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The main contribution of this paper is a generalization of sev-
eral previous localization theories in equivariant symplectic geom-
etry, including the classical Atiyah-Bott/Berline—Vergne localiza-
tion theorem, as well as many cases of the localization via the
norm-square of the momentum map as initiated and developed by
Witten, Paradan, and Woodward. Our version unifies and general-
izes these theories by using noncompact cobordisms as in previous
work of Guillemin, Ginzburg, and Karshon, and by introducing a
more flexible notion of “polarization” than in previous theories.
Our localization formulae are also valid for closed 2-forms w that
may be degenerate. As a corollary, we are able to answer a ques-
tion posed some time ago by Shlomo Sternberg concerning the
classical Brianchon-Gram polytope decomposition,. We illustrate
our theory using concrete examples motivated by our answer to
Sternberg’s question.
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1. Introduction

The main results of this manuscript, Theorems 4.24 and 5.20, are part of a
long chain of localization results in topology. Here, by a localization result
we mean a formula that expresses a global topological or geometric quantity
on a manifold M as a sum of local contributions near a subset of M such as
the fixed point set of a torus action or of a diffeomorphism, the zero set of
a vector field, or the critical set of a function. This idea has a long history;
early results of this general nature are, for instance, the Poincaré-Hopf index
theorem, the Lefschetz fixed point theorem, and the early works [5, 6] of
Bott. Other results that relate to our current work are [2-4, 13, 14, 16, 18,
24, 29, 33, 34]. To place our results in the appropriate context, below we give
a very brief sketch of this circle of ideas, focusing on aspects that directly
relate to our results.

We begin by discussing the classical Duistermaat—Heckman (DH) exact
stationary phase formula, which is probably the first such localization result
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in modern symplectic geometry. We will go back and forth between two
different perspectives that are frequently encountered in the literature and
which are related by a Fourier transform. Let (M, w) be a compact symplec-
tic manifold, equipped with an action of a torus G with associated momen-
tum map ®: M — g*. In their original papers [13, 14], Duistermaat and
Heckman consider the oscillatory integral

w
LX)
(1.1) /M e

over M of the function e®X) times the Liouville measure, where (®, X)

denotes the component of the momentum map for X € g. They then prove
an exact stationary phase formula, which expresses this integral as the sum
of local contributions near the fixed points of the G-action.

Recall that Liouville measure on M is obtained by integration of w™/n!,
the symplectic volume form. The DH measure on g*, which we denote
DH(n,0,@), is the push-forward of Liouville measure via the momentum map
®: M — g*. The integral (1.1) is essentially the Fourier transform, denoted
DH(ys,,,4), of the DH measure. This can be seen from the following compu-
tation: for X € g:

(1.2) DH (11,00 (— X) = /E DH 3.0 6%
cg

n
_ [ e
M n! ’

where the first equality follows from the definition of Fourier transform and
the second equality follows from the definition of the DH measure.

The integral (1.1) can also be interpreted as a push-forward in equivari-
ant cohomology. With this interpretation, the exact stationary phase formula
becomes a special case of a localization formula in equivariant cohomology.
This important formula was observed by Berline and Vergne and by Atiyah
and Bott, and hence it is often referred to as the “ABBV formula”. For
details see [2-4].

It is possible to relax some of the assumptions on the manifold M and
the 2-form w and still have versions of the exact stationary phase formula,
as we now describe. One such relaxation is to allow the closed 2-form w to
be degenerate. The manifold M must then be equipped with an orientation,
so that we can still integrate the symplectic volume form. If M is compact
then the DH measure remains well defined as a signed measure. The exact
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stationary phase formula continues to hold in this generality; indeed, it still
follows from the ABBV formula.

If the manifold M is not compact, but the momentum map @ is proper,
then the DH measure can be defined as a distribution, even if w is degenerate.
In this paper we mainly work with this DH distribution (see Definition 4.1).
In this situation, there might not exist a localization formula to the fixed
point set; there might not even be any fixed points. (This can be seen,
for instance, from the example of the action of a torus G on its cotangent
bundle TG = G x g* with the momentum map being the projection to g*.)
However, if we additionally assume that ® has a component that is proper
and bounded from below, then there does exist a localization formula which
expresses the DH distribution as a sum of contributions given in terms of
infinitesimal data along the components of the G-fixed point set. Guillemin,
Lerman, and Sternberg derived a formula of this form for the DH measure
when M is compact and G is a torus acting with isolated fixed points [18].
Their proof uses an (inverse) Fourier transform applied to the left and right-
hand sides of the original DH formula for (1.1). The case of non-isolated fixed
points is worked out by Guillemin and Cannas da Silva in [11]; the case that
a component of the momentum map is proper and bounded from below is
analyzed by Prato and Wu [30].

With these historical remarks in hand, we can describe the motivations
and main contributions of the present manuscript. One of our major moti-
vations was to further develop the point of view (initiated in [15, 25] and
developed in [16]) that it is possible to derive the above-mentioned localiza-
tion formulae [11, 18] directly, without passing through Fourier transforms.
The main technique for doing so is an appropriate notion of noncompact
cobordism, under the hypothesis that a component of the momentum map
is proper and bounded below. Indeed, using cobordisms, one can prove a
Guillemin—Lerman—Sternberg-type formula in the more general situation of
non-isolated fixed points and non-compact M ([25, Section 11], [16, Chap. 4,
Section 6]).

Here we take a moment to sketch some of the history of cobordisms in
symplectic geometry. The idea originates from the work of Guillemin and
Sternberg, who observe in [21] that two compact Hamiltonian symplectic
manifolds have the same DH measure if they are Hamiltonianly cobordant
through a compact manifold W. This is a simple consequence of Stokes’
theorem. Shaun Martin used cobordisms in the context of equivariant local-
ization in [28]. Guillemin, Ginzburg, and the second author, in [16, 25],
allow for mon-compact Hamiltonian manifolds and use noncompact cobor-
disms to derive localization results. In this setting, to deal with the lack of
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compactness, one restricts attention to momentum maps that are proper.
Moreover, one often makes the stricter requirement that the momentum
map is “polarized”, i.e., it has a component that is proper and bounded
from below. This important technical condition on momentum maps first
appeared in the work of Prato and Wu [30].

Our work generalizes and extends the cobordism ideas in [16] by intro-
ducing the notions of a taming map and a v-polarized momentum map,
as we now explain. The basic idea is that we allow the component v of the
momentum map ® — with respect to which the function (®,v) must be
proper and bounded from below (i.e., “polarized”) — to wvary along the
manifold. More precisely, suppose M is a G-manifold. We fix a taming map
v: M — g, so named because we use it to control situations when the man-
ifold is not compact. Then we require the function obtained by pairing the
g*-valued momentum map with this taming map to be proper and bounded
from below, giving us the notion of a v-polarized momentum map. In the
special case that v =n € g is constant, we recover the n-polarized condi-
tion of [16]. Our notion of a taming map is motivated by work of Maxim
Braverman [7], although our assumptions on the map v slightly differ from
his.

We now describe in more detail the main results of this paper. Let G
be a compact Lie group, M an even-dimensional oriented G-manifold, w a
G-invariant closed 2-form (not necessarily symplectic), and ® : M — g* a
G-equivariant function such that Hamilton’s equation

ddX = |(XP)w

holds for all X € g. (We call such a triple a Hamiltonian G-manifold,
although — contrary to the standard use of the term in the literature — we
do not require (M,w) to be symplectic.) A taming map v determines a vec-
tor field v# on M via the infinitesimal action of the Lie algebra g on M. The
localizing set in our theory is the zero set Z := {vf = 0} C M of this vector
field. The main results of our manuscript, Theorems 4.24 and 5.20, express
the DH distribution of the Hamiltonian G-manifold (M, ®,w) (respectively
twisted DH distribution) in terms of local data on arbitrarily small neigh-
borhoods of Z. Namely, let Z = | J;c7 Zi be the decomposition of Z into its
connected components. Then our Theorem 4.24 takes the form

(13) DH(M7¢7W) = Z DngrmZi(M,w&)
i
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and, in the twisted case, our Theorem 5.20 takes the form

(14) DH (M,w, fD Z ]:)I—IgermZ (M,w,®) (A’Zl)

where A is an equivariant cohomology class on M. The ith summand on the
right-hand side is defined to be the DH distribution (respectively twisted
DH distribution) of a v-polarized completion relative to Z; (made pre-
cise in Definition 3.3) of the restriction of (M,w, ®) to an arbitrarily small
G-invariant neighborhood of the connected component Z; of Z. The nota-
tion DHY, . (\.w.0) (respectively DHY,., (Mw,) (Alz,)), which makes no
mention of the choice of a neighborhood or of a v-polarized completion,
is justified since we prove in Section 4 (respectively Section 5) that under
appropriate hypotheses this DH distribution (respectively twisted DH dis-
tribution) is in fact independent of these choices. In this sense the right-hand
sides of (1.3) and (1.4) depend only on data that is localized near Z, and
thus it is valid to view our results as a “localization to Z”. We emphasize
that the specific form of the right-hand side varies according to choice of v
(and hence Z), so actually each of (1.3) and (1.4) is a family of formulae;
we explicitly demonstrate this using a simple example in Section 7.

Next we relate our main results to another related circle of ideas, namely
that of the so-called nonabelian localization and localization with respect to
the norm-square of the momentum map. We begin with a brief historical
account. The “nonabelian localization” theory was initiated by Witten, who
considers integrals of the form

(1.5) Jer /Mn(X)e‘”+i‘I’dX
g

where 7 is an equivariant differential form, dX is a volume form on g, the
is a real parameter, and ® again denotes the momentum map for a Hamil-
tonian G-action (see [33, p. 311] and [27, Section 2]). The group G may be
nonabelian. The integral (1.5) can be interpreted as the evaluation on the
Gaussian e <IXI* of a twisted DH distribution Bﬁ(M,w@)(n) on g. (Mild
assumptions on M guarantee that this distribution is a temperate (a.k.a
tempered) distribution, so its evaluation on the Gaussian is well defined.)
Witten then gives a formula similar in spirit to the abelian ABBV localiza-
tion formula mentioned above; he expresses (1.5) as a sum of local contribu-
tions from the components of the critical set of ||®||? , where the dominant
contribution as ¢ — oo is from the absolute minimum ®~1(0). (In fact Wit-
ten’s theory is slightly more general: he begins with a localization formula
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which depends on a choice of closed invariant 1-form A on M and leads to
a sum of local contributions from the components of the set

(1.6) {z[(X, &) =0}

for appropriate vector fields £f. He then specializes to the case A = d||®||?,
for which the set (1.6) is Crit ||®]2.)

Witten’s results may be considered an extension of the abelian DH the-
ory, in that it firstly introduces more general integrands (which correspond
to the twisted DH distributions of Section 5), and secondly it produces for-
mulae that localize to Crit(||®||?), the components of the critical set of the
norm-square of ®, instead of the fixed points of the action. Some years later,
Jeffrey and Kirwan derived similar formulae by working through the max-
imal torus T of a compact nonabelian Lie group G; they also explain the
relation of their formula to that of Witten’s in [24]. Kefeng Liu gives simpli-
fied proofs of some of these results in [27]. More recently, Paradan [29] and
Woodward [34] develop a localization theory for the norm-square || ®||> of
the momentum map which incorporates the Witten integrals above, deriv-
ing formulae for (the Fourier transforms of) the twisted DH distributions
as sums of local contributions associated to components of the critical set
of |||

Our main theorems also generalize (the inverse Fourier transforms of)
the nonabelian localization formulae to Crit(||®||?), under the assumption
that the connected components of Crit(|®||?) are smooth. (We expect this
assumption to not be necessary; see Remark 4.23.) Namely, we express the
(twisted) DH distribution as a sum of local contributions. Our formulae
rely on a choice of taming map v: M — g, which can be obtained from a
choice of a real valued function p: g* — R by (2.20). The localizing set is
then the critical set of the composition po ®. When G is a torus and p
is a linear functional, as described in our Example 2.26, our Theorem 4.24
recovers the so-called GLS formula [18]. When p is the norm square function
|- ||?: g* — R, as described in our in Example 2.27, we recover the localizing
set Crit(||®[|?) of Witten, Paradan, and Woodward [29, 33, 34].

Our results also answer a question asked some time ago by Shlomo
Sternberg concerning the Brianchon—Gram polytope decomposition. It is
known that the Atiyah—Bott—Berline—Verge localization theorem in equiv-
ariant cohomology [2—4], when applied to the exponent of the equivariant
symplectic form of a compact symplectic toric manifold, yields the measure-
theoretic version of the Lawrence—Varchenko polytope decomposition [26,
32], when applied to the corresponding momentum polytope. Sternberg had
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asked whether there is a similar “localization-theoretic” interpretation of the
classical Brianchon-Gram polytope decomposition. We can answer Stern-
berg’s question in the affirmative: a special case of Theorem 4.24, applied
to the exponent of the equivariant symplectic form on a compact symplec-
tic toric manifold, yields (the measure-theoretic version of) the Brianchon-
Gram polytope decomposition for the momentum polytope. However, this
application requires the fact that, for any simple polytope, there exists a
smooth function with a unique critical point on the relative interior of every
face of that polytope (and satisfies some additional technical conditions). If
the polytope satisfies a technical assumption (recorded in (6.15)), then the
norm-square function has this property. Surprisingly, proving that for any
simple polytope there exists such a function turned out to be not entirely
trivial, and our proof (by brute-force differential topology on R™) occupies
Appendix 7.3.

In future work, it would be interesting to investigate whether our results
generalize to G-spaces that are not manifolds. (Such a generalization may
correspond to polytope decompositions for non-simple polytopes, such as
Haase’s generalization of the Lawrence—Varchenko decomposition to non-
simple polytopes [22], or the Brianchon-Gram decomposition applied to
non-simple polytopes.) It would also be interesting to see if a combination
of our results with Braverman’s work in [7] would yield new index formulae.

We now give an outline of the contents of this paper. In Section 2, we
define the taming map and the corresponding localizing set and we describe
some of our motivating examples. In Section 3, we define v-polarized comple-
tions and prove that they exist. We note that polarized completions are used
both in the formulation of our localization formulae (1.3) and (1.4) and in
their proof. We prove the untwisted version of our localization formula, The-
orem 4.24, in Section 4 and the twisted version, Theorem 5.20, in Section 5.
In Section 6 we discuss the Brianchon—-Gram polytope decomposition and
answer Sternberg’s question in the affirmative. In Section 7, we use the stan-
dard S!'-action on S? in order to illustrate in detail how our equation (1.3)
can yield different localization formulae by choosing different taming maps.
We prove a technical lemma required in Section 6 in Appendix 7.3.

2. Taming maps and Hamiltonian spaces

The “varying polarization” of our localization formulae is controlled by a
so-called taming map. In this section, we introduce the notion of a taming
map, its associated vector field, and the corresponding notion of a polariza-
tion. For a symplectic manifold with Hamiltonian G action and momentum
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map ¢: M — g*, we explain that a choice of an invariant smooth function
p: g — R gives rise to a taming map whose localizing set is the critical set
of the composition p o ®.

2.1. Taming maps and G-manifolds

Throughout this manuscript, we use G to denote a compact Lie group, g its
Lie algebra, g* the dual space of g, and (-,-): g* x g — R the natural pairing
between a vector space and its dual. We equip g with an Ad-invariant inner
product and g* with the induced inner product. We also fix an Adg-invariant
inner product on the Lie algebra g, and we denote the resulting isomorphism
g—g'by{—¢&

Let N be a manifold, possibly with boundary.! A smooth G-action on N
is a homomorphism G — Diff (V) that is smooth in the diffeological sense,
i.e., the map (g, z) — g - x is smooth as a map from G x N to N. A manifold
N equipped with a G-action is called a G-manifold. If N has boundary,
then its boundary N is a manifold, any diffeomorphism of N restricts to a
diffeomorphism of 0N, and a smooth G-action on N restricts to a smooth
G-action on ON.

The following simple notion will be crucial in what follows.

Definition 2.1. Let N be a G-manifold, possibly with boundary. A tam-
ing map on N is a smooth G-equivariant function v: N — g.

We now associate to a taming map v: N — g a vector field v on N.
Recall that a Lie algebra element X € g gives rise to a vector field X* €
Vect(N) by

4 d
Xz = —|  (exp(tX) - z)
dt |—o
for all x € N. The resulting map

(2.2) g — Vect(N), X — X¥,

is G-equivariant with respect to the adjoint action of G on g and the G-action
on the space of vector fields Vect(N) that is induced from the G-action on N.
Also, if N has boundary, then the restriction of the vector field X* to the
boundary dN is a vector field on ON. Using this notion, we associate to a

'In this manuscript, manifolds are C'*°-smooth, Hausdorff, and second-countable.
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taming map v: N — g a vector field vf on N by
(2.3) V¥l i= v(2)f|, € TeN

for all z € N.

The zero set of this vector field v¥ will serve as the localizing set for our
theory, in the sense that our localization formulae give expressions for global
invariants (namely, DH distributions) in terms of data near the localizing
sets:

Definition 2.4. The localizing set associated to the taming map v: N —
g is defined by

Z .= {z € N|v*|, = 0}.

If N is a G-manifold with boundary, v: N — g is a taming map, and z
is in the boundary of N, then vf|, is tangent to the boundary and (v#)|gy =
(v]an)?.

The G-equivariance of the taming map implies that the associated vector
field v* and localizing sets also behave well with respect to the G-action:

Lemma 2.5. Let N be a G-manifold, possibly with boundary, and let
v:N —g be a taming map. Then the associated wvector field vt is
G-equivariant, and the localizing set Z = {v* = 0} is G-invariant.

Proof. For all x € N,

g (V) = (Adgv(x))g,z by G-equivariance of (2.2)
= (v(g- :r:))gz by G-equivariance of v: N — g
= Uﬁ|g'$ by (23)7

where g,: TN — TN denotes the differential of the diffeomorphism g: N —
N. Hence the vector field v is G-invariant, as desired. The G-invariance of
Z follows from the equivariance of vf. O

Remark 2.6. We are not the first to use the term taming map. In [7]
Braverman considers a complete Riemannian manifold N, equipped with an
action of a compact Lie group G by isometries. In this setting, he calls a
function v: N — g a taming map if the zero set of the induced vector field
is compact. In [7, Def. 3.2] he requires a cobordism of such structures to be
consistent in a suitable sense with a choice of tubular neighborhood of the
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boundary. Our definitions are slightly different from Braverman’s in that we
do not equip N with a Riemannian metric, and, more significantly, we do
not require the localizing set to be compact.

