complement, with respect to the Hermitian structure ̂h
constructed above, of L(p) inside p. We will show that this C∞ subbundle
L(p) is preserved by the connection ∇.

For each point x ∈ X, the fiber L(p)x is closed under the Lie bracket
operation on px; in fact, L(p)x is a Levi subalgebra of px, meaning it is a
maximal reductive subalgebra and the composition

L(p)x ↪→ px −→ px/Rn(p)x

is an isomorphism. All these follow from the fact that the inner product h
on g is preserved by the adjoint action of K. Any G-invariant nondegenerate
symmetric bilinear form on g produces a holomorphic nondegenerate sym-
metric bilinear form on ad(EG); the restriction to L(p) of this holomorphic
bilinear form on ad(EG) is nondegenerate. Therefore, the C∞ vector bundle
L(p) is isomorphic to its dual L(p)∗.

We have degree(L(p)) = 0 because L(p)∗ is isomorphic to L(p). There-
fore, from (3.7) we conclude that

degree(Rn(p)) = 0

(recall that p = Rn(p)
⊕

L(p)). This implies that the unitary flat connec-
tion ∇ preserves the holomorphic subbundle Rn(p) of ad(EG) [9, page 139].
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We already proved that p is preserved by ∇. Consequently, the orthogonal
complement of Rn(p) in p, namely L(p), is preserved by ∇. In particular,
L(p) is a holomorphic subbundle of p.

Using the exponential map, the bundle of subalgebras L(p) ⊂ p pro-
duces a Levi subgroup-scheme L(P ) ⊂ P . More precisely, L(P ) is the unique
subgroup-scheme of P such that the corresponding bundle of Lie subalgebras
coincides with L(p).

Since σG(K) = K, and σ∗ω = −ω, it follows that ρ̃(L(P )) = L(P ). Since
p is of smallest rank among all Lie algebra bundles of degree zero associ-
ated with proper parabolic subgroup-schemes of Ad(EG) preserved by ρ̃, we
conclude that for any proper parabolic subgroup-scheme P ′ ⊂ L(P ) with
ρ̃(P ′) ⊂ P ′, the inequality

degree(p′) < 0

holds, where p′ is the bundle of Lie algebras corresponding to P ′. Hence
(EG, ρ) is polystable. This completes the proof of the proposition. �

The following is an analog of Corollary 2.7.

Corollary 3.3. A pseudo-real principal G-bundle (EG, ρ) over X is poly-
stable if and only if the corresponding adjoint real vector bundle (ad(EG), ρad)
is polystable.

Proof. A pseudo-real principal G-bundle (EG, ρ) is polystable if and only
if the principal G-bundle EG is polystable (Proposition 3.2), and EG is
polystable if and only if ad(EG) is polystable [2, page 224, Corollary 3.8]. But
ad(EG) is polystable if and only if (ad(EG), ρad) is polystable
(Proposition 3.2). �

3.2. Homomorphisms from fundamental group to a maximal
compact subgroup

In this subsection we assume that the group G is semisimple.
As in (3.8), fix a maximal compact subgroup

K ⊂ G

such that σG(K) = K. Let

(3.10) K � (Z/2Z)
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be the semi-direct product for the involution σG|K . The set ̂K isK × (Z/2Z);
the group structure is defined using σG|K .

Fix a point x ∈ X such that σ(x) �= x. Let Γ1 denote the homotopy
classes of paths on X from x to σ(x). We have a group structure on

(3.11) Γ := π1(X,x) ∪ Γ1

defined as follows: for γ1, γ2 ∈ Γ,

• if γ2 ∈ π1(X,x), then γ2γ1 is simply the composition of paths γ1 ◦ γ2,
and

• if γ2 ∈ Γ1, then γ2γ1 is the composition σ(γ1) ◦ γ2 of paths.

(See [6] for more details.)
Composition of paths will be denoted by “◦”.
The group ̂K in (3.10) and the group Γ defined above fit in the exact

sequences

0 −→ K −→ ̂K −→ Z/2Z −→ 0

and

0 −→ π1(X,x) −→ Γ −→ Z/2Z −→ 0.

