
communications in

analysis and geometry

Volume 20, Number 4, 803–867, 2012

Stability of coassociative conical singularities

Jason D. Lotay

We study the stability of coassociative 4-folds with conical singu-
larities under perturbations of the ambient G2 structure by defin-
ing an integer invariant of a coassociative cone which we call the
stability index. The stability index of a coassociative cone is deter-
mined by the spectrum of the curl operator acting on its link. We
explicitly calculate the stability index for cones on group orbits. We
also describe the stability index for cones fibred by 2-planes over
algebraic curves using the degree and genus of the curve and the
spectrum of the Laplacian on the link. Finally, we apply our results
to construct the first known examples of coassociative 4-folds with
conical singularities in compact manifolds with G2 holonomy.

1. Introduction

Coassociative 4-folds are calibrated, hence minimal, submanifolds of
7-manifolds with G2 structures, first defined in [10]. Of particular inter-
est are coassociative 4-folds in manifolds with G2 holonomy, of which few
examples are known. Coassociative submanifolds with conical singularities
have been previously studied by the author in [25, 26], building upon the
work on special Lagrangian submanifolds with conical singularities by Joyce
in [14–18].

We continue to generalize the work of Joyce to the coassociative setting
by defining the notion of stability index for coassociative cones. The sta-
bility index is a non-negative integer invariant for a coassociative cone, the
vanishing of which guarantees that coassociative 4-folds with a singularity
modelled on that cone will have a smooth moduli space of deformations: in
particular, they are stable under small perturbations of the G2 structure on
the 7-manifold.

We calculate the stability index for certain types of coassociative cones
and use our results to construct the first examples of coassociative 4-folds
with conical singularities in compact manifolds with G2 holonomy. This is

803



804 Jason D. Lotay

an essential step in the proposed construction given in [21] of coassociative
fibrations of compact G2 manifolds.

1.1. Motivation

Even though there has been a wealth of research devoted to calibrated sub-
manifolds with conical singularities in manifolds with special holonomy, par-
ticularly in [14–18] and [25, 26], there were no known examples of such sub-
manifolds. Given this well-developed theory, we were motivated to construct
coassociative examples. As far as the author is aware, it is unknown whether
there are special Lagrangian m-folds with conical singularities in Calabi–Yau
m-folds for m ≥ 3.

The stability index of a special Lagrangian cone is defined in [15] in terms
of the spectrum of the Laplacian on the link, and is calculated for cones over
flat tori originally given in [10, Section III]. The stability index for special
Lagrangian cones over certain homogeneous spaces is calculated in [34] and
Haskins [11] shows that the only stable special Lagrangian T 2-cone is the
cone over the flat torus.

In contrast, the stability index for a coassociative cone is determined by
the spectrum of the curl operator acting on 1-forms on the 3-dimensional
link of the cone. Although still a natural geometric object, there is relatively
little material on the spectrum of the curl operator in the literature, and it is
certainly less straightforward to analyse than the spectrum of the Laplacian
which has received so much attention. We are thus required to undertake
fundamental elementary calculations to describe the stability index even in
simple cases.

Eigenforms for the curl operator naturally define contact structures and
are dual to certain Beltrami fields, which are important in hydrodynamics.
Beltrami fields are also equivalent to Reeb vector fields by the work in [8],
so are of particular interest in contact geometry. We hope therefore that our
spectral calculations may be of wider benefit.

Motivated by the SYZ conjecture (see [38]), one would hope to construct
coassociative fibrations of compact manifolds with G2 holonomy. An elemen-
tary argument shows that some of the fibres must necessarily be singular,
so it is natural to assume that they have the simplest type of singularity,
namely conical singularities. As already mentioned, the stability results in
this paper are essential for the proposed construction of a coassociative K3
fibration in [21]. Moreover, our results will almost certainly be useful for any
other construction of a coassociative fibration with conically singular fibres.
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1.2. Summary

We begin in Section 2 with the basic definitions we need, including concepts
from calibrated geometry and Geometric Measure Theory. We also discuss
the relationship between complex and coassociative geometry.

In Section 3 we mainly review the material in [25], defining coassociative
4-folds with conical singularities and describing their deformation theory.
Our definition of coassociative conical singularities (Definition 3.2) on the
face of it looks rather strong. However, we prove the following regularity
result, generalizing results in [15, 37], which shows that the definition is
more applicable than it appears.

Theorem 1.1. If a coassociative integral current has a multiplicity one,
Jacobi integrable tangent cone with isolated singularity at an interior point
p, then it has a conical singularity at p.

Remarks. The link of a coassociative cone is a Lagrangian (or totally real)
submanifold of the nearly Kähler 6-sphere S6. A coassociative cone is Jacobi
integrable if every infinitesimal variation of its link as a Lagrangian in S6 is
integrable.

In Section 4, we begin by briefly reviewing the known examples of coas-
sociative cones. Then, by refining some of the results in [25], we define the
notion of C-stability index for a coassociative cone C in a family C. We sim-
ply call the C-stability index of C the stability index when C is the family
of cones generated by G2 transformations and translations of C.

Sections 5 and 6 are devoted to calculating the stability index for certain
coassociative cones. In Section 5, we analyse the curl operator acting on
Berger 3-spheres and their quotients by finite groups, and thus determine
the stability index for all homogeneous coassociative cones. We deduce the
following.

Theorem 1.2. The only stable homogeneous coassociative cones are coas-
sociative 4-planes and the Sp(1)-invariant coassociative cone given in
Example 4.2.

Remark. The cone in Example 4.2 was originally constructed in
[22, Section 7] and identified as coassociative in [10, Section IV].
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In Section 6 we study coassociative cones which are fibred by 2-planes
over algebraic curves: either holomorphic curves in CP

2, where the corre-
sponding coassociative cone is complex, or null-torsion pseudoholomorphic
curves in S6. In both cases, we express the stability index in terms of the
spectrum of the Laplacian acting on functions on the link and algebro-
geometric data from the curve. These results allow us to examine the
behaviour of the stability index under deformations of these types of coas-
sociative cones.

Finally, in Section 7, after discussing the construction in [20] of compact
manifolds with G2 holonomy, we apply the results of Sections 5 and 6 to
prove the following.

Theorem 1.3. Given a pair of maximal deformation families of Fano 3-
folds, one can construct a one-parameter family of compact manifolds with
G2 holonomy, which contain coassociative K3 surfaces with conical singu-
larities.

Remark. The key ingredients in the proof are Theorem 1.1, the C-stability
index for a homogeneous complex cone C in a deformation family C and the
invariance of the C-stability index under deformations of C in C.

Given the proof of Theorem 1.3, it is clear that this result will naturally
extend to give coassociative 4-folds with conical singularities in the compact
holonomy G2 manifolds constructed by Corti et al. [6], where one replaces
Fano 3-folds by a more general class of complex 3-folds.

Notes.

(a) Manifolds are taken to be non-singular and submanifolds to be embed-
ded, for convenience, unless stated otherwise.

(b) We use the convention that N = {0, 1, 2, . . .} and Z
+ = N \ {0}.

2. Coassociative 4-folds

In this section, we cover all of the basic definitions and theory we need.

2.1. Calibrated geometry and Geometric Measure Theory

We will need some general theory from calibrated geometry later, so we start
with the following definition.
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Definition 2.1. Let (M, g) be a Riemannian manifold. An oriented tangent
m-plane W on M is an oriented m-dimensional vector subspace W of TxM ,
for some x in M . Given an oriented tangent m-plane W on M , g|W is a
Euclidean metric on W and hence, using g|W and the orientation on W ,
there is a natural volume form, volW , which is an m-form on W .

A closed m-form φ on M is a calibration on M if φ|W ≤ volW for all
oriented tangent m-planes W on M , where φ|W = κ · volW for some κ ∈ R,
so φ|W ≤ volW if κ ≤ 1. An oriented m-dimensional submanifold S of M is
a calibrated submanifold or φ-submanifold if φ|S = volS .

We shall need some ideas from Geometric Measure Theory. A good intro-
duction to this theory, which we only need in a superficial way, is given
in [32].

Definition 2.2. Let (M, g) be a complete Riemannian manifold and let
Hm be m-dimensional Hausdorff measure on M . By [32, Proposition 3.11],
one can define an Hm-measurable subset S of M to be an m-dimensional
rectifiable set if S has finite Hm-measure and Hm-almost all of S is covered
by the disjoint union of a countable number of compact C1-submanifolds
of M . Let vol(S) be the Hm-measure of S. By [32, Proposition 3.12], an
m-dimensional rectifiable set S in M has a well-defined m-dimensional tan-
gent plane Hm-almost everywhere, and so is orientable almost everywhere.
If S is an oriented rectifiable set, let s(x) be the unit m-vector to S at x
given by the choice of orientation, when this is well-defined.

Let Dm(M) be the space of smooth compactly supported m-forms on M .
An m-dimensional current on M is an element of the dual space Cm(M) =
Dm(M)∗ and we define the support of T ∈ Cm(M), supp T , to be the smallest
closed set in M such that, for any ξ ∈ Dm(M), supp ξ ∩ supp T = ∅ implies
that T (ξ) = 0. We define the boundary ∂T ∈ Cm−1(M) of T ∈ Cm(M) via
the formula ∂T (ξ) = T (dξ) for ξ ∈ Dm−1(M). We also define the interior
T ◦ of T to be the set supp T \ supp ∂T .

Given an m-dimensional oriented rectifiable set S and a function ν :
S → Z

+ such that
∫
S ν(x) dHm < ∞, we define an associated element TS of

Cm(M) via

TS(ξ) =
∫

S
s(x) · ξ(x) ν(x) dHm.

If suppTS is compact, we say that TS (or simply S, since TS is defined by S) is
an m-dimensional rectifiable current and we denote the set of m-dimensional
rectifiable currents by Rm(M). We also let Im(M) = {S ∈ Rm(M) : ∂S ∈
Rm−1(M)} be the set of m-dimensional integral currents.



808 Jason D. Lotay

Finally, we define the set of m-dimensional locally integral currents by

Im
loc(M) = {T ∈ Cm(M) : ∀x ∈ M ∃S ∈ Im(M) with x /∈ supp(T − S)}

and similarly define Rm
loc(M).

The idea behind a rectifiable current is to generalize the notion of a com-
pact C1-submanifold with boundary to include multiplicities (given by the
function ν) and to allow for singular behaviour. Since the boundary of a
rectifiable current may be very badly behaved, we often require that the
rectifiable current be integral. As we shall need to deal with planes and
cones which are definitely not compact, we expand our notation to include
the “local” versions of the integral and rectifiable currents.

The majority of this paper will be dedicated to the study of cones, so
we make some formal definitions for convenience.

Definition 2.3. Recall the notation of Definition 2.2, let W be a normed
vector space and let S(W ) be the unit sphere in W with respect to the norm.
An element C ∈ Rm

loc(W ) is a cone in W if tC = C for all t > 0, and we call
C ∩ S(W ) the link of C.

We formally define convergence in the space of currents as follows.

Definition 2.4. Recall the notation of Definition 2.2. We say that a
sequence (Sj) in Rm

loc(M) converges to S ∈ Rm
loc(M) if Sj → S in the weak

topology in Cm(M); that is,

Sj → S if and only if
∫

Sj

ξ →
∫

S
ξ as j → ∞,

for all ξ ∈ Dm(M), where integration is carried out with respect to Hm and
includes multiplicities.

In the seminal work on calibrated geometry [10], the relationship between
calibrated geometry and Geometric Measure Theory is discussed at length.
We note some of the observations originally presented there.

Definition 2.5. Let (M, g) be a complete Riemannian manifold, let φ be an
m-form which is a calibration on M and recall the notation of Definition 2.2.
By the work in [10], we can define S ∈ Im(M) to be an integral φ-current
if S is calibrated with respect to φ; that is,

∫
S φ = vol(S). Then integral

φ-currents are volume-minimizing in their homology class. We can also define
a locally integral φ-current in M in the obvious manner.
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One of the key ideas in Geometric Measure Theory is the concept of a
tangent cone, which we now define.

Definition 2.6. Let (M, g) be a complete Riemannian n-manifold and
recall the notation of Definition 2.2. Let S ∈ Rm

loc(M) and let x ∈ S◦. Choose
a diffeomorphism υ : V → B, where B is an open neighbourhood of the ori-
gin in R

n and V is an open neighbourhood of x in M . Let U = V ∩ S and let
Υ = dυ|x, which is an isomorphism between TxM and R

n. A tangent cone
for S at x is a cone C in TxM such that there exists a strictly decreasing
positive sequence (rj), converging to zero as j → ∞, such that

r−1
j υ(U \ {x}) → Υ(C) as j → ∞

in the sense of Definition 2.4.

In Geometric Measure Theory there are two notions of “tangent cone”: one
is a set and the other is a current. We have defined a current in Definition 2.6
and so it is, strictly speaking, an oriented tangent cone in the sense of Geo-
metric Measure Theory. Oriented tangent cones can be defined for more
general currents than locally rectifiable ones, but then one only requires a
weaker form of convergence in the definition.

We conclude with an important result that follows from [19, Theorem
4.4.4].

Proposition 2.7. Let φ be a calibration on a complete Riemannian mani-
fold M and let S be an integral φ-current in M . There exists a tangent cone
to S at each x ∈ S◦, and it is a locally integral φ|x-current in TxM .

2.2. Calibrated geometry in R
7

We define coassociative 4-folds in R
7 by introducing a distinguished 3-form.

Definition 2.8. Let (x1, . . . , x7) be coordinates on R
7 and write dxij...k for

the form dxi ∧ dxj ∧ · · · ∧ dxk. Define a 3-form ϕ0 on R
7 by:

(2.1) ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356.

The Hodge dual of ϕ0 is a 4-form given by:

∗ϕ0 = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247.
(2.2)
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The forms ϕ0 and ∗ϕ0 are calibrations by [10, Theorems IV.1.4 and IV.1.16].
Submanifolds calibrated with respect to ϕ0 and ∗ϕ0 are called associative
3-folds and coassociative 4-folds respectively. We can also characterize the
coassociative 4-folds as the oriented 4-dimensional submanifolds N in R

7

satisfying ϕ0|N ≡ 0, oriented such that ∗ϕ0|N > 0, by [10, Proposition IV.4.5
and Theorem IV.4.6].

Remark. The form ϕ0 is sometimes called the “G2 3-form” because the
exceptional Lie group G2 is the stabilizer of ϕ0 in GL(7, R).

A straightforward calculation yields the following lemma.

Lemma 2.9. Identify R
7 with R ⊕ C

3 so that x1 is the coordinate on R

and z1 = x2 + ix3, z2 = x4 + ix5 and z3 = x6 + ix7 are coordinates on C
3.

If ω0 and Ω0 are the standard Kähler and holomorphic forms on C
3, then:

ϕ0 = dx1 ∧ ω0 + Re Ω0,(2.3)

∗ϕ0 =
1
2

ω0 ∧ ω0 − dx1 ∧ Im Ω0,(2.4)

where ϕ0 and ∗ϕ0 are given in (2.1) and (2.2).

Since Re Ω0 and Im Ω0 are both calibrations on C
3 we have the following

definition, again due to Harvey and Lawson [10].

Definition 2.10. Let (z1, . . . , zm) be coordinates on C
m and let ω0 and Ω0

be the Kähler and holomorphic volume forms on C
m. Then cos θ Re Ω0 +

sin θ Im Ω0 is a calibration on C
m for all real constants θ, and its corre-

sponding calibrated submanifolds are real m-dimensional submanifolds of
C

m called special Lagrangian m-folds (with phase eiθ). Moreover, special
Lagrangian m-folds with phase eiθ are the oriented real m-dimensional sub-
manifolds L of C

m such that ω0|L ≡ 0 and (sin θ Re Ω0 − cos θ Im Ω0)|L ≡ 0,
up to a choice of orientation.

Examination of (2.3) and (2.4) immediately yields the following elemen-
tary result.

Corollary 2.11. In the notation of Lemma 2.9, R × L ⊆ R ⊕ C
3 and N ⊆

C
3 are coassociative in R

7 if and only if L is a special Lagrangian 3-fold
with phase −i and N is a complex surface in C

3 respectively.
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Since we will be concerned with coassociative cones, we make the fol-
lowing convenient definition.

Definition 2.12. The 6-sphere S6 inherits a nearly Kähler structure from
the standard G2 structure on R

7. In particular, if r is the radial coordinate
and er is the radial vector field on R

7, ω = (er · ϕ0)|r=1 is a non-degenerate
2-form on S6 which is not closed. Using this 2-form and the round metric
g on S6 we can define an almost complex structure J by ω(x, y) = g(Jx, y)
for tangent vectors x, y. The almost complex structure J is not integrable.

An oriented 3-dimensional submanifold L ⊆ S6 is the link of a coassocia-
tive cone if and only if ω|L ≡ 0. Thus, we say that the link of a coassociative
cone in R

7 is a Lagrangian submanifold of S6.
An oriented surface Σ ⊆ S6 is a pseudoholomorphic curve if and only if

ω|Σ = volΣ or, equivalently, if J(TσΣ) = TσΣ for all σ ∈ Σ. Note that Σ is
the link of an associative cone if and only if Σ is a pseudoholomorphic curve.

By Corollary 2.11, any complex 2-dimensional cone in C
3 is coassociative

in R ⊕ C
3 ∼= R

7. Thus, the Hopf lift of any holomorphic curve in CP
2 to

a totally geodesic S5 in S6 is Lagrangian. Since special Lagrangian 3-folds
in C

3 are associative in R ⊕ C
3 ∼= R

7, minimal Legendrian surfaces in S5,
which are the links of special Lagrangian cones in C

3, give examples of
pseudoholomorphic curves in S6.

2.3. G2 structures

So that we may define coassociative submanifolds of more general
7-manifolds, we make the following definition.