Remark 2.7. The localizing set Z is not necessarily smooth. See
Remark 2.32.

As in the book [16], we work with possibly noncompact G-manifolds N
equipped with maps ®: N — g*. We deal with the non-compactness of N
by requiring a properness condition:

Definition 2.8. Let N be a G-manifold, possibly with boundary, and let
v: N — g be a taming map. We say that a continuous function &: N — g*
is v-polarized if the function

oY= (P,v): N - R
is proper and bounded from below.

Definition 2.8 is well-suited for our purposes for two reasons. First,
being v-polarized frequently implies that the original map @ is proper (see
Lemma 2.9 below). Second, being v-polarized is preserved under patchings
by a partition of unity or averaging with respect to compact group actions
(see Section 3).

We make the following purely topological observations:

Lemma 2.9. Let N be a G-manifold, possibly with boundary. Letv: N — g
be a taming map and let ®: N — g* be a continuous function.

(1) If N is compact, then ® is v-polarized.

(2) Suppose that ®: N — g* is v-polarized. Let Y be a subset of N. Then
the restriction to 'Y of ® is v-polarized if and only if Y is closed in N.

(3) Suppose that v is bounded. Then
® is v-polarized = ® is proper.

Proof. Part (1) follows from the fact that every continuous function on a
compact set is bounded and proper.

For Part (2) recall that for a proper map ¢¥: N — R on a Hausdorff
space N and a subset Y of N, the restriction ¥|y: Y — R is proper if and
only if Y is closed. Indeed, if Y is closed then ¢~*([a,b]) NY is compact
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for any interval [a,b]. This implies 1|y is proper. Now suppose that ¥|y
is proper, and let = be an accumulation point of Y. Let ¢ and b be such
that a < ¥(x) < b. Then z is also an accumulation point of ¥~!([a,b]) N Y.
Because 9|y is proper, ¥~!([a,b]) NY is closed. So z is in Y. Because x was
arbitrary, this shows that Y is closed. Claim (2) follows.

We now prove part (3). Choose an inner product on g, and consider the
induced inner product on g*. Then for any x € N,

(2.10)
(P(x),v(x))| < ||®(z)] - [|[v(x)]| by the Cauchy-Schwarz inequality
< cl[®(2)]

where ¢ := sup ||v(z)|| < oo exists because v is bounded by assumption.

S
Now let K be a compact subset of g* . By (2.10), ®(x) € K implies that

|(®(x),v(z))| < cr, where r = sup ||a||. So the ®-preimage of K is contained
acK
in the (®,v)-preimage of the interval [—cr,cr], which is compact because

(®,v) is proper by assumption. Being a closed subset of a compact set,
®~1(K) is also compact, as required. O

Remark 2.11. The converse of part (3) of Lemma 2.9 is generally false: a
proper map to g* need not be v-polarized, even if v is bounded. For example,
the identity map on N = g* is proper but is not v-polarized if v: N — g is
constant.

Remark 2.12. In Sections 4 and 5, we derive localization formulae that
depend on a choice of taming map. However, the role played by this choice
is quite loose in the sense that many choices of v give the same localiza-
tion formulae. Specifically, we may define two taming maps vy and v2 on a
G-manifold N to be equivalent if there exists a G-invariant positive function
f+ N — Ry such that both f and 1/f are bounded and such that ve = fu;.
If v1 and vy are equivalent taming maps then

— they have the same localizing set; (see Definition 2.4);

— a function ®: N — g* is vi-polarized if and only if it is vo-polarized.

Equivalent bounded taming maps give rise to the same localization formulae
in Sections 4 and 5. See Remarks 4.29 and 5.25.

Remark 2.13. We often require taming maps to be bounded, because if
v: N — g is bounded then every wv-polarized map N — g* is proper (by
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Part (3) of Lemma 2.9). On the other hand, sometimes it is more natural to
begin with a taming map v: N — g that is unbounded (see Example 2.27).
In this situation, we can replace v with a bounded taming map v*: N — g*
by defining

(@) = h([lv(z)|) v(z),

where || - || is an Adg-invariant norm on g and h: R>9 — R>¢ is a smooth
function such that h(r) =1 for r near 0, h(r)=1/r for r > 1, and such
that the function r +— h(r)-r is weakly monotone. We can then derive a
localization formula using the taming map v®. Different choices of the func-
tion h result in bounded taming maps v? that are equivalent in the sense of
Remark 2.12. Moreover, if v was already bounded, then v? is also equivalent
to v. In this sense we can get a localization formula from any taming map
v: N —g.

Remark 2.14. Braverman works with a similar though not identical free-
dom in [7]. He needs his map v: N — g to be sufficiently large in a suit-
able sense. He achieves this by multiplying v by a real valued function that
grows sufficiently fast, but his formulae are independent of the choice of this
function.

Remark 2.15. The equivalence relation of Remarks 2.12 and 2.13 is still
finer than necessary for our purposes in the sense that many inequivalent
taming maps still give rise to the same localization formula. For example,
suppose that a torus 7" acts on a compact symplectic manifold with a finite
fixed point set. Let  be an element of the Lie algebra of T" whose pair-
ings with all the isotropy weights at all the fixed points are nonzero. When
the taming map takes the constant value 7, our localization formula, Theo-
rem 4.24, boils down to the Guillemin-Lerman—Sternberg formula [18]. The
right-hand side of this formula depends only on the signs of the pairings of
n with the isotropy weights.

2.2. Taming maps on Hamiltonian G-manifolds

In this section we focus our attention on Hamiltonian G-manifolds, and
we discuss some motivating examples. As before, we denote by ®X the
X-component of a function ®: N — g*, i.e., ®X(-) := (®(-), X): N — R for
X eg.

We note that in our definition of Hamiltonian G-manifold the 2-form is
allowed to be degenerate.
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Definition 2.16. Let N be an oriented G-manifold, possibly with bound-
ary. Let w be a G-invariant closed 2-form, and let ®: N — g* be a
G-equivariant function such that Hamilton’s equation

(2.17) doX = o (X*)w

holds for all X € g. Such a triple (N,w,®) is called a Hamiltonian
G-manifold, and the map ®: N — g* is called a momentum map.

In the symplectic geometry literature, the term “Hamiltonian
G-manifold” is usually reserved for G-actions on symplectic manifolds, i.e.,
the closed 2-form w is additionally required to be nondegenerate. When the
form w is allowed to be degenerate as in our Definition 2.16, some authors
(e.g., Woodward in [34, Section 3.1]) call the structure a “degenerate Hamil-
tonian G-manifold”. As in the book [16] (see, e.g., [16, Chap. 2, Section 1.1]),
we deviate slightly from this terminology, for two reasons. First, our local-
ization formulae are also valid for closed 2-forms that are somewhere degen-
erate. Second, because the derivation of our formulae uses cobordisms, we
work with both even- and odd-dimensional manifolds, and a closed 2-form
on an odd-dimensional manifold is everywhere degenerate.

Remark 2.18. In Definition 2.16, if N is a manifold with boundary, the
restrictions of w and ® to the boundary also satisfy Hamilton’s equations.

Since our definition of Hamiltonian G-spaces does not include assump-
tions of properness of the momentum map nor nondegeneracy of the 2-form,
we use the following additional terminology:

Definition 2.19. We say that a Hamiltonian G manifold (N,w,®) is
proper if the momentum map ®: N — g* is proper; we say that it is non-
degenerate if the closed 2-form w is nondegenerate and, unless we say
otherwise, the orientation of IV is induced from w.

Given a Hamiltonian G-space N, the main technical idea of our construc-
tions in the next section is to associate to a momentum map ®: N — g* a
taming map v such that ® is v-polarized, and then to vary the 2-form and
momentum map (on N as well as on an appropriate cobording manifold)
while maintaining the taming map that was built from the original momen-
tum map. As a first step we now describe a way to obtain a taming map
from a momentum map.
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We can view the differential of a smooth function p: g* — R as a function
dp: g* — g, since for any « € g* the differential dp|, at a is an element of
Hom(7T,g*,R) = g. If p is G-invariant, then dp is G-equivariant. Thus, given
a G-invariant smooth function p: g* — R and a momentum map ®: N — g*,
we may compose ® with the differential dp to obtain a taming map

(2.20) vi=dpo®: N —g.

Notice that if G is abelian then the G action on g* is trivial so every function
p: g — R is G-invariant. We will need the following two technical lemmas:

Lemma 2.21. Let (N, ®,w) be a Hamiltonian G-manifold and let p: g* —
R be a G-invariant smooth function. Let v =dpo ® be the corresponding
taming map as in (2.20) and let v* be the associated vector field on N. Then

(1) vt satisfies Hamilton’s equation for the function po ®: N — R, and

(2) if w is non-degenerate, the localizing set coincides with the critical set
of the function po ®:

(2.22) Z := {v* = 0} = Crit(p o ).
Proof. At each point x € N,

d(po ®@)|z = dp|e(r)(d®[;) by the chain rule
= (v(x),d®|,) by the definition of v

(v)w|, by the definition of v* and Hamilton’s equation for ®.

The second assertion follows from the first assertion by the non-degeneracy
of w. O

The next lemma describes the localizing set Z in terms of orbit type
strata. We will need the following terminology. Let (N,w,®) be a non-
degenerate Hamiltonian G-manifold. Given = in N, let G, denote the sta-
bilizer subgroup in G of x, let g, denote the Lie algebra of G, and let g°
denote the annihilator of g, in g*. Since w is non-degenerate, Hamilton’s
equation (2.17) implies that

(2.23) image d®|, = g°.
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Now suppose that G is a torus and let S denote the orbit type stratum
through a point « € N. Then S is the connected component of x in the subset

{2 € N |Gy =Gy}

consisting of points with the same stabilizer as . The image of S under ®
is an open subset of the affine plane ®(z) + g2 C g* [20]. (For example, if
N is a toric variety, ®(5) is the relative interior of a face of the momentum
map polytope.) Hence

(2.24) Ty(2)®(S) = g

Lemma 2.25. Let G be a torus, (N,w,®) a non-degenerate Hamiltonian
G-manifold, p: g* — R a G-invariant smooth function, v =dp o ® the cor-
responding taming map as in (2.20), and Z = {v* = 0} the corresponding
localizing set. Let x € N, and let S be the orbit type stratum that contains
x. Then

x € Z if and only if ®(x) is a critical point for p|e(s)-
Proof. We have

v*(z) = 0 if and only if d(po ®)[, =0 by (2.22)
if and only if (dp|e())(a2) =0 by (2.23)
if and only if ®(x) is a critical point for plgs) by (2.24).

g

The main localization results for Hamiltonian G-manifolds that occur in
the current literature involve two different localizing sets Z: the critical set
for a component of the momentum map, and the critical set for the norm-
square of the momentum map. We now show that these localizing sets (and
accompanying properness conditions often used in the theory) are special
cases of our general construction.

Example 2.26. Let G be a torus. Fix a Lie algebra element n € g, and
consider the corresponding linear functional on the dual space, p(-) := (-, n):
g* — R. Since G is abelian, the coadjoint G-action on g* is trivial, so p is a
G-invariant function. Moreover, the differential of p is the function g* — g
with constant value 7. Then, for a Hamiltonian G-manifold (N, w, ®), the
corresponding taming map is the function v: N — g with constant value
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7, and the function ®Y: N — R is just the n-component of the momentum
map ®. For a generic choice of 1) € g, the zero set of the vector-field vf =
coincides with the set of fixed points for the entire torus G, so

Z = N,

Thus, we recover the classical localizing set of the original DH theorem.
Moreover, for this choice of v, the momentum map ® is v-polarized exactly
when its n-component (®,n) is proper and bounded below. This important
condition in the theory of momentum maps was first introduced and ana-
lyzed by Prato and Wu in [30]. In the book [16], a function ® that satisfies
this condition with respect to an element n € g is said to be n-polarized.

In the next example we allow GG to be non-abelian.

Example 2.27. Let G be a compact Lie group and let (N, ®,w) be a
Hamiltonian G-space. Consider the norm-square function on g*

(2.28) prat =R, p&) =¢]*

Composing ® with the differential of p, it is straightforward to compute that
(2.29) v(z) = dp o ®(z) = 28 (x),

where ®(z) is the element of g that corresponds to the element ®(z) of
g* under the identification g2 g*. So ®V = (®,2®) = 2||®||2. Thus, when
w is nondegenerate, our theory recovers the localizing set of Witten [33],
Paradan [29], and Woodward [34]:

Z .= {v* = 0} = Crit(||®||?).

Since the norm-square ||®|? is proper if and only if ® is proper, the
momentum map P is v-polarized if and only if it is proper. (Contrast with
Remark 2.11.)

Remark 2.30. In each of the above examples, the v-component of ® is in
fact a multiple of the Hamiltonian function p o ®: indeed, in Example 2.26,
we have &Y= (d,n)=po®, while in Example 2.27, we have
OV = (D, 2:13) = 2||®||?> = 2(p o ®). These are instances of the following more
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general statement: if p: g* — R is homogeneous of degree k, then
(2.31) P’ =Ek(po ).
To see this, for given x € N, setting o = ®(x),

% (x) = (®(2),v(x)) = (B(2), dplo(@)) = (Lap)(a) @ kp(a) = k(po @)(x).

The equality (%) is Euler’s formula, which holds for any homogeneous func-
tion p of degree k on a vector space.

We close the section with some observations concerning the smoothness
of the localizing set.

Remark 2.32. A localizing set that is associated with a constant taming
map as in Example 2.26 is always smooth. Indeed, for a torus G and a
constant taming map v = 7 € g, the localizing set Z is the fixed point set of
the closure in G of the one-parameter subgroup generated by 7. Because Z
is the fixed point set of a compact group action, its connected components
are smooth submanifolds.

On the other hand, if the taming map v is associated to the norm-square
of a momentum map as in Example 2.27, then Z = Crit(||®||?) need not be
smooth. For example, consider S? x S2? equipped with the standard area
form on each factor and the diagonal circle action. Denote by N and S the
north and south poles of S?. By the local normal form theorem, we can
identify a neighborhood of the point (N, S) in S? x S? with a neighborhood
of the origin in C?, where the circle group acts on C? with the weights 1, —1
and with the momentum map ®(z,w) = —3||z||? + &||w||?. The critical set
of ||®]|? on C? is the zero level set {(z,w) | ||z|| = ||w]|}, which is a cone over
St x S1. Thus, Z is not smooth at (N, S).

3. Polarized completions

In this section, we use the taming maps introduced in Section 2 in order to
introduce and develop the notion of polarized completions. This notion
is the technical tool that allows us to both state and prove our localization
formulae in Sections 4 and 5.

We begin with some motivation. Recall from Section 2 that the property
of being v-polarized is crucial for our theory due to its link to the proper-
ness of ®. On the other hand, in the course of our analysis below, we will
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encounter Hamiltonian G-manifolds (NV,w,®) and taming maps v: N — g
such that the restriction to ® to a closed subset Y of N is v-polarized, but ®
is not v-polarized on all of N. For example, this may happen if Y is a closed
subset (e.g., a localizing set) of a v-polarized Hamiltonian G-manifold and
N is a small open neighborhood of Y. In such situations we wish to find a
closed 2-form @ and momentum map ® on N that agree with w and ® on
Y and such that ® is v-polarized on N. Since we do not require Y to be a
manifold (see Remark 2.32), we must first make precise what we mean by
the condition that differential forms “agree on Y”. We take the diffeological
approach:

Definition 3.1. Let N be a manifold and Y a subset of N. Let g and ay
be differential forms on NV, possibly of mixed degree and with coefficients in
a vector space other than R (such as in the case of equivariant differential
forms, as recalled in Section 4). We say that oy and «; agree on 'Y if for any
positive integer k, any open subset U of R¥, and any smooth map p: U — N
whose image is contained in Y, the pullbacks of ag and a1 to U coincide,
i.e., p*ag = p*ay as differential forms on U.

Remark 3.2. If ag and a; agree on a neighborhood of Y in N, then they
agree on Y. If Y is a submanifold of N, then ag and oy agree on Y exactly if
their pullbacks to Y coincide. In practice, these are the only two cases that
we need.

We can now define v-polarized completions:

Definition 3.3. Let (N,w, ®) be a Hamiltonian G-manifold, possibly with
boundary, and let v: N — g be a taming map. Let Y be a G-invariant
closed subset of V. Suppose that the restriction of ® to Y is v-polarized.
A v-polarized completion of (N,w,®) relative to Y is a Hamiltonian
G manifold (N,w, <I>) with the same underlying manifold N, such that D is
v-polarized and such that w + o agrees with w+ ® on Y.

The following proposition is the main result of this section. By Defini-
tion 3.1 and Remark 3.2, the proposition gives a v-polarized completion of
(N,w, ®) relative to Y.

Proposition 3.4. Let G be a compact Lie group, let N be a G-manifold,
possibly with boundary, and letv: N — g be a taming map. Let Z = {v* = 0}
be the corresponding localizing set. Let' Y be a closed G-invariant subset of
N that contains Z. Let w be a G-invariant closed 2-form on N and ® a
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corresponding momentum map. Suppose that the restriction of ® to 'Y is
v-polarized. Then there exists an invariant closed 2-form @ on N and cor-
responding momentum map ® that coincide with w and ® on a G-invariant
neighborhood of Y and such that D is v-polarized on N.

The remainder of this section is devoted to the proof of Proposition 3.4.
We begin with four elementary lemmas about real valued functions. The
first lemma asserts that a convex combination of functions that are proper
and bounded from below is still proper and bounded from below:

Lemma 3.5. Let N be a topological space. Let f,g: N — R be continuous
functions that are proper and bounded from below. Let p1,p2: N — R be
continuous functions that satisfy p1 > 0, pa >0, and p1 + po = 1. Then the
function

pif +p29: N —R

is proper and bounded from below.