Let Hom(Γ, ̂K) be the space of all homomorphisms from Γ to the group ̂K.
Let

Hom′(Γ, ̂K) ⊂ Hom(Γ, ̂K)

be the subset consisting of all homomorphisms ϕ such that we have commu-
tative diagram

0 −→ π1(X,x) −→ Γ −→ Z/2Z −→ 0
⏐

⏐

�

⏐

⏐

�ϕ ‖
0 −→ K −→ ̂K −→ Z/2Z −→ 0

The normal subgroup K of ̂K has a conjugation action on Hom′(Γ, ̂K).

Theorem 3.4. Let G be a connected semisimple complex affine algebraic
group. Isomorphism classes of polystable real principal G-bundles on X (see
Definition 2.4) are in bijective correspondence with the quotient
Hom′(Γ, ̂K)/K.
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Proof. Let (EG, ρ) be a polystable real principal G-bundle on X. So EG is
polystable by Proposition 3.2. Therefore, EG has a flat connection given by
a C∞ reduction of structure group

EK ⊂ EG,

where K is the subgroup in (3.10); see [11, page 146, Theorem 7.1], [2, page
208, Theorem 0.1]. It is possible to choose EK such that ρ(EK) = EK (see [5,
Proposition 3.7]). We fix a reduction EK such that ρ(EK) = EK . Let ∇ be
the flat connection on EK .

Fix a point

(3.12) z0 ∈ (EK)x.

Taking parallel translations of z0, for the flat connection ∇, along loops in
X based at x we get a homomorphism

(3.13) ϕ′ : π1(X,x) −→ K.

For any γ ∈ Γ1 (see (3.11)), consider the parallel translation of the ele-
ment z0 in (3.12) along γ. Let z′0 ∈ (EK)σ(x) be the element obtained by
this parallel transport. Using the identification of the total space of EG with
the total space of σ∗EG (see Remark 2.2), the element z′0 gives an element
z′′0 ∈ (σ∗EG)x. Therefore,

ρ−1
x (z′′0 ) ∈ (EG)x,

where ρx = ρ|(EG)x
.

It can be shown that ρ−1
x (z′′0 ) lies in the submanifold (EK)x ⊂ (EG)x. To

prove this, first observe that ρ(EK) ⊂ EG is a reduction of structure group
of EG to σG(K) giving a Einstein–Hermitian connection on EG (we have
again identified EG with σ∗EG using Remark 2.2). Now, ρG(K) = K, and
ρ has the property that it takes the reduction EK of EG to itself (by the
choice of EK). Hence ρ−1

x (z′′0 ) ∈ (EK)x.
Let

γ′ ∈ K

be the unique element such that z0σG(γ′)−1 = ρ−1
x (z′′0 ).
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Let

(3.14) ϕ′′ : Γ1 −→ K

be the map defined by γ �−→ γ′, where γ′ is constructed above from γ. Let

(3.15) ϕ : Γ −→ ̂K

be the map defined as follows: ϕ|π1(X,x) = ϕ′, where ϕ′ is constructed in
(3.13), and

ϕ(γ) = (ϕ′′(γ), 1) ∈ K × (Z/2Z) = ̂K,

where ϕ′′ is constructed in (3.14), and 1 ∈ Z/2Z is the nontrivial element
(recall that the natural identification of ̂K with K × (Z/2Z) is only set-
theoretic). It is easy to see that

ϕ ∈ Hom′(Γ, ̂K).

Conversely, given any

(3.16) ϕ ∈ Hom′(Γ, ̂K),

we will describe a construction of a polystable real principal G-bundle on
X.

Consider the restriction of ϕ to π1(X,x). It produces a flat principal
K-bundle EK on X together with a K-equivariant isomorphism

β : K −→ (EK)x

for the right-translation action of K on itself. Define

(3.17) z0 := β(e) ∈ (EK)x,

where e ∈ K is the identity element. The flat connection on EK will be
denoted by ∇.