Definition 2.13. Let M be an oriented 7-manifold and recall the 3-form
ϕ0 on R

7 given in (2.1). For each x ∈ M there exists an orientation preserv-
ing isomorphism ιx : TxM → R

7. Since dim G2 = 14, dim GL+(TxM) = 49
and dim Λ3T ∗

xM = 35, the GL+(TxM) orbit of ι∗x(ϕ0) in Λ3T ∗
xM , denoted

Λ3
+T ∗

xM , is open. A 3-form ϕ on M is positive if ϕ|x ∈ Λ3
+T ∗

xM for all x ∈ M .
Denote the bundle of positive 3-forms by Λ3

+T ∗M .

A positive 3-form is identified with the G2 3-form ϕ0 on R
7 at each point in

M . Therefore, to each positive 3-form ϕ we can uniquely associate a 4-form
∗ϕϕ and a metric gϕ on M such that the triple (ϕ, ∗ϕϕ, gϕ) corresponds to
(ϕ0, ∗ϕ0, g0) at each point. Note that since the metric gϕ depends on ϕ, the
Hodge star ∗ϕ depends on ϕ also. This leads us to our next definition.



812 Jason D. Lotay

Definition 2.14. Let M be an oriented 7-manifold and ϕ ∈ C∞(Λ3
+T ∗M).

If gϕ is the metric associated with ϕ, we call (ϕ, gϕ) a G2 structure on M .
If ϕ is closed (or ∗ϕϕ is closed) then (ϕ, gϕ) is a closed (or coclosed) G2

structure. A closed and coclosed G2 structure is called torsion-free.

Our choice of notation here agrees with [5].

Remark. By [35, Lemma 11.5], (ϕ, gϕ) is a torsion-free G2 structure on M
if and only if the holonomy of gϕ is contained in G2.

Definition 2.15. Let M be an oriented 7-manifold with a G2 structure
(ϕ, gϕ), denoted (M, ϕ, gϕ). If (ϕ, gϕ) is closed, we say that (M, ϕ, gϕ) is
an almost G2 manifold. If (ϕ, gϕ) is torsion-free, we call (M, ϕ, gϕ) a G2

manifold.

Note. By [19, Proposition 11.2.1], the metric gϕ on a compact G2 manifold
M has G2 holonomy if and only if the fundamental group π1(M) is finite.

We are now able to complete our definitions regarding coassociative
4-folds.

Definition 2.16. A 4-dimensional submanifold N of (M, ϕ, gϕ) is coasso-
ciative if and only if ϕ|N ≡ 0 and ∗ϕϕ|N > 0.

Note. Though we may define coassociative 4-folds with respect to any G2

structure, for deformation theory and related results to hold we need it to
be closed. Therefore, we shall work with almost G2 manifolds for greatest
useful generality.

The next result, [31, cf. Proposition 4.2], is invaluable in describing
the deformation theory of coassociative 4-folds.

Proposition 2.17. Let N be a coassociative 4-fold in an almost G2

manifold (M, ϕ, gϕ). There is an isometric isomorphism between the nor-
mal bundle ν(N) of N in M and (Λ2

+)gϕ|N T ∗N given by jN : v �→ (v�ϕ)|TN .
Thus, infinitesimal coassociative deformations of N are governed by closed
self-dual 2-forms on N .

Remarks. From Proposition 2.17 and some further analysis, one may
deduce as in [19, Theorem 12.3.4], by following [31, Theorem 4.5], that
the moduli space of deformations of a compact coassociative 4-fold N in
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an almost G2 manifold is a manifold of dimension b2
+(N). The author in [25]

adapted this deformation theory result to the situation where N has coni-
cal singularities, which will be invaluable for the study in this article. The
relevant material in [25] will be the focus of Section 3.

We shall also be briefly concerned with SU(3) structures, so they form
the subject of the next definition.

Definition 2.18. On C
3, let g0, ω0 and Ω0 denote the standard Euclidean

metric, Kähler form and holomorphic volume form respectively. Let
(Y, J, g, ω) be an almost Hermitian 6-manifold; that is, g is a Riemannian
metric on the almost complex 6-manifold Y , J is an almost complex struc-
ture preserved by g and ω is the associated (non-degenerate) (1, 1)-form on
M . An SU(3) structure on Y is a choice of nowhere vanishing (3, 0)-form Ω
on Y such that, for all y ∈ Y , there exists an orientation preserving isomor-
phism ιy : TyY → C

3 satisfying ι∗y(g0) = g|y, ι∗y(ω0) = ω|y and ι∗y(Ω0) = Ω|y.
If (Y, J, g, ω,Ω) is an almost Hermitian 6-manifold endowed with an

SU(3) structure, the product 7-manifold M = R × Y (or S1 × Y ) has a
“product” G2 structure given by ϕ = dx ∧ ω + Re Ω and gϕ = dx2 + g,
where x is the coordinate on R or S1, by [19, Proposition 11.1.9]. More-
over, ∗ϕϕ = 1

2 ω ∧ ω − dx ∧ Im Ω.

Notes. If (Y, g, J, ω) is a compact Kähler 3-manifold and Ω is a nowhere
vanishing holomorphic (3, 0)-form on Y , then (Y, g, J, ω,Ω) is called an
almost Calabi–Yau 3-fold. If, in addition, ω3 = 3i

4 Ω ∧ Ω̄ then the SU(3) struc-
ture is torsion-free and (Y, J, g, ω,Ω) is called a Calabi–Yau 3-fold. These are
the natural “SU(3) analogues” of the manifolds defined in Definition 2.15.
In particular, the Calabi–Yau condition is equivalent to saying that the com-
pact Kähler manifold has metric g with holonomy contained in SU(3).

3. Conical singularities

In this section, we review some of the theory of conical singularities of coas-
sociative 4-folds as described in [25]. We also prove an important new result
that shows that singular coassociative integral currents with particularly
“nice” tangent cones have conical singularities.

3.1. Coassociative 4-folds with conical singularities

We first define a preferred choice of local coordinates on an almost G2 man-
ifold near a finite set of points, which is an analogue of one given for almost
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Calabi–Yau manifolds in [15, Definition 3.6]. We let B(0; δ) ⊆ R
7 denote the

open ball about 0 with radius δ > 0.

Definition 3.1. Let (M, ϕ, gϕ) be an almost G2 manifold and let z1, . . . ,
zs ∈ M be distinct points. There exist a constant εM ∈ (0, 1), an open set
Vi � zi in M with Vi ∩ Vj = ∅ for j �= i and a diffeomorphism χi : B(0; εM ) →
Vi with χi(0) = zi, for i = 1, . . . , s, such that ζi = dχi|0 : R

7 → Tzi
M is an

isomorphism identifying the standard G2 structure (ϕ0, g0) on R
7 with the

pair (ϕ|zi
, gϕ|zi

). We call the set {χi : B(0; εM ) → Vi : i = 1, . . . , s} a G2

coordinate system near z1, . . . , zs.
We say that two G2 coordinate systems near z1, . . . , zs, with maps χi

and χ̃i for i = 1, . . . , s, respectively, are equivalent if dχ̃i|0 = dχi|0 = ζi for
all i.

Definition 3.2. Let (M, ϕ, gϕ) be an almost G2 manifold, let N ⊆ M
be compact and connected and let z1, . . . , zs ∈ N be distinct. We also let
{χi : B(0; εM ) → Vi : i = 1, . . . , s} be a G2 coordinate system near z1, . . . , zs,
as in Definition 3.1. We say that N is a 4-fold in M with conical singularities
at z1, . . . , zs with rate μ, denoted a CS 4-fold, if N̂ = N \ {z1, . . . , zs} is a
(non-singular) 4-dimensional submanifold of M and there exist constants
0 < ε < εM and μ ∈ (1, 2), a compact 3-dimensional Riemannian subman-
ifold (Li, hi) of S6 ⊆ R

7, where hi is the restriction of the round metric
on S6 to Li, an open set Ui � zi in N with Ui ⊆ Vi and a smooth map
Φi : (0, ε) × Li → B(0; εM ) ⊆ R

7, for i = 1, . . . , s, such that Ψi = χi ◦ Φi :
(0, ε) × Li → Ui \ {zi} is a diffeomorphism, and Φi satisfies

(3.1) Φi(ri, xi) − ιi(ri, xi) ∈ (Trixi
ιi(Ci))⊥ for all (ri, xi) ∈ (0, ε) × Li

and

(3.2) |∇j
i (Φi(ri, xi) − ιi(ri, xi))| = O(rμ−j

i ) for j ∈ N as ri → 0,

where ιi(ri, xi) = rixi ∈ B(0; εM ), ∇i is the Levi-Civita connection of the
cone metric gi = dr2

i + r2
i hi on Ci = (0,∞) × Li coupled with partial differ-

entiation on R
7, and |.| is calculated with respect to gi.

We call Ci the cone at the singularity zi and Li the link of the cone
Ci. We may write N as the disjoint union N = KN �

⊔s
i=1 Ui, where KN is

compact.
If N̂ is coassociative in M , we say that N is a CS coassociative 4-fold.

Remark. If N is a CS 4-fold, N̂ is non-compact.
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Suppose N is a CS 4-fold at z1, . . . , zs with rate μ in (M, ϕ, gϕ) and use
the notation of Definition 3.2. The induced metric on N̂ , gϕ|N̂ , makes N̂
into a Riemannian manifold. Moreover, it is clear from (3.2) that, as long
as μ < 2, the maps Ψi satisfy

(3.3) |∇j
i (Ψ

∗
i (gϕ|N̂ ) − gi)| = O(rμ−1−j

i ) for j ∈ N as ri → 0.

Consequently, the condition μ > 1 guarantees that the induced metric on N̂
genuinely converges to the conical metric on Ci.

Note. As shown on [25, p. 6], since μ ∈ (1, 2), Definition 3.2 is indepen-
dent of the choice of G2 coordinate system near the singularities, up to
equivalence.

Definition 3.3. Let N be a CS coassociative 4-fold in an almost G2 man-
ifold and use the notation of Definition 3.2. A radius function on N̂ is a
smooth map ρ : N̂ → (0, 1] such that there exist positive constants c1 < 1
and c2 > 1 with c1ri < Ψ∗

i (ρ) < c2ri on (0, ε) × Li for i = 1, . . . , s.

It is clear how we may construct such a function.
We now make a definition that also depends only on equivalence classes

of G2 coordinate systems near the singularities.

Definition 3.4. Let N be a CS coassociative 4-fold at z1, . . . , zs in an
almost G2 manifold. Use the notation of Definitions 3.1 and 3.2. For i =
1, . . . , s, define a cone Ĉi in Tzi

M by Ĉi = (ζi ◦ ιi)(Ci). We call Ĉi the tangent
cone at zi.

Using (3.2), one sees that Ĉi is a tangent cone at zi in the sense of Defi-
nition 2.6. Since the tangent cone has multiplicity one, [37, Theorem 5.7]
implies that Ĉi is the unique tangent cone to N at zi. It is still an open
question whether a general calibrated integral current has a unique tangent
cone at each point.

We conclude with a straightforward result that follows from Proposi-
tion 2.7 or, by more elementary means, from [25, Proposition 3.6].

Proposition 3.5. Let N be a CS coassociative 4-fold at z1, . . . , zs in an
almost G2 manifold. The tangent cones at z1, . . . , zs are coassociative.
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3.2. Weighted Banach spaces

For this subsection we let (P, g) denote the non-singular part of a CS coas-
sociative 4-fold in an almost G2 manifold with the induced metric and let ρ
be a radius function on P , as given in Definitions 3.2 and 3.3. We also let ∇
denote the Levi-Civita connection of g. We define weighted Banach spaces
of forms on P as in [2, Section 1] so as to implement the analytic framework
of [25].

We shall use the notation and definition of the usual “unweighted”
Banach spaces of forms as in [13, Section 1.2]; that is, Sobolev and Hölder
spaces are denoted by Lp

k and Ck, a, respectively, where p ≥ 1, k ∈ N and
a ∈ (0, 1). Recall that, by the Sobolev Embedding Theorem, Lp

k embeds
continuously in Lq

l if l ≤ k and l − 4
q ≤ k − 4

p , and Lp
k embeds continuously

in C l, a if k − 4
p ≥ l + a. We also introduce the notation Ck

loc for the space
of forms ξ such that fξ lies in Ck for every smooth compactly supported
function f , and similarly define spaces Lp

k, loc and Ck, a
loc .

Definition 3.6. Let p ≥ 1, k ∈ N and λ ∈ R. The weighted Sobolev space
Lp

k, λ(ΛmT ∗P ) of m-forms ξ on P is the subspace of Lp
k, loc(Λ

mT ∗P ) such
that the norm

‖ξ‖Lp
k, λ

=
k∑

j=0

(∫

P
|ρj−λ∇jξ|pρ−4 dVg

) 1
p

is finite. Then Lp
k, λ(ΛmT ∗P ) is a Banach space.

We now define the dual weighted Sobolev space that shall be useful later.

Definition 3.7. Use the notation from Definition 3.6. Let p, q > 1 be such
that 1

p + 1
q = 1, let k, l ∈ N and let λ ∈ R. We then define 〈 . , . 〉 :

Lp
k, λ(ΛmT ∗P ) × Lq

l,−4−λ(ΛmT ∗P ) → R by

〈ξ, η〉 =
∫

P
ξ ∧ ∗η.

We shall refer to this as the dual pairing. For our purposes, we take the
dual space of Lp

k, λ(ΛmT ∗P ) to be Lq
l,−4−λ(ΛmT ∗P ), with linear functionals

represented by dual pairings.
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Definition 3.8. Let λ ∈ R and k ∈ N. The weighted Ck-space Ck
λ(ΛmT ∗P )

of m-forms ξ on P is the subspace of Ck
loc(Λ

mT ∗P ) such that the norm

‖ξ‖Ck
λ

=
k∑

j=0

sup
P

|ρj−λ∇jξ|

is finite. We define C∞
λ (ΛmT ∗P ) =

⋂
k≥0 Ck

λ(ΛmT ∗P ). Then Ck
λ(ΛmT ∗P ) is

a Banach space, but C∞
λ (ΛmT ∗P ) is not in general.

Definition 3.9. Let E be a vector bundle on P endowed with Euclidean
metrics on its fibres and a connection preserving these metrics. Let d(x, y)
be the geodesic distance between points x, y ∈ P , let a ∈ (0, 1), let k ∈ N

and let λ ∈ R. Let

H = {(x, y) ∈ P × P : x �= y, c1ρ(x) ≤ ρ(y) ≤ c2ρ(x) and
there exists a geodesic in P of length d(x, y) from x to y},

where 0 < c1 < 1 < c2 are constant. A section s of E is Hölder continuous
(with exponent a) if

[s]a = sup
(x,y)∈H

|s(x) − s(y)|E
d(x, y)a

< ∞.

We understand the quantity |s(x) − s(y)|E as follows. Given (x, y) ∈ H,
there exists a geodesic γ of length d(x, y) connecting x and y. Parallel trans-
lation along γ using the connection on E identifies the fibres over x and
y and the metrics on them. Thus, with this identification, |s(x) − s(y)|E is
well-defined.

The weighted Hölder space Ck, a
λ (ΛmT ∗P ) is defined to be the subspace

of Ck, a
loc (ΛmT ∗P ) such that the norm

‖ξ‖Ck, a
λ

= ‖ξ‖Ck
λ

+ [ξ]k, a
λ

is finite, where
[ξ]k, a

λ = [ρk+a−λ∇kξ]a.

Then Ck, a
λ (ΛmT ∗P ) is a Banach space. It is clear that we have embeddings

Ck, a
λ (ΛmT ∗P ) ↪→ C l

λ(ΛmT ∗P ) and Ck+1
λ (ΛmT ∗P ) ↪→ C l, a

λ (ΛmT ∗P ) if l ≤ k.

Remark. The set H in Definition 3.9 is introduced so that [ξ]k, a
λ is

well-defined.
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Finally, we shall need the analogue of the Sobolev Embedding Theorem
for weighted spaces, which is adapted from [23, Lemma 7.2] and [2, Theo-
rem 1.2].

Theorem 3.10 (Weighted Sobolev Embedding Theorem). Let
p, q≥ 1, a ∈ (0, 1), λ, ν ∈ R and k, l ∈ N.

(a) If k ≥ l, k − 4
p ≥ l − 4

q , and either p ≤ q and λ ≥ ν, or p > q and λ >

ν, there is a continuous embedding Lp
k, λ(ΛmT ∗P ) ↪→ Lq

l, ν(Λ
mT ∗P ).

(b) If k − 4
p ≥ l + a, there is a continuous embedding Lp

k, λ(ΛmT ∗P ) ↪→
C l, a

λ (ΛmT ∗P ).

3.3. Deformation theory

We now review and discuss the key deformation theory results for CS coasso-
ciative 4-folds from [25]. We begin by recalling the linear differential operator
governing infinitesimal deformations of CS coassociative 4-folds.

Definition 3.11. Let N be a CS coassociative 4-fold in an almost G2

manifold. Let p > 4, k ≥ 2 and let λ ∈ R. Define

(3.4) (d+ + d∗)λ : Lp
k+1, λ(Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂) → Lp
k, λ−1(Λ

3T ∗N̂)

by (d+ + d∗)λ(α, β) = dα + d∗β.

Notes. We use the operator (3.4) rather than simply the exterior derivative
on self-dual 2-forms since the former operator is elliptic, whereas the latter
is not. The choice of p > 4 and k ≥ 2 ensures that Lp

k+1, λ-solutions to the
(non-linear) deformation problem are in fact smooth.

Definition 3.12. Let N be a CS coassociative 4-fold in an almost G2

manifold and use the notation of Definition 3.2. Let

D(λ, i) = {(αi, βi) ∈ C∞(Λ2T ∗Li ⊕ Λ3T ∗Li) : diαi = −λβi,

di∗iαi + d∗
i βi = −(λ + 2)αi},

where ∗i, di and d∗
i are the Hodge star, the exterior derivative and its formal

adjoint on Li. By [25, Propositions 5.1 and 5.2], the set D of real numbers
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such that (3.4) is not Fredholm is countable and discrete and given by

D =
s⋃

i=1

{λ : D(λ, i) �= 0}.