Proof. Let 1 denote the function p; f 4+ p2g. The function v is bounded from
below by min(inf f,inf g). For any x € N and b € R, if ¢(x) < b then either
f(x) <bor g(x) <b. So, for any a < b,

¥ ([a,0]) € f7([inf £,5]) U g~ ([inf g, b]).

The union on the right-hand side is compact because f and g are proper.
Being a closed subset of a compact set, 1~ !([a, b]) is compact. Because the
interval [a,b] was arbitrary, this shows that v is proper. O

The second lemma states that if a function is proper and bounded from
below then its average with respect to a compact group action is also proper
and bounded below:

Lemma 3.6. Let G be a compact Lie group and N a topological space with a
G-action. Let f: N — R be a continuous function that is proper and bounded
from below. Then its G-average f: N — R, defined by

F(x) = / fg-a)dg
ge

where dg denotes the Haar probability measure on G, is also proper and
bounded from below.
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Proof. Every lower bound for f is also a lower bound for f. For any x € N
and b € R, if f(z) <b, then there exists g € G such that f(g-x) <b, and
soxz € gt (f~Y([inf £,0])). Hence, for any a < b,

(3.7) T (at) < g £ (lint £.8]).

geG

The right-hand side of (3.7) is the image of the compact set G' x f~!([inf £, b])
under the continuous map G x N — N, (g,a) — ¢! - a. Being a closed sub-
set of a compact set, the left-hand side is also compact, as desired. O

Next, we show that it is possible to expand slightly the set on which a
function is proper and bounded from below:

Lemma 3.8. Let N be a locally compact topological space and f: N — R
a continuous function. Let Y C N be a closed subset, and suppose that the
restriction fly: Y — R is proper and bounded from below. Then there exists
an open neighborhood Uy of Y in N such that the restriction of f to the
closure of Uy in N,

f‘UY : UY - R,

1s also proper and bounded from below.

Proof. By local compactness, for each point y in Y we may choose an open
neighborhood U, in N whose closure in N is compact and such that | f(u) —
f(y)] <1 for all u € U,,.

Let £ be any integer. Because f is proper on Y, the intersection f~1([¢, £ +
1)) NY is compact, so it is covered by finitely many of the sets U, for
ye fY[¢,£+1])NY. Let Uy denote the union of the elements of such a
finite cover. Then f(U;) C [ — 1, + 2], and the closure U, is compact, by
construction of the sets U,.

Consider Uy := |J{Uy | £ € Z}. Because the U, form a locally finite col-
lection of subsets of IV, the closure of their union is the union of their
closures: Uy = (J{U, | £ € Z}.

Let [a,b] C R be any interval in R. We wish to show that f~!([a,b]) N Uy
is compact. First, observe that f~!([a,b]) N U, is non-empty only if [a, b]
meets [£ —1,¢+ 2], which occurs for only finitely many integers ¢. Hence,
the intersection f~!([a,b]) N Uy is contained in a finite union of the sets Uj.
Being a closed subset of a finite union of compact sets, this intersection is
compact. This shows that f is proper on Uy, as desired.
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Finally, let B be a lower bound for f on Y; then B — 1 is a lower bound
for f on Uy, by construction of the sets U,. Hence f is also bounded below
on Uy. This completes the proof. O

The previous lemmas are quite general and apply to topological spaces
that are not necessarily manifolds. In preparation for proving Proposition 3.4,
we now return to the setting of manifolds and prove a variant of Proposi-
tion 3.4 that applies to real-valued functions:

Lemma 3.9. Let N be a G-manifold, possibly with boundary. Let Y be a
G-invariant closed subset of N, and let f: N — R be a smooth G-invariant
function such that the restriction fly:Y — R is proper and bounded from
below. Then there exists a smooth real valued G-invariant function on N
that is proper and bounded from below and that coincides with f on some
G-invariant open neighborhood of Y in N.

Proof. By Lemma 3.8, there exists an open neighborhood Uy of Y such that
the restriction of f to Uy is proper and bounded from below. Let g: N — R
be an arbitrary smooth function that is proper and bounded from below
(see [19, p. 53]). Let p; and pa be a smooth partition of unity subordinate
to the open covering {Uy, N \ Y} of N and let

= pif+p2g9: N — R
The manifold N decomposes as the union of the two closed subsets
N:UyU(N\Uy).

On N \ Uy, the function 1’ coincides with g. Because ¢ is proper and
bounded from below and N \ Uy is closed in N, it follows that ¢'|ny,
is proper and bounded from below. On the set Uy, the function ¢’ is a
convex combination of the functions f and g, both of which are proper and
bounded from below on Uy. By Lemma 3.5, it follows that 1’ ‘Uy is also
proper and bounded from below and hence that 1)’ is proper and bounded
from below on all of N.

Finally, since suppps C N \Y and N is Hausdorff, there exists some
open neighborhood U’ of Y such that supp p2 N U’ = (), hence in particular
' =fonU.

We now define 1 to be the G-average of ¢'. We claim that the function
1) satisfies the conditions of the lemma. By Lemma 3.6, ¢ is still proper
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and bounded from below on N. Moreover, since ¢’ = f on U’ and f is
G-invariant, v coincides with f on the intersection

ﬂg-U’.

geG

This intersection is clearly G-invariant. It is a neighborhood of Y because
its complement, being the image of the closed set G x (N ~\ U’) under the
proper map (g,x) — g-z from G x N to N, is closed. This concludes the
proof. O

We are ready to prove the main result of this section:

Proof of Proposition 3.4. We first observe that the function ®¥ := (®,v):
N — R is G-invariant, since both ® and v are G-equivariant by assumption.
Applying Lemma 3.9 to ®* and Y, we conclude that there exists a G-invariant
function ¢: N — R that is proper, bounded from below, and coincides with
®" on a G-invariant neighborhood U of Y.

Let Z = {v* = 0} be the localizing set and let gy denote a choice of a
G-invariant Riemannian metric on N. Consider the G-invariant 1-form ©
on N \ Z defined by

(.71)11)
80 = 4ot b

Note that © has the property that ©(v¥) =1 on N N Z. Such a 1-form is
sometimes called a Bott projector (see, e.g., [10]), following Bott [5]. Since
1) — @Y is identically zero on an open set that contains Y and hence Z, the
product (1) — ®V)O defines a G-invariant 1-form on all of N that vanishes
on /. N

We will now explicitly construct a 2-form w and momentum map ® that
satisfy the conditions of the proposition. Let

(3.10) wi=w—d((yp - 2")0)
and
(3.11) X =¥ 4 (p —V)O(XH)  for X €g.

On the neighborhood U of Y on which ¢ coincides with ®“, we have that
w and ® coincide with w and @, respectively. Since w is closed, the form
w is also closed. Moreover, since both w and () — ®")© are G-invariant,
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it follows that w is G-invariant. The G-equivariance of ® follows from the
G-equivariance of ®, the G-invariance of () — ®¥)©, and the G-equivariance
of the map X — X*. Hamilton’s equation (2.17) is satisfied by & and ®, as
can be checked as follows:

d(®¥) = d(@* + (¢ — B)O(X?))
= (%) + d(u(XF)((v — ©)8))
= o(XF)w — o XH)d((¢ — ©°)0)
= (XHa,

where the second to last equality uses the G-invariance of the 1-form (¢ —
®?)O and the Cartan formula for the Lie derivative, Lx: = du(X*) + o(X*)d.
On the set N \ Z, by definition of the Bott projector,

OV = BY 4 (1) — BV)O(vF)
— (bv + (w _ q)’v)
= ).

On the set U, we have ¢ — ®¥ = 0, s0 @Y = OV = 1. Since N = U U (NN 2),
we conclude that ® = ¢ on all of N. Since ¢ is proper and bounded below,
this implies @ is v-polarized on N. The result follows. O

4. Localization formulae for the DH distribution

The main result of this section, Theorem 4.24, is a localization formula that
expresses the DH distribution of a Hamiltonian G-manifold in terms of data
near a localizing set arising from an arbitrary taming map. We begin by
recalling the definition of the DH distribution:

Definition 4.1. Let (M,w,®) be a 2n-dimensional proper Hamiltonian
G-manifold (see Definition 2.19). The DH distribution, DH, 4):
C°(g*) — R, is the distribution on g* that associates to any compactly
supported test function ¢ € C°(g*) on g* the real number

n

w
DH\pw,0) (@) = / (po®)—-
M n.

(The right-hand side is well defined because ¢ is compactly supported and
® is proper.)
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In the next lemma we observe that the DH distribution associated to the
boundary of an odd-dimensional Hamiltonian G-manifold must be identically
zero. The lemma is an easy consequence of Stokes’ theorem. The argument is
the same as that given in [16, Section 2.3]; we briefly recount the proof here
for the reader’s convenience (compare also to the arguments in Section 5)
and since this idea is central to our cobordism arguments.

Lemma 4.2. Let (W,w,®) be a (2n + 1)-dimensional proper Hamiltonian
G-manifold with boundary OW . Let wayw and @Pgy denote the pullbacks of w
and ® to the boundary. Then the DH distribution associated to the Hamil-
tonian G-manifold (OW,waw, Paw ) is identically zero.

Proof. Let ¢ € C°(g*). We have

(4.3)

po <I>—' by definition of the DH distribution
w

d <g0 0 d ) by Stokes’ theorem

DH(BW,waw 7¢'6W) (So) =

S—

T

d(po®) /\ —  since w is closed
= / dp o <d<1> A '> by the chain rule,
w n.

where d® is understood to be a g*-valued 1-form on W. For every X € g,
we have (d®, X) = d®X = o(X*)w, so

" n+1
(4.4) <d<1> A X> = o XHw A = (X2 e 0,

because w1 is a form of degree 2n + 2 on the (2n + 1)-dimensional man-
ifold W. Thus, the g*-valued (2n + 1)-form d® A %7 vanishes when paired
with any X € g. We conclude that (4.3) vanishes for any test function ¢, as
required. [l

In view of Lemma 4.2 above, we recall the following definition from [16,
Chap. 2, Def. 2.20]:

Definition 4.5. A proper Hamiltonian cobordism between Hamilto-
nian G-manifolds (Mo, wo, ®9) and (Mi,wr,P;) is a proper Hamiltonian
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G-manifold with boundary (W,@,EI;) and an orientation preserving
diffeomorphism

i: — MyU M, — OW

(where the negative sign denotes opposite orientation) such that
(@ + @) = (wo + Bo) U (wy + D1).

The next proposition is essential for what follows. The idea of our main
theorem (Theorem 4.24) is to construct a proper Hamiltonian cobordism
between a given Hamiltonian G-manifold (M, w, ®) and another Hamiltonian
G-manifold that is described only in terms of local data near Z.

Proposition 4.6. Let (My,wo, ®9) and (Mi,wi, 1) be two even-
dimensional Hamiltonian G-manifolds. Suppose that there exists a proper
Hamiltonian cobordism between them. Then (My,wo, ®o) and (My,wi, P1)
are proper Hamiltonian G-manifolds and

DH(MO,WU,‘I)O) = DH(Ml,wh‘I’l) N

Proof. The first assertion is immediate from the definition of a proper Hamil-
tonian cobordism, since each boundary component is a closed subset of the
cobording manifold. The second assertion follows from Lemma 4.2. O

Remark 4.7. We can compose cobordisms (see [9]) after choosing “trivial-
izations” of tubular neighborhoods of the boundary components. Thus the
existence of a proper Hamiltonian cobordism is an equivalence relation on
Hamiltonian G-manifolds with proper momentum maps.

In the previous section, we define the notion of a polarized completion
of a Hamiltonian G-manifold with respect to a closed subset. This notion is
used in the statement of the main theorem of this section, since the right-
hand side of the formula (4.25) is the DH distribution DHy,, ., ®,) of a
polarized completion (Uz,wz, ®z) of a neighborhood Uy of the localizing
set Z (see Def. 4.21). Moreover, an implicit assertion in the statement of
Theorem 4.24 is that this DH distribution DHy, ., #,) is in fact independent
of the choice of polarized completion in a sense that we make precise below.
The justification of this last assertion will involve two main ingredients.
First, we need to place restrictions on the neighborhood U. Second, we use
the invariance of equivariant cohomology under equivariant homotopy and
the Cartan model for equivariant cohomology. Definition 4.8 explains the
first of these two ingredients:
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Definition 4.8. Let N be a G-manifold and Z a G-invariant closed subset.
A smooth equivariant weak deformation retraction of NV to Z is an
equivariant smooth homotopy p;: N — N, for 0 <t < 1, such that

e po is equal to the identity map on N,
e p; maps N to Z,
e for all ¢, the map p; sends Z to Z.

(A smooth homotopy is a homotopy such that the map [0,1] x N — N
defined by (t,x) +— pi(z) is smooth. The homotopy is equivariant if this
map [0,1] x N — N is equivariant, where G acts on the product [0, 1] x N
by the given action on N and trivially on the first factor.)

Remark 4.9. When t = 1, the map p; may be viewed as a map from N to
Z. This map p; is, in particular, a homotopy inverse to the inclusion map
i: Z — N since, by assumption, the composition ¢ op;: N — N is homo-
topic through the maps p;: N — N to the identity map on N, and the
composition p; oi: Z — Z is homotopic through the maps p;oi: Z — Z to
the identity map on Z. In particular, this implies that the restriction map
HA(N) — HE(Z) is an isomorphism. Here HE(Z) is understood to be the
singular (not de Rham) Borel-equivariant cohomology of Z, since we do not
assume that Z is a manifold.

The next two remarks compare Definition 4.8 to related notions that
appear in the literature.

Remark 4.10. In Definition 4.8, the map p;: N — Z is not required to be
a retraction, i.e., its restriction to Z is not required to be the identity map
on Z. Such a requirement is too stringent for our purposes. The difference
between the two notions may be seen in the following example. There is no
smooth retraction from R? to the union of the two coordinate axes, since if
p is a smooth map that fixes the two coordinate axes, then its differential
at the origin must be the identity, so p must be a diffeomorphism near the
origin and it cannot be a retraction to the union of the axes. However, it is
possible to construct a smooth weak deformation retraction in the sense of
Definition 4.8 from R? to the union of the coordinate axes.

Remark 4.11. Definition 4.8 is the smooth equivariant analogue of a
“deformation retraction in the weak sense”, in the sense of Hatcher in [23,
Chapter 0, Exercise 4]. We also note that the phrase “weak deformation
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retraction” sometimes refers to a continuous map p: N — Z that is a homo-
topy inverse to the inclusion map Z <— N, but in which the intermediate
maps N — N in the homotopy of i o p to the identity are not required to
carry Z to itself.

We will work with situations in which Z is an invariant closed subset
of a G-manifold M and N is a G-invariant neighborhood of Z in M that
admits a smooth equivariant weak deformation retraction to Z.

We now briefly recall the Cartan model for Borel-equivariant cohomology
(with R coefficients). Let M be a G-manifold. Then an equivariant differ-
ential form on M is a G-equivariant polynomial function from the Lie alge-
bra g to the space Q*(M) of differential forms on M. Identifying polynomial
R-valued functions on g with the symmetric algebra S(g*), we may think
of an equivariant differential form « as an element of Q*(M) ® S(g*). The
G-equivariance condition ensures that « is an element of the G-invariants in
the tensor product, where G acts diagonally on each factor in the standard
fashion. Hence

Q& (M) = (2" (M) @r S(g"))“.
Since both Q*(M) and S(g*) are graded rings, we may equip QF (M) with
the grading

QE(M) == @ (M) @ 57(g")°.
i+2j=k

The equivariant differential dg: Q% (M) — Q5 (M), the equivariant ana-
logue of the ordinary exterior derivative operator on Q*(M), is defined by
the formula

(dga)(X) = d(a(X)) — x:(a(X))

where X € g is a Lie algebra element and X* € Vect(M) denotes its corre-
sponding vector field on M. The equivariant differential satisfies dg o dg = 0,
so we may define the equivariant cohomology (with R coefficients)
H}.(M;R) as the cohomology of the complex (QF (M), dg). This is naturally
isomorphic to the Borel-equivariant cohomology of the G-space M with R
coefficients, as defined in terms of the Borel construction.

The next lemma, which is one of our main technical tools, states condi-
tions under which a polarized completion is unique up to cobordism.

Lemma 4.12. Let N be an even-dimensional oriented G-manifold and Z
a closed subset of N. Suppose that there exists a smooth equivariant weak
deformation retraction from N to Z. Let v: N — g be a bounded taming map
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with corresponding localizing set {v* = 0} equal to Z. Let wy and wy be closed
G-invariant 2-forms on N and ®¢ and ®y corresponding momentum maps.
Suppose that &g and ®1 are v-polarized and suppose that wg + ®y and w1 +
&y agree on Z in the sense of Definition 3.1. Let W = [0,1] x N, equipped
with the G-action that is trivial on the first factor and is the given action
on N on the second factor. Let ig,i1: N — W be the inclusions at levels
0 and 1 respectively. Then there exists on W a closed 2-form w and proper
momentum map ®: W — g* such that i5,(& + ®) = wo + By and i* (& + §) =
w1 + @1. In particular, there exists a proper Hamiltonian cobordism between
(N, wo, (I)()) and (N, w1, (I)l).

Applying Proposition 4.6, we immediately get the following important
consequence of the lemma:

Corollary 4.13. Under the assumptions and notation of Lemma 4.12,

DH(NvL”Jqu)D) = DH(valvq)l) :

Proof of Lemma 4.12. Let p;: N — N, for 0 <t <1, be an equivariant
smooth weak deformation retraction from N to Z according to Defini-
tion 4.8. Because the image of p;: N — N is contained in Z, and because
wo + @9 and w1 + ®; agree on Z according to Definition 3.1, the pullback
pi((w1 + ®1) — (wo + Pp)) is zero on N and in particular is equivariantly
exact. Because p; is smoothly equivariantly homotopic to the identity map
on N, and equivariantly homotopic maps induce the same pullback map on
equivariant cohomology, (w1 + ®1) — (wo + Do) is also equivariantly exact
on N. Thus there exists a G-invariant 1-form o on N such that

(4.14) dao=w; —wp and a(X*) = ®F —dF for every X € g.

Let ¢t denote the first coordinate on the product W =[0,1] x N, and let
7: W — N denote the projection map to the second factor. Define the closed
G-invariant 2-form

W= m"wo + d(tr*a)
on W. This has an associated momentum map oW — g* given by

X .= oY — tra(XF).

