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Addendum to ‘Perelman’s reduced volume and

a gap theorem for the Ricci flow’

Takumi Yokota

In this addendum to [10], we prove that if the Gaussian density
of a complete gradient shrinking Ricci soliton is close to that of
the Gaussian soliton, then they are isometric to each other. This
was shown in [10] under the additional assumption that its Ricci
curvature is bounded below. We drop this assumption by develop-
ing Perelman’s reduced geometry for arbitrary complete gradient
shrinking Ricci solitons.

1. Background

In [10], we dealt with ancient solutions to the Ricci flow equation and gradi-
ent shrinking Ricci solitons. A one-parameter family of Riemannian metrics
(M, g(t)), t ∈ I ⊂ R on a manifold M is called a Ricci flow when it evolves
along the equation

∂

∂t
g(t) = −2 Ric(g(t)),

where Ric(g(t)) denotes the Ricci tensor of g(t), and it is called an ancient
solution if it exists for all t ∈ (−∞, 0]. It is convenient to use the reverse
time parameter τ := −t to handle ancient solutions.

A triple (M, g, f) consisting of a manifold M with a Riemannian met-
ric g and a smooth function f ∈ C∞(M) is called a gradient shrinking Ricci
soliton if it satisfies the following identity for some positive constant λ > 0:

Ric(g) + Hess f =
1
2λ
g.

We always normalize the potential function f by adding a constant so that

(1.1) λ(R+ |∇f |2) = f on M.

We called Volf (M) :=
∫
M (4πλ)−n/2e−fdμg the normalized f-volume of

(Mn, g, f) in [10], while it was called the Gaussian density in [1]. Here R
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and dμg denote the scalar curvature and the volume element of g, respec-
tively. Shrinking Ricci solitons are typical examples of ancient solutions to
the Ricci flow.

The purpose of this addendum is to prove the following general gap
theorem for gradient shrinking Ricci solitons.

Theorem 2 (cf. [10, Corollary 1.1]). There exists a constant εn > 0
which depends only on n ≥ 2 and satisfies the following: Any complete
n-dimensional gradient shrinking Ricci soliton (Mn, g, f) with Volf (M) >
1 − εn is, up to scaling, the Gaussian soliton (Rn, gE ,

| · |2
4 ).

In [10], Theorem 2 was obtained under the additional assumption that
the Ricci curvature is bounded below as a corollary of [10, Theorem 1.1],
which is a gap theorem for ancient solutions to the Ricci flow with Ricci
curvature bounded below. In its statement, we need the assumption on the
Ricci curvature to ensure that Perelman’s reduced volume is well-defined. In
this addendum, we observe that this is the case for ancient solutions gener-
ated by any gradient shrinking Ricci solitons. Then our Theorem 2 follows
from [10, Theorem 1.1]. We recall that, in the proof of [10, Theorem 1.1], we
have never used the assumption that its Ricci curvature is bounded below
(cf. [10, Remark 6.6]).

After we review the definition of Perelman’s reduced volume in Section 2,
we present a proof of Theorem 2 in Section 3. We conclude this section by
collecting several remarks on Theorem 2.

After the appearance of the paper [10], Enders–Müller–Topping [5]
applied Theorem 2 to obtain a regularity type theorem for type I Ricci flow,
while Munteanu–Wang [8] obtained another interesting gap theorem for gra-
dient shrinking Ricci solitons with pinched Ricci tensor. We also comment
that one of the assumptions in Haslhofer–Müller’s precompactness theorem
proved in [6] for sequences of gradient shrinking Ricci solitons is a uniform
positive lower bound for Volf (M).

We remark again that our result is intimately related to the results and
conjecture by Carrillo–Ni [3] (cf. [10, Remark 6.5]); Namely, Theorem 2 gives
a complete affirmative answer to their conjecture that Volf (M) = 1 for and
only for the Gaussian soliton.

2. Perelman’s reduced volume

In this section, we briefly recall the definition of Perelman’s reduced volume
given in [9, Sections 6, 7]. We use the same notations as in [10] to which we
refer for references as well.
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Definition 3. Let (Mn, g(τ)), τ ∈ [0, T ) be a backward Ricci flow, and take
p, q ∈M and [τ1, τ2] ⊂ [0, T ). We define the L-length of a curve γ : [τ1, τ2] →
M and the L-distance, respectively, by

Lg(γ) :=
∫ τ2

τ1

√
τ

(
|γ̇(τ)|2g(τ) +R(γ(τ), τ)

)
dτ

and Lg
(p,τ1)

(q, τ2) := inf Lg(γ), where the infimum is taken for all curves γ :
[τ1, τ2] →M with γ(τ1) = p and γ(τ2) = q. Then the reduced volume based
at (p, 0) is defined by

Ṽ g
(p,0)(τ) :=

∫

M
(4πτ)−n/2 exp

(

− 1
2
√
τ
Lg

(p,0)(·, τ)
)

dμg(τ),

where dμg(τ) denotes the volume element induced by g(τ).