We also set d(λ) =
∑s

i=1 dim D(λ, i).

Note. The forms (αi, βi) ∈ D(λ, i) correspond to homogeneous forms
(α, β) ∈ C∞(Λ2

+T ∗Ci ⊕ Λ4T ∗Ci) of order λ which satisfy dα + d∗β = 0 on
the cone Ci.

In [25] the author studied deformations of CS coassociative 4-folds, allow-
ing the singularities and tangent cones to vary, and permitting changes in
the ambient G2 structure. However, for our purposes, we require a slightly
more general theory, where we allow the underlying cones on which the sin-
gularities are modelled to vary as well. We now define the moduli space of
deformations.

Definition 3.13. Let N be a CS coassociative 4-fold in an almost G2

manifold (M, ϕ, gϕ) and let D be given by Definition 3.12. Suppose further
that N has singularities at z1, . . . , zs with rate μ ∈ (1, 2) \ D, having cone
Ci and tangent cone Ĉi at zi for all i. Let C =

∏s
i=1 Ci where Ci is a smooth,

connected family of coassociative cones in R
7, closed under the natural action

of G2 �R
7, such that Ci ∈ Ci for all i.

The moduli space of deformations M(N, μ, C) is the set of CS coasso-
ciative 4-folds N ′ in M such that:

(a) N ′ has a singularity at z′i with rate μ and cone in Ci for i = 1, . . . , s;
and

(b) there exists a diffeomorphism h : M → M , isotopic to the identity,
such that h(zi) = z′i for all i, h|N : N → N ′ is a homeomorphism and
h|N̂ : N̂ → N ′ \ {z′1, . . . , z′s} is a diffeomorphism.

We state the deformation theory result we require.

Theorem 3.14. Use the notation of Definition 3.13, let p > 4 and k ≥ 2.
There exist finite-dimensional vector spaces I(N, μ, C) and O(N, μ, C), with
O(N, μ, C) contained in Lp

k, μ−1(Λ
3T ∗N̂), and there exist

(a) a smooth manifold M̂(N, μ, C), which is an open neighbourhood of 0
in I(N, μ, C), and
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(b) a smooth map π : M̂(N, μ, C) → O(N, μ, C), with π(0) = 0,

such that an open neighbourhood of zero in Kerπ is homeomorphic to an
open neighbourhood of N in M(N, μ, C).

Furthermore, if O(N, μ, C) = {0}, then M(N, μ, C) is a smooth manifold
of dimension equal to that of I(N, μ, C).

We can actually say more about the spaces I(N, μ, C) and O(N, μ, C).

Proposition 3.15. Use the notation of Definitions 3.11–3.13 and
Theorem 3.14.

(a) I(N, μ, C) contains a subspace isomorphic to Ker(d+ + d∗)μ.

(b) O(N, μ, C) is transverse to the space Image(d+ + d∗)μ, it is contained
in d(Lp

k+1, μ(Λ2T ∗N̂)) ⊆ Lp
k, μ−1(Λ

3T ∗N̂) and satisfies

(3.5) dimO(N, μ, C) ≤
∑

λ∈(−2,μ)∩D
d(λ) −

s∑

i=1

dim Ci.

These results essentially follow from [25, Theorem 7.9 and Proposition
8.10], the only difference being that we allow the cones Ci on which the
singularities are modelled to deform in the families Ci, which may be larger
than the families given simply by translations and G2 transformations of Ci.
Rather than repeating the entire analysis in [25] with this change, we appeal
to the similar discussion in [16, Section 8.3]; that is, the infinitesimal defor-
mation space I(N, μ, C) is unchanged but the dimension of the obstruction
space O(N, μ, C) is reduced by the dimension of the families in which the
cones vary.

Notes. In (3.5), the sum is over (−2, μ) ∩ D, rather than (−1, μ) ∩ D as
in [25, Proposition 8.10]. This ability to improve to the latter smaller set was
based on the claim in [25, Proposition 5.3], which followed from applying
[23, Theorem 10.2], that (−2,−1] ∩ D = ∅. Although (−2,−1) ∩ D = ∅ for
almost all examples of interest, often −1 ∈ D so the claim is erroneous.
However, we shall show in Proposition 4.11 that not only is [25, Proposition
8.10] valid, but the estimate in (3.5) can be improved even further.

In [25, Theorem 7.13] we proved a result for deformations of N where
the ambient G2 structure on M also varies. We see that we have to restrict
our choice of perturbations of the G2 structure as follows.
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Definition 3.16. Use the notation of Definition 3.13. By [25, Proposition
6.19] there exists a neighbourhood TN of N in M , which retracts onto N
and H3

dR(TN ) ∼= H3
cs(N̂), the third compactly supported cohomology group

of N̂ . Thus, any closed positive 3-form ϕ′ on M defines a cohomology
class [ϕ′|N̂ ] ∈ H3

cs(N̂) and, moreover, if [ϕ′|N̂ ] �= 0 in H3
cs(N̂) there are no

nearby coassociative deformations of N . Therefore, we let F = {(ϕf , gϕf ) :
f ∈ B(0; δ) ⊆ R

r} be a smooth r-dimensional family of closed G2 structures
on M , with ϕ0 = ϕ and [ϕf |N̂ ] = 0 for all f ∈ B(0; δ).

The obstruction space for the deformation problem where the ambi-
ent G2 structure deforms in the family F , suitably generalized to include
the possibility that the cones at the singularities vary in the family C, is
contained in O(N, μ, C). Therefore, if O(N, μ, C) = {0}, for any sufficiently
small perturbation of the G2 structure (ϕ, gϕ) in F we obtain a correspond-
ing CS deformation of N which is coassociative with respect to the new G2

structure. Thus, we have the following result using [25, Theorem 7.13].

Theorem 3.17. Use the notation of Definitions 3.13 and 3.16 and The-
orem 3.14. If O(N, μ, C) = {0}, there exists δN ∈ (0, δ) such that, if f ∈
B(0; δN ), then there exists a CS deformation Nf of N in TN with s sin-
gularities with rate μ, modelled on cones in C, which is coassociative with
respect to ϕf .

Note. By the method of proof of [25, Theorem 7.13], a “sufficiently small”
perturbation (ϕ′, gϕ′) of (ϕ, gϕ) is one for which ‖ϕ′ − ϕ‖C1 < εC1 and ‖ϕ′ −
ϕ‖Lp

2
< εLp

2
for some p > 4, where the norms are calculated in TN with

respect to gϕ, and εC1 and εLp
2

are small constants determined by the geom-
etry of (M, ϕ, gϕ) near N (i.e., in TN ). Thus δN is chosen so that these C1

and Lp
2 norms are smaller than the appropriate constants.

3.4. Multiplicity one tangent cones

In this subsection, we study coassociative integral currents with multiplicity
one tangent cones, motivated by the work on special Lagrangian integral
currents in [15, Section 6]. The key condition is that the underlying cone
is Jacobi integrable, which we define for a coassociative cone following [15,
Definition 6.7].

Definition 3.18. Let C be a coassociative cone in R
7 with compact link

L in S6 such that C \ {0} is non-singular. We say that v ∈ C∞(νS6(L))
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is a Lagrangian Jacobi field if αv = ∗(v�ϕ0)|TL ∈ C∞(T ∗L) satisfies dαv =
−3 ∗ αv, where ∗ is the Hodge star on L. Notice that v is a Lagrangian
Jacobi field if and only if r3 ∗ αv + r2αv ∧ dr is a closed self-dual 2-form
on C of order O(r), and so defines an infinitesimal deformation of C as a
coassociative cone; i.e., an infinitesimal deformation of L as a Lagrangian
in S6 in the sense of Definition 2.12. Since Lagrangians in S6 are minimal,
Lagrangian Jacobi fields are Jacobi fields in the usual sense.

We say that C is Jacobi integrable if every Lagrangian Jacobi field v on L
defines a smooth one-parameter family {Lt = exptv(L) ⊆ S6 : t ∈ (−τ, τ)},
for some τ > 0, of Lagrangian submanifolds of S6.

Our next result proves Theorem 1.1; namely, that interior singular points
of coassociative integral currents, with multiplicity one tangent cones mod-
elled on Jacobi integrable cones, are conical singularities in the sense of
Definition 3.2.

Theorem 3.19. Let N be a coassociative integral current in an almost G2

manifold M and let z ∈ N◦ be a singular point of N . Let {χ : B(0; εM ) →
V } be a G2 coordinate system near z in the sense of Definition 3.1, with
ζ = dχ|0. Suppose that C is a cone in R

7 with compact link L such that
C \ {0} is non-singular and Ĉ = ζ(C) ⊆ TzM is a multiplicity one tangent
cone for N at z. Then C is coassociative and Ĉ is the unique tangent cone
for N at z.

Suppose further that C is Jacobi integrable in the sense of Definition 3.18
and let U = N ∩ V . Then there exist ε ∈ (0, εM ) and an embedding Φ : (0, ε) ×
L → B(0; εM ) such that U \ {z} = χ ◦ Φ((0, ε) × L) as an embedded subman-
ifold of M and Φ satisfies (3.1) and (3.2) for some μ ∈ (1, 2).

Proof. The fact that C is coassociative follows from Proposition 2.7. By [37,
Theorem 5.7], the tangent cone Ĉ is unique and U \ {z} can be realized as
a C2-embedding Ψ of (0, ε) × L, for some ε > 0. Moreover, Ψ = χ ◦ Φ where
Φ is a C2-embedding of (0, ε) × L into B(0; εM ) which satisfies (3.1). This
last point is not explicit in the statement of the theorem, but does follow
from the proof. Moreover, if ι : C \ {0} ∼= (0,∞) × L → R

7 is the inclusion
map, Φ also satisfies:

|Φ(r, x) − ι(r, x)| = o(r),(3.6)
|∇(Φ(r, x) − ι(r, x))| = o(1),(3.7)

|∇2(Φ(r, x) − ι(r, x))| = O(1)(3.8)
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as r → 0. Equation (3.8) again is not stated explicitly in [37, Theorem 5.7]
but follows from the minimality of C and N as discussed in the proof of [1,
Theorem 1]. The aforementioned theorem [1, Theorem 1] and its proof imply
that there exists μ ∈ (1, 2) such that the estimates (3.6) and (3.7) can be
improved to:

|Φ(r, x) − ι(r, x)| = O(rμ),(3.9)

|∇(Φ(r, x) − ι(r, x))| = O(rμ−1)(3.10)

as r → 0, since C is Jacobi integrable. We now only need a regularity
argument to complete the proof, similar to [27, Proposition 4.17], which
we now detail.

Let P = ι((0, ε) × L) ⊆ R
7 and recall that, since P is coassociative, we

have an isomorphism jP : ν(P ) → Λ2
+T ∗P by Proposition 2.17. For α ∈

C2
loc(Λ

2
+T ∗P ) and v = j−1

P (α), define

F (α) = exp∗
v(ϕ0|expv(P )) ∈ C1

loc(Λ
3T ∗P )

and

G(α) = πΛ2
+
(d∗F (α)) ∈ C0

loc(Λ
2
+T ∗P ),

where πΛ2
+

is the projection from 2-forms to self-dual 2-forms on P . Clearly,
if F (α) = 0, the deformation expv(P ) of P is coassociative and G(α) = 0.
Moreover, dF |0(α) = dα by [31, p. 731] and thus dG|0(α) = d∗

+dα, where
d∗

+ = πΛ2
+
◦ d∗ acting on 3-forms on P . We deduce that G(α) = 0 is a non-

linear elliptic equation for α at 0; that is, its linearization at 0 is elliptic.
Since Φ is a C2-coassociative embedding satisfying (3.1), it defines a C2-

normal vector field vΦ on P and hence a C2-self-dual 2-form αΦ = jP (vΦ)
on P which satisfies F (αΦ) = 0. Moreover, αΦ ∈ C2

μ(Λ2
+T ∗P ) by (3.9)–(3.10)

and (3.8), since μ − 2 < 0. Thus, αΦ ∈ C1, a
μ (Λ2

+T ∗P ) for any a ∈ (0, 1).
Let ∇ be the Levi-Civita connection of the conical metric on P . We can

write, for α ∈ C2
loc(Λ

2
+T ∗P ) and p ∈ P ,

G(α)(p) = R(p, α(p),∇α(p))∇2α(p) + E(p, α(p),∇α(p)),

where R and E are smooth functions of their arguments, since G(α) is linear
in ∇2α and a smooth function of α. This leads us to define a new operator
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on β ∈ C2
loc(Λ

2
+T ∗P ) by

SΦ(β)(p) = R(p, αΦ(p),∇αΦ(p))∇2β(p).

Note that SΦ is not the linearization of G of 0, but it is a linear second-order
elliptic operator on β with coefficients in C0, a

loc .
Since G(αΦ) = 0, SΦ(αΦ) = −E(αΦ), where we set

E(β)(p) = E(p, β(p),∇β(p))

for p ∈ P and β ∈ C2
loc(Λ

2
+T ∗P ). As argued in [27, Proposition 4.17], E(β) ∈

Ck, a
μ−1 if β ∈ Ck+1, a

μ since E is no worse than quadratic in β and ∇β. Thus,
using the Schauder regularity estimates as given in [30] and the fact that
αΦ ∈ C1, a

μ , we deduce that αΦ ∈ C2, a
μ (Λ2

+T ∗P ). A standard inductive argu-
ment leads us to the conclusion that αΦ ∈ Ck, a

μ for all k ∈ N. Thus the
corresponding map Φ satisfies (3.2) as claimed. �

From Definition 3.2, we have an immediate corollary to Theorem 3.19.

Corollary 3.20. Let N be a connected coassociative integral current in an
almost G2 manifold with ∂N = ∅. If N has multiplicity one tangent cones
at its singular points modelled on Jacobi integrable coassociative cones, then
N is a CS coassociative 4-fold in the sense of Definition 3.2.

4. Coassociative cones and stability index

In this section, we define the notion of stability of conical singularities of
coassociative 4-folds using a numerical invariant for a coassociative cone
which we call the stability index. This stability index is calculated using the
spectrum of the curl operator acting on 1-forms on the link of the cone. We
begin by giving a brief survey of the known examples of coassociative cones.

4.1. Examples

For this subsection it is convenient to identify R
7 with the imaginary octo-

nions Im O. Let {ε1, . . . , ε7} be a basis for Im O satisfying the multiplication
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law below.

ε1 ε2 ε3 ε4 ε5 ε6 ε7

ε1 −1 ε3 −ε2 ε5 −ε4 ε7 −ε6

ε2 −ε3 −1 ε1 ε6 −ε7 −ε4 ε5

ε3 ε2 −ε1 −1 −ε7 −ε6 ε5 ε4

ε4 −ε5 −ε6 ε7 −1 ε1 ε2 −ε3

ε5 ε4 ε7 ε6 −ε1 −1 −ε3 −ε2

ε6 −ε7 ε4 −ε5 −ε2 ε3 −1 ε1

ε7 ε6 −ε5 −ε4 ε3 ε2 −ε1 −1

If we identify Im O ∼= R
7 so that {ε1, . . . , ε7} corresponds to the standard

oriented orthonormal basis in R
7, then the multiplication law we have chosen

is consistent with the G2 structure on R
7 given by ϕ0 in (2.1).

The coassociative cones invariant under a closed 3-dimensional Lie sub-
group of G2 were classified in [29]. We now review these examples starting
with the degenerate example of a coassociative cone, namely a coassociative
4-plane.

Example 4.1 (Planes). By [19, Proposition 12.1.2], G2 acts transitively
on the set of coassociative 4-planes with isotropy SO(4). Therefore, any
coassociative 4-plane is equivalent up to G2 transformation to

C0 = {x0ε1 + x1ε3 + x2ε5 + x3ε7 ∈ Im O : (x0, x1, x2, x3) ∈ R
4}.

The link L0 of C0 is trivially a totally geodesic SO(4)-invariant S3 in S6.

Our next example was first introduced in [22, Section 7] and shown to
be coassociative in [10, Theorem IV.3.2].

Example 4.2 (U(2) symmetry). The cone C1 in Im O, with link

L1 =

{√
5

3
q̄ε1q +

2
3

qε5 : q ∈ 〈1, ε1, ε2, ε3〉R with |q| = 1

}

,

is coassociative and invariant under a U(2) subgroup of G2. The Lagrangian
L1 is realized as an Sp(1)-orbit in S6.

Recall that, by Corollary 2.11, any complex 2-dimensional cone in C
3

embedded in R
7 is coassociative.
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Example 4.3 (Complex SO(3) symmetry). Identify R
7 ∼= R ⊕ C

3 as
in Lemma 2.9. The cone

C2 = {(0, z1, z2, z3) ∈ R ⊕ C
3 : z2

1 + z2
2 + z2

3 = 0}

is coassociative and invariant under the standard SO(3) action on C
3. The

real link L2 of C2 in S6 is diffeomorphic to SO(3) and is the Hopf lift of the
constant curvature degree 2 CP

1 in CP
2.

Our final symmetric examples are most easily described using homoge-
neous harmonic cubics on R

3.

Example 4.4 (SO(3) symmetry). Identify Im O with the homogeneous
harmonic cubics H3(R3) on R

3 by:

ε1 �→
√

10
10

x(2x2 − 3y2 − 3z2);

ε2 �→ −
√

6xyz; ε3 �→
√

6
2

x(y2 − z2);

ε4 �→ −
√

15
10

y(4x2 − y2 − z2); ε5 �→ −
√

15
10

z(4x2 − y2 − z2);

ε6 �→ 1
2

y(y2 − 3z2); ε7 �→ −1
2

z(z2 − 3y2).