By (4.14), the function ® is equal to the convex combination (1 — t)7*®q +
tn*®;. The functions 7*®y and 7*®; are mw*v-polarized, because ®¢ and
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®, are v-polarized and 7 is proper. By Lemma 3.5, the function ® is 70-
polarized. Since v is bounded by assumption, from Lemma 2.9 we conclude
that ® is proper. N

We have shown that (W, w, ®) is a Hamiltonian G-manifold with bound-
ary whose momentum map & is proper. Identifying the boundary OW with
—N U N (where the minus sign denotes reversed orientation), the restriction
of @ to OW is wg LU wy and the restriction of ® is ®g LI ®;. This completes
the proof. O

In preparation for our arguments in Section 5 and because the general-
ization requires no substantial additional argument, we also consider Hamil-
tonian G-manifolds equipped with equivariant cohomology classes, namely,
quadruples (M, w, ®, A), where (M,w, ®) is a Hamiltonian G-manifold and
A € Hj(M) is an equivariant cohomology class on M. We define a proper
Hamiltonian cobordism between two such quadruples, (My,wq, P, Ao)
and (M, w1, @1, A1), to be a proper Hamiltonian G-manifold with boundary
equipped with an equivariant cohomology class (M, w, P, A), and a diffeo-
morphism i: — My U My — OM, such that

(415) 70 = wy U wr, Z'*"I;:(I)()qu)l, ’L'*AV:AoLlAl.

If there exists a proper Hamiltonian cobordism in the above sense between
(Mo, wo, ®o, Ag) and (M7, w1, P, A1), then in particular there exists a proper
Hamiltonian cobordism between (Mj,wp, o) and (M;,wr, ®;) in the orig-
inal sense of Definition 4.5. Thus, by slight abuse of language, henceforth
we use the term “proper Hamiltonian cobordism” to refer to the relation
defined above between Hamiltonian G-spaces, i.e., triples (M,w,®), and
also between Hamiltonian G-spaces equipped with an equivariant cohomol-
ogy class, i.e., quadruples (M,w,®, A) as above.

Remark 4.16. As in Remark 4.7, the existence of a proper Hamiltonian
cobordism is an equivalence relation on quadruples (M,w, ®, A). Indeed, we
can compose two cobordisms as in Remark 4.7, and by a Mayer—Vietoris
argument there exists an equivariant cohomology class on the composed
cobordism that restricts to the given ones on the two pieces.

The next lemma. shows that the DH distribution of a polarized comple-
tion on a neighborhood of Z with respect to Z is not only independent of
the choice of polarized completion, as we saw in Corollary 4.13, but is also
independent of the choice of the neighborhood.
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Lemma 4.17. Let (M,w,®) be a Hamiltonian G-manifold, Z an invariant
closed subset, and A € H{ (M) an equivariant cohomology class. Let Ug and
Ué be invariant open neighborhoods of Z in M, and suppose that there exist
smooth equivariant weak deformation retractions from Ug and Ué to Z.
Let v: M — g be a bounded taming map such that {v* =0} NUY = {vﬁ =
0}NUL =Z. For j =0,1, let w; be a closed G-invariant 2-form on U}, and
let ®; be a corresponding momentum map. For j = 0,1, suppose that ®;
is ”’U; -polarized and that w; + ®; agrees with w 4+ ® on Z in the sense of
Definition 3.1. Then there exists a proper Hamiltonian cobordism between
(Ug,w(), (I)(), A‘Ug) and (Ué, wi, (I)l, A‘Ué)

Proof. The union U := U% U U} is a G-invariant open neighborhood of Z in
M whose intersection with the localizing set {vf = 0} is equal to Z. Consider
the product U x [0, 1] as a G-manifold, with the G-action given by the action
on the first factor.

Consider the G-invariant open subset W of U x [0, 1] defined by

W:=U x [0,1]~ (U~ UY) x {0} U ((UNUp) x {1})).

Let wyy and @y denote the pullbacks of w and ® under the map from W to
U given by projecting to the first factor. Then (W, wy, ®y) is a Hamiltonian
G-manifold.

By slight abuse of notation we denote also by v: W — g the pullback
of v: U — g by the projection W — U to the first factor. The localizing set
of (W,v) is then Z x [0, 1]. Moreover, the restriction of &y to Z x [0, 1] is
v-polarized. B

Now let (W, w, ®) be a v-polarized completion of (W, wy , Py ) relative
to Z x [0, 1], which exists by Proposition 3.4. Identifying the boundary W
of W with Ug L U}, the restriction of @ + ® to OW has the form

(wo + @p) U (w) + D7),

where w; + @’ is a polarized completion of (Ué,wh@ ; @) with respect
to Z. Taking A € HE(W) to be the pullback of A € Hg (M) through the map
(x,t) — x, we obtain that (W,w, ®, A) is a proper Hamiltonian cobordism
between (Ugﬂ W6, (I)67 A’U%) and (Ué7 (Ui, (I)/b A|U})

By Lemma 4.12, there also exist proper Hamiltonian cobordisms between
(UG, wp, ®p, Alyg) and (U, wo, Po, Alyg ) and between (Uy, wf, ®), Alyy ) and
(U}, wr, @1, Aly ). Composing these cobordisms (see Remark 4.16) gives the
desired result. O
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Applying Proposition 4.6 yields the following consequence.
Corollary 4.18. Under the assumptions and notation of Lemma 4.17,

DH(ug wo,@0) = PH(ULw1,01):

Our next step is to find a proper Hamiltonian cobordism between two
Hamiltonian G-manifolds whose DH distributions yield the left- and right-
hand sides of our localization formula (4.25) below. For this we again invoke
the existence of v-polarized completions. The proof uses the same ideas as
that of Lemma 4.17: we start with a trivial cobordism, remove irrelevant
pieces of the boundary, and take a polarized completion.

Proposition 4.19. Let (M,w,®) be an even-dimensional Hamiltonian
G-manifold without boundary. Let v: M — g be a bounded taming map,
let Z = {v* =0} be the corresponding localizing set, and let Uz be a G-
invariant neighborhood of Z in M. Suppose that ® is v-polarized on M. Let
A€ H:(M) be an equivariant cohomology class on M. Then there exist a
v|u, -polarized completion (Uz,wz, ®z) of (Uz,w|u,, ®lu,) relative to Z (in
the sense of Definition 3.3) and a proper Hamiltonian cobordism between
(M, W, q), A) and (Uz, wz, @Z, A’UZ).

Proof. Consider M x [0, 1] as a G-manifold, with the G-action given by the
action on the first factor. Let m: M x [0,1] — M denote the projection to
the first factor. By a slight abuse of notation we denote by v: M x [0,1] — g
the pullback of v: M — g by 7. The localizing set of (M x [0,1],v) is then
Z % [0,1]. Consider the open subset W of M x [0,1] defined by

W:=M x[0,1] ~ (M ~Ugz) x {0}),
and consider the closed subset Y of W defined by
Y = (Z x[0,1]) U(M x {1}).

Both W and Y are G-invariant since Uz and Z are G-invariant. Let wy and
@y denote the pullbacks of w and ® under the projection map 7|y : W —
M. Then (W,ww,®w) is a Hamiltonian G-manifold. Moreover, since & is
assumed to be v-polarized on M and  is proper, the map 7*® is v-polarized
on M x [0, 1], and since Y is closed as a subset of M x [0, 1], the restriction
of ®yy to Y is also v-polarized.
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Now let (W, @, EIv>) be a choice of v-polarized completion of (W, wy, y)
relative to Y, which exists by Proposition 3.4. Identifying the boundary W
of W with —Uz U M, the restriction of w + ® to OW becomes

(4.20) (wz + D7) U (w+ D),

where wz + @z denotes the restriction of &+ ® to the boundary compo-
nent Uz. Because ® is v-polarized by construction and this boundary com-
ponent is a closed subset of W, the map ®z is v-polarized. Moreover, by
the construction of @ and ® and by the definition of Y, we also have that
wz + ®; agrees with w + ® on Z. Thus, (Uz,wz, (I>~Z) is a v-polarized com-
pletion of (Uz,w|y,, ®|v,) relative to Z. Because ® is v-polarized and v is
bounded, @ is proper. Finally, note that the restriction to OW of the equivari-
ant cohomology class A := 7|y, Ais Aly, U A. Thus, (W,w,®, A) is a proper
Hamiltonian cobordism between (M,w,®, A) and (Uz,wz, @z, Aly,). O

For the next theorem, we introduce the following notation.

Definition 4.21. Let (M,w, ®) be a Hamiltonian G manifold, let v: M — g
be a bounded taming map, and let Z; be a connected component of the
localizing set. Suppose that there exist arbitrarily small neighborhoods of
Z; that admit smooth equivariant weak deformation retractions to Z;. (This
means that every neighborhood of Z; contains a neighborhood with this
property.) Let U; be such a neighborhood, and let (U;,w;, ®;) be a v|y,-
polarized completion of (U;,w|y,, ®|y,) relative to Z;. In this situation we
define the notation

(422) DngrmZi(M,w,Cb) = DH(Ui,wi7q>i)'

To justify the notation, we note that the distribution on the right-hand
side of (4.22) is independent of the choice of U; and polarized completion
(w;, @;) by Corollary 4.18. Moreover, it is determined by the restriction of
w and ® to arbitrarily small neighborhoods of Z; because U; can be chosen
to be arbitrarily small.

Remark 4.23. In the above discussion we made the technical hypothesis,
that there exist arbitrarily small neighborhoods of Z; that admit a smooth
equivariant weak deformation retraction to Z;. This hypothesis is automati-
cally satisfied when Z; is a manifold by choosing an invariant tubular neigh-
borhood of Z;. In many examples, such as those considered in Section 6,
the components Z; of the localizing set Z are indeed smooth and hence
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manifolds. However, there are important situations in which the Z; are not
necessarily smooth. Specifically, the critical set for the norm-square of the
momentum map for a nondegenerate Hamiltonian G-manifold can be singu-
lar, as we saw in Remark 2.32. Nevertheless, we expect this critical set to
always satisfy our technical hypothesis. A proof would construct such weak
deformation retractions locally using local normal forms for Hamiltonian
G-manifolds, and would then patch them in an appropriate sense using a
partition of unity.

We now state and prove the main theorem.

Theorem 4.24. Let (M,w,®) be an even-dimensional Hamiltonian
G-manifold without boundary. Let v: M — g be a bounded taming map and
let Z = {vti =0} be the corresponding localizing set. Suppose that ® is
v-polarized on M, hence on Z. Let

Z:U&

1€l

be the decomposition of the localizing set Z into its connected components.
Suppose that, for every i € I, there exist arbitrarily small neighborhoods of
Z; that admit smooth equivariant weak deformation retractions to Z;. Then

(4.25) DH(M,w,@) - Z DngrmZi(M,w,‘D)'

Proof of Theorem 4.24. For each i € I, choose an invariant neighborhood
U; of Z; that admits an equivariant smooth weak deformation retraction
to Z;. Moreover, choose these neighborhoods U; sufficiently small so that
their closures are disjoint. Let Uz be the union of the neighborhoods U;. Let
(Uz,wz,®z) be a v|y,-polarized completion of (Uz,w|y,,P|y,) relative to
Z, as obtained from Proposition 4.19. In particular, there exists a proper
Hamiltonian cobordism between (M,w,®) and (Uz,wz, ®z). By Proposi-
tion 4.6, (M,w, ®) and (Uz,wz,®z) have the same DH distribution:

(4.26) DHw,#) = DH(U, w,,0,)-

Let w; and ®; be the restrictions of wy; and &z to the component U;.
Then the DH distribution of (Uz,wz, ®z) is the sum of the DH distributions
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of (Ul, Wi, (I)l)

(4.27) DH (U, wy.0,) = Z DH(u, 1,.0,)-

Because (U;,w;, ®;) is a v|y,-polarized completion of (U;,w|y,, ®|v,) rel-
ative to Z;, by definition

(428) DH;ermZi(M,w@) = DH(Uiywi,qu)'
Equation (4.25) follows from (4.26), (4.27), and (4.28). O

Remark 4.29. In Definition 4.21, if (U;,w;, ®;) is a polarized completion
of (Ui,wl|y,, ®|y,), and if v’ is a taming map that is equivalent to v in the
sense of Remark 2.12; then (U;,w;, ®;) is also a polarized completion of
(Ui, w|u,, @|v,) relative to v'. Thus, the DH distribution DngrmZi(M’w’(b) is
independent of the choice of taming map v within an equivalence class in
the sense of Remark 2.12.

5. Localization formulae for twisted DH distributions

The main result of this section is a localization theorem for twisted DH
distributions (Theorem 5.20) that is analogous to Theorem 4.24.

Definitions and notation. For any real vector space V', there is a natu-
ral embedding V' — Vect(V') of V into the space of smooth vector fields on
V by v +— 0, where © denotes the constant coefficient vector field o(z) = v €
T,V 2 V. Furthermore, a smooth vector field X on V may be interpreted
as an element of the space LDO(V') of linear differential operators on V' via
the Lie derivative Lx, so we also have an embedding Vect(V') — LDO(V') by
the association X +— Lx. Because partial derivatives commute, the compo-
sition V' — Vect(V) — LDO(V) extends to an algebra embedding S(V) —
LDO(V), denoted @ — Dg, of the symmetric algebra S(V') into LDO(V).
Given an element Q € S(V'), we denote by

S(V) @r CF(V) = C=(V),

(51) (Q,¢) = Dqe,

the pairing obtained by applying the differential operator Dg to the func-
tion ¢.
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Consider now the case V' = g*, the dual of the Lie algebra g of a compact
Lie group G. Also, let M be a G-manifold and ®: M — g* a smooth map.
Composing with the pullback ®*: C*°(g*) — C*°(M) yields the linear map

S(g") @r C=(g") — C>(M)

(5:2) (Q,9) = ®"(Dqyp) = Doy o ®.

Finally, tensoring (5.2) with the identity map on Q*(M) and composing
with the pointwise multiplication map Q*(M) @r C*°(M) — Q*(M), we
obtain a linear map (2*(M) ®gr S(g*)) ®r C>(g*) — Q*(M). An element
n € Q*(M) ®r S(g*) determines via this map a linear transformation

(5:3) Dye: C*(g") — Q°(M),

which may be expressed in explicit coordinates as follows.

We fix for the rest of this discussion a choice of basis { X1, X2, ..., X, } for
g and corresponding dual basis {1, B2, ..., 5, } of g*. For a multi-index a =
(a1,az,...,a,) € ZL,, denote by 3* the monomial 8y* 85* - - - B¢~ € S(g*). An
element 7 € Q*(M) ®g S(g*) may be expressed in these coordinates as

(5.4) n=>Y 1.6

where the coefficients 1, € Q*(M) are differential forms. Tracing through
the definition of the map D, ¢ of (5.3), an explicit computation shows that,
for ¢ € C*°(g*) and n as above, the function (5.3) is given by

(5:5) Dya(p) =Y (9" (Dgsp))la.

a

We may now define the twisted DH distribution on g*. We first place the
additional assumption that ® is proper. In this case, for any compactly sup-
ported function ¢ on g* and any a € ZZ,, the functions Dgap and ®*(Dgap)
are also compactly supported (on g* and M respectively), and hence D, ¢ ()
is a compactly supported differential form on M. In particular, its integra-
tion over M is well-defined. Now let (M,w,®) be a proper Hamiltonian
G-manifold (see Definition 2.19). Let n € (Q*(M) ®r S(g*))¢ be an equiv-
ariantly closed equivariant form on M. We define the twisted DH distri-
bution with respect to (M,w,®) and 7 on g* as follows:

(5.6) DH g0 (1) @ /M ¢ ADpo ().
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When there is no danger of ambiguity, we will occasionally abuse notation
and denote by DH(n) the distribution DH g, 4)(7)-

The explicit formula (5.6) implies that ¢ — DH(n)(¢p) is linear and con-
tinuous as a map from the space C2°(g*) of compactly supported functions,
with its C* topology, to R. Hence DH(n) is a distribution. Moreover, when
n =1, the twisted DH distribution reduces to the classical (“untwisted”)
DH distribution discussed in the previous section.

Remark 5.7. When M is compact, we can integrate exp(w + i®) A n over
M to obtain an analytic function on g. The twisted DH distribution
DHp,0)(n) is essentially the Fourier transform of this function. See [34,
Section 3.1].

We now add some extra data to that of a Hamiltonian G-manifold:
we call Hamiltonian G-manifold equipped with a closed equivariant
form a quadruple (M,w, ®,n) where (M,w, ®) is a Hamiltonian G-manifold
and n € QF (M) is an equivariant differential form on M that is equivariantly
closed. In analogy with the definitions in Section 4 (and analogous slight
abuse of language), a proper Hamiltonian cobordism between two such
quadruples (My,wo, ®o,n0) and (M, wr, ®1,m1) is a quadruple (M, w, @,7)
and a diffeomorphism i: — My U M; — M such that

(5.8) 70 = wo Uwr, PP = Do LDy, i =mngUn,

and such that (]\7 , W, &), 1) is itself a proper Hamiltonian G-manifold (with
boundary) equipped with a closed equivariant form. Note that if such a
cobordism exists, then ®g and ®; are necessarily proper.

Remark 5.9. As in Remark 4.16, after possibly modifying the equivari-
ant differential forms on tubular neighborhoods of the boundary compo-
nents, we can compose such cobordisms. Thus, being cobordant in the sense
defined above is an equivalence relation on proper Hamiltonian G-manifolds
equipped with closed equivariant forms.

We begin with the following “twisted analogue” of Lemma 4.2 and
Proposition 4.6:

Lemma 5.10. Let (My,wo, ®o,n0) and (My,w1,®1,m1) be proper Hamil-
tonian G-manifolds equipped with closed equivariant forms. Suppose that
there exists a proper Hamiltonian cobordism between (My,wo, ®o,n0) and
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(My, w1, ®1,m1). Then
DH(Mo,wo,%)(UO) = DH(thhq>l)(n1).