Let EG := EK ×K G be the principal G-bundle obtained by extending
the structure group of EK using the inclusion map of K in G. The connec-
tion ∇ defines a holomorphic structure on EG. This holomorphic principal
G-bundle is polystable because ∇ is flat.
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We will construct an isomorphism of (EG)x with (EG)σ(x). Take any
element

z0g ∈ (EG)x,

where g ∈ G, and z0 is the element in (3.17). Take an element γ ∈ Γ1 (see
(3.11)). Let

Tγ : (EG)x −→ (EG)σ(x)

be the parallel translation along γ. Let

(3.18) ρ′x,γ : (EG)x −→ (EG)σ(x)

be the map defined by z0g �−→ Tγ(z0)ϕ(γ)σG(g), where ϕ is the homomor-
phism in (3.16); here ϕ(γ) is considered as an element of K using the natural
identification of ̂K \K with K.

We will show that ρ′x,γ in (3.18) is independent of the choice of γ.
To prove this, take δ := γ ◦ b = bγ, where b ∈ π1(X,x). If Tδ : (EG)x −→
(EG)σ(x) is the parallel translation, with respect to ∇, along δ, then

Tδ(z0)ϕ(δ) = Tγ(z0)ϕ(b−1)(ϕ(b)ϕ(γ)) = Tγ(z0)ϕ(γ).

This implies that ρ′x,γ = ρ′x,δ.
Note that ρ′x,γ takes the natural action of G on (EG)x to the action of

G on (EG)σ(x) obtained by twisting, using σG, the natural action of G on
(EG)σ(x).

Now take any point y ∈ X. We will construct an isomorphism of (EG)y

with (EG)σ(y).
Take any smooth path δ from x to y. So σ(δ) is a path from σ(x) to

σ(y). Let

Tδ : (EG)x −→ (EG)y

and

Tσ(δ) : (EG)σ(x) −→ (EG)σ(y)

be the parallel translations, with respect to the connection ∇, along δ and
σ(δ) respectively. Let

ρ′y,δ : (EG)y −→ (EG)σ(y)

be the map defined by z �−→ Tσ(δ) ◦ ρ′x,γ ◦ (Tδ)−1(z), where ρ′x,γ is constructed
in (3.18) (we have shown that ρ′x,γ is independent of γ).
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The above map ρ′y,δ is again independent of the choice of the path δ. To
prove this, take η := δ ◦ b, where b ∈ π1(X,x). Now

Tσ(η) ◦ ρ′x,γ ◦ (Tη)−1 = Tσ(δ)(Tσ(δ))
−1 ◦ Tσ(η) ◦ Tγϕ(γ) ◦ ϕ(b)(Tδ)−1

= Tσ(δ) ◦ Tσ(δ−1◦η)◦γ ◦ ϕ(γb) ◦ (Tδ)−1

= Tσ(δ) ◦ Tσ(b)◦γ ◦ ϕ(γb) ◦ (Tδ)−1.

Therefore, to prove that ρ′y,δ = ρ′y,η, it suffices to show that

(3.19) Tσ(b)◦γϕ(γb) = ρ′x,γ .

But γb is, by definition, σ(b) ◦ γ. Therefore,

Tσ(b)◦γϕ(γb) = ρ′x,σ(b)◦γ ,

where ρ′x,σ(b)◦γ is constructed as in (3.18). But we have seen that ρ′x,γ is
independent of γ. Therefore, (3.19) holds. Hence ρ′y,δ is independent of the
choice of δ.

Using the identification of the total spaces of EG and σ∗EG (see Remark
2.2), the above maps ρ′y := ρ′y,δ, y ∈ X, together define a map

ρ : EG −→ σ∗EG.

It can be checked that the pair (EG, ρ) is a real principal G-bundle. In view
of Proposition 3.2, the real principal G-bundle (EG, ρ) is polystable because
EG is polystable. �

It should be clarified that Theorem 3.4 is not true if the assumption that
G is semisimple is removed.

4. Moduli space of principal bundles

In this section, it is assumed that G is reductive. We also assume that
genus(X) ≥ 3.

Topological isomorphism classes of principal G-bundles over X are
parameterized by the fundamental group π1(G); any principal G-bundle is
topologically trivial both on X \ {x} and on a neighborhood D of x, and
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the resulting map D \ {x} −→ G produces an element of π1(G). Fix a topo-
logical isomorphism class

λ ∈ π1(G).