The standard SO(3) action on R
3 induces an action on H3(R3), hence on

Im O.
Let L3 be the orbit through ε6 of this SO(3) action on Im O and let L4 be

the orbit through ε2. By [29, Theorem 4.3] and observations in [28, Examples
6.6 and 6.15], L3

∼= SO(3)/ S3 and L4
∼= SO(3)/ A4 are Lagrangian. Thus the

cones C3 and C4 on L3 and L4 respectively are coassociative and SO(3)-
invariant.

Note. The SO(3)-orbit through ε1 is a constant curvature 1
6 pseudoholo-

morphic curve in S6 often called the Bor̊uvka sphere in S6.

All of the coassociative cones introduced so far have links which are
fibred by oriented circles of constant radius over a surface. Lagrangians in
S6 with this property were classified in [28]. This classification describes all
of the known links of coassociative cones and it turns out that the circles have
radius either 2

3 or 1. To describe these examples we make two definitions.



Stability of coassociative conical singularities 827

Definition 4.5. Let u : Σ → S6 be a surface, let Π be a 2-plane subbundle
of u∗(TS6) and let U(Π) = {v ∈ Π : |v| = 1}. For γ ∈ (0, π

2 ] we define xγ :
U(Π) → S6 by xγ(v) = cos γu + sin γv. We say that the image of xγ is a
tube of radius γ (in Π) about Σ.

Definition 4.6. If u : Σ → S6 is a non-totally geodesic pseudoholomorphic
curve in the sense of Definition 2.12, there is an orthogonal decomposition
u∗(T 1,0S6) = T 1,0Σ ⊕ N1Σ ⊕ N2Σ, where N1Σ and N2Σ are holomorphic
line bundles such that the second fundamental form of u takes values in N1Σ.
We call N1Σ and N2Σ the first and second normal bundles, respectively.

If (f1, f2, f3) is a moving orthonormal frame for T 1,0Σ ⊕ N1Σ ⊕ N2Σ and
θ1 is the (1, 0)-form dual to f1, then the structure equations for Σ are:

du = −2if1θ1 + 2if̄1θ̄1; df1 = −iuθ̄1 + f1κ11 + f2κ21;
df2 = −f1κ̄21 + f2κ22 + f3κ32 − f̄3θ1; df3 = −f2κ̄32 + f3κ33 + f̄2θ1;
dθ1 = −κ11 ∧ θ1; dκ11 = −κ21 ∧ κ̄21 + 2θ1 ∧ θ̄1;

dκ22 = κ21 ∧ κ̄21 − κ32 ∧ κ̄32 − θ1 ∧ θ̄1; dκ33 = κ32 ∧ κ̄32 − θ1 ∧ θ̄1;
dκ21 = (κ11 − κ22) ∧ κ21; dκ32 = (κ22 − κ33) ∧ κ32,

for some imaginary-valued 1-forms κ11, κ22, κ33 such that κ11 + κ22 + κ33 =
0 and complex-valued 1-forms κ21 and κ32. Moreover, by the work in [4,
Section 4], there exist holomorphic functions K and T such that κ21 = Kθ1

and κ32 = Tθ1. We identify K with the second fundamental form of Σ,
so K �= 0, and we call T the torsion of Σ. Of particular interest are the
pseudoholomorphic curves with null-torsion, i.e., with T ≡ 0, since they may
be viewed as certain algebraic curves in the 5-quadric in CP

6 and every
compact Riemann surface can be realized as such a curve in S6 by the work
in [4, Section 4].

Remark. The Bor̊uvka sphere Σ in S6 has null-torsion.

The coassociative cones with links which are fibred by circles of radius
2
3 are locally cones over tubes of radius sin−1(2

3) in N2Σ about null-torsion
pseudoholomorphic curves Σ ⊆ S6. This includes C1 given in Example 4.2,
where Σ is a totally geodesic S2 (which is the degenerate case of a null-torsion
curve), and C4 given in Example 4.4, where Σ is the Bor̊uvka sphere.

We shall be more concerned with the case where the link is fibred by
oriented geodesic circles so we make the following definition as in [24].
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Definition 4.7. A 4-dimensional submanifold N of R
n is 2-ruled if there

is a surface Σ and a smooth fibration π : N → Σ whose fibres are affine
2-planes in R

n. In addition, we say that N is r-framed if there is a choice of
oriented frame for each 2-plane π−1(σ) which varies smoothly with σ ∈ Σ.

The 2-ruled coassociative 4-folds in R
7 were studied in [24], and there

was a further focus on the conical case in [9]. By [28, Theorems 1.1–1.2] we
can extend the work in [9] and describe all r-framed 2-ruled coassociative
cones. We refer the reader to [28] for full details but give a brief description
here.

Example 4.8 (The 2-ruled family). Complex 2-dimensional cones in C
3

embedded in R
7 are 2-ruled coassociative cones by Corollary 2.11.

Recall Definition 4.5. The general r-framed 2-ruled coassociative cone
C has link L such that, for all p in an open dense subset L∗ of L, there
exist an open set U � p, a non-totally geodesic pseudoholomorphic curve
u : Σ → S6, and a holomorphic line subbundle Π of u∗(T 1,0S6) such that
U ∩ L∗ is a tube of radius π

2 in Π about Σ. There are restrictions on the
choice of line subbundle Π (see [28, Example 7.4]), however, in particular,
we may always choose Π = N2Σ.

We conclude this subsection with the following important examples of
2-ruled coassociative cones.

Example 4.9. Let C be a coassociative cone with link L admitting a
Killing vector field whose integral curves are geodesic circles in S6. By [41,
Theorem 2], either C is a complex 2-dimensional cone in C

3 or L is locally
a tube of radius π

2 in N1Σ or N2Σ about a null-torsion pseudoholomorphic
curve Σ in S6.

Cones as in Example 4.9 are given trivially by C2 in Example 4.3 but also by
C3 in Example 4.4, since L3 is a tube of radius π

2 in N2Σ about the Bor̊uvka
sphere Σ.

4.2. Stability index and the curl operator

For this subsection, use the notation of Definitions 3.2 and 3.13 and The-
orem 3.14. In particular, N is a CS coassociative 4-fold where the s singu-
larities have rate μ ∈ (1, 2) \ D, where D is given in Definition 3.12, and the
s-tuple of cones at the singularities (C1, . . . , Cs) lies in C =

∏s
i=1 Ci.
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To get an effective notion of stability for the conical singularities of N
we need to improve the estimate (3.5) for the dimension of the obstruction
space O(N, μ, C) for the deformation problem for N . To understand this we
need to compare the maps (d+ + d∗)λ given by (3.4) and

(d + d∗)λ : Lp
k+1, λ(Λ2T ∗N̂ ⊕ Λ4T ∗N̂) → Lp

k, λ−1(Λ
3T ∗N̂)(4.1)

(α, β) �→ dα + d∗β

for λ ∈ (−2, μ]. From Theorem 3.14, we see that O(N, μ, C) is a subspace of
the cokernel of (d+ + d∗)μ which is transverse to the cokernel of (d + d∗)μ.
Moreover, from the work in [25, Section 8], the sum over λ ∈ (−2, μ) ∩ D in
(3.5) is the upper bound of the dimension of the space of forms which adds
to the cokernel of (d+ + d∗)λ as the rate λ increases from −2 to μ. Hence,
we can improve the upper bound by considering the forms which add to the
cokernel of (d+ + d∗)λ but not the cokernel of (d + d∗)λ. These cokernels
are isomorphic to the annihilators of the images of (d+ + d∗)λ and (d + d∗)λ

under the dual pairing given in Definition 3.7. Thus, by comparing these
annihilators we may obtain our estimate.

We begin with the following.

Proposition 4.10. Let A+(λ) and A(λ) denote the annihilators of the
images of (3.4) and (4.1) via the dual pairing given in Definition 3.7. For
λ ≤ −1, A+(λ) = A(λ).

Proof. As observed in the proof of [25, Proposition 8.6], if λ /∈ D, there exist
finite-dimensional spaces C+(λ) and C(λ) of smooth compactly supported
3-forms on N̂ such that

Lp
k, λ−1(Λ

3T ∗N̂) = Image(d+ + d∗)λ ⊕ C+(λ) = Image(d + d∗)λ ⊕ C(λ)

and the dual pairings between C+(λ) and A+(λ), and between C(λ) and
A(λ), are non-degenerate. Let C′(λ) be such that C+(λ) = C(λ) ⊕ C′(λ).

Notice by Definition 3.7 that if q > 1 is such that 1
p + 1

q = 1 and l ∈ N

then, for any λ ∈ R,

A+(λ) = {γ ∈ Lq
l+1,−3−λ(Λ3T ∗N̂) : 〈dα + d∗β, γ〉 = 0

for all (α, β) ∈ Lp
k+1, λ(Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂)}
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= {γ ∈ Lq
l+1,−3−λ(Λ3T ∗N̂) : 〈α, d∗γ〉 = 0, 〈β, dγ〉 = 0

for all (α, β) ∈ Lp
k+1, λ(Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂)}
= {γ ∈ Lq

l+1,−3−λ(Λ3T ∗N̂) : dγ = 0, d∗γ ∈ Lq
l,−4−λ(Λ2

−T ∗N̂)},

where the integration by parts is justified by the choice of weight for the
dual weighted Sobolev space. Similarly,

A(λ) = {γ ∈ Lq
l+1,−3−λ(Λ3T ∗N̂) : dγ = d∗γ = 0}.

If λ ≤ −1, then −3−λ ≥ λ− 1 so, by Theorem 3.10, Lq
l+1,−3−λ ↪→Lp

k, λ−1
for sufficiently large l. Since A+(λ) consists of smooth forms, as it is the
kernel of an elliptic operator, we can choose l arbitrarily large and see that
A+(λ) ⊆ Lp

k, λ−1(Λ
3T ∗N̂) and the same is clearly true for A(λ). Moreover, if

additionally λ /∈ D, since A+(λ) and A(λ) are of equal dimension to C+(λ)
and C(λ), and the annihilators are by construction orthogonal to the clo-
sures of the images of (3.4) and (4.1), we deduce that A+(λ) = C+(λ) and
A(λ) = C(λ).

Suppose that γ ∈ C′(λ). Then γ is compactly supported and lies in
A+(λ). Therefore, since d∗γ is anti-self-dual,

‖d∗γ‖2
L2 =

∫

N̂
−d∗γ ∧ d∗γ =

∫

N̂
−d∗γ ∧ d∗γ =

∫

N̂
−d(∗γ ∧ d∗γ) = 0,

where the integration by parts is valid since γ is compactly supported.
Thus, γ ∈ A(λ) = C(λ), so γ = 0. We deduce that C(λ) = C+(λ) = A(λ) =
A+(λ) for λ ≤ −1, λ /∈ D. The annihilators are well-defined for λ ∈ D and
hence, since the dimension of A+(λ) is lower semi-continuous at λ = −1, as
remarked in the proof of [25, Proposition 8.4], we see that A(λ) = A+(λ)
for all λ ≤ −1. �

Proposition 4.11. Recall the notation of Definition 3.12. Let

Ď(λ, i) = {γi ∈ C∞(T ∗Li) : d∗
i γi = 0, diγi = −(λ + 2) ∗iγi}

and let ď(λ) =
∑s

i=1 dim Ď(λ, i). Then

(4.2) dimO(N, μ, C) ≤
∑

λ∈(−1,μ)∩D
ď(λ) −

s∑

i=1

dim Ci.
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Proof. By Proposition 4.10, there are no forms which add to the cokernel
of (3.4) but not the cokernel of (4.1) for λ ≤ −1. Therefore, we can first
improve the estimate (3.5) by restricting to the range of rates (−1, μ) ∩ D.

The map (d + d∗)λ, given in (4.1), is not elliptic, but forms part of the
map

d + d∗ : Lp
k+1, λ(ΛevenT ∗N̂) → Lp

k, λ−1(Λ
oddT ∗N̂),

which is elliptic. Therefore, we can apply the theory of [23] and deduce that
there is a countable discrete set of rates E ⊇ D for which d + d∗ is Fredholm
and, moreover, we can calculate which forms on Li correspond to forms on
N̂ which subtract from the kernel or add to the cokernel as λ increases.

The cokernel of d + d∗ is isomorphic to the annihilator of the image of
d + d∗, using the dual pairing given in Definition 3.7. The work in [23] iden-
tifies the forms which add to this annihilator as the rate crosses elements
λ ∈ E . To calculate the changes in the annihilator, we need to consider homo-
geneous forms on the cone Ci of the following type:

(γ1, γ3) = (r−λ−2α1 + r−λ−3α0 ∧ dr, r−λα3 + r−λ−1α2 ∧ dr),

for (α0, α1, α2, α3) ∈ C∞(⊕3
m=0Λ

mT ∗Li), which satisfy d∗γ1 = dγ1 + d∗γ3 =
dγ3 = 0, where d∗ is calculated using the cone metric. We therefore have the
following conditions which define E and the changes to the kernel or cokernel
of d + d∗ acting on even forms, using the notation of Definition 3.12:

d∗
i α

1 = −λα0, diα
0 + d∗

i α
2 = −(λ + 2)α1,(4.3)

diα
2 = −λα3, diα

1 + d∗
i α

3 = −(λ + 2)α2.(4.4)

Thus, by (4.3) and (4.4), forms (α, β) ∈ D(λ, i) giving rise to cokernel
forms for (d+ + d∗)λ, λ ∈ D, which can lie in O(N, μ, C) must be transverse
to forms (α′, β′) ∈ C∞(Λ2T ∗Li ⊕ Λ3T ∗Li) satisfying:

(4.5) diα
′ = −λβ′, d∗

i β
′ = −(λ + 2)α′, d∗

i α
′ = 0.

For λ �= −2, 0, solutions to (4.5) are equivalent to giving exact forms
β′ ∈ C∞(Λ3T ∗Li) with Δiβ

′ = λ(λ + 2)β′, where Δi is the Laplacian on
Li, and setting α′ = −(λ + 2)−1d∗

i β
′. For λ = 0, β′ is locally constant and

α′ = 0. Since β is also an exact eigenform of Δi with eigenvalue λ(λ + 2)
for λ �= 0 and is constant if λ = 0, we quickly deduce that β = 0. Note
that for the case λ = −2, β must be zero since it is harmonic and exact.
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Observe that α is automatically orthogonal to coexact forms since diα = 0
and −(λ + 2)α = di∗iα. Setting γi = ∗iα, we see that we can replace the
quantities d(λ) by ď(λ) in our estimate (4.2) for the dimension of O(N, μ, C)
as claimed. �

Theorem 3.14 and Proposition 4.11 invite us to define the stability index
of a coassociative cone in a similar manner to [16, Definition 3.6].

Definition 4.12. Let C be a coassociative cone in R
7 with compact link

L ⊆ S6 such that C \ {0} is non-singular. Let C be a smooth, connected
family of coassociative cones in R

7 which contains C and is closed under the
natural action of G2 �R

7. Finally, for λ ∈ R, let

(4.6) Ď(λ) = {γ ∈ C∞(T ∗L) : d∗γ = 0, dγ = −(λ + 2) ∗ γ}.

We define the C-stability index of C by

(4.7) indC(C) =
∑

λ∈(−1,1]

dim Ď(λ) − dim C.

If the family C consists solely of the G2 �R
7 transformations of C, we simply

write indC(C) = ind(C) and call ind(C) the stability index of C.
Note that the sum in (4.7) is well-defined because the set of λ for

which dim Ď(λ) �= 0 is countable and discrete by the observations in Defini-
tion 3.12. Moreover, dim Ď(1) is the dimension of the space of Lagrangian
Jacobi fields on L by Definition 3.18, so the space of all infinitesimal defor-
mations of C as a coassociative cone, and Ď(0) corresponds to the O(1)
closed self-dual 2-forms on C, so dim Ď(0) is at least as large as the space
of translations of C. Thus, indC(C) ≥ 0.

We say that the cone C is C-stable if indC(C) = 0. If ind(C) = 0 we
say that the cone C is stable. We also say that C is rigid if dim Ď(1) =
14 − dim G, where G is the Lie subgroup of G2 preserving C.

Notes.

(a) It is clear that stability of C implies rigidity. It is also clear that if
C is rigid then it is Jacobi integrable, since then every Lagrangian
deformation of L in S6 comes from G2 transformations. However, we
shall see that one may have cones which are Jacobi integrable but
neither stable nor rigid.

(b) By Theorem 3.14 and Proposition 4.11, if all the cones Ci at the sin-
gularities of a CS coassociative 4-fold N are Ci-stable and μ ∈ (1, 2) is
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such that (1, μ] ∩ D = ∅, then the obstruction space O(N, μ, C) = {0}
and so the moduli space of deformations M(N, μ, C) is a smooth man-
ifold near N . Moreover, N is “stable” under deformations of the ambi-
ent closed G2 structure by Theorem 3.17.

We see from (4.6) that to determine the stability index for a coassociative
cone we need to study the equation

∗dγ = −(λ + 2)γ,

for 1-forms γ on a compact Riemannian 3-manifold L for λ ∈ (−1, 1]. The
operator ∗d : C∞(T ∗L) → C∞(T ∗L) is a natural self-adjoint operator on L
which we call the curl operator. Thus, our problem is to calculate the nega-
tive eigenvalues of the curl operator and their multiplicities. For convenience
we make the following definition.

Definition 4.13. Let (L, gL) be a compact Riemannian 3-manifold and let
cL = − ∗ d : C∞(T ∗L) → C∞(T ∗L). Denote by σL(ν) the multiplicity of a
non-zero eigenvalue ν of cL. Note that dim Ď(λ) = σL(λ + 2) for λ �= −2.

Finding the positive spectrum of cL and the multiplicities is an extremely
complicated problem and in general there is no hope to solve it. However,
since we need only consider eigenvalues in (1, 3), the problem is tractable in
special cases. For possible further applications to coassociative geometry it
is of greatest practical use to study eigenvalues in the range (0, 4).