Proof. Let (]Tf, w, 5, 7n), with diffeomorphism ¢: — My U M; — 81\7, be a
proper Hamiltonian cobordism between (Mg, wo, ®o, n0) and (M7, w1, P1,71).
To show that the twisted DH distributions are equal, it suffices to show that
for any ¢ € C°(g*) we have

(5.11) DH (n, wo,3,) (10)(9) = DHi, w,,0,) (1) ()

We compute the difference as

DHt, w,,0,) (11)(0) — DH(a wo,00) (110) ()

- / e A Dy, 0, (p) — / € A Dy, 2, ()
My MO

_ /a _EAD () by (58)

= /M d (e‘~u A Dﬁ,gb(@)) by Stokes’ theorem.
M

Thus it suffices to prove that

(5.12) /~ d (ea’ A D;,@(w)) = 0.

M

We first write
n=D b
a

with respect to the basis {f3;} of g* fixed above, where the 7, are differential
forms on M (of mixec~1 degree). Then Dﬁﬁ)(go) = > . (2*(Dgag))na by (5.5).
Since w is closed, d(e*) = 0, so

d (e@ A Dﬁ@(@)> = e Ad(D; 5()).
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We compute

(5.13)
d(D; 5(9)) =d (Z (¥ (D)) ﬁa)
_ Zd < (Dgep) ) ATl + Z (5*(Dga<ﬂ)) dija
_ Z@* (Dga)) AT + Z (<I>* Dgagp )) difa
- ZZ‘P* (D5 (Dini) d(®. X0 £+ 3 (" (D))
- Za: Z ®* (Dg,(Dpsp)) t(XF)B A T + Z ( (D= )> dija-

Now recall that 7 is equivariantly closed, so for any X € g, we have
d((X)) — U X*)i(X) = 0.
This implies
Do diaBt =3 % UKD aBi",
a a 7

where {X;} is the basis for g as fixed above. Thus for any ¢ € C°(g*) we

have
> ( "(Dgep) ) dija = ZZ ( (Dg,pap ) UXF)Ta.

Noticing that Dg,gagp = Dg, Dga¢ by definition of Dg, we have
S (8" (D)) difa = 303 (87 (D5, Deip) ) (X
a a 1
Substituting into the last expression in (5.13), we obtain

=02 ¥ (Dp Donp)(«(XED ATl + (X)),

Hence

(5.14)
o Ad(D; 5 ZZ@ (Dp, Dpaip)(€® A (XD AT + €2 A (X))
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From the definition of the exponential

o2 @3

e =14+0+
it can be seen that L(Xf)& Ae¥ = L(Xf)e‘t’ =e“ A L(Xf)fu. Hence, we may
further simplify (5.14) as

e’ nd (Dﬁ@(‘ﬁ)) = Z > " (Ds,Dep) (Q(Xf)&) A Tl
+e¥ A (L(Xf)ﬁa»
=22 ¥ (D Daep) UX) (e i)

=237 u(xD) (¥ (D5 Do) (2 ATa) )

The integral over M of the right-hand side of this last equation is 0,
because the expression is the contraction by a vector field of a differential
form, and hence its top degree part (which is the only part which contributes
to the integral) must be 0. Hence (5.12) vanishes, as desired. O

The purpose of the next lemma is to show that the twisted DH distri-
bution is independent of the choice of a closed equivariant form 7 within an
equivariant cohomology class.

Lemma 5.15. Let (M,w,®) be a proper Hamiltonian G-manifold. Suppose
that ng and n1 are closed equivariant differential forms on M such that
o] = [m] € H5(M;R). Then there exists a proper Hamiltonian cobordism
between (M,w, ®,n9) and (M,w, P, ).

Proof. Since [no] = [m] there exists an equivariant differential form v on M
such that 11 —no = dgy. Equip M := [0,1] x M with the 2-form & = m*w
and momentum map ® = 7*®, where w: M — M is the projection map
to the second factor. Consider M to be a G-manifold equipped with the
given action on M and the trivial action on [0, 1]. This makes (M,w, ®) a
Hamiltonian G-space, and 7 an equivariant map. Moreover, since ®: M —
g* is proper, ®: M — g* is also proper.
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Let ¢ denote the coordinate on the interval [0, 1]. Define on M the equiv-
ariant different form

n=m"ny+ dg(tr*y).

Since dgno = 0 by assumption, 7 is also equivariantly closed. Define ig: M x
M and iy: M x M by ig(m) = (0,m) and i1(m) = (1,m). Then ijw = ijw =
w, iG® =147® =P, ign=mno, and i1y =mno + dgy =m. This shows that
(M ,&,(T),m is a proper Hamiltonian cobordism between (M,w,®,1ny) and
(M,w,®,n), as was to be shown. O

By Lemmas 5.10 and 5.15, we have just shown that the following notion
is well defined:

Definition 5.16. Let (M,w,®) be a proper Hamiltonian G-manifold, and
let A be an equivariant cohomology class in HE(M). Let n be an equiv-
ariant differential form on M representing A, i.e., A = [n]. We define the
twisted DH distribution with respect to (M,w, ®) and the equiv-
ariant cohomology class A as

DHnw,0)(A) := DHpyr,0)(1)-

In the previous section, we introduced the notion of a proper Hamilto-
nian cobordism between Hamiltonian G-manifolds equipped with equivari-
ant cohomology classes. Using this notion we have the following analog of
Lemma 5.10:

Lemma 5.17. Let (My,wp, ®o) and (Mi,wy,®1) be proper Hamiltonian
G-manifolds with equivariant cohomology classes Ay € Hf(My) and Ay €
HE(My). Suppose that there exists a proper Hamiltonian cobordism between
the quadruples (My,wq, ®o, Ag) and (My, w1, ®1, A1). Then the correspond-
ing twisted DH distributions are equal, i.e.,

DH 1y wo,00) (Ao) = DHn, wy 0,) (A1)

Proof. Let ([0,1] x M,&,®, A) be a cobording quadruple, with diffeomor-
phism — Mg U My — ([0, 1] x M). Let 77 be an equivariant differential form
on [0,1] x M that represents the class A, and let 1y and n; be its pullbacks
to My and M;. Then 79 and n; represent the classes Ag and A;. The result
now follows from Lemma 5.10 and Definition 5.16. O

In analogy with the previous section, we introduce the following notation.
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Definition 5.18. With notation as in Definition 4.21, we define
(519) DngrmZi(M7w7<I>) (A|Z1) = DH(Ui,wi,‘bi)(A|Ui)‘

The justification that this notation is well-defined follows that given in
Section 4 for Definition 4.21 except that we use Lemmas 4.17 and 5.17. We
may now state and prove the main theorem:

Theorem 5.20. Let (M,w,®) be an even-dimensional Hamiltonian
G-manifold without boundary. Let A be an equivariant cohomology class in
HE(M). Let v M — g be a bounded taming map and let Z = {v* =0} be
the corresponding localizing set. Suppose that ® is v-polarized on M, hence

on Z. Let
Z=| |2z
€T
be the decomposition of the localizing set Z into its connected components.

Suppose that, for every i € I, there exist arbitrarily small neighborhoods of
Z; that admit smooth equivariant weak deformation retractions to Z;. Then

(5.21) DH(\w,0)(A) = DHye, (M) (Al2)-

Proof. For each i € Z, choose an invariant neighborhood U; of Z; that admits
an equivariant smooth weak deformation retraction to Z;. Moreover, choose
these neighborhoods U; to be sufficiently small so that their closures are
disjoint. Let Uz be the union of the neighborhoods U;. Let (Uz,wz, ®z)
be a v|y,-polarized completion relative to Z that is obtained from Proposi-
tion 4.19. In particular, there exists a proper Hamiltonian cobordism between
(Uz,wz,®7,Aly,) and (M,w,®, A). By Lemma 5.17, (M,w,®, A) and
(Uz,wz,®z, Aly,) have the same twisted DH distribution:

(5.22) DHw,)(A) = DHu, w,.e,)(Alu,)-
Let w; and ®; be the restrictions of wy and @7 to the component U;.

Then the twisted DH distribution of (Uz,wz, ®z, Aly,) is the sum of the
twisted DH distributions of (U;,w;, 4, Aly,):

(5.23) DH(U, wy0) (Alu,) = Y DH(y, .0 (Alu,)-
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Because (U;,w;, ®;) is a v|y,-polarized completion of (U;,w|y,, @|v,) rel-
ative to Z;,

(524) DngrmZi(M,wﬁb) (A) = DH(U;,&);,‘I’;)(A Ui)'
Equation 5.21 follows from (5.22), (5.23), and (5.24). O

Remark 5.25. As in the untwisted case (see Remark 4.29), taming maps
that are equivalent in the sense of Remark 2.12 give rise to the same local-
ization formula.

6. The Brianchon—Gram polytope decomposition and
symplectic toric manifolds

This paper was originally motivated by a question that Shlomo Sternberg
posed some years ago. We first recall the context of his question in some
detail.

As was mentioned in the introduction, it is known that the Atiyah—
Bott—Berline—Verge localization theorem in equivariant cohomology [2—4],
when applied to the exponent of the equivariant symplectic form of a com-
pact symplectic toric manifold, yields the measure-theoretic version of the
Lawrence—Varchenko polytope decomposition [26, 32], when applied to the
corresponding momentum polytope. As an example, figure 1 illustrates a
Lawrence—Varchenko polytope decomposition that corresponds to localiza-
tion on a CP2.

Motivated by this correspondence, Shlomo Sternberg pointed at a dif-
ferent (and classical) polytope decomposition that goes back to Brianchon
and Gram [8, 17] (see also [31]) and asked the following question.

Question 6.1. (Shlomo Sternberg) Is there a localization formula on
manifolds that corresponds to the Brianchon—Gram polytope decomposition
in the same way that the Atiyah—Bott-Berline—Vergne localization formula
corresponds to the Lawrence—Varchenko polytope decomposition?

As an example, figure 2 illustrates the Brianchon—Gram decomposition
of the same polytope as in figure 1.

These decompositions can be described as follows. Let A be an
n-dimensional simple polytope in R™ (see Appendix 7.3 for definitions). The
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Figure 1: A Lawrence-Varchenko decomposition of a triangle. The
summands on the right-hand side correspond to the vertices of the triangle.

A

Figure 2: The Brianchon—Gram decomposition of a triangle. The summands

on the right-hand side correspond to the faces of various dimensions of the
triangle.
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tangent cone of A at a face F' is defined to be
Cr={z+ANy—2x)lye A, z € F, A€ R>}.

One may think of this as the polyhedral cone which “a near-sighted person
would see” if she stands at a point in the relative interior of the face F.
Clearly, Cr is determined only by the local structure of A near this point.
The (measure-theoretic version of the) Lawrence—Varchenko decomposition
of A can then be expressed in the equality

(6.2) pa =S

q

where the summation is over the vertices g of A, where ua is Lebesgue
measure on A, where It is Lebesgue measure on the cone obtained from
the tangent cone to A at g by flipping some of its edge vectors so that
they all pair positively with a pre-chosen “polarizing vector” in the dual
space, and where ¢, is the number of edge vectors that are flipped. The
formula (6.2) has a symplectic-geometric interpretation as follows. Suppose
that A is Delzant; this is equivalent to the condition that A is the momen-
tum polytope of a symplectic toric manifold M. (See [12] for the definition
and basic facts of symplectic toric manifolds and Delzant polytopes.) The
DH measure of M is precisely pa. The fixed points for the torus action on M
exactly correspond to the vertices of the polytope A under the momentum
map. For each fixed point p, the tangent space T, M, with the symplectic
form, torus action, and orientation induced from those of M, is the sym-
plectic toric manifold corresponding to the tangent cone C, of A at the
vertex g corresponding to p. This tangent space is isomorphic to C" with
its standard symplectic form and with the torus acting by rotations of the
coordinates. Flipping the symplectic form on some of the coordinates in C"
and flipping the corresponding summands in the formula for the momentum
map yields a symplectic vector space (T, M )f with a torus action and with
momentum image C’g. Taking its DH measure with respect to its original
orientation, which differs from the symplectic orientation if ¢, is odd (the
DH measure is then negative), the measure-theoretic Lawrence—Varchenko
decomposition (6.2) becomes the assertion that the DH measure of M is
equal to that of
| |(@,a0)t.
P

In the spirit of this manuscript, this equality of DH measures can be deduced
from the fact that M is cobordant to | |,(T,M )¥ as Hamiltonian T-manifolds
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(with T = (S')") equipped with proper momentum maps [16, Chap. 4, Sec-
tion 6].

We next recall the Brianchon—Gram polytope decomposition formula [8,
17]. Let A be a polytope. The Brianchon—Gram formula is the following rela-
tion between the characteristic functions of the polytope and of the tangent
cones of its faces:

(6.3) 1a(@) =Y (- P1e, (@),

F

Note that the summation is now over all faces F' of A of all dimensions, in
contrast to the Lawrence—Varchenko decomposition. The measure-theoretic
version of this decomposition is

(6.4) pa =y ()" e,

F

where pa is again Lebesgue measure on A, and pc,. is Lebesgue measure on
the tangent cone Cr. Again, the formula (6.4) has a symplectic-geometric
interpretation as follows. Suppose again that A is Delzant and let M be
the corresponding symplectic toric manifold. The measure puc, is then the
DH measure of the symplectic toric manifold M¢, that corresponds to the
tangent cone C'r. When dim F' = /, this symplectic toric manifold M¢, is
isomorphic to (S! x R)? x C"~* with the standard symplectic form and with
the torus acting by rotations of the S' factors and of the C factors. By
flipping the symplectic form on the first £ components of this product, we
get an oriented symplectic toric manifold which we denote by MgF whose
momentum image is still Cr. The orientation arising from the symplec-
tic form is consistent with the original orientation only if ¢ is even. By
taking the DH measure of M(ﬁ)F with respect to the original orientation,
(6.4) becomes the assertion that the DH measure of Ma is equal to that of
g MgF We show below that this assertion coincides with our localization
formula (4.25) when applied to the toric manifold M with an appropriate
taming map.

Throughout this section we work with an identification t = R"™ = t*.
Suppose as above that A is a Delzant polytope and let M be the corre-
sponding symplectic toric manifold. It turns out that the measure-theoretic
formula (6.4) is what we obtain from Theorem 4.24 when applied to M
with a taming map that comes from a function that satisfies the conditions
described in the following lemma.
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Lemma 6.5. Let A C R™ be an n-dimensional simple polytope. Then there
exists an open neighborhood U of A in R™ and a smooth function p: U — R
with the following properties:

(1) For each face F' of A, the restriction plielinyr) of p to the relative
interior of F' has a unique critical point xp.

(2) Let F be an {-dimensional face of A, and let xp be the critical point
of plrevint(r)- Then there exist € > 0 and affine coordinates (x1, ..., zy,
Yly -y Yn—r) on R™ with respect to which
(a) the point xp becomes the origin, and a neighborhood xp in F
becomes the set Uy, = (—¢,€)t x (—¢,0]" ¢ for some ¢ > 0.
(b) The function ply,  becomes

VA n—~¢
p(xla"'vxe)yly"')yn—Z):Zx?—'_zyj
= A

after composing it with an affine map of R (i.e., multiplying by a
constant and adding a constant).

The proof of this lemma is technical and unrelated to the arguments in
this section so we relegate it to an appendix. We prove (an equivalent version
of) the lemma in Appendix 7.3 as Parts (A) and (C) of Proposition A.1.

Now suppose that (M, w, ®) is a symplectic toric T-manifold with momen-
tum polytope A = ®(M). Let p be a function as specified in Lemma 6.5,
and let v = d(—p) o ®: M — t be the taming map corresponding to —p. Let
Z = {v* = 0} be the corresponding localizing set. We begin with the follow-
ing observation.

Lemma 6.6.
zZ =\ |z,
F

where the union is over all the faces F' of A, and where Zp = ® 1 ({zr}).
Moreover, every Zr consists of exactly one T-orbit.

Proof. We have
(6.7) Z = Crit(po®) = |_|{1: € M : ®(x) is a critical point of plielint(r)}-
F

Indeed, the first equality is the content of (2.22), and the second equality
follows from Lemma 2.25, since the orbit type strata of a symplectic toric
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manifold are exactly the preimages of the relative interiors of the faces of
its momentum polytope. By the construction of p, (specifically property (1)
of Lemma 6.5), the term in the union (6.7) that corresponds to the face F’
is exactly @' ({zr}). Because in a toric manifold the momentum level sets
are exactly the T-orbits, ®~!({zr}) is a T-orbit. O

Our next task is to explicitly construct a neighborhood Uz of Z and
a v-polarized completion (Uz,wz, ®z) of (Uz,w|v,, P|u,) relative to Z for
which an application of Theorem 4.24 and a concrete computation of the
right-hand side of (4.25) for our choice of (Uz,wz, ®z) yield the measure-
theoretic Brianchon—Gram formula. By Lemma 6.6, we can construct Uy
as a disjoint union, over faces F', of neighborhoods Ugr of Zp, and we can
construct the polarized completion separately on each Up. The following
result is the main technical tool that we need:

Proposition 6.8. Let (M,w,®) be a compact connected symplectic toric
manifold with momentum polytope A = ®(M). Let p: A — R be a smooth
function as in Lemma 6.5, and let v: M — t be the taming map correspond-
ing to —p. Let F be a face of A and let

Cr={z+ANy—z)|yeA,ze F,Ae R}

be the tangent cone of A at F. Let Zp be the component of the localizing set
that corresponds to the face F' as in Lemma 6.6. Then there exist

e an arbitrarily small T-invariant tubular neighborhood Up of ZF;
o a v-polarized completion (Up,wp, ®r) of (Ur,w|vu,, P|u,); and

e an isomorphism of (oriented) Hamiltonian T-manifolds between
(Up,wrp, ®r) and the symplectic toric manifold (Mc,.,wcy, Pcy) cor-
responding to C'r, which carries the orientation on Up to the sym-
plectic orientation on Mc, +f dim F' is even and to the opposite of the
symplectic orientation on Mc, if dim F' is odd.