Let MX(G) be the moduli space of stable principal G-bundles on X of
the given topological type λ; see [12] for the construction of MX(G). This
moduli space is a normal quasiprojective complex variety; its dimension is
dimG(genus(X) − 1) + dimZ, where Z, as before, is the center of G.

Let EG be a holomorphic principal G-bundle on X, and let Q be a
parabolic subgroup ofG. There is a natural bijective correspondence between
the holomorphic reductions of structure group of EG to Q and the holomor-
phic reductions of structure group of σ∗EG to the parabolic subgroup σG(Q).
The identification between the total spaces of EG and σ∗EG (see Remark
2.2) takes the total space of a reduction of structure group of EG to Q to
the total space of the corresponding reduction of structure group of σ∗EG

to σG(Q). Using this correspondence between reductions of structure group
it follows immediately that EG is stable if and only if σ∗EG is stable.

We fix the topological isomorphism class λ such that σ∗EG is topologi-
cally isomorphic to EG for EG ∈ MX(G). Let

(4.1) η : MX(G) −→ MX(G)

be the anti-holomorphic involution defined by EG �−→ σ∗EG.
A holomorphic principal G-bundle EG is said to admit a pseudo-real

structure if there is a holomorphic isomorphism of principal G-bundles

ρ : EG −→ σ∗EG

such that the pair (EG, ρ) is pseudo-real.
Let

Ms
X(G) ⊂ MX(G)

be the smooth locus of the variety. The involution η in (4.1) preserves
Ms

X(G).

Theorem 4.1. Take any principal G-bundle EG ∈ Ms
X(G). Then this EG

is fixed by the involution η if and only if EG admits a pseudo-real structure.

Proof. Let (EG, ρ) be a pseudo-real principal G-bundle. Then ρ is an isomor-
phism of EG with σ∗EG. Therefore, if EG ∈ Ms

X(G), then η({EG}) = {EG}.
We will now prove the converse.
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For a holomorphic principal G-bundle FG, we have Z ⊂ Aut(FG) (see
(2.5)). A stable principal G-bundle FG on X is called regularly stable if
Z = Aut(FG). Note that any stable principal SL(n,C)-bundle is regularly
stable.

The smooth locus Ms
X(G) coincides with the locus in MX(G) of regu-

larly stable principal G-bundles [4, Corollary 3.4]; the assumption that g ≥ 3
is needed here (note that the moduli space of principal SL(2,C)-bundles on
a curve of genus two is smooth as it is isomorphic to CP

3).
Let EG ∈ MX(G) be a regularly stable principal G-bundle such that

η({EG}) = {EG}. Fix a holomorphic isomorphism

θ : EG −→ σ∗EG.

Consider

σ∗θ : σ∗EG −→ σ∗σ∗EG = σ∗σ∗EG = EG

as in Definition 2.3. The composition (σ∗θ) ◦ θ is a holomorphic automor-
phism of EG. Since EG is regularly stable, there is an element

(4.2) z0 ∈ Z,

such that (σ∗θ) ◦ θ coincides with the action of z0 on EG.
It is straightforward to check that θ commutes with the composition

(σ∗θ) ◦ θ. Indeed, in terms of the identification of the total space of EG

with that of σ∗EG (see Remark 2.2), the map σ∗θ coincides with θ; this
immediately implies that (σ∗θ) ◦ θ commutes with θ. Since θ commutes with
(σ∗θ) ◦ θ, and θ is an isomorphism between EG and σ∗EG, from the con-
struction of EG it follows immediately that

σG(z0) = z0,

where z0 is the element in (4.2) (recall that EG is obtained from EG by
twisting the action of G on EG by σG). Therefore, (EG, θ) is pseudo-real.
This completes the proof. �

Remark 4.2. The proof of Theorem 4.1 shows that a regularly stable prin-
cipal G-bundle is fixed by the involution η if and only if EG admits a pseudo-
real structure. Note that this statement is valid even if the genus of X is
two.
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