5. Homogeneous cones

In this section, we explicitly determine the stability index for coassociative
cones whose links are orbits of closed 3-dimensional subgroups of G2. We
achieve this by calculating the small eigenvalues of the curl operator on
Berger 3-spheres and their quotients using elementary methods.

5.1. Berger 3-spheres

Definition 5.1. Let H denote the quaternions with standard basis
{1, i, j,k}. Identify S3 ∼= Sp(1) and let x : Sp(1) → H denote the inclusion
map of Sp(1) as unit quaternions. Then dx = xω for a 1-form ω taking val-
ues in the Lie algebra of Sp(1), which here is represented by Im H. Therefore,
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we can write

x = x01 + x1i + x2j + x3k and ω = ω1i + ω2j + ω3k.

Since the Maurer–Cartan form ω satisfies the equations dω + ω ∧ ω = 0 and
dx = xω, we have that

dx0 = −x1ω1 − x2ω2 − x3ω3, dx1 = x0ω1 − x3ω2 + x2ω3,(5.1)
dx2 = x3ω1 + x0ω2 − x1ω3, dx3 = −x2ω1 + x1ω2 + x0ω3(5.2)

and

(5.3) dω1 = −2ω2 ∧ ω3, dω2 = −2ω3 ∧ ω1, dω3 = −2ω1 ∧ ω2.

We define a 1-parameter family of metrics on S3 by gτ2 = τ2ω2
1 + ω2

2 + ω2
3

for τ > 0. The Riemannian manifolds (S3, gτ2) are the Berger 3-spheres.

It is immediately clear that finding the eigenvalues of ∗d on a Berger
3-sphere will involve the Laplacian acting on S3, thus homogeneous harmonic
polynomials on R

4. We are thus lead to make the following definitions.

Definition 5.2. Use the notation of Definition 5.1. For m = 1, 2, 3, we
define operators ∂m on f ∈ C∞(S3) by the expression: df = ∂1fω1 + ∂2fω2

+ ∂3fω3. For a unit imaginary quaternion q = q1i + q2j + q3k we define ∂q =
q1∂1 + q2∂2 + q3∂3. We say that f ∈ C∞(S3) has q-weight w ≥ 0 if ∂2

qf =
−w2f .

Observe that the Laplacian Δτ2 on (S3, gτ2) acting on functions is given
by Δτ2 = − 1

τ2 ∂2
1 − ∂2

2 − ∂2
3 .

Of course, ∂m is just Lie derivative along the vector field dual to ωm.

Definition 5.3. Use the notation of Definition 5.1. For k ∈ N, let Pk be the
space of homogeneous polynomials in x0, x1, x2, x3 of degree k on S3. Let Qk

be the subspace of Pk consisting of polynomials which are eigenfunctions of
the standard Laplacian Δ1; that is, restrictions of homogeneous harmonic
polynomials in 4 real variables to S3. We let Ak = {p1ω1 + p2ω2 + p3ω3 :
p1, p2, p3 ∈ Pk} and Bk = {p1ω1 + p2ω2 + p3ω3 : p1, p2, p3 ∈ Qk}.

It is often clearer to work with the representation of Sp(1) = SU(2) on
C

2 rather than H, so we make the following useful definition.
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Definition 5.4. Recall the notation of Definition 5.1. We define complex
coordinates on H ∼= C

2 by z1 = x0 + ix1 and z2 = x2 + ix3. For q = q01 +
q1i + q2j + q3k ∈ Sp(1), its action on C

2 is given by

q :
(

z1

z2

)

�→
(

q0 + iq1 q2 + iq3

−q2 + iq3 q0 − iq1

) (
z1

z2

)

.

For k ∈ N, let PC

k denote the space of homogeneous polynomials in z1, z2, z̄1,
z̄2 of degree k restricted to S3 and let QC

k be the subspace of PC

k consisting
of polynomials which are harmonic on C

2. We also let RC
m, for m ∈ Z, be the

space of homogeneous polynomials p in z1, z2, z̄1, z̄2, restricted to S3, such
that under the action of cos θ1 + sin θi, p maps to eimθp. Note that p ∈ RC

m

if and only if p̄ ∈ RC−m.

We now recall the following well-known facts concerning eigenfunctions
of the Laplacian on S3.

Theorem 5.5. Use the notation of Definitions 5.1–5.3.

(a) For each k ∈ N, there is a direct sum decomposition Qk = ⊕[k/2]
l=0 Qk,k−2l

such that the elements of Qk,k−2l have i-weight k − 2l. Moreover,

dimQk,k−2l = 2k + 2 if l <

[
k

2

]

, dimQ2l,0 = 2l + 1

and dimQk = (k + 1)2.

(b) The eigenvalues of Δτ2 are of the form k(k + 2) + (k−2l
τ )2(1 − τ2) for

k ∈ N and l ≤ [k
2 ], and the corresponding eigenspace is Qk,k−2l.

Proof. The results of [39, Lemmas 3.1 and 4.1] give the decomposition in (a)
and all of (b). We can determine the dimensions of the Qk,k−2l by explicitly
identifying the functions as the real and imaginary parts of elements in
QC

k ∩RC

k−2l, in the notation of Definition 5.4. Clearly Q2l,0 is the space
of lifts of eigenfunctions of the Laplacian on CP

1 with eigenvalue 4l(l + 1),
which has dimension 2l + 1. For the remaining spaces, it is straightforward to
see that each Qk,k−2l has the same dimension for fixed k, and since dimQk =
(k + 1)2, as it is the multiplicity of the eigenvalue k(k + 2) for Δ1 on S3, it
is an elementary calculation to find that dimQk,k−2l = 2k + 2 if l �= [k

2 ]. �

The proofs of the quoted results from [39] rest on the fact that ∂1 commutes
with Δτ2 for any τ > 0. This is certainly not true of ∂2 and ∂3 if τ �= 1.
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Proposition 5.6. Use the notation of Definitions 4.13 and 5.1 and
Theorem 5.5. The positive eigenvalues of cL on (L, gL) = (S3, gτ2) are

νk,k−2l = τ +

√

τ2 + k(k + 2) +
(

k − 2l

τ

)2

(1 − τ2) and νk =
k + 2

τ

for k, l ∈ N with l ≤ [k
2 ]. Moreover,

σL(νk,k−2l) = dimQk,k−2l and σL(νk) = 2k + 2.

Note. For the multiplicity count here we regard the νk,k−2l and νk as dis-
tinct. If they agree then we add the multiplicities.

Proof. From (5.1)–(5.3) we see that cL = −∗ d sends Ak, given in Defini-
tion 5.3, to itself. Since ∪k∈NAk is dense in C∞(T ∗L) we need only consider
cLα = να for α ∈ Ak to determine the eigenvalues ν of cL.

The equation cLα = να for α = p1ω1 + p2ω2 + p3ω3 and ν > 0 is equiv-
alent to the following system, using the notation of Definition 5.2:

(
2 − ν

τ

)
p1 = ∂2p3 − ∂3p2,(5.4)

(2 − ντ)p2 = ∂3p1 − ∂1p3,(5.5)
(2 − ντ)p3 = ∂1p2 − ∂2p1.(5.6)

Moreover, since ∗dα = −να for ν �= 0, we have that d∗α = 0, which is equiv-
alent to the condition:

(5.7)
1
τ
∂1p1 + τ∂2p2 + τ∂3p3 = 0.

From (5.1)–(5.2) we see that, if εabc is the standard permutation symbol,

(5.8) [∂a, ∂b] = 2εabc∂c.

Using (5.4)–(5.8) we calculate:

Δτ2p1 = −
(

1
τ2

∂2
1 + ∂2

2 + ∂2
3

)

p1(5.9)

= ([∂1, ∂2] − (2 − ντ)∂3)p2 + ([∂1, ∂3] + (2 − ντ)∂2)p3

= −ντ(∂2p3 − ∂3p2)
= ν(ν − 2τ)p1.
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Thus p1 is a ν(ν − 2τ)-eigenfunction of Δτ2 if p1 �= 0 and hence

(5.10) ν(ν − 2τ) = k(k + 2) +
(

k − 2l

τ

)2

(1 − τ2),

from which the formula for νk,k−2l follows.
If p1 = 0 then (5.4)–(5.8) imply that

(5.11) −∂2
1pj = (ντ − 2)2pj and −(∂2

2 + ∂2
3)pj = 2(ντ − 2)pj ,

for j = 2, 3. Thus, Δ1pj = ντ(ντ − 2)pj , so ντ(ντ − 2) = k(k + 2) from
which the formula for νk follows.

To determine the multiplicity of νk,k−2l we make the following observa-
tions. First, using (5.5)–(5.6) we see that

(∂2
1 + (ντ − 2)2)p2 = (∂1∂2 − (ντ − 2)∂3)p1,(5.12)

(∂2
1 + (ντ − 2)2)p3 = (∂1∂3 + (ντ − 2)∂2)p1.(5.13)

Second, from (5.4)–(5.7), we calculate

(∂2
2 + ∂2

3 + 2(ντ − 2))p2 = −
(

1
τ2

∂2∂1 +
(
4 − ν

τ

)
∂3

)

p1,(5.14)

(∂2
2 + ∂2

3 + 2(ντ − 2))p3 = −
(

1
τ2

∂3∂1 −
(
4 − ν

τ

)
∂2

)

p1.(5.15)

Combining (5.12)–(5.15) we see that p1 determines p2 and p3 unless they
satisfy (5.11), which happens if and only if νk,k−2l = νk. Thus, the mul-
tiplicity of σL(νk,k−2l) is determined by the number of choices for p1, so
σL(νk,k−2l) = dimQk,k−2l.

For the multiplicity of νk, we may take p1 = 0 and see that (5.6) deter-
mines p3 given p2 unless k = 0. If k �= 0, σL(νk) is the number of choices
for p2. By (5.11), we see that p2 ∈ Qk,k, so σL(νk) = dimQk,k = 2k + 2 by
Theorem 5.5. For k = 0, p2 and p3 are arbitrary constants so σL(ν0) = 2. �

Notes. We have some important elementary observations from the proof
of Proposition 5.6, which will be important later.

(a) There is a basis for the νk,k−2l-eigenforms on (S3, gτ2) consisting of
forms p1ω1 + p2ω2 + p3ω3 with p1 ∈ Qk,k−2l and p2, p3 ∈ Qk deter-
mined by p1.

(b) There is a basis for the νk-eigenforms on (S3, gτ2) consisting of forms
p2ω2 + p3ω3 such that p2, p3 ∈ Qk,k and p3 is determined by p2 if k > 0.
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We have an immediate corollary to Proposition 5.6 which builds on an
already well-known result.

Corollary 5.7. Use the notation of Definitions 4.13 and 5.1. The positive
eigenvalues of cL0 on (L0, gL0) = (S3, g1) are k + 2 for k ∈ N and we have
σL0(k + 2) = (k + 2)2 − 1. Hence, a coassociative 4-plane in R

7 is stable.

Proof. Clearly if τ = 1 then νk,k−2l = 1 +
√

(k + 1)2 = k + 2 = νk. If k =
2n, then the multiplicity of the eigenvalue 2n + 2 is

n−1∑

l=0

σL0(ν2n,l) + σL0(ν2n,n) + σL0(ν2n)

= n(4n + 2) + 2n + 1 + 4n + 2 = (2n + 2)2 − 1.

Similarly, if k = 2n + 1 the multiplicity of the eigenvalue 2n + 3 is

n∑

l=0

σL0(ν2n+1,l) + σL0(ν2n+1) = (n + 1)(4n + 4) + 4n + 4 = (2n + 3)2 − 1.

The multiplicities follow.
For a coassociative 4-plane C0,

∑

λ∈(−1,1]

dim Ď(λ) = dim Ď(0) + dim Ď(1) = σL0(2) + σL0(3) = 3 + 8 = 11.

The number of non-trivial translations of C0 is 3, and the stabilizer of C0 in
G2 is isomorphic to SO(4) as observed in Example 4.1. Thus, the dimension
of the space of G2 �R

7 transformations of C0 is 3 + 14 − 6 = 11. Therefore
ind(C0) = 0. �

By [7, Example 5.1 and Theorem 5.1], the Lagrangian L1 given in Exam-
ple 4.2 is isometric to S3 with the metric 8

3g 1
6
. We may thus calculate the

stability index of C1 as follows.

Corollary 5.8. Use the notation of Definitions 4.13 and 5.1 and Example
4.2. The eigenvalues of cL1 on (L1, gL1) = (S3, 8

3g 1
6
) which lie in (0, 4) are
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given by {1
2 , 2, 3, 1+

√
145

4 , 7
2}. Moreover,

σL1

(
1
2

)

= 1, σL1(2) = 7, σL1(3) = 10,

σL1

(
1 +

√
145

4

)

= 5, σL1

(
7
2

)

= 6.

Hence, the coassociative cone C1 is stable.

Proof. Let λk,k−2l =
√

3
8νk,k−2l and let λk =

√
3
8νk, using Proposition 5.6

with τ = 1√
6
. Then λk,k−2l and λk are the eigenvalues of cL1 .

We notice that λ5,1 = 1
4(1 +

√
241) > 4, so we need only consider λk,k−2l

for k ≤ 4 for eigenvalues in (0, 4). We may calculate:

λ0,0 =
1
2
, λ1,1 = 2, λ2,2 =

7
2
, λ2,0 = 2, λ3,3 = 5, λ3,1 = 3,

λ4,4 =
13
2

, λ4,2 =
1
4
(1 +

√
265) > 4, λ4,0 =

1
4
(1 +

√
145) < 4.

Since λk = 3k
2 + 3, only λ0 = 3 is relevant here. By Proposition 5.6,

σL1

(
1
2

)

= dimQ0,0,

σL1(2) = dimQ1,1 + dimQ2,0, σL1(3) = dimQ3,1 + 2,

σL1

(
1 +

√
145

4

)

= dimQ4,0, σL1

(
7
2

)

= dimQ2,2.

The multiplicities now follow from Theorem 5.5.
Since C1 is non-planar and the stabilizer of C1 under G2 transformations

is U(2), the dimension of the family of G2 �R
7 transformations of C1 is

7 + 14 − 4 = 17. Further,
∑

λ∈(−1,1]

dim Ď(λ) = dim Ď(0) + dim Ď(1) = σL1(2) + σL1(3) = 7 + 10 = 17,

so ind(C1) = 0. �

Remark. We may observe, as in [40, Theorem 5], that τ2 = 1
6 is the critical

value at which the multiplicity of the first eigenvalue of Δτ2 on S3 “jumps”.
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5.2. Quotients of the 3-sphere

We now wish to consider quotients of S3 by finite groups. The possible
finite groups are the cyclic groups Zn, the binary dihedral groups D∗

n, the
binary tetrahedral group A∗

4, the binary octahedral group S∗
4 and the binary

icosahedral group A∗
5. We know, from Section 4.1, that the only groups

we must consider are Z2, D∗
3 and A∗

4. We describe the actions of the finite
subgroups we need explicitly.

Definition 5.9. Let unit quaternions act on H by left-multiplication.

(a) The cyclic group of order n ≥ 2 acts as Zn = {cos(2kπ
n )1 + sin(2kπ

n )i :
k = 0, 1, . . . , n − 1}.

(b) The binary dihedral group of order 4n, for n ≥ 1, acts as D∗
n = Z2n ∪

jZ2n.

(c) The binary tetrahedral group acts as A∗
4 = D∗

2 ∪{1
2(±1 ± i ± j ± k)},

where any combination of signs is permissible.

To understand the spectrum of cL on quotients of S3 we need the fol-
lowing.

Proposition 5.10. Use the notation of Definitions 4.13 and 5.1. Let ξm

be the vector field on (L, gL) = (S3, gτ2) dual to ωm. Then cL and the Lie
derivative Lξ1 commute for all τ > 0, and cL commutes with Lξm

for all m
if τ = 1.

Proof. Using Cartan’s formula, we see that

[cL,Lξ1 ]α = ξ1� d∗dα + d(ξ1�∗dα) − ∗d(ξ1�dα)

for 1-forms α. Let α = p1ω1 + p2ω2 + p3ω3 and let ∂j be the operator given
in Definition 5.2 for j = 1, 2, 3. We calculate:

∗dα = τ(∂2p3 − ∂3p2 − 2p1)ω1

+
1
τ
(∂3p1 − ∂1p3 − 2p2)ω2 +

1
τ
(∂1p2 − ∂2p1 − 2p3)ω3,
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hence

ξ1�d∗dα =
((

1
τ
∂1∂3 + 2

(

τ +
1
τ

)

∂2

)

p1 +
(

τ∂2∂3 −
4
τ
∂1

)

p2

+
(

4
τ
− 1

τ
∂2

1 − τ∂2
2

)

p3

)

ω2

+
((

−1
τ
∂1∂2 + 2

(

τ +
1
τ

)

∂3

)

p1 +
(

−4
τ

+
1
τ
∂2

1 + τ∂2
3

)

p2

+
(

−τ∂3∂2 −
4
τ
∂1

)

p3

)

ω3

and

d(ξ1�∗dα) = τ(−2∂1p1 − ∂1∂3p2 + ∂1∂2p3)ω1

+ τ(−2∂2p1 − ∂2∂3p2 + ∂2
2p3)ω2

+ τ(−2∂3p1 − ∂2
3p2 + ∂3∂2p3)ω3.

Since

ξ1�dα = (∂1p2 − ∂2p1 − 2p3)ω2 − (∂3p1 − ∂1p3 − 2p2)ω3,

we have that:

∗d(ξ1�dα) = τ([∂3, ∂2]p1 + (−∂3∂1 + 2∂2)p2 + (∂2∂1 + 2∂3)p3)ω1

+
1
τ
((∂1∂3 + 2∂2)p1 − 4∂1p2 + (4 − ∂2

1)p3)ω2

+
1
τ
((−∂1∂2 + 2∂3)p1 − (4 − ∂2

1)p2 − 4∂1p3)ω3.