Proof. Let ¢ denote the dimension of F. By Lemma 6.5 we assume that the
affine span of F is RY x {0} C R™, the critical point z is the origin 0, the
polytope A coincides near zp with the sector Rf x RZBZ , and the function
p near xp is of the form -

Y4 n—~0
(69) P($1,---7$Z7Z/17~--,Z/n—€):Z%Z‘+Zyj'
P
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The tangent cone Cr is the sector

{(x1,- s weyn, - yn—e) [ Y1, Yy < 0}

The corresponding symplectic toric manifold is

Mg, = (ST x R)f x c"*

F

where the torus T = T¢ x T" acts by rotating the S coordinates and the
C coordinates. The symplectic form on M¢,, which we denote wgq, is the
split form which is equal to df A dt on every cylinder (parameterized as
{(e'?,t)}) and is standard on the C"~¢ factor. The momentum map is

D, ((eiel,tl), ce (eig’f,tg), 21y, Zn_g>

2 2
Z1 Zn—/t
= <t1,...,tg,——|2|,...,——| "2 | > )

The local normal form theorem identifies a neighborhood Ug of Zp in
M with the open subset

(6.10) (St x (—¢,e))f x (D2)"*

of Mc,., for some € > 0. Here D? is a disc with momentum image (—¢,0].
Thus its radius is v/2e.

By the explicit formula (6.9) for p, and identifying t and t* with R", if ¢
is sufficiently small, the identification of Up with the open subset (6.10) of
Mg, carries the taming map v to the pullback via ®¢, of

(6.11) (T1ye ey o Yty ooy Yn—t) — (=221, ..., =220, —1,...,—1).

Denote this pullback vstq. The pairing of the momentum map ®¢,. with the
taming map wvgq is the function

l n—~_ ’Z"Q
2 J
s S
j=1 j=1

which is neither proper nor bounded from below. Its restriction to the open
subset (6.10) is bounded but is not proper.

We now equip M¢,. with the split symplectic form, which we denote wﬁCF,
which is the negative of df A dt on every cylinder component and remains

standard on the C"~¢ component. This symplectic form wﬁCF is consistent
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with the original symplectic orientation if ¢ is even and inconsistent if £ is
odd, and it has the momentum map

- —t1, e, =ty —— ., ——————
Cr ( 1, ) Iz 9 ) 2

We will now describe an equivariant diffeomorphism from Ur to M,
under which the pullbacks of wﬁcp and (I)ﬁcp coincide with w and ® on Zr (in
fact, their further pullbacks to Zp are zero) and under which the pullback
of CDﬁCF is v-polarized.

Let g: (—&,&) — R be a diffeomorphism such that g(—z) = —g(z) for all
x and such that g(z) = z on a neighborhood of z = 0. Consider the diagram
ole)

F

(612) (5! x (~&,2))f x (D2~ (—e,)" x (—&, 0"

| . |

(S x R)! x (C)n—* o R? x (—o0, 0]

in which the right vertical map is

(‘Tla s L Y1, vyn—ﬁ) = (g(_l‘l)a s ag(_xf)vg(yl)v s ’g(yn—ﬁ))

and the left vertical map v is the map that acts on the first £ factors as
(e, z1) — (el g(w)) and on the last n — ¢ coordinates by z; = r; %
1/2g('r’j2- /2)el% . From this explicit description of 1 it follows that v is a
T-equivariant diffeomorphism and that the diagram (6.12) commutes.

Let wp := w*wﬁCF and ®p := w*(I)ﬁCF. The Hamiltonian T-manifold

(Ur,wr, ®F)
is isomorphic to (MCF,wnCF,CDﬁCF) since the equivariant diffeomorphism
provides such an isomorphism. To finish the proof we must show that ®p is
v-polarized. Since the diagram (6.12) commutes, this is equivalent to showing
that the composition of the top horizontal arrow with the right vertical arrow
in (6.12) is v-polarized. Recall that the taming map v is the pullback via
®c,. of (6.11). Since the momentum map ®¢,., taken with the domain and
codomain as in the top horizontal arrow of (6.12), is proper, it is enough
to show that the pairing of the map (6.11) with the right vertical arrow
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in (6.12) is proper and bounded from below. This pairing is the map
(—e,e)! x (=&, 0" * >R

that is given by the formula

(6.13)

(T1ye ey To, Yty v oy Yn—i) — (=221, ..., =224, —1,...,—1)
: (g(_x1)7 cee ag(_x@)?g(yl)v <o 7g(yn—f))

l n—~{
=2 wigla;) — > gys):
j=1 j=1

Notice that y; takes values in (—e,0], and —g(y;) is nonnegative and
approaches oo as y; approaches —e. Also, z; takes values in (—¢,¢), and
xjg(z;) is nonnegative and approaches oo as || — £e. So the function (6.13)
is nonnegative, and for every L there exists § such that 0 < § < £ and such
that both tg(t) and g(t) are > L whenever § < |t| < ¢, and so the preim-
age of [0, L] under the function (6.13) is contained in the compact subset
[—6,6]¢ x [—6,0]" ¢ of the domain (—¢,¢)’ x (—&,0]"~*. This shows that the
function is proper and bounded from below. O

This proposition allows us to identify the left and right-hand sides of our
localization formula (4.25), applied to the symplectic toric manifold M and
the taming map obtained from the function p, with the left and right-hand
sides of the Brianchon-Gram decomposition (6.4), applied to the momentum
polytope A of M. The right-hand side of our localization formula (4.25) is
a summation over the components of the localizing set. These components
exactly correspond to the faces F' of A. By Proposition (6.8), a neighborhood
of the component that corresponds to the face F' has a polarized completion
that is isomorphic to the symplectic toric manifold M¢, with an orientation
that is consistent with its symplectic form if and only if dim F is even. Thus,
the localization formula (4.25) in this case becomes the equality

DHy = Y (-1)"™FDHy, .
F

Since the DH measure of a symplectic toric manifold is precisely Lebesgue
measure on its momentum polytope, this equality is precisely the Brianchon—
Gram equality (6.4).
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Remark 6.14. Our results are not the first to relate the Brianchon-Gram
polytope decomposition to localization. A partial answer to Question 6.1
is given by localization theory using the norm-square ||®||*> of a momen-
tum map for a Hamiltonian G-space, as developed by Paradan [29] and
Woodward [34], following Witten [33]. Indeed, the localization formula with
respect to ||®[|?, applied to the exponent of the equivariant symplectic form
of a symplectic toric manifold, yields the Brianchon—Gram decomposition
under the following assumption on the momentum polytope A:

for every face F' of A, of any dimension, the point
(6.15) of F that is closest to the origin lies in the relative
interior of F'.

This correspondence between the localization formula for ||®||? and the
Brianchon—Gram decomposition was also observed by Jonathan Weitsman
and was worked out by Agapito and Godinho in [1]. Moreover, when the
assumption (6.15) on A fails, Agapito and Godinho show that the localiza-
tion formula for the norm-square of the momentum map corresponds to a
new polytope decomposition that is different from Brianchon—Gram’s.

We close by addressing the issue of the difference between the Brianchon—
Gram formula and its measure-theoretic version.

Remark 6.16. Although the Brianchon—Gram formula (6.3) can be proved
directly, it can also be derived from its measure-theoretic version, (6.4).
Because the measures that appear in (6.4) are constant multiples of Lebesgue
measure outside the union of the affine spans of the facets of A, this measure-
theoretic formula implies the formula (6.3) whenever x is outside the union
of these affine spans. To prove (6.3) for an arbitrary x, we apply the measure-
theoretic formula (6.4) to the polytope that is obtained from A by shifting
its facets outward by an amount (depending on z) that is small enough to
not affect the values at x of the left and right-hand sides of (6.3).

7. Example: a circle action on the 2-sphere

As an illustration of our methods, we now work out in detail the case of
S1 acting on the unit sphere S? C R? with the standard rotation action.
We begin by setting some notation. The area form on S? can be written
in cylindrical coordinates as w = df A dh where h: S? — R is the height
function; this equips S? with the standard orientation. The S! action is
generated by the vector field 3/06. We identify the Lie algebra Lie(S') and
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R

Figure 3: The standard action of S on S? has momentum map the height
function ® = h. The equator has value h = 0, the north pole has h = 1, and
the south pole has h = —1.

its dual Lie(S')* with R so that the exponential map becomes 6 — €. Then
Hamilton’s equation (2.17) becomes d® = ((9/00)w, and the momentum
map can be given by the height function ® = h, as indicated in figure 3.

Below, we apply our localization theorem to three different choices of
taming map v: S? — Lie(S!)* 2 R, obtaining as a consequence three differ-
ent polytope decompositions. The first example recovers the classical DH
theorem and hence the measure-theoretic Lawrence—Varchenko decomposi-
tion. The second is the decomposition given by Woodward’s localization with
respect to ||®[|?, and finally, the third is the measure-theoretic Brianchon-
Gram decomposition.

7.1. Example: a constant taming map

We first consider the case corresponding to Example 2.26, i.e., where the
taming map v is equal to a constant n € Lie(S') = R. For concreteness
we take = 1. In this case Z = {nf =0} = (5?)%" = {N, S}, so the local-
izing set is the classical localizing set consisting of the fixed points of the
action. An equivariant tubular neighborhood Uz of Z consists of two compo-
nents Uy and Ug, equivariant neighborhoods of the north and south poles
respectively. In order to apply Theorem 4.24 we must choose v-polarized
completions of (& = h,w = df A dh) on both Uy and Ug. We first consider
the north pole N. By definition, a v-polarized completion (Un,wn,Pn)
of (N,w|y,, ®|y,) must satisfy ®n(N) = P(N) =h(N) =1 and ®}, = Py
must be proper and bounded below. (There is no condition on wy because
{N} is 0-dimensional so the restriction of any 2-form to that component of
Z is 0.)
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In order to make explicit computations, we choose an orientation-
preserving S'-equivariant diffeomorphism (not symplectomorphism) from
an open neighborhood Uy of N to (all of) C, equipped with its standard
orientation and S'-action. The momentum map for the standard symplectic
form on C is —%||z[|? (up to a constant), which is not bounded below. To cor-
rect this, we therefore equip C with the negative of the standard symplectic
form, —wgq = —dzx A dy, and we take the momentum map

1
(7.1) On(z) =1+ 5,

which is both bounded below and proper. Hence, we can take (Un,wn, Pn)
to be given by (7.1) and wy = —wstq. Because integration of —wgtq = —dx A
dy with respect to the standard orientation takes negative values, the corre-
sponding DH measure is negative Lebesgue measure on the ray [1,00) and
zero outside the ray.

Similarly, a neighborhood Ug of the south pole can be identified via an
orientation-preserving S'-equivariant diffeomorphism with C with its stan-
dard orientation and the opposite S'-action:

Az — Az

The momentum map for this action is, up to a constant, +3||z[|?, which
is already proper and bounded below. To obtain the condition ®g(S) =
®(S) = h(S) = —1 we define

1
Ds(2) = 1+ 52|

Here we take the standard symplectic form (and not its negative), so the
contribution from the south pole is positive Lebesgue measure on the ray
[—1,00) and zero outside.

Hence we get the decomposition of the Duistermaat—Heckman mea-
sure of S? as illustrated in the following figure 4. This corresponds to the
Lawrence—Varchenko polytope decomposition of the interval [—1,1].

7.2. Example: the norm-square of the momentum map

We now consider the case corresponding to Example 2.27, i.e., where v =
® = h. In this case, the zero set Z := {z € S2 : v = 0} of v¥ is {N} U {S} U
{h =0}, so we have an additional component of Z corresponding to the
equator in S2.
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A A

Figure 4: By choosing v = 1 constant and applying the localization formula,
we obtain the Lebesgue measure on the interval [—1,1] as the difference of
Lebesgue measures on two rays. This corresponds to a Lawrence—Varchenko
decomposition.

We begin our computations with the north pole. As in the previous exam-
ple, we must construct a v-polarized completion (®y,wn) of (P|y,,w|vy)
on Uy. We may assume that Uy is contained in the upper quarter of the
sphere, {1/2 < h < 1}, so ®%; is between %@N and ®y. So ®Y; is proper and
bounded from below if and only if ® is proper and bounded from below.
The same analysis as in the previous example applies and we take

1
Oy (z) =1+ 541,

with Uy = C equipped with the negative of the standard symplectic form.
Hence the contribution from the north pole is the negative Lebesgue measure
on [1,00), as in the previous example.

In the case of the south pole, however, the analysis is different from
the previous example since we now have v &~ —1 < 0 near the south pole.
We may assume that Ug is contained in the bottom quarter of the sphere,
{—1 < h < —1/2}. Thus, in order to satisfy the v-polarization condition, we
must construct ®g such that its negative —®Pg is proper and bounded from
below. A similar analysis as in the previous case then shows that we may
take the negative of the standard symplectic form on C and momentum map

1
Ps(z) = ~1 - 5 Izl

with contribution negative Lebesgue measure on the ray (—oo, —1].
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\ 4 \

Figure 5: By choosing v = ® = h, we obtain the Lebesgue measure on the
interval [—1,1] as the sum of three contributions as indicated. This corre-
sponds to localization via the norm-square of the momentum map.

We now consider the contribution from the equator. The neighborhood
{—% <h< %} of the equator in S? is (non-symplectically) equivariantly
diffeomorphic to the cylinder S! x R, with coordinates (6,s). The action
of S' is by standard multiplication on the left component of S' x R. By
Hamilton’s equation (2.17), and using the standard orientation of the cylin-
der given by the symplectic form wg = df A ds, the momentum map ®p is
given by ®g(60,s) = s, i.e., projection onto the second factor. This momen-
tum map satisfies ®g|s—0 = 0, so it agrees with the height function at the
equator, as required. Moreover, when s > 0 we have v ~ %, and when s < 0
we have v &~ —1. So we have ®Y,(6, s) ~ 1s for s > 0 and ®Y(0,s) ~ (—1)s
for s < 0. So ®Y,(6, s) ~ 1|s| for [s| > 0, and hence @ is also v-polarized.
The orientation of wg is the same as the orientation induced from the stan-
dard orientation of S? restricted to Ug, so this term will appear with no
sign change. Hence the contribution from the equator is positive Lebesgue
measure on all of R.

In summary, we get that the DH measure for the S'-action on S? may
be written in terms of these three contributions, as given in figure 5. This is
the decomposition corresponding to the localization via the norm-square of
the momentum map.

7.3. Example: the negative of the norm-square of the
momentum map

Finally, we consider the example where we pick v = —®& = —h. Since S? is
compact, ®¥ = —h? is bounded below so ® = h is v-polarized on S2. We
have Z = {N}U{S} U {h =0} as in the previous case. The analysis of the
components of an equivariant tubular neighborhood Uy = Uy U Ug U Ug is
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\/ \

Figure 6: By choosing v = —& = —h, we obtain the Lebesgue measure on
the interval as the sum of three contributions as indicated. This corresponds
to the Brianchon—-Gram decomposition.

exactly analogous to the previous case and we do not go through the details
here, and only note that the choices of direction will differ because of the
sign change in v.

This choice of v yields the decomposition of the DH measure as illus-
trated in figure 6. This is the Brianchon—Gram decomposition.
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Appendix A. Construction on a simple polytope of a smooth
function with a unique critical point on the relative interior
of each face

In this appendix, we prove the technical Proposition A.1, which asserts the
existence of a smooth function on a simple compact polytope A with certain
prescribed properties, the most important of which is that it has a unique
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critical point on the relative interior of every face. The existence of a function
with such critical points is intuitively quite clear but, firstly, we could not
find a reference, and secondly, it is surprisingly difficult to prove rigorously.
Our approach is to use brute-force differential topology on R”. In fact, our
explicit construction yields a function which, near a critical point in a face F,
is linear in coordinates transverse to the face, and quadratic in coordinates
along the face. These specific properties of our construction are used in
Section 6. Moreover, although we do not explicitly use these properties in
this manuscript, we can also specify in advance the location and the function
value of each of the critical points in the faces of A.

We begin with some terminology and notation. By a polytope A we
mean the convex hull of a finite set of points in a vector space (or in an
affine space). In particular, our polytopes are always compact. A face F' of
A is its intersection with a supporting hyperplane: ' = AN {L = A} where
L is a linear functional and L|a > A. The dimension of a polytope is the
dimension of its affine span. Faces of a polytope are themselves polytopes.
Facets are faces of codimension one. Every face is an intersection of facets.
A polytope is simple if every face of codimension k is contained in no more
than k facets. Given a convex subset X of R", we denote by rel-int(X) the
relative interior of X, i.e., the interior of X in the affine span of X. Finally,
we recall that a function f defined on an arbitrary subset of X of R" (e.g.,
on a polytope) is said to be smooth if, near each point = € X, there exists
a smooth extension f; of f to an open neighborhood U of x such that
fulvnx = flunx- In the case that X is closed as a subset of R™, it then
follows that f extends to a global smooth function on all of R™.

The following technical proposition records the results of our explicit
construction:

Proposition A.1. Let A C R"™ be an n-dimensional simple polytope. Then
there exists a smooth function f: A — R with the following properties.

(A) For every face F' of A, the minimal value of f on F is attained at
exactly one point in the relative interior of F', and the restriction of f
to the relative interior of F' has no other critical points.

(B) Suppose that we are given the data {(zp,ar): F a face in A}, where
for each face F' we have zp € rel-int(F) and ap € R>g, and where
ap < ap whenever F' is a proper subface of F. Then the function f
may be chosen such that, for each face F of A, the restriction f|elint(r)
attains its minimum at the chosen point xp, and the minimum value
is the chosen ap, i.e., f(zF) = ap.
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(C) Let F be an £-dimensional face of A. Near the above given point xp €
F, there exist € > 0, a neighborhood Uy, of xr in F', and affine local
coordinates (1, ..., Y1y- -, Yn—t) € (—€,8)"™ on Uy, such that
(a) the mneighborhood Up is given by {(z1,...,2e, Y1, Yn—t) €
(—&,€)" x [0,2)"*} and the point xp is given by the origin (0,0) €
(—e,e)t x [0,6)"7¢;

(b) the function f can be chosen such that with respect to these coor-
dinates, flu,, is of the form

1

n—~0
f(.%‘l,...,xz,yl,- "ayn—f) = Z‘T? o Zyj
=1 =l

up to an affine translation in R (i.e., up to a multiplication and
translation by constants).