The existence of the lower bound for Ric(= 1
2

∂
∂τ g(·)) guarantees that

the L-distance between any two points is achieved by a minimal L-geodesic.
Then Perelman [9] proved that the reduced volume is nonincreasing in τ > 0
and its value does not exceed 1 (cf. [10, Theorem 2.1]).

We comment that, in [10, Section 2], we developed Perelman’s reduced
geometry for more general geometric flows including the Ricci flow under
somewhat artificial assumptions, and independently and simultaneously,
Müller [7] also obtained almost the same result.

3. A refinement of a gap theorem for gradient shrinkers

In this section, we present a proof of Theorem 2. Our proof relies on the
following result concerning the geometry of gradient shrinking Ricci solitons.

Theorem 4 (Cao–Zhou [2], cf. Haslhofer–Müller [6]). Let (Mn, g, f)
be a complete gradient shrinking Ricci soliton and x0 ∈M be fixed. Then

(3.1)
1
4

(r(x) − c1)
2 ≤ f(x) ≤ 1

4
(r(x) + c2)

2

for any x ∈M with r(x) := d(x, x0)/
√
λ
 1 large, and

(3.2) Vol(Bx0(r)) ≤ Crn for any r > 0.

Here Bx0(r) is the closed ball of radius r > 0, and ci, i = 1, 2, and C > 0
denote some constants.
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Proof of Theorem 2 (cf. Proof of [10, Corollary 1.1]). Let (M, g, f) be a
complete gradient shrinking Ricci soliton with f being normalized as in (1.1).
We begin the proof by constructing a Ricci flow (M, g0(τ)), τ ∈ (0,∞), where
g0(τ) := (τ/λ)(ψτ )∗g for the family {ψτ := ϕ−1

τ } of diffeomorphisms of M
defined by

d

dτ
ϕτ (·) =

λ

τ
∇gf(ϕτ (·)) and ϕλ = idM .

As was shown by Zhang [11], ∇gf is complete provided g is complete.
We now list several facts that will be required in the proof. At first, any

complete gradient shrinking Ricci soliton have nonnegative scalar curvature
R ≥ 0 and potential function f ≥ 0 (Zhang [11]). Next, letting fτ := f ◦ ψτ ,
we have

(3.3) Lg0

(p,τ1)
(q, τ2) ≥ 2

√
τ2fτ2(q) − 2

√
τ1fτ1(p)

for any (p, τ1), (q, τ2) ∈M × (0,∞) with τ2 > τ1.
Inequality (3.3) is derived as follows (cf. [4, p. 344]): It is easy to see

that

∂fτ

∂τ
= −|∇g0(τ)fτ |2g0(τ) and Rg0(·, τ) + |∇g0(τ)fτ |2g0(τ) =

fτ

τ
.

Then, for any curve γ : [τ1, τ2] →M , we have

d

dτ
2
√
τfτ (γ(τ)) =

√
τ

(
|γ̇(τ)|2g0(τ) +Rg0(γ(τ), τ) − |γ̇ −∇g0(τ)fτ |2g0(τ)

)

≤ √
τ

(
|γ̇(τ)|2g0(τ) +Rg0(γ(τ), τ)

)
,

and integrating this inequality yields (3.3).
Finally, we state the following sublemma. This is a restatement of [10,

Sublemma 3.1], which played crucial role in [10].

Sublemma 8 ([10, Sublemma 3.1]). Let (M, g0(τ)) be a backward Ricci
flow and (M, g1(τ)), τ ∈ [0, T ) be another backward Ricci flow with nonneg-
ative scalar curvature R ≥ 0 satisfying that g1(τ) := g0(τ + τΔ) for some
τΔ > 0. Then, for any curves γ1 : [τ1, τ2] →M and γ0 : [τ1 + τΔ, τ2 + τΔ] →
M with [τ1, τ2] ⊂ [0, T ) and γ1(·) = γ0(· + τΔ), we have

(3.4)
1

2
√
τ2 + τΔ

Lg0(γ0) ≥ 1
2
√
τ2
Lg1(γ1) ≥ ατΔ

τ1,τ2
· 1
2
√
τ2 + τΔ

Lg0(γ0),

where ατΔ
τ1,τ2

:=
√

τ1
τ1+τΔ

τ2+τΔ
τ2

.
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Then we put g1(τ) := g(τ + λ), τ ∈ [0,∞) to obtain an ancient solution
(M, g1(τ)), τ ∈ [0,∞). Now, our main lemma is

Lemma 10. For any (p, τ1), (q, τ2) ∈M × [0,∞) with τ2 > τ1, there exists
a minimal Lg1-geodesic γ connecting (p, τ1) and (q, τ2), that is Lg1(γ) =
Lg1

(p,τ1)
(q, τ2).