Combining these formulae and using (5.8) shows that [cL,Lξ1 ]α = 0. Clearly
this argument will extend to Lξ2 and Lξ3 in the case τ = 1. �

Proposition 5.11. Use the notation of Definitions 4.13 and 5.9 and Propo-
sition 5.6. Let n ∈ Z

+ \ {1}. The positive eigenvalues of cL on (L, gL) =
(S3/Zn, gτ2) are

νrn+2l,rn = τ +

√

τ2 + (rn + 2l)(rn + 2l + 2) +
(rn

τ

)2
(1 − τ2) and

νsn+n−2 =
(s + 1)n

τ
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for l, r, s ∈ N. Moreover,

σL(νrn+2l,rn) = 2rn + 4l + 2 (r > 0), σL(ν2l,0) = 2l + 1,

σL(νsn+n−2) = 2sn + 2n − 2.

Proof. Let ξ1 be the vector field dual to ω1. By Proposition 5.10, cL and
Lξ1 commute. Thus, using the notation of Definition 5.3, we may restrict
attention to α ∈ Bk ⊗ C such that

∗dα = −να and Lξ1α = imα

for ν > 0 and m ∈ Z. For α to descend to the quotient S3/Zn, we must
have that m ≡ 0 (mod n). If we write α = p1ω1 + p2ω2 + p3ω3 then using
Cartan’s formula and the notation of Definition 5.2 we find that

imα = ξ1�dα + d(ξ1�α)
= −νξ1� ∗ α + d(ξ1�(p1ω1 + p2ω2 + p3ω3))

= −νξ1�
(

1
τ
p1ω2 ∧ ω3 + τp2ω3 ∧ ω1 + τp3ω1 ∧ ω2

)

+ dp1

= ∂1p1ω1 + (∂2p1 − ντp3)ω2 + (∂3p1 + ντp2)ω3.

For p1 �= 0 we see that −∂2
1p1 = m2p1, so α is a νk,k−2l-eigenform for cL by

Proposition 5.6, where k − 2l = rn for some r ∈ N. For p1 = 0, we observe
that

−m2p2 = im(imp2) = im(−ντp3) = −ν2τ2p2.

Since ντ = k + 2 by Proposition 5.6, we have that k = (s + 1)n − 2 for some
s ∈ N, since k ≥ 0. Thus α has eigenvalue νsn+n−2 in these cases. The eigen-
values and multiplicities now follow from Theorem 5.5 and Proposition 5.6.

�

From the observations in [28, Example 6.14] we see that L2 given in
Example 4.3 is isometric to S3/Z2

∼= SO(3) with metric 2g2. We therefore
calculate the spectrum of cL2 in (0, 4) using Proposition 5.11 as follows.

Corollary 5.12. Use the notation of Definitions 4.13, 5.1 and 5.9 and
Example 4.3. The eigenvalues of cL2 on (L2, gL2) = (S3/Z2, 2g2) in (0, 4)
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are: {1, 2, 3, 1 +
√

5}. Moreover,

σL2(1) = 2, σL2(2) = 7, σL2(3) = 16, σL2(1 +
√

5) = 3.

Let C◦ be the family of cones generated by G2 �R
7 transformations of

cones

Ca = {(0, z1, z2, z3) ∈ R ⊕ C
3 ∼= R

7 : a1z
2
1 + a2z

2
2 + a3z

2
3 = 0},

where a ∈ T = {(a1, a2, a3) ∈ R
3 : ai > 0 for all i and a1 + a2 + a3 = 1}.

Then C2 = C( 1
3
, 1
3
, 1
3
), ind(C2) = 5 and indC◦(C2) = 0, so C2 is C◦-stable and

Jacobi integrable but not stable or rigid.

Proof. Using the notation of Proposition 5.6, let λ2r+2l,2r = 1√
2
ν2r+2l,2r and

λ2s = 1√
2
ν2s, calculated using τ =

√
2. Then λ2r+2l,2r and λ2s are the eigen-

values of cL2 by Proposition 5.11.
Since λ4,4 = 4, we need only consider λ2r+2l,2r for r, l ≤ 1. We also see

that λ2s = s + 1. We therefore calculate

λ0,0 = 2, λ2,2 = 3, λ2,0 = 1 +
√

5,

λ0 = 1, λ2 = 2, λ4 = 3.

The eigenvalues and multiplicities follow from Proposition 5.11.
Since C2 is non-planar and the stabilizer of C2 under G2 transformations

is SO(3), the dimension of the family of G2 �R
7 transformations of C2 is

7 + 14 − 3 = 18. Further,

∑

λ∈(−1,1]

dim Ď(λ) = dim Ď(0) + dim Ď(1) = σL2(2) + σL2(3) = 7 + 16 = 23,

so ind(C2) = 5. Now, C2 = C( 1
3
, 1
3
, 1
3
) ∈ C◦. Moreover, if a �= (1

3 , 1
3 , 1

3), Ca has
trivial stabilizer in G2 �R

7 and has a two-parameter family of deformations
up to rigid motion given by varying a. Therefore, dim C◦ = 7 + 14 + 2 =
23 and C2 is C◦-stable. Finally note that dim Ď(1) = 16, so the space of
Lagrangian Jacobi fields on L2 is equal to the space of genuine deformations
of L2 in the family of links of cones in C◦, which also shows that C◦ is a
maximal deformation family for C2. �
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We now consider the binary dihedral group.

Proposition 5.13. Use the notation of Definitions 4.13, 5.1 and 5.9 and
Proposition 5.6. For n ∈ Z

+, the positive eigenvalues of cL on (L, gL) =
(S3/ D∗

n, gτ2) are:

ν2rn+2n+2l,2rn+2n

= τ +

√

τ2 + 4(rn + n + l)(rn + n + l + 1) + 4
(

rn + n

τ

)2

(1 − τ2);

ν4l,0 = τ +
√

τ2 + 8l(2l + 1); and ν2sn+2n−2 =
2(s + 1)n

τ

for l, r, s ∈ N. Moreover,

σL(ν2rn+2n+2l,2rn+2n) = 2rn + 2n + 2l + 1, σL(ν4l,0) = 4l + 1,

σL(ν2sn+2n−2) = 4sn + 4n − 2.

Proof. Let α = p1ω1 + p2ω2 + p3ω3 be an eigenform of cL of positive eigen-
value ν. From Definition 5.9(b), Z2n ⊆ D∗

n. Hence, by Proposition 5.11, the
possible ν are of the form νk,k−2l where k − 2l ≡ 0 (mod 2n) or ν2sn+2n−2,
using the notation of Proposition 5.6.

Recalling Definition 5.4, we see that j sends (z1, z2) ∈ C
2 to (z2,−z1)

and hence j maps RC
m to RC−m for each m ∈ Z. By note (a) after Proposi-

tion 5.6 and Definition 5.9(b), the multiplicity of ν2rn+2l,2rn is the number
of choices of p1 ∈ Q2rn+2l,2rn which are j-invariant. By Theorem 5.5, p1 is
the sum of real and imaginary parts of polynomials in QC

2rn+2l ∩RC

2rn. Since
j2 clearly acts as the identity on QC

2rn+2l, we can decompose Q2rn+2l,2rn into
±1-eigenspaces for j. Thus, for r > 0, the subspace of Q2rn+2l,2rn which is
j-invariant is half the total dimension. For r = 0, it is straightforward to see
that j acts as (−1)l on QC

2l ∩RC

0 , so p1 ∈ Q2l,0 is j-invariant if and only if l
is even.

By note (b) after Proposition 5.6, the multiplicity of νk, if k �= 0, is
determined by the number of choices for p2. Now, since p2 is only well-
defined up to sign on the quotient of S3 by D∗

n, we need to calculate the
number of polynomials in Qk,k on which j acts as ±1. However, since k =
2sn + 2n − 2 > 0 is even, we can find a basis for Qk,k consisting of ±1-
eigenfunctions for j by the previous paragraph. For ν0 the multiplicity is 2
because p2 and p3 are constant.

The result follows from Theorem 5.5 and Proposition 5.6. �
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By [28, Example 6.15], L3 given in Example 4.4 is isometric to SO(3)/
S3

∼= S3/ D∗
3 with metric 6g6. We may thus apply Proposition 5.13 as follows.

Corollary 5.14. Use the notation of Definitions 4.13, 5.1 and 5.9 and
Example 4.4. The eigenvalues of cL3 on (L3, gL3) = (S3/ D∗

3, 6g6) in (0, 4)
are: {1, 2, 3, 1 +

√
5}. Moreover,

σL3(1) = 10, σL3(2) = 23, σL3(3) = 41, σL3(1 +
√

5) = 5.

Hence, the cone C3 is not stable and ind(C3) = 46. Moreover, C3 is not
rigid.

Proof. By Proposition 5.13 applied with τ =
√

6, the eigenvalues of cL3 are
λ6r+6+2l,6r+6 = 1√

6
ν6r+6+2l,6r+6, λ4l,0 = 1√

6
ν4l,0 and λ6s+4 = 1√

6
ν6s+4, for

l, r, s ∈ N. Since λ8,0 = 1 + 1
3

√
129 > 4, λ8,6 = 1 + 1

3

√
84 > 4 and λ12,12 = 4,

we need only calculate:

λ0,0 = 2, λ4,0 = 1 +
√

5, λ6,6 = 3, λ6s+4 = s + 1.

The multiplicities now follow from Proposition 5.13.
Since C3 is non-planar and has SO(3) stabilizer in G2,

ind(C3) =
∑

λ∈(−1,1]

dim Ď(λ) − 7 − (14 − 3) = dim Ď(0) + dim Ď(1) − 18

= σL3(2) + σL3(3) − 18 = 23 + 41 − 18 = 46

as claimed. We also see that dim Ď(1) = 41 > 11 = dim G2 −dim SO(3), so
C3 is not rigid. �

Lastly, we study the constant curvature 1 metric on S3/ A∗
4.

Proposition 5.15. Use the notation of Definitions 4.13 and 5.9. Let
(L, gL) = (S3/ A∗

4, g1). The positive eigenvalues of cL are

ν2r = 2r + 2 and ν6s+4,6s+4 = 6s + 6

for r, s ∈ N. Moreover,

σL(ν2r) = (2r + 1)
(
1 + 2

[r

3

]
+

[r

2

]
− r

)
and σL(ν6s+4,6s+4) = 12s + 10,

where [q] denotes the integer part of a non-negative rational number q.
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Proof. From Definition 5.9(c), we observe that A∗
4 is generated by i and j,

which are elements of order 4, and

1
2
(1 + i + j + k) =

1
2
1 +

√
3

2

(
i + j + k√

3

)

,

which has order 6. By Proposition 5.6 and Corollary 5.7, we know that the
possible positive eigenvalues of cL are k + 2 for k ∈ N with corresponding
eigenforms α ∈ Bk, in the notation of Definition 5.3.

Suppose α = p1ω1 + p2ω2 + p3ω3 ∈ Bk ⊗ C is an eigenform of cL. We
may write α = P1Ω1 + P2Ω2 + P3Ω3 where

Ω1 =
ω1 + ω2 + ω3√

3
, Ω2 =

ω1 − ω3√
2

, Ω3 =
−ω1 + 2ω2 − ω3√

6
,

P1 =
p1 + p2 + p3√

3
, P2 =

p1 − p3√
2

, P3 =
−p1 + 2p2 − p3√

6
.

Let ξm be the vector field dual to ωm and set ξ = (ξ1 + ξ2 + ξ3)/
√

3.
Since ξ commutes with cL by Proposition 5.10, we may look for α satisfying

cLα = (k + 2)α and Lξα = imα

for m ∈ Z. For α to be well-defined on L we must have that m ≡ 0 (mod 6).
Using (5.3) we calculate:

LξΩ1 =
1
3
(Lξ2+ξ3ω1 + Lξ3+ξ1ω2 + Lξ1+ξ2ω3)

=
1
3
(−2ω3 + 2ω2 − 2ω1 + 2ω3 − 2ω2 + 2ω1) = 0;

LξΩ2 = 2Ω3;
LξΩ3 = −2Ω2.

Recall the notation of Definitions 5.2 and 5.4. By similar methods to
the proof of Proposition 5.11, P1 has q-weight 6l for some l ∈ N, where
q = i+j+k√

3
. Moreover, P1 must be invariant under i and j, so P1 is A∗

4-
invariant. The A∗

4-invariant eigenfunctions of the Laplacian on S3 are effec-
tively determined in [12, Theorem 4.4], so we deduce that k = 2r and P1 lies
in a subspace of QC

2r of dimension (2r + 1)(1 + 2[ r
3 ] + [ r

2 ] − r). The formulae
for ν2r and σL(ν2r) follow.

Again following the proof of Proposition 5.11, we observe that P1 deter-
mines P2 and P3 unless P2, P3 ∈ QC

6s+4 have q-weight 6s + 4 for some s ∈ N.
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Thus, we also have eigenvalues of the form 6s + 6 with multiplicity equal
to the number of choices for P2. As in the proof of Proposition 5.13, P2 is
only well-defined up to sign on the quotient of S3. Since P2 is a polynomial
of even degree it has even i-weight and j-weight, so P2 maps to ±P2 under
the action of i and j. Since we may decompose the harmonic polynomials
on S3 by q-weight rather than i-weight as in Theorem 5.5, and the metric
on L has constant curvature, we deduce that σL(6s + 6) = dimQ6s+4,6s+4 =
12s + 10. �

As observed in [28, Example 6.6], the link L4 of C4, given in Example 4.4,
is isometric to SO(3)/ A4

∼= S3/ A∗
4 with constant curvature 1

16 . We may
therefore deduce the following.

Proposition 5.16. Use the notation of Definitions 4.13, 5.1 and 5.9 and
Example 4.4. The eigenvalues of cL4 on (L4, gL4) = (S3/ A∗

4, 16g1) in (0, 4)
are: {1

2 , 3
2 , 2, 5

2 , 3, 7
2}. Moreover,

σL4

(
1
2

)

= 1, σL4

(
3
2

)

= 10, σL4(2) = 7,

σL4

(
5
2

)

= 9, σL4(3) = 22, σL4

(
7
2

)

= 26.

Hence, the cone C4 is not stable and ind(C4) = 30. Moreover, C4 is not
rigid.

Proof. By Proposition 5.15, the positive eigenvalues of cL4 are λ2r = 1
2(r + 1)

and λ6s+4,6s+4 = 3
2(s + 1). We are restricted to r = 0, 3, 4, 6 and s = 0, 1 for

eigenvalues in (0, 4) since the multiplicity of λ2r for r = 1, 2, 5 is zero.
Hence, on C4,

∑

λ∈(−1,1]

dim Ď(λ) = dim Ď

(

−1
2

)

+ dim Ď(0) + dim Ď

(
1
2

)

+ dim Ď(1)

= σL4

(
3
2

)

+ σL4(2) + σL4

(
5
2

)

+ σL4(3)

= 10 + 7 + 9 + 22 = 48.

Since C4 is non-planar and SO(3)-invariant, the dimension of the fam-
ily of G2 �R

7 transformations of C4 has dimension 7 + 14 − 3 = 18. Thus
ind(C4) = 30. Observe that dim Ď(1) = 22 > 11 = dim G2 −dim SO(3), so
C4 is not rigid. �
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The stability index is a measure of the geometry complexity of the coas-
sociative cone. We might therefore expect homogeneous cones to have the
greatest chance of being stable. Since we find that the only stable homo-
geneous coassociative cones are 4-planes and the cone in Example 4.2, we
might naively expect that these are the only stable coassociative cones.

In Geometric Measure Theory one defines the m-dimensional density of
a set S ⊆ R

n at a point p by

Θ(S, p) = lim
r→0

Hm(S ∩ Bn(p; r))
vol(Bm(0; r))

,

where Hm is m-dimensional Hausdorff measure and Bn(p; r) is the ball in R
n

of radius r about p. If S is an m-dimensional submanifold then Θ(S, p) = 1
for all p ∈ S. For coassociative cones C in R

7 with isolated singularities
at the origin and compact links L it is straightforward to calculate the
4-dimensional density as Θ(C, 0) = vol(L)/ vol(S3). We may therefore eas-
ily calculate the density for the homogeneous coassociative cones given in
Examples 4.1–4.4 as follows:

Θ(C0, 0) = 1, Θ(C1, 0) =
16
9

, Θ(C2, 0) = 4, Θ(C3, 0) = 36, Θ(C4, 0) = 64.

The fact that C0 and C1 are the homogeneous cones with the lowest density
and are also the only stable ones is suggestive.

6. Algebraic curves and 2-ruled cones

Since Example 4.8 gives the largest known family of coassociative cones, we
are motivated to analyse the stability index for 2-ruled cones. We there-
fore need to understand the curl operator on geodesic S1-bundles over sur-
faces. We are particularly interested in the case where the surface is an
algebraic curve.

We start with some definitions from the theory of Riemannian
submersions.

Definition 6.1. Let (L, gL) be a compact Riemannian 3-manifold which is
an S1-bundle π : L → Σ over a compact Riemannian surface (Σ, gΣ). Sup-
pose further that π is a Riemannian submersion. Let ξ be a unit vector field
spanning the vertical distribution of π and let θ be the 1-form dual to ξ.

We define a form α on L to be horizontal if ξ�α = 0 and we denote
the bundle of horizontal m-forms by Λm

h T ∗L. Trivially all functions are hor-
izontal. We can identify the horizontal m-forms with m-forms on Σ. We
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define the horizontal Hodge star ∗h on horizontal forms α via the equation:
∗α = ∗hα ∧ θ.