In order to prove Proposition A.1, we construct the required function f
by a recursive procedure. Before delving into technicalities, we first sketch
our method. Recall that the ¢-skeleton of a polytope A is the union of its
{-dimensional faces. We begin the inductive argument by constructing an
appropriate function fy on a neighborhood in R" of the 0-skeleton, i.e., of the
vertices of A. Such a function will automatically have a unique critical point
on the relative interior of each vertex, because these relative interiors are just
single points. Continuing by induction, suppose that we are given a function
fe—1, satisfying appropriate technical conditions (to be specified below) on
a neighborhood in R™ of the (¢ — 1)-skeleton. After possibly shrinking this
neighborhood, we show that there exists a function f, on a neighborhood
of the f-skeleton extending f;, 1 and satisfying similar technical conditions.
Continuing in this manner, at the final step we then obtain a function f :=
fn, defined on all of A and that has the desired properties. The concrete
implementation of this plan occupies the rest of this appendix.

At each inductive step the functions f; that we construct are required to
satisfy conditions that are stated in terms of certain vector fields &; that are
defined along the facets of A, point “into” the interior of A, and are tangent
to lower-dimensional faces. We therefore begin with the construction of these
vector fields, for which we need some notation. Let A be a simple polytope
in R™ with N facets. We may express the polytope as an intersection of
half-spaces, i.e., A = ﬂf\;l H; where

(A.2) H; ={z e R" | ¢i(z) < \i},
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the ¢; are linear functionals on R", and the \; are real numbers. We always
assume that A has non-empty interior in R™. Let {o1,09,...,0n5} be the
facets of A, i.e., 0, = ANOH;. For asubset I C {1,2,..., N}, let F; denote
the (possibly empty) face of A obtained by intersecting the facets o; for
1€
Fr = ﬂ o; T A.
el

We define Fjy := A. If Fy is nonempty, then since A is simple, F7 is a face
of codimension |I|. Moreover, if J C I then F; C Fj.

With this terminology in place we construct the vector fields £; along the
facets which we use throughout our construction. Identifying TR"|, with

oj x R™ in the standard way, we think of these vector fields as functions
§j:o0; — R™

Lemma A.3. Let A =Y, {z € R" | ¢i(z) < \i} be an n-dimensional sim-
ple polytope in R™ and let {ai},fil denote the facets of A. Then there exist
smooth vector fields &;: o; — R™ along the facets such that

(1) do;(&]2) <O for all x € 0, and
(2) doi(&5]2) =0 for all x € 05N oy and i # 5.

In particular, let F' = o; N---Noj, _, and let
™ = (>‘j1 - ¢j1? e 7)‘.7'7172 - ¢jn4) R — Rn—f'

Then for all x € F the vectors {m«(&j,|z),- -, m(&j,_,|2)} are positive mul-
tiples of the standard basis elements of R"~*.

Moreover, having a priori chosen for each face F a point rr in the
relative interior of F', the §; can be chosen to be constant on a neighborhood
of xp for each F.

Condition (1) in Lemma A.3 means that |, is transverse to o; and
points into A. Condition (2) implies that, for any face F; and for the indices
J that correspond to relative facets 7 N oj, the restrictions of the vector
fields &; to Fr N o; are tangent to Fy and point into F7.

Proof. Let = € A\ rel-int(A). Let ji,jo,...,0n— €{1,2,...,N} be the
indices of all the facets that pass through z. The linear functionals
®j,,- -, ¢j,_, are linearly independent in (R™)* since the polytope is simple.
Let tq,...,t, be linear functionals such that ¢1,...,%s, ¢;,,...,¢;, , is a basis
of (R™)*. Let ty11 :=Xj, — @jy, ..., tn = Aj,_, — ¢, _,. Then there exists a

In—t
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neighborhood U, of x in A such that t1,...,t,: R® — R" carries U, onto a
neighborhood of 0 in R x R’;BZ . Note in particular that for every point y of
Uy, the indices j1,52,...,jn_¢ € {1,2,..., N} are precisely the indices of all
the facets that pass through y.

The vectors 51-(1) = % satisfy the required properties at all the points
of U,.

Now fix j € {1,2,..., N} and consider o;. The open sets {U, N0} }zeo,
form an open cover of ¢;. Since A is compact, so is 0, so we may choose
a finite subcover {U,, N oj}i\gl for some N; € N. Without loss of generality
we may assume that for each F' contained in o, the point xr appears among
the {a:s}i,vzfl We may also assume that for each xp, there is a sufficiently
small neighborhood Vg C U,, such that U, NV =0 for all x5 # xp. Let
ps: 0j — R, 1 < s < Nj, be asmooth partition of unity with supp ps € U, N

0j. Define
&=y pts™.

Then the vector fields &1, ..., &y satisfy the required properties. O

Using the above vector fields {;, we may now state the recursive condi-
tions on the functions f, in our construction:

(f1) fr is a smooth function defined on an open neighborhood U, in A of
the /-skeleton;

(f2) for each face F' of dimension < ¢, the restriction of f; to rel-int(F)
attains its minimum at the point x, has no critical points other than
rp, and fo(rr) = ap; and

(f3) for each face F' of dimension < ¢, we have df;(§;],) < 0 for all j with
0jNF # () and for all z € 0; N F.

(Note that o; N F' can be either F itself or a relative facet of F.)

We now begin the recursive construction of the functions fy,. The base
case requires us to construct a function fy near the 0-skeleton satisfying
(f1)—(f3) above. Let = be a vertex of A. Since A is simple, there exists an
open neighborhood U, C R™ of x and an element A of AGL(n,R) (=affine
automorphisms of R™) such that the map A takes x to 0 and takes the
intersection U, N A to a neighborhood of 0 in the positive orthant RZ, =
{v=(v1,...,0,) ER":v; >0 for all 1 <i < n}. We may take fy|y, to be
the composition of the affine transformation A with the function v — ap —
>, vi. The last condition in Lemma A.3 implies that for each facet o; that
contains the vertex x of A the vector field &;, near x, is a positive multiple of
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% in the above coordinates for RZ,. Hence the function fo near x satisfies

the condition (f3) above. By our formula for fo|y,, the condition (f2) also
holds at this vertex. Repeating this for all vertices (and possibly shrinking
the open neighborhoods so that their closures are disjoint), we obtain a func-
tion that satisfies the above conditions (f1)—(f3) with ¢ = 0. This completes
the base case of the induction.

We now proceed with the recursive step. Let £ > 1, and assume that
we have already defined a function f;—; on a neighborhood of the (¢ — 1)-
skeleton that satisfies the conditions (f1)—(£3). We now construct a function
fe which (after possibly shrinking the neighborhood on which f;_; is defined)
extends fy_1 near each ¢-dimensional face F' separately. In fact, we will
first construct fy in the ¢-dimensional affine span of F' and then extend to
a neighborhood of F' in R”. Fix an f¢-dimensional face F' of A. By using
an affine change of coordinates, we may assume without loss of generality
that

e the affine span of F is R, identified with the subspace R x {0}"~* of
Rn.

)

e the chosen point zy € rel-int F' is the origin 0; and

e in a neighborhood of 0 the polytope A coincides with R¢ x Rgag .

Furthermore, after permuting the indices if necessary, we may without loss of
generality assume that FF=o01N---No,_y, so that the vector fields
&1,...,&,_p are defined along F'.

The set of indices

K:={k|loxNF#0, n—¢<k<N}

parameterizes the set of relative facets of F. We have on each relative
facet o N F a vector field & along which f, ;1 decreases. In Lemma A.4
below we construct a single vector field nf" on a neighborhood Vi . {0} of
F ~ {0} in R which interpolates between —% and the vector fields &; con-
structed in Lemma A.3, and along which f,_; decreases where it is defined.
The flow along n'" allows us to reparameterize the relative interior of F,
which will in turn allow us to explicitly construct the extension fy of f,_1
near F'.

Let r denote the radial coordinate in R and let —5% denote the corre-
sponding inward-pointing radial vector field, defined and smooth on R~
{0}. Let k € K. Denote by L, the restriction to the affine subspace R’ of the
linear functional ﬁqﬁk in the notation of (A.2). Then the face F' as a subset
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of R is given by the intersection

F=(){reR | Ly(x) <1} CR".
ke

Given 0 > 0, we may also define a smaller polytope F5 C F' by

Fy:= (){z €R"| L(x) <1 -6} CR"
ke

We always assume that § is sufficiently small such that Fj5 has the same
combinatorial type as F' (this is possible because A is simple) and such that
0 € rel-int Fj.

Lemma A.4. There exists an open subset Vi of RY containing F, a smooth
vector field n*" on Vi ~ {0}, and a constant §, 0 < § < 1, such that

(1) for allk € K,
(A.5) dL(n") < =6 <0 on L;'([1—46,1]) N Vp;

(2) " =—4£ on F5 ~ {0}; and
(3) dfé—l(nF) < 0 on OF.

Proof. The proof is by explicit construction. We first construct vector fields
locally which satisfy the conditions of the lemma, and then patch them
together using a partition of unity.

We begin with the interior of F'. Consider the open set Uy := rel-int(F') \
{0}. The radial vector field ng := —% is certainly smooth on Uy. Moreover,
since 0 € rel-int(F') and F is convex, —% is transverse to all relative facets
Fy =0, NF of F. In particular, for each k € K we have dLy(no) <0 on
F}.. Since each F} is compact, there exists a neighborhood Vi of Fj and
dr > 0 such that dLy(n0) < —d; < 0 on V;. Let &, > 0 be such that L;l([l —
61, 1]) N Uy C Vj, for each k, and set dy := min (Urex {0k, 9, }). Then, for all
k € K, we have

(A6) de(Uo) < —dp on lel([l — do, 1]) NUy.

We conclude that the vector field 79 on Uy satisfies the conditions (1) and
(2) of the lemma. (Since Uy does not intersect F, the condition (3) is not
relevant for this case.)
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We now proceed to the local construction at the boundary. Let x be
in the relative boundary OF of F in R’ Let K, :={k € K|z € F;}. By
Lemma A.3(2), the vectors &, for j € K, lie in R, Let

n$:::j£:5;¢w

JjeX,

Observe that by the property (f3) of f,—; and the definition of the 7,

dﬁflhh)<i0-

Moreover, by Lemma A.3(1), the derivative dLy(n,) is negative for every
k € K, since dL (&) < 0 and dL(&;) =0 for all j € K, \ {k}. Choose 0,
such that 0 < ¢/, < min{—dLk(nz)}kex,. We now deal with the indices s
not in ;. By the definition of Ky, Ls(z) < 1 for all s € £ \ K. Choose
8" such that 0 < 67 < min{1 — Ls(x)}sexc~uc,- Then x & L71([1 — 67, 1]) for
all s € K~ K. Let U, be a neighborhood of = in R’ such that 0 & U.,
U,NL;Y[1—62,1]) =0 for all s € K\ Ky, and d(fr—1)y(n2)(y) < 0 at all
points y of U.. (Here n, is viewed as a vector field on U, with constant
coefficients.) Since the relative boundary 0F of F is compact, there exists
a finite set {z1,..., 2y} C OF such that OF C U, UU, U---UU, . Let
6 = min{d},, 0} ,...,0, ,0u }.Define Vp:=UyUU, U...UU, . Then, by
construction, Vr contains F, and the sets Uy, U, ~ (U, NF5),..., U, ~
(U, N Fs) form an open covering of Vi. Let po, p1, ..., pm be a partition of
unity subordinate to this covering, and let

a m
(A7) n" = po <ar) +>  pitla.
i=1

Then %', Vi, and § > 0, as chosen above, satisfy the conditions of the lemma.
a

We now wish to show that we may use the vector field n" constructed in
Lemma A.4 to reparameterize the relative interior of F'. Denote by (¢, z)
the flow along —n'", where t is the time parameter of the flow and x is
the initial condition. For fixed initial condition x, by a mazimal trajectory
through = we mean the flow ¥ (¢, ) on the maximal interval (a,b) C R on
which the flow is defined. As a first step, we wish to show that for any x in
OFy, this flow 9 (¢, x) takes z to OF in finite time:

Lemma A.8. Let n and 6 be as in Lemma A.4 and let x be a point
in OFs. Let X (t) :=(t,x) be the mazimal trajectory of —n' with initial
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condition (0,z) = x. Then there exists t; > 0 such that X(t) € rel-int F’
for all0 <t <t, and X(t;) € OF.

Proof. Since x € 0F;, there exists k € K such that Li(z) =1 — 4. Fix one
such k. Let ¢ > 0. First we claim that

if X(7) is defined and takes values in F for all 7 in [0, ¢] then
(A9) Li(X(t)) >1—0+dt.

To prove the claim, recall that by the construction of n" and §, if X (t) is
defined and belongs to F', then

(A10) if Ly(X(t))>1-0 then %Lk(X(t)) — (dLy) x5 (=) > 6.

Since X (0) =z and Li(z) =1 — 0, then by (A.10) we may conclude that
the derivative %Lk (X (t)) is greater than 6 when ¢ = 0. By continuity, this
derivative is greater than § for ¢ in a neighborhood of 0. Integrating, we
conclude that (A.9) is true if ¢ is positive and sufficiently small. Observe
also that by continuity of solutions of ordinary differential equations, for
any t > 0 for which (A.9) holds, there exists an open interval containing ¢ on
which the trajectory is defined and for which (A.9) still holds; in particular,
the set of ¢ for which the claim holds is open. Now suppose that there
exists a positive tg for which the claim does not hold; then there exists a
minimal such ¢y since the set of ty for which the claim does not hold is
closed. By minimality, if 0 < t < to then Li(X(t)) > 1 — 0 + 6t. By (A.10),
Le(X(t)) >1—6+6t and ¢ > 0 imply 4 Li(X(t)) > 6. Integrating,

to

to
Le(X(0) = LX) + [ SLeX®)de > Lxo) + [ b
0 0

:1—5+5t0,

which contradicts the assumption on ¢y. This completes the proof that (A.9)
holds for all positive ¢.

Now suppose that the assertion of the lemma is not true, that is, X (¢) €
rel-int F for all ¢ > 0 where X (¢) is defined. Then (A.9) implies that X (¢) ¢
F;s for all t > 0 where X (¢) is defined. This implies that X (¢) is defined for all
t € [0,00), because it coincides with the trajectory of a compactly supported
vector field that equals ng on F' ~\ Fs. Taking t big enough so that 1 — § + 6t
is greater than one, (A.9) contradicts the assumption that X (¢) is in F'. This
proves the lemma. O
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We may now use 1 (t, x) to reparameterize F'. In order to do so smoothly,
we first need to construct a smooth manifold in F' which approximates OF
in F'. We will construct this smooth approximation by taking a regular level
set of a smooth function, which we now construct:

Lemma A.11. There exists a smooth function h¥ on a neighborhood of
OF in F such that

e dhf' (nf) < 0 at all points of rel-int(F) where ht' is defined, and

(] hF’(')F =1.

Proof. We first construct a function satisfying the conditions of the lemma
locally near any point x € 9F. We then use a partition of unity constant
along n" to form the global function A’ required in the lemma.

Let z € OF and let U, be a neighborhood of x in Rf such that U, only
intersects facets of F' that contain x and such that U, is contained in the set
Vi where nf" is defined. By construction, (dL).(n'") < 0 for all k € K, so
after possibly shrinking U,, we may assume that dL(n") < 0 at all points
in U,. On this neighborhood U,, we define the function

(A.12) Wo=1- J] Q- L)
keks

At points y € U, N OF, at least one of the Ly, in the right-hand side of (A.12)
is equal to one, so h*(y) = 1. At points y € U, Nrel-int F, all the Ly in (A.12)
are less than 1, so h*(y) < 1. Since dLi(n'") < 0 for all k € K, each Ly, is
decreasing along the trajectories of nf". From (A.12) we then see that h® is
also decreasing along 7% at any point y where Ly(y) <1 for all k € K. In
particular, dh®(nf) < 0 on U, Nrel-int F.

Secondly, we patch together these functions h* by means of a partition
of unity. This will require some extra care since we wish to guarantee that
the resulting function still satisfies the first condition of the lemma. To
accomplish this, we now construct a partition of unity {p”} such that for
each p® we have dp”(nf’) = 0, i.e., the functions p” are constant along the
flow of . Let 2 € OF. Since %], # 0 and %" is smooth, there exists a
neighborhood V,, C U, of  in R with a smooth parametrization ¢: Q, —
V., where

Qp = {(t1,...,te) €ERY | |t1] < 4ey and 13 + - + 17 < 4ey}
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for some 1,2 > 0, such that ¢(0) = = and ¢, (%) = n!". Since ' is trans-

verse to OF, after possibly shrinking £1 and €2, we may assume without loss
of generality that for every value of to,...,t; that occurs in ,, the func-
tion t1 — Lg(o((t1,t2,...,t¢)) is defined for ¢; in some interval, is strictly
monotone, and assumes both positive and negative values. It then follows
that for every (tg,...,ty) occurring in €, there exists exactly one ¢; such
that ¢(t1,t2,...,ts) € OF. Moreover, after possibly further shrinking 5, we
may also assume that

{(tl,tQ,...,tg) ’ ¢(t1,...,t@) EaF}

is contained in {|¢;| < 2¢;}.
Now observe that the function

e m ifq = ¢(t17t2, “ e ,t[) fOI“ some (tl,tQ, “e . ,té) E QI)

p*(q) == 4+t < e, and [t] < 3e
0 otherwise

is smooth on the neighborhood
Vo = RN {o(t1, to, . 1) | 261 < |ta] < 3er, 3+ +1] <262}

of OF in Rf. To see this, observe that ‘71 is the union of the open set
{@(t1, ..., te) | |t1] < 2¢1} and the open set RE~ {p(t1,...,t0) | |t1] < 3ey,
B34+ + t? < 2e5}. On the second set, p* =0 by definition. On the first
set, p” is smooth. Hence p* is smooth also on the union.
By slight abuse of notation, we let {p” > 0} denote the open subset in
V. where p® is positive. By definition of p*, the point z € JF is contained in
{p* > 0}. Since OF is compact, there exists a finite set {x1,...,xy} C OF
such that Uj]\/il{pxﬂ' > 0} contains OF. In particular E]Ail p"i is defined and
positive on a neighborhood of OF in R’. Let V be such a neighborhood. We
now define
(A.13) P —

. = =7

Zj:l prI

on V NV, . Since dp® (n¥) = 0 by construction, it follows that dp*(n")
also.