Proof. It suffices to prove that any minimizing sequence {γi} of curves con-
necting (p, τ1) and (q, τ2) for which Lg1(γi) → L := Lg1

(p,τ1)
(q, τ2) stays in

a bounded region of M . It is clear that L <∞. Then, by taking a con-
verging subsequence from it, we can find a minimal Lg1-geodesic (e.g. [4,
Lemma 7.27]).

To begin with, we take a compact subset K ⊂M containing p in its
interior, and find C ≥ 0 such that Ric(g1(·)) ≥ −C on K × [0, τ2]. We let
r(·) := d(·, p)/√λ be the rescaled distance from p with respect to the metric
g = g1(0).

For any L′ ∈ (L,∞), we consider a curve γ : [τ1, τ2] →M with γ(τ1) = p,
γ(τ2) = q and Lg1(γ) < L′. Then we find τ ′ > 0 and ρ′ > 0 such that any
such curve γ satisfies that γ([τ1, τ ′]) ⊂ Bp(ρ′) ⊂ K. This is possible because

L′ > Lg1(γ|[τ1,τ ′]) ≥
∫ τ ′

τ1

√
τ |γ̇(τ)|2g1(τ)dτ ≥ e−2Cτ2 · λr(γ(τ ′))2

2(
√
τ ′ −√

τ1)

for any τ ′ > τ1 close to τ1.
Next, for any τ ∈ [τ ′, τ2], with γ0 : [τ1 + λ, τ2 + λ] →M being the curve

given by γ0(· + λ) := γ(·), we have

L′

2
√
τ2
>

√
τ

τ2
· 1
2
√
τ
Lg1(γ|[τ ′,τ ])

≥
√
τ

τ2

√
τ ′

τ ′ + λ

τ + λ

τ
· 1
2
√
τ + λ

Lg0(γ0|[τ ′+λ,τ+λ])

≥
√
τ

τ2

√
τ ′

τ ′ + λ

τ + λ

τ
·
[

fτ+λ(γ(τ)) −
√
τ ′ + λ

τ + λ
fτ ′+λ(γ(τ ′))

]

≥ 1
4

√
τ ′

τ2
(r(ψτ+λ(γ(τ))) − c1)

2 − max
Bp(ρ′)

f ◦ ψτ ′+λ(·).

We have used the fact that R and f are nonnegative, Sublemma 8 and (3.3).
This means that we can find D <∞ such that γ([τ1, τ2]) ⊂ Bp(D) for any γ
in consideration. This completes the proof of the lemma. �
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Once we have proved Lemma 10, the proofs in the literature are available
to see that the reduced volume Ṽ g1

(p,0)(τ) is nonincreasing in τ > 0 and it takes
value at most 1. By repeating the proof of [10, Corollary 1.1], in which the
first inequality in (3.4) played a key role, we obtain

(3.5) Volf (M) ≤ Ṽ(g1) := lim
τ→∞ Ṽ g1

(p,0)(τ) ∈ [0, 1].

Then, applying [10, Theorem 1.1] completes the proof of Theorem 2. �
We conclude this addendum by presenting the following proposition,

which asserts that the equality actually holds in (3.5).

Proposition 12 (cf. [10, Proposition 5.1]). Let (Mn, g, f) be a com-
plete gradient shrinking Ricci soliton. Then, with notation as in the proof of
Theorem 2, we have

Ṽ(g1) = Volf (M).

Proof. We can prove that

(3.6) Ṽ(g1) ≤
∫

M
(4πλ)−n/2e−αfdμg

for any positive α ∈ (0, 1), in the same way as in the proof of [10, Propo-
sition 5.1], in which the second inequality in (3.4) was the key. Then, the
right hand side of (3.6) is finite due to Equations (3.1) and (3.2), and it con-
verges to the normalized f -volume Volf (M) of (Mn, g, f) as α→ 1. Com-
bined with (3.5), this completes the proof of the proposition. �
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