By [33, Equation (2.1.2)],

Λm+1T ∗L = Λm+1
h T ∗L ⊕ (Λm

h T ∗L ∧ θ),

so we can define a horizontal derivative dh : C∞(ΛmT ∗L) → C∞(Λm+1
h T ∗L)

by sending α to the horizontal part of dα. Since dh sends any section of
Λm

h T ∗L ∧ θ to zero, dh : C∞(Λm
h T ∗L) → C∞(Λm+1

h T ∗L) is an antideriva-
tion. We can therefore define the formal adjoint d∗

h of dh and the horizontal
Laplacian Δh = dhd∗

h + d∗
hdh. The horizontal Laplacian is not necessarily

elliptic.
If ΔL is the ordinary Laplacian on L, we call Δv = ΔL − Δh the vertical

Laplacian. Note in the case of functions that Δv = −L2
ξ .

The situation above includes the Berger 3-spheres, tubes over pseudoholo-
morphic curves in S6 and real links of complex 2-dimensional cones.

The key result for understanding the Laplacian on functions in the sit-
uation of Definition 6.1 is the following [3, Theorem 1.5].

Proposition 6.2. Use the notation of Definition 6.1. If π : L → Σ has
totally geodesic fibres then, on functions, ΔL, Δh and Δv commute.

For convenience we make the following definition.

Definition 6.3. Let L be a compact Riemannian 3-manifold. Let mL(ν)
denote the multiplicity of the eigenvalue ν of the Laplacian ΔL on functions.
Let EL = {ν ∈ R : mL(ν) �= 0}, which is a countable discrete set.

Remarks. Use the notation of Definition 6.1 and suppose that π : L →
Σ has totally geodesic fibres. Let mL(νh, νv) denote the dimension of the
space of functions f such that Δhf = νhf and Δvf = νvf . Note that, since
Δh and Δv are non-negative operators, we must have νh ≥ 0 and νv ≥ 0.
Moreover, by one of the main results in [42], mL(νh, 0) is the multiplicity of
the eigenvalue νh of the Laplacian ΔΣ acting on functions on Σ. Finally, by
Proposition 6.2, every eigenvalue of ΔL is of the form νh + νv, so mL(ν) ≤∑

νh+νv=ν mL(νh, νv).

We now have the following result that is similar to Proposition 5.10.
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Proposition 6.4. Use the notation of Definitions 4.13 and 6.1. If the fibres
of π : L → Σ are totally geodesic and ξ is a Killing vector field for gL, then
cL and the Lie derivative Lξ commute.

Proof. Recall Definition 6.1. By the work in [33, Section 2.1], since ∇ξξ = 0,
dθ is horizontal. Moreover, if we write a 1-form γ on L as γ = α + fθ with
α horizontal and f a function, then

∗dγ = ∗h(Lξα − dhf) + (∗hdhα + f ∗hdθ)θ and Lξγ = Lξα + (Lξf)θ.

Thus, since ξ is Killing and dθ is horizontal, it is straightforward to compute:

∗d(Lξγ) = (∗hL2
ξα − ∗hdh(Lξf)) + (∗hdh(Lξα) + (Lξf)∗hdθ)θ

and

Lξ(∗dγ) = (∗hL2
ξα − ∗hLξ(dhf)) + (∗hLξ(dhα) + (Lξf)∗hdθ)θ.

Note that, since the fibres of π are totally geodesic, [dh,Lξ] = 0 on horizontal
forms by [33, Equation (2.1.6)]. We conclude that [cL,Lξ] = 0 as claimed. �

Observe that, by Example 4.9, we have two types of links of coassociative
cones where Definition 6.1 and Propositions 6.2 and 6.4 apply: namely, Hopf
lifts of holomorphic curves in CP

2 and tubes of radius π
2 in the first or second

normal bundle about a null-torsion pseudoholomorphic curve in S6. We may
therefore try to describe the spectrum of the curl operator in these cases.

We begin with the links of complex 2-dimensional cones.

Theorem 6.5. Let Σ be a compact, connected, holomorphic curve in CP
2

with degree dΣ. Let L be the Hopf lift of Σ in S5. Use the notation of
Definitions 4.13 and 6.3. The eigenvalues of cL in (0, 4) are 1, 2, 3 and
λ + 2 ∈ (2, 4) \ {3} such that λ(λ + 2) ∈ EL. Moreover,

σL(1) = d2
Σ − dΣ, σL(2) = d2

Σ + dΣ + 1,

σL(3) = mL(3) + d2
Σ + 3dΣ, σL(λ + 2) = mL(λ(λ + 2)).

Furthermore, mL(3) ≥ 6 if dΣ ≥ 2.

Proof. Notice that L is a U(1)-bundle over Σ, and that the projection π :
L → Σ is a Riemannian submersion with totally geodesic fibres when L and
Σ are given the induced metrics from the standard metrics on S5 and CP

2.
Therefore, Definition 6.1 and Proposition 6.2 apply. If we let ξ be the vector
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field given by the U(1) action then, as observed in Example 4.9, ξ is a
Killing vector field for the metric on L, so Proposition 6.4 applies. Hence,
to understand the positive eigenvalues ν of cL, it is enough to study the
equations

dγ = −ν ∗ γ and(6.1)
Lξγ = imγ(6.2)

for γ ∈ C∞(T ∗L ⊗ C) and m ∈ Z.
Let ω0 be the standard Kähler form on C

3. Since Σ is holomorphic,
ω0|Σ = volΣ and thus ω = ω0|L is a nowhere vanishing 2-form on L. More-
over, ∗ω is the 1-form on L dual to the U(1) vector field ξ, where ∗ is the
Hodge star on L, so θ = ∗ω in the notation of Definition 6.1.

By (2.3), if x1 is the coordinate on R in the decomposition R
7 = R ⊕ C

3

and C is the cone on L embedded in R
7, then β = ∂

∂x1
�ϕ|C = ω0|C is a self-

dual 2-form which corresponds to the deformation of C by translation in
the x1 direction. By Corollary 2.11 and Proposition 2.17, β must be closed.
Notice that ω0|C = r2ω + r∗ω ∧ dr, where r is the radial coordinate, and so
dβ = 0 if and only if d∗ω = −2ω.

By Definition 6.1, given γ ∈ C∞(T ∗L ⊗ C), there exist f ∈ C∞(L) and
α ∈ C∞(T ∗

hL ⊗ C) such that γ = f∗ω + α. Thus,

dγ = d(f∗ω) + dα = dhf ∧ ∗ω − 2fω + dα and ∗γ = fω + ∗hα ∧ ∗ω

We deduce from looking at the horizontal components of (6.1) that

(6.3) dhα = −(ν − 2)fω.

For convenience we set dv = d − dh. Hence, using Cartan’s formula and the
facts that ξ�α = ξ�ω = 0 and ξ�∗ω = 1, (6.2) becomes:

imγ = d(ξ�γ) + ξ�dγ = df + ξ�d(f∗ω) + ξ�dα

= df + ξ�(dhf ∧ ∗ω) + ξ�dvα = dvf + ξ�dvα.

We can also use (6.1) in (6.2) to see that:

imγ = df − νξ� ∗ γ = df − νfξ�ω − νξ�(∗hα ∧ ∗ω) = df + ν∗hα.
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Together, we deduce that

dhf = imα − ν∗hα,(6.4)
dvf = imf∗ω,(6.5)
dvα = im∗ω ∧ α.(6.6)

Since ν > 0, (6.1) forces d∗γ = 0 and thus

(6.7) dh∗hα = −imfω.

As in [33, Section 2.2], the complex structure J on Σ defines a complex
structure map Jh on horizontal forms, which agrees with J on horizontal
1-forms (viewed as lifts of 1-forms on Σ). This allows us to define Λp,q

h T ∗L ⊗
C, where p, q ∈ N, to be the bundle of horizontal (p + q)-forms which have
eigenvalue i(p − q) under Jh, and thus give the decomposition Λm

h T ∗L ⊗ C =
⊕p+q=mΛp,q

h T ∗L ⊗ C. We may therefore define operators

∂h : C∞(Λp,q
h T ∗L ⊗ C) → C∞(Λp+1,q

h T ∗L ⊗ C) and

∂̄h : C∞(Λp,q
h T ∗L ⊗ C) → C∞(Λp,q+1

h T ∗L ⊗ C)

by taking appropriate components of dh.
Since α is a horizontal complex 1-form on L, it can be decomposed into

(1, 0) and (0, 1) components. Thus, ∗hα = ∗h(α1,0 + α0,1) = iα1,0 − iα0,1 and
so (6.4) becomes:

∂hf = i(m − ν)α1,0,(6.8)

∂̄hf = i(m + ν)α0,1.(6.9)

We notice that f = 0 forces m2 = ν2 otherwise α = 0 by (6.8) and (6.9).
Furthermore, (6.3) for f = 0 becomes

(6.10) ∂̄hα1,0 + ∂hα0,1 = 0.

Thus, f = 0 = m − ν is equivalent to ∂̄hα1,0 = 0 = α0,1 and f = 0 = m + ν
is equivalent to ∂hα0,1 = 0 = α1,0.

The hyperplane bundle over CP
2 defines a complex line bundle H over

Σ which is also a real line bundle over L. We can, of course, identify H
over L with the cone C, and so H has a global section s over L given
simply by s(x) = x. It is clear that Lξs = is and α ⊗ s−m, by (6.6), is a
U(1)-invariant section of T ∗L ⊗ C ⊗ H−m, and so pushes down to be a well-
defined section of T ∗Σ ⊗ H−m over Σ. The condition ∂̄hα1,0 = 0 given by
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(6.10), when m = ν, is then equivalent to saying that α1,0 ⊗ s−ν is a holo-
morphic section of Pν = T ∗1,0Σ ⊗ H−ν . Since H is the bundle OΣ(−1) and
T ∗1,0Σ ∼= OΣ(dΣ − 3), we see that Pν

∼= OΣ(ν + dΣ − 3). Thus, by Riemann–
Roch, the dimension of the vector space of holomorphic sections of Pν is

h0(Pν) = dΣ(ν + dΣ − 3) + 1 − gΣ.

(Notice that P3 is isomorphic to the normal bundle of Σ in CP
2 and so its

holomorphic sections correspond precisely to the infinitesimal deformations
of Σ as a holomorphic curve.) Similarly, for m = −ν, we have that α0,1 ⊗
sν is an anti-holomorphic section of Pν . Hence, for f = 0, we get integer
eigenvalues ν ∈ {1, 2, 3} for cL in (0, 4) (since m2 = ν2) and contributions of
2h0(Pν) to σL(ν). Using the degree-genus formula, we calculate

(6.11) 2h0(Pν) = dΣ(dΣ − 3 + 2ν).

It follows from (6.3)–(6.7) that

ΔLf = ∗d∗ (imf ∗ ω + imα − ν ∗h α)(6.12)
= −∗d(imfω + im ∗h α ∧ ∗ω + να ∧ ∗ω)
= −∗(im(imf) volL + im(−imf) volL − ν(ν − 2)f volL)
= ν(ν − 2)f.

Since Lξf = imf by (6.4), (6.5), we deduce from Definition 6.1 and Propo-
sition 6.2 that

(6.13) Δhf = (ν(ν − 2) − m2)f.

Recall that the eigenvalues of ΔL and Δh have to be non-negative.
If ν ∈ (0, 2) then the only solution of (6.12) is f = 0. Thus, m2 = ν2 by

(6.8) and (6.9), so ν = 1 and σL(1) = dΣ(dΣ − 1) from (6.11) as claimed.
If ν = 2 and f �= 0 then m = 0 by (6.13) and the solutions of (6.12)

consist of constant (non-zero) functions. Since f �= 0 is constant, we see from
(6.8)–(6.9) that α = 0. Thus, we have a 1-dimensional space of solutions to
(6.1), (6.2) for ν = 2 and f �= 0. We deduce the formula for σL(2) from (6.11).

If ν ∈ (2, 4) and f �= 0 then the non-negativity of ν2 − 2ν − m2 by (6.13)
forces |m| ≤ 2. Moreover, solutions to (6.12) define α via (6.8) and (6.9) since
m2 �= ν2. We deduce the remaining eigenvalues of cL and multiplicities from
(6.11) as claimed.

Now suppose dΣ > 1 so that the cone C is non-planar. We can view
the Lie algebra of SU(3) as a subalgebra of g2 and decompose g2 = su(3) ⊕
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su(3)⊥. If v ∈ su(3)⊥ is identified with a tangent vector on R
7, v|C defines a

normal vector w which in turn defines an infinitesimal deformation of C as
a coassociative cone. Moreover, since v ∈ su(3)⊥ and C is non-planar, w is
a non-trivial infinitesimal deformation which is not complex. Thus (w�ϕ)|C
will be an order O(r) self-dual 2-form, which does not arise purely from a
horizontal 1-form on L, and will define a 3-eigenform of cL with f �= 0 (since,
for f = 0, the 3-eigenforms correspond to the infinitesimal deformations of
Σ as a holomorphic curve). Since dim su(3)⊥ = 6, we deduce that mL(3) ≥ 6
as claimed. �

It is easy to check that Theorem 6.5 applied to a totally geodesic CP
1

in CP
2 implies the stability of complex 2-planes as coassociative 4-planes

as we already knew from Corollary 5.7. However, we can in fact prove the
following.

Proposition 6.6. The only complex 2-dimensional cones in C
3, with com-

pact non-singular complex links in CP
2, which are stable as coassociative

cones in R
7 are complex 2-planes.

Proof. Suppose C is a counterexample to the statement of the proposition
and suppose, for simplicity, that the complex link Σ of C is connected.
Embed C as a coassociative cone in R

7 and let G be the Lie subgroup
of G2 preserving C. Since C is non-planar and supposed to be stable, in
the notation of Proposition 4.12 we should have dim Ď(0) = 7, since every
translation of C will define an order O(1) coassociative deformation, and
dim Ď(1) = 14 − dim G. By Theorem 6.5, this occurs if and only if

d2
Σ + dΣ = 6 and d2

Σ + 3dΣ = 14 − dim G−mL(3).

Subtracting these equations and using the fact that mL(3) ≥ 6 shows that
2dΣ ≤ 2 − dim G, but this contradicts dΣ > 1 as C is non-planar. �

We now wish to mimic our result for holomorphic curves in CP
2 for the

case of null-torsion pseudoholomorphic curves in S6.

Theorem 6.7. Recall Definitions 4.5, 4.6, 4.13 and 6.3. Let Σ ⊆ S6 be
a compact, connected, null-torsion pseudoholomorphic curve of genus gΣ

and let c1(N2Σ) be the first Chern number of N2Σ. Let L be the tube of
radius π

2 in N2Σ about Σ. The eigenvalues of cL in (0, 4) are 1, 2, 3 and
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λ + 2 ∈ (2, 4) \ {3} such that λ(λ + 2) ∈ EL. Moreover,

σL(1) = 2gΣ − 2c1(N2Σ) − 2, σL(2) = 2gΣ − 4c1(N2Σ) − 1,

σL(3) = mL(3) + 2gΣ − 6c1(N2Σ) − 2, σL(λ + 2) = mL(λ(λ + 2)).

Proof. It is straightforward to see that Definition 6.1 applies to the natural
projection π : L → Σ and that the fibres of π are totally geodesic since L is
a tube of radius π

2 . Moreover, by Example 4.9, if ξ is the unit vector field
given by the S1-fibration of L over Σ then ξ is Killing. By Proposition 6.4
it is therefore enough to study (6.1)–(6.2) for γ ∈ C∞(T ∗L ⊗ C) and m ∈ Z

to find the positive eigenvalues ν of cL.
If we let θ be the 1-form on L dual to ξ then, since Σ has null-torsion, the

structure equations for L given in [28, Section 6.4] imply that dθ = −2∗θ.
This formula, together with the fact that Σ is endowed with a complex struc-
ture, enables us to follow the proof of Theorem 6.5 and see that we essentially
have two possible contributions to eigenvalues of cL: either eigenfunctions
of the Laplacian on L or holomorphic sections of Pν = T ∗1,0Σ ⊗ H−ν for
ν ∈ Z

+, where H = N2Σ since we can identify the cone over L with N2Σ
over Σ.

Recall the structure equations for Σ given in Definition 4.6. Since κ32 =
0, the curvature form of N2Σ is

dκ33 = −θ1 ∧ θ̄1,

so c1(N2Σ) < 0 (in fact, it is proportional to − vol(Σ)). Thus, by Riemann–
Roch, we have that

h0(Pν) = c1(T ∗1,0Σ) − νc1(N2Σ) + 1 − gΣ = gΣ − 1 − νc1(N2Σ).

The result now follows from the proof of Theorem 6.5. �

Remarks.

(a) The first Chern number c1(N2Σ) is the negative of the degree of Σ as
a holomorphic curve in the 5-quadric in CP

6, so is just − 1
4π vol(Σ).

(b) Theorem 6.7 will not immediately generalize to the other possible case
given by Example 4.9, namely tubes L of radius π

2 in N1Σ. First, the
relationship between the derivative of the vertical 1-form θ and its dual
∗θ is not as straightforward. Second, c1(N1Σ) is often positive, so it is
not as easy to calculate σL(ν).
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One can apply Theorem 6.7 to the Bor̊uvka sphere Σ, for which c1(N2Σ) =
−6, and recover the result of Corollary 5.14. Theorem 6.7 can also be applied
to a totally geodesic 2-sphere, which is the degenerate case of a null-torsion
curve, to prove Corollary 5.7.

We now prove the analogue of Proposition 6.6.

Proposition 6.8. Recall Definitions 4.5 and 4.6. Let C be a coassocia-
tive cone whose link is a tube of radius π

2 in N2Σ about a compact (non-
totally geodesic) null-torsion pseudoholomorphic curve Σ in S6. Then C is
not stable.