Since h** is defined on Uy, which entirely contains the support of p™*,
the product p*h* may be extended to a smooth function on all of V. Hence

0
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the sum
M .
(A.14) hF =" p'hm
=1

is well-defined and smooth on V. B
We now claim that h¥ =1 on OF and dh* (n'") < 0 on V Nrel-int F. To
see this, suppose x € OF'. Let 7, = {k | x € U, }. Consider

(A.15) () Vs, | NV
keZ,

On this set,
- 3
ke,

the h* for k € 7, are well-defined, satisfy dh®*(nf") < 0 on rel-int(F), and
moreover, ;7 p* = 1. Hence for every y in OF N (Nrez,Ux, ) NV we have

=Y FWhy) =) My

kel, ke,

Moreover, on rel-int(F) N (Npez, Uz, ) NV, we have

dhF () =" d(p*hm) (") = D pFdh(n"

keZ, k€T,

where the second equality uses that dp*(nf) =0 by our construction of
the p¥, and the last inequality uses that dh®*(nf’) <0, that p* >0, and
that not all the p* vanish. Hence k! satisfies the required conditions of the
lemma. g

By the construction of hf" in Lemma A.11, the differential dh'" never
vanishes in rel-int F. Thus, for any ¢ > 0, the level set

(A.16) Z. =1 -e)CF

is a smooth manifold. This is our smooth approximation to dF. The next
lemma proves smoothness properties of the flow (¢, z) along —n¥ with
respect to this level set. Using (similar) notation as in Lemma A.8, for x €
rel-int F5 . {0} we let X (¢) denote the trajectory for —np that is defined for
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0 <t <t and such that X(0) =z, X(t;) € OF, and X (¢) € rel-int F' \ {0}
for all 0 < t < t,. Such a trajectory and ¢, exist because 1% coincides with
—% within Fy and by Lemma A.S8.

Lemma A.17. Let § >0 be as in Lemma A.J. Then there exists € > 0
sufficiently small such that for all x € rel-int Fy there exists a unique t,, >
0 with h' (X (t)) =1 — ¢ and such that the function x v t., is smooth on
rel-int F5 . {0}.

Proof. Let V' be an open neighborhood of OF in F' whose closure is con-
tained in the open neighborhood of OF where h" is defined. Its boundary,
V .V, is a compact subset of rel-int F' on which A < 1. Choose ¢ such
that 1 —e > maxhf’[;;_|,. The existence of ¢/, (specified by this choice of
¢) follows from the continuity of the function t — k¥ (X(t)). The unique-
ness of ¢/ follows from the fact that dh(—n%) > 0 at all points of rel-int F'
where h% is defined, which implies that ¢+~ hf(X(t)) is monotone
increasing.

The derivative %hF o @/}](t,x) is mnon-zero because it is equal to
dhf;(m)(—nF), which is positive by the construction of h". The smooth-
ness of the function z — t!, now follows by applying the implicit function
theorem to the condition A (¢ (¢, 7)) =1 —e. O

We now wish to use the flow along —n'" to reparameterize the compact
region in I’ with boundary Z. so that the region is diffeomorphically identi-
fied with the standard closed ball in R? of some radius. Moreover, we want to
arrange that under this identification, the vector field n’" is identified with
the standard inward-pointing radial vector field —%. Such a parametriza-
tion allows us to construct the function fy using explicit coordinates on the
standard closed ball.

We now review some properties of fy_1 useful in the constructions to
follow.

e First, Ig}n fe—1 > ap. Indeed, the induction hypotheses on f,_1 imply
that min f,_; = mi hich is greater tha by ass tion.
Ig}:nfg 1 glglrFl{aE}, which is greater than ap by assumption

e Second, df;_1(n*") < 0 on OF by the construction of nr in Lemma A.4.

After possibly shrinking the neighborhood U, ; of OF on which f, 1 is
defined, we may also assume without loss of generality that
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e inf fr1>ap;
Us_1NR ’

e 7r is well defined everywhere on Uy_; NRY; and

] dfg_l(nF) <0on Up_4 NRE.

Let € > 0 be sufficiently small such that the conclusions of Lemma A.17
apply, such that the level set Z. of (A.16) is contained in Uy_1, and such
that ap < H}in fr—1. In particular, by the properties of f;_; listed above,

dfi—1(n*) < 0 near Z..

To achieve the reparameterization mentioned above, we will need to
further rescale nf'. Specifically, choose 73 > 71 > 0 such that the set Fjs of
Lemma A.4 contains the closed ball of radius ro about the origin, and con-
sider the spheres Sfl and Sf2 with center 0 and radii r; and 7y respectively.
In the lemma below and in the arguments that follow, we rescale % within
the region of F' contained between the concentric spheres Sfl_l and Sf;l.
This makes the time required to flow out to Z. uniform along Sfl_l.

Lemma A.18. There exists a smooth function o: RY — R that takes pos-
itive values, is equal to 1 outside the set {x € R* |1y < |z| < 2}, and such
that for the flow 1 (t, )% corresponding to the rescaled vector field —nk,, =
—ont', there exists a constant R > 0 such that (R, x)"" is defined and
belongs to Z. for all x € Sf;l.

Proof. By construction, n’" agrees with —% in the region between Sfl_l and
SE-1. Given a smooth function hp(r) of one variable and vector field hT(r)%
on RY ~ {0}, it takes time

(A.19) / " h;lz;)

to flow along this vector field from a point in S¢~! to St Let B8t [r1, o] —
R>¢ be a smooth function such that 3(r) = 0 for r near both r; and 7 and
such that f:f B(r)dr = 1. For T' > 0, define hr : [r1,72] — R by

1
hT(T) = Wﬁ(r)

Then by construction, the travel time (A.19) isequal tory — 11 + T, hp(r) =
1 for r near both r1 and 79, and (7',7) — hp(r) is smooth.



Localization through cobordisms 939

Now, let T': Sf;l — R+ be a smooth function. For z € RY, define

hi (ri = )(lel) ifr; < H:J;H < rg
U(x) = Tl
1 0 < |lz|| <71 or z]| > ro.

This defines a smooth function o: R® — R. Define a new vector field nk,
by

F F
nnew =on .

This vector field has the same trajectories as n', but with different time
parameterizations. By the construction of the function hr, the travel time
along the trajectory from a point x in Sf;l to the sphere Sf;l for the rescaled
vector field —nk . is equal to

T(x) + 1y —r = T(x) + ( the travel time for the vector field — n%).

It follows that the travel time along the trajectory of —nk, . from a point
z € St to Ze is equal to t), +T(x) where t,, is as in Lemma A.17. To
finish the proof, it therefore remains to choose the function T': Sffl — Ry

so that R :=t}, + T'(z) is independent of x € S{71. Pick any R > max, t.
€Sy

For € Si71, define T(z) := R — t,. Then this function 7' is smooth, it
takes positive values, and T'(x) + t, is evidently independent of x € Sf;l, as
required. [l

We can use the modified nf,, to create a diffeomorphism between a stan-
dard closed ball in R® and a subset of F as follows. Let 1/"¢% (¢, z) denote the
flow along —nf. . For a real number r > 0, let B(r,0) denote the standard
closed ball in R? of radius r centered at 0 € RY. We define

U: B(ry + R,0) — F~ (M) Y1 —¢,1)])

by
x if ||z|| < 713
(A.20) U(z) =<K P"V(t,x) ifr=y+ t”%Hfor somey € Si1
and 0 <t < R.

Lemma A.21. (1) VU intertwines the vector field —% with the vector field

F
Thew -

(2) W is a diffeomorphism.
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Proof. Since nf  is defined in a neighborhood Vr of F, the flow along
the vector field —nl,,, defines a smooth map (—ri, R+ o) x S — RE
(z,t) — Y™V (t, x), for sufficiently small g > 0. We use the diffeomorphism
x+ tﬁ — (t,z) to identify the interior of B(r; + R+ €p,0) ~ {0} with
(—=r1, R+¢e0) x SE7L. Since —nl,, = % is the standard radial vector field
within the ball of radius r1, the restriction of this flow to B*(r1 + R, 0) ~ {0}
is precisely the map W. In particular, ¥ is smooth on Bg(n + R,0) ~ {0}.
Since V¥ is the identity map near 0, ¥ is smooth everywhere.

It follows from the above that U carries the standard radial vector field
% on Bf(ri+ R,0)~ {0} to —nk,,, which implies (1). Moreover,
Lemma A.18 and the definition of 7%, imply that image(¥) is exactly F ~
(RF)71((1 —¢,1]). In particular, the boundary Sf;:R is carried
to Z..

We now show that ¥ is a diffeomorphism. First, by the theory of ordi-
nary differential equations, trajectories of —nf.  are disjoint, so W is injec-
tive. Next we claim that ¥ is a local diffeomorphism for all z € B(r; +
R,0). It suffices to prove that the differential d¥, is always onto. From
the definition of ¥, the claim is obvious for any point z in the interior of
B(r1,0). Hence we may assume that = € BY(r; + R,0) is of the form z =
Y+ ton—z” fory € Sfl_l and 0 < tg < R. For a fixed ¢, denote by "V (¢, -) the
map z — "V (¢, x). By definition of ¥, the image (\Il)*(TxSf;}tO) is equal
to ("% (to, )« (T, SE7 1)), and we have already seen above that \Il*(%) =
—nk . = ("% (to, ))*(%) Since "V (to,-) is a local diffeomorphism, we
conclude W, is also onto at every x = y + toﬁ, as desired.

Since ¥ is a local diffeomorphism, it is in particular an open map. Surjec-
tivity now follows from the general fact that a continuous open map from a
nonempty compact space to a connected Hausdorff space is surjective. Hence
U is injective, surjective, and locally a diffeomorphism, hence a global dif-
feomorphism as desired. O

We are now in a position to explicitly construct an extension of f; 1
to the interior rel-int F' of F. We do so by using the reparameterization
to B(ri + R,0) given by W. Recall that the function f;,_; is defined on
a neighborhood Uy_; of OF in F' that contains, by our assumption on &,
the hypersurface Z. = ¥(9B,,+r). Let U*f,_1 be the pullback of fy_; to a
neighborhood Uyp of the boundary in B(r; + R, 0). Since

; 0 F
e W carries — 75~ t0 Myews

F . . . F
® 1., coincides with n” near Z,
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e dfi_1(n*) < 0 near Z., and

o ap < D%iﬂ Jo-1,

€

after possibly shrinking the neighborhood Uyp of 9B in B(r; + R,0) we may
assume that

0
A(V* f;_1) (_37‘> <0 on Usg,

and that there exists v € R such that ap <y < 1nf U™ fp_q.

We now define a function which, when patched together with U* f,_1 via
a partition of unity, will yield the desired extension. Define

=]

(A.22) ((z)=ar+(y—ap) <|7‘1+RQ

) for € B(r; + R,0) C R",

Then by construction ((z) < v for all x € B(r; + R,0), so
U fe1>(¢ onUsp.

Since dB(r1 + R,0) is compact, there exists an R with 0 < R < r; + R such
that the annulus

{e | R<|lz| <ri+ R}

is contained in the neighborhood Usp of dB(r1 + R,0). Let p: [0,71 + R] —
R be a smooth function such that

e p is weakly monotone increasing, and

e there exist Ry and Ry such that 0 < R < Ry < Ry < r1 + R and such
that p =0 on [0, R;] and p =1 on [Re,r1 + R].

Given such a p, define p: B(r1 + R,0) — R by p(z) := p(||z||). Note that
(—%) p < 0 by assumption on p. Consider the function

(A.23) pU* fi_i 4+ (1 —p)¢: B'(ri + R,0) — R.

Lemma A.24. The function (A.23)

e is smooth;

e has a unique critical point in the relative interior ér1+R; and this
critical point is at the origin 0

e at 0 it takes the value ap.
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Moreover, there exists a neighborhood of 0B(r1 + R,0) in RY on which this
function agrees with W* fy_1.

Proof. The smoothness of (A.23) follows immediately from the fact that it
is a smooth convex sum of two smooth functions. To show that the only
critical point is at 0, suppose that = # 0. We will show that the differential
does not vanish at . We compute

o OV i+ (1= 90 = p (=W S ) + (1= ) (51

_ Py, P
dr fea dr ¢

o (v her) + -0 (~5¢)
~ P - 0).

Since —%\I'*fg,l < 0 where defined (i.e., near the boundary), —%{ <0
where defined and for x #0, V*f, 1 —( >0 by construction of ¢, and
—%p < 0 by assumption, the last quantity is always < 0. In fact, by the
above, at least one of the first two terms must be strictly negative for any
x # 0. Hence the quantity is non-zero and we conclude that the points x # 0
are not critical points of (A.23). On the other hand, for z = 0, since ¢ is
defined in terms of the norm-square ||z||?, it is immediate that x =0 is a
critical point. Finally, in the neighborhood of 0Br; + R where p =1 the
function (A.23) is equal to ¥* f,_;. O

Now consider the pullback of the function (A.23) to F ~ (hf)~1((1 -
g,1]) via the diffeomorphism ¥~! inverse to ¥. By Lemma A.24, this pull-
back agrees with fy_1 on a neighborhood of the boundary Z.. Thus we
may extend this pullback to a smooth function f, r on all of F' by setting
for = fe—1on (RF)~1((1 — €,1]). This function fe.r has the properties that

e f; r has a unique critical point at the origin 0 € F;
e the unique critical point 0 is a global minimum; and
e fur(0) =ar.

We have achieved our goal of extending the initial function fy,—; (after
possibly shrinking its domain of definition) to a function f, that is defined
on the entire face F'. Repeating this for every ¢ dimensional face, we obtain
a function f, r on each ¢ dimensional face F' such that Fy p agrees with
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fe—1 on some neighborhood Up of OF in F. We would like to extend these
functions further to a whole (n-dimensional) neighborhood of the ¢-skeleton
of A whole ensuring that the required conditions (f1)—(f3) continue to hold.

Below, we extend each fy r to a smooth function ng on a neighborhood
of F' in A such that each function f& F agrees with f,_1 on a neighborhood

of OF in A and satisfies the derivative condition

d(fer)(&) <0

on F for all j such that F' C 0. Before proceeding, and supposing for a
moment that such functions _]Eg’ F can be constructed, we first explain how
this completes the proof of the statements (A) and (B) of Proposition A.1.
Choose open subsets Vi of A such that F' C Vg and Vg C Up. By shrinking
the Vp if necessary, we may without loss of generality assume that for two
distinct nontrivially intersecting faces F' N F’ # (), the functions fg,F and
fg7F/ agree on the overlap of the open sets, i.e., ﬁ7F|VFQVF, = f£7F'|VFmVF/,
since the { fN'g, F} are assumed to agree on a neighborhood in A of the (¢ — 1)-
skeleton (which contains F' N F’). With this understood, we may therefore
define a smooth function f; on the open neighborhood |J; Vr in A of the
t-skeleton by fy|v, = ﬁ F. By construction, f; satisfies the properties (f1)—
(f3) listed above. This then completes the inductive step and hence the
proof.

Hence, to complete the proof of statements (A) and (B) of Proposi-
tion A.l, it remains only to construct these extensions f& . We begin by
choosing a convenient (non-linear) coordinate chart. Recall that we are
assuming that the affine span of the face F' is RY, embedded in R" as
R x {0}"~*. Fix smooth extensions of the vector fields &i,...,&, ¢ to RE.
By Lemma A.3, the vectors &1z, ...,&n—¢|s are linearly independent and
span a complementary subspace to R € R at each point & € F. Thus, the
differential of the map

: R! x R" ¢ — R

(A.25)
(x, Yty .- >yn—€) =T+ y1§1|x + -+ yn—fgn—dx

is a linear isomorphism at each point x of F. This implies that there exists
£ > 0 and a neighborhood W of F in R’ such that the map ¢ restricts to a
diffeomorphism of Wr x (—¢,¢)" ¢ with an open subset of R” that carries
a neighborhood of F' x {0}"~¢ in F x R%;* to a neighborhood of F in A. In
the argument below, we therefore use these coordinates (x,v1,...,yn_¢) €
F x (—¢,e)"* C F x R"¢ to parameterize a neighborhood of F in R".
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By assumption on fy_1, there exists some 0 < ¢’ < € and a neighborhood
W1 of OF in F such that ¢* f;_; is defined on Wy := Wy x (—¢’,&)" % Let
W5 be the relative interior of F' in R, Then {W;, W5} form an open cover
of F. Let {p1,p2} be a partition of unity subordinate to this cover. For
(z,y) € F x (—¢',&")" ¢, we define

(A.26)  frr(p(e,y)) = p1(2)¢* foo1(x,y) + pa() <<P for(z Z%) :

Since py is supported in Wy, there exists a neighborhood of F in R on which
p2 = 0. This means that on a neighborhood in R” of the (¢ — 1)-skeleton near
F, fg F = fe-1, as desired. The only remaining claim needing proof is that
fg 5 satisfies the derivative condition d(fg F)(&) <O0on Fforl<j<n-—/
Since f& F agrees with f;_1 on a neighborhood of JF, it suffices to check this

condition on rel-int(F'). Since ¢, <7> = {; by construction of ¢, and the
three functions p1, p2, and fy r are independent of the y; variables, we have

d(fo,r) (& lp@0) = aayjkz,o) [P1($)(90*f£—1)($»y) + pa(7) <f€F Z%)]
= p1(z)(dfe-1)(&jlz) — p2(z)

<0,

as desired, since (dfy—1(£;|») < 0 by assumption and at least one of p; or pa
must be positive at any x € F. This completes the proof of the claim and
hence of the statements (A) and (B) in Proposition A.1.

It remains to justify the statement (C) of Proposition A.l. In a small
enough neighborhood of the prescribed critical point zx of a face F', the
function defined in (A.23) has the property that p =0 and hence, along
the face F, is equal to . The explicit formula for ¢ in (A.22) shows that,
in appropriate coordinates along the face F', the function ( is quadratic in
the coordinates up to an affine translation in R, as desired. Moreover, the
explicit formula for f& F in (A.26) shows that with respect to the coordinates
(x,y) in (A.25) is linear in the coordinates y; and decreases in the directions
pointing into the polytope F', again as desired. Since the vector fields &; are
also arranged to be constant sufficiently near xp, the coordinates (x,y) are
in fact affine. This concludes the proof of part (C) of Proposition A.1 and
hence of the entire proposition.
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