Proof. Suppose for simplicity that Σ is connected and let G be the subgroup
of G2 preserving C. By Theorem 6.7, C is stable only if

2gΣ − 4c1(N2Σ) = 8 and mL(3) + 2gΣ − 6c1(N2Σ) − 2 = 14 − dim G,

since C is non-planar. These equations force

gΣ = mL(3) + dim G−4 and 2c1(N2Σ) = mL(3) + dim G−8.

Therefore, mL(3) + dim G ≥ 4 as gΣ ≥ 0. Hence, c1(N2Σ) ≥ −2 so the degree
of Σ as a holomorphic curve in CP

6 must be 1 or 2. We deduce that Σ must
have genus zero and lie in some CP

2 in CP
6. We now show that Σ cannot

be a plane curve by the structure equations in Definition 4.6, giving our
required contradiction.

The embedding of Σ as a holomorphic curve in CP
6 is given by f3. Since

Σ is non-totally geodesic, df3 depends on f2 and df2 depends on f1. However,
df1 has a non-zero component in the direction of u, which is independent of
f1, f2, f3, since θ1 is nowhere vanishing on the curve. It therefore follows that
Σ cannot lie in some CP

2 in CP
6. �

Theorems 6.5 and 6.7 invite us to make the following definition.

Definition 6.9. For a compact Riemannian 3-manifold L let

η(L) =
∑

λ∈(0,1]

mL(λ(λ + 2)),

using the notation of Definition 6.3.

Remark. By Theorems 6.5 and 6.7, the stability index of certain 2-ruled
cones with link L fibred over an algebraic curve Σ will be the sum of a



Stability of coassociative conical singularities 857

topological term determined by the degree and genus of Σ, and an analytic
piece given by η(L). We can therefore think of η(L) as a sort of “η-invariant”.

We now make an elementary observation, which we state for complex
cones although it is equally valid for cones whose links are as in Theorem 6.7.

Proposition 6.10. Let C be a complex 2-dimensional cone in C
3 with com-

pact real link L such that C \ {0} is non-singular. Let C consist of G2 �R
7

transformations of a deformation family for C as a complex cone and recall
Definitions 4.12 and 6.9. Let L′ be the link of C ′ ∈ C. Then

indC(C) − indC(C ′) = η(L) − η(L′)

for all C ′ ∈ C. Moreover, there exists an open neighbourhood C′ of C in C
such that, for all C ′ ∈ C′, η(L) − η(L′) ≥ 0. Thus, if C is C-stable then C ′

is C-stable for all C ′ ∈ C′.

Proof. By Definitions 4.12 and 4.13 and Theorem 6.5, the difference in the
C-stability indices of C and C ′ is determined by the spectra of L and L′ as
claimed because the degree of the complex link is the same for C and C ′.

Deformations of L will change the spectrum, but the only way in which
η(L) �= η(L′), for a sufficiently small perturbation L′ of L, is if a new element
of the spectrum is created strictly above 3 under the deformation and the
number of the elements of the spectrum in (0, 3] decreases. Thus, η(L) ≥
η(L′) for all L′ in some open neighbourhood of L, proving the existence
of C′.

If C is C-stable then indC(C ′) ≤ indC(C) = 0 for all C ′ ∈ C′. We deduce
that indC(C ′) = 0 from the non-negativity of the stability index. �

We conclude this section with an application of Proposition 6.10.

Corollary 6.11. Recall Ca, C◦ and T defined in Corollary 5.12. The cone
Ca is Jacobi integrable and C◦-stable for all a ∈ T .

Proof. Recall that C2, with link L2, given by Example 4.3 satisfies C2 =
C( 1

3
, 1
3
, 1
3
) and indC◦(C2) = 0 by Corollary 5.12. Let La be the link of Ca.

Let
T◦ = {a ∈ T : indC◦(Ca) = 0},

which is non-empty since (1
3 , 1

3 , 1
3) ∈ T◦. By Proposition 6.10 T◦ is open. Our

aim is to show that T◦ is also closed in T , since then T◦ = T by connected-
ness.
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Recall that dim C◦ = 23 and that mLa
(3) ≥ 6 by Theorem 6.5. Thus

indC◦(Ca) =
∑

λ∈(0,1)

mLa
(λ(λ + 2)) + (mLa

(3) − 6)

by Theorem 6.5. We deduce that a ∈ T◦ if and only if mLa
(3) = 6 and

mLa
(λ(λ + 2)) = 0 for all λ ∈ (0, 1).
Suppose, for a contradiction, that T◦ is not closed, so there exists a ∈

T◦ ∩ T \ T◦. Therefore mLa
(3) > 6 or mLa

(λ(λ + 2)) > 0 for some λ ∈ (0, 1).
However, since the spectrum of the Laplacian varies continuously under
deformations of the metric, the latter can occur if and only if there exists
a′ ∈ T◦ for which mLa′ (3) > 6. Since this cannot happen for a′ ∈ T◦ we may
suppose therefore that mLa

(3) > 6.
Hence, there is a Lagrangian Jacobi field v on La which is independent

of the Lagrangian Jacobi fields corresponding to deformations of Ca in C◦.
For all a′ close to a we have that La′ = expv′(La) for some Lagrangian
Jacobi field v′. Moreover, since La′ is Lagrangian and v + v′ is a Lagrangian
Jacobi field on La, we may view v as a Lagrangian Jacobi field on La′ for
a′ sufficiently close to a. However, any open neighbourhood of a meets T◦
as a ∈ T◦, so there exists a′ ∈ T◦ such that La′ has a Lagrangian Jacobi
field independent of those corresponding to deformations of Ca′ in C◦. Thus
mLa′ (3) > 6 for some a′ ∈ T◦, which is our required contradiction. �

7. Examples of coassociative 4-folds with conical singularities

In this section we produce our examples of coassociative 4-folds with con-
ical singularities. We describe the construction of compact G2 manifolds
we require and the singular 4-dimensional submanifolds which arise follow-
ing [20] and [21]. Initially we will have a singular coassociative 4-fold N in a
compact almost G2 manifold M , but the ambient G2 structure will have tor-
sion. We then show that N has conical singularities which are stable under
deformations of the G2 structure. Finally, we deform the G2 structure on M
so that it has no torsion and simultaneously deform N to produce our CS
coassociative 4-fold.

7.1. Examples of compact G2 manifolds

Here we review the relevant material from [20]. The key ingredients will be
Fano 3-folds and K3 surfaces, which we now define.
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Definition 7.1. A compact complex 3-dimensional manifold X is a Fano
3-fold if its first Chern class is positive. Equivalently, X has ample anti-
canonical bundle. Fano 3-folds are simply connected and projective.

A K3 surface P is a simply connected, compact, complex surface with
c1(P ) = 0. A generic divisor in the anticanonical linear system of a Fano
3-fold is a smooth K3 surface by the work of Shokurov [36].

Remark. One definition of a Calabi–Yau 3-fold is a compact Kähler 3-fold
with vanishing first Chern class or, equivalently, with trivial canonical bun-
dle.

The construction of compact G2 manifolds in [20] proceeds via the con-
struction of certain non-compact Calabi–Yau 3-folds. These non-compact
Riemannian manifolds are asymptotically cylindrical. We define these man-
ifolds formally.

Definition 7.2. Let (Y, g) be a Riemannian n-manifold. We say that Y is
asymptotically cylindrical (with rate λ) if there exist constants λ < 0 and
R > 0, a compact subset K of Y , a compact Riemannian (n−1)-manifold
(S, gS) and a diffeomorphism Ψ : (R,∞) × S → Y \ K satisfying

|∇j(Ψ∗(g) − gcyl)| = O(eλt), as t → ∞ for all j ∈ N,

where gcyl = dt2 + gS is the cylindrical metric on (0,∞) × S, ∇ is the
Levi-Civita connection of gcyl and |.| is calculated with respect to gcyl.

We now introduce some important notation.

Definition 7.3. Let X be a maximal deformation family of Fano 3-folds,
let X ∈ X and let P, Q be K3 surfaces in the anticanonical linear system
of X such that P ∩ Q is a non-singular curve in X. Let X̃(P, Q) denote the
blow-up of X along P ∩ Q and let P̃ denote the proper transform of P in
X̃(P, Q). Finally, let Y (X, P, Q) = X̃(P, Q) \ P̃ .

Since X̃(P, Q) is the blow-up of X along P ∩ Q, we have a smooth map
� : X̃(P, Q) → CP

1 whose fibres are the proper transforms of the divisors in
the pencil defined by P and Q. We may introduce a holomorphic coordinate ζ
on CP

1 such that �−1(0) = P̃ and see that, for some open neighbourhood U
of 0 in the ζ coordinate, �−1(U \ {0}) is diffeomorphic to (0,∞) × P × S1.
Thus we may view Y (X, P, Q) as a manifold with a cylindrical “end” with
cross-section P × S1. This motivates the next result which follows from [20,
Corollary 6.43].
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Theorem 7.4. Use the notation of Definition 7.3. There is a smooth com-
plete metric gY on Y = Y (X, P, Q) such that (Y, gY ) is asymptotically cylin-
drical and the holonomy of gY is SU(3).

Suppose we have a pair of maximal deformation families X1 and X2

of Fano 3-folds. Using the notation of Definition 7.3, we have a pair of
asymptotically cylindrical complex 3-folds Y1 = Y1(X1, P1, Q1) and Y2 =
Y2(X2, P2, Q2) with holonomy SU(3) by Theorem 7.4. We thus have
7-manifolds Zi = Yi × S1, for i = 1, 2, which are asymptotically cylindrical
to (0,∞) × Pi × S1 × S1. In [20, Section 4] it is explained that if P1 and
P2 satisfy a certain “matching condition”, then one can apply a “twisted
connected sum” construction to Z1 and Z2 to get a one-parameter family
of compact almost G2 manifolds {(MT , ϕT , gϕT

) : T > T0} for some T0 > 0.
Moreover, (ϕT , gϕT

) is simply the product G2 structure on Zi, as described
in Definition 2.18, away from the “interpolation region” where Z1 and Z2 are
“glued”. The only question is whether this “matching condition” holds for
P1 and P2. The answer [20, Theorem 6.44] is that there always exist Xi ∈ Xi

such that P1 and P2 can be chosen which satisfy the “matching condition”.
Finally, [20, Proposition 5.32 and Theorem 5.34] imply that one can always
perturb the closed G2 structure on MT to a torsion-free one for sufficiently
large T . We can summarize these observations as a theorem.

Theorem 7.5. Let X1 and X2 be maximal deformation families of Fano
3-folds and recall the notation of Definitions 2.13, 2.14, 2.15 and 7.3. There
exist constants T0 > 0 and λ < 0 and, for i = 1, 2, Xi ∈ Xi and a K3 surface
Pi in the anticanonical linear system of Xi such that, for all T > T0 and
suitable Q1, Q2 as in Definition 7.3, the following hold.

(a) There is a compact almost G2 manifold (MT , ϕT , gϕT
) which, out-

side some compact set IT , is diffeomorphic to the disjoint union of
Y1(X1, P1, Q1) × S1 and Y2(X2, P2, Q2) × S1 endowed with the product
G2 structure induced from the asymptotically cylindrical SU(3) struc-
ture given by Theorem 7.4.

(b) Let p > 4. There is a smooth 2-form ηT on MT , satisfying ‖ηT ‖Lp
2
≤

cpe
λT and ‖ηT ‖C1 ≤ cpe

λT for some constant cp > 0, such that ϕT +
dηT ∈ C∞(Λ3

+T ∗MT ) and the metric gϕT +dηT
on MT has holonomy

G2.

The compact set IT is the interpolation region between Z1 and Z2.
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Note. Of course, the MT are topologically the same for all T , so we can
view (ϕT , gϕT

) as a one-parameter family of closed G2 structures on a
7-manifold M .

We now have the following important result.

Proposition 7.6. Use the notation of Theorem 7.5. Outside IT , MT is
fibred by K3 surfaces which are coassociative with respect to ϕT . Moreover,
for generic Q1 and Q2, there exist coassociative K3 surfaces in (MT , ϕT , gϕT

)
whose singularities are isolated and are ordinary double points.

Proof. After Definition 7.3 we noted that we have a fibration � : X̃(P, Q) →
CP

1 whose fibres are K3 surfaces. Necessarily some of these fibres will be
singular and the generic singularity is an ordinary double point. Recall that
we have the freedom to choose any smooth K3 surface Q in the anticanon-
ical linear system of X which meets P in a non-singular curve. Therefore,
through generic choice of Q we can be assured that there are fibres other
than the exceptional divisor whose only singularities are ordinary double
points. Thus, for generic Q1 and Q2, we have a fibration

�T : MT \ IT
∼= (Y1 × S1) � (Y2 × S1) → (CP

1 � CP
1) × S1

with fibres that are K3 surfaces in Yi × {x} for some i and some x ∈ S1.
Moreover, there are some fibres of �T which only have ordinary double point
singularities. Since Y1 and Y2 are Calabi–Yau manifolds and the almost G2

structure on MT \ IT agrees with the product G2 structure on Y1 × S1 and
Y2 × S1, a simple generalization of Corollary 2.11 leads us to deduce that
the fibres of �T are coassociative with respect to ϕT . �

Remark. By studying the G2 structure on IT , it is shown in [21] that one
can extend the coassociative fibration �T through IT .

For convenience we introduce the following notation.

Definition 7.7. Use the notation of Theorem 7.5 and let Q1 and Q2 be
generic so that Proposition 7.6 applies. Let ΓT denote the set of coassociative
K3 surfaces in (MT , ϕT , gϕT

), which have isolated ordinary double point
singularities. By Proposition 7.6, there exist N ∈ ΓT such that N ⊆ MT \ IT .

Our aim now is to show that some of the singular coassociative 4-folds
in ΓT are “stable” under the deformation from the closed G2 structure ϕT

to the torsion-free G2 structure ϕT + dηT given in Theorem 7.5(b).
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7.2. Stable coassociative conical singularities

We begin with a crucial result that allows us to implement our stability
theory.

Proposition 7.8. Use the notation of Theorem 7.5 and Definition 7.7. If
N ∈ ΓT , then N is a CS coassociative 4-fold in (MT , ϕT , gϕT

) in the sense
of Definition 3.2. Moreover, the singularities of N have cones in the family
C◦ given in Corollary 5.12.

Proof. First observe that N is clearly a connected coassociative integral
current with ∂N = ∅. Second, if z is a singular point of N then it is an
ordinary double point of a complex surface, so the tangent cone at z has
multiplicity one and is modelled on a cone in C◦ by definition. Since cones
in C◦ are Jacobi integrable by Corollary 6.11, we may apply Corollary 3.20
to deduce the result. �

Proposition 7.9. Let N be a CS coassociative 4-fold in an almost G2

manifold. Suppose that the singularities of N are z1, . . . , zs with rate μ and
cones C1, . . . , Cs such that:

(i) Ci is in the family C◦ given in Corollary 5.12 for all i; and

(ii) (1, μ] ∩ D = ∅, where D is given in Definition 3.12.

If C = Cs◦, then O(N, μ, C) = {0}, in the notation of Theorem 3.14.

Proof. This follows immediately from Definition 4.12 and Corollary 6.11. �

Theorem 1.3 now follows from our final result.

Theorem 7.10. Use the notation of Theorem 7.5 and Definition 7.7. Let
T > T0 and let N ∈ ΓT be such that N ⊆ MT \ IT . Making T0 larger if nec-
essary, there exists a CS deformation N ′ of N which is coassociative with
respect to ϕT + dηT .

Proof. Note that there are N ∈ ΓT which do not lie in IT and that we are
free to make the rate μ at the singularities of N lower if necessary to satisfy
(1, μ] ∩ D = ∅. Hence, Propositions 7.8 and 7.9 imply N is a CS coassociative
4-fold with respect to ϕT and that O(N, μ, C) = {0}.

Recall that MT ′ is diffeomorphic to some 7-manifold M for all T ′ ≥
T0. Let F = {(ϕt + sdηt, gϕt+sdηt

) : s ∈ R, t > T0}. Then F is a smooth
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2-dimensional family of closed G2 structures on M . Moreover, for each
T > T0 we may parameterize F by (u, v) ∈ B(0; 1) via

(u, v) ∈ B(0; 1) ⊆ R
2 �→ ϕ(u,v) = ϕtT (u,v) + sT (u, v) dηtT (u,v),

where

sT (u, v) =
(T − T0)v

(1 − u)2 + v2

and

tT (u, v) =
T0(1 − u)2 + T0v

2 + (T − T0)(1 − u)
(1 − u)2 + v2

.

With this parameterization of F we see that ϕ(0,0) = ϕT .
Notice that, since N ∩ IT = ∅ there exists τ > 0 such that T > T0 + τ

and N ∩ IT ′ = ∅ for all T ′ ∈ (T − τ, T + τ). As the G2 structure outside IT ′

is the same for all T ′ ∈ (T − τ, T + τ) by Theorem 7.5(a), N is coassocia-
tive with respect to ϕT ′ for all such T ′. We therefore see that [ϕ(u,v)] = 0
in H3

cs(N̂) for all (u, v) sufficiently near (0, 0). Hence, by Theorem 3.17,
there exists some δN > 0 such that for all (u, v) ∈ B(0; δN ) there exists a CS
deformation N (u,v) of N which is coassociative with respect to ϕ(u,v).

To complete the proof, we need to show that ϕ(u,v) = ϕT + dηT for some
(u, v) ∈ B(0; δN ). As discussed after Theorem 3.17, this occurs if ‖dηT ‖C1 <
ε and ‖dηT ‖Lp

2
< ε for some p > 4, where ε > 0 is determined by the geometry

near N with respect to gϕT
. By Theorem 7.5(b), ‖dηT ‖C1 and ‖dηT ‖Lp

2
are

of order O(eλT ) for some λ < 0. Moreover, by Theorem 7.5(a), the geometry
near N is not changing as T varies, so the constant ε can be chosen to be
independent of T . Thus, we can ensure that the relevant norms of dηT are
sufficiently small by making T0 larger. �
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